
-- ...

'

-
Mini-Computer Operations

2722 Michelson Drive
P.O. Box C-19504
Irvine, California 92713

98A 9952 246

··---

VORTEX II OPERATING SYSTEM

Programmer Reference Manual

UP-86n Rev. 2
98A 9952 248

JUNE 1980

UPDATE 8

The statements in this publication are not intended to create any warranty, express or implied. Equip-,

ment specifications and performance characteristics stated herein may be changed at any time
without notice. Address comments regarding this document to Sperry Univac, Mini-Computer Opera
tions, Publications Department, 2722 Michelson Drive, P.O. Box C-19504, Irvine, California, 92713.

COPYRIGHT e 1979, 1980 by .
SPERRY RAND CORPORATION·
ALL RIGHTS RESERVED

Sperry Univac is a division of Sperry Corporation

- ---- ______ .. ______ --_,.. ____ --·

P1 inled ., U.S.A.

- H ••• ·---• •• • - ·- - - - · ---- -

----- --

PAGE STATUS SUMMARY

ISSUE: Update 8 - UP-8677 Rev . 2
(98A 9952 248)

.

Part/ Section Page Update
Number level

Part/ Section Page Update
Number level

Part/ Section Page Update
Number level

Cover 16a 8* 10 1 thru 6 Orig.

Title 17 B 11 1 thru 7 Orig.

PSS 1, 2 B 18 thru Orig. 12 1 thru 18 Orig.
24

CR 1 8 13 1 thru 4 Orig.
4 1 Orig.

Contents 1 thru 10 B 5 thru 6 B
2 thru 3 B

1 1 Orig. 7 thru 10 Orig.
4 thru 9 Orig.

2 8 11 8
10 thru B

3 Orig. 11 14 1 thru 8 Orig.

4 B 5 1 thru 23 Orig. 9 thru 10 B

5 thru 6 Orig. 6 1 thru 7 Orig. 11 thru Orig.
16

2 1 thru 11 Orig. 8 B
17 thru B

12 thru B 7 1 B 19
15

2 thru 7 Orig. 20 thru Orig.
16 Orig. 32

8 A
3 1 thru 2 8 33 B

9 thru 11 B
2a B* 34 thru Orig.

12 Orig. 35
3 • 8

8 1 Orig. 36 B
4 Orig.

2 8 37 thru Orig.
5 thru 7 B 53

3 thru 8 Orig.
8 thru 13 Orig. 54 thru 8

9 1 thru 4 Orig . 55
14 thru 8
16 5 thru 8 B 15 1 B

•Newp-r~es

All the technic Ill chenges 11re denoted by 11n llffOW (...-) in the m11rgin. A downward pointing affow (t) next to a line indicates th11t
technic11l chenges begin 11t this line 11nd continue until an upward pointing affow (+) is found. A horizontal affow (•) pointing to
11 line indicetes 11 techniclll chenge in only that line . .i4 horizontal arrow located between two consecutive lines indicates technical
changes in both lines or deletions.

PSS-1
Update B

--- -- ·- --------________ ..., __ ,._ -..-·----··--- .. --.... - __ _... ______ , - .. - -·-
-

•

I

I
I
I
I

I

I
I

I
.

I
I
• .

PAGE STATUS SUMMA RY

ISSUE: Update 8 - UP- 8677 Rev. 1
(98~ 995 2 2~8)

I

Part/ Section
Page Update

Part / Section
Page Update

Part / Section Pag e Upda te
Number lsvef Nu mbe r Level I Num ber Level

. I .

. I I

? Orig. - ? l 1 thru ? 8 _ - 23 I 8
-

3 thru 4 B 3 thru 6 Or ig. ?!.:. thru Oric. - 4

27
s t hru - Orig. i 7 8

28 8
8 thru 10 8 8 8*

• . .

-
16 l ""' ? Orig nr u - ?? 1 thru 10 Orig. --

29 Or ig.

3 8 11 8
30 8

I
·' pc c ,...,d; x I , thru ? 0::-ig. ll I"'\ - . • -.

tJ. thr u 7 Orig . I ?\
- .J 1 thru 2 Orig. 8

.

17 1 Or ig . 3 thru 8 8 . .Apper.dix ,
thru ,

Orig. I ~ -
. c .

? 8 - . 24 1 thr u . l4 Or ig. . .

3 thru 7 Orig. 25 1 thr u 4 8
.

Appendix 1 t h r~ 2 Qr ig - . - .
0 ' .

I
18 . 1 Or ig. Appendix ,

8 .L Aooendix ' Orig . .1. ' .
• A -t .

? A - •

3 t hru ~ Orig.

? thr u 3 Orig . - •

4 th r u 6 8

.
Appendix 1 i Or ig . ' -- ') A r- • • -

•

s 8 . 6a 8* 3 Or ig .
. •

19 1 thru 11 8 . 7 t hr u 8 8 . Appendi x 1 thru "' Or :.a. c
4

G
12 thru 8* .
1~

•

. 9 thru 13 Orig . .
. Appendix 1 th ;:- u 5 Orig.

14 B H 6 8
20 1 Orig . - 7 s•

15 th ru Orig.
2 8 ·17 Appendix 1 thru 5 a·

..
. .

3 thru 13 Or ig. .

. . •

18 . a
I . .

- Index 1 t hr u· 7 8
. 1!:. thr u 8 , ~ 19 t hru Or ig.

??

·N-pa~1

AJI tiN t.c/lffl<:~l clt•n9•'1 ~ d•~ot~ b y '" '""• f - J irt til • m • r9'" · A dow~tw•'d poi" U" 9 ,,,., (f) n•llt to • lin • indit:At#S tll• r
t •CIIfti cM t:ll•"9•• · ~'" •t ~;, lin• •ltd c o.lftllfu• un u l ., uDwffd ;~otnt"'9 '"0- (• J 11 found. A Jtoruon r~l ,,o_ ! ·) ;10 iftttn9 to. . . • li"• t~H~It: ... t •• • t .cMu:AI c.~t•n9• i11 ~"' tJ••t /iff•. ~ lto,zont• f ,,.,ow /Qc..t•d OfltwWfl rwo cons•c:ut1v• lin•s IIICIIC.. t•s t•cll lflco~l

CI'J•"'1'' '" botJt ' '""' rN d•~''""'-

.._

PSS· 2
Uocate 8

- - -- ·- ·-- - ---- --- ·- - - ···- - ~ - ·-- ----- - - ·--

..

•

I
' I
I

I
I

i

I
I
.

.

f

.
I

--

Change
Designation

Rev. 1

Issue
Date

CHANGE RECORD

Change Description

1-77 Incorporated Addendum 1 i s sued Augus t 1976

4-77 F.l revision changes (plus additional minor revisions)

2-78 Deleted references to Varian

7-79 G.l (7Rl.O) revision changes. Added information pertain
ing to micro-VORTEX and operation of VORTEX II on the
V77-800. Incorporated Addendum 1 issued 11-77. Addendum
2 issued 11-77, and Addendum 3 issued 9-78.

Rev. 2 10-79
I

Miscellaneous editing changes.
information with patch program

Replaced system generation
information (Section 15) .

Update A 2-80

Update 8 5-80

Change Procedure:

Included flexible diskette (F3064) information in Section
18 and other appropriate sections.

8RO revision changes. Added Appendix I, deleted portions
of Sections 13, 18, 19, and 20. Moved information from
Section 26 to Section 19. Incorporated corrections and
editorial changes.

When changes are made to this manual, updated pages are issued. These updated pages
are either added to this manual or used to replace obsolete pages. The specific
pages affected by each change are identified on the PAGE STATUS SUMMARY page.

.
Pror\1.0 '" U S A

CR1
Update 8

----------------------- -~·--

-.. -..---...
... . -

.. -.

CONTENTS

TABLE OF CONTENTS

SECTION 1
INTRODUCTION

1.1 SYSTEM REQUIREMENTS ... 1-1

1.2 SYSTEM FLOW AND ORGAN IZA Tl ON 1-2

1.2.1 Computer Memory.. 1-2
1.2.2 Rotating Memory Device.. 1-4

1.2.3 Secondary Storage............... 1-·4
1.3 MEMORY MAP CONCEPT 1-4

1.4 BIBLIOGRAPHY .. 1-6

SECTION 2
REAL-TIME EXECUTIVE SERVICES

2.1 REAL-TIME EXECUTIVE MACROS ... 2-1

2.1.1 SCHED (Schedule) Macro ... 2-2

2.1.2 SUSPND (Suspend) Macro ... 2-3

2.1.3 RESUME Macro 2-3

2.1.4 DELAY Macro... 2-3

2.1 .5 LDELAY Macro 2-4

2.1.6 PMSK (PIM Mask) Macro 2-5

2.1.7 TIME Macro 2-5

2.1.8 OVLA Y (Overlay) Macro 2-5

2.1.9 ALOC (Allocate) Macro .. 2-6

2.1.10 DEALOC (Deallocate) Macro ... 2-7

2.1.11 EXIT Macro 2-7

2.1.12 ABORT Macro 2-8

2.1.13 IOLINK (1/ 0 Linkage) Macro... 2-8

2.1.14 PASS Macro 2-9

2.1.15 TBEVNT (Set or Fetch TBEVNT) Macro... 2-9

2.1.16 ALOCPG (Allocate Memory Pages) Macro .. 2-9
2.1.17 DEALPG (Deallocate Memory

Pages) Macro 2-10

2.1.18 MAPIN (Map-In Specified Physical

Pages of Memory) Macro .. 2-1 0

2.1.19 PAGNUM (Identify Physical Page

Number) Macro 2-11

2.2 RTE SYSTEM FLOW 2-1 2

2.3 TASK LIMITATIONS AND DIFFERENCES .. 2-12
.

2.4 ABORT PROCEDURE 2-14

2.5 CHECKPOINTING OF TASKS .. 2-14

2.6 PAGE ALLOCATION SCHEME ... 2-14

.
.__ VI

. -
--

• --------------- - ·------------------------------- - - · ····-·· ---- -

I

----~

'

--

Section/ Para

,
1 . 1
1.2

, .2.,
1.2.2
1 .2. 3
1 .3
, .4

2

2.,

2., .,
2., .2

2.1.3
2., .4

2.1.5
2.1 .6

2.1.7
2.1.8

•

2.1.9

2. 1 . 1 0

2., . 1 ,
2., . , 2
2., . 13

2. 1 . 14
2.1.15

2. 1 . 1 6

2. 1.17

2.1 . , 8

2.1 . 19

2.1.20

2 .1.21

2.1.22

2.1.23

Table of Contents

Title Page

INTRODUCTION 1-1

SYSTEM REQUIREMENTS 1-1
SYSTEM FLOW AND
ORGANIZATION 1-2

COMPUTER MEMORY 1-2
ROTATING MEMORY DEVICE 1-4
SECONDARY STORAGE 1-4

MEMORY MAP CONCEPT 1-4
BIBLIOGRAPHY 1-6

REAL-TIME EXECUTIVE
SERVICES 2-1

REAL-TIME EXECUTIVE
MACROS 2-1

SCHED (SCHEDULE)
MACRO 2-2
SUSPND (SUSPEND)
MACRO 2-3
RESUME MACRO 2-3
DELAY MACRO 2-3
LDELA Y MACRO 2-4
PMSK (PIM MASK)
MACRO 2-5
TIME MACRO 2-5
OVLAY (OVERLAY)
MACRO 0 0 • • 0 ••• 0 2-5
ALOC (ALLOCATE)
MACRO 0 0 0 ••• 0 2·6
DEALOC (DEALLOCATE)
MACRO 0 ••••••••• • 0 ••••••• 2-7
EXIT MACRO 2-7
ABORT MACRO 2-8
IOLINK (1 / 0 LINKAGE)
MACRO . 0 •• 0 ••• •• 0 ••••• 0 0 o •••• • 2·8
PASS MACRO 2-9
TBEVNT (SET OR FETCH
TBEVNT) MACRO 2-9
ALOCPG (ALLOCATE
MEMORY PAGES) MACRO 2-9
DEALPG (DEALLOCATE
MEMORY PAGES) MACRO 2- 10
MAPIN (MAP-IN SPECIFIED
PHYSICAL PAGES OF MEMORY)
MACA 0 . 2- 1 0
PAGNUM (IDENTIFY PHYSICAL
PAGE NUMBER) MACRO 2-11
RECOV (ERROR
RECOVERY) MACRO 2-12
AFAUT (ARITHMETIC
FAULT SETUP) MACRO 2-12
SRFAULT (SAVE/
RESTORE ARITHMETIC
FAULT STATUS) MACRO 2- 13
SETPAR (SET PARITY
ENABLE) MACRO 2-13

2.2
2.3

2.4
2.5

2.6

3

3.1

3 . 1 .1

3.2
3 .3
3.4

3.4 .1
3.4 .2
3 .5
3.5. ,
3.5.2
3.5.3
3.5.4
3.5.5
3.5.6

3.5.7

3.5.8

3.5.9

3 .5 .1 0

3.5.1 ,

3.6

3.6.1

3.6.2

3.6.3

3.6 .4

3.6.5

3.6.5 .1
3.6.5.2
3.6.5.3
3.7

3. 7.1
3 .7.2

Contents 1
Update B

ATE SYSTEM FLOW 2-1 3
TASK LIMITATIONS AND
DIFFERENCES 2 -14
ABORT PROCEDURE 2-16
CHECKPOINTING OF
TASKS 2-16
PAGE ALLOCATION
SCHEME 2-1 6

INPUT / OUTPUT
CONTROL 3-1

LOGICAL UNITS 3-1

SPECIAL LOGICAL UNITS 3-1
RMD FILE STRUCTURE 3-4
1/ 0 INTERRUPTS 3-5
SIMULTANEOUS PERIPHERAL
OUTPUT OVERLAP (SPOOL) 3-5
SPOOL OPERATION 3-6
SPOOL FILES 3-6

I / O-CONTROL MACROS 3-7
OPEN MACRO 3-1 0
CLOSE MACRO 3-11
READ MACRO 3-12
WRITE MACRO 3-1 2
REW (REWIND MACRO) 3-1 3
WEOF (WRITE END OF
FILE) MACRO 3-1 3
SREC (SKIP RECORD)
MACRO 3-1 3
FUNC (FUNCTION)
MACRO 3- 14
STAT (STATUS)
MACRO . 3- 1 5
DCB (DATA CONTROL
BLOCK) MACRO 3· 16
FCB (FILE CONTROL BLOCK)
MACRO 3-16

DISK DEVICE 1/ 0
OVERVIEW 3-17
ALTERNATE SECTOR
PARTITION 3-1 7
ALTERNATE SECTOR
PROCESSING 3- 1 8
DATA RECORD BLOCKING
AND DEBLOCKING 3-1 8
IDENTIFICATION BUFFER
DESCRIPTION 3-1 8
STATUS BUFFER
DESCRIPTION 3-19
Primary Status 3- 19
Secondary Status Buffer 3-1 9
Disk Access Methods 3-1 9

70-755x. 70-7560.
70-7561 . 70-7562
1/ 0 CONTROL
MACRO DESCRIPTIONS 3-20
DEMAND 3 -20
RELEAS 3-20

~--·-
.. ..-·

-

9.2.6

9.2 .7
9 .2 .8
9 .3

9 .3 .1

•

9.3 .1.1
9 .3 .1.2
9.3 .1.3

10

10.1
10.2
1 0. 2. 1
10.2.2

1 0 .2.3
1 0 .2.4

1 0 .2.5

10.2 .6
10.2.7

10.2 .8
1 0 .2.9

10.2 .10

1 0 . 2 .11

10.3

11

11 . 1
11 .2
11 . 2 .1
11 .2 .2
11 .2 .3
11 .2.4
11 .2 .5
11 .2 .6
11 . 2. 7
11 .2 .8
11 .2.9
11 .2 .1 0
11 .2. 11
11 .2.12
11 .2 .13
11 .2 .14
11 .2 .15
11.2 .16

---- ~- ..

..

