
VENIX/11
INSTALLATION
AND SYS EM
MANAGE 'S

GUIDE

--

~VENTURCOM

VenturCom, Inc., 215 First Street, Cambridge , MA 02142, 617/661-1230

J3oo7 f H
AL.T bowl\.l I '(Jf:.£6S G711~-'T A Ft-tJ 7/M~ f7) ~ .

,, ?0 ,, /
1~7 tf<-~ ;,.J St..,.JITCJft;:~ Ll 111 111 !I 0 I 0 J ff((80 {IJO t=-u~

;? .,..i\
8 r~o ~ 0w,~C1?::S (o _ ooo , v t oo f) ;-=-c.t,0

.t_oA() -Auue '-..J \ ~ I - ~
up I 6rll-~rt d.- v-e_ AJl--)(

t-¥rt-T.)VENIX/11
Installation and System

Manager's Guide
!3oo7- !1/Jt.f: C_~L-~ Cfl2L-- /JDo-r-

--7> e_ Q!L. nfJ =- DL 12_[D 2:...

{?_Mos-

•

~5
rv1-t' r_E/i.JJJ&!J ~ -r/I)G

VENIXt is derived from UNIX:t:.

The enclosed documentation is supplied in accordance with the Software
Agreement you have with VenturCom, Inc. and the American Telephone

& Telegraph Company.

fYS k.. wR!~ /JRD~t:-:JJ

{__otJ--sot~ ~!,.JE f--145 1/JCDR:. eEZ-t

September 1984

tVENIX is a trademark of VehturCom, Inc.
:j:UNIX is a trademark of Bell Laboratories.

The VENIX t Documentation Set

The VENIX documentation set consists of the following manuals:

VENIX Installation and System Manager,s Guide

The set up and maintenance of VENIX are described in the installa
tion sections. Other articles explain the UNIX-to-UNIXt communi
cations systems. The "System Maintenance Reference Manual" con
tains reference pages for devices and system maintenance procedures
(sections (7) and (8)).

VENIX User Guide

The User Guide contains tutorials for newcomers to VENIX, cover
ing basic use of the system, the editor vi and use of the command
language interpreters.

VENIX Document Processing Guide

The line and screen editors and nroff-related text formatting utilities
are described in the Document Processing Guide. Topics include:
line editor ed, and stream editor sed; the text formatter nroff; the
nroff-preprocessors tbl and. neqn.

VENIX Programming Guide

The chapters in the Programming Guide explain the different pro
gramming languages for VENIX.

-i-

VENIX Support Tools Guide

This guide includes tools for programming, such as the compiler
writing languages Yacc and Lex, the M4 Macro processor, the pro
gram development utility Make, and the desk calculator programs
DC and BC.

VENIX User Reference Manual

This is a complete and concise reference for the VENIX system.
This volume contains write-ups on all VENIX commands.

VENIX Progammer Reference Manual

The reference pages in this volume include system calls, library func
tions, file formats, miscellaneous functions and games.

Copyright, 1979, Bell Telephone Laboratories, Inc.

tVENIX is a trademark of VenturCom, Inc.
tUNIX is a trademark of Bell Laboratories.

-ii-

''

Contents

INTRODUCTION

Chapter 1. SETTING UP VENIX

Chapter 2. VENIX MAINTENANCE

Chapter 3. UUCP IMPLEMENTATION DESCRIPTION

Chapter 4. A DIAL-UP NETWORK OF UNIX SYSTEMS

Chapter 5. ·THE VENIX I/0 SYSTEM

Chapter 6. SYSTEM MAINTENANCE REFERENCE MANUAL

section (7) Devices

section (8) System Maintenance Procedures

-i-

Introduction

The Installation and System Manager's Guide covers the installation and mainte
nance of the VENIX/11 operating system, and implementation of the VENIX
communications system. The following paragraphs contain a brief description
of each chapter.

The first chapter, SETTING UP VENIX/ 11, explains how to install the
VENIX/11 operating system on your hardware.

The chapter VENIX MAINTENANCE is a guide to VENIX administration,
maintaining file systems, managing disk space, backing up user files and recov
ering and diagnosing system errors.

The chapter UUCP IMPLEMENTATION DESCRIPTION explains how to
install and administer your UUCP system.

The chapter A DIAL-UP NETWORK OF UNIX SYSTEMS describes a network
that provides information exchange between UNIX systems over the direct dis
tance dialing network.

The chapter THE VENIX I/0 SYSTEM describes the workings of the I/0 sys
tem. with particular emphasis on the environment and nature of device drivers.

The SYSTEM MAINTENANCE REFERENCE MANUAL contains reference
pages for devices and system maintenance procedures (sections (7) (8)).

A few words on notation: throughout this manual, frequent citations are made
to pages in the User Reference Manual or Programmer Reference Manual.
These are often in the form of a name followed by a section number, e.g.
fsck(1), referring to the fsck command description in section one of the User
Reference Manual.

Commands to be typed in literally by the user are given in bold; generic argu
ments are in italics.

-ii-

Chapter 1

SETTING UP VENIX/11

1.1 HOW TO USE THIS DOCUMENT
This document contains-step-by-step instructions for installing the VENIX/ 11
system. If you don't have previous UNIX/VENIX experience, look through
"VENIX for Beginners" in the User Guide before plunging into the installation.
You should at least be able to do simple editing and move around in the file
system.

A few words on notation: throughout this document, frequent references will be
made to pages in the User Reference Guide. These will always be in the form
of a name followed by a section number, e.g. fsck(l), referring to the fsck com
mand description in section one of the User Reference Manual.

Examples of commands you should type are printed in bold; responses from
VENIX are in plain text. Commands are almost always printed in lower-case
letters.

After you copy the system onto hard disk, you will need to customize it to your
particular installation by editing tables and files. The ed editor is a line-oriented
editor which will work on any terminal, and you may find this the easiest to use
at first. You could also use the ice (VT-52/VT-100 only), vi, or fw (The
FinalWord) screen editors to make these changes (see ice(l) and vi(l)). After
the system is up and going, you will· probably find the screen editors preferable
for day-to-day use.

1-1

------ ~~----~--~~~-~~~-

SETTING UP VENIX/11

1.2 CREATING THE SYSTEM JMAGE

1.2.1 Minimum Hardware Required

VENIX requires a PDP- or LSI-11 computer with at least 192k bytes of mem
ory, memory management, a console terminal, a line clock, a mass storage disk
(system device), and a device to read the distribution media if different from the
system disk. Floating point hardware is not generally required, but it is recom
mended if any amount of floating point computation is to be done; it is needed
for the Fortran 77 compiler f77, the Pascal. compiler/interpreter pc, and the C
verifier lint. If you are using removable disk packs, error-free packs are
strongly recommended, especially for the system disk.

VENIX requires a minimum of 8mb of disk space. As distributed, it will run
from disk unit 'zero' (or units 'zero' and 'one' for RLOI-based systems). After
VENIX is installed, it may be reconfigured for different disk units.

The preconfigured VENIX kernel supplied with the VENIX/ 11 distribution is
limited to 256kb of memory, so that it will run on machines with or without
22-bit addressing capabilities. The user may reconfigure the kernel to take
advantage· of additional memory on the system, providing the above restrictions
are heeded.

1.2.2 Preliminary Hardware Configuration

The devices used in the installation (floppy or magtape and hard disk) should all
be set to standard interrupt and register addresses, and standard priorities. The
memory should, of course, be configured contiguously. The hard disk must be
write-enabled so that a system can be copied onto it. (On RLOl-based systems,
both units 'zero' and 'one' must be write-enabled and ready.) Devices which are
not used during the installation itself may be set in a nonstandard manner, since
you can accommodate these differences in software once the system is up and
going (as described in "Adding Drivers"). ·

The DLV-llJ serial interface board for LSI-11/23 machines has a 'reboot on
break' option, selected by an on-board jumper, which will halt the computer
when the break key is pressed. This feature should be disabled when running
VENIX, as suddenly halting VENIX will lead to corrupted file systems and
other miseries. If VENIX is accidentally halted in this way, it should be imme
diately resumed.

1-2

SETTING UP VENIX/11

1.2.3 Distribution Media

VENIX is distributed in one of three ways:

1. Bootable XFER diskette plus SYSTEM and USER AREA diskettes.
(RX50 or RX02-compatible)

2. Bootable SYSTEM AREA magnetic tape (800 bpi TMll-compatible), with
a separate USER AREA tape.

3. Bootable hard disk (RL02).

In the first two cases, some work must be done to transfer the VENIX image
from floppies or magtape to the system disk where it will run. For floppy
transfers, continue to the next section; for tape, refer to "Transferring from
Magtape". If you received the VENIX system on RL02 disk, then the system is
already installed. Load the disk, and proceed directly with "Some Initialization
Exercises''.

1.2.4 Transferring from Floppy

1.2.4.1 Booting the XFER Floppy

The floppy diskette distribution contains a small · runnable VENIX system which
can be booted directly from the PDP-11 console. The XFER diskette, which
must be write-enabled, should be placed in drive 0. (All other diskettes should
be write-protected). At this point, the hard disk drive unit 0 must be ready.
(Both units 0 and 1 must be ready for RLOl systems)~ Follow the instructions
in the hardware manual for booting the floppy.

An '&' prompt should appear on the console terminal. Type

venix

followed by a CR to bring the small system up. (Typing errors can not be cor
rected while entering the name 'venix', but if an illegal name is given, you will
receive another~&' prompt.)

1-3

l

SETTING UP VENIX/11

After a minute or so, a 'VENIX' message will appear on the screen, followed
by a serial number and memory size in kilobytes. A(ter some introductory mes
sages you will be asked:

Do you wish to install VENIX (y or n)?

Type 'y'.

If you type 'n' the shell will be executed, and you will be able to run VENIX
commands. (This may be useful in the future if you are experienced with
VENIX and wish to run maintenance programs not possible through XFER. To
restart the transfer process, type CTRV-D to log out.)

If you can't get this far, or experience later difficulties in copying from flop
pies, then see the section "Difficulties in Booting".

1.2.4.2 PART I- Selecting the Disk

At this point you will be presented with a list of hard disk types, and asked
which one is your system disk. After you type the number corresponding to
your disk, you will be asked if you have one or two floppy drives. Type '1' or
'2'. If you have two floppy drives, type '2' and skip to the "User Area" sec
tion in Part II. Otherwise, type '1' and continue to the next section.

1.2.4.3 Secondary Boot, for Single-Floppy Systems Only

If you have a single-floppy system, XFER will now copy an image of the XFER
floppy onto a temporary· area of the hard disk. This step is necessary because
you can not simultaneously run the system and swap in and out the USER and
SYSTEM AREA diskettes, if you only have one floppy drive. Therefore, you
have to run a small system from the hard disk, leaving the floppy drive free for
the USER and SYSTEM AREA diskettes.

After copying itself to hard disk, XFER will stop and instruct you to reboot.
Leave the XFER diskette in the ·drive, halt the processor and reboot the
bootable floppy exactly as you did before. This time, when you receive the '&'
prompt, type

1-4

SETTING UP VENIX/11

venix.tmp

instead of venix. Even though you have booted from the floppy drive, this ver
sion of the system will actually begin running from the hard disk. XFER will
begin running again. After asking your disk type, it will be ready to install the
USER AREA diskettes.

1.2.4.4 PART II - USER AREA

The next direction on the screen will be:

Part II - Restoring the User Area
Do you wish to restore the user area? (y or n)

Type 'y'. (If you type 'n' XFER will skip directly to Part III, installing the sys-
tem area.) ·

At this point; XFER checks to see if there are any VENIX files in the user area
of the disk from a previous installation. A warning will appear automatically.
It will say 'WARNING: There is a VENIX file system already on the user area.
Do you wish to continue (y or n)?' If you type 'n', VENIX will skip to Part
III, leaving the user area intact. If you type 'y', the user area will be erased,
and the transfer process will continue.

The next question to appear on the screen is:

Do you wish to check for bad blocks on the user area (y or n)?

If you are sure that the disk is error-free, type 'n'. Otherwise, type 'y'.

A file system will now be constructed on the user area; bad block checking is
done at the same time if it was requested. The command shown will be some
thing like

/etc/mkfs -b /dev/riO.usr 10240

This will take about five minutes if bad block checking was requested, or about
fifteen seconds if the checking was not chosen. (In the latter case· the, - b flag
will not be given in the above command). The number 10240 indicates the
number of blocks in the user area, and will vary depending on the size of the

1-5

SETTING UP VENIX/11

hard disk.

If a bad block is found on the hard disk, you will r.eceive an error message of
the form 'Err on dev X/Y ... ' followed by the message 'Bad block number n'.
VENIX can tolerate up to eight bad blocks in the file system it creates. In the
event that more than eight bad blocks . are found, the message 'Too many bad
blocks' will be given. If this message is given, or the message 'Bad block in i
node region' appears, then the hard disk will be unusable with VENIX. The
only recourse if this happens is to get a new disk and retry the installation pro
cedure.

The user area holds some system command and library files. In this next sec
tion, these files will be loaded onto the hard disk.

You will next receive the message:

Ready to transfer files from USER AREA diskettes.

If you are running on a double-drive floppy system, the XFER diskette will
remain in drive zero for the entire procedure. On single-drive floppy systems,
the XFER diskette should now be removed from the drive. The USER AREA
diskettes will be swapped in and out of the free drive.

You will now receive the message:

Insert USER AREA diskette # 1 and press 'return' .•.

After you have placed the USER AREA diskette in the free drive, press the CR

key. The tar command will be run to transfer the user files from the diskette to
the winchester. You will see something like:

tar xf /dev/rrx1 /usr

Starting ...

After the loading has finished, XFER will print on the screen:

Insert USER AREA diskette #2 and press 'return' ...

Remove USER AREA diskette . # 1 from the drive and insert diskette # 2. Press

1-6

SETTING UP VENIX/11

CR. You will see the tar command being executed again and the word 'Starting
... ' appear on the screen.

When diskette # 2 is finished, you will be asked to insert diskette # 3, and so
on, for all the diskettes. In each instance you will be told when to take out the
diskette and insert the next one in sequence.

When all the USER AREA diskettes have been transferred, Part II is com
pleted. The message

_User area completed.

is displayed. Withdraw the last USER AREA diskette from the drive.

1.2.4.5 Recoverable Errors

If, during this h:~ading procedure, you do any of the following things:

• Insert a diskette in the drive upside down;

• Press CR_ when no diskette is in the drive;

• Remove the XFER diskette from drive 0;

you will receive HARD or SOFT error messages.

1. The error message 'HARD ERROR in reading this diskette' means that the
diskette is inserted improperly, or has a defective surface.

2. The error message 'SOFT ERROR in reading this diskette' means that the
wrong diskette was inserted.

In both cases, after the error message, you will be asked:

Would you like to
Abort the transfer
Retry reading the diskette, or
Ignore the error?

Type 'a', 'r', or 'i'.

1-7

SETTING UP VENIX/11

Typing 'a' causes the transfer to abort. Power off and start again. If you have
mistakenly removed the XFER diskette from drive o., you should always make
this choice.

Typing 'r' allows you to retry reading the user area diskette. You will be
instructed to:

Check diskette and press CR when ready.

You can remove the diskette from the lower or right-hand drive and check to
make sure it is the right one. If it is the wrong diskette, reinsert the right disk
ette, and press CR.

Typing 'i' causes the error to be ignored. The system will be installed, but one
or more files may be missing or corrupted.

If you repeatedly get a HARD ERROR, the diskette may be bad. Contact your
VENIX distributor. If you suspect you have hardware problems, see the section
''Difficulties in Booting''.

XFER will let you insert the USER AREA diskettes in the wrong 01;der, pro
vided that you do not attempt to use the same diskette twice in one session.
But since inserting the diskettes out of order may lead to minor permission
problems on the winchester user area, it is strongly recommended that you stick
to the order given by the diskette labels.

1.2.4.6 PART III- SYSTEM AREA

You have just completed loading the user area onto the winchester hard disk.
In this section, Part III, the system area will be transferred to the hard disk.
The procedure is nearly identical to that used for the user area.

Now, the screen will say:

Part III - Restoring the System Area

Do you wish to restore the system area (y or n)?

1-8

SETTING UP VENIXI11

Type 'y'. (If you type 'n', XFER will go to the end of the loading process.
This should ·only be done if you have previously installed a system area on the
disk).

If a VENIX file system was found on the system area - left over from a previ
ous installation - a warning will appear ('WARNING: There is a VENIX file
system already on the system area. Do you wish to continue (y or n)?'). If you
type 'n', XFER will preserve the files and halt the installation; if you type 'y',
the files in the system area will be obliterated.

The warning mentioned above will not occur if you are loading VENIX for the
first time. You will now see:

Do you wish to check for bad blocks on the system area (y or n)?

If you are sure that the disk is error-free, type in 'n'. Otherwise, type 'y'.
NOTE: it is strongly recommended that system disks be error-free.

XFER will now make a file system and check for bad blocks on the hard disk.
The command execut~d will be:

I etclmkfs - b I dev I XX.sys 6816

If bad block checking was not requested, the - b is left out of the command
shown above. The same rules apply to bad block checking on the system area
as given before for the user area: up to eight bad blocks can be handled success
fully, but if more than eight bad blocks are found, or a bad block is listed in
the 'i-node region,' then the winchester will have to be replaced for successful
installation.

The next step is loading the primary system area ('root' area) onto the hard
disk. VENIX first tells you that the system will now be transferred onto the
hard disk, and then prompts you to insert the first system area diskette.

Ready to transfer files from SYSTEM AREA diskettes.

Insert SYSTEM AREA diskette A and press 'return' ...

1-9

SETTING UP VENIX/11

Insert SYSTEM AREA diskette A in the free drive. When ready, press CR.

The tar command will be run to transfer the system area files from diskette to
winchester, looking something like:

tar xf /dev/rrx1 .

Starting ...

When the loading is finished, you will be instructed to:

Insert SYSTEM AREA floppy B and press 'return' ...

Remove SYSTEM diskette A and insert diskette B. Press CR. You will see tar
being executed and the word 'Starting ... ' appear again.

When diskette B is finished, you will be asked to insert diskette C, and so on,
for all four diskettes. In each instance, you will be told when to take out the
diskette and insert the next one in sequence.

If you get a HARD or SOFT ERROR message during the loading procedure,
see section "Recoverable Errors".

When all the SYSTEM diskettes have been transferred, you are finished with
XFER. Halt the processor, remove the distribution medium, and proceed with
''Some Initialization Exercises''.

1.2.5 Transferring from Magtape

If you are transferring the system from magtape, the target hard disk which you
intend to run your system from must be error-free, formatted, and loaded in
drive 0. The bootable magtape, labeled 'BOOTABLE SYSTEM AREA', should
be mounted on tape drive 0 and positioned at the load point. (The Line Time
Clock (LTC) must be disabled now if your machine is an LSI-11/23.) Key in
and execute the following small program at location 0100000 (octal):

012700
172526
010040
012740
060003
000777

1-10

SETTING UP VENIX/11

After this program is executed, the tape should move and the CPU should loop.
Halt the processor and restart at location 0.

When you have done this, an '=' prompt should appear on the console termi
nal. Your options are as follows:

Type:

rl
rk06
rm02
rm04
rpOZ
rp04

If your disk device is:

RL01 or RL02
RK06 or RK07
RM02 or RM03
RM04 or RMOS
RP02 or RP03
RP04, RPOS or RP06

The disk name must be in lower-case, and must be followed by a CR.

The tape should now move and the transfer begin.

After the transfer is finished, the tape will rewind and the CPU will halt. If no
problems occur, then skip to the section "Some Initialization Exercises".

1.2.6 Difficulties in Booting

1.2.6.1 General

There are several types of problems which will prevent you from booting the
floppy or magtape. If no prompt is sent to the console, then you may have a
problem with the terminaL Check that it is on the console line, and that the
the baud rates of the terminal and the DL match.

If the floppy or magtape device doesn't do anything, or appears to hang, then it
may be that the device interrupt vectors or registers are not at standard
addresses. These addresses should be checked against the hardware manual.
The computer console switches (or ODT on LSI-11 's) can be used to verify the
existence of registers at the appropriate_ addresses. And of course if the memory
is addressed incorrectly, all sorts of difficulties could arise; this can also be
checked out with the console switches or ODT, by attempting to read various
locations in memory.

1-11

l

SETTING UP VENIX/11

The line-time clock (LTC) must be disabled when booting from magtape, and it
wouldn't hurt to disable it when booting floppies as well. It should be enabled
when the full VENIX system is up and running.

The hard disk you are copying to must, of course, be write-enabled.

Another possible source of problems is other devices on the backplane, which
could be interfering with interrupts or otherwise corrupting operations. If noth
ing else seems to work, remove all non-essential devices from the backplane.

1.2.6.2 Floppies

If the floppy does not prompt you with an '&', it may be that the system disk
ette is unreadable by the floppy drive for one reason or another. If you have
been running RT-11 or some other operating system, you can check if the disk
ette is readable by attempting to read raw data from the floppy. (The DUMP
utility under RT-11 will let you try this). If this existing operating system finds
the diskette totally unreadable, then you should consult your distributor for fur
ther instructions.

The memory size (in kbytes) given on booting represents the amount of memory
VENIX thinks is available for user programs. This should be at least 140 kb,
and will be larger for systems with more than the minimum 192 kb of memory.

An error message of the form 'Error ... ' indicates an error in reading or writing
to either the floppy itself or the hard disk. This could be due to incorrectly
configured hardware, a misaligned floppy drive, or write protection on either
the system floppy or the hard disk (both must be write-enabled). A message
beginning with 'PANIC ... ' indicates an unrecoverable error, and will be fol
lowed by silence. In either case, record the exact error codes. If problems per
sist after several attempts, consult your distributor for further advice.

If your system hangs without any error message while copying from floppy disk
ette to hard disk, the priorities on either the floppy or hard disk controller may
be incorrect. They both should be set to five.

1-12

SETTING UP VENIX/11

1.2.6.3 Magtape

The distribution magtape is at 800 bpi, which must match the setting on the
drive. It is worth rechecking that the bootstrap was entered correctly, and
placed at the correct location.

1.3 SOME INITIALIZATION EXERCISES

1.3.1 Booting

At this point, it is assumed that your VENIX system is now on your main sys
tem disk, having been either transferred successfully from floppy or magtape, or
distributed on the hard disk itself. Your full VENIX system is now ready to be
booted. Boot block zero of the hard disk from your console. You will receive
an '&' prompt.

The following kernels are preconfigured and may be booted at this point:

Name

rdvenix
rive nix
rkvenix
rm2venix
rm5venix
rp2venix
rp4venix
smsvenix

Target Disk

RD51 (Micro/PDP-11 winchester)
RL01 or RL02
RK06 or RK07
RM02 or RM03
RMOS
RP02 or RP03
RP04, RPOS or RP06
Scientific Micro Systems FWT

After the '&' prompt, type the name of the kernel corresponding to your system
disk followed by CR, to bring up your system. (Typing errors can not be cor
rected while entering the name XXvenix but if an unrecognized name is given,
you will receive another '&' prompt.)

The system will print a 'VENIX' message on the console terminal, as well as a
serial number and memory size. The serial number is a unique number assigned
your particular system. The memory size is the amount of memory available
for user programs {in kilobytes), equal- to the total memory available minus the
VENIX kernel size; the latter will be 40-48kb. At this point, only 256 kb of
memory will be recognized on the system, so the maximum available memory
will be about 210 kb.

1-13

SETTING UP VENIX/11 ..
You may also receive a message-of-the-day - something insp1nng from your
distributor. (If this becomes monotonous on future logins, the message may be
found and deleted in file /etc/motd.) Finally you will.receive the message~

Beware: you ~re a super user!
SUPER>

. VENIX is now up and running in single-user mode. This means that the con
sole is the only active terminal. The 'Beware ... ' message is simply a wa;~ing
that you are the 'super-user' ·while in single-user mode, and have un~stric4e<l.
access to the system. The 'SUPER>' prompt is a repeated reminder. of your
status.

Normal VENIX commands may be given, but it is better to proceed with the
installation and go into multi-user mode before doing too much. Certain com
mands are not loaded yet, and will not be found if you try to execute them.

As long as you remain in single-user mode, you can always turn off the com
puter safely provided you

1. Stop any programs that you may be running;

2. Unmount' any mounted file systems you may have mounted (described
later); and

3. Type the command sync.

The method for shutting down VENIX from multi-user mode is described later.

1.3.2 What Hardware is Accessible?

Your VENIX system has been preconfigured to handle a single type of hard disk
(one ·or two units), a pair of floppy drives, one tape drive, and four serial lines.

· The system has a preconfigured limit of 256kb memory, of which approximately
210 kb is· available for _user programs.

The ·following table shows the number of units supported for each disk type,
and the logical VENIX partitions ("areas") for each unit. One of the following
disk types is supported in your preconfigured kernel.

1'-14

SETTING UP- VENIX/11

Disk Unit Name DescriQtion Blocks
• RD51 0 ldevlwO.sys system ar~a 6816

ldevlwO.tmp temp area\ 2400
ldevlwO.usrO 1st user arda 10240 ~9<..-~

RK06 0 ldevlrkO.sys system area '·"---- 6816 ~
ldevlrkO.usr 1st user area 16830 - 1 ldevlrkl.usr 2nd user area 27126 (.,.

·,RK07 0 ldevlrkO.sys system area 6816 ct)O~ . .
" ldevlrkO.usr 1st user area 43494 ~
1 ldevlrk1.usr 2nd user area 53790

RL01 0 ldevlrlO.sys system area 6816
ldevlrlO.tmp temp area 2400

1 ldevlrll.usr 1st user area 10240
RL02 0 ldevlrlO.sys system area 6816

/devlrlO.tmp temp area 2400
ldevlrlO.usr 1st user area 10240

1 ldevlrll.usr 2nd user area 20480
RM02103 0 I dev lrmO. boot boot area 160

I dev lrmO. usrO 1st user area 50880
ldevlrmO.sys system area 6816
ldevlrmO.tmp temp area 2400
ldevlrm0.usr1 2nd user area 50880 ~

I dev lrmO. usr2 3rd user area 19520 1 RM05 0 ldevlrmO.boot boot area 608 0 fL ~f\t r)vcn
I dev lnnO. usrO 1st user area 65056 I q 0 ;1
ldevlrmO.sys system area 6816 "l.. l'l 6'r'j
ldevlrmO.tmp temp area 3648 -r) , ~ ~~if'.

'.j ldevlrm0.usr1 2nd user area 65056 l..'\ '?'0 ~

ldevlrm0.usr2. 3rd user area 65056 r_ :'I 2
1 I dev lrmO. usr3 · 4th user area 65056- ~~t
'J..# ;

I dev lrmO. usr4 5th user area 65056 ; r-~~--
I dev lrmO. usr5 6th user area 65056 n, ''<-I -$"

I dev lrmO. usr6 7th user area 65056~ ;_{ 11..-

I dev lrmO. usr7 8th user area 31008 ,,;,:,.:, ::2-·,,.. .,
RP02 .0 I dev lrpO.sys system area 6816

ldevlrpO.tmp temp area 2400
I dev I rpO. usrO 1st user area 30200

1 I dev I rp 1. usrO 2nd. user area 40600
RP03 0 · /devlr.pO.sys system area 6816

ldevlrpO.tmp temp area 2400
I dev lrpO. usrO 1st user area 30200
I dev lrpO. usr 1 2nd user area 40600
I dev I rp 1. usrO 3rd user area 40600
I dev I rp 1. usr 1 4th user Ftrea 40600

SMS 0 ldevlsms.sys system area 6816
ldevlsms.tmp temp area 2400
·ldevlsms.usr 1st user area 10240

\
1-15

-~

j

/~
/111111111

r

L

SETTING UP VENIX/11

Standard register and interrupt vector addresses are used for all the above disks.

Your system has also been preconfigured for four DL-11 serial lines, at the fol-
lowing register addresses and interrupt vectors: ·

Channel . Address IVA Name

0 0176500 0300 /dev/ttyOO
1 0176510 0310 /dev/tty01
2 0176520. 0320 /dev/tty02
3 0177560 060 I dev I console

One set of floppy drives is also supported, at standard register and interrupt
vector addresses.

Device Unit Name Blocks Description
RX02 0 /dev/rxO 988 Drive 0, double density

0 /dev/rxOs 494 Drive 0, single density
1 /dev/rxl 988 Drive 1, double density
1 /dev/rxls 494 Drive 1, single density

RX50 0 /dev/fO 790 Drive 0
1 /dev/fl 790 Drive 1

Tbe RX02 drives are supported on all distributions except for Micro/PDP-11
distributions. RX50 drives are supported on the Micro/PDP-11. The
preconfigured drivers will support double-sided double-density openition on
RX02 drives which have this feature, in which case 1988 blocks maY.. be
accessed.

The system is also preconfigured for one TM-11 or TU-10 tape drive, at the
standard register and interrupt vector address.

Name
/dev/mtO
/dev/nmtO

Description
Drive 0, standard
Drive 0, no-rewind on close

All of the above devices are known by two names. The standard name, given
above, is the device's 'block' name. Each of these names has a 'raw' counter
part, which ·is sometimes used to access the device in a faster, more direct way.

1-16

SETTING UP VENIX/11

These raw names are formed by prepending an 'r' to the original name, to form
for example '/dev/rrxO' for the raw version of floppy drive 0, or '/dev/rrlO.sys'
for the raw version of the RL02 system area._ The raw version of a device can
not be used with all programs, but will be shown where valid in examples later
in this document. (NOTE: 'raw' entries should not be used for the first user
partition on RM-type drives, since it is inverted.)

A complete list of all the device nodes preconfigured in your system can be
obtained by using the command:

Is /dev

It is prudent to remove device nodes for non-existent hardware. For example,
on a system that has only a single floppy drive, device nodes for floppy drive
one can be removed with the command:

rm /dev/rx1*
rm /dev/rrx1*

These commands remove both the standard and raw device nodes, double- and
single-density, of floppy drive one. Notice that the floppy drive itself d0es ngt
disappear.

1.3.3 Does VENIX Need Reconfiguring?

Most installations will require reconfiguration of VENIX before the system is
fully functional. See the section "Reconfiguring VENIX" for details on doing
this. You will need to reconfigure your VENIX system if one of the following

·.is true:

• Your processor is not an LSI-11/23, 11/23 PLUS, or 11/24. While the
distributed kernel will run on all processors, it is generated for an LSI-
11/23 or 11/24, and will not be 100 percent reliable on anything other
than these processors. In addition, the distributed kernel will not support
split liD space. To support the full ·features of your processor, you must
remake a VENIX kernel specifically for your processor type, as described
in the sub.:.section "Making VENIX" within "Reconfiguring VENIX".

1-17

SETTING UP VENIX/11

• You have more than 256kb of primary memory. The distributed kernel
has a 256kb limit. If you have more primary memory on your computer,
and would like it available for user programs, tJlen the kernel will need to
be regenerated. Any kernel you regenerate will automatically use all mem
ory available.

• You have devices different than those preconfigured. The devices your
preconfigured kernel can handle are limited to the ones listed above. If
you have different devices, or additional units or lines of the same devices,
or non-standard addresses, you will have to regenerate VENIX to accom
modate the differences.

Until you have regenerated VENIX, it is important to avoid accessing device
nodes for hardware which does not exist, as this will cause VENIX to crash.
Similarly, VENIX will also crash if you activate hardware VENIX has not been
configured for.

1.3.4 Uses of VENIX File Systems

Most hard disk units are divided into two or more logical disk partitions. This
is done both for convenience and for protection. The layout of your particular ::-"1
disk is described in the table in 'What Hardware is Accessible'. If the partition
sizes are not to your liking, it is possible to change them by simply modifying a
table in the device driver. This is described later in 'Adding and Changing
Drivers.'

There are three uses for disk partitions:

1. The system partition (knqwn as /dev/ XXX.sys), holds the main VENIX
commands, libraries, devices, and so on, as well as the 'swap area' for
swapping processes. When VENIX is first booted, this is the only file sys
tem known. The system partition contains the kernel (/venix), as well as
the system directories /bin, /lib, and /etc.

