
Bell Labs Technical Journal ◆ Winter 1997 5

Introduction
The Inferno™ operating system1 is designed to be

used in a variety of network environments—for

example, those supporting advanced telephones,

hand-held devices, TV set-top boxes attached to cable

or satellite systems, and inexpensive Internet comput-

ers—but also in conjunction with traditional comput-

ing systems.

Among the most visible new environments are

CATV, direct satellite broadcasting, and the Internet.

As the entertainment, telecommunications, and com-

puting industries converge and interconnect, data net-

works in various forms are emerging, each potentially

as useful and profitable as the telephone system.

Unlike the telephone system, which started with stan-

dard terminals and signaling, these networks are

developing in a world of diverse terminals, network

hardware, and protocols. Only a well-designed and

economical operating system can insulate the diverse

providers of content and services from the equally var-

ied transport and presentation platforms. Inferno is a

network operating system for this new world.

Inferno’s definitive strength lies in the follow-

ing areas:

• Portability across processors. Currently, Inferno

runs on Intel, SPARC,* MIPS, ARM, HP-PA,

Power PC,* and AMD 29K* architectures and

is readily portable to others.

• Portability across environments. Inferno runs as a

stand-alone operating system on small termi-

nals and also as a user application under the

Windows NT,* Windows 95,* UNIX* (Irix,*

Solaris,* Linux, AIX,* HP/UX,* NetBSD), and

Plan 9™ systems. In all these environments,

Inferno applications see an identical interface.

• Distributed design. The identical environment is

established at both a user’s terminal and a

♦ The Inferno™ Operating System
Sean M. Dorward, Rob Pike, David Leo Presotto,
Dennis M. Ritchie, Howard W. Trickey, and Philip Winterbottom

The Inferno™ operating system facilitates the creation and support of distributed
services in the new and emerging world of network environments, such as those typ-
ified by CATV and direct satellite broadcasting systems, as well as the Internet. In
addition, as the entertainment, telecommunications, and computing industries con-
verge and interconnect, different types of data networks are arising, each one as
potentially useful and profitable as the telephone network. However, unlike the
telephone system, which started with standard terminals and signaling, these new
networks are developing in a world of diverse terminals, network hardware, and
protocols. Inferno is designed so that it can insulate the diverse providers of content
and services from the equally varied transport and presentation platforms. The
Inferno Business Unit of Lucent Technologies and the Computing Sciences Research
Center of Bell Labs, the R&D arm of Lucent, designed it specifically as a commercial
product. It is intended for licensing in the marketplace and for use in conjunction
with new Lucent offerings. Inferno incorporates many years of Bell Labs research in
operating systems, languages, on-the-fly compilers, graphics, security, networking,
and portability in providing an effective and economical network operating system.

6 Bell Labs Technical Journal ◆ Winter 1997

server, and each environment may import the

resources of the other (for example, the

attached I/O devices or networks). Aided by

the communications facilities of the run-time

system, applications may be split easily (and

even dynamically) between client and server.

• Minimal hardware requirements. Inferno runs

useful applications as stand-alone programs on

machines with as little as 1 MB of memory,

and it does not require memory-mapping

hardware.

• Portable applications. Inferno applications are

written in the type-safe Limbo™ language,

whose binary representation is identical over

all platforms.

• Dynamic adaptability. Depending on the hard-

ware or other resources available, applications

may load different program modules to per-

form a specific function. For example, a video

player application might use any of several dif-

ferent decoder modules.

Underlying the design of Inferno is a model of the

diversity-of-application areas it intends to stimulate.

Many suppliers are interested in purveying media and

services—telephone network service providers, Web

servers, cable companies, merchants, and various

information services firms. Currently, many connec-

tion technologies are available—for example, ordinary

telephone modems, ISDN, ATM, the Internet, analog

broadcast TV or CATV, cable modems, digital video on

demand, and other interactive TV systems.

Applications more clearly related to Lucent

Technologies’ current and planned product offerings

include control of switches and routers and the associ-

ated operations system facilities needed to support

them. For example, Inferno software will control an IP

switch/router for voice and data being developed by

Lucent’s Bell Labs Research and Network Systems

organizations. An Inferno-based firewall called Signet

is being used to secure outside access to the research

organization’s Internet connection.

Finally, existing or potential hardware endpoints

must be considered. Some are located in consumers’

homes in the form of PCs, game consoles, and newer

set-top boxes. Others are located inside the networks

themselves in the form of nodes for billing, network

monitoring, or provisioning. The higher ends of these

spectra, such as fully interactive TV with video on

demand, may be fascinating, but they have developed

more slowly than expected. One reason is the cost of

the set-top box—especially its memory requirements.

Portable terminals are similarly constrained because of

weight and cost considerations.

Inferno is parsimonious enough in its resource

requirements to support interesting applications on

today’s hardware while being versatile enough to

grow into the future. In particular, it enables develop-

ers to create applications that will work across a range

of facilities. An example of such an application is an

interactive shopping catalog that works in text mode

over a POTS modem, shows still pictures (perhaps

with audio) of the merchandise over ISDN, and

includes video clips over digital cable.

Clearly, not everyone who deploys an Inferno-

based solution will want to span the whole range of

possibilities. However, the system architecture should

be constrained only by the desired markets and the

available interconnection and server technologies, not

by the software.

Panel 1. Abbreviations, Acronyms, and Terms

ATM—asynchronous transfer mode
CA—certifying authority
CATV—cable television
DESCBC—DES chain block coding
DES—Data Encryption Standard
DESECB—DES electronic code book
GIF—Graphics Interchange Format
I/O—input/output
IP—Internet Protocol
JPEG—Joint Photographic Experts Group
MPEG—Motion Picture Experts Group
OA&M—operations, administration,

and maintenance
POTS—“plain old telephone service”
PPP—Point-to-Point Protocol
SHA—Secure Hash Algorithm
SSL—Secure Sockets Layer
STS—Station-to-Station
TCP/IP—Transmission Control Protocol/Internet

Protocol

Bell Labs Technical Journal ◆ Winter 1997 7

Inferno Interfaces
The role of the Inferno system is to create several

standard interfaces for its applications:

• Applications use various resources internal to

the system. These resources include a consis-

tent virtual machine that runs the application

programs together with library modules that

perform services as simple as string manipula-

tion through more sophisticated graphics ser-

vices for dealing with text, pictures,

higher-level toolkits, and video.