Table of Contents (continued)

INIT (INITIALIZE)
DIRECTIVE 9-5
INPUT DIRECTIVE • 9 -6
ADD DIRECTIVE 9-6

VORTEX FILE MAINTENANCE
DRIVER (VZFMA) 9-6
IOC FUNC REQUESTS TO
VZFMA 9-8
Exit Conditions 9 -8
Errors . 9-8
Explanation of FSB Contents 9-8

INPUT / OUTPUT UTILITY
PROGRAM

ORGANIZATION 10-1
1/ 0 UTILITY DIRECTIVES 10-1
COPYF (COPY FILE) DIRECTIVE . . 10-1
COPYR (COPY RECORD)
DIRECTIVE 10-2
SFILE (SKIP FILE) DIRECTIVE 10-3
SREC (SKIP RECORD)
DIRECTIVE•............. 1 0-3
DUMP (FORMAT AND DUMP)
DIRECTIVE 10-3
PRNTF (PRINT FILE) DIRECTIVE . 10-4
WEOF (WRITE END OF FILE)
DIRECTIVE 1 0-4
REW (REWIND) DIRECTIVE 10-4
PFILE (POSITION FILE)
DIRECTIVE•..... 10-4
CFILE (CLOSE FILE)
DIRECTIVE . •.. 10-5
PACKB (PACK BINARY)
DIRECTIVE 1 0- 5

MULTI-VOLUME TAPE HANDLING
(V$RSW) 10-5

VSORT (SORT / MERGE)

ORGANIZATION 11 -1
VSORT DIRECTIVES 11-1
SORT DIRECTIVE 11 -2
INPUT DIRECTIVE 11 -2
ALTIN DIRECTIVE 11-2
OUTPUT DIRECTIVE 11 -2
WORK 1-3 DIRECTIVE 11 -3
SORTKEY DIRECTIVE 11 -3
AL TSEQ DIRECTIVE 11 -3
INCLF DIRECTIVE 11 -3
INCLC DIRECTIVE 11 -4
OMITF DIRECTIVE 11-4
OMITC OIRECTlVE 11 -4
MOVEF DIRECTIVE 11 -5
MOVEC DIRECTIVE 11 -5
LOT DIRECTIVE 11 -5
IN EXIT DIRECTIVE 11-5
OUTEXIT DIReCTIVE 11-5

11 .2 .17
11.3
11 .3 .1
11.3 .2
11 .4
11 .5

12

12.1
12.2
12.3
12.3 .1
12.3.2
12.3 .3
12.4
1 2.4.1

12.4 .2

12.4 .3
12.4 .4

12.4.5

12.4 .6

12.4 .7

12.4 .8

12.4 .9
12.4 .1 0

12.4 .11

12.4.1 2
12.4.13
12.4 .14
12.4.15

12.4 .16
12.4 .17
1 2.4.18

12.4 .19

12.4 .20

12.4 .21

12.4.22

12.5
1 2. 5.1
12.5.2
12.5.3
, 2.6

Contents 4
Update 8

•

ENDSORT DIRECTIVE 11 -6
USER EXITS 11-6
CALLING SEQUENCE 11 -6
IMPLEMENTATION 11 -6

VSORT MESSAGES 11 -7
FOREGROUND SORT 11-7

DATAPLOT II

SYSTEM FLOW OUTLINE 12-1
HARDWARE REQUIREMENTS . 12-1
GENERAL DESCRIPTION 12-1
DATAPLOT II ORGANIZATION ... 12-1
SYSTEM CONSIDERATION 12-3
VORTEX CONSIDERATIONS 12-3

DATAPLOT II SUBROUTINES .. 12-5
DPINIT (SYSTEM FILE
INITIALIZATION) 1 2-5
PLOTS (WORK BUFFER
INITIALIZATION) 12-5
PLOT (GENERATE PLOn 12-6
SCALE (GENERATE SCALE
FACTOR) 12-6
AXIS (GENERATE SEGM ENTAL
AXIS) 12-7
SYMBOL (GENERATE
SYMBOLS) 1 2-8
NUMBER (GENERATE
NUMBER) 12-9
LINE (GENERATE GRAPH
LINE) 12-10
MLTIPLE (M ULTIPLE PLOn 12-11
FACTOR (ALTER PLOT
SIZE) 1 2 · 11
WHERE (LOCATE
COORDINATES) 12-11
APPEND (APPEND FILE) 12-12
TOPFRM (TOP-OF-FORM) 12-12
CUT (CUT PAPER) 12-12
ENDCUT (EJECT AND CUT
PAPER) 12-13
DPSORT (SORT PLOT FILE) 12-13
DPPLOT (OUTPUT FILE) 12-13
DPCLOS (CLOSE PLOT
FILE) 12-14
ORIG -- OFFSETTING THE
ORIGIN ENTRY POINT 12- 14
VECT -- VECTOR ENTRY
POINT 12-14
SPECIAL SYMBOL
SUBROUTINE 12-15
DENSTY (ALTER STYLII/
INCH) 12- 15

PLOT FILE DATA FORMAT 12-15
VECTORS 1 2·15
CHARACTERS 12-1 6
END-OF-PLOT INDICATOR 12- 16

EXAMPLE OF APPLICATION
OF DATAPLOT ft. 12 -16

------- - -----------------------------

1 2.6 . 1

1 2. 6.2

12.7

12.7 .1

12.7 .2
12.7.3
12.7 .4

13

13.1
13.2

13.3

14

14.1
14. 1 . 1
14. , . 2
, 4 . 1 .3
14.1 .4
14.2
14. 2. 1
, 4 .2.2

14.2.3

14.3
14.4
14.4 . 1
14.4 .2

14.4 .3

14.4 .4

14.4 .5

14.4 .6

14.4 .7

14.4 .8

·14.4 .8 .1
14.4 .8 . 2
14.4 .9
14.4 . , 0
14.5

14.5 .1
14.5 .2

Table of Contents (continued)

PROGRAM TO GENERATE SINE 14.5 .3
WAVE 12- 16
PROGRAM TO GENERATE 14.6
COMMUNICATION NETWORK . 12-16

OPERATING PROCEDURES AND 14.6.1
ERROR MESSAGES 1 2- 1 7
VORTEX OPERATING 14.6.2
PROCEDURES 12-17
UNSORTED PLOT FILES 12-17 14.6.3
PRESORTED PLOT FILES 12-17
VORTEX SPECIAL 14.6 .4
PROCEDURES 12-18

SUPPORT LIBRARY

15
CALLING SEQUENCE 1 3- 1 15.1
NUMBER TYPES AND 15.1 .1
FORMATS 13- 1 15.2
SUBROUTINE DESCRIPTIONS . . 13-2 15 .2.1 ·- 15.2.2

15.2.3
REAL-TIME PROGRAMMING 15.2.4

15.2.5
INTERRUPTS 14- 1 15.2 .6
EXTERNAL INTERRUPTS 14- 1 15.2. 7
INTERNAL INTERRUPTS 14-3 15.2 .8
INTERRUPT-PROCESSING 14-4 , 5.2..9
INTERRUPT STATE 14-4 15.2.10

SCHEDULING 14-4 15.2.11
SYSTEM FLOW 14-4 , 5.3
PRIORITIES 14-5 15.4
TIMING CONSIDERATIONS 15.5
(APPROXIMATE) 14-28

REENTRANT SUBROUTINES . 14-29 15.6
COOING AN 1/ 0 DRIVER 14-30 15.7
1/ 0 TABLES 14-30
1/ 0 DRIVER SYSTEM 15.8
FUNCTIONS 14-30 15.9
ADDING AN 1/ 0 DRIVER TO 15.10
THE SYSTEM FILE 14-31
ENABLING AND DISABLING
PIM INTERRUPTS 14-32

DIRECTLY CONNECTED 16

INTERRUPT HANDLER 14-34
VORTEX USE OF SICS 16.1

AND BTCS 14-34 16. 1 .1

VORTEX II AND VORTEX 16., .2

COMPATABILITY .••. . .•.. 14-35 16.1 .3

MICRO-VORTEX (CPU-3) AND
VORTEX II COMPATABILITY .. . 14-36 , 6.2

Functions I Changes • ...•. 14-36
Restrictions 14-37 16.2. 1

RESIDENT TASKS . •. 14-37
PURGE CACHE COMMAND 14-38 16.2 .2

INTERTASK
COMMUNICATION 14-38 16.2.3

lTC MODULE OPERATION 14-38
lTC CALLING SEQUENCES 14-38 16.2.4

Contents 5
Update B

ITE INTERT ASK
COMMUNICATION MODULE .. . 14-42

MEMORY PARITY
CONSIDERATIONS 14-54
MEMORY PARITY CONSIDERATION
(V70/ V77 -600) 14-54

MEMORY PARITY CONSIDERATIONS
(V7 -200/ 400) 14-54

V77-600 PARITY ERROR
HANDLING . 14-54
V77 -800 PARITY ERROR
HANDLING 14-55

THE PATCH PROGRAM

•

GENERAL . 1 5-1
USER INTERFACE 15-1

CONTROL DIRECTIVES 15·1
.PTCH DIRECTIVE 15-1
.DUMP DIRECTIVE 15-1
.APND DIRECTIVE 15-2
.HIST DIRECTIVE 15-2
.BASE DIRECTIVE 15-2
.LIBR DIRECTIVE 15-3
.EXIT DIRECTIVE 15-3
.SLCT DIRECTIVE 15-4
.MANL DIRECTIVE 15-4
.RECD DIRECTIVE 15 -4
.CNTL DIRECTIVE 15-5

CHANGE DIRECTIVES 15-5
PATCH IMAGE FILE FORMAT . .. 15-7
PATCH DIRECTIVE LOG FILE
FORMAT 15-7
BTPTCH INTERFACE 1 5-7
SYSTEM GENERATION
INTERFACE 15-8
PATCHING CONSIDERATIONS . 15-8
ERROR MESSAGES 15-9
EXAMPLES . 15-9

SYSTEM MAINTENANCE

ORGANIZATION 16-1
CONTROL RECORDS 16-2
OBJECT MODULES 16-3
SYSTEM-GENERATION
LIBRARY 1 6-3

SYSTEM-MAINTENANCE
DIRECTIVES 16-3
IN (INPUT LOGICAL UNIT)
DIRECTIVE 16-3
OUT (OUTPUT LOGICAL UNIT)
DIRECTIVE 16-4
ALT (ALTERNATE LOGICAL
UNIT) DIRECTIVE 6-4
ADD DIRECTIVE 16-4

~-·
. ~-·~ -------·--_______ .. _ . .,._. _______ .. ·- · ·-·------ --.

--
•

16.2.5
16.2.6
16.2. 7
16. 2.8
16.3

16.4

17

17.1
17.2
17. 2. 1

17.2.2

17.2.3

17.2.4
17.2.5
17.2.6
17.2. 7
17.2.8

17.2.9
17.2.10

17.2.1 1

17.2.12

17.3
1 7.3.1
17.3.2
17.3.3

17.3.4

17.3.5

i7.3.6

17.4

18

18.1
18. 1 . 1
t 8.1.2

--
•

Table of Contents (continued)

REP (REPLACE) DIRECTIVE 16-5
DEL (DELETE) DIRECTIVE 16-6
LIST DIRECTIVE 1 6-6
END DIRECTIVE 16-6

SYSTEM-MAINTENANCE
OPERATION 16-6
PROGRAMMING EXAMPLES .. 1 6-6

OPERATOR COMMUNICATION

DEFINITIONS 17-1
OPERATOR KEY-IN REQUESTS 17-1
;SCHEO (SCHEDULE
FOREGROUND TASK) KEY-IN
REQUEST 1 7-2
;TSCHED (TIME-SCHEDULE
FOREGROUND TASK) KEY-IN
REQUEST 17-2
;ATTACH KEY-IN
REQUEST•... 1 7-3
;RESUME KEY-IN REQUEST 17-3
;TIME KEY -IN REQUEST 17-3
;DATE KEY-IN REQUEST 17-3
;ABORT KEY-IN REQUEST 17-4
;TSTAT (TASK STATUS)
KEY-IN REQUEST 17-4
;ASSIGN KEY-IN REQUEST 17-5
;DEVON (DEVICE DOWN)
KEY-IN REQUEST• 17-5
;OEVUP (DEVICE UP)
KEY-IN REQUEST 17-5
;JOUST (UST 1/ 0)
KEY-IN REQUEST 17-5

BLDSKD .. •.•.. 17-6
SET-UP REQUIREMENTS 17-6
TASK SCHEDULING 17-6
'A ' COMMAND (ATTACH A
TASK TO A CONTROL
CHARACTER 17-6
·o· COMMAND (DELETE
A TASK) 17-7
'L' COMMAND (LIST
ASSIGNED TASKS) 17-7
'E' COMMAND (EXIT
BLDSKO) 17-7

TASK SCHEDULING 17-7

OPERATION OF THE VORTEX SYSTEM

DEVICE INITIALIZATION 18-1
CARD READER 18-1
CARD PUNCH 1 8-1

1 8.1.3
18.1 .4
1 8.1.5
18.1 .6

. 18. 1 . 7
18.1 .8

1 8.1.9
t 8.1 .1 0
18. 1 . t 1
18.1. 1 2
1 8., . 1 3
18.2

1 8.2. 1

1 8.2.2
1 8.2.3
18.3
1 8.3. 1
1 8.3.2

1 8.3.3
-+ 18.3.4

18.4

l

19

19.1
19.2

1 9.2.1
19.2.2
19.2.3
19.2.4
19.2.5
19.2.6
1 9.2. 7

19.3

1 9.3. 1
19.3.2

i 19.4

1 9.4. 1
1 9.4.2
19.4 .3

19.4.4

Contents 6
Update B

--

UNE PRINTER 18-1
STATOS-31 18-1
33/ 35 ASR TELETYPE 18-1
HIGH-SPEED PAPER-TAPE
READER 1 8-1
MAGNETIC-TAPE UNIT 18-1
MAGNETIC-DRUM AND FIXED-
HEAD DISC UNITS 1 8-1
MOVING-HEAD DISC UNITS 18-1
MOVING-HEAD DISC UNITS 18-2
MOVING-HEAD DISC UNITS 18-2
MOVING-HEAD DISC UNITS 18-2
MOVING-HEAD DISC UNITS 18-2

SYSTEM BOOTSTRAP
LOADER 18-2
AUTOMATIC BOOTSTRAP
LOADER 18-2
CONTROL PANEL LOADING 1 8-3
SYSTEM BOOT HALT 18-3

DISC PACK HANDLING 18-3
PRT (PARTITION) DIRECTIVE 1 8-4
FRM (FORMAT ROTATING
MEMORY) DIRECTIVE 18-4
INL (INITIALIZE) DIRECTIVE 18-5
EXIT DIRECTIVE 1 8-5
WRITABLE CONTROL STORE
(WCS) 18-5

PROCESS INPUT/ OUTPUT

INTRODUCTION 19-1
F2963 DATA ACQUISITION
AND CONTROL SYSTEM 19-1
110 MACROS 19-1
REQUIRED HARDWARE 19-1
HARDWARE DESCRIPTION 19-2
SOFTWARE ADDRESSING 19-2
INPUT 19-3
OUTPUT 19-6
THROUGHPUT
CONSIDERATIONS 1 9-8

FORTRAN PROCESS CONTROL
SUBROUTINES 19-9
PROCESS 1/ 0 PARAMETERS .. 19-9
PROCESS 110 CALLS 19-10

IEEE STD 488-1975
DRIVER .. 19-1 1
DESCRIPTION 1 9-1 1
USER INTERFACE 19-1 1
DATA AND INSTRUCTION
FORMATS 19-1 3
SYSTEM AND USER
REQUIREMENTS · 19-14

20

20.1

20.1 .1

20.1 .2

20.1 .3

20.1.4

20.2
20.2. 1

20.2.1.1

20.2.2

20.2.3
20.2.4

20.2.5

20.2.6
20.2. 7
20.2.8

21

21 .1
21 .2
21 .3
21 .4
21 .5
21 .5.1
21 .5.2
21 .5.3

21 .6
21 .6.1
21 .6.2
21 .6.3
21 .7
21 .8
21 .9
21 .10
21 .1 1
21 .12
21 .13
21 .14
21 .15

Table of Contents (continued)

WRITABLE CONTROL
STORE AND FLOATING
POINT PROCESSOR

MICROPROGRAMMING
SOFlW ARE . 20-1
MICROPROGRAM
ASSEMBLER 20-1
MICROPROGRAM
SIMULATOR 20-1
MICROPROGRAM
UTILITY 20-1
WCS RELOAD TASK,
WCSRLD 20-2

STANDARD FIRMWARE 20-2
FIXED-POINT ARITHMETIC
FIRMWARE 20-2
Fixed-Point Multiple
(FIMPY) 20-3

FLOATING-POINT
ARITHMETIC FIRMWARE 20-3

DATA TRANSFER FIRMWARE 20-3
FORTRAN-ORIENTED
FIRMWARE 20-3
BYTE MANIPULATION
FIRMWARE•....... . .. 20-5
STACK FIRMWARE 20-6
FIRMWARE MACROS 20-9
COMMERCIAL FIRMWARE 20-14

FILE MAINTENANCE UTILITY

INTRODUCTION 21 -1
ORGANIZATION 21 -1
OUTPUT LISTINGS 21 -1
FMUTIL - OVERVIEW 21 -1
D DIRECTIVE 21 -2
DUMP FILE 21 -2
DUMP PARTITION 21 -3
DUMP FILE-NAME
DIRECTORY 21 -3

L DIRECTIVE 21 -3
LOAD FILE 21 -3
LOAD PARTITION 21 -4
LOAD DIRECTORY 21 -5

R DIRECTIVE 21 -5
E DIRECTIVE 21-5
S DIRECTIVE 21 -6
P DIRECTIVE 21 -6
U DIRECTIVE · 21 -6
T DIRECTIVE 21 -6
X DIRECTIVE 21 -7
I DIRECTIVE 21 -7
C DIRECTIVE 21 -7

.....

Contents 7
Update B

22

22.1
22. 1 .1
22.1 .2 .
22.1 .3
22.1 .4
22.1 .5

22.2
22.3
22.3.1
22.3.2
22.3.3
22.3.4
22.3 .5
22.3.6
22.3.7
22.3.8
22.3.9
22.3.10
22.3. 1 1
22.3.12
22.3. 1 3
22.3.1 4

22.3.15
22.3.16
22.3.17
22.3.18
22.4

22.5

22.6
22.7

23

23.1
23.1 .1
23.2

23.2.1

23.2.2

23.3

23.4
23.4 .1

23.4 .2

COMPRESSION/ EDIT
SYSTEM (COMSY)

ORGANIZATION 22-1
COMSY COMPRESSION 22-1
SEQUENTIAL FILES 22-2
RANDOM FILES 22-2
COMMON FILES 22-2
SEQUENCE AND EDITION
NUMBERS 22-2

INPUT / OUTPUT 22-2
COMSY DIRECTIVES 22-2
ASSIGN DIRECTIVE 22-3
UNIT DIRECTIVE 22-4
SET DIRECTIVE 22-4
GANG DIRECTIVE 22-5
DECK DIRECTIVE 22-6
COMDECK DIRECTIVE 22-6
COPY DIRECTIVE 22-7
RANDOM DIRECTIVE 22-7

•
APPEND DIRECTIVE 22-7
EDIT DIRECTIVE 22-8
LIST DIRECTIVE 22-8
CHECK DIRECTIVE 22-8
INSERT (ADO) DIRECTIVE 22-8
REPLACE (DELE fE)
DIRECTIVE 22-9
COMMON DIRECTIVE 22-9
COMSY DIRECTIVE ...•.... . .. 22-10
FILE DIRECTIVE 22-10
END DIRECTIVE 22-16

COMSY LOAD MODULE
GENERATION 22-1 1
COMSY EXECUTION 22-11

ERROR PROCESSING 22-11
COMSY EXAMPLE 22-11 ..-

MULTITASK SPOOLER

GENERAL 23-1
COMMAND SUMMARY 23-1

SPOOL FILE OPEN
AND CLOSE CALLS 23-2
SPOPN (SPOOL FILE
OPEN) 23-2
SPCLS (SPOOL FILE
CLOSE) 23-2

SCHEDULING A SPOOL
PRINT TASK
SPOOL COMMUNICATION 23-2
EX (SPOOL PRINT
TASK EXtn 23-3
SG (SPOOL PRINT TASK
GO) 23-3

.. ·-· .. ----·------·- - ------...----·-- -·--- -------·----~--.------------ ----------·--- - - · -·---------- ------- ------

23.5

23.6

23.7

23.8

23.9

23.10

23.11

23.12

23.13
23.14

24

24.1

24.2
24.3
24.4
24.5
24.6
24.7
24. 7.1

24.7.2

24.7 .3

24.8
24.8.1

24.8.2

24.8 .3

24.9
24.10
24.11
24.12

25

25.1
25.2

25.3
25.4
25.4.1
25.4.2

Table of Contents (continued)

INITIATION OF COMMUNICATION
WITH A SPOOL PRINT TASK •.. 23-3
SPOOL FILE STATUS
DIS PtA Y•..•.. . •.. •... 23-3
DO (SPOOL FILE
DELETE) 23-4

