
•

' ADDENDUM 3

VORTEX II Reference Manual

UP 8677

98A 9952 2 4 6

This addendum contains i nformat i on rela t ing to the G. O. release
of VORTEX II .

PAGE

2- 7

2-10

2- 10

2 - 12

ACTION

Add t o end of first paragraph of section 2 . 1 . 10 :

This macro is used to rettJrn from a reentrant routine
called v i a ALOC .

Under l ogical addr section :

Change prior i ty tasks to prior i ty zero tasks .

In section 2 .1.1 7 DEALPG add the note :

NOTE : This request should not be used in background
tasks as it may leave " holes " in memory which can cause
prob l ems when checkpoin t ing a background task .

Add the new section 2 .1. 20 RECOV (Error Recovery) Macro :

This macro al l ows the requestor to pass the address of a
recovery routine to VORTEX . Control will be passed to
the routine if VORTEX attempts to terminate the task
abno r mally . The recove r y routine is executed after any
VORTEX error recovery or reporting routine . Return from
the user ' s recovery routine should be made via tt1e EXIT
macro . The macro has the general form :

LABEL RECOV ADDR

where :

ADDR is the add r ess of the error recovery rout i ne

The recovery address is kept in TBENTY o r the user ' s
TIDB . Repeated calls to RECOV are allowed but the last
specif i ed recovery address is always the address used .
Note t hat if an a bend occurs and control is passed back
to the user , r egisters are not preserved .

1 of 37

•

PAGE

3-10

3-12

ACTION

Add after paragraph D:

The file extension number currently active is contained
in word 2, bits 15-12. This field is updated each time
a new extention is created or opened.

Insert Warning after Magnetic-Tape devices paragraph:

WARNING

V$IOC returns to the issuing program prior to rewind
completion. When rewinding is complete, the issuing
RQBLK is updated. Therefore, the issuing RQBLK must
be modified prior to rewind completion.

not

4-7 In section 4.2.19, change X option to N option.
Add to N option description:

If absent, an alphabetical SORT is printed.

4-9 Under 4.2.26 /CFILE, change the first paragraph to read:

This directive, which applies only to RMD's and MT's
assigned to global logical units, causes the file
currently attached to the global FCB file on a logical
unit to closed with update •

4-9 In the form example for /CFILE change to read:

/CFILE,lun

where

lun is the
unit.
global

name or number of the affected logical
The logical unit must be one of the
logical units.

Example: Close the file currently attached to the PO
global FCB.

/CFILE,PO

4-9 Under 4.2.30 /RPG (RPG II Compiler) Directive change:

Parameter 0 to D.
Delete parameters M and N.

4 of 37

- ---·-- -- --- --- - - ------

. . -

PAGE ACTION

6- 2 Under Print Position description change :

the ' X ' option to the ' N ' option .

6 - 3 After last paragraph of 6 . 1 add :

V$PED cannot be used in an over l ay segment of the
overlayed module .

7 - 8 Add new section 7 . 4

7 . 4 INTEffi~AP DEBUG PROGRAM (V$DBUG)

The I ntermap Debug Program (V$DBUG) is a ca t alogued
foreground library program . It requires a VORTEX II
system that was generated with the 228 word nucleus
module V$FSD . Interaction between V$DBUG and the
program being debugged is accomplished by an encoded
halt violation . Data may be examined or changed in the
task being debugged , in the nucleus (Map 0) area or in a
VNO task . When a trap is set two words of memory in the
t ask being debugged are replaced by an encoded halt
(0525) , V$DBUG is suspended and the task being debugged
is act i vated . When the trap is reached the encoded halt
is executed . This suspends the t ask , restores the two
words of memory to their original content , sets the P
counter in the tasks TIDB to the execution address
contained in the trap Command and reactivates V$DBUG .
All registers of the task being debugged are available
fo r display . Inpu t to V$DBUG is described below and is
entered through the DI logica l unit . Each V$DBUG
command has from 0 to 72 charac t ers and is term i nated by
a carriage return . All numeric inputs are treated as
octal if they begin with a zero , otherwise , they are
treated as decimal .

The p r ogram to be d ebugged may be scheduled prior to
scheduling V$DBUG or it may be a foreground p r ogram
scheduled by V$DBUG . V$DBUG should be scheduled with a
highe r priority than the task being debugged . The
; TSTAT command may be used to obtain the TIDB address of
an already schedul ed task . V$DBUG may be used as
follows :

; SCHED , V$DBUG , 20 , FL , F

5 of 37

(Prio r ity highe r than task
to be debugged if the task
is already scheduled .)

... -. -- ·"·--··----·---- ------ ------------- --------- ---·------

PAGE

7-8

ACTION

(continued)

Teletype dialog after V$DBUG is scheduled:

DA* ENTER TASK TIDB ADDRESS (There are three valid
responses. An invalid
response causes a DAOl
error message and repeats
the message.)

1) END (This will cause V$DBUG to
exit.)

2) (S,Area [F-User Map, N-Map 0, V-VNO], Task Name)

3) (TIDB Address, Area) (Links V$DBUG to an
already scheduled task.)

V$DBUG will then respond with:

DA* task
addr

• name, map 1mage (Task Name and Map Image
address from TIDB of task
to be debugged.)

(One of these three entries
will be output~ Task to be
debugged must be re-scheduled
if DA** is not output at this
point.

DA02 Task Aborted

DA03 Task Exited

DA** Ready for V$DBUG

There are three valid reponses to DA** at this point;
any other response causes a DA04 error message and
repeats the DA** query. The responses are:

1) END

2) TC

····--· - ·· · ~····· · · · · -..- - ··-

(This causes V$DBUG to exit. You should
abort any task scheduled by V$DBUG.)

(This allows you to display the TIDB of
the task being debugged. At this point
if the task was scheduled by V$DBUG it is
unallocated and unloaded. TIDB display
commands are used following this entry.)