• Applications exist in an external environment

containing such resources as data files that can

be read and manipulated, together with objects

that are named and manipulated like files but

are more active. Devices (for example a hand-

held remote control, an MPEG decoder, or a

network interface) present themselves to the

application as files.

• Standard protocols exist for communication

within and between separate machines running

Inferno so that applications can cooperate.

At the same time, Inferno uses interfaces supplied by

an existing environment, either bare hardware or

standard operating systems and protocols.

Typically, an Inferno-based service would consist

of many relatively inexpensive terminals running

Inferno as a native system and fewer large machines

running it as a hosted system. On these server

machines, Inferno might interface to databases, trans-

action systems, existing OA&M facilities, and other

resources provided under the native operating system.

The Inferno applications themselves would run either

on the client or server machines or on both.

External Environment of Inferno Applications
The purpose of most Inferno applications is to pre-

sent information or media to the user. Thus, applica-

tions must locate the information sources in the

network and construct a local representation of them.

The information flow, however, is not one way. The

user’s terminal (whether it is a network computer, TV

set-top box, PC, or videophone) is also an information

source, and its devices represent resources to applica-

tions. Inferno draws heavily on the design of the

Plan 9 operating system2 in the way it presents

resources to these applications.

The design has three principles:

• All resources are named and accessed like files

in a forest of hierarchical file systems.

• The disjoint resource hierarchies provided by

different services are joined into a single pri-

vate and hierarchical name space.

• A communication protocol called Styx is

applied uniformly to access the resources

regardless of whether they are local or remote.

In practice, most applications see a fixed set of files

organized as a directory tree. Some of the files contain

ordinary data but others represent more active

resources. Devices are represented as files, and device

drivers (such as modems, MPEG decoders, network

interfaces, or TV screens) attached to a particular hard-

ware box present themselves as small directories.

These directories typically contain two files, data and

ctl , which respectively perform actual device I/O and

control operations. System services also live behind

filenames. For example, an Internet domain name

server might be attached to an agreed-on name (say

/net/dns). After writing to this file, which is a string

representing a symbolic Internet domain name, a sub-

sequent read from the file would return the corre-

sponding numeric Internet address.

The glue that connects the separate parts of the

resource name space together is the Styx protocol.

Within an instance of Inferno, all the device drivers

and other internal resources respond to the procedural

version of Styx. The Inferno kernel implements a

mount driver that transforms file system operations into

remote procedure calls for transport over a network.

On the other side of the connection, a server unwraps

the Styx messages and implements them using

resources local to it. Therefore, it is possible to import

parts of the name space (and thus resources) from

other machines.

To extend the example above, it is unlikely that a

set-top box would store the code needed for an

Internet domain name-server within itself. Instead, an

Internet browser would import the /net/dns

resource into its own name space from a server

machine across a network.

8 Bell Labs Technical Journal ◆ Winter 1997

The Styx protocol lies above and is independent of

the communications transport layer. It is readily car-

ried over the TCP/IP, PPP, ATM, or various modem

transport protocols.

Internal Environment of Inferno Applications
Inferno applications are written in Limbo,3 a new

language that was designed specifically for the Inferno

environment. Its syntax is influenced by C and Pascal,

and it supports the standard data types common to

them together with several higher-level data types,

such as lists, tuples (groups of values), strings, dynamic

arrays, and simple abstract data types.

In addition, Limbo supplies several advanced

constructs, which are carefully integrated into the

Inferno virtual machine. In particular, a communica-

tion mechanism called a channel is used to connect

different Limbo tasks on the same machine or across

the network. A channel transports typed data in a

machine-independent fashion so that complex data

structures (including channels themselves) may be

passed between Limbo tasks or attached to files in the

name space for language-level communication

between machines.

Multi-tasking is supported directly by the Limbo

language. Independently scheduled threads of control

may be spawned, and an alt statement is used to

coordinate the channel communication between tasks

(that is, alt is used to select one of several channels

that are ready to communicate). By building channels

and tasks into the language and its virtual machine,

Inferno encourages a communication style that is safe

and easy to use.

Limbo programs are built of modules, which are

self-contained units having a well-defined interface

containing functions (methods), abstract data types,

and constants defined by the module and visible out-

side it. Modules are accessed dynamically—that is,

when one module wishes to make use of another, it

dynamically executes a load statement naming the

desired module and it uses a returned handle to

access the new module. When the module is no

longer in use, its storage and code will be released.

The flexibility of the modular structure contributes to

the smallness of typical Inferno applications, as well

as to their adaptability. For example, in the shopping

catalog described above, the application’s main mod-

ule checks dynamically for the existence of the video

resource. If it is not available, the video-decoder

module is never loaded.

Limbo is fully type-checked at both compile and

run time. For example, pointers—besides being more

restricted than in C—are checked before being de-

referenced, and the type-consistency of a dynamically

loaded module is checked when it is loaded. Limbo

programs run safely on a machine without memory-

protection hardware. Moreover, all Limbo data and

program objects are subject to a garbage collector built

deeply into the Limbo run-time system. All system

data objects are tracked by the virtual machine and

freed as soon as they become idle. For example, if an

application task creates a graphics window and then

terminates, the window automatically disappears the

instant the last reference to it goes away.

Limbo programs are compiled into byte codes rep-

resenting instructions for a virtual machine called

Dis™. The architecture of the arithmetic part of Dis is a

simple three-address machine supplemented with a

few specialized operations for handling some of the

higher-level data types, such as arrays and strings.

Garbage collection is handled below the level of the

machine language. Task scheduling is similarly hidden.