2. The user partitions ldev!XXX.usr (or /dev/XXX.usrO), ldev/XXX.usrl,
and so on, are used to ~ontain lesser-used VENIX commands and libraries,
as well as user files. The first user partition is mounted under directory
/usr, and is the only one that holds both VENIX and user files. The stan
dard VENIX directories /usr/bin, /usr/lib, /usr/dict, and others are on

1-18

SETTING UP VENIX/11

this partition. Additional user partitions are typically mounted under
directories /uO, /u1, and so on, and are available exclusively for user files.

3. The temporary partition (known as /dev/XXX.tmp is used by compilers,
editors, and other programs for temporary data storage. A clean file sys
tem is created on this partition and mounted under directory /tmp when
VENIX goes from single-user to multi-user mode. Permanent files should
never be left under directory /tmp.

1.3.5 Installing the USER AREA -Tape Distributions Only

This section should be skipped if your VENIX distribution was not on tape.

If you are installing VENIX from tape, then you have only restored about half
of your system. The remainder of your system, which will be placed on the
user area, is on the diskettes or tape marked USER AREA. If your system was
delivered on hard disk or floppies, then the files are already there, and you
should skip to the next section.

A file system should be created on the first user area. Consult the taple in
'What Hardware is Accessible' to determine the name and size of that'; area.
Type the· command:

I etc/mkfs - b name size

where name is the name of the first user area, and size is its size in blocks.
For example, to make a file system on the first user area of an RL02 disk, type:

/etc/mkfs - b /dev/riO.usr 10240

Now that a file system has been made on the first user area, it should be
mounted under directory /usr. The command to do this is:

mount name !usr

where name is the name of your first user partition. For example, on RL02
disk:

mount /dev/riO.usr /usr

1-19

SETTING UP VENIXI11

If your distribution was on tape, load the USER AREA tape on unit zero.
Type the commands

cd I
tar xvf I dev lmtO .lusr

The names of.the files will be given as they are extracted from tape.

1.3.6 Initializing User File Systems

At this point, file systems exist on your system and first user areas. It is now
time to create file systems on any other user areas that exist.

Examine the table in 'What Hardware is Accessible' to determine the name of
the second and other user areas and their size in blocks. For the second and
additional areas, type

letclmkfs - b name size

where name is the name of the area, and size is its size in blocks.

WARNING: do not create a file system on the first user area or on the system
area, since these areas contain valuable files.

For example, on an RL02 disk:

letclmkfs ·_ b ldevlrll.usr 20480

Again - be careful to avoid overwriting the first user area.

The - b flag given in the above command causes a bad-block check to be made
as the file system is created. Any bad blocks found are marked unusable and
collected in a file called 'Bad.Blocks' which should never be removed or
touched. This flag n~d not be used if the disk is error-free.

1-20

SETTING UP VENIX/11

1.3. 7 Automatically Mounting via /etc/rc

The command file /etc/rc is automatically executed every time VENIX goes
from single-user to multi-user mode. /etc/rc already contains a number of com
mands in it to clear several tables, start up a few background processes, and ini
tialize and mount the temporary partition on directory /tmp. Commands
should be added to /etc/rc to mount all the user partitions in their appropriate
directories.

The command to mount the first user partition /usr has been placed in /etc/rc,
but preceded with a ':' so that it will not be executed. Remove the preceding ':'
from the mount command so that the first user partition will automatically be
mounted under directory /usr.

The other user partitions are normally mounted under directories /uO, /u1, and :;.,_
so on. Empty directories of these names are_ provided for this purpose. The
directory names used are arbitrary, however, and you may create your own
directories for mounting purposes if you wish. Commands should be added to
/etc/rc to mount all the additional user partitions. For example, for an RL02-
based system, /etc/rc would now contain the lines:

mount /dev/rlO.usr /usr
mount /dev/rll.usr /u1

The directories you mount your disk in {luO, ...) are empty before a disk parti
tion has been mounted beneath them. Once the partition has been mounted,
the files and directories there appear 'magically' in the specified directory.
Don't copy files into /uO, /u1 or other mounting directories before·: tney are
actually mounted under, because any files already there will become inaccessible
once mounting is done.

The 'temporary' partition is not mounted when you are in ~ingle-user mode, as
you are now, which means that the /tmp directory remains located on the sys
tem partition. Since free disk space may be tight on the system partition, it is
\Jest to avoid unnecessary compiling, editing, and other activities when you are
still in single-user mode. These activities make use of temporary files which,
placed under directory /tmp, are located on the system partition where free disk

1-21

SETTING UP VENIX/11

space may be limited.

1.3.8 List of File Systems in /etc/checklist

The file /etc/ checklist should now be edited to contain an entry for each disk
partitiOn. /etc/checklist contains a list of file systems to automatically be
checked whenever you run the fsck command without arguments. /etc/checklist
should already contain a line looking something like

I dev /rrlO.sys:system:

The name at the beginning of the line (i.e., up to the first colon), is that of the
system partition; the words following (up to the second colon) are an English
language comment~ The device names given here have an extra 'r' in front of
them to· designate the 'raw' version, which can be fscked slightly faster than the
ordinary block version. (CAUTION: on all RM type disks, the 'raw' version of
the first user partition should not be used, since it is inverted. Use the standard
'block' version instead.)

For example, on an RL02-based system, /etc/checklist should contain the three
lines:

I dev /rrlO.sys:system:
/dev/rriO.usr:user area:
/dev/rrll.usr:second user area:

1.3.9 Which Terminals Come Up Multi-User?

When you bring the system up from single- to multi-user, as described in the
section 'Going Multi-User', various terminals will become active (give a 'login:'),
depending upon the instructions in the table in the file /etc/ttys. Only terminals
made 'active' in this way can be logged in to. They may be communicated with
in either case. (See init(8) for a description of the initialization process.)

Examine the table in the section 'What Hardware is Accessible' for a description
of_ the terminal lines for which VENIX has been preconfigured. (The console
terminal (ldev/console) is standard for all PDP-11 's and will always be correcL)
If the register or interrupt vector address given for a line does not correspond
with your hardware, then DO NOT attempt to use the lines until you have-

1-22

SETTING UP VENIX/11

reconfigured VENIX. VENIX and the serial line hardware must be in agree
ment about these addresses before a line can be accessed-VENIX will crash if
they are not. See the section 'Reconfiguring VENIX'.

The /etc/ttys file lists terminals by their /dev directory names, and gives a
description of the terminal. The first character in an entry is '0' if the device
will be inactive, or '1' if active. The second character is usually '2' to indicate
a CRT, or '4' for a hardcopy terminal. (If the device is inactive, however, the
second character is not important.) The rest of the line is the device name, and
must refer to an entry in /dev corresponding to a valid liqe. For example,'"'.

12tty01

indicates that the terminal on line /dev/ttyOl is to become active, and is a CRT.

14tty02

indicates that /dev /tty02 is to become active, and is a hardcopy terminal. See
ttys(4) for more details.

If you are in doubt as to which device name corresponds to which terminal, try
sending a little output to each one. For example:

echo '1 am ttyOO" > /dev/ttyOO
echo "I am ttyOl" > I dev /tty01

This will confirm that the terminals devices are correctly configured into the sys
tem, and tell you the name of each one. It is a good idea to run this test on
every line before marking it 'active' in /etc/ttys.

Note that 'active' here means that the device can be used as an interactive port
at which users can log in. Devices which are inactive can still be used to send
or read data from; for example, a serial line which has a printer on it would
never be set 'active' unless the printer had a keyboard on it and would be used
interactively. If your console terminal is a hard-copy unit, you are free to
declare it inactive and thus limit its uses in multi-user mode to logging system

1-23

l

SETTING UP VENIX/11

error messages (sent there automatically) or printing files.

You can specify as many active lines as you are licensed for (typically eight or
sixteen); additional entries will be ignored. ·

1.3.10 Configuring the Line Printer

The 'special file' /dev/lp is a generic device entry referring to whatever device is
used as the system printer. If the printer is running from a serial line, then
/dev/lp should point to that line, as a duplicate of /dev/tty??. This can be
accomplished by first identifying the tty line that the printer is on, and then
'linking' the lp entry to it. For example, if the printer were on line I dev /tty02,
then the command would be

In I dev /tty02 I dev /lp

If a 'real' line printer exists (LPV-11 or an electrostatic printer/plotter), then the
line printer driver should be added into the system (see 'Adding Drivers' below).
The entry I dev /lp should then be created with device numbers corresponding to
the printer driver (see the section 'Making Device Nodes.')

Once the /dev/lp entry has been created, the spooler command lpr(l) can be
used to queue files for printing on this device. The sources to this command
are provided (see /usr/src/lpr.c), so that it may be recompiled with options
appropriate for your hardware (number of lines per page, use of form feed
codes, etc.).

Don't confuse the spooler command lpr (located in directory /bin) with the spe
cial file ("device node") /dev/lp or the LPV-11 device driver source lp11.c.

1.3.11 Completion of Initialization Exercises

If the system is not running from the previous exercise, or it was shut down and
halted, then boot the system as described previously under the section 'Booting'.
If you have mounted any user partitions, then unmount them with a command
of the form:

umount /dev/riO.usr

At this point the following things should have been done for your installation:

1-24
\

SETTING UP VENIX/11

1. File systems should be initialized on all the user partitions you intend to
use (see 'Initializing User File Systems').

2. I etc/rc should contain mount commands to mount user partitions under
directories when multi-user mode is entered (see 'Automatically Mounting
via /etc/rc').

3. /etc/checklist should contain lines to indicate which disk partitions you
want checked (see 'List of File Systems in /etc/checklist').

4. /etc/ttys should contain lines to indicate the terminals which will become
active in multi-user mode (see 'Which Terminals Come Up Multi-User').
All of the entries should refer to usable terminal lines.

1.4 GOING MULTI-USER

The initialization exercises you just completed need be done only once for your
installation, or when you are reconfiguring your system. The following steps,
however, should be done each time you bring your system up. If the system is
not running after completing the previous exercises, or it was shut down and
halted, then boot it again as described previously under 'Booting.'

1.4.1 Using fsck

All the file systems should be checked for consistency (especially after a crash)
before they are mounted. The commands in /etc/rc. will mount the file systems
as soon as the system goes into multi-user mode, so the check should be done
now, while the system is still in single-user mode.

The fsck command checks all the standard disk partitions you specified in
/etc/checklist, and lists each partition as it checks it. Type

fsck

to perform this test. See VENIX MAINTENANCE for a more complete
description.

1-25

SETTING UP VENIX/11

1.4.2 Setting the Date

After running fsck, you can enter the current date by typing

date yymmddhhmm

yy is the current year (e.g. 84), mm is the month (01 to 12), dd is the day (01 to
31), hh is the hour (00 to 24), and mm is the minute (00 to 60). If the date is
not set, then the system uses the date and time it last remembers. If the year,
month or day is omitted, the last remembered value is taken by default. For
example,

date 8506250946

sets the date to 9:46 in the morning, June 25, 1985. Now if you realized you
were off by two minutes, simply typing

date 0948

will set the date to 9:48 of the same day. The system tells you the date you set.

Incidentally, you don't have to be in single-user mode to set the date, but it is
usually most convenient to do it then. -If _you decide to set it in multi-user
mode, you must be super-user.

1.4.3 Entering Multi-User Mode

When the health of the file systems has been verified with fsck and the date has
been set, the system may be brought to multi-user by typing a CTRL-D. (Note
that typing login is not sufficient.)

The commands in I etc/rc are now automatically run, which should mount all
the user partitions. Messages should appear on the console indicating that
multi-user mode is being entered, and giving the current date. After a few sec
onds, a 'login:' message should appear on all terminals specified as active in
/etc/ttys.

1-26

SETTING UP VENIX/11

1.4.4 Logging in as Super User

You should now log in as the 'super user'. The super user has powers far
beyond those of mortal men and women . . . namely, the ability to access any
and all files, as well as to execute many privileged commands associated with
system growth and maintenance. The super user login name is 'root' which
should be typed in after the 'login:' prompt on any of the terminals. The initial
root password is 'gnomes' which should be typed immediately after the prompt
'Password:'. For security purposes, the password you type in never appears on
the terminal, even though VENIX will read and understand it. If you mistype
either the name 'root' or the password 'gnomes' you will receive another 'login:'
prompt.

After you have correctly typed in the password, you will see the words:

Welcome to VENIX

Beware: you are the super user!

And underneath, a prompt 'SUPER>' will appear. The 'Beware ... ' message is
simply a warning that you are the super user. The 'SUPER>' prompt is a
repeated reminder of your status. The super user password should be changed
from 'gnomes' to something else if a more secure system is desired (see the sec
tion 'New Passwords').

1.4.5 Verifying the Disks and TTYs

If this is the first time that you have brought VENIX to multi-user mode, you
should check that the disk partitions have been mounted and terminal lines
made active. Make sure that 'login:' prompts have appeared on all the termin
als specified as active in /etc/ttys. Type the command

mount

and verify that all the partitions you intended to mount with commands in
/etc/rc have indeed been mounted. In particular, it is vital that the first user
partition be mounted under /usr, since that is where system commands reside
and where user accounts will be created. If things aren't right, double-check
your typing of entries in the /etc/rc and /etc/ttys files. Otherwise, you can
now begin adding other users to the system.

1-27

SETTING UP VENIX/11

1.4.6 Crashing Going Multi-User

If VENIX crashes as the system goes to multi-user mode, there is probably a
configuration problem with either some of the user disk partitions or the termi
nal lines. Reboot the system, and while still in single-user mode, type in all of
the mount commands you placed in /etc/rc. Test out all the terminal lines by
sending output to them as described in the section 'Which Terminals Come Up
Multi-User'. You may need to avoid using some of the hardware until you have
reconfigured the kernel.

1.5 NEW USERS

1.5.1 Creating New Users

There are three steps to creating new user accounts under VENIX: editing the
password file, creating the home directory, and creating the user's login initiali
zation file, .profile or .login. You must be logged in as the super-user 'root' to
accomplish these tasks.

1.5.1.1 Editing the Password File

The system coordinator (as super user) can install new users by editing the pass
word file I etc/passwd.

Each line in the file corresponds to a separate user, and contains an entry or the
form:

name:password:UID:GID:empty:directory:shell

where

name is the user's name (lower-case letters only).

password
is the user's encrypted password. After the new user logs in, he will put
in his own password, using the passwd command. Do not enter text
into this field yourself. Since this field is encrypted, when set it appears
as nonsense letters.

1-28

SETTING UP VENIX/11

UID is the user's numerical ID number, which should be unique among all
user ID's. Numbers 1-128 may be used; user ID 0 is reserved for the
super user 'root'.

GID is the user's numerical group ID number, indicating the group he or she
belongs to. Until you set up different user groups, you can use group
ID number 10 for everyone. If you wish to divide your users into dif
ferent groups, then the file /etc/group can be edited to create new
groups, and users can be given group ID numbers assigning them to one
or another group. Numbers 1-128 may be used; group ID 0 is reserved
for the super group (see the "VENIX Maintenance" chapter for
details).

empty is an unused field.

directory
is the user's 'home' directory, where he is phiced when first logging in.

shell is the user's shell interpreter, which is run when he logs in. If this field
is left blank, the standard 'Bourne' shell is used (see sh(l)). Users who
wish to use the C shell csh(l) should put the pathname /bin/ csh in this
field; note that this field is not terminated with a colon. (While the
Bourne and C shells are in many respects identical, the latter offers
several unique features such as a 'history' mechanism for easy reissuing
of past commands. See the two shell tutorials in the User Guide for
details.)

The following commands could be used to enter a new user 'holmes' in the
password file. The line editor ed(1) is used to edit the password file:

SUPER> ed /etc/passwd
188
$a
holmes:: 10:10:: /usr/holmes:

w
217
q

This appends an entry for 'holmes' to the end of the password file, with user

1-29

SETTING UP VENIX/11

ID 10, group ID 10, and login directory /usr/holmes.

1.5.1.2 Making Home Directories for New Users

The home directory given for the newly installed user must now be made, and
the owner of the directory be changed to that user. The directory chosen above
was /usr/holmes. Typically, all user directories are placed under directory /usr,
although it is perfectly acceptable to place them on another mounted-file-sys
tem, for example /ul. But don't place user directories under a directory which
is not mounted on some user partition.

After creating a user entry, login as that user to make sure the password file is
correctly edited. For example, for user 'holmes' these commands would be
given:

SUPER> mkdir /usr/holmes
SUPER> chown holmes /usr/holmes
SUPER> chgrp other /usr/holmes
SUPER> login holmes
$I -a
total 2
drwxrwxr-x 2 holmes
drwxrwxrwx 7 root
$ login root
Password: gnomes
SUPER>

64 Sep 23 12:07 .
208 Sep 23 12:04 ..

In the example above, /usr refers to the top directory on a file system in the
user area; the command mkdir /usr/holmes makes a directory called holmes
there. The command chown holmes /usr/holmes changes the ownership of
directory /usr/holmes to holmes, and chgrp other /usr/holmes changes the
group ownership to 'other' (otherwise the group owner would be the root's
group, 'system').

The new user entry is tested by logging in under the new name (login holmes)
and listing all the files (I -a) (that's the letter '1' not the number one). The
only entries in this new directory should be '.' and ' .. ', referring to the current
directory (lusr/holmes) and its parent directory (/usr). Finally, a 'login root'
and 'gnomes' will get the system coordinator back to super user status.

1::--30

SETTING UP VENIX/11

The following problems may arise when the new user tries to login:

• The user receives the message 'No directory'. This means that the shell
could not find the login directory, as specified in the password file. Either
that directory is not present, or the wrong number of fields are in the pass
word file, causing the system to be confused about what field holds the
directory name.

• The user receives a 'Password:' prompt, although the user has not desig
nated a password. The user may have typed his or her name incorrectly
and should try logging in again. Alternatively, the password file entry for
that user might be jumbled.

• The user can not access his or her files. Either the ownership of the files
was not correctly preset for the user, or the password file entry for that
user has bad user or group ID numbers.

In any of these cases, refer back to the passwd command file to correct any
mistakes in the file entry.

1.5.1.3 Setting Up .profile and .login Files

Now that the user account and directory is set up, a login initialization file
should be made, either by the system coordinator (as super user) or by the new
user. This file will be called .profile if the user is running the standard Bourne
shell, or .login if the user is running the C-shell. (The choice of shells was
made when the /etc/passwd file was edited, as shown previously.)

These files contain commands which are executed automatically whenever the
user logs in. They are used to assign a custom prompt for the user, and to set
'environment' variables to indicate, for example, the type of terminal the user is
on or the locations of personal command directories.

An initialization file is a convenience, not an absolute necessity. The commands
it contains could always be typed by hand each time the user logs in. But this
would be rather tiresome; we suggest you take advantage of the initialization file
capability, and let the computer do the work for you!

1-31

r

SETTING UP VENIX/11

We have left sample .login and .profile initialization files in the guest home
directory, /usr/guest. You may copy one of these. into the new user's home
directory. We'll continue our example for new user holmes, assuming the he is
running the standard Bourne shell (sh(l)), and will therefore require a .profile
file rather than a .login. Corresponding details for the C-shell are given after
wards.

cp /usr I guest/. profile /usr /holmes
cd /usr/holmes
ed .profile

We are now in the ed(l) editor, ready to modify the file. (You may wish to use
the screen editor vi or ice). The first thing to do is change the user prompt
from 'GUEST:' to 'holmes:'. The line in question is

PS1 = "GUEST: "

To move to that line, we type

/GUEST/

and to change, and verify, the new prompt:

s/GUEST /holmes/p

The new line should now be printed.

A very important shell variable is TERM, which is used to specify the type of
terminal being used. The complete list of terminals known to vi is given in
termcap(5). For example, an entry for the DEC VT-52 should read

TERM=vt52

This variable is examined by the full screen editors such as vi (but not ice) and
programs such as more(l). The section 'Setting Up Screen Editors' also shows
a mechanism for automatically determining the terminal the user might be on.

Another shell variable we might wish to modify is PATH, which contains a list
of directories, separated by colons, in which the shell looks to find commands.
The standard locations to look in are the current directory (.) and the VENIX
system 'binary' directories /bin and /usr/bin. (If you list the contents of these
last two, you may see some familiar names.) Users frequently have their own
private command directory called bin under their home directory. To add this

1-32

SETTING UP VENIX/11

name to the standard PATH for holmes, insert a new line at the beginning of
the file with the editor commands:

$a
PATH=$PATH:$HOME/bin

The PATH variable is set to its original value plus the new directory
$HOME/bin $HOME is a shell variable equivalent to the user's login (home)
directory, in this case /usr/holmes. The expression $HOME/bin then corre
sponds to the directory name /usr/holmes/bin. (We haven't actually made such
a directory yet, but when we do, the shell will search it to find any command
name typed by the user.)

The EXINIT variable is useful for users of the vi and ex editors. It contains
initialization commands which are read by these editors whenever they are
invoked, and can be used to customize function keys and preset any of the
numerous editor parameters. See the vi documentation for details.

If holmes were running the C-shell, the sample file .login should be copied over
from /usr/guest to /usr/holmes. The following lines give the equivalent C shell
versions of the variables initialized above:

set prompt = "holmes: "
setenv TERM vt52
set path=(. /bin /usr/bin -/bin)

The syntax used is somewhat different than that of the .profile file. The setenv
('set environment') command is used for variables like TERM which are to be
passed to programs the user runs, not just used by the C shell itself.

The sample .login file also contains the entry

set history = 20

This causes the C shell to remember the last twenty commands typed by the
user, so that it can recall and re-issue them if the user requests. This is a terrif
ically useful feature; see the C shell documentation in the User Guide for more
details.

1-33

SETTING UP VENIX/11

Other commands can be inserted within .profile or, .login files to print login
messages, for example

echo "Glad to have you aboard, sir. "

or perform routine login functions. A favorite is

/usr I games/fortune

which will print a few words of wisdom on each login. (WARNING: some of
the 'fortunes' are rather odd, and should not be misinterpreted as system error
messages.)

1.5.1.4 New Passwords

If system security is desired, then you should give yourself a password. Type
in:

passwd

On the screen it will say, 'Changing password ... ' and then VENIX will prompt:

New password:

Type in a password which has at least four characters. You will be prompted to
type the password a second time. VENIX prompts:

Retype new password:

The password will not be visible on the screen (to keep the password confiden
tial), but it has been entered. The next time the you log in, when the password
prompt appears, type in the password.

The super-user can assign the password for another user with the command

passwd user-name

1-34

SETTING UP VENIX/11

1.6 SHUTTING THE SYSTEM DOWN
If the system is multi-user, it should be first brought down to a single-user sys
tem by logging in as 'shutdown', i.e.

login shutdown

The password is gnomes as it is for the super-user. For a more secure system
you may wish to change the password with the passwd(l) command. (You will
probably wish to keep the root and shutdown passwords the same.)

shutdown verifies that all users (except super-users) have logged off and back ..
ground processes have finished (except for system stuff). (If any non-super
users are still logged in, you are told this and given a chance to warn them;
shutdown asks you for the number of seconds you wish to wait before becom
ing single-user, and then warns all logged-in users at 30 second intervals.) Then
all mounted file systems are unmounted and a small message about syncing the
system is printed on the console. In a short while, another 'SUPER> ' prompt
appears on the console device, indicating that the user is a super-user. The sys
tem is now single-user. You can play with the system in single-user mode if you
like; a CTRL-D would again cause the system to go multi-user.

If you are booted onto a venix kernel named other than /venix (presumably for
testing purposes), shutdown will not work. In this case, you must bring the sys
tem to single-user mode by hand, by first unmounting all file systems and then
typing:

kill -11

The kill command signals the init process, (process ID # 1) to switch to single
user mode. You must be the super-user to do this.

Before you turn the power off or hit the BOOT switch, you absolutely must run
the sync command. This is required because VENIX does not, for efficiency
reasons, necessarily physically write out all data to the disk when a program
logically writes data. The sync forces all write-behind data to be flushed out to
the disks.

1-35

SETTING UP VENIX/11

After the sync the processor can safely be halted from the front panel and pow
ered down. You may want to write protect the disks before powering down,
although this should be unnecessary.

If you occasionally forget to type sync, or unplanned power downs occur, disks
may be slightly corrupted. Again, the fsck command will check a file system on
a disk, and if required, interactively repair it.

1.7 BACKING UP VENIX

It is very important that duplicate copies of VENIX be maintained, in case your
running system is damaged and becomes unusable, or system files are lost. First
of all, an exact duplicate of. your original VENIX distribution should be made
once, since the original copy may become damaged. Secondly, backups of any
customizations you have made to VENIX should be done every so often, so that
they can be eal)ily reapplied should you need to revert to the original copy.

According to the terms of your VENIX license, you may create duplicates of
VENIX for backup purposes only. ALL DUPLICATE COPIES OF VENIX
MUST BEAR A COPYRIGHT NOTICE AND SERIAL NUMBER IDENTI
CAL TO THAT OF THE ORIGINAL.

1.7.1 Backing Up the Original Distribution

The following steps will create a copy of your original distribution media that
can be loaded from scratch, just as your first installed VENIX.

1.7.1.1 Backing Up the Distribution on Floppies

If your distribution was on floppy diskettes, use the following procedure for
each of the VENIX diskettes: place the original diskette in drive zero, and a
blank diskette in drive one. If you have RX02 diskettes (988 blocks/diskette),
use the command:

dd if=/dev/rrxO of=/dev/rrxl bs=4b count=247

If you have RX50 diskettes (790 blocks/diskette), type:

dd if= I dev /rfO of= I dev /rfl bs =lOb count= 79

1-36

SETTING UP VENIX/11

1. 7 .1.2 Backing Up the Distribution on RL02 Disk

If your distribution was on RL02 disk, place a blank error-free disk in drive
one, and type the following commands:

sync
dd if=/dev/rrlO.all of=/dev/rrll.usr bs=50b count=409

(The sync is given first to flush system buffers to disk.) The complete RL02 disk
in drive zero will be copied to drive one. This copy will of course contain any
modifications you have made to VENIX so far.

If you are not sure whether the spare pack is error-free or not, you can check it
with a mkfs command before copying the image, for example:

/etc/mkfs - b /dev/rrll.usr 20480

If any errors at all are reported, the disk should not be used for a system image
back-up. (Unless fatal errors are reported, however, the disk could still be used
as a mountable user file system.)

1. 7 .1.3 Backing Up the Distribution on Magtape

If your distribution was on magtape, change to a directory mounted on a disk
partition that has at least 2mb or 4000 blocks of free space Use the df(l) com
mand to ascertain the number of free blocks on each partition. (Neither the
system or the temporary partition will have this much free space.) For example,
if your first user area has 4000 free blocks, type:

cd /usr

For each of the two tapes, do the following. Mount the tape in drive zero, and
copy the tape image to disk with the commands

echo > tempfile

(to create an empty file) and then

dd if=/dev/mtO of=tempfile

Now mount a blank tape in drive zero, and copy the image to it with:

1-37

SETTING UP VENIX/11

dd if= temp file of= I dev /mtO

When you have done this for both tapes, remove the image file:

rm tempfile

1.7.2 Backing Up Your Customizatio:its

You should also create a record of all modifications made to your original sys
tem. The tar utility has a d option which causes it to operate only on files
modified within a given number of days. This is useful for backing up only
those file you have modified. Determine the number of days since you loaded
your VENIX system, and see the description of tar in VENIX MAINTE
NANCE. (WARNING: any file which was only edited before you set VENIX's
date may have an old modification time. Files such as /etc/rc and
/etc/checklist may be in this category. Use the touch(l) command to change
the modification dates of these files to the present.)

1.8 BACKING UP USER FILES
The importance of backing up user files cannot be over-emphasized! Any com
puter system will crash from time to time, due to anything from power-fails,
hardware problems, software bugs, to the phase of the moon. Most often this
will happen without the loss of any significant data. However, there will be
occurrences where significant loss occurs. Another hazard is accidental removal
of files by users, often due to erroneous wild card filename specification.

Backing up is a task which is widely neglected, and often the cause of tremen
dous anxiety and expense. Unless you wish to claim another entry in the annals
of computer catastrophe, you will back up your user files thoroughly.

There are a number of possible ways to back up user files, but the best tool for
almost all purposes is the tar command. tar allows you to save and restore
individual files or directories, and can back up on any media, including floppy,
tape, and hard disk. Among the other virtues of tar is that it is a de facto
standard among UNIX-derived systems, so that files saved in tar format are
likely to be readable by any other UNIX system (and of course any other
VENIX system) that can handle the same media type. Use of tar is detailed in
VENIX MAINTENANCE, so it will not be discussed here. tar has an entry in
the REFERENCE MANUAL as well.

1-J8

1.9 RECONFIGURING VENIX
The files needed to remake the VENIX kernel exist under the lusrlsys directory.
The files and directories there are:

lusrlsyslconf
The 'configuration' directory, containing tables of information describ
ing the linkage to the drivers, both from the VENIX kernel and the
hardware. The command

make venix

from within this directory will regenerate a VENIX kernel. Key files in
this directory are: config, the master configuration file; c.c, the C
language branching tables; and l.s, the assembly interrupt vector inter
face.

I usr I sysl dev
The device driver directory. All the sources to VENIX device drivers
are given here, for example dl.c, the DL-11 driver, and rl.c, the VENIX
RL01/02 driver. Documentation for all drivers can be found in section
seven of this manual.

lusr I sysiSYSLIB
This is the system library, in 'archive' (ar(1)) format, for all non-split
liD processors. It contains the object modules to the kernel itself, and
need never be modified by the user.

lusr I sysiSYSLIB.ID
This is the system library for split liD processors.

lusr I sysiDEVLm
This is the device driver library. Drivers are compiled and then added
to this library with the ar command.

The directory lusr/include/sys contains '#include' files used by drivers and the
kernel. The only file subject to modification by users is
/usrlincludelsys/param.h, which defines system parameters that may be custo
mized for a particular. installation.

1-39

UP VENIX/11

.... (he steps needed to define and regenerate a new VENIX system are described in
the following sections. They are:

1. Editing config to include references to all devices on the system.

2. Editing options with the driver sources; compiling them; and adding them
to DEVLIB.

3. Linking the kernel, by running 'make venix'.

4. Creating new device nodes in directory using the mknod command in /dev.

1.9.1 Editing Config

The config file, in /usr/sys/conf, contains an entry for each device on the sys
tem. Each entry is in· the form of a C-language ' #define' statement. The pos
sibilities are given in comments, and if selected should be typed in exactly as
given. For example,

#define TM
#define DA

would be used to indicate magtape and D/ A devices. Delete all preset entries in
this file referring to devices which are not in your computer.

This file also has an entry called SYS_DISK, describing the type of hard disk
VENIX will run from, that is, where the root file system and swap area will be.
The possible names are shown in comments; for example,

#define SYS_DISK SRL

indicates that an RLOl or RL02 disk will be used.

The entries in config can be used to describe most combinations of hardware.
However, there are limitations (described within the file): for example, config
can only define one type of RK disk (either RK05 or RK06/07). In cases where
config is insufficient, or when a customer-written driver is being added to the
system, then the file c.c must be edited to correctly link in drivers. This is
described in 'Modifying c.c'. Normally, however, the user need not tamper

1-40

SETTING UP VENIXI11

with c.c.

1.9.2 Adding and Changing Drivers

1.9.2.1 General Info

The sources for the supplied drivers are in lusrlsysldev, and are all in the C
language. Generally, each hardware controller has a separate driver. Documen
tation on the user interface to the driver may be found in section seven of this
volume. The procedure for adding a new driver to the system is:

1. Examine the options within the driver (i.e. register address, number of
units) and set those appropriate to your hardware.

2. Compile the driver and add it to the device library lusr(sysiDEVLIB.

If you need to create a new driver for some device, probably the fastest method
is to take the closest existing driver and make modifications to it, preferably in
stages, where each stage can be tested before proceeding to the next. The gen
eral approach to drivers and what they need to do is covered in chapter five in
the section "The VENIX 1/0 System". That document and the source listings
which serve as examples are the primary tools available to help in writing a
driver.

The debugger adb(l) can be used to examine the running VENIX kernel and the
driver being debugged (adb lvenix ldevlkmem), and can show you the values in
driver variables (see "Driver Variables").

1.9.2.2 Changing Device Register Addresses

The addresses of device registers are given by constant values at the beginning
of the driver. They are preset to standard locations, and must be set to match
the addresses your hardware is actually set to. For example, the DZ driver con
tains the line

#define DZADDR 0160100 I* Base address *I

defining the base address of the DZ registers. These numbers can be changed as
needed.