6 of 37

·------· ·-·- - ·-
•

...... . ·-··

PAGE

7-8

'

ACTION

(continued)

3) OK (Allows use of regular , not TIDB display ,
commands .)

A ' TC ' entry is followed by a DA** and TIDB display
commands are allowed. An ' OK ' is followed by :

MAP KEY task map key (Map key of task being
debugged .)

DA** (Regular debug commands
may now be entered and a
current copy of the task
to be debugged ' s TIDB is
available for displ ay.)

Regular commands (following an ' OK ' o r ' TEND ') :

The first letter describes the action and the second
letter is either part of the action code or an area
code . The area codes (F-user map , N- nucleus or Map 0 ,
V- VNO) are indicated by a lower case a in the examples .
Parameters for regular commands consist of data and
delimiters with no delimiter between the command and the
first parameter . Entries are interp reted as fo llows :

DATA

DELit1ITERS

(First pos ition indicates type and all
data must be consistent with type)

0 ----- Octal Value

1 - 9 - Dec i mal Va lue

@ ---- Base Symbol

Othe r - CL Directory Symbol

Space - End of parameters or command code

+ ---- Add to preceding value

- ---- Subtract from preceding value

I ---- Parameter Separator

---- Cancel the command
7 of 37

- - _____ ... ___ _ -·---- -------- ·-----.. -~-·-·---- .. -- ···- ----·- --• • ••' . .,, . ., _n•·--· •• " ,.,. .. o~~ ~ • •• _, __ _._,.. _ _ - ·-- __ _ __.,,. _,, .. _, _ _ _ ,. _ __ , ······-

PAGE

7-8

ACTION

(continued)

COMMANDS

ALTER
A a Start Loc, Data (up to 7 items

separated by commas)

SET BASE SYMBOL {Set, Clear, Display)
B a @ One character, Value (there may be

up to 10 symbols for each
area. @T is
automatically set to TIDB
address of task being
debugged in the
appropriate table and does
not count agains t the 10
symbols.)

BC@ a (Clears the symbol table for
indicated area. An @
instead of an area code
will clear all three
tables.)

BD@ a (Displays the symbol table fo r
indicated area. An @
instead of an area code
will display all three
tables.)

CHANGE/DISPLAY

C a Start Loc, Data (up to 7 items
separated by commas.)

DISPLAY

D a Start Loc, Number {1-8 locations may
be displayed.)

EXIT V$DBUG

END

INTIALIZE

I a Start Loc, Number (1-6), Data

8 of 37

PAGE

7-8

ACTION

(continued)

LO LOGICAL UNIT DISPLAY

LP (Alternate entries start/stop
printing on LO logical unit)

MEMORY DUHP

TRAP

MD (Hook only - VORTEX ALOC to
accomplish this will be incorporated
when available .)

(Command is not allowed following a
TX command)

T a Location, Address (The Address is
required and changes TBRSP in the
TIDB of the task being debugged so
that when it is activated again it
will go to that address. This
action occurs after returning from a
trap, not before trap execution.)

Upon completion of the specified
trap, register contents are examined
by using the TIDB display command
(see below) and examining
TBRSA-TBRSR7.

TIDB DISPLAY

TC (Allows execution of the TIDB
Display commands after obtaining a
copy of the task being debugged's
TI DB.)

TRANSFER AREA (Required only for VNO debugging
or display)
(Allows examination of areas outside
the task being debugged. This
commmand applies to all following
commands which have an area code as
the second letter until a 'TEND'
command is encountered.)

9 of 37

. . . --· -- - - - -·-·-··-··-- ···-··- ·'"""''--· -~ -..... .._ ------- --- --..... -- -··_---...... . .. __ ,__ _ ---~ .. ·--- - - -·· - -·- - - ----·· . ····--··--· -... ·----... ~--~· ,··~---··· ·· ·..... ,._,.., - · --~-.. -- ---- ___ .. _ _____ _________ _ ,_~ .. -- .. - -- -- - ·-

PAGE

7-8

ACTION

(continued)

TXO

(Zero indicated you wish to examine
rna p 0 (N) data •)

TXTIDB ADDR

(A TIDB indicates you wish to
examine data in a VNO (V) task
area.)

TIDB DISPLAY COMMANDS

A,B,X,R3-R7,P,O --

ALL --

1 - 39 --

TEND --

These commands display the
corresponding word of the TIDB of
task being debugged.

Displays all of the above.

Displays corresponding word of the
TIDB

Gets a new copy of the TIDB and
allows regular commands.

10 of 37

•

PAGE

7- 8

..•

ACTION

(continued)

V$DBUG ERROR MESSAGES

DAOl

DA02
DA03
DA04

DAOS

DA06

DA07

DA08

DA09

DAlO

DAll

DA12

DA13

Incorrect response to
initial query
Requested task has aborted
Requested task has exited
Illegal response to query
or number too large for
TIDB
Bad data in directive

Read error on DI logical
unit
Illegal command

Add/Subtract to undefined
Base Symbol

Base/CL Tag has more than
6 characters
Name not found on CL
directory
No room is Base Symbol
table

Wrong area for command type

Illegal P address for trap

11 of 37

Enter correct
response
Reschedule task
Reschedule task
Enter correct
response

Enter correct
directive
Repeat previous
directive
Enter correct
command
Repeat after de­
fining base
symbol
Repeat with cor­
rect Base/CL Tag
Repeat with cor­
rect name
Delete unwanted
symbols and try

•
aga~n

Command cannot
be used for the
area indicated
Enter correct
address and
retry

- --- OL 0 0 ~''"0~ .. --~·-- -~------·--.. - .. --~·-- .. --------- - - - - - - ----

__ , .. _______ _ ._4-~- _ _ - . __ _ _ ,...,.. _ _ _ _

PAGE

9-1

ACTION

Replace first two paragraphs with following:

9.1.2 File Name Directory

The File Name Directory is two sectors in length (240
words.) There are two physical directories, comprising
a single logical file name directory. The second of the
two physical directories is a shadow directory that
contains attribute information for each file entry.