When loaded into memory for execution, the byte

codes are expanded into a format more efficient for

execution. In addition, an optional on-the-fly compiler

turns a Dis instruction stream into native machine

instructions for the appropriate real hardware. This

can be done efficiently because Dis instructions closely

match the instruction-set architecture of today’s

machines. The resulting code executes at a speed

approaching that of compiled C.

Underlying Dis is the Inferno kernel, which con-

tains both the interpreter and on-the-fly compiler, as

well as memory management, scheduling, device dri-

vers, protocol stacks, and the like. The kernel also con-

tains the core of the file system (the name evaluator

and the code that turns file system operations into

remote procedure calls over communications links)

and the small file systems implemented internally.

Finally, the Inferno virtual machine implements

Bell Labs Technical Journal ◆ Winter 1997 9

several standard modules internally. These modules

include Sys , which provides system calls and a small

library of useful routines (for example, creation of net-

work connections and string manipulations). Module

Draw is a basic graphics library that handles raster

graphics, fonts, and windows. Module Prefab builds

on Draw to provide structured complexes containing

images and text inside windows. These elements may

be scrolled, selected, and changed by the methods of

Prefab . Module Tk is an all-new implementation of

the Tk graphics toolkit4 with a Limbo interface. A

Math module encapsulates the procedures for numeri-

cal programming.

Environment of the Inferno System
Inferno creates a standard environment for appli-

cations. Identical application programs can run under

any instance of this environment—even in distributed

fashion—and see the same resources. Several versions

of the Inferno kernel, Dis/Limbo interpreter, and

device driver set can be used depending on the envi-

ronment within which Inferno itself is implemented.

When running as the native operating system, the

kernel includes all the low-level glue (interrupt han-

dlers, graphics, and other device drivers) needed to

implement the abstractions presented to applications.

For a hosted system—for example, one hosted under

UNIX, Windows NT or Windows 95—Inferno runs as

a set of ordinary processes. Instead of mapping its

device-control functionality to real hardware, it adapts

to the resources provided by the operating system

under which it runs. Under UNIX, for instance, the

graphics library might be implemented using the

X Window System* and the networking using the

socket interface. Under Windows,* the library uses the

native Windows graphics and WinSock calls.

To the extent possible, Inferno is written in stan-

dard C language, and most of its components are

independent of the many operating systems that can

host it.

Security Issues
Inferno provides security of communication,

resource control, and system integrity. Each external

communication channel may be transmitted in the

clear, accompanied by message digests to prevent cor-

ruption, or encrypted to prevent corruption and inter-

ception. Once communication is established, channel

encryption is transparent to the application. Key

exchange is provided through standard public key

mechanisms. After key exchange, message digesting

and line encryption both use standard symmetric

mechanisms.

Inferno is secure against erroneous or malicious

applications and encourages safe collaboration

between mutually suspicious service providers and

clients. The resources available to applications appear

exclusively in the name space of the application, and

standard protection modes are available. This applies

to data, communication resources, and the executable

modules that constitute the applications. Security-

sensitive resources of the system are accessible only by

calling the modules that provide them. In particular,

adding new files and servers to the name space—an

authenticated operation—is controlled. For example, if

the network resources are removed from an applica-

tion’s name space, then it is impossible for it to estab-

lish new network connections.

Object modules may be signed by trusted authori-

ties who guarantee their validity and behavior. These

signatures may be checked by the system the modules

are accessing.

Although Inferno provides a rich variety of authen-

tication and security mechanisms as detailed below, few

application programs need to be aware of them or to

include coding explicitly to make use of them. Most

often, access to resources across a secure communica-

tions link is arranged in advance by the larger system in

which the application operates. For example, when a

client system uses a server system and connection

authentication or link encryption is appropriate, the

server resources will most naturally be supplied as part

of the application’s name space. The communications

channel that carries the Styx protocol can be set to

authenticate or encrypt. Thereafter, all use of the

resource is automatically protected.

Security Mechanisms
Authentication and digital signatures are per-

formed using public key cryptography. Public keys are

certified by Inferno-based or other certifying authori-

10 Bell Labs Technical Journal ◆ Winter 1997

ties who sign the public keys with their own private

key. Inferno uses encryption for:

• Mutual authentication of communicating

parties,

• Authentication of messages between these par-

ties, and

• Encryption of messages between these parties.

The encryption algorithms Inferno provides

include the SHA, MD4, and MD5 secure hashes;

Elgamal public key signatures and signature verifi-

cation;5 RC4 encryption; DES encryption; and pub-

lic key exchange based on the Diffie-Hellman

scheme. The public key signatures use keys with

moduli up to 4,096 bits (512 bits by default).

No generally accepted national or international

authority exists for storing or generating public or

private encryption keys. Thus, Inferno includes

tools for using or implementing a trusted authority,

but it does not itself provide the authority, which is

an administrative function. An organization using

Inferno (or any other security and key-distribution

scheme) must design a system to suit its own needs.

In particular, an organization must decide whom to

trust as a certifying authority (CA). However, the

Inferno design is sufficiently flexible and modular to

accommodate the protocols likely to be attractive in

practice.

The CA that signs a user’s public key deter-

mines the size of the key and the public key algo-

rithm used. Tools provided with Inferno use these

signatures for authentication. Library interfaces are

provided for Limbo programs to sign and verify sig-

natures.

Generally, authentication is performed using

public key cryptography. Parties register by having

their public keys signed by the CA. The signature

covers a secure hash (SHA, MD4, or MD5) of the

name of the party, the party’s public key, and an

expiration time. The signature—which contains the

name of the signer—along with the signed informa-

tion, is termed a certificate.

When parties communicate, they use the STS

protocol6 to establish the identities of the two par-

ties and to create a mutually known secret. The STS

protocol uses the Diffie-Hellman algorithm7 to cre-

ate this shared secret. The protocol is protected

against replay attacks by choosing new random

parameters for each conversation. It is secured

against man-in-the-middle attacks by requiring the

parties to exchange certificates and then digitally

signing key parts of the protocol. To masquerade as

another party, an attacker must be able to forge that

party’s signature.