1-41

SETTING UP VENIX/11

The DL-11 driver is unusual in that is has a base register address for each line.
Most other drivers have only a single base address, no matter how many lines or
units are present.

1.9.2.3 Modifying Disk Partitions

Drivers for most hard disks have a partition table which describes the size and
location of each logical disk partition. The original ordering is given in the
write-up of that particular device (see the table in ''What Hardware is Accessi
ble?". It is possible to change these partitions if they do not suit you, or
extend the table for additional disk units.

The exact format of the partition table varies slightly between drivers. The
table is in the form of an array, each row having two numbers in it. One indi
cates the size of the partition, and the other, the offset of the partition on the
disk. The partition size is usually in blocks (one block = 512 bytes); the offset
is measured in cylinders (some block multiple) for larger disks, and measured in
blocks for smaller ones. The choice of units should be clear from the driver
source. The size of the array itself, that is, the number of partitions, is based
on some constant given as the array dimension.

The following table is taken from the RLOl/02 disk driver. The RLOl and
RL02 disk~ use the same driver; depending on which disk is actually being used,
the partition table is changed for 5mb or lOmb disks. The following table is for
2 RL02-sized disks, of length lOmb (20480 blocks).

struct {
unsigned nblock;
unsigned oblock;

} rl_sizes[4*NRL] {
20480, 0,

};

7840, 0,
2400, 7840,
10240, 10240,
20480, 0,
10240, 0,
10240, 10240,
0, 0,

I* disk partitions (4 per physical) *I
I* number of 512 byte blocks *I
I* offset in blocks for first block *I

I* drv 0: lOmb complete disk *I
I* 4.0mb root/ swap *I
I* 1.0mb tmp & pipe*/
I* S.Omb USER *I
I* drv 1: lOmb complete disk *I
I* S.Omb USER *I
I* S.Omb USER *I
I* unused partition *I

1-42

SETTING UP VENIX/11

The number of partitions is given by the dimension '4*NRL'; NRL is the num
ber of RL units,· and for each RL unit 4 partitions are given. The minor device
number of each partition is given by its location in the array, starting with zero.
The minor device number for any partition is therefore the index of that parti
tion in the partition table. As the above table shows, RL minor device number
0 refers to a partition beginning at block 0 on the disk, of length 20480 blocks.
This partition covers the entire disk, and overlaps the next three partitions (7840
for the system area, 2400 for the temporary area, and 10240 for the user area.)
Since this complete disk partition conflicts with the next three, it is usually
unused.

The next three entries correspond to RL02 unit one. The first entry on this disk
covers the entire disk; the next two cover half each. A single file system could
be made on the first entry of 20480 blocks in length, or two 10240 file systems
could be made on the second and third entry. Finally, the fourth entry is a
place-holder only.

It is perfectly valid for partitions to overlap one another, as long as overlapping
file systems are not created. In the case of RL unit 1, one must chose to have
either two file systems of 10240 · blocks each on partitions five and six, or one
file system of 20480 blocks on partition four.

The offsets and sizes of partitions may be modified by the user to change the
disk layout. However, the number of partitions for each disk unit (four, in the
case of the RL) should not be casually tampered with, since that constant is
used in several places throughout the drivers.

If a partition size is changed, a file system must be remade on it of the new
length. A file system may be of shorter length that the partition (this is occa
sionally useful) but never longer. Changing the length of the system partition is

1-43

SETTING UP VENIX/11

a· rather involved process, and not recommended for that reason.

1.9.2.4 Changing Disk Driver Options

Disk drivers have several options which can be invoked by uncommenting the
appropriate ' #define' statement in the source for the driver.

OLSEEKS
Most disk controllers have the ability to overlap seeks on a multi-drive
system (except for the floppy controller). If you have more than one
physical drive, then OLSEEKS should be defined.

ONEPHYS
Many emulating controllers will split up one large physical disk, say a
winchester, into several logical DEC equivalent disks. In this case,
ONEPHYS should be defined to avoid defeating the cylinder sorting
algorithm as well as overlapped seeks.

SOFTECC
The DEC controllers for large disks (RK06 and up) require that the
driver apply the error correcting code fix to the data, while some emu
lating controllers apply the correction internally. Define SOFTECC if
the driver must apply the correction.

IMP SEEK
The DEC RLOl/02 controller requires an explicit seek to the desired cyl
inder before a transfer request can take place. Many emulating control
lers do not require this explicit seek, since an implied seek is done when
the transfer request takes place. However in some cases, this feature
must be enabled by a special jumper on the controller board. Define
IMPSEEK if your hardware has implied seeks.

INVERT
On large disks with several large partitions (for example the RM02/03),
it is generally more efficient to have the first partition inverted so as to
put the i-node area next to the i-node area of the following partition.
See section RM02(7) for a more complete discussion. Define INVERT
for this feature. 'Raw' versions of inverted partitions should never be
used.

1-44

SETTING UP VENIX/11

EXTADD
Disk (or tape) devices with 22-bit addressing capabilities (most newer
Q-bus or massbus devices), must have this option enabled in order to
handle the full address space correctly, if the computer has more than
256kb of memory. If this option is not available in either the hardware
or the driver, then the device can not be used as the system disk, and
can not be accessed in raw mode in any case. DO NOT define this
option if the controller does not have 22-bit capabilities.

1.9.2.5 Supporting Multiple Controllers

Most drivers handle only a single controller (see driver sources for exceptions).
If you have two or more of the same type controller in your backplane, you
will often have to do some driver modification to support multiple boards.

The simplest way to support a second controller is by simply duplicating the
original driver and treating the two controllers as completely separate devices.
The duplicate driver must be edited so that external references do not conflict
with those of the original driver; this means that all references to . symbols like
'ddtab,' 'ddopen,' 'ddclose,' should be changed to something like 'ddltab,'
'ddlopen,' 'ddlclose,' and so on~ Be careful that in modifying the external
names, you don't create conflicts within the driver by extending the names past
the 7 characters of significance. For example, 'devaclear' and 'devaclose' are
fine (unique to 7 characters), but 'devlaclear' and 'devlaclose' are not.

The two controllers must of course have separate register addresses and inter
rupt vectors, and these must be reflected in each driver as well as the I.s file.
The c.c configuration file must also be edited to contain entries for both driv
ers. See the section "Extended VENIX Modifications" for details on editing l.s
and c.c.

This approach can be easily extended to support an arbitrary number of the
same controller. The penalty for this simplicity, however, is that each copy of
the driver will duplicate much of the same code and consume additional kernel
memory.

A more efficient technique is to create a single driver that can handle multiple
controllers, with a range of minor device numbers dedicated to each one. Those
driver routines which are passed a device number can use it to determine which

1-45

SETTING UP VENIX/11

board is being selected. A common interrupt routine can be used for multiple
controller interrupts, and passed as an argument to similarly indicate the board
causing the interrupt. See the section on modifying 1.~ for details.

1.9.3 Recompiling Drivers

Once a driver is edited and ready to be tried, it should be compiled and
added/replaced into the driver library. Type

cc -c -0 driver.c
ar r . ./DEVLIB driver.o

The first comni.and compiles the driver (the - c flag is used to suppress linking,
and the -0 indicates optimization). The second command replaces the driver
into the device library. To see what drivers are in the library, type

ar tv . ./DEVLIB

Extraneous drivers should be deleted by using ar with the 'd' option.

1.9.4 Making VENIX

If you have an unusual system configuration (for instance, non-standard inter
rupt vectors, or more than one RK05 controller), you will have to read the later
documentation on customizing the files c.c and I.s.

If this is not the case, however, you can now create .a new VENIX kernel. At
this point, verify that all your drivers should have been compiled and placed in
DEVLIB, and that the config file has been correctly edited. Move into the
/usr/sys/conf directory and issue the command

make venixXX

where XX is the processor type of your machine. (Type simply

make

to get a list of possibilities.) This will cause the appropriate tables to be com
piled and assembled, and, if there_ are no errors, a new VENIX kernel linked
together. If there are errors, you will 'have to correct them and try a new make.

1-46

SETTING UP VENIX/11

A frequent kind of error is an 'undefined XXX' which means you referenced
some symbol (i.e. driver routine) XXX in the files config, c.c, or l.s, which
couldn't be found. This is usually because a driver wasn't added to DEVLIB.
'Undefined' references to the symbols end and edata are spurious, and are pro
duced when other symbols are not found; these messages will disappear when
the other references are fixed. All C-language symbols will be preceded with an
underscore.

If a split 1/D kernel is being generated, 'undefined' errors will be given as 'relo
cation' errors, and the name of the routine will not be given. To obtain more
precise error information, try remaking a non-split liD version of the kernel,
for example by typing

make venix23

Another common error message for non-split 1/D kernels is:

venix too big: code + data = XXXXX
Total kernel size must be less than 49152 bytes.
Remove a driver or change buffer sizes in param.h

This is given when the size of the kernel, including all the drivers and buffer
space, exceeds 48kb. The solution, as suggested in the message, is to remove
one of the drivers or reduce the buffer sizes given in the file
/usr/include/sys/param.h. The latter option is usually taken; the parameter
NBUF should be adjusted in the param.h file. This parameter controls the
number of disk buffer blocks, each one using up 512 bytes. It should be low
ered only by enough to make the kernel fit in the 49152 byte space. Reducing
NBUF by a little will only causes a minor performance penalty in VENIX; if it
is brought too low (for example, close to the total number of simultaneously
mounted file systems), the system performance will suffer seriously, and VENIX
may hang up.

1-47

SETTING UP VENIX/11

1.9.5 Making Device Nodes

If you have added a new driver to VENIX, or added new lines or units to an
existing driver, you will have to create the "special"· files for the- device in the
/dev directory with the mknod(lm) command. The command is of the form:

/etc/mknod /dev/name [b] [c] major minor

Either b or c must be chosen, depending upon whether the entry is for a block
or character device. (Disk drivers have separate entries for both.) major is the
device's major device number, which is equal to its index number in the appro
priate c.c table; minor is the device's minor device number. For disks, this is
equal to the index number of the particular partition in the driver's partition
table; for serial interfaces, this number indicates an entry into a table of port
addresses. For other types of devices, the minor device numbers have different
meanings (see the appropriate writeup in section seven).

If you list your /dev directory with the I command, you will see the major and
minor numbers for each existing entry, separated by commas, just before the
date.

For example, to create a special file for the user partition on an RL disk:

/etc/mknod /dev/rlO.usr b 2 3

and for the raw version:

/etc/mknod /dev/rrlO.usr c 13 3

The RL index (major device number) is 2 in the block table (for the mountable
(block) version of the partition), and 13 in the character table (for the raw
(character) version). The minor device number for this particular partition is
always 3 (see RL(4)).

To create entries for 4 DZ lines:

/etc/mknod /dev/ttyOO c 2 0
/etc/mknod /dev/tty01 c 2 1
/etc/mknod /dev/tty02 c 2 2
/etc/mknod /dev/tty03 c 2 3

1-48

SETTING UP VENIX/11

1.9.6 Testing a New Kernel

You should test the new kernel before removing the current VENIX kernel. The
following procedure is recommended.

Move the kernel you just created from /usr/sys/conf/venix to /venix.test. Shut
the system down, and reboot on 'venix.test'. Instead of 'venix', type venix.test
after the '&' prompt.

If the system does not come up because of some error in this newly created
venix, you can boot again on 'venix' to get a running system. After you have
successfully booted and tested venix. test, you can move /venix to /venix.old and
venix.test to /venix, and from that point on boot normally on venix.

Keeping the previous /venix around in /venix.old accomplishes two things: if
later on bugs are discovered, then the old version can be booted and checked to
see if the bugs are a recent addition or have previously existed. Also, if for
some reason the file /venix is corrupted, for example on a disk crash, then the
independent /venix.old file can be booted tmless the disk is seriously ill. See
"VENIX Maintenance" on system crashes.

New drivers should be tested out while the system is in single-user mode. If a
new disk driver has been added, file systems should be made and fscked on all
the disk partitions. Check out both the raw and block versions for each parti
tion (except inverted partitions, which should not have "raw" entries.) Output
should be sent to all new terminal lines to test them out before they are made
active login ports. Don't mount a disk or activate a login terminal line before
this type of testing has been done.

The commands ds and shutdown, etc. which assume that the currently running
system is named venix, will not work correctly if the current system is named
something else. ds has a - k option which must be used to specify a kernel
other than /venix.

1-49

SETTING UP VENIX/11

1.9. 7 Device Errors

If your device drivers are configured incorrectly or have bugs, a variety of
errors may occur. The messages that accompany these are given at the end of
"VENIX Maintenance." The following is a quick list of possible problems and
fixes:

1. Check that the register address in the driver source and the interrupt vector
addresses in l.s matches those set in hardware. This requires examining
board jumpers, and checking register addresses in memory through the
console switches or ODT. (See "Modifying l.s" for instructions on chang
ing VENIX's vector addresses.)

2. Check that your I dev device nodes are numbered correctly.

3. Verify that the device controller is located in the correct backplane slot, as
indicated by your hardware manuals. Check for bus interrupt grant and
DMA grant continuity.

4. Place calls to the routine printf at strategic places in your driver. These
act just as the normal user program printfs do, but cause information to
be printed immediately on the console terminal. This may be useful for
determining if a driver routine is being called, or for determining what
values are being passed.

5. Use adb to examine kernel memory.

adb /venix.test /dev/kmem

starts you up. (Ignore the message 'not a core file.') From there, com
mands like

0177560/o

can be used (that command for example prints the value of your console
DL register in octal). See adb(l) and "A Tutorial Introduction to ADB"
in the Programming Guide for instructions on using the debugger. (Sym
bolic addressing will not work on split I/D kernels.)

1-50

SETTING UP VENIX/11

1.9.8 Extended VENIX Modifications

The following passages describe more detailed modification to system tables and
entries. These are necessary if your hardware configuration cannot be ade
quately described by the config file, or ·if ·you wish to fine-tune your system.
Once you have made these modifications·, go back to the section ''Making
VENIX'' and remake your VENIX kernel.

1.9.8.1 Modifying c.c

The config file can be used to describe most system configurations; it is auto
matically included by c.c to prepare the appropriate driver entries. However,
there are situations which can not be described correctly just through config, in
which case you will have to modify c.c by hand- for example if you have both
an RK05 and an RK06 drive on your system, or two different RL controllers.

Entries in c.c are parameterized with "# ifdef" and "#else" statements, causing
conditional compilation of entries if the given preprocessor constant has or has
not been defined. (After editing c.c and running

make venix

you can peruse the file c.i, the preprocessed version of c.c, in order to check
that your entries were processed correctly. Ignore the blank lines and extrane
ous structure definitions.)

There are two tables which you may need to modify: bdevsw and cdevsw~ The
first contains entries for block devices, such as disk devices and magtape; the
second contains entries for character devices, such as serial or parallel I/0,
AID's, as well as the raw versions of most block devices. Before an entry is
used in the block or character· table, it must be declared with an extern
statement.

·After the two table declarations, there is a set of numbers which indicate which
disk partitions VENIX will run from. These should only be modified if you
need to move your VENIX system to an entire different l.!nit. See below under
the section "System Partition Assignment".

1-51

SETTING UP VENIX/11

Block Device Table

Each line in the bdevsw is of the form

&devopen, &devclose, &devstrategy, &devtab,

The dev portion of each name should be replaced by the appropriate device
type. For example, the entry for a magtape device is

&tmopen, &tmclose, &tmstrategy, &tmtab,

The exact prefix can be found in the device driver source, and usually consists
of the two or three first letters of the device name. Disk devices have no need
for open or close routines, and use the special &nulldev entry in their place.
For example, the entry for an RX floppy disk would be

&nulldev, &nulldev, &rxstrategy, &rxtab, .

Entries corresponding to non-existent devices are

&nodev, &nodev, &nodev, 0,

These are merely place holders. The difference between 'nulldev' and 'nodev' is
that the former indicates that no routine is necessary to perform the function,
while the latter indicates that the function should not be attempted, and that an
error should be produced if it is called.

Character Device Table

The cdevsw table contains entries of the form:

&devopen, &devclose, &devread, &devwrite, &devioctl,

corresponding respectively to the routines to open the device, close' the device,
read from the device, write to the device, and perform 1/0 control functions on
the device.

1-52

SETTING UP VENIX/11

For example, the entry for a DL device is

&dlopen, &dlclose, &dlread, &dlwrite, &dlioctl,

The entry for the raw version of the RX disk device is

&nulldev, &nulldev, &rxread, &rxwrite, &nodev,

Note that the open and close entries are 'nulldev', indicating that no routine
need be closed to perform those functions, and that the 110 control entry is a
'nodev' indicating that there is no 110 control for this device. Most disk
devices do not have 110 control functions.

The following two special entries will always exist somewhere in the cdevsw
table, and should not be removed:

&tty open, &nulldev, &ttyread, &ttywrite, &ttyioctl,

&nulldev, &nulldev, &mmread, &mmwrite, &nulldev,

The first corresponds to the 'tty' device (/dev/tty), a special device which
always accesses the terminal of the program using it; the second accesses mem
ory, and is used for debugging purposes.

System Partition Assignment

There are three basic partitions which the system knows about: pipedev,
rootdev, and swapdev. pipedev is on the temporary partition, and is used inter
nally by VENIX for buffering pipes. rootdev is the partition which the system
itself runs on, holding the entire root file system, and swapdev is the partition
used for holding swapped processes. rootdev and swapdev are usually on the
same partition, and thus have identical values.

The names PIPE, ROOT, and SWAP are set in the config file to specify the
partitions. The declarations are then used in the c.c file to initialize the varia
bles pipedev, rootdev, and swapdev.

1-53

SETTING UP VENIX/11

The config file declarations are of the form

#define PIPE
#define ROOT
#define SWAP

((x1< <8) I y1);
((x2< <8) I y2);
((x3< <8) I y3);

The x value in each set indicates the major device number of that partition
(usually the same for all three). The y value indicates the minor device number,
which is the index of that partition in the driver's partition table.

To prevent the swap area from overwriting the root area, the swap area is offset
onto the partition to a location following the root file system. The config file
variables and ~~swAP _OFF 11 ~~swAP _NO II are used in c.c to define swplo
and nswap, respectively. The values

#define
#define

SWAP _OFF 6816
SWAP_NO 1024

are used for most disks. SWAP _OFF (swplo) indicates the offset (in blocks)
of the swap area on the given partition. Since the root file system and the swap
area usually reside on the same partition, swplo defines the length of the root
file system area. SWAP _NO (nswap) is the size of the swap area. The sum of
these two numbers should equal the length of that partition.

The minimal swap area should be around 100 blocks, for systems which will
only be ·'used in single-user mode and will not have to run background pro
grams. Standard systems have a swap area of around 1000 blocks. Large sys
tems often will have 2000 to perhaps 3000 blocks.

In very special cases, the swap area may be put on a separate device or partition
which the system can access more quickly or has a faster transfer rate.

1.9.8.2 Modifying J.s

If your device has standard interrupt vectors (or none at all), then the entries
you make in the config file should do everything for you. Otherwise, you will
have to create and manually edit the I.s file. This is an assembly-language
source file, which, like the c.c file, is parameterized with # ifdef and #else
statements to r'eflect definitions in config. After running

1-54

make venix

C(1 "'1 f'.· 0 tv o o""' -+ :; ~,...o~ A 'b
.-rl'llf'-.# }, ! I'•!,

<
1 ,

16'

the preprocessed version of l.s can be see in I.a.

SETTING UP VENIXI11

Everything to the right of a 'I' indicates a comment. In the first half of l.s are
entries of the form:

nnn".
ddio; brp +X. I this is a comment

nnn is the interrupt vector in octal. dd is a two-letter abbreviation for the
device (e.g. 'dr'), and p is the priority the device has.

The X is a optional decimal value ranging from 0 to 31 which is passed along as
argument to the C-language interrupt routine. This is useful in drivers such as
the DL driver that have a single interrupt routine which may be called through a
number of different interrupts. A unique value X can be used at each interrupt,
so ·the routine can determine exactly which vector was used. Most drivers do
not use this feature, in which case the value of X should be left at 0.

For example, the entry for an RL disk is

160".
rlio; br5 + 0. I RL

These interrupt vector numbers must appear in order of increasing value in the
file, and the vectors must be at least four bytes apart. This entry indicates that
when the particular device interrupts, the routine rlio should be called, and that
the priority should be set to 5. rlio is defined below.

In the second half of the l.s file are entries of the form

.globl _ddintr
ddio: jsr rO,call; _ddintr

where dd is the name of the disk device. This is called by an interrupt at the
previously defined location, and causes a subroutine call to ddintr, which is the
interrupt service routine in the particular device driver. For example, the

1-55

I

r

SETTING UP VENIX/11

appropriate declaration for the RL driver would be:

.globl _rlintr
rlio: jsr rO,call; _rlintr

1.9.8.3 Modifying param.h

The include file /usr/include/sys/param.h contains a number of parameters
which may be changed in order to customize VENIX to your installation. In
general these will not need to be adjusted; in any case, you should not tamper
with t.hem unless you have some in-depth knowledge of the system. Some of
the more commonly modified parameters are:

NBUF

NMOUNT

HZ

TIME ZONE

DSTFLAG

NPROC

Number of disk buffers. Reduced sometimes
if the kernel is too large after a 'make venix'
command.

Maximum number of mounted file systems.
The 'root' system counts as one, too. If this
limit is reached, the mount command will fail
on attempts to mount additional file systems.

Ticks/second of the clock. Normally 60; set
to 50 in Japan and Europe.

The time difference between local and GMT in
minutes. For EST this is 5*60; for PST it
would be 8*60. This parameter changes the
timezone abbreviation given by the date
command.

This flag, when set to 1, causes the time to
shift to Daylight Savings automatically be
tween the last Sundays in April and October.

Maximum number of processes.

1-56

MAXUPRC

RMEMB

RMEML

SETTING UP VENIX/11

Maximum number of processes per user (nor
mally 10).

A segment of memory may be reserved from
VENIX, in which case it will not be touched
by the operating system or counted as 'avail
able' when VENIX is booted. This parameter
defines the base of the reserved memory area,
in units of 64 bytes. This is used sometimes if
VENIX finds and tries to use memory between
248 and 256kb on 18-bit systems which map
this to the 1/0 page.

The length of the reserved memory area whose
base is defined by RMEMB. Also in 64 byte
units. If zero, no memory is reserved.

Again, the VENIX kernel must be remade after these are changed. Note that
some of these variables have two entries: one for non-split liD processors, and
one for split 1/D processors. Edit the instance appropriate to your system.

1.10 MISCELLANEA

1.10.1 Various Distributed Sources

Source code for several utilities is distributed with VENIX. Among these utili
ties are: the screen editor ice and the line printer spooler lpr. These sources
may be found in /usr/src. Other 'goodies' may be included.

1.10.2 Setting Up Screen Editors

The simple screen editor ice is set up to work on VT52 or VT100 terminals or
their equivalents. No special setup work is required to use it; see ice(l) for
usage details.

The screen editor vi, on the other hand, can work on a variety of different ter
minals. For vi, look in the file /etc/termcap for a listing of the terminals which
are supported. If your video terminal is not listed, substantial modification may

1-57

I

I ~

SETTING UP VENIXI11

be necessary. Consult your VENIX distributor. The file I etcltermcap should
be edited to remove entries for terminals not used in your installation, as
searching the entire large file will cause vi to be slo~ in starting up. See term
cap(5) for details on the file format.

The section "Setting Up .profile and .login Files" discussed the setting of the
TERM variable in the user's shell, used to tell vi and some other screen editors
what type of terminal the user is on. The example in that section showed the
TERM variable set to a single particular name. However, if users are logging in
on several different terminals, it is convenien.t to have the shell set TERM to the
correct name. This can be done with some simple shell programming in the
.profile or .login files. The trick is to have the shell first run the tty(l) com
mand to determine which line you are on, and then set TERM with the appro
priate name. To accomplish this, the following statements may be placed in the
.profile for users of the Bourne shell:

case 'tty' in
ldevlconsole)
ldevltty00)
ldevlttyOl)

esac
export TERM

TERM= vt52 ; ;
TERM=vtlOO ;;
TERM= ;;

The corresponding entry in .login for users of the C-shell is:

switch ('tty')

endsw

case I dev I console:
setenv TERM pro
breaksw

case ldevlttyOO:
setenv TERM vt100
breaksw

case ldevlttyOl:
setenv TERM .••.

1-58

SETTING UP VENIX/11

Note the grave accents around the tty command. See the Bourne and C-shell
documentation for details on these constructions.

1.10.3 Setting Up Nroff

nroff(l) formats text for different printing terminals. It knows about a number
of different printers; however, if yours is not among them, you will have to
write a new terminal descriptor table. See "NROFF Terminal Descriptor Table
Format" in the Document Processing Guide for instructions.

1.10.4 Operating Without Floating Point Hardware

If your processor does not have the floating point option, then the - f switch
on the C compiler must be used when compiling any programs that use floating
point. The -f causes the floating-point simulator to be loaded in with the pro
gram. (The system, however, will not use the FP simulator unless the hardware
is really missing.) Programs which heavily use floating point will, of course, run
slowly if using the simulator instead of the real hardware. Attempts to execute
floating-point code without the benefit of either hardware or simulator will
result in 'illegal instruction' errors.

The programs f77, pc, lint, and maze will not work if floating-point hardware is
not present.

1-59

Chapter 2

VENIX MAINTENANCE

2.1 INTRODUCTION

This document is a guide to administering a VENIX system. Topics covered
include: maintaining file systems and managing disk space; backing up user
files; and recovering and diagnosing system errors. This guide should be read in
conjunction with SETTING UP VENIX which contains useful information con
cerning the installation of a VENIX system.

Throughout this document, references are made to VENIX commands which
can be useful for system maintenance. The descriptions of these commands are
intended to suggest their most common uses, but no attempt is made to explain
all command features and options. The User Reference Manual contains a
complete write-up of all the VENIX commands. Sections in the Programmer
Reference Manual describe system calls, library functions, and file formats.
Certain system programs which are never run directly by users (such as the
clock daemon cron) are documented in SYSTEM MAINTENANCE PROCE
DURES, section 8 in the Installation and System Managers's Guide.

2.1.1 The Super User and Super Group

The system administrator should use the root login so that he has super user
capabilities. The super user can access any file without regard to permission
settings, and can signal, terminate or . suspend/resume any process, no matter
who owns it. The super user can also execute certain privileged commands,
such as cbown (change the ownership of a file). Since the super user is free
from most restrictions, he must take great care not to accidentally erase files or
damage the system.

2-1

VENIX MAINTENANCE

Users may obtain limited super capabilities by being in the 'super' group.
Members of the super group have the ability to manipulate system files and
directories (for example, to add or remove command.s from the /bin directory).
However, they have none of the special abilities the root has to access any user
file regardless of permission setting, or to kill any process. (Super group mem
bers are also given permission to do certain things useful for real-time program
ming, such as run at very high priority.)

The user and group ID's are assigned for each user in the /etc/passwd file.
SETTING UP VENIX describes how to edit this file to add new users. The
super user has user ID of zero; the super group has group ID of zero. Normal
users are given non-zero user ID's, and assigned to the default group called
'other' or placed in different groups as desired. Group names and group ID's
are found in the file /etc/group.

2.2 MAINTAINING FILE SYSTEMS

2.2.1 Creating New File Systems

A 'file system' is a collection of files on a disk partition, internally structured so
that VENIX can locate and manipulate individual files and directories. An
empty file system must first be created on a disk partition before files can be
used there. On a floppy diskette, a disk partition covers the entire physical
unit. The hard disk, on the other hand, is divided into three or more parti
tions: the system area, temporary area, and orie or more user areas.

When VENIX:· is initially transferred onto the hard disk, file systems are made
for the system, user and temporary partitions. When you wish to use a floppy
diskette as an extension of your hard disk file system, that is, to mount it on
your directory tree, you must first make a file system on the diskette. You do
not need to make a file system on diskettes which are to be used for back-up or
transfer purposes with the tar or dump commands.

2-2

VENIX MAINTENANCE

2.2.2 Making a File System

To make a file system on a disk partition, the /etc/mkfs command is used in
the following format:

/etc/mkfs name length

where name is the name of the new partition and length is its length in blocks.
(The sizes of all partitions are given in the device write-ups in section 7,
DEVICES, in this manual.) For example, to create a new file system on RL02
unit /dev/rlO.usr, type:

/etc/mkfs /dev/riO.usr 10240

Creating a new file system wipes out anything previously on the hard disk parti
tion.

To make a file system on a diskette, place the diskette in the upper disk drive
(fO on the Micro-11, or rxO for RX02 floppies on the PDP-11). Be sure that
the diskette is seated properly, and that the arrow on the diskette is aligned with
that on the drive. Close the door and type:

/etc/mkfs /dev/fO 790

for the Micro-11, or, for the PDP-11, type:

/etc/mkfs /dev/rxO 988

mkfs is the 'make a file system' command. The disk drive on the Micro-11 is
specified as /dev/fO and the length of the file system on the floppy diskette is
790 blocks. The disk drive for RX02 floppies on the PDP-11 is specified as
/dev/rxO. The length of the file system in blocks on the RX02 is 988 (single
sided) or 1976 (double-sided).

NOTE: Users of RX02 floppies on a PDP-11 system should substitute /dev/rxO
988 for /dev/fO 790 in the rest of the examples in this chapter.

mkfs erases all files (if any) on the diskette, and makes a' file system. For this
reason, you must be careful not to accidentally create a file system on a diskette
containing valuable files.

2-3

l

VENIX MAINTENANCE

If you wish to check for bad blocks on the diskette, use the - b flag, e.g.

I etc/ mkfs - b I dev I fO 790

This will take a few minutes to run.

To make a file system on more diskettes, remove the diskette in drive 0, insert a
new diskette, and re-type the mkfs command.

2.2.3 Mounting and Umounting

The mount command attaches a file system to a directory on the hard disk. As
described in SETTING UP VENIX, file systems in the user partition of the
hard disk are mounted automatically by the command file /etc/rc when VENIX
is brought into multi-user mode. Likewise, they are automatically umounted
(unmounted) when the system is brought back into single-user mode. It is
entirely permissible to mount and umount file systems at any time that they are
not in use. It is important to run fsck · on the given file system to ensure its
integrity and repair possible damage before mounting is done. Use of fsck is
described later.

For example, the commands:

fsck /dev/rll.usr
mount /dev/rll.usr /uO

will first check partition /dev/rll.usr, and then mount it on directory /uO.

The command:

umount /dev/rll.usr

will unmount the system. It is crucial that the file system(s) on a disk are
unmounted before the disk is physically unloaded. If this is not done, the file
system will become corrupted.

2-4

VENIX MAINTENANCE

If file systems are located on a floppy diskette, they must also be 'manually'
mounted and umounted. Files systems on floppy diskettes are logically
attached to the directory hierarchy by mounting them on an empty directory on
the hard disk. Once this is done, the previously empty directory now accesses
the root of the new file system; any files on that system now appear in that
directory.

A file system must be created on the diskette before it is mounted. If a diskette
already contains a file system, then go ahead with the mount command. If you
are using a blank diskette, make a file system first, using the mkfs command.
Before mounting, run an fsck to ensure that the file system is O.K. For exam
ple, the commands (substitute ldevlrxO for ldevlfO if you are using a PDP-11,
instead of a Micro-11 system):

fsck I dev I fO
mount I dev lfO lfO

will first check the file system on the floppy diskette (known as ldevlfO or
ldevlrxO), and then mount that file system in a directory (/fO or lrxO) in the
system area of the hard disk.

Once the file system is mounted on the hard disk, you can use any normal
VENIX commands. Any of the file systems on the diskette are now a part of
the regular system and user areas on the hard disk. You will find that the copy
commands will enable you to copy files from the hard disk to the floppy disk
ette.

The command

umount ldev/fO

will unmount the system. Again, it is crucial that the file system(s) on a disk
are umounted before the disk is physically unloaded!

If you remove a diskette without umounting it, you may have to reboot the sys
tem, which will run an fsck automatically to clean up the file system. When
you attempt to re-mount the floppy diskette, first run an fsck before mounting.

2-5

~-

VENIX MAINTENANCE

Type:

fsck I dev I fO

Then use the mount command.

It is impossible to mount a file system if the given directory is in use (or is
someone's current directory). It is also impossible to umount a file system if
that system is in use. Type cd I to return to the root directory and then
umount.