The directory for each partition has a variable number
of entries arranged in n sectors, 19 entries per sector.

A file has the same corresponding entry in each of the
two physical directories, i.e., if a file is the 3rd
entry in the first directory, it is also the 3rd entry
in the shadow directory.

Each RMD partition contains a file-name directory. ~
~ire.ctory for each partition begins in the first sector
of the partition. Sectors containing directory

• i • $ I

information are chained by pointers in the last word of
each sector. Thus, directory sectors do not have to
reside contiguously. The first of the two physical
diectories has the following format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 0 File name

word 1 File name

Word 2 File name

Word 3 Current position of file

Word 4 Beginning file address

Word 5 Ending file address

The file name comprises six ASCII characters packed two
characters per word, left justified, with blank fill.
Word 3 which contains the current address at which the

12 of 37

- .. ··- ·- ··-- . -- - - ----·-- ------··- - - -

\

'

PAGE

9- 1

ACTION

(continued)

fi l e is positioned , is ini t i al ly set to the ending f il e
address , and i s manipula ted by I/O control macros
(section 5) . The extent of the file i s defined by the
address set in words 4 and 5 when the file is created ,
and remains constant .

9 - 2 The shadow directory has the following format :

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 0 Not Used

~vord 1 Not Us e d

Word 2 Not Used
.

Word 3 Not Used Extension Numbe r Fil e Type

~-'lord 4 Date Fi l e Accessed
. - . --

Word 5 Date Fi le Created

Words 0 , 1 and 2 a r e reserved for futu r e use . Word 3
has the follow i ng vari a ble f ormat . The lower 9 b its
con t a in the Fi l e Type fie l d as described below :

Bit 0 set indicates System Binary
Bit 1 set indicates Load Module
Bit 2 set indicates Data fi le
Bit 3 se t indicates IC S fi le
Bit 4 se t indicates Compressed 8 bit ASCII
Bit 5 set indicate s Compressed 7 bit ASCII

Bit 6 , 7 , a nd 8 a re reserved fo r future use .

Bits 9 through 1 2 of word 3 contain the Extension number
fie ld . The Ex-tension number specifies the
extension number of the specified file .

Word 4 of the shadow d i cectory contains the date a file
was last accessed . Th i s field is upda t ed on an OPEN
r eques t to a file (except when made by SAL .)

Word 5 of the shadow directory contains the date the
file wa s created . The date , in Words 4 and 5 , is in the
following format :

13 of 37

O - - O ~ ~- -· ·--- · ·· ··~ ···-··------·---.. - -··- _ .. - ·-·--- - ---- ... - - --· - _ .._ ,_, ___ _ .., 0 ... ~ .. 8 00 ... _ · ··-·-·-----· · ··-........ _ _ _.. - - - ---- -- ~---.. . - M · · - -- '"'' 0 0

PAGE ACTION

9-2 (continued)

Bits 0-3 contain the ''MONTH''
Bits 4-8 contain the "DAY"
Bits 9-15 contain the ''YEAR''

9-3 After the first paragraph of 9.2.1 CREATE Directive,
add:

The CREATE directive sets up the date in Word 5 of the
corresponding shadow directory. It also sets up the
''File Type'' variable in Word 3 of the shadow directory
to ''Data File'' (bit 2 is set.)

9-3 After the first paragraph of 9.2.2. DELETE Directive,
add:

This directive also deletes any extensions under this
file name.

9-4 After the first paragraph of 9.2.4 ENTER Directive, add:

This directive will also set up the creation date and
extension numbers date in the corresponding shadow
directory. It also sets the ''file type ~• variable to
"Data File".

9-4 Replace 9.2.5 LIST Directive:

9.2.5 LIST Directive

This directive outputs to the LO logical unit the
file-name and shadow directories of the specified
logical unit. The output comprises the file name, file
extent, current end-of-file position, logical unit name
or number, extent of unassigned space in the partition,
file type, file extension number, and the dates the file
was created and last accessed. All numbers are in octal
except for dates and extensions. The directive
has the general form:

where

LIST,lun,key

lun is the number or name of the logical unit
whose contents are to be listed.

key is the protection code, if any, required to
access lun

14 of 37

(

' '

PAGE

9 - 4

ACTION

(continued)

The output format has a two line heading :

FILE DIRECTORY FOR LUN XXX
FILE NAME START END CURRENT F- TYPE EX CREATED ACCESSED

where

XXX is the number or name of the logical unit
whose contents are being listed . The header
i s followed by a blank l i ne and a listing of
all file name from the directory . See section
9 . 1 . 2 for a description of header items .
After the last file name , if there is any
unassigned space in the partition , there is an
entry describing the unassigned space in the
partition , where the FILE NAME column contains
UNAS , the START column contains the next
available address , and both the CURRENT and
END columns contain the last address +1 . All
numberical values are octal sectors .

Example : List the file name directory of logical unit
114 which has no protection code .

LIST , ll4

9- 5 Replace title of first paragraph of 9 . 3 VORTEX
FOREGROUND FILE MAINTENANCE with the following:

9- 3 VORTEX FILE MAINTENANCE DRIVER (VZFMA)

The VORTEX File Maintenance driver provides a user
programmable subset of the VORTEX FMAIN services . VZFMA
operates as a system driver ass i gned to logical unit
115 . Al l requests to VZFMA must be made through the OM
library resident interface routine , V$FILE . Direct
calls to VZFMA are not allowed . This is because
conflicts arise in calling sequences if VZFMA services
shoul d be augmented .