Line Security
A network conversation can be secured against

modification alone or against both modification and

snooping. To secure against modification, Inferno

can append a secure MD5 or SHA hash (called a

digest),

hash(secret, message, messageid)

to each message. Messageid is a 32-bit number that

starts at 0 and is incremented by one for each mes-

sage sent. Thus, messages cannot be changed,

removed, reordered, or inserted into the stream

without knowing the secret or breaking the secure

hash algorithm.

To secure against snooping, Inferno supports

encryption of the complete conversation using

either RC4 or the DES with either DES chain block

coding (DESCBC) or the DES electronic code book

(DESECB).

Inferno uses the same encapsulation format as

Netscape’s SSL protocol. It is possible to encapsulate

a message stream in multiple encapsulations to pro-

vide varying degrees of security.

Random Numbers
The strength of cryptographic algorithms depends

in part on the strength of the random numbers used

for choosing keys, Diffie-Hellman parameters, and ini-

tialization vectors. Inferno achieves this strength in

two steps. First, a slow (100- to 200-b/s) random bit-

stream comes from sampling the low-order bits of a

free-running counter whenever a clock ticks. The

clock must be unsynchronized or at least poorly syn-

chronized with the counter. This generator is then

used to alter the state of a faster pseudo-random

number generator. Both the slow and fast generators

were tested on a number of architectures using self

correlation, random walk, and repeatability tests.

Bell Labs Technical Journal ◆ Winter 1997 11

Introduction to Limbo
The application programming language for the

Inferno operating system is Limbo. Although Limbo

looks syntactically like C, it has a number of fea-

tures that make it easier to use, safer, and more

suited to the heterogeneous and networked Inferno

environment. For instance, Limbo has a rich set of

basic types, strong typing, garbage collection, con-

currency, communications, and modules. It may be

interpreted or compiled just in time for efficient and

portable execution.

This paper introduces the language by studying

an example of a complete and useful Limbo pro-

gram. The program illustrates general programming,

as well as aspects of concurrency, graphics, module

loading, and other features of Limbo and Inferno.

The Problem
Our example program is a stripped-down ver-

sion of the Inferno program view , which displays

graphical image files on the screen—one per win-

dow. This version sacrifices some functionality, gen-

erality, and error-checking but still performs the

basic job. The files may be configured either in the

GIF8,9 or JPEG10 format, and they must be con-

verted before display; or they may already be

encoded in the Inferno standard format that needs

no conversion. Vie w “sniffs” each file to determine

what processing it requires, maps the colors if nec-

essary, creates a new window, and copies the con-

verted image to the window. Each window is given

a title bar across the top to identify it and to store or

hold the buttons that move and delete the window.

The Source
The complete Limbo source for our version of

vie w is shown in Panel 2. The source is annotated

with line numbers for easy reference (Limbo, of

course, does not use line numbers). Subsequent sec-

tions explain the workings of the program.

Although the program is too large to absorb as a

first example without some assistance, we recom-

mend skimming the program before moving on to

the next section to become familiar with the style of

the language. Control syntax derives from C11

while declaration syntax comes from the Pascal

family of languages.12 Limbo borrows features from

a number of languages (for example, tuples on lines

45 and 48) and introduces a few new ones (such as

explicit module loading on lines 90 and 92).

Modules
Limbo programs are composed of modules that

are loaded and linked at run time. Each Limbo

source file is the implementation of a single module.

In Panel 2, line 1 states that this file implements a

module called Vie w whose declaration appears in

the modul e declaration on lines 15 through 18. The

declaration states that the module has one publicly

visible element—the function init . Other func-

tions and variables defined in the file will be com-

piled into the module but they will only be

accessible internally.

The function ini t has a type signature (argu-

ment and return types) that makes it callable from

the Inferno shell, a convention not made explicit

here. The type of ini t allows Vie w to be invoked

by typing, for example,

view * .jpg

at the Inferno command prompt to view all the

JPEG files in a directory. This interface is the only

requirement that enables the shell to call the mod-

ule. All programs are constructed from modules,

and the shell can directly call some modules

because of their type. In fact, the shell invokes

Vie w by loading it and calling init —not, for

example, through the services of a system exec

function as in a traditional operating system.

Of course, not all modules implement shell

commands. Modules are also used to construct

libraries, services, and other program components.

The module Vie w uses the services of other mod-

ules for I/O, graphics, file format conversion, and

string processing. These modules are identified on

lines 2 through 14. Each module’s interface is

stored in a public include file that holds a definition

of a module in much the same manner as lines 15

through 18 of the Vie w program. For example, the

following is an excerpt from the include file

sys.m:

12 Bell Labs Technical Journal ◆ Winter 1997

Sys: module

{

PATH: con “$Sys”;

FD: adt # File descriptor

{

fd: int;

};

OREAD: con 0;

OWRITE: con 1;

ORDWR: con 2;

open: fn(s: string, mode: int):

ref FD;

print: fn(s: string, *): int;

read: fn(fd: ref FD,

buf: array of byte,

n: int): int;

write: fn(fd: ref FD,

buf: array of byte,

n: int): int;

};

This example defines a module type called Sys

that has functions with such familiar names as open

and print , constants like OREADto specify the mode

for opening a file, an aggregate type (adt) called FD

returned by open , and a constant string called PATH.

After including the definition of each module,

View declares variables to access each module. Line 3,

for instance, declares the variable sys to have type

Sys . It will be used to hold a reference to the imple-

mentation of the module. Line 6 imports a number of

types from the draw (graphics) module to simplify

their use. This line states that by default, the imple-

mentation of these types is to be that provided by the

module referenced by the variable draw . Without

such an import statement, calls to methods of these

types would require explicit mention of the module

providing the implementation.

Unlike most module languages, which resolve

unbound references to modules automatically, Limbo

requires explicit loading of module implementations.