Mounting file systems is not considered a ''privileged' activity; any user may
mount or unmount file systems so long as the given systems or directory are not
in use.

Typing:

mount

alone will give you a list of currently mounted file systems. The mount listing
-is helpful if you are not sure if you've successfully umounted the diskette.
This list may occasionally disagree with reality or contain duplicate entries.
This can happen after a crash or if file systems mounted while in single-user
mode are not unmounted before going into multi-user mode. The list can be
corrected by going into singl~-user mode, unmounting all file systems, and going
again to multi-user mode.

If ~ disk pack is physically write-protected, or should not be written on, then it
can be mounted 'read-only' by giving- the - r flag after the directory name, as
in:

mount ldevlrll.usr luO -r

If a diskette is physically write-protected, or should not be written on, then it
can be mounted 'read-only' with:

mount /devlfO lfO -r

VENIX will prevent writing on any file or directory in file systems mounted this
way. If a diskette is physically write-protected and mounted without the - r
flag, errors messages will result even if you do not explicitly write on the

2-6

VENIX MAINTENANCE

diskette. This is because VENIX always tries to update the 'last-examined' date
on files when they are read. The solution in this case is to simply umount the
diskette and re-mount it 'read-only.'

2.2.4 Using fsck

fsck checks the file system on each partition of the hard disk, or a floppy disk
ette. An fsck of the system and users areas on the hard disks is done automati
cally. The disk partitions are listed in tht! file /etc/checklist.

You can run fsck on individual file systems by specifying the name of the parti
tion as an argument, such as:

fsck /dev/rriO.usr

To check the file system on the floppy diskette, run the fsck command, specify
ing the device name for the floppy diskette:

fsck /dev/fO

fsck checks all the blocks on the partitions, and lets the user know if any blocks
are bad. fsck . is talkative; it displays what is happening in some detail on the
screen. After the fsck is run, you will see the output:

/dev/rwO.sys (system area)

Phase 1- Check Blocks
Phase 2- Not needed
Phase 3- Check Pathnames
Phase 4- Check Reference Counts
Phase 5 - Check Free List

/dev/rwO.usr (user area)

Phase 1- Check Blocks
Phase 2- Not needed
Phase 3- Check Pathnames
Phase 4- Check Reference Counts
Phase 5 - Check Free List

2-7

VENIX MAINTENANCE

If fsck does find inconsistencies in a file system, it ':Vill usually ask you if you
wish to fix things up. In general you can just type 'y' (yes); however, you
should be aware that fsck may clean up the file system by removing all inconsis
tent files.

The 'adjusted link counts' and 'unreferenced files' found by fsck can be fixed
with little danger of file loss, unless the directories leading to the file are dam
aged. The most frequent error is a 'bad free list' which can always safely be
fixed. If any fixing is done, it is a good idea to run fsck a second time since in
some cases not all errors will be fixed in just one run.

Sometimes damaged file systems will result in error messages calling some files
'BAD' (i.e., files with impossible block locations) and others 'DUP's (files con
taining blocks also found in other files). In Phase 3, always answer 'yes' if
asked to remove a file previously marked BAD. If a file has just been reported
to have DUP's previously, you might wish to avoid removing it immediately,
since some of these duplicates may be cleared up when the BAD block files are
deleted. A second fsck can then be run to see which files still contain dupli
cated blocks.

If you are running fsck and errors are reported, you have the option to copy
important files before fsck cleans up the file system. When fsck asks for per
mission to clean up a specific file, you may type 'n' (no). Temporarily mount
the file system 'read only' on the hard disk, e.g.:

mount /dev/fO /fO -r

and copy the file to another file system. Then umount the file system, and run
fsck again on the diskette in the floppy drive.

If fsck reports errors and you give permission for fixing, you should immedi
ately reboot the computer after fsck finishes.

Inconsistencies in file systems are rare, and are usually due to power failures or
other sudden crashes which result in a halt of the computer without giving
VENIX time to flush its internal I/0 buffers. If you find that fsck frequently
turns up problems with your hard disk or floppy diskette, then something may
be seriously wrong with your disk hardware or device driver.

2-8

VENIX MAINTENANCE

2.3 BACKING UP FILES

. Files on a hard disk can be backed up by three methods:

• mounting a diskette and copying the files

• using the tar (tape archive) command

• using the dump command

Both tar and dump write out information in their own particular formats, which
are totally separate from the VENIX file system format. Diskettes written out
by either program are not initialized with /etc/mkfs (make a file system).
mounted diskettes must have a file system.

If you mount and copy files to the floppy diskette, any previous iterations of a
file are overwritten, and only your most recent version is saved. This saves
space on the diskette. One disadvantage is that mounting and copying is a
lengthy process if you need to back up a number of files.

For most purposes, tar is the best method for backing up files. dump is pro
vided only for compatibility with older versions of VENIX; its use is not recom
mended. tar provides all the functionality of dump, and considerably more
flexibility, so we will not explain use of dump here. Interested users can exam
ine the command write-up in the User Reference Manual.

2.3.1 Backing Up User Files

The most common way to lose user files is through accidental deletion by mis
taken use of wildcard file names. Hardware failures can also wreak havoc with
a file system. Since VENIX uses a tree-structured file system, it can be sensitive
to bad blocks in key areas, so frequent backup is recommended.

The program tar can be used to backup user files. tar is the usual format for
transferring files between UNIX, VENIX, and other UNIX-derived systems.

tar can be used with several options called up with flags. The flags are clus
tered together on the command line following 'tar'. Next, any arguments to

2-9

VENIX MAINTENANCE

these flags are listed in the order that the flags appear and separa~ by a space.
The last item(s) appearing on the command line is the name(s) of the file or
directory to be saved.

The c flag will clear the medium and store files on it. (The c is a mnemonic for
'create'.) Because the default device for tar is magnetic tape unit 1, the com
mand:

tar c .

will initialize a new tape on unit 1 and save everything under the current direc
tory (.). tar recursively descends subdirectories, so all directories and files
beneath the given directory are found. So, to save everything on the system
from root (/) down, on magtape unit 0, type:

tar cO I

tar can be used on devices other than magtape. The f key is used to specify an
alternative device. For instance, on the Micro-11, to store the directories 'cairo'
and 'alexandria' on a diskette in the upper drive (/dev/fO), type:

tar cf I dev I fO cairo alexandria

If you already have files on the diskette, use the r (restor) flag append_new files
to the diskette. To add the file 'sphinx' in the directory 'cairo' to a floppy
diskette in the lower drive (/dev/fl), type:

tar rf /dev/fl cairo/sphinx

If you use the 'r' key, the diskette must already have been initialized with tar c.

Normally, tar does its work silently. The v (verbose) flag causes it to type the
name of each file it treats preceded by the function letter. To verbosely add
another directory pyramids to the end of the last file on the floppy on /dev/fl,
type:

tar rvf /dev/fl pyramids

2-10

VENIX MAINTENANCE

•
Before running tar, the du(1) command can be used to determine the number of
blocks beneath a given directory. (In calculating the number of blocks, be
aware that tar uses one header block for each file saved.) If you expect the
number of blocks being tarred to exceed the length of the medium, use the s
flag on the command line followed by the number of blocks on the medium. A
Micro-11 floppy contains 790 blocks. A single-sided RX02 contains 988 blocks
while the double-sided contains 1976 blocks. Single density magtape contains 11
blocks per foot. Double density tape contains 22 blocks/foot. The figures for
magnetic tape are larger when using raw tape and a large blocking factor .

• To verbosely back up your system on 2400' single density magtape on unit 0,
type:

tar cvsO 26400

tar with the d (date) flag allows backup of only those files modified after a
specified number of days before the current date. To initialize an RX02 floppy
in drive 1 holding only those files in cairo modified inthe last seven days, type:

tar cdfs 7 /dev/rx1 988 cairo

Note how the s key is used here to tell tar the length of the RX02 diskette, so
that it will prompt for and use additional diskettes if the first one becomes
filled.

To simply view the files on the same floppy, type:

tar tvf I dev /rx1

To ·extract all files from the floppy:

tar xvf /dev/rx1

To verbosely extract a specific file in a directory, for example, file 'pyramids' in
the directory 'cairo', . from a tape in. unit 1, type:

tar xv1 cairo/pyramids

2-11

I

VENIX MAINTENANCE

tar always restores files using the same pathnames given when the files were
saved. This means that full pathnames (that is, names beginning with a '/')
should be avoided. For example, suppose that user . Dennis has a home direc
tory

I usr I dennis

and a directory beneath that:

I usr I dennis/letters

If directory letters is saved using the command

tar c /usr/dennis/letters

a subsequent extraction, with

tar x

will always bring back the old files to /usr/dennis/letters, overwriting any files
·- of the same name in that directory. For this reason, it is desirable to save files

according to a 'relative' name. For example, from Dennis' home directory
(which is /usr/dennis):

cd (change directory to /usr/dennis)
tar c letters

Now the command

tar x

will extract the saved files into whatever directory Dennis is in when he issues
the command. So to restore the saved files to a temporary directory, the fol
lowing commands could be used:

cd
mkdir temp
cd temp
tar x

2-12

VENIX MAINTENANCE

Now the extracted files are placed in

/usr I dennis/temp/letters

while the directory

I usr I dennis/letters

is untouched. Of course, if Dennis really wishes to extract his files into the
directory /usr/dennis/letters, and overwrite any copies of the same files on disk,
he can always use the commands

cd
tar x

and this will happen.

2.3.2 Backing Up the System

SETTING UP VENIX describes the mechanism for duplicating your VENIX
system on floppies or magnetic tape. If you haven't yet done this, do it now!

2.4 USEFUL COMMANDS AND FILES

2.4.1 Message of the Day

The message (if any) in the file /etc/motd (message of the day) is given when
ever a user logs in. This is a convenient mechanism for sending users general
notices (e.g. 'disk space low - clean up your files!').

2.4.2 The /etc/wall Command

The system administrator can communicate to all users through /etc/wall (write
to all) which acts like write(!), but sends the message to every user logged in.

2-13

VENIX MAINTENANCE

2.4.3 The ps Command

The ps(l) command will give a list of all processes running on the system, as
well as their process ID's, current state (running, waiting, swapped, etc.) and
CPU consumption.

2.4.4 The kill Command

The kill command can be used to stop a process. Each process has an ID num
ber (pid), which you will see listed when you run the ps command. For exam
ple, the command:

kill 1197

will send a 'terminate' signal to the process with ID number '1197'. This is
enough to finish most processes. To be sure, the command:

kill - 9 process ID

will always terminate the process.

If you don't remember the process ID number, or don't want to take time to
get a display status (perhaps your printer is going haywire), you can type:

kill 0

This will terminate all processes, including those which are running in the back
ground.

2.4.5 The suspend and resume Comma.nds

The suspend(l) command will suspend a process with given ID; the process will
remain frozen until it is resumed. Any user can suspend or resume his or her
own processes; the ~uper-user can do it to any process.

2.4.6 The chmod Command

chmod can be used to change the access permissions on files. The command:

chmod 660 filel file2

changes the permission setting on file] and file2 to the octal value '660'. The

2-14

VENIX MAINTENANCE

three digits '660' represent the values for the user, group, and other permission,
with each digit encoding the read/write/ execute permission.

4 2 1
read write execute

USER

4 2 1
read write execute

GROUP

4 2 1
read write execute

OTHER

The value '660', then, corresponds to read/write permission for user and group,
and no permission for others. When a long list of the file is done (I command),
the permission setting will be seen as:

rw-rw---

It is also possible to indicate the modes symbolically. For example, the com
mand

chmod o + r filet

adds to category other (o) the permission to read (r).

2.4. 7 The chown and chgrp Commands

The super user can change user and group file ownerships. chown is used to
change the ownership of a file. For example, the command:

chown max file.a

sets the ownership of file.a to user max.

The chgrp command changes the group ownership of a file. The command:

chgrp biolab file.a

changes the group ownership of file.a to group biolab.

The I command will list information on any file, including user and group own
ership. For example, if you type:

I file.a

2-15

VENIX MAINTENANCE

VENIX will print the access perrrusswn settings, and then the user ownership
(plus other information about the file):

-rw-rw-r-- 1 max 4639 Aug 1 13:24 file.a

- g file.a will do the same, but the group ownership of the file will be listed:

-rw-rw-r-- 1 biolab 4639 Aug 1 13:24 file.a

User and group ownerships are specified in the /etc/passwd file along with the
user name and directory. Group ID's and names are listed in the /etc/group
file.

2.4.8 The find Command

find is a versatile command that can be used to locate files, beneath a directory,
that match any of a variety of conditions. For example:

find /usr -size + 100 -a time + 30 -print

will list all files under directory /usr which are greater than 100 blocks in size
and have not been accessed in thirty days.

2.4.9 Clock Daemon

When VENIX comes up, the clock daemon cron may be started up by a com
mand in /etc/rc. As distributed, however; the cron command is commented
out. The comment colon needs to be removed to enable cron to work.

cron sleeps in the background, and wakes up periodically to examine the file
/usr/lib/crontab which contains a list of commands and when to execute them.
(The frequency at which cron checks the file is given by the first command
argument, and is usually once every 10 minutes)

crontab normally contains a reference to run the command /usr/lib/atrun every
half hour, which in turn executes commands that users have scheduled through
at(l). The frequency of atrun's execution can be adjusted here. Also, addi
tional lines can be added to crontab to regularly run more commands at certain
hours, days of the week or month. (Commands which need only be run once

2-16

VENIX MAINTENANCE

can be scheduled with at; commands which must be run regularly should be run
directly from crontab.) See cron in SYSTEM MAINTENANCE PROCE
DURES, section 8 in this manual.

cron is really very helpful. For an example of how cron functions 'behind the
scenes', the following line could be placed in /usr/lib/crontab to invoke find at
4am every morning to remove all files whose names being with 'junk' that have
not been accessed in thirty days:

0 4 * * * find /usr -name "junk*" - atime + 30 -exec rm { } \;

2.5 SYSTEM ACCOUNTING

2.5.1 Disk Space

Within each file system, VENIX itself cannot restrict the number of disk blocks
available to any particular user: any user may extends his or her directories and
create new and larger files until the total amount of space available in that file
system is reached. When there is no room left on a file system, programs will
complain of I/0 errors and an 'Out of space' message will appear on the con
sole terminal. This will continue until someone removes some files, or until the
system administrator removes some.

Listed below are several utilities which are useful for managing disk space.
Some of these commands, such as df, are applied to entire disk partitions by
their '/dev' name. Others, such as du, are applied to named directories. All of
these are described in section one of the User Reference Manual along with
additional options.

2.5.2 The df Command

df(l) ('disk free') determines the amount of free blocks on the system or user
partition. For example:

df /dev/rlO.usr

2-17

VENIX MAINTENANCE

or, for winchester users:

df /dev/wO.usr

will give a free block count on the user area.

2.5.3 The quot Command

The quot(l) command lists the number of blocks per user on the system or user
area.

quot /dev/riO.usr

will give such a list of blocks for each user. (Substitute /dev/wO.usr on com
mand line if using a Micro-11.)

2.5.4 The du Command

du(l) ('disk usage') determines the number of blocks used under a particular
directory, and can give totals for each sub-directory.

du /usr/letters/auntie

lists the number of blocks used by all files and totals for all subdirectories under
I usr /letters/ auntie.

2.5.5 The ncheck Command

ncheck(1) lists all files and directories on the hard disk or a floppy diskette.
This is helpful when you wish to see all the directories listed. (The I command
lists only the contents of a directory.) For example:

ncheck I dev /riO.sys

checks the system area; on a winchester,

ncheck I dev /rlO.sys

checks the system area.

To check an RX02 floppy diskette:

ncheck /dev/rxO

2-18

To check a Micro-11 floppy:

ncheck /dev/fO

2.6 LOGIN TIME

2.6.1 The ac Commaqd

VENIX MAINTENANCE

The ac(l) utility can be used to list the amount of terminal time taken by each
user, as collected in the /usr/adm/wtmp file. The command

ac -p

will print totals for each user; see ac(1) for other options.

Accounting will only be done if the /usr/adm/wtmp file exists, so the system
administrator should create an empty wtmp if accounting of this type is desired.
This can be done with the command

cp /dev/null /usr/adm/wtmp

Once this file is created, it will grow ad infinitum, so relevant information
should periodically be collected with ac and the file cleared.

2.6.2 The who Command

The who(l) command with no arguments will give a list of all users currently
logged in, and the time they logged in. The command

who /usr/adm/wtmp

will give the precise times each user logged in and out over the history of the
wtmp file.

2-19

VENIX MAINTENANCE

2. 7 SYSTEM FILES AND DIRECTORIES
The following is a quick overview of the system directories and files:

I
/dev/

/bin/

/lib/

/etc/

root

console
rl*
rm*
rp*
rx*
rrl*
tty??
wO.*

arl*

as
cc

libc.a
libm.a
libplot.a
c[012]

passwd
group
motd
mtab
dtab
ttys
getty
init
rc
cron

device nodes
main console

raw disks
terminals

winchester

asynchronous raw disks

utility programs, cf /usr/bin (1)
assembler
C compiler executive, cf /usr /lib/ cO

object libraries and other stuff, cf /usr/lib
system calls, standard 1/0, etc. (2,3,3S)
math routines (3M)
plotting routines, plot(3)
pass of cc(l)

essential data and dangerous maintenance utilities
password file (4)
group file (4)
message of the day, login (I)
mounted file table, mtab(4)
dump history, dump(l)
properties of terminals, ttys(4)
part of login, getty(8)
the father of all- processes, init(8)
shell program to bring system up
the clock daemon, cron(8)

2-20

/tmp/

/usr/
demo/
guest/
adm/
bin/
diet/
games/

temporary files, cf /usr/tmp
used by ed(1)
used by cc(1)

VENIX MAINTENANCE

mounted user file system, general purpose directory
demonstration
guest login directory
administrative information
utility programs
hash tables, etc. for spell
games

include/ standard #include files

lib/

lu?l

/venix

I etc/. profile
/.profile

a.out.h object file layout, a.out(4)
stdio.h standard I/0, stdio(3)
math.h (3~)

sys/

at run
struct/
tmac/
suftab

system-defined layouts

object libraries to keep /lib/ small
scheduler for at(l)
passes of struct(1)
macros for nroff(l)
table of suffixes for nroff(l)

other mounted user file systems

bootable image of the kernel

login profile for root
boot profile

The dtree(l) command can be used to generate a complete list of system names.

2-21

VENIX MAINTENANCE

2.7.1 File Modes

Most system commands and other files are given read/ execute permission to ev
eryone, and write permission to the root only. Certain commands which need
to be accessible by users, but also do privileged things, are given the "set UID"
mode. When these commands are executed by users, the effective ID is made
"root" so that privileged things can be done. At the time of this writing the
following files were set-UID:

/bin/ps
/bin/mount
/bin/login
/bin/rmail
/bin/mail
/usr /lib/uucp/uucico

/bin/mkdir
/bin/umount
/bin/mv
/bin/newgrp
/bin/passwd
/usr /lib/uucp/uuxqt

/bin/su
/bin/rmdir
/bin/at
/bin/lpstop
/usr/lib/atrun

These programs will not run correctly without set-UID mode. If these files'
permissions are listed (with Is or I), an s will be shown in place of the "user" x
bit. The command

chmod u + s file

will make file a set-UID program;

chmod u - s file

will turn off set-UID action.

Commonly used programs have another special mode bit, called the "sticky"
bit. "Sticky" programs are saved permanently ("stick around") in the swap
area upon their first use (after the system is booted). They can subsequently be
run slightly faster than normal, since they can be quickly found in the swap
area. At time of writing, the following commands were among those made
"sticky":

/bin/sh
/bin/ps

/bin/1
/bin/Is

/bin/vi
/bin/ice

/lib/cO
/lib/cl

If these files' permissions are listed, a t will be shown in place of the "others" x
bit.

2-22

VENIX MAINTENANCE

The sticky bit is only in effect if the programs are pure (type 410), so that the
code segment can be shared by multiple users. This corresponds to the - n flag
of cc(l) or ld(l). (Even if the sticky bit is not set, programs of this type will
have their code segment shared automatically if they are executed simultaneously
by two or more users.)

One special rule about "sticky" commands: after they are run once, they should
never be removed or replaced, or the file system will become slightly corrupted.
If you need to remove/replace such a file, you should rename the file to some
thing else (e.g. "file.old") and remove it after the system is next rebooted.

2. 7.2 File Links

Certain system files are linked more than once; that is, there is more than one
name corresponding to those files. For example, the I and Is files are linked
together; the actual_ program checks the second letter of its name (present in
argv[O]) to determine whether it was called "Is" or "1", and acts appropriately.
The user can create his or her own links with the ln(l) command. The link
must be within a mounted file system.

The following files were linked together at the time of this writing:
/bin/1 linked with /bin/Is
/bin/mount
/bin/umount
/bin/mail

/etc/mount
I etc/umount
/bin/rmail

2.8 SYSTEM ERRORS AND CRASHES

There are two types of console error messages. Recoverable console messages
indicate some difficulty which the administrator should be aware of, but do not
result in a system-wide stoppage. Messages beginning with "PANIC: ... " indi
cate unrecoverable system errors, and result in the system coming to an abrupt
halt. (Time is taken to flush the system buffers, however, so the integrity of
the file system is usually maintained.)

When restarting after a crash, bring the system up single-user and perform an
fcheck(l) on all file systems which could have been in use at the time of the
crash (see the section on fcheck earlier in this document). If there are any

2-23

VENIX MAINTENANCE

problems, they should be repaired. When you are satisfied with the health of
your disks, set the date and come up multi-user as usual by typing CTRL-D.

To even boot VENIX at all, three files (and the directories leading to them)
must be intact. First, the initialization program /etc/init (see init in appendix
A) must be present and executable. If it is not, the CPU will loop in user mode
at location 6. For init to work correctly, /dev/console and /bin/sh must be
present. If either does not exist, the system begins thrashing: init will go into a
fork/exec loop trying to create a Shell with proper standard input and output.

If you cannot get the system to boot, you will have to use a backup copy to run
on. The damaged system may then be repaired with fcheck as described earlier.
If serious surgery is required on the root file system, it is prudent to simply dis
card it and return to the most recent backup system available, since files may
have been insidiously corrupted. If necessary, you can try to salvage any
important files modified since the last backup was made.

2.8.1 Recoverable Errors

There are a number of situations which will cause these kind of messages to
appear on the console terminal. In the following messages, expressions of the
form "on dev A/B" indicate that the error occurred on the device with major
and minor numbers A and B, respectively. You can find out the name of this
device by using the major number as an index into the block or character table
in the /usr/sys/conf/c.i file (it is usually clear whether the error was due to the
block or character device with the given number). The minor number can be
discovered from looking at the driver write-up in section 4 of the VENIX Refer
ence Manual. A long listing of the I dev directory, as in

I /dev

will also provide the major and minor numbers corresponding to each entry.

2-24

VENIX MAINTENANCE

The following is a list of recoverable system error messages.

Error on · dev A/B
This is the most common ·kind of· error message and is produced by a
device driver. Typical causes of this message are an attempt to read a
disk or tape which is not loaded or is off-line, or an attempt to write on
a protected disk or tape. This message is followed by a line of the
form ·

bn X er Y Z

X is the block number where the error occurred; Y and Z are device
register values, typically the error and control/status registers. See the
DIAGNOSTICS section of the device driver write-up in section 7 (or
check the device driver source for occurrences of the deverror() call) to
see which device register values are being printed. The "bn" message
prints out the block number and two register values in the order passed
to this function. Once you have determined which device register is
being printed, you can . check your hardware manual to see what the
various bits mean.

No space on dev A/B
All blocks are used up on the device with major /minor numbers A and
B. See section on disk space.

Bad block on dev A/B
A block was found with number placing it outside the bounds of the
file system. Run fcheck to delete the file with the bad block and fix up
the file system.

No inodes on dev A/B
All the inode pointers for the file system on the device with
major/minor numbers A and B have been used up. This should only
occur if you have many small files on a file system. When a file system
is made, the /etc/mkfs command automatically allocates enough inodes
to handle most disk requirements. If this is insufficient, you can clear
away all files and make a new file system. I etc/mkfs allows the user to
specify a "prototype" file system giving the number of inodes to be
allocated.

2-25

VENIX MAINTENANCE

Bad count on dev A/B
An invalid freelist count or invalid inode count was found on the super
block of the device with major /minor numbers A and B. At this point,
all the counts are zeroed which will almost certainly lead to a "No
space" diagnostic. Use fcheck(l) to repair the bad file system.

No swap
A program or shared segment needs to be swapped out, and there is no
swap space left on disk. If this error occurs regularly, the swap area
should be increased: see "Setting Up_ VENIX".

No shared
A shared text (pure procedure) program is being executed or shared data
segment created, and the table for such things is full. The maximum
number of shared segments is set by the NSEG parameter in param.h
file; see HSetting Up VENIX''.

In odes . full
The in-core inode table is full, causing an open() call to fail. The max
imum number of in-core inodes is set by the NINODE parameter in the
param.h file; see "Setting Up VENIX" for adjusting this parameter.

Tout ovflw
The in-core timeout table (used by fast alarms, etc.) is full and a time
out call has been lost. The maximum number of timeouts is set by the
NCALL parameter in the param.h. See "Setting of VENIX" for
adjusting this parameter.

No files
The in-core file table (one for each open file on the system) is full,
causing an open() call to fail. The maximum numbe't of files is set by
the NFILE parameter in the param.h file; see "Setting of VENIX" for
adjusting this parameter.

Interrupt at X
An unexpected interrupt has occurred through interrupt vector X (octal)
modulo 0100. Only the low 6 address bits are significant. Either the l.s
table is set up incorrectly or the hardware has generated a bogus inter
rupt.

2-26

VENIX MAINTENANCE

2.8.2 Unrecoverable Errors (Panics)

The following messages will appear after the word "PANIC", and are followed
by a total system hang-up. Most of these messages will not be useful to most
users since many of these problems can only be fixed by modifying the system
libraries or tables, which requires a VENIX system configuration kit.

Bdev The getblk routine was called with a nonexistent major device as an
argument. Check the "rootdev," "swapdev," and "pipedev" assign
ments in the config file (see usetting Up VENIX'').

Dtab Null device table entry for the major device used as an argument to
getblk.

Iinit An 1/0 error reading the super-block for the root file system during
initialization. Check the "rootdev," "swapdev," and "pipedev" assign
ments in the config file (see usetting Up VENIX").

No fs A device has disappeared from the mounted-device table. (Due only to
hardware or software bug.)

Swap error
An unrecoverable 1/0 error during a swap. Really shouldn't be a
panic, but it's hard to ·fix.

Unlink The directory containing a file being deleted can't be found.

Trap An unexpected trap has occurred within the system. This is accompa
nied by two numbers: a 'pc' which was the value (in octal) of the.· pro
gram counter when the trap took place; and a 'trap type' which encodes
which trap occurred. The trap types are:

0 bus error
1 illegal instruction
2 BPT/trace
3 lOT
4 power fail
5 EMT
6 recursive system call (TRAP instruction)
7 programmed interrupt
8 floating point trap
9 segmentation violation

10 cache parity error

2-27

VENIX MAINTENANCE

In some of these cases it is possible for 16 to be added into the trap type; this
indicates that the processor was in user mode when the trap occurred. On non
split liD kernels, a symbol table listing of the kernel can be obtained with the
command ·

nm - ng /venix

Users with VENIX configuration kits can use this table to locate the routine in
which the trap occurred.

2-28

Chapter 3
UUCP IMPLEMENTATION DESCRIPTION

3.1 INTRODUCTION

Uucp is a series of programs designed to permit communication among UNIX
and VENIX systems using either dial-up .or hardwired communication lines. It is
used for file transfers and remote command execution. This paper· describes the
second implementation of the system.

Uucp is a batch type operation. Files are created in a spool directory for
processing by uucp daemons. There are three types of files used for the execution
of work. Data files contain data for transfer to remote systems. Work files
contain directions for file transfers among systems. Execution files are directions
for UNIX command executions which involve the resources of one or more
systems.

The uucp system consists of four primary and two secondary programs. The
primary programs are:

uucp This program creates work and gathers data files in the spool
directory for the transmission of files.

uux This program creates work files, execute files and gathers data files
for the remote execution of UNIX commands.

uucico This program executes the work files for data transmission.

uuxqt This program executes the execution files for UNIX command
execution.

3-1

UUCP

The secondary programs are:

uulog This program updates the log file with new entries and reports on
the status of uucp requests.

uuclean This program removes old files from the spool directory.

The remainder of this chapter describes the operation of each program, the
installation of the system, the security aspects of the system, the files required for
execution, and the administration of the system.

3.2 UUCP - UNIX TO UNIX FILE COPY

The uucp command is the user's primary interface with the system. The uucp
command was designed to look like cp to the user. The syntax is:

uucp [option] . . . source . . . destination

where the source and destination may contain the prefix system-name! which
indicates the system on which the· file or files reside or where they will be copied.

The options interpreted by uucp are:

- d Make directories when necessary for copying the file.

- c Don't copy source files to the spool directory, but use the
specified source when the actual transfer takes place.

- g/etter Put letter in as the grade in the name of the work file. (This can
be used to change the order of work for a particular machine.)

- m Send mail on completion of the work.

...,..r

-sdir

The following options are used primarily for debugging:

Queue the job but do not start the uucico program .

Use directory dir for the spool directory.

- xnum Num is the level of debugging output desired.
The destination may be a directory name, in which case the file name is taken
from the last part of the source's name. The source's name may contain special
shell characters such as ''? * [] ''. If a. source argument has a system-name! prefix
for a remote system, the file name expansion will be done on the remote system.

3-2

UUCP

where the command-string is made up of one or more arguments. All special
shell characters such as '' < > I "'' must be quoted either by quoting the entire
command-string or quoting the character as a separate argument. Within the
command-string, the command and file names may contain a system-name!
prefix. All arguments which do not contain an "!" will not be treated as files.
(They will not be copied to the execution machine.) The "-" is used to indicate
that the standard input for command-string should be inherited from the standard
input of the uux command. The options, essentially for debugging, are:

- r Don't start uucico or uuxqt after queuing the job;

- xnum Num is the level of debugging output desired.

The command:

pr abc I uux - usg!lpr

will set up the output of "pr abc" as standard input to an "lpr" command to be
executed on system "usg".

uux generates an execute file which contains the names of the files required for
execution (including standard input), the user's login name, the destination of the
standard output, and the command to be executed. This file is either put in the
spool directory for local execution or sent to the remote system using a generated
send command (type 3 above).

For required files which are not on the execution machine, uux will generate
receive command files (type 2 above). These command-files will be put on the
execution machine and executed by the uucico program. (This will work only if
the local system has permission to put files in the remote spool directory as
controlled by the remote USERFILE.)

The execute file will be processed by the uuxqt program on the execution
machine. It is made up of several lines, each of which contains an identification
character and one or more arguments. The order of the lines in the file is not
relevant and some of the lines may not be present. Each line is described below:

3.3.1 User Line

U user system

where the user and system are the requester's login name and system.

3-5

UUCP

3.3.2 Required File Line

F file-name real-name

where the file-name is the generated name of· a file for the execute machine and
real-name is the last part of the actual file name (contains no path information).
Zero or more of these lines may be present in the execute file. The uuxqt
program will check for the existence of all required files before the command is
executed.

3.3.3 Standard Input Line

I file-name

The standard input is either specified by a '' < '' in the command-string or
inherited from the standard input of the uux command if the '' '' option is
used. If a standard input is not specified, /dev/null is used.

3.3.4 Standard Output Line

0 file-name system-name· -

The standard output is specified by a ">" within the command-string. If a
standard output is not specified, /dev/null is used. (Note: the use of "> >" is
not implemented.)

3.3.5 Command Line

C command [arguments] ...

The arguments ·are those specified in the command-string. The standard input
and standard output will not appear on this line. All required files will be moved
to the execution directory (a subdirectory of the spool directory) and the UNIX
command is executed using the Shell. In addition, a shell "PATH~' statement is
prepended to the command line as specified in the uuxqt program.

After execution, the standard output is copied or set up to be sent to the proper
place.

3-6

3.4 UUCICO- COPY IN, COPY OUT

The uucico program will perform the following major functions:

- Scan the spool directory for work.