PA. PH. PO (SPOOL FILE
PRINT) 23-4

SC (SPOOL PRINT
CANCELLATION)•. 23-5
ST (SPOOL PRINT

25.4 .3

25.4.4
25.4 .5
25.4.6
25.4.7
25.5
25.6
25.7
25.8

'
TERMINATION) 23-5 Appendix A

SPOOL FILE
ALLOCATION 23-6
COMPONENT
DESCRIPTION •.... 23-6
SYSTEM GENERATION 23-7
CONSOLE MESSAGES 23-8

TAPE LABELING

INTRODUCTION TO TAPE
PROCESSING 24-1
LABEL DEFINITIONS•.. ... 24-1
LABEL ORGANIZATION 24-4
DATA SET DEFINITION 24-7
TAPE MOUNTING 24-10
DATA SET ACCESS 24-10
INPUT DATA SETS 24-10
OPENING AN INPUT
DATA SET 24-1 0
ACCESSING AN INPUT
DATA SET 24-11
CLOSING AN INPUT
OAT A SET . 24-11

OUTPUT DATA SETS 24- 11
OPENING AN OUTPUT
DATA SET 24-11
ACCESSING AN OUTPUT
DATA SET . 24-11
CLOSING AN OUTPUT
DATA SET . 24-11

TAPE INITIALIZATION 24-11
SYSTEM GENERATION 24-12
ERROR MESSAGES 24-12
EXAMPLES OF USAGE . . . • . . . 24-12

CONSOLE LOGGING
PROGRAM·

INTRODUCTION 25-1
PROGRAM
REQUIREMENTS 25-1
PROGRAM DESCRIPTION 25-1
COMMAND DESCRIPTION 25-1
ON COMMAND 25-1
OFF COMMAND 25-2

A.1
A.2
A.3
A.4
A.5
A.5.1
A.5.2

A.5.3

A.6
A.6.1
A.7
A.8
A.9
A.10
A.11
A.12
A.13
A.14
A.15
A.16
A.17

A.18

A.19
A.20
A.20.1
A.20.2
A.20.3
A.21

A.22

A.23
A.24
A.25
A.25.1

A.25.2

A.25.3

A.25.4

Contents 8
Update B

- ··-

PRINT COMMAND 25-2
SWITCH COMMAND 25-2
HELP COMMAND 25-2
EXIT COMMAND 25-2
STATUS COMMAND 25-2

STATUS WORD 25-2
OUTPUT FORMAT 25-3

TELETYPEWRITER DRIVER
(VSTYB) ADDITIONS 25-4
ERROR MESSAGES 25-4

ERROR MESSAGES

ERROR MESSAGE INDEX A-1
REAL-TIME EXECUTIVE• • . A-1
1/ 0 CONTROL A -5
JOB-CONTROL PROCESSOR ... A-8
LANGUAGE PROCESSORS A-9
DASMR ASSEMBLER A-9
FORTRAN IV COMPILER AND
RUNTIME COMPILER A-1 0
RPG IV COMPILER AND
RUNTIME COMPILER A- 1 1

LOAD-MODULE GENERATOR . A -13
RELINK A- 1 4

DEBUGGING AIDS A- 1 5
SOURCE EDITOR•.. A-16
FILE MAINTENANCE A-16
110 UTILITY A-18
SORT ERROR MESSAGES A-19
DATAPLOT A-19
SUPPORT LIBRARY A-20
REAL-TIME PROGRAMMING .. A-20
SYSTEM GENERATION A-20
SYSTEM MAINTENANCE A-21
OPERATOR
COMMUNICATION A-22
RMD ANALYSIS AND
INITIALIZATION A-22
PROCESS INPUT / OUTPUT A -23
WRITABLE CONTROL STORE .. A-23
MICROPROGRAM ASSEMBLER . A-23
MICROPROGRAM SIMULATOR . A-24
MICROPROGRAM UTILITY A-25

VTAM NElWORK CONTROL
MODULE A-26
FILE MAINTENANCE UTILITY
(FMUTIL) ERRORS• . A-27
COMSY ERROR MESSAGES .. A-28
PARITY ERROR MESSAGES ... A-29
ERROR CODES A-29
ERRORS RELATED TO
DIRECTIVES A-30
ERRORS RELATED TO
PROGRAMS A-29
ERRORS RELATED TO MEMORY
SIZE A-30
ERRORS RELATED TO
HARDWARE A-30

'

Table of Contents (continued)

Append ix B 1/ 0 DEVICE RELATIONSHIPS Appendix H RMD STATUS WORDS

Appendix C DATA FORMATS

C.1 PAPER TAPE C-1
C.1.1 BINARY MODE C-1
C.1.2
C.1.3
C. 1.4
C.2
C.2. 1
C.2.2
C.2.3
C.2.4
C.3
C.3.1
C.3.2
C.4
C.4.1
C.4.2

Appendix D

Appendix E

ALPHANUMERIC MODE C-1
UNFORMATTED MODE C-1
SPECIAL CHARACTERS C-1

CARDS C-2
BINARY MODE C-2
ALPHANUMERIC MODE C-2
UNFORMATTED MODE C-4
SPECIA L CHARACTER C-4

MAGNETIC TAPE C-4
SEVEN-TRACK C-4
NINE-TRACK C-4

STATOS PRINTER/ PLOTTER ... C-4
ALPHANUMERIC MODE C-4
UNFORMA flED MODE C-4

STANDARD CHARACTER CODES

ASCII CHARACTER CODES

Appendix .F VORTEX HARDWARE
CONFIGURATIONS

Appendix G

G.1
G.2

G.3
G.4
G.5
G.5.1
G.5.2
G.5.3
G.6

OBJECT MODULE FORMAT

RECORD STRUCTURE G-1
PROGRAM IDENTIFICATION
BLOCK G-1
DATA FIELD FORMATS G-1
LOADER CODES G-1
EXAMPLE G-3
SOURCE MODULE G-3
OBJECT MODULE ••.. •• ...• G-3
CORE IMAGE• • G-5

END LOAD RECORD G-6

.
H.1
H.2
H.3
H.4
H.S

H.5.1
H.5.2
H.6
H.7

Appendix I

I. 1
1.2
1.3
1.3 .1
1. 3 .2
1.3 .3

1.4
1.5

INDEX

Contents 9
Update B

70-76x0 RMD H-1
70-7500 AND 70-7510 RMD ... H-1
70-7520/ 7530 RMD H-2
70- 7603/ 7613 RMD H-3
70-755x. 70-7560, 707561 .
and 70-7562 RMD H-4
PRIMARY STATUS H-4
SECONDARY STATUS H-5

F3064 FLEXIBLE DISKETTE H-5
VZLPC UNE PRINTER
DRIVER (SUL/ ACORN
PRINTER) .. H-6

VORTEX II 8-BIT ASCII SUPPORT

GENERAL 1-1
IOC MODIFICATIONS 1-2
IOUTIL MODIFICATIONS 1-2
OPTION S 1-2
NO OPTION 1-4
NOTES AND GUIDELINES FOR
THE USER .. 1-4

SEDIT MODIFICATIONS 1-4
DASMR ASSEMBLER
MODIFICATIONS 1-5

- ---------------------------~------- . :- ~ . -----·-· . - · .__.-....._ -- +-

l

i

a .. atJtll _iJI

--- -

1 -1
1-2
1-3
2-1

2-2
3-1
5-1

5-2
5-3
5-4

6-1

12- 1

12-2
12-3

12-4

12-5
12-6
12-7

12-8
12-9

12-10

14- 1

1-1
2-1
3-1
3-2
3-3
3-4

5-1

5-2

7-1
9-1
13-1
13-2
13-3
14-1
14-2
14-3
14-4

List of Illustrations

VORTEX System Flow 1-2
VORTEX Nucleus. Map 0 1-3
VORTEX RMD Storage Map. 1-4
Matrix of Nucleus Module
Access Mode . . . • • 2-1 5
V$PAGE. Page Allocation Table 2-16
Spooling Subsystem Flow 3-6
VORTEX Macro Definitions for
OASMR 5-2
Sample Assembly Usting 5-1 0
Sample Concordance Usting •.. 5-1 3
FORTRAN 1/ 0 Execution
Sequences •• ...•.....•.. 5-19
Load-Module Overlay Structure
(Virtual Memory) . . . • • . • • 6-2
OAT APLOT II Graphics System Data
Flow 12-2
DATAPLOT II Organization•.. 12-2
Minimum and Maximum Plot
Values 12-4
+ X Axis and + y Axis Relative to
Paper Direction 1 2-14
Vector-Data Format .•...... 12-15
Character Data Format 12- 16
Character Orientation Data
Format •.......... .. . 1 2-16
End-of-Plot Indicator 1 2. 16
Sine Wave Plot Generated by
DA T APLOT II 1 2-1 7
Communication Network Plot Generated
by OATAPLOT II 12-17
Interrupt Une Handlers 14-2

14-2
14- 3
16-1
16-2
20-1
20-2
20-3
20-4
20-5
20-6
20-7
20-8
21-1

22-1
23-1
24-1

24-2

24-3

24-4

26-1
C-1
C-2

C-3
C-4

List of Tables

Executive Mode States •. 1-6 15- 1
ATE Service Request Macros 2-1 17-1
VORTEX Logical-Unit Assignments . . 3-2 17-2
Valid Logical-Unit Assignments 3-3 18-1
FCB Words Under 1/0 Macro Control 3-16a 20-1
IOC Word Usage for 70-755x. 70-7560. 21 -1
70-7561 . 70-7562 Disk 3-22 22-1
Directives Recognized by the DASMR 24-1
Assembler . 5-1 24-2
ATE Macros Available-Through 24-3
FORTRAN IV 5-13 25-1
DEBUG Directives 7-1
File Maintenance Control Block 9-7
OAS Coded Subroutines • 1 3-2 ! OM Library Subroutines 13-7 1-1
FORTRAN IV Coded Subroutines ... 13-8 1-2 •

TIDB Layout . 14-7 1-3
TIDB Description 14-1 2
Map of Lowest Memory Sector 14-1 8 1-4
TIDB Status-Word Bits 14-26

i

Contents 10
Update 8

- ·-·· --· ·---·· _,. __ - .. . -- ··--· -

VORTEX Priority Structure 14-6
Driver Interface 14-33
SMAIN Block Diagram 16-1
SMAIN LIST Directive Usting 16-7
Base and Umit of Stack 20-6
Stack Control Block 20-6
Stack Multiply 20-7
Stack Divide 20-7
Stack Push 20-7
Stack Pop . 20-7
Stack Double Push 20-8
Stack Double Pop 20-8
Sample Output Produced by Dump
File Directive 21 -2
OOMSY Data Flow 22-1
Multitask Spool System Flow 23-1
Layout of Single Data Set - Single
Volume : 24·4
Layout of Single Data Set - Multiple
Volumes 24-4
layout of Multiple Data Set - Single
Volume 24-5
Layout of Multiple Data Sets - Multiple
Volumes 24-6
Typical System Configuration 26-1
Paper Tape Binary Record Format ... C-1
Paper Tape Alphanumeric Record
Format C·2
Card Binary Record Format • C-3
Card Alphanumeric Record Format
(IBM 026) C-3

Supplementary Defined Mnemonics . . 15-6
Physical 1/ 0 Devices 17-1
Task Status (TIDB Words 1 and 2) .. 17-4
Key-In Loader Programs 18-2
Firmware Availability 20-2
FMUTIL Directives 21 -1
COMSY Logical Units 22-2
Volume Label 1 (VOL 1) Format 24-1
Header Label 1 (HDR 1) Format 24-2
Header Label 2 (HOR2) Format 24-3
Status Word (CLSTA T) 25-3

8-Bit ASCII Character Set 1-1
8-Bit Special Characters. Katakana.... 1-2
IOUTIL COPY Directive Conversions.
Option S 1-3
IOUTIL COPY Directive Output.
Without Option S 1-4

,

SECTION 1
INTRODUCTION

SPERRY UNIVAC VORTEX II is a modular software
operating system for controlling, scheduling, and mon
itoring taks in a real-time multiprogramming environment.
VORTEX II supports memory map operation to a
maximum of 1024K of central memory. VORTEX II also
provides fo r background operations such as compilation,
assembly, debugging, or execution of tasks not associated
with the real-time functions of the system. The basic
features of VORTEX II are:

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Memory map management

Real-time 1/0 processing

Provision for directly connected interrupts

Interrupt processing

Multiprogramming of real -time and background
tasks

Overlapping output to peripherals with spooling

Priority task scheduling (clock time or
interrupt)

Load and go (automatic)

Centralized and device-independent 110 system
using logical unit and file names

Operator communications

Batch-processing job-control language

Program overlays

Background programming aids: FORTRAN and
RPG IV compilers, DAS MR assembler, load-module
generator, library updating, debugging, and
source editor.

Use of background area when required by
foreground tasks

Disc/ drum directories and references

System generator

• Individual task protection

NOTE: Throughout this manual, all references to
VORTEX imply VORTEX II.

1.1 SYSTEM REQUIREMENTS

VORTEX requires the following minimum hardware
configuration:

a. SPERRY UNIVAC 70 series computers with 32K
memory

b. 33/35 ASR Teletype or compatible CRT on a priority
interrupt module

c. Priority Interrupt Module (PIM)

d. Rotating memory device (RMD) on a PIM w ith either a
buffer interlace controller (BIC), block transfer
controller (BTC), or direct memory interface.

e. One of the following on a PI M:
(1) Card reader with a BIC
(2) Paper-tape system or a paper-tape reader
(3) Magnetic-tape unit with a BIC

f. Memory map hardware

The system supports and ts enhanced by the following
optional hardware items:

a. Additional main memory (up to a total of 1024K)

b. Additional rotating memory devices

c. Automatic bootstrap loader with VORTEX II (device
dependent) system boot

d. Card reader, if one is not included in the minimum
system with BJC and PIM

e. Card punch with BIC and PIM

f. Line printer with BIC and PIM

g. Paper-tape punch, if one is not included in the
minimum system

h. Process input and output

i. Data communications multiplexor

j. Electrostatic printer I plotter

k. Writable control store

I. Floating-point processor

m. V75 extended instruction set.

All BICs, BTCs, and DCMs must have memory mapptng
capability.

The rotating-memory device (RMD) serves as storage for
the VORTEX operating system components, enabling real·
time operations and a multiprogramming environment for
solving real-time and nonreal-time problems. Real-time
processing is implemented by hardware interrupt controls
and software task scheduling. Tasks are scheduled for

1-1

·~-- --- - - ·-··. -· ···- --··~-- -· ·- ·- - ·-· --- .. -·- -·..- . -

INTRODUCTION

execution by operator requests, other tasks, device inter
rupts, or the completion of time intervals.

Background processing (nonreal-t ime) operations, such as
FORTRAN compilations or DAS MR assemblies, are under
control of the job-control processor (section 4), itself a
VORTEX background task. These background processing
operations are performed simultaneously with the real-t ime
foreground tasks until execution of the former IS sus·
pended, either by an interrupt or a scheduled task.

1.2 SYSTEM FLOW AND ORGANIZATION

VORTEX executes foreground and background tasks
scheduled by operator requests, interrupts, or other tasks.
All tasks are scheduled, activated, and executed by the
real-time executive component on a priority basis. Thus, in
the VORTEX operating system, each task has a level of
priority that determines what will be executed first when
two or more tasks come up for execution simultaneously.

The job-control processor component of the VORTEX
system manages requests for the scheduling of background
tasks.

l

Upon completion of a task, control returns to the real-time
executive. In the case of a background task, the real-time
executive schedules the job-control processor to determine
if there are any further background tasks for execution.

During execution, any foreground task can use any real·
time executive service (section 2.1).

Figure 1-1 is an overview of the flow in the VORTEX
operating system. Section numbers refer to further discus·
sion of this manual.

1.2.1 Computer Memory

VORTEX requires a minimum of 32K words of main
memory and supports up to a maximum of 1024K words.

The system generation programs (see VORTEX II System
Generation User Guide / Programmer Reference. UP-9083)
execute in a non-memory map 1nvironment and consequently
utilize only the f irst physical 32K words of main memory. All
resident tasks and data res1de in the first 32K of logical
memory and are considered as part of the VORTEX nucleus.
The nucleus is assigned to be in the executive mode. map 0 .

T virtual memory (see section 1 .3).

VO RTE X 0 PER AT IN G SYSTEM
FO REGROUND : BACKGROUND

I
I

LOAD- FORTRAN USER O PERATOR REAL-TIME I
NON- COMMUNICATION EXECUTIVE I MODULE IV
RESIDENT INTERRUPT SERVICES I GENERATOR COMPILER
TASKS (SECTION 2) I (SECTION 6) (SECTION 5.3)

I

• I
I
I

I
I

US ER ~ I JOB-
RESIDENT REAL-TIME I CONTROL USER'S

TASKS - EXECUTIVE I PROCESSOR TASKS
I (SECTION 4)
I
I

I

I
I
I

SYSTEM
. OPERATOR I DAS MR

NON-
1/0 COMMUNI- I 1/0 ASSEMBLER
CONTROL CATION UTILITY RESIDENT - I (SECTION 5. I)

TASKS
(SECTION 3) PACKAGE I (SECTION 10)

(SECTION 17) I
I
I RPG IV
I COMPILER
I (SECTION 5.4)
I

SPERRY I
USER I DE- • vo UNIVAC BUGGING

. LIBRARY SUPPLIED I
DEVICES DRIVERS SUPPLIED (SECTION 7) UP-DATING

DEVICES I (SECTIONS
I 8,9,16)
I

Figure 1-1. VORTEX System Flow

1-2 Update B

1024K

V$TFC

32K
{a)

V$BFC

(b)

V$GFCB

(c)

V$BTBM

(d)

V$BVN

(e)

02000

01000

(f)

VNO Task Area

./' -
......

Foreground Blank Common
(Full Access)

Possible unassigned space to keep
global FCBs on the same page (80
words maximum)

•

Global FCBs

JCP I OPCOM Buffers

DST !LUN ! PST ! COT AD
Controller Tables
TIDBs
User Da ta (except reentrant
subroutmes called w1th ALOC)

V$EX EC Real-Time Execut ive
V$10C Input /Output Control

Drivers
Reentrant Subroutines
Reentrant Subroutine Stack

VNO Overlay Region

Unallocated Memory

Dynamically a lloca ted for

TIDB. I 10 requests. map
1mages. etc.

Page 1 reserved for OPCOM

Page 0 System Constants

M apped m w1th all
foreground tasks
referencmg blank
common

M apped in w1th all
background tasks
referencmg global
FCBs

M apped m w1th programs
referencmg CL lab e Is

Bottom of table region

Accessible only to M ap 0

Bottom of fixed nucleus

M apped 1nto all tasks

NOTE: VTFC, VBFC, etc. are system pointers in page 0
described in section 14, table 14-1.