Although this requires more bookkeeping, it allows a

program to have fine control over the loading (and

unloading) of modules, an important property in the

small-memory systems in which Inferno is intended to

run. Additionally, it allows easy garbage collection of

unused modules and permits multiple implementa-

tions to serve a single interface, a style of programming

we will exploit in View .

Declaring a module variable, such as sys , is not

sufficient to access a module. An implementation

must also be loaded and bound to the variable. Lines

21 through 25 load the implementations of the stan-

dard modules used by View . The load operator—

for example,

sys = load Sys Sys->PATH;

takes a type (Sys), the filename of the implementa-

tion (Sys->PATH), and loads it into memory. If the

implementation matches the specified type, a refer-

ence to the implementation is returned and stored in

the variable (sys). If not, the constant nil will be

returned to indicate an error. Conventionally, the

PATHconstant defined by a module names the default

implementation. Because Sys is a built-in module

provided by the system, it has a special form of name.

Other modules’ PATHvariables name files containing

actual code—for example, Wmlib->PATH is

“/dis/lib/wmlib.dis” . Note, though, that the

name of the implementation of the module in a load

statement can be any string.

Line 26 initializes the wmlib module by invoking

its init function (unrelated to the init of View).

Note the use of the -> operator to access the member

function of the module. The next two lines load mod-

ules and also introduce some new notation—they

declare and initialize the module variables storing the

reference. Limbo declarations have the general form

var : type = value;

If the type is missing, it is taken to be the type of the

value. So, for example,

bufio := load Bufio Bufio->PATH;

on line 28 declares a variable of type Bufio and ini-
tializes it to the result of the load expression.

The Main Loop
The init function takes two parameters: a graph-

ics context (ctxt) for the program, and a list of

Bell Labs Technical Journal ◆ Winter 1997 13

Panel 2. An Example of a Limbo Program
1 implement View;
2 include “sys.m”;
3 sys:Sys;
4 include “draw.m”;
5 draw: Draw;
6 Rect, Display, Image: import draw;
7 include “bufio.m”;
8 include “imagefile.m”;
9 include “tk.m”;
10 tk: Tk;
11 include “wmlib.m”;
12 wmlib: Wmlib;
13 include “lib.m”;
14 str: String;
15 View: module
16 {
17 init: fn(ctxt: ref Draw->Context,

argv: list of string);
18 };
19 init(ctxt: ref Draw->Context,

argv: list of string)
20 {
21 sys = load Sys Sys->PATH;
22 draw = load Draw Draw->PATH;
23 tk = load Tk Tk->PATH;
24 wmlib = load Wmlib Wmlib->PATH;
25 str = load String String->PATH;
26 wmlib->init();
27 imageremap := load Imageremap

Imageremap->PATH;
28 bufio := load Bufio Bufio->PATH;

29 argv = tl argv;
30 if(argv != nil

&& str->prefix(“-x “, hd argv))
31 argv = tl argv;

32 viewer := 0;
33 while(argv != nil){
34 file := hd argv;
35 argv = tl argv;

36 im := ctxt.display.open(file);
37 if(im == nil){
38 idec := filetype(file);
39 if(idec == nil)
40 continue;

41 fd := bufio->open(file,
Bufio->OREAD);

42 if(fd == nil)
43 continue;

44 idec->init(bufio);
45 (ri, err) := idec->read(fd);
46 if(ri == nil)
47 continue;

48 (im, err) = imageremap->remap(
ri, ctxt.display, 1);

49 if(im == nil)
50 continue;
51 }

52 spawn view(ctxt, im, file,
viewer++);

53 }
54 }

55 view(ctxt: ref Draw->Context,
im: ref Image, file: string,
viewer: int)

56 {
57 corner := string(25+20*(viewer%5));
58 t := tk->toplevel(ctxt.screen,

“ -x “+corner+” -y “+corner+
“ -bd 2 -relief raised”);

59 (nil, file) = str->splitr(file,
“/”);

60 menubut := wmlib->titlebar(t,
“View: “+file, Wmlib->Hide);

61 event := chan of string;
62 tk->namechan(t, event, “event”);
63 tk->cmd(t, “frame .im -height “ +

string im.r.dy() +
“ -width “ +
string im.r.dx());

64 tk->cmd(t, “bind . <Configure> “+
“{send event resize}”);

65 tk->cmd(t, “bind . <Map> “+
“{send event resize}”);

66 tk->cmd(t, “pack .Wm_t -fill x”);
67 tk->cmd(t, “pack .im -side bottom”+

“ -fill both -expand 1”);
68 tk->cmd(t, “update”);

69 t.image.draw(posn(t), im,
ctxt.display.ones, im.r.min);

70 for(;;) alt{
71 menu := <-menubut =>
72 if(menu == “exit”)
73 return;
74 wmlib->titlectl(t, menu);
75 <-event =>
76 t.image.draw(posn(t), im,

ctxt.display.ones, im.r.min);
77 }
78 }

79 posn(t: ref Tk->Toplevel): Rect
80 {
81 minx := int tk->cmd(t,

“.im cget -actx”);
82 miny := int tk->cmd(t,

“.im cget -acty”);
83 maxx := minx + int tk->cmd(t,

“.im cget -actwidth”);
84 maxy := miny + int tk->cmd(t,

“.im cget -actheight”);

85 return ((minx, miny), (maxx, maxy));
86 }

87 filetype(file: string): RImagefile
88 {
89 if(len file>4

&& file [len file-4:]==”.gif”)
90 r := load RImagefile

RImagefile->READGIFPATH;
91 if(len file>4

&& file [len file-4:]==”.jpg”)
92 r = load RImagefile

RImagefile->READJPGPATH;
93 return r;
94 }

14 Bell Labs Technical Journal ◆ Winter 1997

command-line argument strings (argv). Argv is a

list of string . Strings are a built-in type in

Limbo, and lists are a built-in form of constructor. Lists

have several operations defined: hd (head) returns the

first element in the list, tl (tail) returns the remainder

after the head, and len (length) returns the number

of elements in the list.