- Place a call to a remote system.

- Negotiate a line protocol to be used.

- Execute all requests from both systems.

- Log work requests and work completions.

Uucico may be started in several ways:

a) by a system daemon,

b) by one of the uucp, uux, uuxqt or uucico programs,

c) directly by the user (this is usually for testing),

UUCP

d) by a remote system. (The uucico program should be specified as the
"shell" field in the /etc/passwd file for the uucp logins.)

When started by method a, b or c, the program is considered to be in MASTER
mode. In this mode, a connection will be made to a remote system. If started by
a remote system (method d), the program is considered to be in SLAVE mode.

The MASTER mode will operate in one of two ways. If no system name is
specified (- s option not . specified) the program will scan the spool directory for
systems to call. If a system name is specified, that system will be called, and
work will only be done for that system.

The uucico program is generally started by another program. There are several
options used for execution:

-rl

-ssys

Start the program in MASTER mode. This is used when uucico
is started by a program or "cron" shell.

Do work only for system sys. If - s is specified, a call to the
specified system will be made even if there is no work for system
sys in the spool directory. This is useful for polling systems
which do not have the hardware to initiate a connection.

The following options are used primarily for debugging:

3-7

l.

UUCP

- ddir Use directory dir for the spool directory.

- xnum Num is the level of debugging output desired.

The next part of this section will describe the major steps within the uucico
program.

3.4.1 Scan For Work

The names of the work related files in the spool directory have format:

type . system-name grade number

where:

Type is an upper case letter, (C = copy command file, D = data file,
X= execute file);

System-name is the remote system;

Grade is a character;

Number is a four digit, padded sequence number.

The file

C.res45n0031

would be a work file for a file transfer between the local machine and the "res45"
machine.

The scan for work is done by looking through the spool directory for work files
(files with prefix "C."). A list is made of all systems to be called. Uucico will
then call each system and process all work files.

3.4.2 Call Remote System

The call is made using information from several files which reside in the uucp
program directory. At the start of the call process, a lock is set to forbid
multiple conversations between the same two systems.

The system name is found in the L.sys file. The information contained for each
system is:

[1] system name,

3-8

[2] times to call the system (days-of-week and times-of-day),

[3] device or device type to be used for call,

[4] line speed,

UUCP

[5] phone number if field [3] is ACU or the device name (same as field
[3]) if not ACU,

[6] login information (multiple fields),

The time field is checked against the present time to see if the call should be
made.

The phone number may contain abbreviations (e.g. mh, py, boston) which get
translated into dial sequences using the L-dialcodes file.

The L-devices file is scanned using fields [3) and [4) from the L.sys file to find an
available device for the call. The program will try all devices which satisfy [3)
and [4] until the call is made, or no more devices can be tried. If a device is
successfully opened, a lock file is created so that another copy of uucico will not
try to use it. If the call is complete, the login information (field [6) of L.sys) is
used to login.

The conversation between the two uucico programs begins with a handshake
started by the called, SLAVE system. The SLAVE sends a message to let the
MASTER know it is ready to receive the system identification and conversation
sequence number. The response from the MASTER is verified by the. SLA VE
and if acceptable, protocol selection begins. The SLAVE can also reply with a
"call-back required" message in which case, the current conversation is
terminated.

3.4.3 Line Protocol Selection

The remote system sends a message

Pproto-list

representing a line protocol.

The calling program checks the proto-list for a letter corresponding to an
available line protocol and returns a use-protocol message. The use-protocol
message is

Ucode

3-9

UUCP

where code is either a one character protocol letter or N which means there is no
common protocol.

3.4.4 Work Processing

The initial roles· (MASTER or SLAVE) for the. work processing are the mode in
which each program starts. (The MASTER has been specified by the - rl uucico
option.) The MASTER program does a work search similar to the one used in the
"Scan For Work" section.

There are five messages used during the work processing, each specified by the
first character of the message. They are:

s send a file,

R receive a file,

c copy complete,

X execute a uucp command,

H hangup.

The MASTER will send R, S or X messages until all work from the spool
directory is complete, at which point an H message will be sent. The SLAVE will
reply with SY, SN, RY, RN, HY, HN, XY, XN, corresponding to yes or no for
each request.

The send and receive replies are based on permission to access _the requested
file/directory using the USERFILE and read/write permissions of the
file/ directory. After each file is copied into the spool directory of the receiving
system, a copy-complete message is sent by the receiver of the file. The message
CY will be sent if the file has successfully been moved from the temporary spool
file to the actual destination. Otherwise, a CN message is sent. (In the case of
CN, the transferred file will be in the spool directory with a name beginning with
"TM" .) The requests and results are logged on both systems.

The hangup response is determined by the SLAVE program by a work scan of the
spool directory. If work for the remote system exists in the SLAVE's spool
directory, an HN message is sent and the programs switch roles. If no work
exists, an HY response is sent.

3-10

UUCP

3.4.5 Conversation Termination

When a HY message is received by the MASTER it is echoed back to the SLAVE
and the protocols are turned off. Each program sends a final "00" message to
the other. The original SLAVE program will clean up and terminate. The
MASTER will proceed to call other systems and process work as long as possible
or terminate if a - s option was specified.

3.5 UUXQT - UUCP COMMAND EXECUTION

The uuxqt program is used to execute execute files generated by uux. The uuxqt
program may be started by either the uucico or uux programs. The program
scans the spool directory for execute files (prefix ''X."). Each one is checked to
see if all the required files are available and if so, the command line or send line
is executed.

The execute file is described in the "Uux" section above.

3.5.1 Command Execution

The execution is accomplished by executing a sh - c of the command line after
appropriate standard input and standard output have been opened. If a standard
output is specified, the program will create a send command or copy the output
file as appropriate.

3.6 UULOG - UUCP LOG INQUIRY

The uucp programs create individual log files for each program invocation.
Periodically, uulog may be executed to prepend these files to the system logfile.
This method of logging was chosen to minimize file ·locking of the logfile during
program execution.

The uulog program merges the individual log files and outputs specified log
entries. The output request is specified by the use of the following options: ·

- ssys Print entries where sys is the remote system name;

- uuser Print entries for user user.

The intersection of lines satisfying the two options is output. A null sys or user
means all system names or users respectively.

3-11

UUCP

3. 7 UUCLEAN - UUCP SPOOL DIRECTORY CLEANUP

This program is typically started by the daemon, once a day. Its function is to
remove files from the spool directory which are more than 3 days old. These are
usually files for work which can not be completed. ·

The options available are:

- ddir The directory to be scanned is dir.

- m Send mail to the owner of each file being removed. (Note that
most files put into the spool directory will be owned by the
owner of the uucp programs since the setuid bit will be set· on
these programs. The mail will therefore most often go to the
owner of the uucp programs.)

- nhours Change the aging time from 72 hours to hours hours.

-ppre

-xnum

Examine files with prefix pre for deletion. (Up to 10 file
prefixes may be specified.)

This is the level of debugging output desired.

3.8 SECURITY

The uucp system, left unrestricted, will let any outside user execute any
commands and copy in/ out any file which is readable/writable by the uucp login
user. It is up to the individual sites to be aware of this and apply the protections
that they feel are necessary.

There are several se.curity features available aside from the normal file mode
protections. These must be set up by the installer of the uucp system.

- The login for uucp does not get a standard shell. Instead, the uucico program
is started. Therefore, the only·work that can be done is through uucico.

- A path check is done on file names that are to be sent or received. The
USERFILE supplies the information for these checks. The USERFILE can
also be setup to require call-back for certain login-ids. (See the' 'Files required
for execution" section for the file description.)

- A conversation sequence count can be set up so that the called system can be
more confident that the caller is who he or she says he/she is.

- The uuxqt program comes with a list of commands that it will execute. A
"PATH" shell statement is prepended to the command line as specified in the

3-12

UUCP

uuxqt program. The installer may modify the list or remove the restrictions as
desired.

- The L.sys file should be owned by uucp and have mode 0400 to protect the
phone numbers and login information for remote sites. (Programs uucp,
uucico, uux, uuxqt should be also owned by uucp and have the setuid bit set.)

3.9 UUCP INSTALLATION

There are several source modifications that may be required before the system
programs are compiled. These relate to the directories used during compilation,
the directories used during execution, and the local uucp system-name. Changes
to these sources, however, can be done only by installations with UNIX source
licenses. Except where noted, installations with binary-only licenses must use the
predefined default names.

The four directories are:

lib {lusr/src/cmd/uucp) This directory contains the source files for
generating the uucp system.

program (/usr/Iib/uucp) This is the directory used for the executable system
programs and the system files.

spool (/usr/spool/uucp) This is the spool directory used used during uucp
execution.

xqtdir {lusr/spool/uucp/.XQTDIR) This directory is used during execution
of execute files.

The names given in parentheses above are the default values for the directories.
The italicized names lib, program, xqtdir and spool will be used in the following
text to represent the appropriate directory names.

The file /usr/include/ident.h may be modified to change the installation name
uucp uses. This file is read by uucp at run-time (even though it appears to be a C
source file); therefore, even those installations possessing a binary-only UNIX
license may change their uucp name.

There are two files which may require modification if the installation holds a
source license: the makefile file and the uucp.h file. The following paragraphs
describe the modifications. The modes of spool and xqtdir should be made
"0777".

3-13

UUCP

3.9.1 Uucp.h Modification

Change the program and the spool names from the default values to the directory
names to be used on the local system using global edit commands.

3.9.2 Makefile Modification

There are several make variable definitions which may need modification.

INSDIR This is the program directory (e.g. INSDIR = /usr/lib/uucp).
This parameter is used if "make cp" is used after the programs
are compiled.

IOCTL This is required to be set if an appropriate ioctl interface
subroutine does not exist in the standard ''C'' library; the
statement "IOCTL = ioctl.o" is required in this case.

PKON The statement "PKON = pkon.o" is required if the packet driver
is not in the kernel.

3.9.3 Compile the System

The command:

make

will compile the entire system. The command

makecp

will copy the commands to the appropriate directories.

The programs uucp, uux, and uulog should be put in "/usr/bin". The programs
uuxqt, uucico, and uuclean should be put in the program directory.

3.9.4 Files Required for Execution

There are four files which are required for execution, all of which should reside in
the program directory. The field separator for all files is a space unless otherwise
specified.

3.9.5 L-devices

This file contains entries for the call-unit devices and hardwired connections
which are to be used by uucp. The special device files are assumed to be in the
/dev directory. The format for each entry is:

3-14

UUCP

line call-unit speed

where:

line is the device for the line (e.g. culO),

call-unit is the automatic call unit associated with line (e.g. cuaO),
(Hardwired lines have a number "0" in this field.),

speed is the line speed.

The line:

culO cuaO 300

would be set up for a system which had device "culO" wired to a call-unit
"cuaO" for use at "300" baud.

3.9.6 L-dialcodes

This file contains entries with location abbreviations used in the L.sys file (e.g. py,
mh, boston). The entry format is:

abb dial-seq

where;

abb is the abbreviation,

dial-seq is the dial sequence to call that location.

The line:

py 165-

would be set up, so that entry "py7777" would send "165 -7777" to the dial-unit.

3.10 LOGIN/SYSTEM NAMES

It is assumed that the login name used by a remote. computer to call into a local
computer is not the same as the login name of a normal user of that local
machine. However, several remote computers may employ the same login name.

Each computer is given a unique system name which is tr~smitted at the start of
each call. This name identifies the calling machine to the called machine.

3-15

UUCP

3.10.1 USERFILE

This file contains user accessibility information. It specifies four types of
constraint:

[1] which files can be accessed by a normal user of the local machine,

[2] which files can be accessed from a remote computer,

[3] which login name is used by a particular remote computer,

[4] whether a remote computer should be called back in order to confirm
its identity.

Each line in the file has the following format:

login,sys [c] path-name [path-name] ...

where:

login is the login name for a user or the remote computer,

sys is the system name for a remote computer,

c is the optional call-back required flag,

path-name is a path-name prefix that is acceptable for user.

The constraints are implemented as follows:

[1] When the program is obeying a command stored on the local
machine, MASTER mode, the path-names allowed are those given
for the first line in the USERF/LE that has a login name that
matches the login name of the user who entered the command. If no
such line is found, the first line with a null login name is used.

[2] When the program is responding to a command from a remote
machine, SLAVE mode, the path-names allowed are those given for
the first line in the file that has the system name that matches the
system name of the remote machine. If no such line is found, the
first one with a null system name is used.

[3] When a remote computer logs in, the login name that it uses must
appear in the USERFILE. There may be several lines with the same
login name but one of them must either have the name of the remote
system or must contain a null system name.

[4] If the line matched in [3] contains a "c", the remote machine is
called back before any transactions take place.

3-16

UUCP

The line:

u,m /usr/xyz

allows machine m to login with name u and request the transfer of files whose
names start with "/usr /xyz".

The line

dan, /usr/dan

allows the ordinary user dan to issue commands for files whose name starts with
"/usr/dan".

The lines:

u,m /usr/xyz /usr/spool
u, /usr/spool

allows any remote machine to login with name u, but if its system name is not m,
it can only ask to transfer files whose names start with "/usr/spool".

The lines:

root, I
, /usr

allows any user to transfer files beginning with "/usr" but the user with login
root can transfer any file.

3.10.2 L.sys

Each entry in this file represents one system which can be called by the local uucp
programs. The fields are described below.

3.10.2.1 system name

The name of the remote system.

3.10.2.2 time

This is a string which indicates the days-of-week and times-of-day when the
system should be called (e.g. MoTuTh0800- 1730).

3-17

UUCP

The day portion may be a list containing some of

Su Mo Tu We Th Fr Sa

or it may be Wk for any week-day or Any for any day.

The time should be a range of times (e.g. 0800- 1230). If no time portion is
specified, any time of day is assumed to be ok for the call.

3.10.2.3 device

This is either ACU or the hardwired device to be used for the call. For the
hardwired case, the last part of the special file name is used (e.g. ttyO).

3.10.2.4 speed

This is the line speed for the call (e.g. 300).

3.10.2.5 phone

The phone number is made up of an optional alphabetic abbreviation and a
numeric part. The abbreviation is one which appears in the L-dialcodes file (e.g.
mh5900, boston995- 9980).

For the hardwired devices, this field contains the same string as used for the
device field .

. 3.10.2.6 login

The login information is given as a series of fields and subfields in the format

expect send [expect send] ...

where; expect is the string expected to be read and send is the string to be sent
when the expect string is received.

The expect field may be made up of subfields of the form:

expect[- send- expect] ...

where the send is sent if the prior expect is not successfully read and the expect
following the send is the next expected string.

There are two special names available to be sent during the login sequence. The
string "EOT" will send an EOT character and the string "BREAK" will try to
send a BREAK character. (The BREAK character is simulated using line speed
changes and null characters and may not work on all devices and/or systems.)

3-18

UUCP

A typical entry in the L.sys file would be:
sys Any ACU 300 mh7654 login uucp ssword: word

The expect algorithm looks at the last part of the string as illustrated in the
password field.

3.11 ADMINISTRATION

This section indicates some events and files which must be administered for the
uucp system. Some administration can be accomplished by shell files which can
be initiated by crontab entries. Others will require manual intervention. Some
sample shell files are given toward the end of this section.

3.11.1 SQFILE - Sequence Check File

This file is set up in the program directory and contains an entry for each remote
system with which you agree to perform conversation sequence checks. The
initial entry is just the system name of the remote system. The first conversation
will add two items to the line, the conversation count, and the date/time of the
most recent conversation. These items will be updated with each conversation. If
a sequence check fails, the entry will. have to be adjusted.

3.11.2 TM - Temporary Data Files

These files are created in the spool directory while files are being copied from a
remote machine. Their names have the form

TM.pid.ddd

where pid is a process-id and ddd is a sequential three digit number starting at
zero for each invocation of uucico and incremented for each file received.

After the entire remote file is received, the TM file is moved/ copied to the
requested destination. If processing is abnormally terminated or the move/ copy
fails, the file will remain in the spool directory.

The leftover files should be periodically removed; the uuclean program is useful in
this regard. The command:

uuclean - p TM

will remove all TM files older than three days.

3-19

UUCP

3.11.3 LOG - Log Entry Files

During execution of programs, individual LOG files are created in the spool
directory with information about queued requests, calls to remote systems,
execution of uux commands and file copy results. These files should be combined
into the LOGFILE by using the uulog program. This program will put the new
LOG files at the beginning of the existing LOG FILE. The command:

uulog

will accomplish the merge. Options are available to print some or all the ·log
entries after the files are merged. The LOGFILE should be removed periodically
since it is copied each time new LOG entries are put into the file.

The LOG files are created initially with mode 0222. If the program which creates
the file terminates normally, it changes the mode to 0666. Aborted runs may
leave the files with mode 0222 and the uulog program will not read or remove
them. To remove them, either use rm, uuclean, or change the mode to 0666 and
let uulog merge them with the LOGFILE.

3.11.4 STST - System Status Files

These files are created in the spool directory by the uucico program. They
contain information of failures such as login, dialup or sequence check and will
contain a TALKING status -when two machines are conversing. The form of the
file name is

STST.sys

where sys is the remote system name.

For ordinary failures (dialup, login), the file will prevent repeated tries for about
one hour. For sequence check failures, the file must be removed before any
future attempts to converse with that remote system.

If the file is left due to an aborted run, it may contain a TALKING status. In
this case, the file must be removed before a conversation is attempted.

3.11.5 LCK- Lock Files

Lock files are created for each device in use (e.g. automatic calling unit) and each
system conversing. This prevents duplicate conversations and multiple attempts
to use the same devices. The form of the lock file name is:

LCK .. str

where str is either a device or system name. The files may be left in the spool
directory if runs abort. They will be ignored (reused) after a time of about 24

3-20

UUCP

hours. When runs abort and calls are desired before the time limit, the lock files
should be removed.

3.12 SHELL FILES

The uucp program will spool work and attempt to start the uucico program, but
the starting of uucico will sometimes fail. (No devices available, login failures
etc.). Therefore, the uucico program should be periodically started. The
command to start uucico can be put in a ''shell'' file with a command to merge
LOG files and started by a crontab entry on an hourly basis. The file could
contain the commands:

program /uulog
program /uucico - r 1

Note that the - rl option is required to start the uucico program in MASTER
mode.

Another shell file may be set up on a daily basis to remove TM, ST and LCK files
and C. or D. files for work which can not be accomplished for reasons like bad
phone number, login changes etc. A shell file containing commands like

program /uuclean -pTM -pC. -pD.
program /uuclean -pST -pLCK -n12

can be used. Note the - nll option causes the ST and LCK files older than 12
hours to be deleted. The absence of the - n option will use a three day time
limit.

A daily or weekly shell should also be created to remove or save old LOGFILEs.
A shell like:

cp spool /LOGFILE spool lo.LOGFILE
rm spool I LOGFILE

can be used.

3.13 LOGIN ENTRY

One or more logins should be set up for uucp. Each of the /etc/passwd entries
should have the program/uucico as the shell to be executed. The login directory
is not used, but if the system has a special directory for use by the users for
sending or receiving files, it should be given as the login entry. The various logins
are used in conjunction with the USERFILE to restrict file access. Specifying the
shell argument limits the login to the use of uucp (uucico) only.

3-21

UUCP

3.13.1 File Modes

It is suggested that the owner and file modes of various programs and files be set
as follows. -. '--

The programs uucp, uux, uucico and uuxqt should be owned by the uucp login
with the "setuid" bit set and only _execute permissions (e.g. m<;>de 04111). Tlii~,
will prevent outsiders from modifying the programs to get at a standard _shell for
the uucp logins. ·

The L.sys, SQFILE and the USERFILE which are put in the program directory
should be owned by the uucp login and set with mode 0400.

3-22

Chapter 4
A DIAL-UP NETWORK OF UNIX SYSTEMS

4.1 SYSTEM OPERATION AND DESIGN

The basic operation of the network is very simple. Each participating system has
a spool directory, in which work to be done (files to be moved, or commands to
be executed remotely) is stored. A standard program, uucico, performs all
transfers. This program starts by identifying a particular communication channel
to a remote system with which it will hold a conversation. uucico then selects a
device and establishes the connection, logs onto the remote machine and starts the
uucico program on the remote machine. Once two of these programs are
connected, they first agree on a line protocol, and then start exchanging work.
Each program in turn, beginning with the calling (active system) program,
transmits everything it needs, and then asks the other what it wants done.
Eventually neither has any more work, and both exit.

In this way, all services are available from all sites; passive sites (systems that do
not have the hardware to initiate a connection), however, must wait until called.
A variety of protocols may be used; this conforms to the real, non-standard
world. As long as the caller and called programs have a protocol in common,
they can communicate. Furthermore, each caller knows the hours when each
destination system should be called. If a destination is unavailable, the data
intended for it remain in the spool directory until the destination machine can be

·reached.

The implementation of this network among independent sites, all of which store
proprietary programs and data, illustrates the pervasive need for security and
administrative controls over file access. Each site, in configuring its programs and
system files, limits and monitors transmission. In order to access a file a user
needs access permission for the machine that contains the file and access
permission for the file itself. This is achieved by first requiring the user to use a
password to log into the local machine and then the local machine logs into the
remote machine whose files are to be accessed. In addition, records are kept
identifying all files that are moved into and out of the local system, and how the
requestor of such accesses is identified. Some sites may arrange to permit users
only to call up and request work to be done; the calling users are then called back

4-1

NETWORK

before the work is actually done. It is then possible to verify that the request is
legitimate from the standpoint of the target system, as well as the originating
system. Furthermore, because of the call-back, no site can masquerade as
another even if it knows all the necessary passwords.

Each machine can optionally maintain a sequence count for conversations with
other machines and can require a verification of the count at the start of each
conversation. Thus, even if call back is not in use, a successful masquerade
requires the calling party to present the correct sequence number. A would-be
impersonator must not just steal the correct phone number, user name, and
password, but also the sequence count, and must call in sufficiently promptly to
precede the next legitimate request frorri either side. Even a successful
masquerade will be detected on the next correct conversation.

4.2 PROCESSING

The user has two commands which set up communications, uucp to set up file
copying, and uux to set up command execution where some of the required
resources (system and/or files) are not on the local machine. Each of these
commands will put work and data files into the spool directory for execution by
uucp daemons.

4.2.1 File Copy

The uucico program is used to perform all communications between the two
systems. It performs the following functions:

[1] Scan the spool directory for work.

[2] Place a call to a remote system.

[3] Negotiate a line protocol to be used.

[4] Start program uucico on the remote system.

[5] Execute all requests from both systems.

[6] Log work requests and work completions.

uucico may be started in several ways;

a) by a system daemon,

b) by one of the uucp or uux programs,

c) by a remote system.

4-2

NETWORK

4.2.2 Scan For Work

The file names in the spool directory are constructed to allow the daemon
programs (uucico, uuxqt) to determine the files they should look at, the remote
machines they should call and the order in which the files for a particular remote
machine should be processed.

4.2.3 · Call Remote System

The call is made using information from several files which reside in the uucp
program directory. At the start of the call process, a lock is set on the system
being called so that another call will not be attempted at the same time.

The system name is found in a "systems" file. The information contained for
each system is:

[1] system name,

[2] times to call the system (days-of-week and times-of-day),

[3] device or device type to be used for call,

[4] line speed,

[5] phone number,

[6] login information (multiple fields).

The time field is checked against the present time to see if the call should be
made. The phone number may contain abbreviations (e.g. "nyc", "boston")
which get translated into dial sequences using a "dial-codes" file. This permits
the same phonenumber to be stored at every site, despite local variations in
telephone services and dialing conventions.

A "devices" file is scanned using fields [3] and [4] from the "systems" file to find
an available device for the connection. The program will try all devices which
satisfy [3] and [4] until a connection is made, or no more devices can be tried. If
a non-multiplexable device is successfully opened, a lock file is created so that
another copy of uucico will not try to use it. If the connection is complete, the
login information is used to log into the remote system. Then a command is sent
to the remote system to start the uucico program. The conversation between the
two uucico programs begins with a handshake started by the called, SLA VE,
system. The SLAVE sends a message to let th~ MASTER know it is ready to
receive the system identification and conversation sequence number. The response
from the MASTER is verified by the SLA VE and if acceptable, protocol selection
begins.

4-3

NETWORK

4.2.4 Line Protocol Selection

The remote system sends a message

Pproto-list

where proto-list is a string of characters, each representing a line protocol. The
calling program checks the proto-list for a letter corresponding to an available
line protocol and returns a use-protocol message. The use-protocol message is

Vcode

where code is either a one character protocol letter or an N which means there is
no common protocol.

4.2.5 Work Processing

During processing, one program is the MASTER and the other is SLAVE.
Initially, the calling program is the MASTER. These roles may switch one or
more times during the conversation.

There are four messages used during the work processing, each specified by 'the
first character of the message. They are

S send a file,
R receive a file,
C . copy complete,
H hangup.

The MASTER will send R or S messages until all work from the spool directory
is complete, at which point an H message will be sent. The SLA VE will reply
with SY, SN, RY, RN, HY, HN, corresponding to yes or no for each request.

The send and receive replies are based on permission to access the requested
file/ directory. After each file is copied into the spool directory of the receiving
system, a copy-complete message is sent by the receiver of the file. The message
CY will be sent if the VENIX cp command, used to copy from the spool
directory, is successful. Otherwise, a CN message is sent. The requests and
results are logged on both systems, and, if requested, mail is sent to the user
reporting completion (or the user can request status information from the log
program at any time).

The hangup response is determined by the SLA VE program by a work scan of the
spool directory. If work for the remote system exists in the SLAVE's spool

4-4

NETWORK

directory, a HN message is sent and the programs switch roles. If no work exists,
an HY response is sent.

4.2.6 Conversation Termination

When an HY message is received by the MASTER it is echoed back to the
SLAVE and the protocols are turned off. Each program sends a final ''00''
message to the other.

4.3 PRESENT USES

One application of this software is remote mail. Normally, a VENIX system user
writes "mail dan" to send mail to user "dan". By writing "mail usg!dan" the
mail is sent to user "dan" on system "usg".

A primary use of a network is software maintenance. Relatively few of the bytes
passed between systems are intended for people to read. Instead, new programs
(or new versions of programs) are sent to users, and potential bugs are returned
to authors. It's a good idea to implement a "stockroom" which allows remote
users to call in and request software. Also a "stock list" of available programs,
and new bug fixes and utilities should be added regularly. In this way, users can
always obtain the latest version of any program. Although the stock list is
maintained on a particular system, the items in the stockroom may be
warehoused in many places; typically each program is distributed from the home
site of its author. Where necessary, uucp does remote-to-remote copies.

Another application of the network for software maintenance is to compare files
on two different machines. A very useful utility has been the diff program which
compares two text files and indicates the differences, line by line, between them.
Only lines which are not identical are printed. Similarly, the program uudiff
compares files (or directories) on two machines. One of these directories may be
on a passive system.

To avoid moving large numbers of usually identical files, uudiff computes file
checksums on each side, and only moves files that are different for detailed
comparison. For large files, this process can be iterated; checksums can be
computed for each line, and only those lines that are different actually moved.

The uux command has been useful for providing remote output. There are some
machines which do not. have hard-copy devices, but which are connected over
9600 baud communication lines to machines with printers. The uux command

4-5

NETWORK

allows the formatting of the . printout on the local machine and printing on the
remote machine using standard VENIX command programs.

4.4 PERFORMANCE

Throughput, of course, is primarily dependent on transmission speed. The table
below shows the real throughput of characters on communication links of
different speeds. These numbers represent actual data transferred; they do not
include bytes used by the line protocol for data validation such as checksums and
messages. At the higher speeds, contention for the processors on both ends
prevents the network from driving the line full speed. The range of speeds
represents the difference between light and heavy loads on the two &ystems. If
desired, operating system modifications can be installed that permit full use of
even very fast links.

Nominal speed
300 baud

1200 baud
9600 baud

Characters/ sec.
27

100-110
200-850

In addition to the transfer time, there is some overhead for making the
connection and logging in ranging from 15 seconds to 1 minute. Even at 300
baud, however, a typical 5,000 byte source program can be transferred in four
minutes instead of the 2 days that might be required to mail a tape.

4.5 SYSTEM GOALS

A full system of remote software maintenance is a network goal. The availability
of file transfer on a network of compatible operating systems makes it possible
just to send programs directly to the end user who wants them. This avoids the
bottleneck of negotiation and packaging in the central support group. The
"stockroom" serves this function for new utilities and fixes to old utilities.
However, it is still likely that distributions will not be sent and installed as often
as needed. Users are justifiably suspicious of the "latest version" that has just
arrived; all too often it features the "latest bug." What is needed is to address
both problems simultaneously:

1. Send distributions whenever programs change.

2. Have sufficient quality control so that users will install them.

To do this, systematic regression testing should be done both on the distributing
and receiving systems. Acceptance testing on the receiving systems can be

4-6

NETWORK

automated and permits the local system to ensure that its essential work can
continue despite the constant installation of changes sent from elsewhere. The
work of writing the test sequences should be recovered in lower counseling and
distribution costs.

Some slow-speed network services should be implemented, like inter-system mail
and diff, plus the many implied commands represented by uux. Also there's a
need for inter-system write (real-time inter-user communication) and who (list of
people logged in on different systems). A slow-speed network of this sort is very
useful for speeding up counseling and education, even if not fast enough for the
distributed data base applications that attract many users to networks. Effective
use of remote execution over slow-speed lines, however, is dependent on the
general installation of multiplexable channels so that long file transfers do not
lock out short inquiries.

4-7

Chapter 5

THE VENIX 1/0 SYSTEM

5.1 INTRODUCTION
This chapter gives an overview of the workings of the VENIX 1/0 system. It is
intended to provide guidance to writers of device driver routines. The chapter
describes the environment and nature of device drivers, rather than the imple
mentation of that part of the file system which deals with ordinary files.

It is assumed that the reader has a good knowledge of the overall. structure of
the file system as discussed in the paper "The VENIX Time-Sharing System." A
more detailed discussion appears in "VENIX Implementation;" the current doc
ument restates parts of that one, but is still more detailed. It is most useful in
conjunction with a copy of the device drivers source, since it is basically an exe
gesis of that code.

5.2 DEVICE CLASSES
There are two classes of devices: block and character. The block interface is
suitable for devices such as disks, tapes, and DECtape which work, or can
work, with addressable 512-byte blocks. Ordinary magnetic tape just barely fits
in this category, since by use of forward and backward spacing any block can
be read, even though blocks can be written only at the end of the tape. Block
devices can potentially contain a mounted file system. The interface to block
devices is very highly structured; the drivers for these devices share a great many
routines, as well as a pool of buffers.

5-l

THE VENIX 1/0 SYSTEM

Character-type devices have a much more straightforward interface, although
more work must be done by th~ driver itself.

Devices of both types are named by a major and a minor device number.
These numbers are generally stored as a word (the 'full' device number) with the
minor device number in the low byte and the major device number in the high
byte. The major device number selects which driver will deal with the device;
the minor device number is not used by the rest of the system but is passed to
the driver at appropriate times. Typically the minor number selects a subdevice
attached to a given controller, or one of several similar hardware interfaces.

The major device numbers for block and character devices are used as indices in
separate tables; they both start at 0 and therefore overlap.

5.3 OVERVIEW OF 1/0
The purpose of the open and creat system calls is to set up entries in three sepa
rate system tables, as shown in Fig. 1. The first of these is the u_ofile table,
which is stored in the system's per-process data area u. This table is indexed by
the file descriptor returned by the open or creat, and is accessed during a read,
write, or other operation on the open file. An entry contains only a pointer to
the corresponding entry of the file table, which is a per-system data base.
There is one entry in the file table for each instance of open or creat. This
table is per-system because the same instance of an open file must be shared
among the several processes which can result from forks after the file is opened.
A file table entry contains flags which indicate whether the file was open for
reading or writing or is a pipe, and a count which is used to decide when all
processes using the entry have terminated or closed the file (so the entry can be
abandoned). There is also a 24-bit file offset which is used to indicate where in
the file the next read or write will take place. Finally, there is a pointer to the
entry for the file in the inode table, which contains a copy of the file's i-node.

An entry in the file table corresponds precisely to an instance of open or creat.
If the same file is opened several times, it will have several entries in this table.
However, there is at most one entry in the inode table for a given file. Also, a
file may enter the inode table not only because it is open, but also because it is
the current directory of some process or because it is a special file containing a
currently-mounted· file system.