NOTE: V$TFC, top of nucleus, is specified on SGEN MRY
directive (described in section 15.5.1).

Figure 1-2. VORTEX Nucleus, Map 0

----- ------- -·-·-·- --- - ----------... ------· __ ___ _.._,__ ... - --··· ~ · · _, __ -

INTRODUCTION

1-3

- --

INTRODUCTION

memory. All resident tasks and data reside in the first 32K of
logical memory and are considered as part of the VORTEX
nucleus. The nucleus is assigned to be in the executive
mode. map 0 , virtual memory (see section 1.3)

Figure 1-2 illustrates the map 0 nucleus memory layout.
The 32K words memory space is grouped into several
modules:

a. Foreground Blank Common Module: This module is
mapped with all foreground tasks referencing blank
common.

b. Global FCB Module: This module is mapped with all
background tasks referencing the global FCBs. It is
read only access mode for priority 0 tasks and read /
write for priority 1 tasks. This module is of approxi·
mately 90 words.

c. Nucleus Table Module: This module is mapped with all
tasks with an external name defined in the Cllibrary.
Read-only access mode for priority 0 tasks and read/
write access for all other tasks. The bottom of this
module is defined in V$8TBM and is determined by
SGEN during the nucleus module building. Control
record CTL,21 specifies the end of the nucleus table
module. All user data and programs which are to be
included in this module must precede the CTL,21
control record. The approximate size of this module is
1000 words {RMO, line printer, card reader, Teletype,
eRn.

d. Nucleus Programs Module: This module consists of
V$EXEC, V$10C, 110 drivers, reentrant subroutines,
stacks, and any user programs inserted between the
CTL.21 and CTL,PART0003 SGEN tasks. The bottom
of this module is defined by V$CRDR.

e. Map 0 Allocable Memory Space: The virtual memory
space between page two and V$CRDR is available for
dynamic allocation. l/0 request block, TIOB block,
and map image memory space are allocated in this
region. Page one is reserved for the OPCOM task. The
actual physical memory assigned to the virtual
memory space is memory management performed by
the RTE component.

f. Page 0: Always reserved for system constants, interrupt
traps, and background literal pool (a description 1s
found in section 14, table 14-3).

The unused physical memory in the first 32K and all
physical memory above 32K are designated as allocable
memory. This is the physical memory which is dynamically
allocated for map 0 memory space as described in e, and
which is allocated to a user mode task's logical memory.

1-4

1.2.2 Rotating Memory Device

At least one RMD {disc or drum) is required for storage of
VORTEX operating system components. The RMD is divided
into a fixed number of variable-length areas called
partitions. These are defined at system-generation time
(see VORTEX II System Generation User Guide/ Programmer
Reference. UP-9083).

The following reside on theRMO (figure 1·3):

a. System initializer, loader, and VORTEX nucleus •n
absolute format

b. Checkpoint file

c. GOfile

d. User library

e. Transient files

f. Relocatable object·module library

g. Relocatable load-module library

System lnitializer and
loader

VORTEX Nucleus in
Absolute Format

Cl Directory

Relocatable Object·Module
library

Relocatable load-Module
libraries

Checkpoint File
.

GO file

User library

Transient Files

Figure 1-3. VORTEX RMD Storage Map

1.2.3 Secondary Storage

The VORTEX operating system supports any secondary
storage devices that have been specified at system
generation time.

1.3 MEMORY MAP CONCEPT

VORTEX logical (virtual) memory is defined to be 32K
words. This is the maximum memory space that any single
task can address. even though the physical memory space
may be as great as 1 024K words. Where in actual or

Update B

- -- ___ ___ .. ____ _

physical memory that task resides is transparent to the
task and is a memory management function performed by
the ATE component of VORTEX.

Each logical memory space (32K) is organized into f ixed
size blocks of 512 words (01000 in octal), ca lled logical
(virtual) pages. Hence, there are 64 logical pages within a
32K logical memory space. The size of the logical memory
available to a task is reduced by:

a. Page 0: The first page of 512 words is reserved for
system constants, interrupt trap locations, background
literal pool and communication link for IOC and
V$EXEC calls. This page is mapped in all logical .
memones.

b. Nucleus Mod~es: A task referencing an external name
which is defined in the CL library will have the
corresponding VORTEX nucleus module mapped in
logical memory for a task. (Section 1.2.1 describes in
greater detail the nucleus modules.) These are:
(1) Foreground b lank common module.
(2) Global FCB module, and / or
(3) Nucleus table module

c. Any FORTRAN program performing input/output
operation will have the nucleus table module mapped
into its virtual memory. FORTRAN runtime package
requ ires access to the device specification table
(DST), logical unit tables (LUT), and controllers tables
for linking information. The maximum available
logical memory space available is V$BTBM (bottom of
nucleus table module, location 033 1) minus 01000
(program start logical address). V$BTBM is defined
on the SGEN listing.

d. For background priority 1 tasks, page 0 is set to read /
write access mode to permit tasks, e.g., JCP, to modify
low memory pointers V$JCFG, V$CRDM, etc. Hence,
the method of transferring control from user mode to
executive mode for I /0 and RTE calls is to map in the
pages containing the entry to V$10C (1 10 ca lls).
V$EXEC (RTE calls), and V$10ST (STAT calls).
Therefore a priority 1 task making an l/0 call (or RTE
call, or STAT ca ll), executes a JSR,X to location 0404.
Because page 0 is set to read/ write access mode, the
instruction at 0404 (JMP V$10C) is executed. The first
instruction in V$10C (likewise, V$EXEC and V$10ST)
is a d isable PIM (EXC 0444) instruction. Execution of
an I 10 type instruct ion in the user map generates a
memory-protection interrupt, which forces the system
to the executive mode and hence the means of
transferring control to the map 0 tasks. Therefore, the
available memory space for a background task is
from location 01000 to the page where V$10C (which
is lower in memory than V$EXEC) resides. V$10C
address is defined on the SGEN output list ing.

All user mode tasks are loaded from logical address 01000.
A task not referencing external names defined in the CL
library has all of the logical memory available to it except
page 0.

Physical memory is also organized into f ixed -size blocks of
512 words, referred to as physica l pages. A system with

INTRODUCTION

physical memory size of 256K words contains 512 physical
pages (64 physical pages for each 32K words of memory).

Allocation of logical memory to physical memory is
accomplished by pages. A task of 010000 (4096 in decimal)
words will reside in eight physical pages of physical
memory. These physical pages need not be contiguous.
However, that fact is transparent to the task. During
execution, the task assumes that its eight pages are
contiguous. The linking of physical pages is performed by
the memory map hardware. All user program object
modules are assembled relative to location 0. Load modules
are generated by SGEN and LMGEN to be relative to logical
address 01000 .

A map defines the 64 logical pages within a logical memory.
Each logical page can be set to one of four possible access
modes:

Unassigned

Read / Write

Read Operand
Only

Read Only

The logical addresses within that
virtual page are unassigned.

All accesses including write operation
permitted to/from the logical ·page.

Only operand fetches permitted from
the logical page.

Only instruction or operand fetches
permitted within the logical page.

Each logical page, except for the pages with unassigned
status, must be assigned to a physical page. The RTE task
sets the status for each page, allocates a physical page to
each logical page, and loads the corresponding mapping
registers.

The memory map hardware provides a 4-bit map register
for the 16 possible maps. This 4-b it map register is set by
the RTE component to select the proper map (0-15). Map 0
is defined as the executive mode. All other map selections
(1 -15) are designated as being in the user mode. However,
when the system is forced to the executive mode, state 0,
by an l / 0 , real-time, or memory map interrupt, the map
register will continue to contain the currently executing
user map selection number.

Executive Mode

All instructions except HALT are permitted in this mode.
Any interrupt will force the hardware to enter this mode in
executive mode state 0. The interrupt will not disable the
map. VORTEX Real -Time Executive (RTE), Input/ Output
Control (IOC), l /0 drivers, and other resident tasks and
constants are mapped into the executive mode. The
instruct ions and data wh ich comprise the VORTEX nucleus
are mapped in the executive mode. Any task executing I /0
instructions (EXC, OAR, SEN , etc.) must execute in map 0.

A HALT instruction executed in the executive mode with the
map enabled will generate an interrupt. The HALT is
permitted only in the disabled map state.

1-5

···- ----~----·· - ---·-· ---- - ---- - - _.,.____ ---J··- .. -··-- .. -- .. -~---- - ··· ·-· - ·---·- ---· -- ...

•

INTRODUCTION

There are four executive modes states as shown in table
1-1. A map 0 task will normally execute in state 0. In state
0, all instruction fetches and operand fetches and stores
are performed in map 0 logical memory. If a map 0 task
must fetch and store data to or from a user map (1-15), the
map 0 task must switch to the proper executive mode state
(1, 2 or 3), then upon completion of the fetch or store,
restore the executive mode to state 0. A convenient way of
switching executive or mode states is to output one of the
control words established by the RTE component in the
page 0 system data region, locations 0334-0337: V$STO,
V$ST1, V$ST2, and V$ST3 for executive mode states 0
through 3 respectively. An example of switching to
executive mode 3 is OME 046, V$ST3, where 046 is the
memory-map device address.

User Mode

All operands and instructions are mapped in accordance
with the map register contents. Error conditions will cause
interrupts, which force the system to the executive mode.
User mode is entered from the executive mode under
control of RTE.

Privileged instructions (e.g., EXC, HALT) are not permitted
in this mode. An interrupt is generated if a task attempts
to execute a privileged instruction. Foreground tasks may
execute disable and / or enable PIMS and RT clock
instructions (EXC 0444, EXC 0244, EXC 0147, EXC 0747).
Section 14 .4.4 describes this subject further.

Section 2.2, RTE System Flow, describes the user mode and
executive mode tasks.

1-6

Table 1·1. Executive Mode States
Instruction Operand

State Fetch Fetch Store

0
1
2
3

MAP 0
MAP 0
MAP 0
MAP 0

MAP 0
MAP 0
MAP N
MAP N

MAP 0
*MAP N

MAP 0
MAP N

+MAP 0
*MAP N

refers to the executive task map.
refers to the task map specified by
the map register. (n - 1-15)

1.4 BIBLIOGRAPHY

The following Sperry Univac manuals are pertinent to the
use of VORTEX and the 70/620 series computers:

Title

FORTRAN IV (VORTEX)
Reference Manual

HASP/ RJE Operator's Manual
VTAM Reference Manual
VORTEX Installation Manual
TOTAL Reference Manual
RPG II Reference Manual
COBOL Reference Manual
TSS Reference Manual
Assembly Lanuage Reference

Manual
VIDEO Reference Manual
V70 Architecture Reference

Manual

Document
Number

98 A 9952 04x

98 A 9952 21x
98 A 9952 22x
98 A 9952 25x
98 A 9952 41x
98 A 9952 42x
98 A 9952 43x
98 A 9952 44x
98 A 9952 45x

98 A 9952 46x
98 A 9906 000

SECTION 2
REAL-TIME EXECUTIVE SERVICES

The VORTEX real-time executive (RTE) component
processes, upon request by a task, operations that the task
i tself <;:annot perform, including those involving linkages
with other tasks. RTE service requests are made by macro
calls to V$EXEC, followed by a parameter list that contains
the information required to process the request.

The contents of the volatile A and B registers and the
setting of the overflow indicator are saved during execut ion
of any RTE macro. After completion of the macro, these
va lues are returned . The contents of the X register are lost.
If the task uses the V75 registers 3 through 7, the contents
of R3 through R7 are also saved.

There are 32 priority levels in the VORTEX system,
numbered 0 through 31. Levels 0 and 1 are for background
tasks and levels 2 through 31 are for foreground tasks. If a
background task is assigned a foreground priority level, or
vice versa, the task automatically receives the lowest valid
priority level for the correct environment. Lower numbers
assign lower priority. If more than one task has the same
priority level, they are selected for execution on a first-in,
first -out basis. Background and foreground RTE serv1ce
requests are similar.

Table 2-1. RTE Service Request Macros

Mnemonic Description

SCHED Schedule a task

SUSPND Suspend a task

RESUME Resume a task

DELAY Delay a task

LDELA Y Delay and reload from
specified logica I unit

PMSK

TIME

OVLAY

ALOC

Store PI M mask register

Obtain time of day

Load and / or execute an
overlay segment

Allocate a reentrant
stack

DEALOC Deallocate the current
reentrant stack

EXIT

ABORT

Exit from a task (upon
completion)

Abort a task

Level 0 FORTRAN

Yes Yes

Yes Yes

No Yes

No Yes

No Yes

No Yes

Yes Yes

Yes Yes

No Yes

No No

Yes Yes

No Yes

IOLJNK Link background l / 0

PASS Pass map 0 data

TBEVNT Set / fetch task's TBEVNT

ALOCPG Allocate memory page(s)
(Priority 0 in map 0)

DEALPG Deallocate memory
page(s) (Priority 0 in
map 0)

Yes

Yes

Yes

Yes

Yes

MAPIN Map in specified memory No
page(s)

PAGNUM Identify physical page
number

Yes

No

Yes

No

No

No

No

No

Whenever a task is aborted , all currently active I / 0
requests are completed. Pending I /0 requests are de
queued. Only then is the aborted task released .

There are 18 RTE service request macros. Certain of them
are illegal in unprotected background (level 0) tasks. Table
2-1 lists the RTE ·macros, indicates whether they are legal
in level 0 tasks, and indicates whether there is a FORTRAN
library subroutine (section 13) provided.

Note: A task name comprises one to six alphanumeric
characters (including $), left-justified and filled out with
blanks. Embedded blanks are not permitted.

2.1 REAL-TIME EXECUTIVE MACROS

This section describes the RTE macros given in table 2-1.

The general form of an RTE macro is

where

label mnemonic,p (l), p(2), ... ,p(n)

label

mnemonic

each p(n)

permits access to the macro from
elsewhere in the program

is one of those given in table 2-1

is a parameter defined under the
descriptions of the individual macros

The om1ss1on of an optional parameter is indicated by
retention of the normal number of commas unless the
omission occurs at the end of the parameter string. Thus,
in the macro (section 2.1.1)

2-1

. -"-·--~----" ·----------·- ---· -· . --·--·-·-·-.. -·------~ .. - -- __ ,.. __ --- "- · ---·- - ·-·-·-- . -. --·-

•

REAL-TIME EXECUTIVE SERVICES

SCHED 8 106 'TA' 'SK ' 'A' ,, ,, , ,
the first double comma indicates a default value for the
wait option and the second double comma indicates
omission of a protection code.

Error messages applicable to RTE macros are gtven in
Appendix A.2.

2.1.1 SCHED (Schedule) Macro

This macro schedules the specif ied task to execute on its
designated priority level. The scheduling task can pass two
values in the A and B registers to the scheduled task (a
task using the V75 registers 3 through 7 can also pass
parameters in R3 through R7). A Tl DB is created for each
scheduled task, (see section 14 for a descr ipt ion of TIDB).
The macro has the general form.

where

2-2

label SCHED level, wait, ·lun, key, 'xx','yy','zz', f

level is the value from 0 (lowest) to 31
(highest) of the priority level of the
scheduled task

wait is 0 (default value) if the scheduling and

lun

key

xxyyzz

f

scheduled task obtain CPU time based
on priority levels and 1/ 0 activity, or 1 if
the scheduling task is suspended until
completion of the scheduled task

is the name or number of the logical unit
whose library contains the scheduled

task, zero to schedule a resident
foreground task, or 106 to schedule a
nonresident task from the foreground
library. If a zero is specified and the task
is not found in the resident directory, the
RTE component (SAL) will automatically

search for the task on the foreground
library (FL)

is the protection code, if any, required to
address lun (0306 or 'F' to schedule a
nonresident task from the foreground
library). The foreground library logical
unit and its protection key are specified
by the user at system-generation time

is the name of the scheduled task in six
ASCII characters, coded in pairs
between single quotation marks and
separated by commas; e.g., the task
named BIGJOB is coded 'BI ', 'GJ ','OB'
and the task named ZAP is coded
'ZA', 'P', ' '

is 1 if the T IDB address o f the sched
uled task is to be returned in the A reg
iste r, or 0 (default value) if the or iginal
value is to be returned.

The FORTRAN calling sequence for this macro is

- - -· -

CALL SCHED(Ievel,wait,lib,key,name)

where lib is the number of the library logical unit
containing the task, and name is the three-word Hollerith
array containing the name of the scheduled task. The other
parameters have the definitions given above.

All tasks are activated at their entry-point locations, with
the A and B registers (and the V75 registers if ava ilable)
conta ining the value to be passed. The scheduled task
executes when it becomes the active task- with the highest
priority.

The specified logical unit (which can be a background
library, a foreground library, or any user-defined library on
an RMD) must be defined in the schedule-call ing sequence.

Expansion: T he task name is loaded two characters per
wo rd . The wait option f lag is b it 12 of word 2 (w). The
schedu led task TIDB address flag is bit 13 or w ord 2 (f) .

Bit 15 14 13 12 11 10 9 8 ~ 7 6 • 5 4 - 3 2. 1 () .
Word 0 J S R,X

Word 1 0406

Word 2 X f w 0 0 0 0 0 l level

Word 3 key fun

Word 4 Task name

Word 5 Task name

Word 6 Task name

Examples: Schedule the foreground library task named
TSKONE on priority level 5. Use the no-wait option so that
scheduled and scheduling tasks obtain Central-Processor
Unit (CPU) time based on priority levels and l/0 activity.

FL EQU

KEY EQU

•
•
•
SCHED
•
•
•

106

0306

(LUN assigned to
foreground library FL)
(Protection code
for FL)

S,O,FL,KEY,'TS', 'KO', 'NE'
(Control return to
highest priority)

Note: the KEY line can be coded with the equivalent ASCII
character enclosed in single quotation marks.

KEY EQU ' F '

The same request in FORTRAN is

DIMENSION N1,N2(3)
DATA N1/2H F/
DATA N2(1),N2(2),N2(3) / 2HTS,2HK0,2HNE/
CALL SCHED(5,0,106,N1,N2) ..
or

CALL SCHED(5,0,106,2H F,6HTSKONE)

2.1.2 SUSPND (Suspend) Macro

This macro suspends the execution of the task initiating
the macro. The task can be resumed only by an external
interrupt, a simulated interrupt caused by IOC or 1/ 0
completion events for the task, or a RESUME (section
2.1.3) macro. The macro has the general form

/able SUSPND susp

where susp is 0 if the task is to be resumed by RESUME or
1 if the task is to be resumed by external interrupt, or 2 if
the task is to be resumed by external interrupt or by IOC or
I /0 completion events via a simulated interrupt (i.e.,
TBEVNT word in t~k's TIDB is set to 1).