In Panel 2, line 29 throws away the first element

of argv , which is the conventional name of the pro-

gram being invoked by the shell; lines 30 and 31

ignore a geometry argument passed by the window

system. The loop from lines 33 to 53 processes each

file named in the remaining arguments. When argv is

a nil list, the loop is complete. Line 34 picks off the

next filename, and line 35 updates the list.

Line 36 is the first method call we have seen:

im := ctxt.display.open(file);

The parameter ctxt is an adt that contains all the

relevant information for the program to access its

graphics environment. One of its elements called dis -

play represents the connection to the frame buffer on

which the program may write. The adt display

(whose type is imported on line 6) has a member

function open that reads a named image file into the

memory associated with the frame buffer, returning a

reference to the new image. (In X13 terminology,

display represents a connection to the server and

open reads a pixmap from a file and instantiates it on

that server.)

The display.open method succeeds only if the

file exists and is configured in the standard Inferno

image format. If it fails, it will return nil , and lines 38

through 50 will attempt to convert the file into the

right form.

Decoding the File
Line 38 in Panel 2 calls filetype to determine

what format the file has. The simple version shown on

lines 87 through 94 just looks at the file suffix to deter-

mine the type. A realistic implementation would work

harder but even this version illustrates the utility of

program-controlled loading of modules.

The decoding interface for an image file format is

specified by the module type RImagefile . However,

unlike the other modules we have examined,

RImagefile has a number of implementations. If the

file is a GIF file, filetype returns the implementa-

tion of RImagefile that decodes GIFs. If it is a JPEG

file, filetype returns an implementation that

decodes JPEGs. In either case, the read method has

the same interface. Because reference variables like r

are implicitly initialized to nil , that is what file -

type will return if it does not recognize the image for-

mat. Thus, filetype accepts a filename and returns

the implementation of a module to decode it.

Two other aspects of filetype are worth men-

tioning. First, the expression file [len file-4:]

is a slice of the string file. It creates a string holding

the last four characters of the filename. The colon

separates the starting and ending indices of the slice.

The missing second index defaults to the end of the

string. As with lists, len returns the number of char-

acters (not bytes; Limbo uses Unicode14 throughout)

in the string.

Second and more importantly, this version of

filetype loads the decoder module anew every time

it is called, which is clearly inefficient. It’s easy to do

better, though. Just store the module in a global, as in

this fragment:

readjpg: RImagefile;

filetype(...)...

{

if(isjpg()){

if(readjpg == nil)

readjpg = load RImagefile

RImagefile->READJPGPATH;

return readjpg;

}

}

The program can form its own policies on loading

and unloading modules based on time/space or

other tradeoffs. The system does not impose its own

policies.

Returning to the main loop, after the type of

the file has been discovered, line 41 opens the file

for I/O using the buffered I/O package. Line 44 calls

the init function of the decoder module, passing it

the instance of the buffered I/O module being used

(if we were caching decoder modules, this call to

init would be done only when the decoder is first

Bell Labs Technical Journal ◆ Winter 1997 15

loaded.) Finally, the Limbo-characteristic line 45

reads in the file:

(ri, err) := idec->read(fd);

The read method of the decoder does the hard

job of cracking the image format, which is beyond

the scope of this paper. The result is a tuple or pair of

values. The first element of the pair is the image

while the second element is an error string. If all goes

well, the err will be nil . If a problem surfaces,

however, err may be printed by the application to

report what went wrong. The interesting property of

this style of error reporting—common to Limbo pro-

grams—is that an error can be returned even if the

decoding was successful (that is, even if ri is non-

nil). For example, the error may be recoverable. In

this case, it is worth returning the result but also

worth reporting that an error did occur, leaving the

application to decide whether to display the error or

ignore it. (View ignores it, for brevity.)
In a similar manner, line 48 remaps the colors

from the incoming color map associated with the file
to the standard Inferno color map. The result is an
image ready to be displayed.

Creating a Process
By line 52 in the main loop (see Panel 2), we have

an image ready in the variable im and use the Limbo

primitive spawn to create a new process to display that

image on the screen. Spawn operates on a function call,

creating a new process to execute that function. The

process doing the spawning—here the main loop—con-

tinues immediately while the new process begins exe-

cution in the specified function with the specified

parameters. Thus, line 52 begins a new process in the

function view with these arguments: the graphics con-

text, the image to display, the filename, and a unique

identification number used in placing the windows.
The new process shares with the calling process

all variables except the stack. Therefore, shared
memory can be used to communicate between them.
For synchronization, a more sophisticated mecha-
nism is needed, a subject we will cover in the
“Communications” section.

Starting Tk
The function view uses the Inferno Tk graphics

toolkit (a reimplementation for Limbo of the Tcl/Tk

toolkit3) to place the image on the screen in a new

window. In Panel 2, line 57 computes the position of

the corner of the window using the viewer number to

stagger the positions of successive windows. The

string keyword is a conversion. In this example, the

conversion does an automatic translation from an

integer expression into a decimal representation of the

number. Thus, corner is a string variable, a form

more useful in the calls to the Tk library.

The Inferno Tk implementation uses Limbo as its

controlling language. Rather than building a rich pro-

cedural interface, the interface passes strings to a

generic Tk command processor, which returns strings

as results. This process is similar to the use of Tk within

Tcl but with most of the control flow, arithmetic, and

so on written in Limbo.

A good introduction to the style is the function

posn on lines 79 through 86. The calls to tk->cmd

evaluate the textual command in the context

defined by the Tk->Toplevel variable t (created

on line 58 and passed to posn). The result is a deci-

mal integer, which the explicit int conversion con-

verts to binary. On line 85, all the coordinates of the

rectangle are known, and the function returns a

nested tuple defining the rectangular position of the

.im component of the top level. This tuple is auto-

matically promoted to the Rect type by the return

statement.