15 of 37

• - ·- - - • --- - - - · - · ·· - - - - -- - ·--------- - _ .. __ _ , ___ _ _ ... -~--- - - - ·-- - · · · -- ----.. - - ... - - • • - - ... ----· •• --· - ·-- - _ _ __ ______ ______ ·--- - -- * •

PAGE

9-6

10-2

10-5

14-25

ACTION

Add after chart of VZFMA control block :

The file name (words 2-4) consists of two characters per
word, left justified and blank filled.

For CREATE, word 6 must be
justified and zero filled.
justified and zero filled.

5 = find

zero, and word 5 is right
Words 0 and 1 are right

Delete "-1 busy" from the list of completion codes
Add to list of compeltion codes:
Note: completion code 5 can also indicate invlaid LUN,
invalid "CREATE" secor count, or invalid protect key .

Add after the last full paragraph of 10.2.1 COPYF
Directive:

When specifying random length on input, the input
directive should not be a RMD device. Also, when
specifying blocking/deblocking, the input and output
record lengths should be multiples of each other .

Add the warning after the last full paragraph of 10.2.9
PFILE Directive: .

WARNING

IOUTIL uses the ''reel'' parameter to create the proper
file extent. This parameter should match the record
length parameter of the COPY directive if the record
length i s greater than 120 words, otherwise data beyond
the specified file may be overwritten.

Insert new paragraph at end of 14.4.2:

Use of RTE services: Certain RTE services (SCHED, OVLAY
and DELAY 1) use TBRSTS. V$IOC requires TBRSTS of the
drivers TIDB to contain the controller table address.
Therefore, drivers using the RTE sevices must save and
restore TBRSTS.

16 of 37

'

PAGE ACTION

14- 34 Insert new section 14 . 5 . 3 :

14.5.3 ITE Intertask Communication Module

The ITE Module pe r forms the equivalent functions of the ITC
modul e , but has several unique conventions that are required by
the ' D' revision of PRONTO .

ITE is a reentrant subroutine and resides i n the nucleus . ITE
consists of three areas : System Initialization, Mailbox
Initialization and data transfers . ITE ' s memory pool
initialization will occur at the first entry made by a task
requesting a ma il box key . ITE will then request and link the
physical page or pages to be used for ITE ' s internal message
storage . Once physical memory has been allocated for ITE, it is
ready for processing .

FREE
MEMORY POOL
HEADER

MEMORY POOL

0

0

1 PHYSICAL PAGE

I
I
I
I
I

I
I
I
I
I
I
I
I
l
I
I
I

FREE
MEMORY POOL
HEADER

PTA to
PAGE

PTA to
FREE ELEMENT

BEFORE SYSTEM INITIALIZATION
I

AFTER SYSTEM INITIALIZATION

17 of 37

0

0

0

510
10

LINKAGE TO
NEXT PAGE

POINTER TO NEXT FREE
ELEMENT IN
THIS PAGE

LENGTH OF
THIS PAGE

. . - . -·· -----·----------------·----~--- ·--·------------ --· ~----- ··-- --··- · -----~··-·- - __ .. -··-- ·- - ---- ·-· ·····-- _ ···--- -~..... . ·- -·-- ··-- .. . - .. -. --- - ·- --··· . -· - ··- - - ~ .

'

PAGE ACTION

14-34 (continued)

Mailbox initialization consists of calling ITE through the
appropriate entry point to establish ownership of a mailbox. ITE
will assign the mailbox key which will be associated with a
mailbox. The mailbox will actually be an entry in the mailbox
1 ist.

Mailbox List Description

0
Number
of Entries

Mailbox
Key

1

Mailbox

2 Owner's TIDB
Address

Page# of 1st

3 Mailbox
Element

Displacement
4 of 1st Mailbox

Element

Page # of last
Mailbox Element 5

Displacement
6 of last mailbox

Element

• • • 7
•

:::
~ / :;.
1--- /

61
Forward Pointer
to next list

62 Backward Pointer
to previous list

. - -----

Number of active mailboxes in list
(maximum = 10)

Mailbox (6 words/entry)

Pointer to next mailbox list (set to zero
if none)

Pointer to previous mailbox (set to zero
if none)

18 of 37

--:.:------ - ··-

'

\

PAGE ACTION

14-34 (continued)

Mailbox Entry Description

1

2

F

3 L
G

ID list Off
set

TIDB
Address

Forward

Page #

Max. # Forward
4 msgs. Displacement

5 Back Page

Current Back
6 msg .

Displacement cnt.

Word 1
Mailbox Key

Bits 0 - 5:

Bits 6 - 8:

Sits 9 - 15:

Word 2

An offset value from the
start of the table
pointing to the start of
this entry.

List segment sequence
number. This field
identifies in which
segment the mailbox entry
corresponding to this key
resides.

Identification number used
to ensure uniqueness
between successive
assignments of the key.
The value is generated by
taking the current value,
incrementing by one, then
taking the MOD 128 of it
each time the key is
reassigned.

TIDB address of mailbox owner

Word 3

Bits 0 - 13:

Bit 15:

Word 4

Physical map image of the
first element in this
mailbox queue

If set, message copied and
page list pending

Bits 0 - 9: Displacement of the first
element

Bits 10 - 15: Maximum number of messages
that may be queued to this
mailbox (currently set at
1010

19 of 37

- - --·- ·-----~·-·--.. ~-- .. ·--____ _ ,,....,. ... _ ,-~--·-- _ , , -...,., , ·-••''W - -~-... -·---~· ··--·----·-- -·- -~ oo •O-OM•o-0~0~ 0 0 0 -... , -~..... ·-- -----....- -... ~·-· ··-.. ~-- -.:.-··· ~·--...... ·- - _______ ._ _ .. ______ ._ ---- ·- ·- - -~

•

PAGE ACTION

14-34 (continued)

- - -- --

word 5

Bits 0 - 13: Physical map image of the
last element in this
mailbox queue

Word 6

'

Bits 0 - 9: Displacement of the last
element

Bits 10 - 15: Current count of message
queued to thi s mailbox

20 of 37

-·---- -

'

l

PAGE ACTION

14-34 (continued)