The FORTRAN calling sequence for this macro is

CALL SUSPND(susp)

Expansion: The susp flag is bit 0 of word 2 (s).

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 0 J S R. X

Word 1 0406

Word 2 ----- -- 0 0 0 0 1 1
........____ ~

----- ------
s

Example: Suspend a task from execution. Provide for
resumption of the task by interrupt, which reactivates the
task at the location following SUSPND.

SUSPND 1

The same request in FORTRAN is

CALL SUSPND (1)

2.1.3 RESUME Macro

This macro resumes a task suspended by the
macro. The RESUME macro has the general form

label RESUME 'xx','yy','zz'

SUSPND

where xxyyzz is the name of the task being resumed,
coded as in the SCHED macro (section 2.1.1).

The RTE searches for the named task and activates it when
found. The task will execute when it becomes the task with
the highest active prior ity. If the priority of the specified
task is higher than that of the task making the request, the
specified task executes before the requesting task and
immediately if it has the highest priority.

The FORTRAN calling sequence for th is macro is

CALL RESUME(name)

where name is the three-word Hollerith array containing the
name of the specified task.

REAL-TIME EXECUTIVE SERVICES

Expansion: The task name is loaded two characters per
word.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 0 J S R.X

Word 1 0406

Word 2 0 0 0 I 0 0 ---
Word 3 Task name

Word 4 Task name

Word 5 Task name

Example: Resume (react ivate) the task TSKTWO, which
will execute when it becomes the task with the highest
active priority.

RESUME 'TS' 'KT' 'WO' , ,
(Control return)

Control returns to the requesting task when it becomes the
task with the h ighest active priority. Control returns to the
location following RESUME.

The same request in FORTRAN is

DIMENSION N1 (3)
DATA N1(1),N1(2),N1(3)/2HTS,2HKT,2HWO/
CALL RE SUME (N1)

or

CALL RES UME(6HTSKTWO)

2.1.4 DELAY Macro

This macro suspends the requesting task for the specified
time, which is given in two increments. The f irst increment
is the number of 5-millisecond periods, and the second, the
number of minutes. The macro has the general form

label

where

milli

mm

type

DELAY milli, min, type

is the number of 5-millisecond
increments delay

is the number of minutes delay

is 0 (default value when the task is to be
suspended for the specified delay,
remain in memory, and automatically
resume following the DELAY macro

1 when the task is to exit from the
system, relinquishing memory, and

2-3

~-. ·-------------···--- - ----- - - ···- - - - - ... --..... ·-·- ---- --··- -· ..,._ ·---... - ... --· .. ·-----

REAL-TIME EXECUTIVE SERVICES

after the specified delay, be auto
matically rescheduled and reloaded
in a elapsed time mode, or

2 when the task is to resume auto·
matically after the specified delay
or upon receipt of an external
interrupt whichever comes first,
and automatically resume following
the DELAY macro; or

3 when the task is to resume auto
matically after the specified delay,
or upon receipt of an external inter
rupt, or completion of an l/0 request
in itiated previously, whichever comes
first, and automatically resume following
the DELAY macro.

IOC resumes execution of the task by
setting the TBEVNT word in the task's
TIDB to 1.

The FORTRAN calling sequence for this macro is

CALL DELAY(milli,min,type)

where the integer-mode parameters have the definitions
given above.

The maximum value for either milli or min is 32767. Any
such combination given the correct sum is a valid delay
definition; e.g., for a 90-second delay, the va lues could be
6000 and 1, respectively, or 18000 and 0. After the
specified delay, the task becomes active. When it becomes
the highest-priority active task, it executes.

Note that the resolution of the clock is a user-specified
variable having increments of 5 milliseconds. The time
interval given in a DELAY macro must be equal to or
greater than the resolut ion of the clock. The delay interval
is stored in minute increments and real -t ime clock
resolution increments.

Expansion: The type flag is bits 0 and 1 of word 2.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word O J S R.X .
Word 1 0406

.....___
0 0 1 0 0 1

............. ~
type Word 2 --- - ./"""

Word 3 milli

Word 4 min

Examples: Assuming a 5-millisecond clock increment, delay
the execution of a task for 90 seconds. At the end of this
time, the task becomes active. When it becomes the
highest-priority task, it executes.

DELAY 6000,1

Delay the execution of a task for 90 seconds or until receipt
of an external interrupt, whichever comes first, at which

2-4

time the task becomes active. Such a technique can test
devices that expect interrupts within the delay period.

DELAY 18000,0,2
Delay the execution of a task for 90 seconds, or until
receipt of an external interrupt, or the completion of a
previously initiated l /0 request, whichever comes first.

DELAY 18000,0,3

2.1.5 LDELA Y Macro

This macro is a type 1 DELAY macro with additional
parameters to specify the logical unit from which the task is
to be reloaded after the delay. The macro has the general
form:

where

label

milli

mm

LDELAY milli,min,lun,key

1s the number of 5-millisecond
increments delay

is the number of minutes delay

lun is the number of the logical unit from
which the task is to be loaded after the
delay (DELAY tape 1 reloads from FL
library)

key is the protection code for the logical unit

The FORTRAN calling sequence for this macro is

CALL LDELAY (milli,min,lun,key)

where the integer-mode parameters have the definitions
given above.

Time is the same as specified for DELAY.

Expansion:

Bit 15 14 13 12 11 10 9 8 7

Word 0 J S R.X

Word 1 0406 -Word 2 --- - 0 0 1 0 0

Word 3 milli

Word 4 min

Word 5 key

6 5 4 3 2 1 0

1 ~ / 1 1 1

lun

Example: Assuming a 5-millisecond clock increment, delay
the execution of a task for 90 seconds. At the end of th is
time, the task becomes active. When it becomes the
highest priority task, it is loaded from logical unit 128
which has protection key A, and executed.

LDELAY 6000,1,128,0301

• - - - -- ----·- - - ·- - -- -

'

2.1.6 PMSK (PIM Mask) Macro

Th is macro redefines the PIM (priority interrupt module)
interrupt structure, i.e., enables and /or disables PIM
interrupts. The macro has the general form

where

label

mask

PMSK pim,mask,opt

is the number (1 through 8) of the PIM
being modified

indicates the changes to the mask, with
the bits indicating the interrupt lines
that are either to be enabled or disabled,
depending on the value of opt, and with
the other lines unchanged

opt is 0 (default value) if the set bits in mask
indicate newly enabled interrupt lines,

or 1 if the set bits in mask indicate newly
disabled interrupt lines

The FORTRAN calling sequence for this macro is

CALL PMSK(pim,mask,opt)

where the integer-mode parameters have the definit ions
given above.

The eight bits of the mask correspond to the eight priority
interrupt lines, with bit 0 corresponding to the highest
prior ity line.

VORTEX operates with all PIM lines enabled unless altered
by a PMSK macro. Normal interrupt-processing allows all
interrupts and does one of the following: a) posts (in the
Tl DB) the interrupt occurrence for later action if it is
associated with a lower-priority task , or b) immediately
suspends the interrupted task and schedules a new task if
the interrupt is associated with a h igher-priority task.
PMSK provides control over this procedure.

Note: VORTEX (through system generation) initializes all
undefined PIM locations to nullify spurious interrupts that
may have been inadvertently enabled through the PMSK
macro.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3

Word 0 J S R,X

Wordl 0406

Word 2 0 0 I 0 0 0

Word 3 pim mask

Examples: Enable interrupt lines 3, 4, and 5 on
Leave all other interrupt l ines in the present states.

PMSK 2 , 070

'

2 1 0

0

PIM 2.

REAL-TIME EXECUTIVE SERVICES

The same request in FORTRAN is

CALL PMSK(2 , 56,0)

Disable the same lines.

PMSK 2,070,1

2.1.7 TIME Macro

This macro loads the current time of day in the A and 8
registers with the 8 register containing the minute, and the
A register the 5-millisecond, increments. The macro has the
form

label TIME

The FORTRAN ca lling sequence for this macro is

CALL TIME(min,milli)

where min is the integer minutes to the 24 hour total , and
milli is the seconds in 5-millisecond integer increments.

Expansion:

Bit 15 14 13 12 II 10 9 8 7 6 5 4 3 2 I 0

Word 0 J S R.X

Word 1 0406

Word 2 -- ---- 0 0 I 0 I 0 -- --- ----
Example:
m illisecond
registers.

Load the current time of day in the A (5-
increments) and 8 (1-minute increments)

TI ME
(Return with time in A
and 8 registers)

2.1.8 OVLA Y (Overlay) Macro

This macro loads and / or executes overlays within an
overlay-structured task. It has the general form

label

where

type

xxyyzz

OVLAY type, 'xx', 'yy', 'zz'

is 0 (default value) for load and
execute, or 1 for load and return
following the request. If only
load is specified, the load address
1s returned in the X register.

is the name of the overlay segment,
coded as in the SCHED macro (section
2 . 1.1)

2-5

-----·--------- --- ---------------·-.-----·------·- ------ ..--.-· --------- ------......... -- - · -~· . ·- ·•

REAL-TIME EXECUTIVE SERVICES

The FORTRAN calling sequence for this macro is

CALL 0 VLA Y (type, reload,name)

where type is a constant or name whose value has the
definition given above, reload is a constant or name with
the value zero to load or non-zero to load only if not
currently loaded, and name is a three-word Hollerith array
containing the overlay segment name.

FORTRAN overlays must be subroutines if called by a
FORTRAN call.

Expansion: The overlay segment name is loaded two
characters per word. The type flag is bit 0 of word 2 (t).

Bit 15 14 13 12 11 10 9 a 7 6 5 4 3 2 1 0

Word 0 J S R.X

Word 1 0406

Word 2 -- 0 0 1 0 I I -- ---- t -- - --- -......
Word 3 Overlay segment name

Word 4 Overlay segment name

Word 5 Overlay segment name

When the load and execute mode is selected in the OVLA Y
macro RTE executes an equivalent of a root segment JSR
instruction to enter the overlay segment. Therefore, the
return address of the root segment is avai lable to the
overlay segment in the X register.

Example: Find, load, and execute overlay segment
OVSG01 without return .

OVLAY 0 r 'ov, I SG I r I 0 1 '
(No return)

The same request in FORTRAN is

DIMENSION N1(3)
DATA N1(1)rN1(2),N1(3) / 2HOV,2HSG,2H01 /
CALL OVLAY(O,O,N1)

or

CALL OVLAY(0,0,6HOVSG01)

External subprograms may be referenced by overlays. If a
subprogram S is called in several overlays, and S is not in
the main segment, each overlay will be built with a
separate copy of S.

When using FORTRAN overlays containing l / 0 statements
for RMD files defined by CALL V$0PEN or CALL V$0PNB
statements (described in section 5.3.2), the main segment
must contain an l /0 statement so that the runtime l /0
program (V$FORTIO) will be loaded with the main segment.
FCB arrays must be in the main segment or in common, so
they are linked in memory and cannot be in any overlay.

2-6

2.1.9 ALOC (AIIocat~) Macro

This macro allocates space in a push-down (LIFO) stack of
variable length for reentrant subroutines. The macro has
the general form

label ALOC address

where address is the address of the reentrant subroutine to
be executed.

The FORTRAN calling sequence for this macro is

EXTERNAL subr

CALL ALOC(subr)

where subr is the name of the DAS MR assembly language
subroutine.

The first location of the Ll FO stack is V$FLRS, and that of
the current position in the stack is V$CRS. !he f irst word of
the reentrant subroutine, whose address is specified in the
general form of ALOC, contains the number of words to be
allocated. If fewer than five words are specified , f ive words
are allocated.

Control returns to the location following ALOC when a
DEALOC macro (section 2.1.10) is executed in the called
subroutine. Between ALOC and DEALOC, (1) subroutine
cannot be suspended, (2) no IOC ca lls (section 3) can be
made, and (3) no RTE service calls can be made.

Reentrant subroutines are normally included in the
resident library at system-generation time so they can be
concurrently accessed by more than one task. The
maximum size of the push-down stack is also defined at
system-generation time.

Expansion:

Bit 15 14 13 12 11 10 9 a 7 6 5 4 3 2 1 0

Word 0 J S R.X

Word 1 0406

Word 2 -- -0 0 0 l l 0 --...
Word 3 Reentrant subroutine address

Reentrant subroutine: The reentrant subroutine called by
ALOC contains, in entry location x, the number of words to
be allocated. Execution begins at x + 1. The reentrant
subroutine returns control to the calling task by use of a
DEALOC macro.

The reentrant stack is used to store register contents and
allocate temporary storage needed by the subroutine being
called. The location V$CRS contains a pointer to word 0 of
the current allocation in the stack. By loading the value of
the pointer into the X (or B) register, temporary storage
cells can be referenced by an assembly language M field of
5,1 for the first cell; 6,1 for the second; etc.

----------------- - -- - '

A stack allocation generated by the ALOC macro has the
format :

Bit 15 14 13 12 I I 10 9 8 7 6 5 4 3 2 1 0

Word 0 Contents of the A regoster

Word 1 Contents of the B regoster

Word 2 Contents of the X register

Word 3 ovfl Contents of the P regoster

Word 4 Stack-control poonter (for RTE use only)

Word 5 for reentrant subroutone use (temporary storage)
• •
• •
• •

Word n •

Word s n + 1 •
to V75 regosters 3 7
n+S

where ovfl is the overflow indicator bit.

The current contents of the A and B registers are stored in
words 0 and 1 of the stack and are restored upon execution
of the DEALOC macro. The same procedure is used with the
setting of the overflow indicator bit in word 3 of the stack.
The contents of word 2 (X register) point to the location of
the reentrar:'t subroutine to be executed following the
setting up of the stack. "T:he contents of word 3 (bits 14·0)
poin t to the return location following ALOC.

Example: Allocate a stack of six words. Provide for
deallocat ion and returning of control to the location
following ALOC.

EXT SUB1
ALOC SUB1

(Return Control)
•
•

NAME SUB1
SUB1 DA TA 6

•
•

•

DEALOC
END

Each time SUB1 is called, six words are reserved in the
reentrant stack. Each time the reentrant subroutine makes
a DEALOC request (section 2.1.10), six words are deallo
cated from the reen trant stack. If the ca lling task uses the
V75 registers, 11 words are allocated / deallocated.

2.1.10 DEALOC (Deallocate) Macro

Th is macro deal loca tes the current reentrant stack,
restores the contents of the A and 8 (and V75) registers
and the setting of the overflow indicator to the requesting

REAL-TIME EXECUTIVE SERVICES

task, and returns con trol to the location specif ied in word 3
(P register value) of the reentrant stack (section 2.1.9). The
macro has the form

label DEALOC

Expansion:

Bit 15 14 13 12 I I 10 9 8 7 6 5 4 3 2 1 0

Word 0 J S R.X

Word 1 0406

1 Word 2
---..... ----0 0 0 I I I ...----

Example: Release the current reentrant stack, restore the
contents of the volatile registers and the setting of the
overflow indicator and return control to the location
specified in word 3 of the stack.

•
•
•

DEALOC
END

2.1.11 EXIT Macro

(Reentrant subrout ine)

This macro is used by a task to signal completion of that
task. The requesting task is terminated upon completion of
its l / 0 . The macro has the form

label EXIT

The FORTRAN calling sequence (no parameters specified)
.
IS

CALL EXIT

If the task making the EXIT is in unprotected background
memory, the macro schedules the job-control processor
(JCP) task (section 4) .

Expansion:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 0 J S R.X

Word 1 0406

Word 2 0 0 0 0 I 0 -- -
Example: Exit from a task. The task making the EXIT call
is terminated upon completion of its l / 0 requests.

•
•

•

EXIT (No return)

2-7

---·-·-~----------- .. ,·-------·--·-~-------- -- ····- ------- -- ·- ·· .. ---- ·--

•

REAL-TIME EXECUTIVE SERVICES

2.1.12 ABORT Macro

This macro aborts a task. Active l /0 requests are
completed, but pending l/ 0 requests are dequeued. The
macro has the general form

label ABORT 'xx' ,'yy' ,'zz'

where xxyyzz is the name of the task being aborted, coded
as in the SCHED macro (section 2.1.1).

The FORTRAN calling sequence for this _macro is

CALL ABORT(name)

where name is the three-word Hollerith array containing the
name of the task being aborted.

Expansion: The task name is loaded two characters per
word.

Bit 15 14 13 12 II 10 9 8 7 6 5 4 3 2 1 0

Word 0 J S R,X

Word 1 0406

Word 2 -- -- 0 0 0 I 0 1 --
Word 3 Task name

Word 4 Task name

.
Word 5 Task name

Example: Abort the task TSK and return control to the
location following ABORT.

•
•
•

ABORT 1 TS 1 ,'K', 1 I

• (Control return)
•
•

The same request in FORTRAN is

DIMENSION N1(3)
DATA N1(1),N1(2),N1(3) /2HTS,2HK
CALL ABORT (N 1)

or

CALL ABORT(6HTSK)

2-8

,2H I

2.1.13 IOLINK (1/0 Linkage) Macro

This macro enables background tasks to pass buffer
address and buffer size parameters to the system back·
ground global FCBs. It has the general form

label

where

lungsd

bufloc

IOLINK lungsd,bufloc, bufsiz

is the logical unit number of the global
system device

is the address of the input/output buffer

bufsiz is the size of the buffer (maximum and
default value: 120

ABORT 'TS ' I '
I t , I

Global file control blocks: There are eight global FCBS
(section 3.5.11) in the VORTEX system reserved for
background use. System background and user programs
can reference these global FCBs. JCP directive / PFILE
(section 4.2.11) stores the protection code and file name in
the corresponding FCB before opening/ rewinding the
logical unit. The IOLINK service request passes the buffer
address and the size of the record to the corresponding
logical -unit FCB. The names of the global FCBs are SIFCB,
PIFCB. POFCB. SSFCB, BIFCB, BOFCB, GOFCB, and
LOFCB, where the first two letters of the name indicate the
logical unit.

Bit 15 14 13 12 II 10 9 8 7 6 5 4 3 2 1 0

Word 0 J S R,X

Word 1 0406

Word 2 - 0 0 I I 0 0 lungsd

Word 3 bufloc

Word 4 bufsiz

Example: Pass the address and size specifications of a
40-word buffer at address BUF to the PI global FCB .

PI

BUF

EQU
EXT
•
•
•
IOLINK
READ
•

•
•

BSS
END

4
PIFCB

(PI logical-unit number 4)

PI,BUF,40
PIFCB,P1,0,1

(Read 40 ASCII words
from PI)

40

- --------- -·· .