Back in function view , line 58 calls

tk->toplevel to create the window on the dis-

play. The arguments are ctxt.screen , a data

structure representing the window stack on the

frame buffer, and a string specifying the size and

properties of the new window. The + operator on

strings performs concatenation. The return value

from tk->toplevel is a reference to a top-level

widget—a window—on which the program will

assemble its display.
Line 59 uses a function from the higher-level

String module to strip off the basename of the
filename for use in the banner of the window. Note
that one component of the tuple is nil; the value of
this component is discarded. Line 60 calls the win-
dow manager function wmlib->titlebar to
establish a title bar on the window labeled “View:”

16 Bell Labs Technical Journal ◆ Winter 1997

and on the file basename with a control button to
hide the window. Title bars always include a control
button to dismiss the window.

Communications
The return value from wmlib->titlebar is a

built-in Limbo type called a channel (chan is the key-

word). A channel is a communications mechanism in

the manner of communicating sequential processes.15

Two processes that wish to communicate do so using a

shared channel. Data sent on the channel by one

process may be received by another process. The com-

munication is synchronous—that is, both processes

must be ready to communicate before the data

changes hands. If one process is not ready, the other

blocks until it is. Channels are a feature of the Limbo

language. They have a declared type (for example,

chan of int and chan of list of string),

and only data of the correct type may be sent. No

restriction limits what may be sent. One may even

send a channel on a channel. Therefore, channels

serve both to communicate and to synchronize.

Channels are used throughout Inferno to provide

interfaces to system functions. The threading and com-

munications primitives in Limbo are not designed to

implement efficient multicomputer algorithms but

rather to provide an elegant way to build active inter-

faces to devices and other programs.

One example is the menubut channel returned by

wmlib->titlebar , a channel of textual commands

sent by the window manager. The expression

menu := <-menubut

on line 71 in Panel 2 receives the next message on the

channel and assigns it to the variable menu. The com-

munications operator, <- , receives a datum when pre-

fixed to channel and transmits a datum when

combined with an assignment operator (for example,

channel<-=2). This use of menubut appears inside

an alt (alternation) statement, a construct we will

discuss later.
Lines 61 and 62 create and register a new chan-

nel, event , to be used by the Tk module to report
user interface events. Lines 63 through 68 use simple
Tk operations to make the window in which the
image may be drawn. Lines 64 and 65 bind events
within this window to messages to be sent on the

channel event . For example, line 64 defines that
when the configuration of the window is changed—
presumably by actions of the window manager—the
string “resize” is to be transmitted on event for
interpretation by the application. This translation of
events into messages on explicit channels is funda-
mental to the Limbo style of programming.

Displaying the Image
The payoff occurs on line 69 in Panel 2, which

steps outside the Tk model to draw the image im

directly on the window:

t.image.draw(posn(t), im,

ctxt.display.ones, im.r.min);
Posn calculates where on the screen the image is to
go. The draw method is the fundamental graphics
operation in Inferno whose design is outside the scope
of this discussion. In this statement, it just copies the
pixels from im to the window’s own image, t.image .
The argument ctxt.display.ones is a mask that
selects every pixel.

Multi-Way Communications
Once the image is on the screen, view waits for

any changes in the status of the window. Two things

might happen: either the buttons on the title bar may

be used, in which case a message will appear on

menubut , or a configuration or mapping operation

will apply to the window, in which case a message will

appear on event .

The Limbo alt statement provides control when

more than one communication may proceed.

Analogous to a case statement, the alt evaluates a

set of expressions and executes the statements associ-

ated with the correct expression. Unlike a case ,

though, the expressions in an alt each must be a

communication, and the alt will execute the state-

ments associated with the communication that can

first proceed. If none can proceed, the alt waits until

one can. If more than one statement can proceed, it

chooses one randomly.
Thus, the loop on lines 70 through 77 in Panel 2

processes messages received by the two classes of
actions. When the window is moved or resized, line 75
will receive a “resize” message due to the bindings
on lines 64 and 65. The message is discarded but the
action of receiving it triggers the repainting of the

Bell Labs Technical Journal ◆ Winter 1997 17

newly placed window on line 76. Similarly, messages
triggered by buttons on the title bar send a message on
menubut . The value of menubut is then examined to
see if it is “exit” , which should be handled locally, or
anything else, which can be passed on to the underly-
ing library.

Cleanup
If the exit button is pushed, line 73 in Panel 2

will return from view . Because view was the top-

level function in this process, the process will exit

and free all its resources. All memory, open file

descriptors, windows, and other resources the

process holds will be collected as garbage when the

return executes.
The Limbo garbage collector uses a hybrid

scheme that combines reference counting with a
real-time sweeping algorithm. Reference counting
allows reclamation of memory the instant its last
reference disappears; the sweeping algorithm runs
as an idle-time process to reclaim unreferenced cir-
cular structures. The instant-free property means
that system resources like file descriptors and win-
dows can be tied to the collector for recovery as
soon as they are no longer used. This property
allows Inferno to run in smaller memory arenas
than those required for efficient mark-and-sweep
algorithms, and it also provides an extra level of
programmer convenience.

Summary
Inferno supplies a rich environment for construct-

ing distributed applications that are portable—in fact,

identical—even when running on widely divergent

underlying hardware. Its unique advantage over other

solutions is that it encompasses not only a virtual

machine but also a complete virtual operating system,

including network facilities.

Acknowledgment
The cryptographic elements of Inferno owe much

to the cryptographic library of Jack Lacy, Don Mitchell,

and William Schell.16

*Trademarks
AIX and Power PC are registered trademarks of

International Business Machines Corp.

AMD 29K is a registered trademark of Advanced Micro
Devices, Inc.

HP/UX is a registered trademark of Hewlett-Packard
Inc.

Irix is a trademark of Silicon Graphics, Inc.

Solaris is a registered trademark of Sun Microsystems.

SPARC is a registered trademark of SPARC
International.

UNIX is a registered trademark of Novell.

Windows, Windows NT, and Windows 95 are regis-
tered trademarks of Microsoft Corp.