ITE's Internal Mailbox Element Description

1

2

4

Page
5 List

Page#
of next
element

Displacement
of next element

Sender's
Mailbox
Key

Indicator

Message
length

v

d
e
a
I

Variable
length
Message

Page#

•
•
•

/

Word 1

Bits 0 - 14: ·

vJo rd 2

Bits 0 - 9:

Bit 15:

Word 4

Physical map image of next
element in the queue

Displacement of next element

of mailbox element • 1n

Pad Flag: 0 means no pad word
added

l means pad word
added to prevent a
free element with
a length of 1

Sender's mailbox key (the value placed in this
word is not validated by ITE)

Word 5

Bits 0

Bits 8

-

-

5:

13:

Message length in words

Page list indicator 0 means no
page list present, otherwise,
the field contains the length
of the page list.

The sum of message length and page list length
must not exceed

Word 6 +: Message

Word 7 + Message Length: Page list if present

Bits 0 - 9: Physical Page number

21 of 37

PAGE

14-34 '

ACTION

(continued)

Bit 15: Deallocation flag
1 means the page has been

unlinked from sender's map
0 means page is mapped to

sender

ITE places the owners TIDB address in the entry point and
initialized the pointers of the mailbox queue and increments the
entry count of the mailbox list. The first list will reside
within ITE. When that list is filled, memory from the dynamic
pool will be used to form another list. These lists are linked
forward and backward to allow deallocation of memory should a
list at the end of the chain become empty.

The procedures for sending messages consists of constructing a
Message Control Block as shown below.

1 Receiver's
Mailbox Key

Sender's
Mailbox Key 2

3 MSGWD 1

4 MGSWD 2

Page Ust
Indicator 5

Word 1:

Word 2:

word 3:

Word 4:

Word 5:

Destination mailbox key

Sender's mailbox key(the value in
this word is not validated by ITE)

If positive, this ~:,ord contains the
length in words, oi the message to
be posted. If negative, this and
word 4 contain the message to be
posted.

•

If word 3 is positive, this word
contains the address to the message.
If word 3 is negative, this word
contains data (i.e., message is
embedded in MCB.)

If positive, this word is the
address to the page list, containing
logical page addressess.
If negative, this word is the l's
complement of the address to a page
list containing physical page
numbers. If zero, no page list is
to be posted.

22 of 37

•
•

PAGE ACTION

14-34 (continued)

The MCB will contain the destination mailbox key and optionally,
th e sende rs key. If the send ing task does not have a mailbox,
the senders mailbox key should be set to zero by the sending
task. If the sending task has pages to transmit, the page list
indicator is set to the address of a page list containing the
page numbers. The following illustration shows the format of the
physical page list.

1

2

3

• • •

#of PAGES

flag

flag

\"/ord 1

Bits 0 - 5 :

Word 2 - n

Bits 6 - 9:

Bit 15:

Number of pages to be
transferred

Physical page number, 1 page
#/entry

Receiver mapping option flag.
If zero: map the page (i.e.,
set bit 14 of the r e ceivers map
image word .)

If set to 1, reallocate the
page to the rece ivers map
(i.e., Bit 15 of the map image
word will be set.)

A logical page list has the form :

1 CNT

2 LOGADR

Release Option

Word 1

Word 2

The number of pages to be
transferred.

Bits 0 - 14: The starting logical address in
the senders map modules

Bit 15:

10008

(i.e., on a page boundary) from
which the page or pages will be
fetched.

release option 0 = Release
Pages (i.e., unmap from senders
map)

1 = do not unmap pages .

23 of 37

.. · --- ... --...~··-- ·----· ... _ ·-... - -----·---.-..-.. ---- ------ ·----·------- ------ -- ·-- --.. ---·--·~ · -···-- -~·-· -~--

PAGE ACTION

14-34 (continued)

ITE copies the MCB, message and page list, if one has been
provided, into its memory pool to form a Mailbox Element. The
Mailbox Element is queued to the mailbox indicated by the mailbox
key. ITE will then set Bit 0 of the receiving tasks TBEVNT word
and exit. If the page list is provided and the pages to be
transferred are also to be unmapped from the senders map, ITE
will perform the unmapping as part of the message posting
procedure. The following is a data flow that occurs with the
posting of a message.

MESSAGE
CONTROL BLOCK

DESTINATION
MAILBOX KEY

SENDERS
MAILBOX KEY
(OPTIONAL)

MESSAGE
LENGTH

MESSAGE
ADDRESS

PAGE LIST
INDICATOR

STRUCTURE FOR POSTING A
MESSAGE THAT EXISTS
WITHIN THE
SENDERS MAP

24 of 37

MESSAGE

PAGE LIST

NUMBER OF
ENTRIES:

PAGE# 1

PAGE# 2

•
•
•

- -­
'

MAILBOX ELEMENT
RECEIVERS WITHIN MEMORY
MAILBOX

I POOL

I PAG E NUMBER OF

MAILBOX KEY I NEXT PAGE
IN POOL

I
I DISPLACEMENT

OWNERS TIDB IN NEXT PAGE
ADDRESS

I OF FIRST FREE
ELEMENT

I
PAGE NUMBER
OF FIRST ELEMENT I

I ~ %
DISPLACEMENT 0
OF FIRST
ELEMENT I WORD 1

PAGE NUMBER I
0 OF LAST

I ELEMENT WORD 2

I
DISPLACEMENT

I OF LAST WORD 3 ELEMENT lT
ELEMENT I

WORD4 SENDERS KEY

PAGE
WORD 5 LIST MESSAGE

INDICATOR LENGTH

I

I WORD6

I
I

I
STRUCTURE WITHIN ITE

I MEMORY POOL AFTER
WORD 7+

MESSAGE HAS BEEN POSTED
MESSAGE I PAGE LIST
LENGTH

I

25 of 3 7

PAGE ACTION

14-34 (continued)

To receive a message or to determine whether or not the queue is
empty, a task will issue a request to ITE to copy a message. ITE
will validate that the requesting task is the proper receiver by
comparing the tasks TIDB address with that contained in the
mailbox. ITE will then use the forward pointer words of the
mailbox to locate and dequeue the next element. If the forward
pointers a re zero, ITE will return a completion status indicating
that the queue is currently empty. If the queue is not empty,
the length of the next element is compared with the length of the
bu f fer specified by the receiving task. If the length of the
buf fe r is too small, ITE will return a completion status to

•

info rm the task, and message will not be dequeued.