If the PI file is on an RMD, reassign the PI to the proper
RMD partition, and then position the PI file using JCP
directive / PFILE.

2.1.14 PASS Macro

This macro fetches map 0 data into the user map. It has
the general form

label PASS count, from, to

where

count is the number of words to be passed

f rom is the map 0 fetch address

to is the user map store address

The FORTRAN calling sequence for this macro is:

CALL PASS(count, from, to)

Expansion :

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 0 J S R.X

Word 1 0406

Word 2 --- --- --0 0 I I I 0 ---
Word 3 count

Word 4 from

Word 5 to

If a n egative or zero word count is specified, an EX16 error
message is posted and the task aborted. Any memory
protection violat ion will result in an EX20-EX25 error
message.

Example: Pass the TIDB information into PBUF

V$CTL EQU 0300

LOA V$CTL (Get TIDB addre ss)
STA P1 +4

P1 PASS 29r * , PBUF
•
•

•

PBUF BSS 29
END

2.1.15 TBEVNT (Set or Fetch TBEVNT) Macro

This macro fetches or sets the requesting task 's event
word , TBEVNT, as well as alters other TIDB entries. It
should be noted here that most changes to TIDB entries

REAL-TIME EXECUTIVE SERVICES

could cause irrecoverable errors, so TBEVNT should be
used with caution.

The macro has the general form:

label TBEVNT value, disp, c i s

where:

value is 0177777 (mask)

disp is the TIDB word ordinal number
(displacement) to be altered

CI S is the clear/ set indication

Explanation:

If disp = 0, the following is done according to the value
parameter. If value is 0-0177776 it is set into the
requesting task's TIDB event word, TBEVNT. If the value is
0177777, the request will fetch TBEVNT from the
requester's Tl DB and return with the A register set to the
TBEVNT content. (See section 14 for information on use of
the event word.)

If disp ,;. 0, the action depends on the c/s indication.
When cis = 1 (i.e., set), the corresponding TIDB (word
number displacement) bits are set according to the ones in
the mask value.

When c/ s = 0 (i.e ., reset), the corresponding TIDB (word
number displacement) are reset according to the zero bits
in the mask value.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 0 J S R.X

Word 1 0406

Word 2 0 0 I I I I ---- -------- ---
Word 3 Value

Word 4 d 1sp

Word 5 CI S

Default values: disp = 0 CIS = 0

Example: Reset TBPL (word 2 of Tl DB) bit 8 and then
set it aga in .

TBEVNT 0177377, 2 , 0
TBEVNT 0400, 2, 1

2.1.16 ALOCPG (Allocate Memory
Pages) Macro

(reset)
(set)

This macro allocates in physical pages from the pool of
avai lable pages to logical pages starting at the specified
logical address, modulo 01000. The logical pages to be
mapped m ust not have been previously assigned. The
logical pages are assigned as read / write access mode. If an

2-9

... ·---------- - ·------ --.----------··----- ·- ,.._., ___________ .., ________ . - -- - . ----·

REAL-TIME EXECUTIVE SERVICES

error condition occurs, an EX27 error message is output
and the task resumes operation at the specified reject
address. The general form is

where

label ALOCPG n,logical addr,reject addr

n is the number of pages to be allocated

logical addr is the logical address, modulo 01000,
where the n pages are allocated. If the
logical address is negative (1 's comple
ment) the address is assumed to be in
map 0. If the logical address is positive,
the address is assumed to be the
requestor's map (priority tasks cannot
allocate memory in map 0)

reject addr is the error return address when a task
exits or is aborted all ALOEPG pages are
automatically deallocated.

Expansion:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word O J S R,X

Word 1 0406

Word 2 -- 0 I 0 0 0 0 -- --
Word 3 n

Word 4 logical addr

WordS reject addr

Example: Allocate 4 pages of memory to the requesting
task's virtual memory starting at logical address 06000. If
error, go to ERROL

ALOCPG 4,06000,ERR01
•
•
•

ERR01 STA (Error routine)

2.1.17 DEALPG (Deallocate Memory
Pages) Macro

This macro deallocates n pages of memory starting at the
specified logical address, modulo 01000. The deallocated
logical pages are set to unassigned access mode. Deallo
cated physical pages, which were not assigned by MAPIN
requests, are returned to the pool of available pages.
Specifying logical page 0 or non-read / write page results in

2-10

EX30 error message to be posted and the task's operation
resumed at the reject address. The general form is

label DEALPG n,logical addr,reject addr

where

n is the number of pages to be deallocated

logical addr is the logical address, modulo 01000,
where the n pages are deallocated if
negative, 1 's complement of map 0
logica l address (illegal for priority 0
tasks)

reject addr is the error return address

Expansion:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 0 J S R,X

Word 1 0406

Word 2 -- ---- 0 1 0 0 0 1 -- --
Word 3 n

Word 4 logical addr

Word 5 reject addr

Example: Deallocate 4 pages of memory in the requesting
task's virtual memory starting at logical address 06000. If
error, go to ERR02 .

•
DEALPG 4,06000,ERR02
•
•

ERR02 LOA (Error routine)
•
•

2.1.18 MAPIN (Map-In Specified Physical
Pages of Memory) Macro

This macro allows the requestor to specify physical pages of
memory to be assigned to the requestor's logical memory
starting at the specified logical address, modulo 01000.
Priority 0 tasks are not permitted to execute the MAPIN
request. Tbe specified logical pages to be mapped must' not

,ltave p~e~ previois.ly -~~j:.....n_~_e~x:-ce~p:...... t-:-:b:-=y:.....-a...:p_r .. ev-:-i_o..,..,us,--M_A_P_I---'N.
~uest. All logical pages are set to the read / write access
mode. Pages mapped in by this request do not effect the
pool of available pages. The requested physical pages
cannot include page 0 nor any of the pages assigned to the
nucleus program module. Any error condition causes EX31

' \

(.

to be output and the task resumed at the reject address.
The general form is

label

where

n

log add

rejec t

Expansion:

Bit

Word 0

Word I

Word 2

Word 3

Word 4

Word 5

Word 6

15

--

MAPIN n,log add.{b~f~.reject

if pos1t1ve is the number of pages of
memory to be allocated. If negative. it is
assumed to be the one's complement of
the number of pages to be al located

is the requestor's logical address,
modulo 01000, where the specified
physical pages are to be mapped

is.tlle actual physical page number to be
- F · - a 41 Wi 4"*'

mapped,!. or the address of the buffer
conta ining the physical page numbers.
If n is positive and this parameter is
positive and less than 2048. this
parameter is interpreted as a physical
page number. If n is greater than 1. all
physical pages as signed wi l l be
consecutive. If n is negat ive and this
parameter is greater than 1023, th is
parameter is assumed to be a map 0
buffer address, e.g., TIDB map image
address. If n is positive and th is
parameter is negative, this parameter is
assumed to be the one's complement of
the buffer addre ss within the
requestor ' s logica l space . whi ch
contains the physical page numbers

is the error return address

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

J S R.X

0406

---- 0 I -- 0 I 0 0. -
n

0

logocal addr 0

buffer addr of physical page

reject addr

REAL-TIME EXECUTIVE SERVICES

Example: Copy the same 2 physical pages as used by task
A, logical address ABUF, into task B's logical memory at
logical address BBUF. Task A scheduled task 8 , passing
task A's TIDB address to task B.

TASK A

FL
KEY
V$ CTL

ABUF

TASK 8

TBMING
TASKS
P1

*

M1

PBUF

BBUF

NAME TASKA
TITLE
EQU
EQU
EQU
•

TASKA
106
0306
0300

ABUF
VSCTL

(B = Buffer Address)
(A = Task A's TIDB)

LDBI
LDA
SCHED 2. 0. FL ,KEY. ITA I • I SK I , 1 8 I
•

•

•

BSS
END

NAME
TITLE
EQU
STA
PASS

•
TBA
TZB
LLSR

ADDE
STA

MAP IN

TBA
LSRA
ADDI
TAB
•

•

BSS

BSS
EQU

END

0 2 000

TASKB
TASKS
2 7
P1+4
29 , * , PBUF

9

TBMING+PBUF
M1+5

2,BBUF, * ,RA

7
BBUF

29

TASKB- * +512

*

(Schedule task 8 , pass
parameters in A. B)

(Set task A's TIDB addr)
(Pass task A's TID8
into PBUF)

(8 = ABUF addr)

(A = Page number, B •
offset in page)

(Add task A's map image
addr
(MAPIN same 2 physical
pages at BBUF shared by
task A at A8UF)
(B = Offset into page)
(Add 88UF addr)
(8 = Start of A8UF)

(TIDB buffer)

(Set to page boundary)
(Assume task 8 < 512

words)

2.1.19 PAGNUM (Identify Physical Page
Number) Macro

This macro allows the requestor to identify the physical
page number assigned to a specif ied logical address. If an
unassigned logical address is specif ied, return is to t he
requestor with the A register = 0. Otherwise, return is
made with the A register set to the physical page number
and the B register set to the task's map image address for
the specified logical address. The general form is

label PAGNUM logical addr

where logical addr is the address where the identity of the
assigned physical page is requested.

2-11

.. - ·---·- - - ---·· _,.. _ _ . H --- - - - - ---- - - - .. - ---• • • - · 0 o --·-~- -"' -~--.... ___ __ ____ --~-·-.. - , , ..-... . .. __ ..., _____,,. -- <-•- -• · - ··-- - .. ,.,._ .• __. 0 0 0 ' ' 0 0 0 0 0 - - ,, .. , , ___ ...

REAL-TIME EXECUTIVE SERVICES

Expansion:

Itt 15 14 ll 12 11 10 ' • 1 6 5 4 J 2 1 0

w.r.o J S A,X

Wcwtl 1 ()1()6

Wcwtl 2 0 1 0 0 1 1

Wcwtl l laCteal addr

Example: Identify the physical page assigned to PBUF.

•
LDAI PBUP (Get RBUF addr)
STA P1+3

P1 PAGNUM • (Identify physical page)
•
•
•

PBUF BSS 100

2.1.20 RECOV (Error Recovery) Macro

Th is macro allows the requestor to pass the address of a
recovery routine to VORTEX. Control will be passed to the
routme if VORTEX attempts to terminate the task
abnormally . Return from the user's recovery routine should
be made via the EXI~ macro. The macro has the general
form

LABEL RECOV ADDR

where

ADDR is the address of the error recovery routine

The recovery address is kept in TBENTY of the user's TIDB.
Repeated calls to RECOV are allowed but the last specified
recovery address is always the address used. Note that if an
abend occurs and control is passed back to the user,
registers are not preserved. When using RECOV with a
driver. the user must be aware of, and handle the fact that
IOC uses TBENTY when activating the driver. Thus the .
recovery routine becomes the driver initialization routine.

Bit 151413121110 9 87 6 543210

Word 0 JRS. X

Word 1 0406

Word 2 1 1 0 0 1

Word 3 Address of error handling routine

Example:

BEGIN RECOV ERROR

ERROR EOU (error recover~ routine)

2.1 .21 AFAULT (Arithmetic Fault Setup)
Macro

This paragraph applies to V77-800 users only.

The AFAULT macro allows V77 -800 users to specify the action
to be taken when an arithmetic fault occurs.

Expansion:

•

Bit 1514 13 12 11 10 9 8 76543210

Word 1 JSR.X
.

Word 2 0406

Word 3 010011 -
Word 4 FLAGS

Word 5 MASK

Word 6 EXITS

Word 4 : FLAGS:

B1t O(OV) -- 0 : Reset overflow interrupt enable.
1 : Set overflow interrupt enable.

Bit 1 (UN) -- 0: Reset underflow interrupt enable.
1: Set underflow interrupt enable.

Bit 2(AOV) = 0 : Don 't abort on overflow interrupt.
1 : Abort on overflow interrupt.

Bit 3(AUN) = 0: Don 't abort on underflow interrupt .
1: Abort on underflow interrupt.

Bit 4{D0M) = 0: Don't disable overflow error
message.

1: Disable overflow error message.

Bit 5(DUM) = 0 : Don't disable underflow error
message.

1: Disable underflow error message.

Word 5: MASK: This is a bit mask. 1 -bits indicate
which of the above bits are to be
modified

Word 6: EXITS: This is a pointer to a two word
block

EXITS(Ol Address of overflow
processor. Null if
AOV is set .
Continue in line
if zero.

EXITS(1) Address of under-
flow processor. Null
of AUN is set.
Continue in line if
zero.

2-12 Update B

- ~ _ '

2.1 . 22 SRFAULT (Save / Restore
Arithmetic Fault Status) Macro

This paragraph applies to V77-800 users only.

The SRFAULT macro saves and restores arithmetic fault
interrupt enable status. Its function is to allow DASMR
subroutines which are part of an executable FORTRAN
program (i e .. with a FORTRAN main program) to use the
V70 Overflow Indicator (e.g., the Run -Time 1/ 0 module)
without getting trapped out by an arithmetic fault interrupt.
Such a subroutine would issue a SAVE request on entry
which would disable overflow fault interrupts. and
RESTORE request on exit.

The two requests are distinguished by the contents of the A
reg ister:

A = 0 : Save arithmetic fault interrupt enable status.

A ~ 0 : Restore arithmetic fault interrupt enable
status.

Expansion:

Bit

Word 0

Word 1

Word 2

2.1 . 23
Macro

1514 1312,1 10 9 8 7 6 54 3 2 1 0

JSA. X

0406

.........-0 , 0 0 1-- -........ _..-

SETPAR (Set Parity Enable)

This paragraph applies to V77-800 systems only.

The SETPAR macro allows V77 -800 users to selectively
enable or disable memory parity during execution of the
requesting task.

Expansion:

Bit 1514131211109876 543 210

Word 0 JRS. X

Word 1 0406

Word 2 - , 1 0 0 1

Word 3 mask .

Updaie 8

where
mask

Example:

REAL-TIME EXECUTIVE SERVICES

is the parity enable mask. The values
and corresponding functions of mask
are

00
01
03

disable all parity
enable double bit parity error only
enable all par ity

Disable single bit parity.

SETPAR. l
EXC DISPIM
EXC DISCLK

disable single bi t parity
disable PIMS
disable clock

non-interruptible code

EXC ENAPIM Restore parity upon returning from
the f irst clock or PIM interrupt

EXC ENACLK

2 .1.24 S E l EC T(Select a Partition) Macro

This macro allows the user to change. under program control .
the partition to which an assignable logical unit number is
assigned. The log1cal unit number can only be reassigned to
another partition on the disk unit to which the logical unit is
currently assigned (i .e .. the same drive). Any defined partition
on the disk unit can be selected or the logical unit number can
be set to indicate a " special" logical unit by specifying a
partition number zero; this latter chorce is ·only possible if the
disk unit has been defined during system generation to be a
special logical unit (see section 3.1.1.) The specified logical
unit must be currently assigned to a disk partition (or to the disk
unit in the case of a speciallogrcal unrt). For this reassignment
of logical unit number. the logical unit table assignability rules
apply and the selected partitron must be defined during system
generation. Any error condition causes the EX37 message to
be output. The task is then resumed at the reject address.
described below. The general form of this macro is:

label SELECT lun,part.reject addr

where:

lun is the logical unit number.

part is the desrred partition number. or 0 if the
lun is to be made a special logrcal unrt

reject addr is the error return address .

..... , -

... I •• :

!

T

- ---------- - - ------ ___________ _ ___,.¢.. .. .-----.--. ·-- _, wz. -- -· -·:::-..-... ... ~. ·-- -...-<!C<* _____ .,.__ _ ___ ,..____ ·-

REAL· TIME EXECUTIVE SERVICES

! Ex . pan11on:

j

.
Bit 1514 13 12 11 10 9 8 7 6 54 3 2 1 0

Word 0 JSR.X

Word 1 0406

Word 2 011010 - ---
Word 3 logical unit number

Word 4 partition number

WordS reject address

Example: logical unit 50 is currently assigned to 011(07).
Change the assignment of logical unit 50 to 011(09}. The
address of the appropriate error routine procedure is
"ERRADR".

•

SELECT 50.9.ERRADR

2.2 RTE SYSTEM FLOW

The RTE component loads and executes a task depending
on the category of that task:

Executive Mode Tasks

These are the VORTEX system and user tasks designated
during system generation (SGEN) to be resident (excludes
tasks specified on SGEN TSK directives). The RTE, IOC, l/0
drivers, and common interrupt processors are examples of
system executive mode tasks (map 0). OPCOM is loaded
into and executed from page 1 of map 0. All other non·
resident tasks are defined to be user mode tasks.

User Mode Tasks

a. Background tasks with a priority of zero: Tasks that are
executed via a DASMR or FORTRAN load-and-go
operation and those that are loaded and executed
from the BL library with a JCP /LOAD directive are in
this group.

2., 4

These tasks are loaded with the first page of physical
memory (0·0777) designated as read operand only. The
literal and indirect pointer pool is loaded in the first
page at locations 0500·0777. The remainder of the
background task is loaded in whatever physical pages
are available at the time the task is loaded. These
pages are designated as read/write access. If a
nucleus module is referenced, that module is mapped
as read operand only. All other pages in the logical
memory are designated as unassigned. The RTE
component designates an available map key (1·15) to
the background task and sets the appropriate
mapping registers to reflect the task's logical memory.

Update 8

b. Background priority 1 tasks: System tasks such as the
Job-Control Processor (JCP), Input/Output Utility
(IOUTIL), System Maintenance (SMAIN), Source
Editor (SEDIT), DAS MR, FORTRAN, RPG IV, MIDAS,
MICSIM, and File Maintenance (FMAIN) require full
access to the nucleus (to modify tables or utilize the
global FCBs). These tasks are loaded with the
required nucleus modules designated as read/write
access mode permitting fetches and stores into these
areas. The literal and indirect pointer pool is loaded
in the first page at locations 0500-0777. The task is
loaded starting at logical address 01000.

c. Foreground tasks: Page 0 is mapped read operand only
for a foreground task. Nucleus modules (including
blank common) referenced by foreground tasks, are
mapped in the read/write access mode (see figure
2·1). The maximum logical memory space available to
a foreground task is thus dependent on the number
and type of nucleus module referenced by the task.
The pages within the logical memory not utilized are
mapped as unassigned. All foreground tasks are
loaded at logical memory address 01000.

d. Read-only pages: During the creation of a load module
by LMGEN, the user !:las the capability to specify pages
within the load module as read-only pages. The
designated read-only pages are indicated in the
pseudo TIDB block. When the task is loaded, the RTE
component will designate those pages in the task 's
logical memory as read-only pages.