5-2

THE VENIX 1/0 SYSTEM

An entry in the inode table differs somewhat from the corresponding i-node as
stored on the disk; the modified and accessed times are not stored, and the
entry is augmented by a flag word containing information about the entry, a
count used to determine when it may be allowed to disappear, and the device
and i-number from where the entry came.

OPEN FILE
TABLE

PER USER OPEN
FILE TABLE

ACTIVE I NODE
TABLE

Fig. 1-File system data structure.

5-3

lSWAPPED
fPER/USER

L!l!SIDEII'r

fPER/SlS'EM

t
SECONDA:RT
STORAGE
PER/
FILE SYSTEM

THE VENIX 1/0 SYSTEM

During the processing of an open or creat call for a special file, the system
always calls the device's open routine to allow (or any special processing
required (rewinding a tape, turning on the data-terminal-ready lead of a modem,
etc.). However, the close routine is called only when the last process closes a
file, that is, when the i-node table entry is being deallocated. There is one
exception to this: when the D_CLOSE (040) bit is on in the minor device num
ber of the special file, close is called when any process closes the file it pre
viously opened. Unless this bit is on, however, it is not feasible for a device to
maintain, or depend on, a count of its users. Regardless of the D_CLOSE bit,
it is quite possible to implement an exclusive-use device which cannot be
reopened until it has been closed.

When a read or write takes place, the user's arguments and the file table entry
are used to set up the variables u. u_base, u. u_count, and u. u_offset which
respectively contain the (user) address of the 110 target area, the byte-count for
the transfer, and the current location in the file. If the file referred to is a
character-type special file, the appropriate read or write routine is called; it is
responsible for transferring data and updating the count and current location
appropriately as discussed below. Otherwise, the current location is used to cal
culate a logical block number in the file. If the file is an ordinary file the logi
cal block number must be mapped (possibly using an· indirect block) to a physi
cal block number; a block-type special file need not be mapped. In any event,
the resulting physical block number is used, as discussed below, to read or write
the appropriate device.

~: ~ ··, ~ l ;;~ ..c .,.,. ... ~ -,;'l .,.~t~ ~,.'";"';$: ~'"!~~'*.;;; .. ~~"' .. ~ r .o.

. .

The cdevsw table specifies the interface routines present for character devices.
Each device provides five routines: open, close, read, write, and special-function
(to implement the ioctl system call). Any of these may be missing. If a call on
the routine should be ignored, (e.g. open on non-exclusive devices that require
no setup) the cdevsw entry can be given as nulldev ; if it should be considered
an error, (e.g. write on read-only devices) nodev· is used. ,.

The open routine is called each time the file is opened, with the full device
number (containing both major and minor indexes) as argument. The second
argmhent is a flag which is non-zero only if tf.e device is to be written upon.

5-4

THE VENIX 1/0 SYSTEM

The is usually called only when the file is closed for the last time,
very last process in which the file is open closes it. However,

if the D_CLOSE bit is on in the minor device number of the special file, close
is called when any of the processes closes the file it opened. Unless the
D_CLOSE bit is it is not "ble for the driver to its own count

u. u_count and u. u_base.

Write routines which want to transfer a prob
into an internal buffer may also use the routine
which is faster when characters must be

Caution: the caller is responsible for ma,KmLg

too large and is non-zero. The actual address of
As an efficiency note, iomove is much slower if any of
u.u_base is odd.

called under conditions similar to write, except that
be non-zero. To
it takes care of housekeeping like cpass and returns

cnlua~cte:r SJJeciHe:d by u.u_count is returned to the user; before

5-5

THE VENIX 1/0 SYSTEM

The 'special functions' routine is invoked by the ioctl system call as follows:

be performed, and
where the data is

ltturil~'' The corresponding subroutines

subyte (addr, value)

fubyte (addr)

do the same, but for byte values. The two common ioctl commands
TIOCSETP and TIOGETP (defined in <sgtty.h>) are traditionally used to
respectively indicate setting and getting (i.e. returning to user) driver parameters.

Finally, each device should have appropriate interrupt-time routines. When an
interrupt occurs, it is turned· into a C-compatible call on the devices' interrupt
rsmtine. The interrupt-catching mechanism makes the low-order four bits of the
'new PS' word in the trap vector for the interrupt available to the interrupt han
dler. This is conventionally used by drivers which deal with multiple similar
devices to encode the minor device number.

A number of subroutines are available which are useful to character device driv
ers. Most of these handlers, for example, need a place to buffer characters in
the internal interface between their 'top half' (read/write) and 'bottom half'
(interrupt) routines. For relatively low data-rate devices, the best mechanism is
the character queue maintained by the routines getc and putc. :c:tl .. }(",.<.- .. : ·~ - -

» '" ~- :.... ... ,. "

has the structure

5-6

struct {
int
char

c_cc;
*c_cf;
*c_cl;

I* character count *I
I* first character *I
I* last character *I

THE VENIX 110 SYSTEM

A character is placed on the end of a queue by putc(c, &queue) where c is the
character and queue is the queue header. The routine returns - 1 if there is no
space to put the character, 0 otherwise. The first character on the queue may
be retrieved by getc(&queue) which returns either the (non-negative) character or
- 1 if the queue is empty.

Notice that the space for characters in queues is shared among all devices in the
system and in the standard system there are only some 1200 character slots
available. Thus device handlers, especially write routines, must take care to
avoid gobbling up excessive numbers of characters.

The other major help available to device handlers is the sleep-wakeup mechan
ism. The call sleep (event, priority) causes the process to wait (allowing other
processes to run) until the event occurs; at that time, the process is marked
ready-to-run ·and the call will return when there is no process with higher
priority. The call wakeup(event) indicates that the event has happened, that is,
causes processes sleeping on the event to be awakened. The event is an arbi
trary integer quantity agreed upon by the sleeper and the waker-up. By conven
tion, it is the address of some data area (usually a variable) used by the driver,
which guarantees that events are unique.

Processes sleeping on an event should not assume that the event has really hap
pened; they should check that the conditions which caused· them to sleep no
longer hold.

Priorities can range from -127 to 127; a higher numerical value indicates a
less-favored scheduling situation. A process sleeping a negative priority cannot
be terminated for any reason, although it is conceivable that it may be swapped
out. Thus it is a bad idea to sleep with a negative priority on an event which
might never occur. On the other hand, calls to sleep with non-negative priority
may never return if the process is terminated by some signal in the meantime.
Incidentally, it is a gross error to call sleep in a routine called at interrupt time,
since the process which is running is almost ,certainly not the process which

5-7

THE VENIX 1/0 SYSTEM

should go to sleep. Likewise, none of the variables in the user area 'u.' should
be touched, let alone changed, by an interrupt routine.

If a device driver wishes to wait for some event for which it is inconvenient or
impossible to supply a wakeup, (for example, a device going on-line, which does
not generally cause an interrupt), the call sleep (&/bolt, priority) may be given.
!bolt is an external cell whose address is awakened once every second by the
clock interrupt routine.

The routines spl4(), splS(), spl6(), spl7(), splx(pri) are available to set the
processor priority level as indicated to avoid inconvenient interrupts from the
device; splx is a generalized routine which will set the priority level to pri. All
these routines return the previous processor priority level.

If a device needs to know about real-time intervals, then timeout (june, arg,
interval) will be useful. This routine arranges that after interval sixtieths of a
second, the June will be called with arg as argument, in the style (*June)(arg).
Timeouts are used, for example, to schedule clock-tick alarms, and to cause the
DZll input silo to be periodically scanned. Notice that the number of sixtieths
of a second is limited to 32767, since it must appear to be positive, and that
only a bounded number of timeouts can be going on at once. Also, the speci
fied June is called at clock-interrupt time, so it should conform to the require
ments of interrupt routines in general.

The function timecancel (June, arg) causes all scheduled timeouts with June and
arg as argument to be cancelled.

5.5 THE BLOCK-DEVICE INTERFACE

Handling of block devices is mediated py a collection of routines that manage a
set of buffers containing the images of blocks of data on the various devices.
The most important purpose of these routines is to assure that several processes
that access the same block of the same device in multiprogrammed fashion
maintain a consistent view of the data in the block. A secondary but still
important purpose is to increase the efficiency of the system by keeping in-core
copies of blocks that are being accessed frequently. The main data base for this
mechanism is the table of buffers buf. Each buffer header contains a pair of
pointers (b_forw, · b_baek) which maintain a doubly-linked list of the buffers
associated with a. particular block device, and a pair of pointers (av_forw,

5-8

THE VENIX 1/0 SYSTEM

av_back) which generally maintain a doubly-linked list of blocks which are
'free', that is, eligible to be reallocated for another transaction. Buffers that
have I/0 in progress or are busy for other purposes do not appear in this list.
The buffer header also contains the deviCe and block number to which the
buffer refers, and a pointer to the actual storage associated with the buffer.
There is a word count which is the negative of the number of words to be trans
ferred to or from the buffer. There is also an error byte and a residual word
count used to communicate information from an 1/0 routine to its caller.
Finally, there is a flag word with bits indicating the status of the buffer. These
flags will be discussed below.

Seven routines constitute the most important part of the interface with the rest
of the system. Given a device and block number, both bread and getblk return
a pointer to a buffer header for the block; the difference is that bread is guar
anteed to return a buffer actually containing the current data for the block,
while getblk returns a buffer which contains the data in the block only if it is
already in core (whether it is or not is indicated by the B_DONE bit; see
below). In either case the buffer, and the corresponding device block, is made
'busy', so that other processes referring to it are obliged to wait until it becomes
free. getblk is used, for example, when a block is about to be totally rewritten,
so that its previous contents are not useful; still, no other process can be
allowed to refer to the block until the new data is placed into it.

The breada routine is used to implement read-ahead. It is logically similar to
bread, but takes as an additional argument the number of a biock (on the same
device) to be read asynchronously after the specifically requested block is avail
able.

Given a pointer to a buffer, the brelse routine makes the buffer again available
to other processes. It is called, for example, after data has been extracted fol
lowing a bread. There are three subtly-different write routines, all of which
take a buffer pointer as argument, and all of which logically release the buffer
for use by others and place it on the free list. bwrite puts the buffer on the
appropriate device queue, waits for the write to be done, and sets the user's
error flag if required. bawrite places the buffer on the device's queue, but does
not wait for completion, so that errors cannot be reflected directly to the user.
bdwrite does not start any 1/0 operation at all, but merely marks the buffer so
that if it happens to be grabbed from the free list to contain data from some
other block, the data in it will first be written 01;1t.

5-9

THE VENIX 1/0 SYSTEM

bwrite is used when one wants to be sure that 110 takes place correctly, and
that errors are reflected to the proper user; it is used,. for example, when updat
ing i-nodes. bawrite is useful when more overlap is desired (because no wait is
required for 110 to finish) but when it is reasonably certain that the write is
really required. bdwrite is used when there is doubt that the write is needed at
the moment. For example, bdwrite is called when the last byte of a write sys
tem call falls short of the end of a block, on the assumption that another write
will be given soon which will re-use the same block. On the other hand, as the
end of a block is passed, bawrite is called, since probably the block will not be
accessed again soon and one might as well start the writing process as soon as
possible.

In any event, notice that the routines getblk and bread dedicate the given block
exclusively to the use of the caller, and make others wait, while one of brelse,
bwrite, bawrite , or bdwrite must eventually be called to free the block for use
by others.

As mentioned, each buffer header contains a flag word which indicates the sta
tus of the buffer. Since they provide one important channel for information
between the drivers and the block I/0 system, it is important to understand
these flags. The following names are manifest constants which select the associ
ated flag bits.

B_READ
This bit is set when the buffer is handed to the device strategy routine
(see below) to indicate a read operation. The symbol B_ WRITE is
defined as 0 and does not define a flag; it is provided as a mnemonic
convenience to callers of routines like swap which have a separate argu
ment which indicates read or write.

B_DONE
This bit is set to 0 when a block is handed to the the device strategy
routine and is turned on when the operation completes, whether nor
mally as the result of an error. It is also used as part of the return
argument of getblk to indicate if 1 that the returned buffer actually con
tains the data in the requested block.

5-10

THE VENIX 1/0 SYSTEM

B_ERROR
This bit may be set to 1 when B_DONE is set to indicate that an I/0
or other error occurred. If it is set the b_error byte of the buffer
header may contain an error code if it is non-zero. If b_error is 0 the
nature of the error is not specified. Actually no driver at present sets
b_error; the latter is provided for a future improvement whereby a
more detailed error-reporting scheme may be implemented.

B_BUSY
This bit indicates that the buffer header is not on the free list, i.e. is
dedicated to someone's exclusive use. The buffer still remains attached
to the list of blocks associated with its device, however. When getblk
(or bread, which calls it) searches the buffer list for a given device and
finds the requested block with this bit on, it sleeps until the bit clears.

B_WANTED
This flag is used in conjunction with the B_BUSY bit. Before sleeping
as described just above, getblk sets this flag. Conversely, when the
block is freed and the busy bit goes down (in brelse) a wakeup is given
for the block header whenever B_ WANTED is on. This stratagem
avoids the overhead of having to call wakeup every time a buffer is
freed on the chance that someone might want it.

B_ASYNC
This bit is set by bawrite to indicate to the appropriate device driver
that the buffer should be released when the write has been finished,
usually at interrupt time. . The difference between bwrite and bawrite is
that the former starts I/0, waits until it is done, and frees the buffer.
The latter merely sets this bit and starts II 0. The bit indicates that
relse should be called for the buffer on completion. (This bit should
not be confused with asynchronous I/0 at the user level via 'raw' I/0.)

B_DELWRI
This bit is set by bdwrite before releasing the buffer. When getblk,
while searching for a free block, discovers the bit is 1 in a buffer it
would otherwise grab, it causes the block to be written out before reus
ing it.

5-11

THE VENIX 1/0 SYSTEM

B_AGE
This bit may be set on buffers just before releasing them; if it is on, the
buffer is placed at the head of the free list, r~ther than at the tail. It is
a performance heuristic used when the caller judges that the same block
will not soon be used again.

B_MAP
This bit is set on buffers that have the Unibus map allocated, so that
the iodone routine knows to deallocate the map.

B_puys
This bit is set for raw 110 transactions that need to allocate the Unibus
map on an 11/70.

5.6 BLOCK DEVICE DRIVERS
The bdevsw. table contains the names of the interface routines and that of a
table for each block device.

Just as for character devices, block device drivers may supply an open and a
close routine called respectively on each open and on the final close of the
device. Instead of separate read and write routines, each block device driver
has a strategy routine which is called with a pointer to a buffer header as argu
ment. As .discussed, the· buffer header contains a read/write flag, the core
address (including extended memory bits), the block number, a (negative) word
count, and the major and minor device number. The role of the strategy rou
tine is to carry out the operation as requested by the information in the buffer
header. When the transaction is complete the iodone routine should be called.
In cases where the device is capable, under error-free operation, of transferring
fewer words than requested, the device's word-count register should be placed in
the residual count slot of the buffer header; otherwise, the residual count should
be set to 0. This particular mechanism is really for the benefit of the magtape
driver; when reading this device records shorter than requested are quite nor
mal, and the user should be told the actual length of the record. [However the
mechanism has not been integrated into normal I/0 even on magtape and is
used only in 'raw' I/0 as discussed below.]

5-12

THE VENIX 1/0 SYSTEM

Although the most usual argument to the strategy routines is a genuine buffer
header allocated as discussed above, all that is actually required is that the argu
ment be a pointer to a place containing the appropriate information. For exam
ple the swap routine, which manages movement of core images to and from the
swapping device, uses the strategy routine for this device. Care has to be taken
that no extraneous bits get turned on in the flag word.

The device's table specified by bdevsw has a byte· to contain an active flag and
an error count, a pair of links which constitute the head of the chain of buffers
for the device (b_forw, b_back), and a first and last pointer for a device
queue. Of these things, all are used solely by the device driver itself except for
the buffer-chain pointers. Typically the flag encodes the state of the device,
and is used at a minimum to indicate that the device is currently engaged in
transferring information and no new. command should be issued. The error
count is useful for counting retries when errors occur. The device queue is used
to remember stacked ·requests; in the simplest case it may be maintained as a
first-in first-out list. However, most disk drivers sort the requests by disk cylin
der number to minimize head positioning latency.

A couple of routines are provided which are useful to block device drivers.

iodone (bp)

given a pointer to a buffer header, arranges that it be released or awakened as
appropriate to the situation when the driver is finished with the buffer whether
normally or after an error. (In the latter case the B_ERROR bit should be set
by the driver.)

disksort (&rkutab[unit], bp)

sorts by cylinder number, the buffer pointed to by bp, into the queue of out
standing request for a disk driver. Prior to the call, the cylinder number must
be put into b_resid of the buffer header. rkutab is the device table for a par
ticular rk unit (physical drive).

An Example

The RK disk driver is worth studying as a typical example of a block 1/0
device. Its strategy routine checks to see if the requested block lies beyond the
end of the device. If the request is plausible, the buffer is sorted into the out
standing request queue for the drive specified by the minor device number, and
if the controller is not busy, rkstart is called.

5-13

THE VENIX 1/0 SYSTEM

If required, rkstart starts a 'seek' on the indicated drive. Otherwise the transfer
is started. On a multi-drive system, the rotational position of all drives that
have finished seeking is checked, and the transfer is started on the drive with
the lowest latency.

When a completion or error interrupt occurs, rkintr is called. If an error is
indicated, and if the error count has not exceeded 8, the same transaction is
reattempted; otherwise the error bit is set. If a transfer is completed or if 8
failing transfers have been issued, the queue .is advanced and rkstart is called to
begin another transaction. If the interrupt is the result of a seek completion,
rkstart is simply called.

5.7 RAW BLOCK-DEVICE 1/0
A scheme has been set up whereby block device drivers may provide the ability
to transfer information directly between the user's core image and the device
without the use of buffers and in blocks as large as the caller requests. The
method involves setting up a character-type special file corresponding to the raw
device, and providing read and write routines which set up a buffer header with
the appropriate information and call the device's strategy routine. If desired,
separate open and close routines may be provided, but this is usually unneces
sary.

A great deal of work has to be done to generate the 'appropriate information'
to put in the argument buffer for the strategy module; the worst part is to map
the relocated user addresses to physical addresses. Most of this work is done by

aphysio(strat, dev, rw)

whose arguments are the name of the strategy routine strat, the device number
dev, and a read-write flag rw whose value is either B_READ or B_WRITE.
aphysio makes sure that the user's base address and count are even (because
most devices work in words) and that the core area affected is contiguous in
physical space; it assigns a buffer header for the transaction (or delays until a
header is free), fills in the buffer header for the transaction, and calls the strat
egy routine. Upon return from the strategy call, aphysio waits for the transac
tion to complete, or returns immediately if asynchronous 1/0 was requested.
(Asynchronous 1/0 is specified by bit 0200 in the minor device number, and bit

5-14

------------- ----~--------------------------

THE VENIX 1/0 SYSTEM

0100 further specifies that signal SIGAIO be sent to the user upon I/0 comple
tion.)

Note that on some large disk drivers (for example the RM02 driver), the raw
I/0 feature should be used with caution on inverted partitions. Here the blocks
are physically backwards to reduce disk head movement, and thus multi-block
transfers will not logically access the correct data if the transfer spirals across
cylinders.

5-15

Table of Contents

7. DEVICES
intro introduction to device drivers
ad analog to digital converter

(ADV11-A, DT2762,DT2782, etc.)
async asynchronous raw 1/0
da digital to analog converter

(AAVll-A, DT2766, DT2771, etc.)
dh .. DH-11 asynchronous multiplexer
dl ... KL-11 or DL-11 asynchronous interface
dz .. DZ-11 asynchronous multiplexer
ht ... RH-11/TU-16 magtape interface
ib 11 . IEEE488 controller driver
lp ... line printer
mem primary memory
null data sink
pio . parallel digital input/ output

(DEC DRV11 or DR11-C)
rk05 RK05 disk
rk06 : ~ RK06/07 disk
rl ... RL01/RL02 disk
rm02 RM02/RM03 disk
rm05 RMOS disk
rp02•........ RP02/RP03 disk
rp04 RP04/RP05 and RP06 disk
rq ... Micro/PDP-11 winchester/floppy

RQDX controller
rtc .. real time clock (DEC KWVll)
rx ... RX01/RX02/RX03 floppy disk
sms ~................................. Scientific Micro System FWT

floppy /winchester disks
tc .. TC-11/TU56 DECtape
tm TM 11 /TU1 0 or TS 11 magtape interface
tty general terminal interface
vp .. Versatec or B~nson/Varian printer /plotter

-i-

8. SYSTEM MAINTENANCE PROCEDURES

boot startup procedures
cron . clock daemon
getty set typewriter mode
init process control initialization
shutdown exit from multi-user to single-user
update periodically update the super block

-ii-

INTRO (7) INTRO (7)

NAME
intro - introduction to device drivers

DESCRIPTION

1

VENIX uses two types of device interfaces: block and character. The
block interface is buffered and handled in chunks of 512 bytes at a time:
this includes standard disk 1/0 and magtape. The character interface is
handled on an unbuffered, byte-by-byte basis; all terminals and other
serial 1/0 lines are handled in such a manner. However, disks and
magtape can also be treated in a character (read "unbuffered") fashion.
This is called "raw" 1/0, and is generally faster than regular block 1/0.

The most common character device is the terminal, which is ·explained in
detail in tty(7). The rest of this introduction is concerned with the ways
in which the system and user deal with disks.

In order to successfully utilize the disk resources of a VENIX system it is
important to understand the difference between physical and logical rep
resentation of disk regions. A single physical disk may be logically
divided by the device driver into a number of partitions, each one of
which is treated by the software as a separate pseudo-disk. These
pseudo-disks may be situated on any part of any physical drive, and
some may overlap others. Each pseudo-disk has a unique pseudo-disk
(also called "minor device") number, generally between 0 and 7. There
is typically one pseudo-disk which represents the entire physical disk vol
ume, while others correspond to portions of a physical volume. The
pseudo-disk or "minor device" number assignments for each disk are
found in the individual writeups in this section.

Users of VENIX do not customarily deal with these pseudo-disks by their
number. Instead, they refer to file names which appear in the root file
system in directory /dev. The utility mknod(1) is used to create entries
in /dev: it in effect maps a pseudo-disk to a particular /dev file entry.
This correspondence can be seen in a /dev directory listing, where for
each file name, the actual pseudo-disk number appears as the second of
two numbers in the field where the file sizes are usually placed. (The first
number is the ''major device'' number, indicating which disk controller
the pseudo-disk actually resides on.)

For purposes of clarity, the standard names for disks in I dev have two
parts separated by a dot '.', for example /dev/riO.sys. The riO indicates
that the device is part of the RL disk unit number 0. Customarily, the
first two letters refer to the type of physical drive (in this case, an RL or
RL-emulating drive), and the number to its physical drive number (unit

VENIX Devices

INTRO (7) INTR0(7)

BUGS

2

0). The sys indicates that it refers to the pseudo-disk partition used for
system programs. Other partitions on the same disk unit would be called
/dev/riO.usrO, /dev/riO.usrl, ... referring to various partitions assigned
to individual users, /dev/riO.tmp for the temporary areas (used for inter
mediate files by compilers, editors, and other programs), and /dev/riO.all
for the complete physical drive. The latter of course overlaps with all
the other partitions. Frequently the .all is simply dropped from the latter
and only the preceding part of the name is used: /dev/riO.

Traditionally, file names of the above form are used when doing regular
block buffer 1/0. If "raw", unbuffered 1/0 is wanted, the file name is
given an additional 'r' before the name; for example, /dev/rriO refers to
all of physical drive RL unit 0, to be accessed in raw mode. If asynchro
nous 1/0 is used, an 'a' instead of an 'r' precedes the name: /dev/arl2
refers to all of physical drive RL unit 2, to be accessed asynchronously.·
(Raw and asynchronous 1/0 is always done to complete disk units; see
async(7).)

For the purpose of moving around in the VENIX file system, the general
user does not even need to know about the device name associated with
his or her individual files, since disks devices are attached or mounted
(see mount(l)) to directories within the root file system. The VENIX dis
tribution comes with several directories in the root file system - /uO,
/u2, and /u3 which will be used as the roots of the three user file systems
when the system is put into multi-user mode. To keep things simple, the
main disk device unit 0 (for example, /dev/riO) is usually mounted on
/uO, disk device unit 1 on /ul, and so on, so it is easy to tell what logi
cal disk all files with a given pathname reside on.

In summary, there are three basic levels on which disks are used. At the
highest and most general level (on which general users operate), a file's
pathname specifies the location of a file on some file system; the actual
storage medium involved is of no importance (although the first compo
nent of the name may be some clue to the logical device involved). At
the next level (of which the system administrator must have some knowl
edge), we have device file names in the /dev directory, which refer to log
ical disk partitions. Finally, at the bottom level (known only to the
device driver), the mapping between logical partitions and their physical
location on disk is made.

VENIX should have flag-free disk packs.

VENIX Devices 2

INTRO {7) INTRO { 7)

NAME
intra - introduction to device drivers

DESCRIPTION
VENIX uses two types of device interfaces: block and character. The
block interface is buffered and handled in chunks of 512 bytes at a time:
this includes standard disk I/0 and magtape. The character interface is
handled on an unbuffered, byte-by-byte basis; all terminals and other
serial I/0 lines are handled in such a manner. However, disks and
magtape can also be treated in a character {read "unbuffered") fashion.
This is called "raw" I/0, and is generally faster than regular block I/0.

The most common character device is the terminal, which is explained in
detail in tty{7). The rest of this introduction is concerned with the ways
in which the system and user deal with disks.

In order to successfully utilize the disk resources of a VENIX system it is
important to understand the difference between physical and logical rep
resentation of disk regions. A single physical disk may be logically
divided by the device driver into a number of partitions, each one of
which is treated by the software as a separate pseudo-disk. These
pseudo-disks may be situated on any part of any physical drive, and
some may overlap others. Each pseudo-disk has a unique pseudo-disk
{also called "minor device") number, generally between 0 and 7. There
is typically one pseudo-disk which represents the entire physical disk vol
ume, while others correspond to portions of a physical volume. The
pseudo-disk or "minor device" number assignments for each disk are
found in the individual writeups in this section.

Users of VENIX do not customarily deal with these pseudo-disks by their
number. Instead, they refer to file names which appear in the root file
system in directory /dev. The utility mknod{l) is used to create entries
in /dev: it in effect maps a pseudo-disk to a particular /dev file entry.
This correspondence can be seen in a I dev directory listing, where for·
each file name, the actual pseudo-disk number appears as the second of
two numbers in the field where the file sizes are usually placed. {The first
number is the ''major device'' number, indicating which disk controller
the pseudo-disk actually resides on.)

For purposes of clarity, the standard names for disks in /dev have two
parts separated by a dot '.', for example /dev/rlO.sys. The riO indicates
that the device is part of the RL disk unit number 0. Customarily, the
first two letters refer to the type of physical drive {in this case, an RL or
RL-emulating drive), and the number to its physical drive number {unit

VENIX Devices

INTRO (7) INTRO (7)

BUGS

2

0). The sys indicates that it refers to the pseudo-disk partition used for
system programs. Other partitions on the same disk unit would be called
/dev/riO.usrO, /dev/riO.usrl, ... referring to various partitions assigned
to individual users, /dev/riO.tmp for the temporary areas (used for inter
mediate files by compilers, editors, and other programs), and /dev/riO.all
for the complete physical drive. The latter of course overlaps with all
the other partitions. Frequently the .all is simply dropped from the latter
and only the preceding part of the name is used: /dev/riO.

Traditionally, file names of the above form are used when doing regular
block buffer I/0. If "raw", unbuffered I/0 is wanted, the file name is
given an additional 'r' before the naine; for example, /dev/rriO refers to
all of physical drive RL unit 0, to be accessed in raw mode. If asynchro
nous I/0 is used, an 'a' instead of an 'r' precedes the name: /dev/arl2
refers to all of physical drive RL unit 2, to be accessed asynchronously.
(Raw and asynchronous I/0 is always done to complete disk units; see
async(7).)

For the purpose of moving around in the VENIX file system, the general
user does not even need to know about the device name associated with
his or her individual files, since disks devices are attached or mounted
(see mount(l)) to directories within the root file system. The VENIX dis
tribution comes with several directories in the root file system - /uO,
/u2, and /u3 which will be used as the roots of the three user file systems
when the system is put into multi-user mode. To keep things simple, the
main disk device unit 0 (for example, /dev/riO) is usually mounted on
/uO, disk device unit 1 on /ul, and so on, so it is easy to tell what logi
cal disk all files with a given pathname reside on.

In summary, there are three basic levels on which disks are used. At the
highest and most general level (on which general users operate), a file's
pathname specifies the location of a file on some file system; the actual
storage medium involved is of no impo~tance (although the first compo
nent of the name may be some clue to the logical device involved). At
the next level (of which the system administrator must have some knowl
edge), we have device file names in the /dev directory, which refer to log
ical disk partitions. Finally, at the bottom level (known only to the
device driver), the mapping between logical partitions and their physical
location on disk is made.

VENIX should_ have flag-free disk packs.

VENIX Devices 2

AD(7) AD(7)

NAME
ad- analog to digital converter (ADVll-A, DT2762, DT2782, etc.)

DESCRIPTION
ad is a special file which refers to an analog-to-digital converter. A read
initiates a transfer on channel 0 for the specified number of conversions
(byte count divided by 2) with each conversion by default triggered by
the ''real-time clockc''. Each conversion uses one 16-bit word, and the
data is right-justified within the word. After the requested number of
conversions are completed the read returns to the user program; thus,
depending on the clock rate and number of conversions, the time for the
read can be quite long.

If the AID has direct memory access (DMA) capabilities (for example,
Data Translation's DT2782 board), then asynchronous I/0 can be used
by accessing the special file aad.

The previously described default AID operation can be modified by
ioctl(2) calls specifying the desired parameters in the following structure:

struct

};

adcntr {
int
int

chan;
mode;

where chan is the input channel number (generally 0 through 7), and
mode can have the following bit combinations:

For an AID interface without DMA capability (e~g. ADV11-A or
DT2762)

GAIN 000
004
010
014

EXT 020
RTC 040

times 1
times 2
times 4
times 8
conversion triggered from external clock
conversion triggered by "real-time clock"

For an AID interface with DMA capability (e.g. DT2782)

CINC 010
BURST004
RTC 040

increment channel number after each conversion
convert at maximum rate
conversion triggered by 'real-time clock'

One or the other, but not both of EXT/BURST or RTC must be

VENIX Devices

AD(7)

FILES

AD(7)

specified. The following example will select a GAIN of 'times 2' with
'external trigger' and conversions from channel 2 for a non-DMA AID.

#include < sgtty .h >

struct adcntr {
int chan;

mode; int
} adcntr;

afd = open('ldevlad,'O);

adcntr.chan = 2;
adcntr.mode = 04 I 020;
ioctl(afd, TIOCSETP, &adcntr);

n_bytes = read(afd, ...

If the special file adclear is simply opened, then the current transfer in
terminated. This is useful when the AID is hung because there is no
active trigger source.

ldevlad
ldevlaad
I dev I ad clear

minor device # 0
minor device # 8
minor device # 128

SEE ALSO
ioctl(2), async(7), rtc(7)

LIMITATIONS

2

The conversion rate is limited to a maximum of 1 to 5 kHz for non
DMA transfers. Asynchronous transfers can also lose 'end of transfer'
points (i.e. data between the end of one transfer and the start of the next
transfer) for conversion rates greater then 1 to 5 kHz. Both these limita
tions depend on the processor and other hardware in the configuration,
and are primarily due to interrupt latency.

VENIX Devices 2

ASYNC(7) ASYNC(7)

NAME
async- asynchronous raw 1/0

DESCRIPTION
Asynchronous 110 (a process continues running while the 110 transfer is
taking place) may be used on any Direct Memory Access (DMA) device.
This increases a process's 110 throughput and flexibility, at the expense
of more programming and buffer overhead. Typically, asynchronous
1/0 is useful when multiple queuing of buffers is required (the time
between transfers is short) or data comes in sporadic bursts and the proc
ess must continue processing.