SENDERS
MAILBOX KEY

MESSAGE
LENGTH

· • PAGE LIST
INDICATOR

MESSAGE

' 1

BUFFER ADDRESS SPECIFIED
BY RECEIVING TASK

NOT PRESENT IF MESSAGE
LENGTH SET TO ZERO

26 of 37

-- - ------- --- --·- ·- -

-

PAGE ACTION

14-34 (continued)

The above illustration shows tl1e format the message has when
copied into the receiving tasks buffer. The space occupied by
the mailbox element is returned to ITE ' s free memory pool . If
the newly released element is next to another free element , the
two are concatenated , forming one large free element space. This
i s done to limit the fragmentation within the memory pool .

1

2

1

2

Free Memory Pool Header Description

PAGE
NUMBER

DISPLACEMENT

Physical page map image of first page
memory pool

•
1n

Displacement of the first available e lement
within this page (Set to zero i f the page has
no elements available .) This header is
resident in the ITC Module. A s imilar header
is located in the first two words of each page
in the pool. The last page in the pool has
the se words set to zero.

Free Element Description

FORWARD
POINTER

ELEMENT
LENGTH

Pointer to the next available length within
this page Set to zero if this element i s the
last in the page .

Length of this element (in words)

If the page list indicator is non-zero , the receiving task must
get its pages before it can proceed to the next mailbox e lement.
To check for a pages pending status , the sign bit of the forward
page number word in the mailbox , for this task , will be set.
This bit is not cleared until all pages have been processed or
the receiving task requests that the remaining be dropped. Once
the page list is entirely processed or dropped, the mailbox
element is released back to ITE ' s memory pool.

27 of 37

- ~--- , _ _._.._., __ , • . _._.,.. • ·- -·,.,.-.,.w--•-..-------- ,,.-__.__, _ _ ,.._ ___ __ ,._~• -·~·-- -----· _ _ ._..... _. _____ ___ ,.., .- ,.- •••- --- --·--•- _,. __ ._, _ ,_,.,_ . .,

PAGE

14-34

ACTION

(continued)

Request . Parameter Block to Get a Message

RECEIVER'S
MAILBOX KEY

BUFFER
ADDRESS

BUFFER
LENGTH

Receiving task's Mailbox Key

Logical address of receiver's message buffer

If positive, message buffer length in words

If negative, (l's complement of buffer length
in words) indicates the page list is to be
included in the message.

The receiving task will issue a request to ITE to retrieve a page
or pages. If more than a single page is requested, the pages are
linked to the receivers map contiguously beginning from the
specified logical address. If the page(s) have been previously
allocated to the sending ta~k and the sender requested that the
pages be unlinked, ITE allocates the pages to the receiving
task's map (i.e., Bit 15 in the map image word(s) used, is set).
Otherwise, the pages will only be mapped in (i.e., Bit 14 of the
map image word(s) used will be set.)

In the event that the receiving task does not need to get the
pages once it has copied the message, it can issue a request to
drop those pages. This request will then dispose of the pages as
required and release the mailbox element to the ITE memory pool.

The entry point VI$ITC is used as a housekeeping agent for the
memory pool within which a task has exited or aborted. This
entails checking the tasks queue for mailbox elements. If none
are present, the mailbox is cleared. If the mailbox queue is not
empty, ITE will release and consolidate the task's mailbox
elements before clearing the mailbox. All other entry points
which delete mailbox elements, first check to verify the presence
of any mailbox elements. A completion status will be returned if
there are elements left in the mailbox.

ITE utilizes several macros. In addition to the existing calls
for ITC. ITE uses modified versions of VI$PST and VI$CPY. ITE
also uses four unique calls of its own; VI$GTK (get a key),
VI$GTP (get a page), VI$DRP (drop a page) and VI$RMB (Release a
mailbox). ITE also uses the entry point VI$TRT; this will
contain the logical starting address for mapping operations.

28 of 37

..
PAGE ACTION

14-34 (continued)

VI$PST

The calling sequence for the ITE VI$PST is:

RO - address of the message control block
Rl = 01000008

Return :

VI$CPY

RO = Completion status
-1 = ITC is busy - - Go to sleep and try later

0 = Successful completion
1 = ITC memory pool has not been initialized
2 = Invalid or outdated mailbox key
3 = Map loading error
4 - Not enough or no free space available
5 =Receiving task ' s queue is full
6 =Message length error (too long or sum of PG list

& f'.1SG = 0)
7 = Page list error (page unassigned or not legal) or

starting address together with number of pages
exceeds map

8 = Page list specified with zero page count

If RO = 7 :
Rl = Starting logical address if page count exceeds map

or logical

LABEL ALOC VI$PST

The calling sequence for the ITE version is :

RO = Pointer to 3 word block containing the calling
task ' s mailbox key , the address of the buffer , and
the length of the buffer .

Rl = OlOOOOOg

29 of 37

• - .. - • • • .. • • -· 0 • •• - · --.. --.. - - ··-- _..._ .. --·--- ···--.· • --·
---- --·· -··------ ____ -...-·-· -·---~··. _,._ -·-· -.-.--.. -- ···--------· --· _ ... -· --·--- - ·--.--............ .