2.3 TASK LIMITATIONS AND DIFFERENCES

In the VORTEX environment, background and foreground
tasks either share or are differentiated by the following
characteristics:

a. A background task has a priority level of 0 or 1. A
foreground task can have a priority of 2 through 31.

b. Only one background task can be executed at a time.
Excluding the RTE, IOC, and l/0 driver tasks, a
maximum of 15 (user mode of 1 through 15) user
foreground tasks can be in operation concurrently,
provided physical memory size is adequate. See
section 2.5 for a description of checkpointing of tasks.

c. A background task can be checkpointed and its
operation pre-empted by a foreground task. A
foreground program memory space is not check·
pointed (see section 2.5).

d. A background task can have literals and indirect
pointers. a foreground task cannot.

-----~ · · - ··- - --·------------· - - ·- - ----------------···- - . · 4- - - ------· ·- · - -·-

REAL-TIME EXECUTIVE SERVICES

e. All tasks whether background or foreground have
individual task protection.

g. Background level 0 or 1 task can schedule a task from
the background library only.

f. If allocable memory is not available to load a
background task, the RTE component will output an
error message (EX05) and abort the operation. If a
foreground task is to be loaded and allocatable
memory is not a.l8ilable, the RTE component will
reattempt the load when memory becomes available.

h. Foreground tasks can utilize foreground blank
common. Background tasks cannot.

1. Background level 0 tasks have restricted RTE requests
(see table 2·1). Foreground tasks have no restriction on
RTE service requests.

Nucleus Modules

Foreground
Blank COMMON
Nucleus Module

Global FCT
Nucleus Module

System Table
Nucleus Module

System Resident
Tasks Nucleus
Module

Page 0
System Constants

Key:

Backeround
Priority

0

UN

ROP

ROP

UN

ROP

Priority of Task
Backeround
Priority

1

UN

RW

RW

UN

RW
ROP*

RW
ROP
RO
UN

Read-Write .Access Mode
Read Operand Only Access Mode
Read-Only Access Mode
Unassigned Access Mode

• for m icro-VORTEX only

Note: Since the upper three modules are defined contigu·
ously, without regard to page boundaries, and since maps
are full pages, a map for any of these modules may include
a partial page of an adjoining module, with the same
access mode.

Figure 2·1. Matrix of Nucleus Module Access Mode

Update 8

Foreeround
Priorities

2·31

RW

UN

RW

UN

ROP

2 - 1 5

•• - .. -------~ .. ----- .. ___ - .. -~ --~-·--------- ------·- - ·-- - ·. #4 - - ---- - - ------ • -·- ___ _ ---

REAL-TIME EXECUTIVE SERVICES

2.4 ABORT PROCEDURE

Whenever a task is aborted, all currently active 1/0
operations are allowed to complete. All l/0 requests that
are threaded (queued, or waiting to be activated) are not
activated. Upon completion of all active 1/ 0 operations and
after all pending requests are dethreaded, the aborted task
is released.

2.5 CHECKPOINTING OF TASKS

A background task's memory space and/ or assigned map
may be checkpointed for use by a foreground task. The
background task is restarted when memory space and/or a
map key becomes available.

A foreground task may be checkpointed by a higher priority
foreground task. It may also be checkpointed by a lower
priority task depending on the value of TBST bit 8. The
default value of this bit is on (= 1) i.e., "may be
checkpointed by a lower priority task". In order to turn this
bit off, a usage of TBEVNT (2.1.15) is recommended. The
foreground task's memory space is never checkpointed.
More than one foreground task 's map may be
checkpointed.

2.6 PAGE ALLOCATION SCHEME

The page allocation routine scans the page bit mask table,
V$PAGE (figure 2-2). to determine the allocable physiCal
pages. To expedite the process, the allocation routine first
checks the page 0 system word V$NPAG to find the total
number of allocable pages in V$PAGE. If the required
number of pages exceeds V$NPAG, scanning of V$PAGE is
not attempted. The allocation routine scans V$PAGE
starting with the word number specified in V$LPP (page 0
system pointer). The system generation program initially
sets V$LPP t() the deallocated pages. In micro-VORTEX,
V$PAGE is scanned from the top instead of the bottom.

•

2-16

- - -- ·· ·--· ..

Word

0

1

2

3

3

5

29

35

31

32

Bit Position

15 14 2 1 0

Size of V$PAGE

0 1 Increasing Page 15
Numbers

16 31

32 47

48 63

64 . 79 .

• •

• •

448 463

464 479

480 495

496 511

Corresponding Page Bit Positions:

1 = Page is allocatable

0 = Page is unallocatable

Address of V$PAGE

First

Physical

32K Words

last
Physical
32K Words
(Maximum
256K)

V$PGT
V$LPP
V$NPAG

0, Pointer to last word tested
Number of available pages

Figure 2-2. V$PAGE, Page Allocation Table

The size of V$PAGE is determined by SGEN based on the
physical memory size specified on the MRY directive .

SECTION 3
INPUT /OUTPUT CONTROL

The VORTEX input/output-control component (IOC)
processes all requests for I / 0 to be performed on
peripheral devices. The IOC comprises an I t O-request
processor. a find-next -request processor , an I tO-error
processor, and l / 0 drivers. The IOC thus provides a
common 110 system for the overall VORTEX operating
system and eliminates the programmer's need to under
stand the computer hardware.

Ail I 10 with remote devices connected through the Data
Communications Multiplexor (OCM) uses the VORTEX
Telecommunications Access Method (VTAM). VTAM inter
faces with IOC. Use of VTAM is described in the VTAM
Reference Manual.

The contents of the volatile A and B registers and the
setting of the overflow indicator are saved during execut ion
of any IOC macro. After completion of the macro, these
data are returned. The contents of the X register are lost.

If a physical-device failure occurs, the l / 0 drivers perform
error recovery as applicable. Where automatic error
recovery is possible, the recovery operation is attempted
repeatedly until the permissible number of recovery tries
has been reached. at which time the I / 0 driver stores the
error status in the user I/O-request block, and the I / O-error
processor posts the error on the OC logical unit. The user
can then try an-.her physical device or abort the task.

3.1 LOGICAL UNITS

A logical unit is an I / 0 device or a partition of a rotating
memory device (RMO). It is referenced by an assigned
number or name. The logical unit permits performance of
I 10 operations that are independent of the physical-device
configurations by making possible references to the logical·
unit number. The standard interfaces between the program
and the IOC. and between the IOC and the I 10 driver .
permit substitution of peripheral devices in l/0 operations
without reassembling the program.

VORTEX permits up to 256 logical units. The numbers
assigned to the uni ts are determined by their
reassignability:

a. Logical-unit numbers 1-100 are used for units that can
be reassigned through the operator communications
component (OPCOM, section 17) or the job-control
processor (JCP. section 4).

b . Logical-unit numbers 101 -179 are used for units that
are not reassignable.

c. Logical-unit numbers 180-255 are used for units that
can be reassigned through OPCOM on ly.

d. Logtcal-umt number 0 indicates a dummy device. The
IOC immediately returns control from a dummy device
to the user as if a real I / 0 operation had been
completed.

e. Each disk partition requires a device specification table
!DST) and each DST is treated as a potential logica l unit .
The lim1t of 2561ogical un1ts can result m the inability to
assign a umque logical unit to each partition if the
number of non-disk devices and partitions on the
system exceeds 256. To access disk partittons which
have DSTs greater than the 256th. the user can issue
JCP or OPCOM assignment statements prior to
program execution or he can specify disk drives as
" special" drives, where one of the 256 logical unit
numbers IS associated with all the partit1ons of the
drive . For special disk dnves. the destred part1t1on 1s
selected by f ile name.

.
VORTEX logical unit assignments for all systems are spec:fied
in Table 3· 1. All logical unit numbers that are not listed are
available for reassignment as indicated above.

Table 3 -2 indicates possible logical unit assignments. The
system names for phys1cal devices are listed .n Table 17-1

3 .1 .1 SPECIAL LOGICAL UNITS

Spec1al logical units are defined at system generation t1me by
spec1fy.ng partition number zero (0) in the PAT dtrecttve. The
user can then assign a log1cal unit number to the entire d1sk
unit by using the devtce name Dcu(O) in the System
Generation ASN direct1ve or by ustng the name Ocu@· 1n the
JCP or OPCOM ASSIGN statement. The partit ion accessed on
the special logical unit is indicated by the fifth and sixth
characters of the file name. Thus a file name on a spec1al
logical un1t is lim1ted to 4 unique characters because the fifth
and Sixth characters of the fi le name are the partition number.
These characters must be numbers between 01 and 63.
inclus1ve. For example. if the ninth pan•tion IS to be accessed
on a spec1allogical unit . the file name in the FCB for the OPEN
request IS of the form xxxx09. An 1, 0 error in spec1al log1cal
unit file names results 1n an 1002 diagnost•c message .

•

If the user wishes to perform direct VORTEX 1/ 0 using the
logical unit, he assigns a specific VORTEX logical unit to the
desired partition with a JCP or OPCOM command. Under
program control the RTE SELECT macro can select spec1f1c
partitions on a particular logical un1t. overnding the file name
format above (see section 2.1 24).

The rules for usmg special logical units also apply when files
are created or maintained ustng VZFMA. To use other VORTEX
utilities such as FMAIN or FMUTIL on a spec ial logical unit . the
user must first assign a VORTEX logical un1t to the specific
partition needed.

Update B 3-1.

l

. -- -·- .. -- - ·--... - ~-· --· ---- - - -- -- -. ---- - ----·- ·-·-- - - --.-. -· . .. - ·- -- - ---··-· .. ··------·-. - . ·-· -

T

Number Name

0 DUM

1 oc

2 Sl

3 so

4 PI

5 LO

6 Bl

7 BO

8 ss

9 GO

10 PO

11 Dl

12 DO

3·2

•

INPUT / OUTPUT CONTROL

Table 3·1. VORTEX logical-Unit Assignments

Description

Dummy

Operator
communication

System input

System output

Processor input

List output

Binary input

Binary output

System scratch

Go unit

Processor output

Debugging input

Debugging output

Update B

Function

For l /0 simulation

For system operator
communication with immediate
return to user control;
Teletype or CRT only

For inputs of all JCP control
directives to any device

For display of all input control
directives and output system
messages; teletypewriter or CRT
only. VORTEX allows " SO" to be
assigned to DUM. If a back-
ground program detects an error.
it usually goes to " SO" for
corrected input. If SO = DUM. the
input buffer is reprocessed.
causing an infinite loop

For input of source statements
from all operating system
language processors

For output of operating system
input control directives,
system operations messages.
and operating system language
processors' output listings

For input of object·module
records from operating system
processors

For output of object·module
records from operating system
language processors

For system scratch use: all
operating system language
processors that use an inter·
mediate scratch unit input
from this unit

For output of the same infor·
mation as the 80 unit by the
system assembler and compiler;
RMD partition or MT.

For processor output; all
operating system language
processors that use an tnter·
mediate scratch unit output to
this unit: PO and SS are
ass1gned to the same dev1ce
at system·generation time

For all debugging inputs

For all debugging outputs

-- ··- - - --·~------·· .

INPUT / OUTPUT CONTROL

Number

101

102

103

104

105

106

Table 3·1. VORTEX Logical-Unit Assignments

Name

cu

sw

Cl

OM

BL

FL

(continued)

Description

Checkpoint unit

System work

"Core" -resident
library

Object -module
library

Background library0

Foreground library0

Function

For use by VORTEX to
checkpoint a background task;
partition protection key S;
RMD partition only

For generation of a load module
by the system load-module
generator component; or for
cataloging, loading, or
execution by other system
components; partition protec·
tion key B; RMD partition only

..
For all "core" -resident system
entry points; partition protec·
tion key C; RMD partition only
(12 names per 2 sectors)

For the VORTEX system object·
module library; partition
protection key 0 ; RMD partitton
only

For the VORTEX system background
library; partition protection
key E; RMD partition only

For the VORTEX system fore
ground library; partition
protection key F; RMD
partition only

0 Other units can be assigned as user foreground libraries
provided they are specified at system-generation time.
However, there is only one background library in any case.

Update B 3·2a

- - -------·-·---- -- --·---- - - - ---- - - - ------· - - ---- - . . _--------- --- --------- - -· .~--· ---- ·---- .. ·--

- ,._ - ·- -- ----

INPUT ! OUTPUT CONTROL

Table 3-2. Valid logical-Unit Assignments

Logical Unit oc Sl so PI LO 81 80 ss GO
Unit No. 1 2 3 4 5 6 7 8 9

Device

Dummy DUM DUM DUM DUM DUM
Card punch CP CP
Card reader CR CR CR
CRT device CT CT CT CT CT
RMD (disc/drum) D D D D 0 D D

partition
line printer LP
Magnetic-tape unit MT MT MT MT MT MT MT
Paper-tape reader 1 PT PT PT PT PT

punch
Teletype TY TY TY TY TY

Remote Teletype TC TC TC TC

logical Unit PO Dl DO cu sw Cl OM 8L Fl
Unit No. 10 11 12 101 102 103 104 105 106

Device

Dummy DUM DUM
Card punch CP
Card reader CR
CRT device CT CT CT
RMD (disc/ drum) D 0 0 D 0 0 0

partition
Line printer LP LP .

Magnetic-tape unit MT
Paper-tape reader I PT

punch
Teletype TY TY TY

Remote Teletype TC TC

Update 8 3 -3

~-·· ·- .. -------4"'-~··· -· . - - - -•
0

0 O --- _.,,_.,,_- 0 ,,~ , _- .._,_ .. _ flOO - ~0> -- ... -----.. - ·-- · · -··-.. - - · ·-·--- ·..- .. - --· _,. O' - O -

3-4

INPUT / OUTPUT CONTROL

3.2 RMD FILE STRUCTURE

Each RMD (rotating-memory device) is divided into up to
20 memory areas cal led partitions. Each partition is
referenced by a specific logical-unit number. The bounda
ries of each partition are recorded in the core-resident
partition specification table (PST). The first word of the
PST conta ins the number of VORTEX physical records per
track. The second word of the PST contains the address of
the bad-track table, if any, or zero. Subsequent words in
the PST comprise the partition entries. Each PST entry is in
the format :

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 0 Beginning partition address (track number)

Word 1 ppb Protection key

Word 2 Number of bad tracks in the
part ition

Word 3 Ending partition address + 1

Section 9.1 describes the full PST format.

The partition protect ion bit , designated ppb in the above
PST entry map, when set, requires the correct protection
key to read/write from this partition.

Note that PST entries overlap. Thus, word 3 of each PST
entry is also word 0 of the following entry. The length of the
PST is 3n + 2, where n is the number of partitions in the
system. The relative position of each PST entry is recorded
in the device specification table (DST) for that partition.

The bad-track table, whose address is in the second word
of the PST, is a bit string constructed at system-generation
time and thereafter constant. The bits are read from right
to left within each word, and forward through contiguous
words, with set bits flagging bad tracks on the RMD.

The 70-755x and 70-756x. RMD drivers use a bad sector
table (BST) instead of a bad track table. This RMD may also
contain up to 63 partitions instead of 20. and so the PST
occupies the first 2 logica l 120 word records of the RMD.
The third logical record contains the second half of the boot
program, so that the BST begins on the fourth logical 120
word record instead of the second as for other RMDs.
Because the second half of the boot program must be on the

. ·- ·------

third logical record, 70-755x system disks must be
formatted using the FORMAT-H routine before the first and
between any subsequent system generations. The BST
format is logically the same as the BTI (bad track table).

Each RMD partit ion can conta in a file-name directory of
the files contained in that partition. The b~ginning of the
directory is in the first sector of that part ition . The
directory for each partition has a variable number of
entries arranged in n sectors, 19 entries per sector. Sectors
containing directory information are chained by pointers in
the last word of each sector. Thus, directory sectors need
not be contiguous. (Note: Director ies are not automati
cally created when the part it ions are defined at system
generation time. It is possible to use a partition with no

directory, e.g. , by a foreground program that is collecting
data in real t ime.) Each directory entry is in the format :

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 0 F. ile name

Word 1 File name

Word 2 File name

Word 3 Current position of file

Word 4 Beginning file address

Word 5 Ending file address

The file name comprises six ASCII characters packed two
characters per word. Word 3 contains the current address
at which the file is positioned, is initially set to the ending
file address, and is manipulated by the OPEN and CLOSE
macros (sections 3.5.1 and 3.5.2). The extent of the file is
defined by the addresses set in words 4 and 5 when the fi le
is created, and which remain constant.

At system-generat ion t ime, the first sector of each partit ion
is assigned to the file-name directory and a zero written
into the first word. Once entries are made in the file-name
directory, the first word of each sector contains a count of
the entries in that sector.

The last entry in each sector is a one-word entry conta ining
either the value 01 (end of directory), or the address of the
next sector of the file-name directory.

The file-name directories are created and maintained by
the VORTEX f ile-maintenance component (section 9) for
IOC use. User access to the directories is via the IOC, which
references the directories in response to the I 10 macros
OPEN and CLOSE. The file-maintenance component sets
words 0, 1, 2, 4, and 5 of each directory entry, which then
remain constant and unaffected by IOC operations. The
IOC can modify on ly the current position-of-file parameter.

--· - ·- ·-·· - · - ·---

In the case of a file containing a directory, an OPEN is
required before the file is accessible. The macro searches
the file directory for the entry corresponding to the name in
the file-control block (FCB) in use. When the entry is found,
the file boundary addresses and the current position-of-file
value from the directory entry are stored in the FCB. If the
OPEN macro

a. Specifies the option to rewind. the FCB current position
is set equal to the address of the beginn1ng of file.

b. Specifies the option not to rewind, the FCB current
position is set equal to the address of the position of file.

Once a file is thus opened, READ and WRITE operations
are enabled. The IOC references the file by the file
boundary values set by the OPEN. rather than by the file
name. READ and WRITE operations are under control of
the FCB current posit ion value. the extent of the file. and
the current record number.

A CLOSE macro disables the IOC and user access to the file
by zeroing the four file-position parameters 1n the FCB. If
the CLOSE macro

a. Specifies the option to update. the current pos1t1on-of·
file value in the directory entry IS set to the value of the
FCB current position. allow~ng reference by a later
OPEN .

b. Specifies the option not to update. the file-directory
entry remains unmodified.

Special directory entries: A blank entry IS created when a
f i le name IS deleted. in which case the f1le name IS ~ 0 ~:. ~ ~

and words 3 through 5 g1ve the extent of the blank file. A
zero entry IS created when one name of a multlname f1le IS

deleted. in wh ich case the deleted name IS converted to a
blank entry and all other names of the mult~name file are
set to zero.