X Window System is a registered trademark of the
Massachusetts Institute of Technology.

References
1. R. Pike, D. L. Presotto, S. M. Dorward,

B. Flandrena, K. Thompson, H. W. Trickey, and
P. Winterbottom, “Plan 9 from Bell Labs,”
Journal of Computing Systems, Vol. 8, No. 3,
Summer 1995, pp. 221-254.

2. S. M. Dorward, R. Pike, and P. Winterbottom,
“Programming in Limbo,” Proceedings of the IEEE
Computer Conference (COMPCON), San Jose,
California, 1997.

3. J. K. Ousterhout, Tcl and the Tk Toolkit,
Addison-Wesley, New York, 1994.

4. T. Elgamal, “A Public-Key Cryptosystem and a
Signature Scheme Based on Discrete
Logarithms,” Advances in Cryptography:
Proceedings of CRYPTO 84, Springer-Verlag,
New York, 1985, pp. 10-18.

5. B. Schneier, Applied Cryptography, Chapter 22,
John Wiley, New York, 1996, p. 516.

6. D. Stinson, Cryptography, Theory and Practice,
CRC Press, Cleveland, Ohio, 1996, p. 271.

7. S. M. Dorward, R. Pike, D. M. Ritchie,
H. W. Trickey, and P. Winterbottom, “Inferno,”
Proceedings of the IEEE Computer Conference
(COMPCON), San Jose, California, Feb. 1997.

8. GIF Graphics Interchange Format: A Standard
Defining a Mechanism for the Storage and
Transmission of Bitmap-Based Graphics Information,
CompuServe Inc., Columbus, Ohio, 1987.

9. GIF Graphics Interchange Format: Version 89a,
CompuServe Inc., Columbus, Ohio, 1990.

10. W. B. Pennebaker and J. L. Mitchell, JPEG Still-
Image Data Compression, Van Nostrand Reinhold,
New York, 1992.

11. Programming Languages - C, International
Standards Organization (ISO), revision and
redesignation of American National Standards
Institute (ANSI) X3.159-1989, Amendment 1,
1990.

12. K. Jensen and N. Wirth, Pascal—User Manual
and Report, Springer-Verlag, New York, 1974.

13. R. W. Scheifler, J. Gettys, and R. Newman,

18 Bell Labs Technical Journal ◆ Winter 1997

X Window System, Digital Press, Bedford,
Massachusetts, 1988.

14. The Unicode Consortium, The Unicode Standard,
Version 2.0, Addison-Wesley, New York, 1996.

15. C. A. R. Hoare, “Communicating Sequential
Processes,” Communications of the Association for
Computing Machinery (ACM), Vol. 21, No. 8,
1978, pp. 666-677.

16. J. B. Lacy, D. P. Mitchell, and W. M. Schell,
“CryptoLib: Cryptography in Software,”
Proceedings of the UNIX Security Symposium IV,
USENIX, Santa Clara, California, 1993,
pp. 1-17.

Further Reading

– Inferno—A Complete Platform to Develop and Deploy
Intelligent Devices in Any Networked Environment,
Bell Labs Computing Sciences Research Center,
Murray Hill, New Jersey, 1997.
http://www.lucent.com/inferno

(Manuscript approved March 1997)

SEAN M. DORWARD is a member of technical staff in the
Computing Structures Research Department
at Bell Labs in Murray Hill, New Jersey. He has
worked in the areas of protocol verification,
network authentication, compiler technol-
ogy, and audio compression. Currently, his

chief responsibility is the Inferno operating system. He
also conducts research on programming languages and
compilers, as well as on audio and video algorithms.
Mr. Dorward received a B.S. degree in computer science
from Princeton University in New Jersey.

ROB PIKE is a distinguished member of technical staff in
the Computing Sciences Research Depart-
ment at Bell Labs in Murray Hill, New Jersey.
In 1981, he wrote the first bitmap window
system for UNIX and has since written ten
additional systems. Mr. Pike was a principal

designer and implementer of both the Plan 9 and
Inferno operating systems. In addition, he designed a
gamma-ray telescope, co-designed the Bilt terminal, and
co-authored The UNIX Programming Environment. He
has never written a program that uses cursor addressing.

DAVID LEO PRESOTTO is a member of technical staff in
the Computing Structures Research
Department at Bell Labs in Murray Hill, New
Jersey. He is responsible for research into and
development of a technology known as elec-
tronic glue. Mr. Presotto received a

Ph.D. degree in electrical engineering and computer sci-
ence from the University of California at Berkeley.

DENNIS M. RITCHIE is head of the Systems Software
Research Department at Bell Labs in Murray
Hill, New Jersey. He joined Bell Labs after
receiving graduate and undergraduate
degrees from Harvard University in Cambridge,
Massachusetts. He is a co-developer of the

UNIX operating system and is the primary designer of
C language in which UNIX and many other systems are
written. A Bell Labs Fellow and a member of the
U. S. National Academy of Engineering, Mr. Ritchie has
received several other honors, including the ACM Turing
award, the IEEE Piore, Hamming, and Pioneer awards, and
the NEC C&C Foundation award. He continues to work in
the areas of operating systems and languages.

HOWARD W. TRICKEY is a member of technical staff in
the Computing Architectures Research
Department at Bell Labs in Murray Hill, New
Jersey. His work involves research and devel-
opment of the Inferno operating system.
Mr. Trickey holds a B.A.Sc. degree in science

and an M.A.Sc. degree in electrical engineering from the
University of Toronto in Canada, and a Ph.D. in computer
science from Stanford University in Palo Alto, California.

PHILIP WINTERBOTTOM is a member of technical staff in
the Computing Sciences Research Depart-
ment at Bell Labs in Murray Hill, New Jersey.
He works in the areas of compilers, lan-
guages, operating systems, and networking
hardware. Before coming to Bell Labs, he

attended Kings College in London, England, then contin-
ued on to the City University of London where he was a
Lloyds Research Fellow building parallel computers. ◆