PAGE ACTION

14-34 (continued)

Return:

VI$GTK

RO = Completion Status
-1 = ITE busy -- Go to sleep and try again later

0 = Successful completion
·1 = ITE memory pool not initialized
2 = Invalid key
3 = Map loading error
4 = Buffer length too short
5 = Page list pending
6 = Mailbox queue is empty

Rl = Number of words required if RO = 4

The entry point VI$GTK is used by a task requesting a mailbox
key. No entry parameters are used.

On Exit: RO will contain the completion status

RO = Completion status
0 = Successful completion
l = Memory not available for extendi1:g list
2 = No more segments available for extending mailbox

list
3 = Map loading errors
4 = No pages have been specified for the ITE memory

pool
5 = No physical pages available for memory pool
6 = Dynamic memory required for initialization

unavailable
7 = No space available in map 0 for the ITE memory pool

Rl = Mailbox key if RO is zero

30 of 37

PAGE ACTION

14-34 (continued)

VI$GTP

VI$GTP is used by the receiving task to get the page or pages
sent with a message. If the page(s) were deallocated from
the sender's map, the pages will be allocated to the receiver
(Bit 15 of the corresponding map image word will be set). If
the pages were not deallocated by the sender, ITE will map
the pages (Bit 14 of the map image word will be set.)

Calling sequence:

RO = address of the request parameter block, consisting of
three words:

Word 1 = requestor's mailbox key
Word 2 = logical address from which to begin linking the

page or pages
Word 3 = the number of pages to link

Rl = The number of pages to process

Return:

RO = Completion status, where

-1 = ITE is busy -- Go to sleep and try again later
0 = Successful completion
1 = ITE memory pool has not been initialized
2 = Invalid mailbox key
3 = Map loading error
4 = No page list is pending
5 = Logical address or number of pages invalid

Rl = Number of pages processed if RO = 0, or
The logical address in error if RO = 5.

VI$DRP

VI$DRP is used by the calling task to drop the page list of
the current message. This function enables the user to
proceed to the next message without first processing the
pages associated with the prior message.

31 of 37

.. . ·--- ··--- -----~~-----.. ·-----··· ' -------··'"- ·--··""'-•• ---·--- ·-··------- •- ---···-- -~h •~ -- -··----.... - .. ,, ,..,--.,,...o,u.....,._•_ --- ··--•- ,, , .. _ ., ,.. __ ., , .. ,.. ___ ,._.. .. ,, "'• - ---·--·-- --- - •-•••-•••• , , __ - • •-• , -- -,-~,,. ,Mo

PAGE ACTION

14-34 {continued)

Calling sequence:

RO = Mailbox Key

Return:

RO = Completion status, where:

VI$RMB

-1 = ITE is busy -- Go to sleep and try again later
0 = Successful completion
l = ITE memory pool not initialized
2 = Invalid mailbox key
3 = Map error
4 = No page list pending

VI$RMB is used by the calling task to relinquish owne rshi p of
a mailbox.

Calling Sequences:

RO = mailbox key of entry to be released or zero if all
mailboxes belonging to the task are to be released .

Return:

RO = Completion status, where:

-1 = ITE i s busy -- Go to sleep and try again later
0 = Successful completion
1 = ITE memory pool has not been initialized
2 = Invalid key
3 = Map error
4 = No mailboxes assigned to calling task
5 = A mailbox with an unempty queue encountered

Rl = Key of the mailbox i f RO = 5

32 of 37

·- - ~----- ..

PAGE ACTION

14- 34 (continued)

LIMITATIONS , RESTRICTIONS & CONSIDERATIONS

1 . Any task establishing ownership of an ITE mai l box will have
the responsibility of checking the mailbox for messages prior
to exit i ng and going to sleep .

2 . A task which issues an I/O without wait and then issues a
delay type 3 will have to determine for itself what event
caused to be activated .

3 . If a task exits or aborts prior to emptying its mailbox , ITE
will release the mailbox elements but no notification will be
made to the senders that messages were thrown away .

4 . Four possible cases can occur in the disposition of a
physical page when a sender requests that the page be
transferred by ITE .

a . The sender allocated the page and requests that the
page be unlinked from his map .

b . The sender allocated the page and does not want it
unlinked .

c . The sender mapped in the page and wants it
unmapped .

d . The sender mapped in the page and does not want it
unmapped .

In the first case , the ownership of the page would be transferred
to the receiving task (i . e ., the receiving task would be able to
deallocate the page and release it to VORTEX) . In al l the other
cases , the page would merely be mapped into the receiving task ' s
logical memory . Therefore , in the event that an abort occurs in
the receiving task before it was able to get its pages , ITE wi ll
release to VORTEX only those pages which would have been
allocated to the receiver , (Case A.)

33 of 37

-- . -- ·····-----.·· ·-·····--·-· . - .. ···- ··-·-·· -- ~ ~- -. - --------------·· ----------·--- ---- -- ---- -·--·-··-· 4·-- -------- --· -·--- -·--- ---------· ---~-..

PAGE ACTION

14-34 (continued)

SYSTEM GENERATION REQUIREMENTS

The following DEF directives are required:

DEF,VI$MXQ,n

where n = number of elements in the main box queue.
The value is placed in bits 9-15 and must be octal i.e.,
a value of 10 would be represented by DEF,VI$MXQ,Ol2000.

DEF,VI$NPG,m

where m = number of physical pages to be used for ITE internal
pool. This number of pages is made unavailable to
VORTEX.

15-3a Figure 15-2

Change figure 15-2 to

0

o same as before
0

CTL, PART0003
Library Processor
Firmware (V77-600)
System Library Routines

0

o same as before
0

Add to last paragraph:

The library processor also creates an eight page
firmware file named WCSIMG on the partition assigned to
logical unit 116. This file is built only if the system
contains WCS and is not a V77-400.