Asynchronous 110 is restricted to raw mode (i.e. character type special
files: the VENIX buffering scheme is by-passed) on DMA devices such as
disks, many A/D's and D/ A's, etc. The minor device number (see
mknod(l)) of the special file has the following 'magic' values added to
get different flavors of asynchronous 1/0.

0200 (128)
0100 (64)

enable Asynchronous 110
send SIGAIO (16) upon 110 completion

For example, suppose the special file 'ldevlrrk2' exists for raw 1/0 on
drive 2 of a RK05 disk system and it was created by:

/etc/mknod /dev/rrk2 c 11 2

The asynchronous version would be created by:

/etc/mknod /dev/ark2 c 11130

The aiowait and the standard open,seek,read, etc. system calls are used
with asynchronous 1/0, with the difference that read and write system
calls immediately return to the caller. The returned transfer count is set
as if the transfer actually took place.

It is possible to have the same raw device open for both synchronous
(normal) and asynchronous 110. Keep in mind that raw 1/0 to disks
defeats the VENIX file structure, thus a disk (or disk partition) is gener
ally exclusively used for raw mode 1/0.

SEE ALSO
aiowait(2), signal(2), mknod(l), ad(7), da(7), rtc(7)
"VENIX Programming" for a discussion of asynchronous 1/0 program
ming

VENIX Devices

ASYNC(7) ASYNC (7)

DIAGNOSTICS

BUGS

2

Signal SIGIOT (signal number 6) is sent if there is a device I/0 error
during asynchronous I/0. It is currently impossible to know anything
more about the nature of the error.

Since signals are not queued, it is possible to loose a SIGAIO if multiple
queuing is used and the queuing rate is faster then the scheduling inter
val. Thus aiowait(2) should be used with fast throughput and multiple
queuing.

There is a system dependent maximum number (currently 5) of simulta
neously queued asynchronous I/0 requests, which if exceeded, causes the
caller on the next request to go to sleep until one of the queued asyn
chronous I/0 requests finishes.

VENIX Devices 2

DA(7) DA(7)

NAME
da- digital to analog converter (AAVll-A, DT2766, DT2771, etc.)

DESCRIPTION
da? are special files which refer to the various channels of digital-to
analog converters. A write initiates a transfer of the specified number of
conversions (byte count divided by 2); each conversion writes out a 16-bit
word, and the data must be right-justified within each word.

If the D/ A has direct memory access (DMA) capabilities, then asynchro
nous i/o can be used by accessing the special file ada? The DMA version
of the D/ A interface also has several options which can be invoked by
using ioct1(2) calls specifying the desired parameters in the following
structure:

struct dacntr {
char mode;
char data;

};

Where data is 4 bits of data (in the low 4 bits) output to TTL connec
tions on the interface and mode can be - 1 for single channel output
operation, or 0 for dual channel operation appropiate for driving a stor
age scope. The following example selects the dual channel operation.

#include < sgtty .h >
struct dacntr {

char
char

} dacntr;

mode;
data;

dfd = open('/dev/daO,'l);

dacntr.data = 0;
dacntr .mode = 0;
ioctl(dfd, TIOCSETP, &dacntr);

n_bytes = write(dfd, ...

VENIX Devices

DA(7)

FILES
/dev/daO
/dev/da1

/dev/adaO
/dev/ada1

SEE ALSO
ioctl(2), async(7)

2

minor device # 0
minor device # 1

minor device # 128
minor device # 129

VENIX Devices

(asynchronous)
(asynchronous)

DA(7)

2

DH(7) DH(7)

NAME
dh - DH-11 asynchronous multiplexer

DESCRIPTION

FILES

Each line attached to the DH-11 asynchronous multiplexer behaves as
described in tty(7). Input and output for each line may be independently
set to run at any of 16 speeds; see ioctl(2) for the encoding.

/dev/tty
/dev/tty?? ...

SEE ALSO
tty(7), ioctl(2)

1 VENIX Devices

DL (7) DL(7)

NAME
dl - KL-11 or DL-11 asynchronous interface

DESCRIPTION

FILES

The discussion of typewriter 110 given in tty(7) applies to these devices.
Since they run at a constant speed, attempts to change the speed via
ioctl(2) are ignored.

The on-line console typewriter is interfaced using a DL-11 or KL-11.
During a system boot, VENIX will come up single-user with 110 on the
console.

I dev I console minor device # 0
ldevltty
ldevltty?? ...

SEE ALSO

BUGS

tty(7), init(8)

The DL tends to lose characters due to interrupt latency when operating
at high baud rates or during a period of heavy system usage. For this
reason, an asynchronous interface with an input silo, such as the DZ, is
recommended for modems.

Modem control for the DL is not implemented.

VENIX Devices

DZ(7) DZ(7)

NAME
dz - DZ-11 asynchronous multiplexer

DESCRIPTION

FILES

Each line attached to the DZ-11 asynchronous multiplexer behaves as
described in tty(7). Input and output for each line may be set to run at
any of 16 speeds; see ioct1(2) for the encoding.

/dev/tty?? ...
/dev/tty
/dev/tty

SEE ALSO
tty(7), ioct1(2)

VENIX Devices

HT(7) HT(7)

NAME
ht- RH-11/TU-16 magtape interface

DESCRIPTION

FILES

The files mtO ••• mt7 refer to the DEC RH/TM/TU16 magtape. The 020
bit (decimal 16) on in the minor device number selects single density. If
the 040 bit (decimal 32) is on in the minor device number the tape will
not be rewound when closed, and the head will be left positioned
between the two tapemarks. {The files nmtO ..• nmt7 have this bit on.)
If the file was open for writing, two end-of-files are written when it is
closed.

A standard tape consists of a series of 512 byte records terminated by an
end-of-file. To the extent possible, the system allows the tape to be
treated (though perhaps inefficiently) like any other file. Seeks have their
usual meaning and it is possible to read or write a byte at a time. Writ
ing in very small units is inadvisable, however, because it tends to create
monstrous record gaps.

The mt files discussed above are useful when it is desired to access the
tape in a way compatible with ordinary files. When foreign tapes are to
be dealt with, and especially when long records are to be read or written,
the 'raw' interface is appropriate. The associated files are named rmtO
. . • rmt7. Each read or· write call reads or writes the next record on the
tape. In the write case the record is the same length as the buffer given.
During read, the record size is passed back as the number of bytes read,
provided it is no greater then the buffer size; if the record is long, an
error is indicated. In raw tape I/0, the buffer must begin on a word
boundary and the count must be even. Seeks are ignored. A zero byte
count is returned when a tape mark is read, but another read will fetch
the first record of the new tape file. Asynchronous I/0 can be done in
the usual way.

/dev/mt?
/dev/mt?s
/dev/rmt?, /dev/rmt?s
/dev/nmt?, /dev/nmt?s
/dev/nrmt?, /dev/nrmt?s

(1600 bpi tape)
(800 bpi tape)
(1600, 800 bpi raw tape)
(1600, 800 bpi no-rewind-on-close tape)
(1600, 800 bpi raw,
no-rewind-on-close tape)

/dev/amt?, /dev/amt?s

SEE ALSO

(1600, 800 bpi asynchronous tape)

tar(l), tp(l)

VENIX Devices

HT(7) HT(7)

DIAGNOSTICS

BUGS

2

On unrecoverable errors, the following message is printed on the console:
Error on dev X/Y
bnNerA B

X and Y are the major and minor device numbers. Error is in block
number N; A is control-status register 1; B is the error register.

If any non-data error is encountered, the handler refuses to do anything
more until the device is closed. In raw 1/0, there should be a way to
perform forward and backward record and file spacing and to write an
EOF mark.

Taking a drive off line, or running off the end of tape while writing, have
been known to hang the system.

VENIX Devices 2

IBll (7) IBll (7)

NAME
ib 11 - IEEE488 controller driver

DESCRIPTION
This driver handles input and output on the DEC IBVll bus controller
board in a multi-user compatible fashion. Not all features of the
IEEE488 standard bus are implemented, most significantly, service
requests. Those available include reading and writing to primary bus
addresses, go-to-local, selected-device-clear, group-execute-trigger, and
local-lock -out.

All bus protocol and handshaking are transparent to the user (ie. ATN,
MLA, UNT and so forth). Thus the user may not need to become too
familiar with the standard. In practice, some less sophisticated commer
cial devices have their own special quirks which may require special
attention.

A separate special file is made for each device which is to use the bus.
The minor device number is the same as the bus address of the periph
eral, typically beginning with 0 and increasing. Low numbered devices
have higher priority. However, to assure general usefulness, the driver
will change devices only at the end of messages.

Note that a disconnected device will not cause an error message on open
ing, but on the first attempted transaction. Certain types of peripherials,
notably Phillips devices, will object to the sending of null bytes, and
other means of determining if they are indeed present. An IBC
(interface-bus-clear) signal is sent when the first device is opened. A
device may be opened only once.

IIO may then be done via standard read and write calls. The STDIO
library may be used as well with many devices, but proper attention
should be paid to buffering. Talker and listener addressing is done auto
matically.

The ioctl(2) calls use the following structure defined in ibv .h:
struct sgibv {

unsigned short ib_ftags; I* see below *I
char ib_trm2, ib~trm1; I* terminator character #2

or 1 char terminator *I
char ib_trm1, ib_trm1;

short ib_timo;
};

VENIX Devices

I* terminator character # 1 or 0
if only a single terminator *I
I* timeout in ticks *I

IBll (7) IB11(7)

2

The IIOCSETP command, defined in ibv.h is used to set (write) these
values. Usage is:

ioctl (fd, IIOCSETP, ps);

where ps is a pointer to an sgibv structure. The flag bits encoded in
ibJags are:

#define C_ONETERM 0000002
#define C_ERROR 0010000

#define C_ TERMCHK 0002000

I* one character terminator seq* I
I* there has been an error since

last read or write began *I
I* look for terminators *I

The default terminator is a <cr> <If> combination. If the terminator
is found on a read, input is assumed to be finished. On a write, termina
tors merely define where a higher priority device may slip in and where
the EOI line should be set. Reads will also terminate if the device sets
the EOI line. Terminators may be turned off by clearing the
C_TERMCHK bit.

The timeout feature is optional. If a request is pending for longer than
the specified number of clock ticks, an error return occurs. The default
timeout delay is 600 ticks (10 seconds). A timeout of 0 disables this fea
ture.

The IIOCCMD command, defined in ibv.h, is used to send a command
onto the bus. The following commands are guaranteed to behave prop
erly:

#define C-'-GTL 001
#define C_SDC 004
#define C_GET 010
#define C_LLO 021
N define C_DCL 024

Usage is:

ioctl (fd, IIOCCMD, p);

I* ieee commands *I

where pis a pointer to an integer containing a command. If an error or
service request interrupt occurs, the devices ibs and ibd registers will be

VENIX Devices 2

IB11(7) IBll (7)

FILES

NOTES

3

printed out on the console.

I dev I device-name - minor device number
lusrlsysldevlibv .h

bus address of device

Service requests and polling are not available. Nonstandard devices
(CAMAC interfaces) which use the UNT and UNL signals as terminators
may need spurious reads or writes.

The driver uses a full 8 bit interface. A signal during a transaction will
cause no problem worse than a spurious error message on the next trans
action to that device.

VENIX Devices 3

LP(7) LP(7)

NAME
lp - line printer

DESCRIPTION

FILES

lp provides the interface to any of the standard DEC line printers. When
it is opened or closed a suitable number of page ejects is generated.
Bytes written are printed.

There are numerous parameters in the driver which can be modified for
local printer variations. The driver needs to be recompiled into the sys
tem to effect these changes.

/dev/lp

SEE ALSO

BUGS

lp(l)

Many systems have the local printer on an asynchronous interface. To
avoid confusing lp(l), this interface line, though through a DL or asyn
chronous line, is called /dev/lp. Thus /dev/lp is really a generic name
for the local printer.

VENIX Devices

MEM(7) MEM(7)

NAME
mem, kmem- primary memory

DESCRIPTION

FILES

BUGS

mem is a special file that is an image of the primary memory of the com
puter. It may be used, for example, to examine, and even patch the sys
tem. kmem is the same as mem except that kernel virtual memory rather
than physical memory is accessed.

Byte addresses are interpreted as memory address. Reading non-existent
locations finds -1 at those places.

Examining and patching device registers is likely to lead to unexpected
results when read-only or write-only bits are present.

On PDP11 's, the 1/0 page begins at location 0160000 of kmem and per
process data for the current process begins at 0140000.

/dev/mem, /dev/kmem

On PDPll 's, memory files are accessed one byte at a time, an inappro
priate method for some device registers.

VENIX Devices

NULL(7)

NAME
null- .data sink

DESCRIPTION
Data written to a null special file is callously discarded.
Reads from a null special file always return 0 bytes.

FILES
/dev/null

VENIX Devices

NULL (7)

PIO (7) PIO (7)

NAME
pio- parallel digital input/output (DEC DRV11 or DR11-C)

DESCRIPTION

FILES

pio is the special file which refers to the parallel digital 110 interface. A
write transfers the requested number of words (byte count divided by 2)
to the output register. Likewise, a read transfers the requested number
of words from the input register.

The "control and status" register can be written or read by using ioctl(2)
calls with a TIOCSETP (write) or TIOCGETP (read) request, and a
pointer to the following structure.

struct piocntr [
int csr;
int n_intra;
int n_intrb;

};

where csr has the following bit definitions:

CSRO 0001
CSR1 0002
lEA 0100
IEB 0040
REQA 0000200
REQB 0100000

control bit on connector 2
control bit on connector 1
interrupt enable request A
interrupt enable request B

. request A
request B

N_jntra and n_intrb contain the number of interrupts since the previ
ous ioctl call (with a TIOCGETP command).

/dev/pio

SEE ALSO

BUGS

ioctl(2), tty(7)

The interrupt handling is rather crude, but difficult to implement in a
general way. Interested users are refered to the driver source, which they
may modify to suit their specific needs.

VENIX Devices

RK05 (7) RK05 (7)

NAME
rk05 - RK05 disk

DESCRIPTION

FILES

rk? refers to an entire disk as a single sequentially-addressed file. Its
256-word blocks are numbered 0 to 4871. Minor device numbers are
drive numbers on one controller.

The following names are used for disk partitions. Each partition is an
entire unit.

minor
no.

0

2

3

starting
block.

0

0

0

0

length in
blocks

4872

4872

4872

4872

usage

user

user

user

user

suggested
name

/dev/rkO

/dev/rkl

/dev/rk2

/dev/rk3

The rk files discussed above access the disk via the system's normal
buffering mechanism and may be read and written without regard to
physical disk records. There is also a 'raw' interface which provides for
direct transmission between the disk and the user's read or write buffer.
A single read or write call results in exactly one I/0 operation and there
fore raw 1/0 is considerably more efficient when many words are trans
mitted. The names of the raw RK files begin with rrk and end with a
number which selects the same disk as the corresponding rk file. Addi
tionally, raw RK files can be accessed asynchronously (async(7)) by using
the name ark ending with a number which selects the same disk as the
corresponding rk file. In raw I/0 the buffer must begin on a word
boundary.

/dev/rk?, /dev/rrk?

VENIX Devices

RK05 (7) RK05 (7)

NOTES
Error-free disks are strongly recommended.

DIAGNOSTICS

BUGS

2

On unrecoverable errors, the following message is printed on the console:
Error on dev X/Y
bnNerA B

X and Y are the major and minor device numbers. Error is in block
number N; A is the error register; B is the drive status register.

In raw 1/0 read and write(2) truncate file offsets to 512-byte block
boundaries, and write scribbles on the tail of incomplete blocks. Thus,
in programs that are likely to access raw devices, read, write and Iseek(2)
should always deal in 512-byte multiples.

VENIX Devices 2

RK06 (7) RK06 (7)

NAME
rk06- RK06101 disk

DESCRIPTION
rkO.sys •.. rkO.usr refer to sections of RK disk drive 0. The files rkl.usr
refer to drive 1 (if present) and so on. This allows a large disk to be
broken up into more manageable pieces. Each RK06 drive contains
27126 512-byte blocks and each RK07 contains 53790 512-byte blocks.

The origin and size of the disk partitions are as follows. The table is
extended for 2 RK06107 disks. (In the following table, the alternative
partition sizes for RK06 and RK07 drives are given respectively in pairs.)

minor starting length in usage suggested
no. block blocks name

0 0 7854 root(6816) I dev lrkO.sys
swap(1038)

7854 2442 tmp ldevlrkO.tmp

2 10296 16830 (rk06) user ldevlrkO.usr
53790 (rk07)

3 0 27126 (rk06) complete drive 0 I dev lrkO.all
53790 (rk07)

4 0 27126 (rk06) user, unit 1 ldevlrkl.usr
53790 (rk07)

5 unassigned

The rk files discussed above access the disk via the system's normal
buffering mechanism and may be read without regard to physical disk
records. There is also a "raw" interface which provides for direct trans
mission between the disk and the user's read or write buffer. A single
read or write call results in exactly one 110 operation, therefore raw 110
is considerably more efficient when many words are transmitted. The
names of the raw RK files begin with rrk and end with a name which
selects the same disk section as the corresponding rk file. Additionally,
raw RK files can be accessed asynchronously (async(7)) by using the
name ark followed by a name which selects the same disk section as the

VENIX Devices

RK06 (7) RK06 (7)

corresponding r~ file.
In raw I/0 the buffer must begin on a word boundary.

NOTES
Error-free disks are strongly recommended.

FILES
/dev/rk*, /dev/rrk*, /dev/ark*

DIAGNOSTICS

BUGS

2

On recovered ECC errors, the following is printed on the console:
NECC on dev XIY

X and Y are the major and minor device numbers. Error is in block
number N.

On unrecoverable errors, the following 1s printed on the console:
Error on dev X I Y
bnNerA B

X and Y are the major and minor device numbers. Error is in block
number N; A is control-status register 1; B is the error register

In raw I/0 read and write(2) truncate file offsets to 512-byte block
boundaries, and write scribbles on the tail of incomplete blocks.

VENIX Devices 2

RL(7) RL(7)

NAME
rl- RL01/RL02 disk

DESCRIPTION
riO.sys .•. riO.usr refer to sections of RL disk drive 0. The files rll.usrO ,
rll.usrl refer to drive 1 (if present) and so on. This allows a large disk
to be broken up into mote manageable pieces. Each RL02 drive contains
20480 512-byte blocks and each RL01 contains 10240 51Z-byte blocks.

The origin and size of the disk partitions are as follows. The table is
extended for 2 RL02 disks.

minor starting length in usage suggested
no. block blocks name

0 0 20480 complete drive 0 /dev/rlO.all

0 7840 root(6816) /dev/rlO.sys
swap(1024)

2 7840 2400 tmp /dev/rlO.tmp

3 10240 10240 (rl02) user (rl02 only) /dev/rlO.usr
- (rl01)

4 0 20480 (rl02) complete drive 1 /dev/rll.usr
10240 (rl01)

5 0 10240 half drive one I dev /rll.usrO

6 10240 10240 (rl02) half drive one /dev/rll.usr1
- (r101) (rl02 only)

7 unassigned

The rl files discussed above access the disk via the system's normal
buffering mechanism and may be read without regard to physical disk
records. There is also a 'raw' interface which provides for direct trans
mission between the disk and the user's read or write buffer. A single
read or write call results in exactly one I/0 operation, therefore raw I/0
is considerably more efficient when map.y words are transmitted. The
names of the raw RL files begin with rrl and end with a name which

VENIX Devices

RL(7)

FILES

NOTES

RL(7)

selects the same disk section as the corresponding rl file. Additionally,
raw RL files-can be accessed asynchronously (async(7)) by using the name
arl followed by a name which selects the same disk section as the corre
sponding rl file.

In raw I/0 the buffer must begin on a word boundary.

/dev/rl*, /dev/rrl*, /dev/arl*

Error-free disks are strongly recommended.

DIAGNOSTICS

BUGS

2

On unrecoverable errors, the following is printed on the console:
Error on dev X I Y
bnNerA B

X and Y are the major and minor device numbers. Error is in block
number N; A is the control-status register; B is the word-count register

In raw I/0 read and write(2) truncate file offsets to 256-byte block
boundaries, and write scribbles on the tail of incomplete blocks.

VENIX Devices 2

RM02(7) RM02(7)

NAME
rm02 - RM021RM03 disk

DESCRIPTION
rmO.usrO ••. rmO.usr2 refer to sections of RM disk drive 0. The files
rml.usrO ... rml.usr2 refer to drive 1, etc. This allows a large disk to
broken up into more manageable pieces. Each RM02 disk drive contains
131,680 512-byte blocks (67 mbytes).

The origin and size of the pseudo-disks are as follows:

minor starting
no. block

0 0

length in
blocks

160

160 50880

2 51040 7840

3 58880 2400

4 61280 50880

5 112160 19520

6 unassigned

7 unassigned

usage

for boot block

user (inverted)

root(6816)
swap(1024)

tmp

user

small user

suggested
name

ldevlrmO.boot

I dev I rmO. usrO

ldevlrmO.sys

ldevlrmO.tmp

ldevlrm0.usr1

ldevlrm0.usr2

The rm files discussed above access the disk via the system's normal
buffering mechanism and may be read without regard to physical disk
records. There is also a 'raw' interface which provides for direct trans
mission between the disk and the user's read or write buffer. A single
read or write call results in exactly one 110 operation therefore raw 1/0
is considerably more efficient when many. words are transmitted. The
names of the raw RM files begin with rrm and end with a name which
selects the same disk section as the corresponding rm file. Additionally,
raw RM file can be accessed asynchronously (see async(7)) by using the
name arm followed by a name which selects the same disk section as the
corresponding rm file.

VENIX Devices

RM02 (7) RM02(7)

FILES

In raw I/0 the buffer must begin on a word boundary.
Head positioning latency (seek time) often can be reduced by a judicious
layout of the file systems on a disk. The RM offers some illustrations.
First of all, larger physical disks are often partitioned into smaller logical
sections; in the RM's case this is a necessity because of the 32 mbyte
maximum file system size. Given this, then the fact that on a file system
the i-nodes are at the beginning with data tending to extend toward the
end (the last used area), makes it clear that two files systems back-to
back (the physically first file system being inverted) will not have an
unused area to be skipped over between file systems, as two forward file
systems do. Since the root file system is most frequently referenced, it is
best to sandwich it between two back-to-back file systems. Finally, an
infrequently used file system should be put at the physical end of the
disk.

/dev/rm*, /dev/rrm*, /dev/arm*

DIAGNOSTICS

BUGS

NOTES

2

On recovered ECC errors, the following is printed on the console:
NECC on dev XIY

X and Y are the major and minor device numbers. Error is in block
number N.

On unrecoverable errors, the following is printed on the console:
Error on dev XIY
bnNerA B

X and Y are the major and minor device numbers. Error is in block
number N; A is control-status register 2; B is error register 1.

In raw I/0 read and write(2) truncate file offsets to 512-byte block
boundaries, and write scribbles on the tail of incomplete blocks.

Error-free disks are strongly recommended.
Raw I/0 of more then single block transfers should not be used on an
inverted file system because a logical forward sequence of blocks is physi
cally reversed.

VENIX Devices 2

RM05 (7) RM05 (7)

NAME
rm05 - RM05 disk

DESCRIPTION
rmO.usrO ... rm0.usr7 refer to sections of RM disk drive 0. The files
rml.usrO ... rml.usr7 refer to drive 1, etc. This allows a large disk to
broken up into more manageable pieces. Each RM05 disk drive contains
500,384 512-byte blocks (256 mbytes).

The origin and size of the pseudo-disks are as follows:

minor starting length in usage suggested
no. block blocks name

0 0 608 for boot block I dev I rmO. boot

6 65056 user (inverted) ldevlrmO.usrO

2 65664 9728 root(6816) ldevlrmO.sys
swap(2912)

3 75392 3648· tmp ldevlrmO.tmp

4 79040 65056 user ldevlrm0.usr1

5 144096 65056 user ldevlrmO.usr2

6 209152 65056 user ldevlrm0.usr3

7 274208 65056 user ldevlrm0.usr4

8 339264 65056 user ldevlrmO.usr5

9 404320 65056 user I dev I rmO. usr6

10 469376 31008 small user ldevlrmO.usr7

11 unassigned

The rm files discussed above access the disk via the system's normal
buffering mechanism and may be read ,without regard to physical disk
records. There is also a 'raw' interface which provides for direct

VENIX Devices

r
I
I RM05 (7) RM05 (7)

FILES

transmission between the disk and the user's read or write buffer. A sin-. . .

gle read or write call results in exactly one I/0 operation therefor raw
I/0 is considerably more efficient when many words are transmitted.
The names of the raw RM files begin with rrm and end with a name
which selects the same disk section as the corresponding rm file. Addi
tiomilly, raw RM file can be accessed asynchronously (see async(7)) by
using the name arm followed by a name which selects the same disk sec
tion. as the corresponding rm file.

In raw 1/0 the buffer must begin on a word boundary.

/dev/rm*, /dev/rrm*, /d~v/arm*

DIAGNOSTICS

NOTES

BUGS

2

On recovered ECC errors, the following is printed on the console:
NECC on dev XIY

X and Yare the major and minor device numbers. Error is in block
number N.

On unrecoverable errors, the following is printed on the console:
Error on dev X I Y
bnNerA B

X and Y are the major and minor device numbers. Error is in block
number N; A is control-status register 2; B is error register 1.

Error-free disks are strongly recommended.

In raw I/0 read and write(2) truncate file offsets to 512-byte block
boundaries, and write scribbles on the tail of incomplete blocks.

Raw I/0 of more then single block transfers should not be used on an
inverted file system because a logical forward sequence of blocks is physi
cally reversed.

VENIX Devices 2

SHUTDOWN (8) SHUTDOWN (8)

NAME
shutdown - exit from multi-user to single-user

SYNOPSIS
I etc/ shutdown

DESCRIPTION
shutdown checks that all users (except super-users) have logged off and
there are no background processes running, thus preventing accidental
termination of users. (If desired, shutdown will send warning messages
to all users every 30 seconds before beginning the shutdown.) Then all
mounted file systems are unmounted (except the root file system) by
examining /etc/mtab after which the signal SIGTERM is sent to
the /etc/init process (pid 1), informing /etc/init to ~xit from multi-user.

shutdown is usually not executed as a command, but rather as a substi
tute shell for the 'shutdown' login. login shutdown is used to run it.

SEE ALSO

FILES

kill(2), init(8)

/venix system namelist
/etc/init
/etc/mtab

VENIX System Maintenance Procedures

~;;·· ,· .,.: ,-,. -.

~<-·-..... ,.~. "'"-~'-"''"'' ~"'-'• --·-"""'.,..,.,....., ·"'''!'":W"""""'...,.· ,......,.,,_.....,...,.,.~~-~ .. r::;: __ ;;.;,c:;:;c· ,...., "":""'1!1"1'f'~/'?1'!1"10 ~ ... -~........., !'l!li<£1!1!11!!1!r,..,..5.4r1'1' .• .,...,.... __ ,.._ IIJ'III'IIJ',~$11111!1 .. -"""'!""'!'-
·. .., ~,... .. ~

UPDATE(8) UPDATE(8)

NAME

. update - periodically update the super block

SYNOPSIS
I etc/update

. DESCRIPTION

update is a program that executes the sync(2) primitive every 30 seconds.
This insures that the file system is·· fairly up to date in case of a crash.
This command should no~ be executed directly, but should be executed
out of the initialization shell command file /etc/rc.

SEEA~s·o

.. ~;BUGS

. · . .,•·

sync(2), .sync(l), init(8)
' •: "

With upd~le running, if the CPU is halted just as the sync is executed, a
file system can be damaged. This is partially due to DEC hardware that
writ~s zeros when NPR requests fail. shutdown(B) prevents this problem .

...

, ..
~

VENIX System Maintenance Pfocedures l

·.· .•,•.··· ·, . \

RP02 (7) RP02 (7)

NAME
rp02 - RP021RP03 disk

DESCRIPTION
rpO.usrO ... rpO.usr2 refer to sections of RP disk drive 0. The files
rpl.usrO •.• rpl.usr2 refer to drive 1, etc. This allows a large disk to
broken up into more manageable pieces. Each RP02 disk drive contains
40,600 512-byte blocks (20 mbytes), and each RP03 disk drive contains
81,200 512-byte blocks (40 mbyte).

The origin and size of the pseudo-disks are as follows, extended for three
disk units:

minor starting length in usage suggested
no. block blocks name

0 0 8000 sys(6816) ldevlrpO.sys
swap(1184)

8000 2400 tmp ldevlrpO.tmp

2 10400 30200 user I dev I rpO. usrO

3 40600 40600 (rp03) user ldevlrpO.usr1
- (rp02) (rp03 only)

4 0 40600 user, I dev I rp 1. usrO
start drive 1

5 40600 40600 (rp03) user ldevlrp1.usr1
- (rp02) (rp03 only)

6 40600 0 user, I dev lrp2. usrO
start drive 2

7 40600 40600 (rp03) user ldevlrp2.usr1
- (rp02) (rp03 only)

The rp files discussed above access the disk via the system's normal
buffering mechanism and may be read without regard to physical disk
records. There is also a 'raw' interface ,which provides for direct trans
mission between the disk and the user's read or write buffer. A single

VENIX Devices

RP02 (7) RP02 (7)

The rp files discussed above access the disk via the system's normal
buffering mechanism and may be read without regard to physical disk
records. There is also a 'raw' interface which provides for· direct trans
mission between the disk and the user's read or write buffer. A single
read or write call results in exactly one I/0 operation, therefore raw 1/0
is considerably more efficient when many words are transmitted. The
names of the raw RP files begin with rrp and end with a name which
selects the same disk section as the corresponding rp file (e.g. /dev/
rrpO.usrl). · Additionally, raw RP files can be accessed asynchronously
(see async(7)) by using the name arp followed by a name which selects
the same disk section as the corresponding rp file (e.g. /dev/arpO.usrl).

In raw I/0 the buffer must begin on a word boundary.

DIAGNOSTICS

FILES

On unrecoverable errors, the following is printed on the console:
Error on dev X/Y
bnNerA B

X and Y are the major and minor device numbers. Error is in block
number N; A is the control-status register; B is the error register

/dev/rp*, /dev/rrp*, /dev/arp*

NOTES

QUGS

2

Error-free disks are strongly recommended.

In raw 1/0 read and write(2) truncate file offsets to 512-byte block
boundaries, and write scribbles on the tail of incomplete blocks.

Raw 1/0 of more then single block transfers should not be used on an
inverted file system because a logical forward sequence of blocks is physi
cally reversed.

VENIX Devices 2

RP04 (7) RP04 (7)

NAME
rp - RP041RP05 and RP06 disk

DESCRIPTION
rpO.usrO ... rpO.usr2 refer to sections of RP disk drive 0. The files
rpl.usrO ... rpl.usr2 refer to drive 1, etc. This allows a large disk to
broken up into more manageable pieces. Each RP04105 disk drive con
tains 171,798 512-byte blocks (88 mbytes), and each RP06 disk drive con
tains 340,670 512-byte blocks (174 mbyte).

The origin and size of the pseudo-disks are as follows:

minor starting
no. block

0 0

418

2 65626

3 74404

4 106590

5 171798

6 237006

7 302214

length in
blocks

418

65208

8778

32186

65208

65208

65208

38456

usage

for boot block

user (inverted)

suggested
name

I dev I rpO. usrO

root(6816) I dev I rpO. sys
swap(1962)

tmp ldevlrpO.tmp

user I dev I rpO. usr 1
(end of rp04105)

user I dev I rpO. usr2
(rp06 only)

user ldevlrp0.usr3
(rp06 only)

small user ldevlrp0.usr4
(rp06 only)

The rp files discussed above access the disk via the system's normal
buffering mechanism and may be read without regard to physical disk
records. There is also a 'raw' interface which provides for direct trans
mission between the disk and the user's read or write buffer. A single
read or write call results in exactly one 1/0 operation, therefore raw IIO
is considerably more efficient when many words are transmitted. The

VENIX Devices

RP04 (7) RP04 (7)

FILES

names of the raw RP files begin with rrp and end with a name which
selects the same disk section as the corresponding rp file. Additionally,
raw RP files can be accessed asynchronously (see async(7)) by using the
name arp followed by a name which selects the same disk section as the
corresponding rp file.

In raw 110 the buffer must begin on a word boundary.