34 of 37

. - - ·- --- " ~- --

PAGE

15-13

1 5-1 9a

15 - 18

ACTION

Add to tl1e Preset logical unit/RMD par tition table:

Name
opt i ona l

Number
116

Partition
optional*

* mus t r es i de on the system RMD , be a t leas t 160
sec t ors , only required for V70/V77- 600 systems with
wcs .

Add new section 15.5.20:

15 . 5 .20 MOD d irective

This directive performs the same function as the EQP
(section 15 .5.2) directive except that a control l er
table li nk is not generated for the modul e . It ha s the
same parameters as the EQP direct i ve . It is used to
select a nucleus module under the same criteria as the
EQP direct i ve , but when the nucleus module does not have
a corresponding controller table .

Replace first paragraph of section 15.5.15 wi th :

This directive , which must be the last SGEN directive ,
specif i es seve r al system parameters for the sys tem
generation . The directive form is

whe re

EDR , type ,tidb , stack , part , l i st , kpun , map , analysis

type is s for a standard (full) system
generation . I n this mode , the
entire system is regenerated and all
parti tions are init iali zed (ex i sting
fi les are lost.)

35 of 37

- - · · ··~-·------··----·-·· ·--------------------·---- - -----------·--·-------- __ ,_ - --

PAGE

15-18

ACTION

(continued)

•

N for a nucleus only system
regeneration. In this mode, only
the nucleus image and SGEN generated
load modules are recreated.
Existing file directories are not
destroyed. Note: this mode has the
following restrictions:

1) The "memory" parameter on
the MRY directive must be
the same as the previous
SGEN.

2) SGEN catalogued load
modules must be the same
size {in sectors) as the
previous SGEN versions and
must reside in their
original sectors.

3) All existing non SGEN
crea ted load modules must
be "relinked" using RELINK
{section 6.4.)

4) All RMDs must be
partitioned the same as
the previous SYSGEN.

This mode is not generally usable
between versions of VORTEX. It is
normally used to change a nucleus
component or add a nucleus component
on the same revision of VORTEX.

36 of 37

____ --- ---- --·-- - - - -

.-....

PAGE

15-19a

17-4

A-20

ACTION

Add to required directives section :

V77 -600 (and V70) systems containing WCS require a DEF
d irective to select the appropriate WCS modules
(firmware options) , The format is:

DEF,V$$WCS,n

where n is 1. for FORTRAN accelerator (no FPP) and
commercial firmware .

2. for FORTRAN accelerator (with FPP)
and commercial firmware .

3. for commercial firmware only .

This directive is not required on V77-400 systems.
Note : the unit parameter on the WCS EQP/MOD directive
is set to the number of pages of WCS .

ASN,ll6=D00n

where n is a partition on the system RMD which is to
contain the WCS image file . This partition must contain
at least 160 sectors, have no protection key, must not
be initialized, and cannot be the same partition as PO,
SS , GO , SW, CU , BI, 80 , FL, BL , CL, or OM (partitions on
which SYSGEN creates files) .

Change TSTAT as indicated below :

task tidb addr Plevel Sstatus TMmin TSrnilli

where task as before

tidb addr TIDB address of the subject task all else as
before

Add following e rror message :

SG47 Number of WCS pages
specified on EQP
directive does not
accornodate selected
option (DEF, V$$WCS).

37 of 37

SYSGEN
• term1nates,

waits for
action.

Dl6, Dl2

- ----·------· -·---···------ - -- -· _ _..

	98A9952246-x-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-Addendum_3-UNDATED-page0001
	98A9952246-x-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-Addendum_3-UNDATED-page0002
	98A9952246-x-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-Addendum_3-UNDATED-page0003
	98A9952246-x-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-Addendum_3-UNDATED-page0004
	98A9952246-x-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-Addendum_3-UNDATED-page0005
	98A9952246-x-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-Addendum_3-UNDATED-page0006
	98A9952246-x-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-Addendum_3-UNDATED-page0007
	98A9952246-x-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-Addendum_3-UNDATED-page0008
	98A9952246-x-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-Addendum_3-UNDATED-page0009
	98A9952246-x-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-Addendum_3-UNDATED-page0010
	98A9952246-x-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-Addendum_3-UNDATED-page0011
	98A9952246-x-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-Addendum_3-UNDATED-page0012
	98A9952246-x-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-Addendum_3-UNDATED-page0013
	98A9952246-x-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-Addendum_3-UNDATED-page0014
	98A9952246-x-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-Addendum_3-UNDATED-page0015
	98A9952246-x-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-Addendum_3-UNDATED-page0016
	98A9952246-x-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-Addendum_3-UNDATED-page0017
	98A9952246-x-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-Addendum_3-UNDATED-page0018
	98A9952246-x-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-Addendum_3-UNDATED-page0019
	98A9952246-x-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-Addendum_3-UNDATED-page0020
	98A9952246-x-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-Addendum_3-UNDATED-page0021
	98A9952246-x-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-Addendum_3-UNDATED-page0022
	98A9952246-x-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-Addendum_3-UNDATED-page0023
	98A9952246-x-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-Addendum_3-UNDATED-page0024
	98A9952246-x-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-Addendum_3-UNDATED-page0025
	98A9952246-x-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-Addendum_3-UNDATED-page0026
	98A9952246-x-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-Addendum_3-UNDATED-page0027
	98A9952246-x-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-Addendum_3-UNDATED-page0028
	98A9952246-x-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-Addendum_3-UNDATED-page0029
	98A9952246-x-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-Addendum_3-UNDATED-page0030
	98A9952246-x-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-Addendum_3-UNDATED-page0031
	98A9952246-x-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-Addendum_3-UNDATED-page0032
	98A9952246-x-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-Addendum_3-UNDATED-page0033
	98A9952246-x-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-Addendum_3-UNDATED-page0034
	98A9952246-x-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-Addendum_3-UNDATED-page0035
	98A9952246-x-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-Addendum_3-UNDATED-page0036