/dev/rp*, /dev/rrp*, /dev/arp*

DIAGNOSTICS

NOTES

BUGS

2

On recovered ECC errors, the following is printed on the console:
NECC on dev XIY

X and Y are the major and minor device numbers. Error is in block
number N.

On unrecoverable errors, the following is printed on the console:
Error on dev X I Y
bnNerA B

X and Y are the major and minor device numbers. Error is in block
number N; A is control-status register 2; B is error register 1.

Error-free disks are strongly recommended.

In raw 110 read and write(2) truncate file offsets to 512-byte block
boundaries, and write scribbles on the tail of incomplete blocks.

Raw 110 of more then single block transfers should not be used on an
inverted file system because a logical forward sequence of blocks is physi
cally reversed.

VENIX Devices 2

RQ(7) RQ (7)

NAME
rq - Micro/PDP-11 winchester/floppy RQDX controller

DESCRIPTION
The rq driver handles both the Micro/PDP-11 winchester and floppy
controllers. Special files wO.sys, wO.tmp, and wO.usr refer to winchester
partitions; fO and f1 refer to. the floppy drives.

The origin and size of the floppy and hard disk partitions are as follows:

minor starting length in
no. block blocks

0 0 790

0 790

2

3

4 0 7840

5 7840 2400

6 10240 10240

7 20480 40000

usage

floppy drive 0

floppy drive 1

unused

unused

root(6816)
swap(1024)

temporary files

user

user (optional)

suggested
name

/dev/fO

/dev/fl

/dev/wO.sys

/dev/wO.tmp

/dev/wO.usrO

/dev/wO.usr1

The special files discussed above access the disk via the system's normal
'block' buffering mechanism and may be read without regard to physical
disk records. There is also a 'raw' interface which provides for direct
transmission between the disk and the user's read or write buffer. A sin
gle read or write call results in exactly one 1/0 operation, therefore raw
110 is considerably more efficient when many words are transmitted.
The names of the raw RQ files begin with rwO or rf and end with a name
which selects the same disk section as the corresponding block file.
Additionally, raw files can be accessed asynchronously (async(7)) by
using the name arw or arf followed by a name which selects the same
disk section as the corresponding block file.

VENIX Devices

RQ(7) RQ(7)

In raw I/0 the buffer must begin on a word boundary.

FILES
/dev/wO*, /dev/f?, /dev/rwO*, /dev/rf?, /dev/arw*, /dev/arf?

NOTES
Error-free disks are strongly recommended.

DIAGNOSTICS

BUGS

2

On unrecoverable errors, the following is printed on the console:
Error on dev XIY
bnNerA B

X and Y are the major and minor device numbers. Error is in block
number N; A is the receive status register; B is the physical block number

In raw I/0 read and write(2) truncate file offsets to 256-byte block
boundaries, and write scribbles on the tail of incomplete blocks.

VENIX Devices 2

RTC(7) RTC (7)

NAME
rtc- real time clock (DEC KWVll)

DESCRIPTION
rtc is the special file which refers to the real time clock interface. This
interface is used to time intervals or count events and then generate an
interrupt and/or trigger an a/d conversion, etc. The "control and sta
tus" register can be 'written or read by using ioctl(2) calls with a
TIOCSETP (write) or TIOCGETP (read) request, and a pointer to the
following structure.

struct rtc {
int csr;
int preset;

} ;

where csr can have the following values:

GO 0001 start counter action
MODE 0006
MOD EO 0000 mode 0 operation
MODE1 0002 mode 1 operation
MODE2 0004 mode 2 operation
MODE3 0006 mode 3 operation
RATE 0070
STOP 0000 stop the clock
E6HZ 0010 1 MHz clock rate
E5HZ 0020 100 kHz clock rate
E4HZ 0030 10 kHz clock rate
E3HZ 0040 1 kHz clock rate
E2HZ 0050 100 Hz clock rate
ST1 0060 Schmitt trigger 1
LINE 0070 line frequency rate
INTOV 0100 interrupt on overflow flag
OVFLO 0200 overflow flag
MAINT 0007400 maintenance bits
FOR 0010000 flag overrun
ST2GO 0020000 Schmitt trigger 2 enable
INTST2 0040000 interrupt enable Schmitt 2
ST2FLG 0100000 Schmitt trigger 2 flag

and preset is the value read from or to be written to the buffer preset reg
ister. N_jntr is the number of interrupts since the previous ioctl call.

VENIX Devices

RTC(7)

FILES
/dev/rtc

SEE ALSO
ioctl(2), tty(7)

BUGS

RTC(7)

The interrupt handling is rather crude, but difficult to implement in a
general way at the user level. Interested users are referred to the driver
source, which they may modify to suit their specific needs.

2 VENIX Devices 2

RX(7) RX(7)

NAME
rx - RXO 1 /RX02/RX03 floppy disk

DESCRIPTION

FILES

Rx? and rx?s refers to an entire disk as a single sequentially-addressed
file. Its logical 256-word blocks are numbered 0 to 493 for single density
disks rx?s and 0 to 987 for double density disks rx?. Minor device num
bers 0 and 1 encode drives 0 and 1 at double density, while 2 and 3 (i.e.
adding in 2) specifies single density on drives 0 and 1. If the floppy drive
is double sided (RX03), then the maximum number block is 987 and 1976
for single and double density disks respectively.

The rx files discussed above access the disk via the system's normal
buffering mechanism and may be read without regard to physical disk
records. There is also a "raw" interface which provides for direct trans
mission between the disk and the user's read or write buffer. A single
read or write call results in exactly one 110 operation, therefore raw 110
is considerable more efficient when many words are transmitted. The
names of the raw RX ·files begin with rrx and end with a number which
selects the same disk as the corresponding rx file. Additionally, raw RX
files can be accessed asynchronously (see async(7)) by using the name arx
followed by a number which· selects the same disk as the corresponding
rx file.

In raw 110 the buffer must begin on a word boundary, and counts
should be a multiple of 128 bytes (single density) or 256 bytes (double
density): a disk block. Likewise seek calls should spe<;ify a multiple of
128 or 256 bytes.

The standard DEC interleave factor of 2 and skew factor of 6 are used.

/dev/rx?, /dev/rrx?, /dev/arx?, /dev/rx?s

DIAGNOSTICS

BUGS

On unrecoverable errors, the following is printed on the console:
Error on dev XI Y
bnNerA B

X and Y are the major and minor device numbers.
Error is in block number N;
A is the data buffer register; B is the control status register

In raw I/0 read and write(2) truncate file offsets to 128 (single density)
of 256 (double density) -byte block boundaries, and write scribbles on

VENIX Devices

RX(7)

2

RX(7)

the tail of incomplete blocks.
Only single density is supportable on RXOl 's. Also, since the RXOl does
not use DMA transfers, the raw and asynchronous modes cannot be sup
ported.

VENIX Devices 2

SMS (7) SMS (7)

NAME
sms- Scientific Micro System FWT floppy/winchester disks

DESCRIPTION
sms.sys . •• sms.usrl refer to sections of Winchester disk drive 0. The
files smsl.all refers to drive 1 (if present) and so on. rxO refers to the
RX02-compatible double-sided double-density floppy drive 0, and rxl
refers to floppy drive 1 (if present). An 's' following the floppy name
(rxOs) refers to the RX01 single-density version of that floppy; an 'i' fol
lowing the name (rxOi) refers to the IBM format double-density version.

The total size of the Winchester disks range from 8.9 to 35.6 mbytes; the
floppy disks are 1 mbyte in length in double density, and

The origin and size of the various disks and partitions are as follows.

minor
no.

0

2

3

4

5

6

7

8

9

starting
block

0

0

0

0

0

7840

10240

20480

0

0

length in
blocks

1976

1976

988

988

7840

2400

10240

?

2448

2448

usage

DS floppy 0

DS floppy 1

SD floppy 0

SD floppy 1

winchester 0, system
(6816 sys; 1024 swap)

winchester 0, tmp

winchester 0, user

rest of win 0

IBM DD floppy 0

IBM DD floppy 1

suggested
name

/dev/rxO

/dev/rx1

/dev/rxOs

/dev/rx1s

/dev/sms.sys

/dev/sms.tmp

I dev Isms. usrO

/dev/sms.usr1

/dev/rxOi

/dev/rxli

{The partition with length '?' varies in length depending on the physical
size of the disk.)

VENIX ·Devices

SMS (7) SMS (7)

FILES

The rx and sms files discussed above access the disk via the system's nor
mal buffering mechanism and may be read without regard to physical
disk records. There is also a "raw" interface which provides for direct
transmission between the disk and the user's read. or write buffer. A sin
gle read or write call results in exactly one I/0 operation, therefore raw
I/0 is considerably more efficient when many words are transmitted.
The names of the raw special files begin with rrx and rsms and end with
a name which selects the same disk section as the corresponding rx and
sms file.

Additionally, raw special files can be accessed asynchronously (async(7))
by using the name arx and asms followed by a name which selects the
same disk section as the corresponding rx and sms file. In raw 110 the
buffer must begin on a word boundary.

ioctl calls may be done (see ioctl(2)) on raw versions of floppies to for
mat diskettes. While formatting is going on, all activity on the Winches
ter drive or other floppy drive is suspended. The ioctl command used to
format is the ASCII captal letter 'X' shifted left into the high byte of the
command word, as in

ioctl(fd, 'X'< < 8,0);

d is the file descriptor returned by an open call to one of the raw floppy
devices.

/dev/rx*, /dev/rrx*, /dev/arx*, /dev/sms*, /dev/rsms*, /dev/asms*

DIAGNOSTICS

BUGS

On unrecoverable errors, the following is printed on the console:
Error on dev X/Y
bnNerA B

X and Yare the major and minor device numbers. Error is in block
number N; A is the data buffer register; B is the control status register.

In raw I/0 read(2) and write(2) truncate file offsets to 512-byte block
boundaries on the Winchester and 256-byte block boundaries on the
floppy disks, and write scribbles on the tail of incomplete blocks.

WARNING

2

Double-sided floppy diskettes are read and written in a manner incompat
ible with DEC standards.

VENIX Devices 2

TC(7)

NAME
tc- TC-11/TU56 DECtape

DESCRIPTION

TC (7)

The files tapO •.• tap7 refer to the TC-ll/TU56 DECtape drives 0 to 7.
The 256-word blocks on a st~ndard DECtape are numbered 0 to 577.

FILES
/dev/tap?

SEE ALSO
tp(l)

DIAGNOSTICS
On unrecoverable errors, the following is printed on the console:

Error on dev X I Y
bnNerA 0

X and Y are the major and minor device numbers. Error is in block
number N; A is the control-status register.

VENIX Devices

TM(7) TM(7)

NAME
tm- TMll/TUlO or TSll magtape interface

DESCRIPTION

FILES

The files mtO, ... , mt7 refer to the DEC TUlO/TMll or TSll magtape.
If the 040 bit (decimal 32) is on in the minor device number the tape will
not be rewound when closed, and the head will be left positioned
between the two tapemarks. (The files nmtO •.. nmt7 have this bit on.)
If the file was open for writing, two end-of-files are written when it is
closed.

A standard tape consists of a series of 512 byte records terminated by an
end-of-file. To the extent possible,' the system makes it possible, if
inefficient, to treat the tape like any other file. Seeks have their usual
meaning and it is possible to read or write a byte at a time. Writing in
very small units is inadvisable, however, because it tends to create mon
strous record gaps.

The mt files discussed above are useful when it is desired to access the
tape in a way compatible with ordinary files. When foreign tapes are to
be dealt with, and especially when long records are to be read or written,
the 'raw' interface is appropriate. The associated files are named rmtO,
... , rmt7. Each read or write(2) call reads or writes the next record on the
tape. In the write case the record has the same length as the buffer
given. During a read, the record size is passed back as the number of
bytes read, provided it is no greater .. than the buffer size; if the record is
long, an error is indicated. In raw tape 1/0, the buffer must begin on a
word boundary and the count must be even. Seeks are ignored. A zero
byte count is returned when a tape mark is read, but another read will
fetch the first record of the new tape file.

/dev/mt?, /dev/rmt?, /dev/nmt?, /dev/nrmt?, /dev/amt?

SEE ALSO
tar(l), tp(l)

DIAGNOSTICS
On unrecoverable errors on TUlO/TMll devices, the following is printed
on the console:

Error on dev X I Y
bnNerA B

X and Y are the major and minor device numbers. Error is in block
number N; A is the control-status register; B is the error register.

VENIX Devices

TM(7)

BUGS .

2

TM(7)

For TSll errors, see driver source.

If any non-data error is encountered, the driver refuses to do anything
more until the device is closed.

In raw 1/0, there should be a way to perform forward and backward
record and file spacing and to write an EOF mark .

•

• •

VENIX Devices 2 .

TTY(7) TTY (7)

NAME
tty - general terminal interface

DESCRIPTION
This section describes both a particular sp~cial file, and the general
nature of the terminal interface.

The file /dev/tty is, in each process, a synonym for the control terminal
associated with that process. It is useful for programs that wish to be
sure of writing messages on the terminal no matter how output has been
redirected. It can also be used for programs that demand a file name for
output, when typed output is desired and it is tiresome to find out which
terminal is currently in use.

As for terminals in general: all of the low-speed asynchronous communi
cations ports use the same general interface, no matter what hardware is
involved. The remainder of this section discusses the common features
of the interface.

When a terminal file is opened, the systems causes the process to wait
until a connection is established. In practice, users' programs seldom
open these files; they are opened by init(8) and become a user's input and
output file. The very first terminal file open in a process becomes the con
trol terminal for that process. The control terminal plays a special role
in handling quit and interrupt signals, as discussed below. The control
terminal is inherited by a child process during a fork, even if the control
terminal is closed. The set of processes that thus share a terminal is
called a process group; all members of a process group receive certain
signals together (see "C below and ki11(2)).

A terminal associated with one of th.fse files ordinarily operates in full
duplex mode. Characters may be typed at any time, even when output is
occurring, and are only lost when the system's character input buffers
become completely choked, which is rare, or when the user has accumu
lated the maximum allowed number of input characters that have not yet
be read some progn.. Currently this limit is 256 characters. When the
input limit is reached all the sav~characters are thrown away without
notice.

Normally, terminal input is processed in units of lines. This means that
a program attempting to read will be suspended until an entire line has
been typed. Also, no matter how many characters are requested in the
read call, at most one line will be returned. It is not however necessary
to read a whole line at once; any number of characters may be requested
in a read, even one, without losing information.· (Once the user has

VENIX Devices

TTY (7) TTY (7)

2

typed the newline character, the line is buffered internally and can be
read in any size chunks). There are special modes, discussed below, that
permit the program to read each character as typed without waiting for a
full line.

During input, erase and kill processing is normally done. By default, the
'delete' character erases the iast character typed, except it will not erase
beyond the beginning of a line or EOT. If the terminal is a CRT, then
an attempt is made to remove the preceding character (by a backspace,
space, and backspace sequence); otherwise a '<' is echoed. By default,
the '"U' character (control u; typed by depressing the 'control' key and
typing 'u') is set as the 'kill' character: it kills the entire line up to the
point where it was typed, but not beyond the beginning of the line or
EOT. Both the delete and kill characters may be changed by the user.

When desired, all upper-case letters may be mapped into the correspond
ing lower-case letter on input, and everything echoed to the terminal in
upper-case only. Real upper-case letters may be generated by preceding
it by an 'escape', which echos as '$'. In addition, the following escape
sequences can be gene~ated on output and accepted on input:

for use

$'
$!
$"
$(
$)

See the LCASE flag below.

Certain ASCII control characters have special meaning. These characters
are not passed to a reading program except in raw mode when they lose
their special meaning.

"D (EOT) may be used to generate an end-of-file from a terminal.
When an EOT is received, all the characters waiting to be read
are immediately passed to the program, without waiting for a
new-line, and the EOT is discarded. Thus if there are no charac
ters waiting, which is to say the EOT occurred at the beginning
of a line, zero characters will be passed· back, and this is the
standard end-of-file indication.

VENIX Devices 2

TTY (7) TTY (7)

3

"Z

BREAK

is not passed to a program but generates an interrupt signal
which is sent to all processes with the associated control termi
nal. Normally each such process is forced to terminate, but
arrangements may be made either to ignore the signal or to
receive a trap to an agreed-upon location. See signal(2). All
typed characters not yet read are killed.

generates the quit signal. Its treatment is identical to the inter
rupt signal except that unless a receiving process has made other
arrangements it will not only be terminated but a core image file
will be generated.

delays all printing on the terminal until anything is typed in; it is
not echoed. Usually a "Q is used to start output again.

restarts printing after a "S, or, in SCROLL mode, after screen
output stops; it also is not echoed.

reviews (re-echos) all typed characters that have not yet been
read by any program.

kills all typed in characters that have not yet been read by any
program.

Identical to '"C', but works even in RAW mode and does not
kill all unread characters.

When the carrier signal from a dataset drops (usually because the user
has hung up his remote terminal) a hangup signal is sent to all processes
with the terminal as their control terminal. Unless other arrangements
have been made, this signal causes the process to terminate. If the
hangup signal is ignored, any read returns with an end-of-file indication.
Thus programs that read a terminal and test for end-of-file on their input
can terminate appropriately when hung up on.

Terminal I/0 is buffered: when characters are written to the terminal,
they are actually sent as soon as previously-written characters have
finished being typed; input characters are echoed by putting them in the
output queue as they arrive. When a process produces characters more
rapidly then they can be sent out, it will be suspended when its output
queue exceeds some limit. When the queue has drained to some thresh
old the program is resumed.

Several ioctl(2) calls apply to terminals. Most of them use the following

VENIX Devices 3

TTY(7) TTY (7)

4

structure, defined in < sgtty .h > .

struct sgttyb {
charsg_ispeed;
charsg_ospeed;
charsg_erase;
charsg_kill;
intsg_fl.ags;

} ;

The sg_ispeed and sg_ospeed fields describe the input and output
speeds of the device according to the following table, which corresponds
to the DEC DH-11 interface (and closely to the DZ-11). If other hard
ware is used, impossible speed changes are ignored. Symbolic values in
the table are defined in < sgtty .h > .

BO 0 (hang up dataphone)
B50 1 50 baud
B75 2 75 baud

· B110 3 110 baud
B134 4 134.5 baud
B150 5 150 baud
B200 6 200 baud
B3oo· 7 300 baud
B600 8 600 baud
B1200 9 1200 baud
B1800 10 1800 baud
B2400 11 2400 baud
B4800 12 4800 baud
B9600 13 9600 baud
EXTA 14 External A
EXTB 15 External B

Currently, only 300 and 1200 baud are really supported on dial-up lines.
The half-duplex line discipline required for the 202 dataset (1200 baud) is
not supported; full duplex 212 datasets work fine. Speed cannot be
changed on terminals attached to a DL-11 or KL-11; the VENIX console,
whose special use is described in boot(8), is one such terminal.

The sg_erase and sg_kill fields of the argument structure specify the
erase and kill characters respectively. (Defaults are 'delete' and ' "U' .)

VENIX Devices 4

·.\ !.""':'-·

'
'

• •••
.

5

TTY (7) TTY(7)

The sg_flags field in the argument structure contains several bits that
determine the system's treatment of the terminal:

CRT
SCROLL
XTABS
RAW

EVENP
ODDP
CRMOD
ECHO
LCASE
CBREAK
TANDEM

0100000
0040000
0006000
0000040

0000200
0000100
0000020
0000010
0000004
0000002
0000001

Terminal is a CRT
Output stops automatically every 20 lines
Expand tabs to spaces on output
Raw mode: 8 bit interface
(turns off CRT, XTABS, CRMOD, LCASE
and CBREAK)
Enables even parity
Enables odd parity
Map CR into LF; echo LF as CR-LF
Echo (full duplex)
Map upper to lower case (Escapes work)
Return each character as soon as typed
Automatic flow control

The undefined bits are used on some UNIX systems to specify delays on
certain characters and parity; these delays and parity are currently
ignored under VENIX.

Several ioctl calls have the form:
#include <sgtty.h>

ioctl(fildes, code, arg)
struct sgttyb *arg;

The applicable codes are:
TIOCGETP Fetch the parameters associated with the terminal, and

store in the pointed-to structure.

TIOCSETP Set the parameters according to the pointed-to structure.
The interface delays until output is quiescent, then throws
any unread characters, before changing the modes .

TIOCSETN Set the parameters but do not delay or flush input.

TIOCEXCL Set 'exclusive-use' mode: no further opens are permitted
until the file hasbeen closed .

TIOCNXCL Turn off 'exclusive-use' mode.

TIOCHPCL When the file is closed for the last time, hang up the termi
nal. This is useful when the line is associated with an ACU
used to place outgoing calls.

VENIX Devices 5

TTY(7) TTY (7)

FILES

TIOCFLUSH
All characters waiting on input or output are flushed.

TIOCQCNT Returns the count of characters currently typed in but not
yet read in sg_ispeed (0 to 255) and the count of charac
ters on the output queue, which is probably rapidly chang
ing, in sg_ospeed (0 to about 100).

ldevltty
ldevltfy*
I dev I console

the user terminal
all terminals on the system

the console terminal

SEE ALSO

NOTES

BUGS

6

stty(1), signal(2), ioctl(2), getty(8)
"VENIX Programming," for an example of using ioctl.

The following differences are noted between the VENIX tty handler and
that in some other versions of UNIX:

1. Reading in RAW mode returns the number of characters asked
for, not just one as in other version~;

2. The SCROLL mode and TIOCQCNT command (return charac
ter count in buffer) are not supported by some other versions;

3. delay mode for output of certain characters is not supported by
VENIX;

4. the interrupt character ("C), delete character (DEL) and kill
character ("U) are different than in some other versions. (The
delete and kill ·characters, however, can be changed by ioctl calls
or the stty command.)

Half-duplex terminals are not supported.
The deleting of characters on a CRT cannot be exact, due to the inter
spersing of input and output. Furthermore, 'delete' assumes that one
character's position is to be removed, inappropriate for tabs and control
characters. If there is confusion as to exactly what has been deleted, the
re-echo (" R) feature should clear it up.

Handling of CTRL-S and CTRL-Q as well as SCROLL mode is often
useless with terminals which automatically send CTRL-S and CTRL-Q
codes

VENIX Devices 6

VP(7) VP (7)

NAME
vp - Versatec or Benson/Varian printer /plotter

DESCRIPTION
The device node lp refers to a Versatec C-PDP(DMA) or Benson/Varian
controller. Ordinarily bytes written on it are interpreted as ASCII char
acters and printed. Only some of the ASCII control characters are inter
preted:

NL Performs the usual new-line (line-feed) function, i.e. spaces up
the paper and resets to the left margin. It is ignored however
following a CR which ends a .non-empty line.

CR is ignored if the current line is empty but is otherwise like NL.

FF resets to the left margin and then to the top of the next page.

EOT resets to the left margin, advances 8 inches, and then performs a
FF.

The ioctl(2) system call may be used to change the mode of the device.
The format of the call is

ioctl(fd,request,&vmode)

fd is the file descriptor for the open device, and request is the value
('v' < < 8 I 0) for a 'get mode', and ('v' < < 8 I 1) for a 'set mode'. The
mode is written to or read from the integer vmode. The bits of vmode
mean:

0400 Enter simultaneous print/plot mode.

0200 Enter plot mode.

0100 Enter print mode (default on open).

0040 Send remote terminate.

0020 Send remote form-feed.

0010 Send remote EOF.

0004 Send remote clear.

0002 Send remote reset.

VENIX Devices

VP(7) VP(7)

On a 'get mode', only the first three conditions (print, plot, or print/
plot) are indicated. Notice that the mode bits above are not encoded, so
that it is required that exactly one be set. When the Versatec is opened,
a reset and clear are automatically done, and it is placed in print mode.
On close an EOF is done.

In plot mode each byte is interpreted as 8 bits of which the high-order is
plotted to the left; a '1' leaves a visible dot. A full line of dots is pro
duced by 264 bytes; lines are terminated only by count or by a remote
terminate function. There are 200 dots per inch both vertically and hori
zontally.

When simultaneous print/plot mode is entered exactly one line of charac
ter should be written, terminated by NL, CR or the remote terminate
function. Then the device enters plot mode and at least 20 lines of plot
ting bytes should be sent. As the line of characters (which is 20 dots
high) is printed, the plotting bytes overlay the characters. Notice that it
is impossible to print characters on baselines that differ by fewer than 20
dot-lines.

In print mode lines may be terminated either with an appropriate ASCII
character or by using the remote terminate function.

DIAGNOSTICS
"Versatec needs attention!" if errors occur.

.FILES

/dev/lp

SEE ALSO
lp (1)

2 VENIX Devices 2

BOOT (8) BOOT (8)

NAME
boot - startup procedures

DESCRIPTION

FILES

The bootstrap must reside in the otherwise unused block zero of the boot
device. It can be read in and started by the standard ROM programs, or
if necessary by keying in a small startup routine. This bootstrap is capa
ble of loading type 407 executable files (not shared, not separate I&D).
The user is prompted on the system console with a '&'. The name of the
program to be loaded, usually venix, is typed in followed by a CR. Typ
ing errors cannot be corrected. The named file is retrieved from the file
system that starts on block 0 of the device booted by the ROM. If the
file cannot be found, the prompt is reissued.

After venix has started running and sized memory, it prints a copyright
message and the amount of memory available for users in kilobyte units.
The root and pipe file systems (see /usr/sys/conf/c.c for definitions) are
then mounted. /etc/init starts running, which in turn opens
/dev/console and starts /bin/sh. The shell prompts the user on the sys
tem console; the system is now running single-user. After doing any file
system checks and setting the date, the user can bring the system up in
multi-user mode by typing a "D (CTRL-D).

/venix
/usr/mdec/* backup bootstraps

SEE ALSO

BUGS

init(8), a.out(4)

If the kernel symbol table is too large, it may overwrite a portion of the
bootstrap and prevent proper loading. Stripping the kernel with strip(l)
will prevent this; an unstripped copy should be maintained also, how
ever, for the benefit of ps and shutdown.

VENIX System Maintenance Procedures

CRON(8) CRON(8)

NAME
cron - clock daemon

SYNOPSIS
/etc/cron [min]

DESCRIPTION

FILES

cron executes commands at specified dates and times according to the
instructions in the file /usr/lib/crontab. Since cron never exits, it should
only be executed once. This is best done by running cron from the init
ialization process through the file /etc/rc.

Crontab consists of lines of six fields each. The fields are separated by
spaces or tabs. The first five are integer patterns to specify the minute
(0-59), hour (0-23), day of the month (1-31), month of the year (1-12),
and day of the week (1-7 with 1 =monday). Each of these patterns may
contain a number in the range above; two numbers separated by a minus
meaning a range inclusive; a list of numbers separated by commas mean
ing any of the numbers; or an asterisk meaning·alllegal values. (It is not
permissable to combine a list and a range in one field.) The sixth field is
a string that is executed by the Shell at the specified times. A percent
character in this field is translated to a new-line character.

Crontab is examined by cron every min minutes, or 1 if no number is
specified on the command line. It sets its effective ID to 1 ('sys' user)
while running.

/usr/lib/crontab

VENIX System Maintenance Procedures

!

lii:h.·. -.

GETTY(8) GETTY(8)

NAME
getty - set typewriter mode

SYNOPSIS
I etc/ getty [char]

DESCRIPTION
getty is invoked by init(8) immediately after a typewriter is opened fol
lowing a dial-up. It reads the user's login name and calls Iogin(l) with
the name as an argument. While reading the name getty attempts to
adapt the system to the speed and type of terminal being used.

init calls getty with a single character argument taken from the I etc/ttys
file entry for the terminal line. This argument determines a sequence of
line speeds through which getty cycles, and also the 'login:' greeting mes
sage, which can contain character sequences to put various kinds of ter
minals in useful states.

The user's name is terminated by a newline or carriage-return character.
In the second case CRMOD mode is set (see ioctl(2)), so that future ··
carriage-returns will be treated as newlines.

The name is scanned to see if it contains any lower-case alphabetic char
acters; if not, and if the name is non-empty, the system is told to map
any future upper-case characters into the corresponding lower-case char
acters.

If the terminal's 'break' key is depressed, getty cycles to the next speed
appropriate to the type of line and prints the greeting message again.

Finally, login is called with the user's name as an argument. See ttys(4)
for a list of terminal options in the /etc/ttys file.

SEE ALSO
init(8), login(l), ioctl(2), ttys(4)

VENIX System Maintenance Procedures

INIT (8) INIT (8)

have been deactivated in the file, and login processes are created for ter
minals which have been made active.

FILES
/dev/tty?, /etc/utmp, /usr/adm/wtmp, /etc/ttys, /etc/rc

SEE ALSO
login(l), kill(l), sh(l), shutdown(8), ttys(4), getty(8)

VENIX System Maintenance Procedures 2

;
L

.:"

\'

.: init, rc process conirol initialization. ·

SYNOPSIS
/etc/init
/etc/rc

DESCRIPTION

1

.:''init is jnyoked as t.Q.e last step of the boot procedure. Generally its role
. _ is to create a proct:ss for .each typewriter on which a user m~y Io(_iq.

When init-· first is executed the console typewriter /dev/~f!~·:o·· is

~~~:~a:~;e ~~·~!~~ ~n~ri:~t~: a~i~g~:~u:!e~Y::e:vo:;~h;u:t~~ ·· I~ 
nates, init · coll)es up multi-user and the process described below is ~ft.C_r.~.~ .. ;~,.·' .. 
sta~ted, , I . . • . . ,: .. ' ~ t. >· ~~{-

. Whe~ htit comes up multiuser; it invokes a -shell, with input t~ken;Jrom .: '~~r 
thefile /etc/rc. This cpmmand file performs h~_usekeeping iike rem~Ym.J:,~:';:~:.M 
teinpor~ry .files, mounting file systems, a11d starting daemon~. . ··~~;·::·;~·'':..,~ _.,'~· 

Then init reads the file /etc/ttys and forks several times to create:;a.: · ·. ~::;:~ 
~ss for each typewriter sp~cified in the file. Each of th,ese pr·', .1t5.:,·.,·:·\ ·:" 
o.pens. the appropriat~ typewriter for reading and writing. l'h~se cb~j$:{.-:<(~~~J: 
thus receive file d~scriptors 0, l and .2, the standard· input·, outp"4(~$ ~:~~ 
error files. Opening the typewriter will usually involve a delay, s~s(h~:,;:~~~f.~ 
open is not completed until someone is dialed up and carrier estab.J!~.t.reif < -~:z;: · 
on the channel.· Then /etc/getty is called with argument as specf~~~~ 
the last character of the ttys ~le line. getty reads the user's .na~e an&'··.~~-·-
invokes IQgin(l) to log in the user and execute the Shell. · . . ·;:.:;, .' ·: .,.,>, , 

. .. ' . . ,_ . •. ·.. ·: . : ~~-::~";~··;.·.·:::_.·.' .. ~~::.;;.~~~ 
Ultimately the Shell will terminate because of.an end-of~file either typed, ::~'t!-:'11~ 
explicitly or generated as a result.of.)J_anging up. The main· path of.iji-t!·'.;·;;!~,,~: 
which has been waiting for such an ·event, wakes up and removes .the· ·' :~"~t::r.~ 
appropriate entry from the file utmp, wh~h records current users,'

1.'lnd' :,_,.};~ 
makes an entry in /usr/adm/wtmp, which' maintains a history 9_f 1®1ls.. _ 
and logouts. Then the appropriate typewriter is reopened and'·g~Uy is ·. : ... 
reinvoked: . .• ·.. . ·. . . . . . ,.<,;:;~Jt~;;~~i'i:~~ 
init catches the hangup sign~}· SiCJIJUfi'alld'iBterpretS it to mean t~~.:~~~~:;~. .-:'~~ 
system should be brought from multi user to single user.- Tiie'~lill~~ri~:· · .; __ 
login normally accomplishes this; alternatively, 'killv -1 1' can be·~sed·to\> ·:,~:"7 
sendthe hangrip. signal. · · ':::· 

'. . . . . :·> . . ..... : .. · . .'. : .:~";·~·.): 
·. Sending an interrupt signal SIGINT to 'init (as by. 'kill -2 1 ') · ca~ses init'-" ~.:-.(<< 

to reexamine 'the /etc/ttys flle; processes are .. filled for termirta~ w,!Uch •c:~-'· ' .. 

VENIX System Maintenance Pro~edures 