When using sequential access with file extens ion (access
method 9) VORTEX wi II automatiCally create a f i le extension
for the user if an EOD (end of device) status occurs on an
RMD dev1ce dun ng a write operation. The file extens1on IS

creat~d by the manager routine VZFMA. The f ile s1ze is
equa l to the size of the origina l file and is completely
separate (non contiguous and non linked) from the base f ile
segment and its file extensions are loosely linked by sharing
the same file name and containing a unique file extension
number. The current file extension number is mainta ined in
word 2. bits 12-13 of the current FCB. A file may contain up~
to 3 extensions. tf these are exceeded, a standard EOD
status is returned to the user. All file extensions must reside
m the same log1ca l unit as the base segment thus the
number of extensions may be limited due to available space
on the logical unit . On read requests. when an EOD status is
returned. the next sequential file extens1on is searched for

INPUT /OUTPUT CONTROL

and. if found, 1/ 0 continues using the file extension. For
both reads and writes. the handling of file extensions is
transparent to the user.

Note: Files that contain extensions should not be used with
direct access l / 0 as the user FCB file extents are subject to
modification by the file extension logic. If a file created with
sequential l / 0 , has had extens1ons created. and is to then
be used w ith direct access 1/ 0 . that file must be copied into
a contiguous single f ile.

3.3 l/0 INTERRUPTS

VORTEX uses a complete, interrupt-driven l / 0 system. thus
optimizing the allocation of CPU cycles in the multipro·
gramming environment.

3.4 SIMULTANEOUS PERIPHERAL OUTPUT
OVERLAP (SPOOL)

The VORTEX spooler is a generalized set of routines which
permit queuing of a task 's output to intermediate RMD
files. This avoids the user task wa iting for the device
transfer completion. Total system throughput will be
increased because waiting for transfers to be completed,
both in the use of l / 0 calls with suspended returns and
that of tasks which are terminating, will be minimized.

Also. non-resident tasks may transfer to a spooled device
and immediately exit. instead of remaining resident until
completion of the transfer.

At system generat ion, the user may have the output of
some logical units. such as LO, automatically spooled.
During operation, the operator may assign device outputs
to the spooler through JCP or OPCOM assign directives.

Components

The SPOOL subsystem consists of two components: (1) an
IOC driver to which data output may be assigned and which
transfers output for its associated logical unit to a circular
RMD file or directly to the output listing task , and (2) and
output listing task which accepts messages from this
circular RMD file or directly from the IOC driver and
transfers them to the appropriate output dev1ce.

Communication between these two tasks is accomplished
through parameters w1thin the list~ng t ask whtch are

Update 8 3-5

--- ----------------·----- ------~- ---- .

INPUT /OUTPUT CONTROL

established by the IOC driver. When these and other
system parameters indicate that the listing task has caught
up with the spootout task , output messages will be
transferred directly to the listing task, instead of going
through the RMD SPOOL file. (This avoids the overhead of
two RMO transfers).

All data records transferred to the circular RMD file will
contain record length and a key signifying . whether the
transfer is to be write or a function as well as other
synchronization data. Data will be transferred to RMD in
an unpacked mode (one record per sector) in order to avoid
delays caused by unwritten still-to-be packed records.
SPOOL file overflow messages will be output when appropri
ate after allowing the RMD circular file certain amounts of
time to remove its oldest entry.

Figure 3-1 shows a simplified flow of output data through
the SPOOL subsystem.

USER
TRANSFER TO
LOGICAL UNIT

•
SPOOLER IOC
DRIVER
(VZSPOA)

CONTROLLER
TABLE CTSPnA

DATA DIRECTLY
TO SPOO LOUT
BUFF ER

•
RESIDENT
LISTER TASK

,,
TRANSF ER TO
LOGICAL UNIT
180 + n*

..

'

J

TRANSFER IF
SPOOL STREAM
n" IS BUSY

RMD FILE
SPOOL n"

'
J

* WH ERE n IS AN INTEGER FROM ZERO TO SE VEN

YTI1·11lJ

Fipe 3·1. Spooling Subsystem Flow

3-6

--·-·

Update B

3.4.1 SPOOL Operation

During the system generation, up to eight spool pseudo
devices may be d~fined . These pseudo-devices, SPOA
through SP7A are dummies which can be assigned to any
logical unit used only for output. Such assignments can be
made permanently at SGEN time, or dynamically through
JCP or OPCOM.

Each pseudo-device, SPiA, has a corresponding RMD file
name, SPOOLi. These files must be defined on an RMD
partition which is permanently assigned to logical unit 107
(named SX). Each spool pseudo-device and file is then
associated with a logical unit (180-187) to which the
LISTER writes unit record output. For example, a user
issuing a WRITE request to an LUN assigned to device
SPiA, will have data transferred to file SPOOli on RMD.

The data will be read from the RMD and written to LUN
180 + i, whose name is Si, as time and the device allow.

If the output device is not busy when a user request is
made, and if the RMD stream is inactive, the user data is
moved directly to the output device via a SPOOL buffer. In
this case, the user request is set complete as soon as the
buffer is queued for the device.

If a user's l/0 requests are made and a spool pseudo·
device number for the appropriate SPOOU file could not be
found, of if the RMD is inoperative for any reason, the RMD
is bypassed. That is, each user request causes a SPOOL
buffer containing the user's data to be queued directly to
the output device, up to a maximum of two buffers per
stream. If the user should issue a request that would
require a third buffer for that stream, then the SPOOL
driver enters a delay loop until the two buffer limit can be
satisfied. During this wait time, the user's 1/ 0 is active.

If the output device to which a user is spooling output
should go down or become not ready, data continues to be
accepted and spooled to RMD, but not more than two
SPOOL buffers will be tied up waiting for the device to
become usable. If an RMD is down when this case occurs,
user's requests will be delayed after two buffers are
allocated to the stream.

Should the user fill the RMO file for a stream with data
before the device can catch up, the next user request
remains active until space is available in the RMD.

3.4.2 SPOOL Files

Certain RMD files are required for maximum spooler
operation. Without these, the SPOOL subsystem will
function at a reduced rate. Files SPOOLO through SPOOL7,
where the last digit is the SPOOL stream number, are used
as circular files and may be established at varying lengths
to improve system performance. SPOOL operation will be
slower if RMD files are totally filled with data to be output.

- ____ .,.., ..
•

Files must be created after SGEN but before the first user
of the SPOOL program. To establ ish files in a manner
consistent with SPOOL. an exact procedure must be
followed. If LO is assigned to SPOOL. it must be reassigned
temporarily to a non-spooled device through OPCOM using
a command such as:

;ASSIGN,LO•LP

where LP is not a spooled device. After this step, the actual
file or files must be created using FMAIN in the following

manner:

IPHAIN
INIT, 107, S
CRBATE,107,S,SPOOL0,120,n
CREATE,107,S,SPOOL1,120,n
•
•
•
CREATB,107,S,SPOOL7,120,n
IPINI

The last parameter n of the CREATE directives is the
number of records. A CREATE directive is required for each
data stream. As many CREATE directives as data streams
are required.

The number of 120·word records to be established within
the file is given as the last parameter of the CREATE
directive. SPOOL files are circular files: entries are being
placed on one end while being removed fr~m the other end.
When the SPOOL subsystem determines that the f ile is full.
i.e., that another entry cannot be placed on the file without
destroying one which has not been removed. transfers to
the spooler driver will not be completed until a new file
entry becomes available (the oldest entry has been
removed from the file). As file s1ze is increased. the
likelihood of a full file is decreased. File s1ze should be a
function of expected stream utilization and device output
speed, which determines how qurckly entries are moved
from circular spooler files. The 1060 error message
indicates that a file is ful l. If th1s message is received
frequently the number of records 1n that file should be
mcreased for maximum spooling effic1ency.

Th1s procedure for creat1on of SPOOL files needs to be
done only once. It is performed 1mmed1ately after comple
tion of SGEN when the " VORTEX SYSTEM READY" mes
sage IS output . If these file s1zes are found to be unsatisfac
tory. the system may be rebooted and file s1zes mod1f1ed
by executing the procedure aga1n

Update B

INPUT/OUTPUT CONTROL

As part of the SGEN for systems using the SPOOL program,
controller table 0 (stream 0) must be included since the
initialization routine is included in its buffers. Additional
controller tables may be included as desired. However.
storage requirements may be varied by using different
controller tables: all even addresses contain four 74-word
buffers, and odd streams contain only two 74-word buffers.
For systems with a large amount of SPOOL throughput, it is
recommended that four buffers be specified for controller
tables. otherwise two·buffer tables should be sufficient.

3.5 I / O-CONTROL MACROS

I / 0 requests are written in assembly language programs as
I 10 macro ca lls. The DAS MR assembler prov1des the
following l/0 macros to perform l /0 operations, thus
simplifying coding:

• OPEN Open file

• CLOSE Close file

• READ Read one record

• WRITE Write one record

• REW Rewind

• WEOF Write end of file

• SREC Skrp one record

• FUNC Function

• STAT Status

• DCB Generate data con trol block

• FCB Generate file control block

The following 1/ 0 macros apply to the 70-75Sx RMD only:

• DEMAND Demand the controller for this unit

• RELEAS Release the controller after a DEMAND

• BCB Generate Buffer Controller Block

• RESERV Reserve the controller for th is unit

• RELRSV Release the controller after a RESERV

3-7

. --- - - -----···- -..---- -----·- --------·~.-. -·-
----- .. _ -- ______ __.... --- --

3-8

INPUT /OUTPUT CONTROL

The IOC performs a validity check on all l/ 0 requests. It
then queues (according to the priority of the requesting
task) each valid request to the controller assigned to the
specified logical unit. Finally, the IOC schedules the
appropriate l/0 driver to service the queued request.

The assembler processes the I /0 macro to yield a macro
expansion comprising data and executable instructions in
the form of assembler language statements.

Certain l/0 operations require parameters in addition to
those in the l /0 macro. These parameters are contained in

a table, which, according to the operation requested, is
called either a file control block (FCB, section 3.5.11) or a
data control block (DCB, section 3.5.10). Embedded but
omitted parameters (e.g., default values) must be indicated
by the normal number of commas.

Error messages applicable to these macros are g1ven in
Appendix A.3.

l/0 Macros: The general form of 110 macros is:

label name cb,lun,wait,mode

where the symbols have the definitions given 1n section
3.5.1.

If the cb is for an FCB, it is mandatory. If it is for a DCB, it
is optionaL

The expansion of an 110 macro is:

Bit 15 14 13 12 11 10 9 a 7 6 5 4 3 2 1 0

WordO J S R,X

Word 1 0404

Word 2 c Status e cc Priority•

Word 3 w Mode Op--eode Loaical··unit number

Word 4 FCB or DCB address

Word 5 User task identif ication block address•

Word6 IOC thread address •

where

c

Status

e

cc

Priority

w

Mode

Op-code

•

set indicates completion of I /0 tasks

is the status of the I / 0 request

set indicates an irrecoverable l/0
error

is the completion code

is the priority level of the task
making the request

is the wait/immediate-return option

is the mode of operation

specifies the I /0 operation to be
performed

indicates an item whose initial
value is zero

The wait option causes the task to be suspended until its
110 is complete. The immediate option causes control to be
returned immediately to the task after the l / 0 request is
queued. Therefore, to multiprogram effectively within
VORTEX, the wait option is preferred.

Word 2 contains the following information:

a. Bit 15 indicates whether the I / 0 request is complete.

b. Bits 14 through 9 contain one of the error-message
status codes described in Appendix 8.2.

c. Bit 8 indicates an irrecoverable I / 0 error.

d. Bits 7 through 5 contain a completion code: 000
indicates a normal return; 101, an error; 110, an end of
file, beginning of device, or beginning of tape; and
111, end of device, or end of tape.

e. Bits 4 through 0 indicate the priority level of the task
making the request.

Word 3 contains the following information:

Bits 0-7 Logical Unit (LUN)

When an l/0 request is made to V$10C, V$10C uses the
LUN as an index into the logical unit table (LUT). V$10C
then uses the current assignment pointer of that entry in
the LUT to determine the address of the DST on which the

The last parameter n of the CREATE directives is the
number of records. A CREATE directive is required for each
data stream. As many CREATE di rectives as data streams
are required.

The number of 120·word records to be established within
the f ile is given as the last parameter of the CREATE
directive. SPOOL files are ci rcular files; entries are being
placed on one end while being removed from the other end.
When the SPOOL subsystem determines that the file is full ,

i.e., that another entry cannot be placed on the file without
destroying one which has not been removed , transfers to
the spooler driver will not be completed until a new file
entry becomes available (the oldest entry has been
removed from the f i le). As f ile size is increased, the
likelihood of a full file is decreased. File size shou ld be a
function of expected stream utilizat ion and device output
speed, which determines how quickly entries are moved
from circular spooler files . The 1060 error message
indicates that a file is full. If this message is received
frequently the number of records in that file should be
increased for maximum spooling efficiency.

This procedure for creation of SPOOL files needs to be
done only once. It is performed immediately after comple
tion of SGEN when the " VORTEX SYSTEM READY" mes
sage is output. If these file sizes are found to be unsatisfac
tory, the system may be rebooted and file sizes modified
by executing the procedure again.

As part of the SGEN for systems using the SPOOL program,
controller table 0 (stream 0) must be included since the
initialization routine is included in its buffers. Additional
controller tables may be included as desired . However,
storage requ irements may be varied by using different
controller tables : all even addresses contain four 74-word
buffers, and odd streams contain on ly two 74-word buffers.
For systems with a large amount of SPOOL throughput , it is
recommended that four buffers be specified for controller
tables, otherwise two-buffer tables should be sufficient.

3.5 I / O-CONTROL MACROS

I / 0 requests are written in assembly language programs as
l / 0 macro calls. The DAS MR assembler provides the
following l / 0 macros to perform l / 0 operations, thus
simplifying coding:

INPUT/OUT PUT CONTROL

• OPEN Open f ile

• CLOSE Close file

• READ Read one record

• WRITE Write one record

• REW Rewind

• WEOF Write end of file

• SREC Skip one record

• FUNC Function

• STAT Status

• DCB Generate data control block

• FCB Generate file control block

The IOC performs a validity check on all l / 0 requests. It
then queues (according to the priority of the requesting
task) each valid request to the controller assigned to the
specified logical unit. Finally , the IOC schedules the
appropriate I / 0 driver to service the queued request.

The assembler processes the I / 0 macro to yield a macro
expansion comprising data and executable instructions 1n
the form of assembler language statements.

Certain I /0 operations require parameters in addition to
those in the 110 macro. These parameters are contained in

a table, wh ich, according to the operation requested , is
called either a file control block (FCB, section 3.5.11) or a
data control block (DCB, section 3.5.10). Embedded but
omitted parameters (e.g. , default values) must be indicated
by the normal number of commas.

Error messages applicable to these macros are g1ven 1n

Appendix A.3 .

110 Macros: The general form of 1! 0 macros is:

label name cb, lun,wait,mode

where the symbols have the definitions given in section
3.5.1.

If the cb is for an FCB, it is mandatory. If it is for a DCB, it
is optional.

3·7

------· -·-- ·--- _._,,, ____ --------~ ··- -·~ -·- --.. - .. - k·-· -~· ··----.. ·- - - -- - ________ , ______ . - ... ··- .

INPUT / OUTPUT CONTROL

The expansion of an 110 macro is:

Bit 15 14 13 12 11 10 9 a 7 6 5 4 3 2 1 0

Word 0 J S R,X

Word 1 0404

Word 2 c Status e cc Priority•

Word 3 w Mode Op··Code Logicai··Unit number

Word 4 FCB or DCB address

Word 5 User task identification block address •

Word 6 IOC thread address•

where

c set indicates completion of l / 0 tasks

Status

e

cc

Priority

w

Mode

Op-code

•

is the status of the l/ 0 request

set indicates an irrecoverable I 10
error

is the completion code

is the priority level of the task
making the request

is the wait/immediate-return option

is the mode of operation

specifies the l / 0 operation to be
performed

indicates an item whose initial
value is zero

The wait option causes t he task to be suspended until its
l / 0 is complete. The immediate option causes control to be
returned immediately to the task after the 1/0 request is
queued. Therefore, to multiprogram effectively within
VORTEX, the wait option is preferred.

Word 2 contains the following information:

a. Bit 15 indicates whether the l /0 request is complete.

b. Bits 14 through 9 contain one of the error-message
status codes described in Appendix B.2.

c. Bit 8 indicates an irrecoverable l / 0 error.

d. Bits 7 through 5 contain a completion code: 000
indicates a normal return ; 101, an error; 110, an end of
file, beginning of device, or beginning of tape; and
111 , end of device, or end of tape.

3-8

e. Bits 4 through 0 indicate the priority level of the task
making the request.

Word 3 contains the following information :

Bits 0-7 logical Unit (LUN)

When an l / 0 request is made to V$10C, V$10C uses the
LUN as an index into the logical unit table (LUT). V$10C
then uses the current assignment pointer of that entry in
the LUT to determine the address of the DST on wh ich the
l / 0 is to be performed. To determine the DST address, the
current assignment va lue less one is multiplied by the
length of a DST (3 words) and added to the base address
of the DST block. V$10C verifies the va lid ity of the specified
LUN.

If the LUN is invalid, a parameter error has occurred (refer
to sections 3.1 and 3.3).

Bits 8-11 Op-Code

Op-codes can range in value from 0 to 15; however, not all
op-codes are applicable for every device. V$10C, using the
op-code as an index gets an entry from a bit table. Th is
word conta ins a 1 in the bit position associated with the op
code and is compared with the controller table item
CTOPM. If the corresponding bit in CTOPM is set to 1, it
means that the device connected to the controller can
perform the requested operation. If the corresponding bit
in CTOPM is zero, the I 10 request is not performed, and
the l /0 complete indicator (bit 15) set.

Bit 8-11 Meaning

0000 Read
0001 Write
0010 Write EOF
0011 Rewind
0100 Skip record
0101 Function
0110 Open
0111 Close
1000-1111 Not used

Bits 12-14 Mode

The mode bits are not used by V$10C nor V$FNR. The l/0
driver use this information whenever applicable to the op
code.

Bit 15 Wait Option

V$10C uses this bit to determine whether the requesting
task is to be suspended until I /0 is completed or whether
an immediate return is required .

- ---.. --- -- ·- - - - --- - -

Bit 15 0

Bit 15 1

Suspend unt il l / 0 completed. V$10C
sets bit 14 in TBST in the requesting
task 's Tl DB.

Immediate return required (via V$DISP).
V$10C clears bit 14 in TBST in the
requesting task's TIDB.

Word 5 initially points to the user's task identification
block. Upon completion of a READ or WRITE macro
(sections 3.5.3 and 3.5.4), the IOC sets word 5 to the actual
number of words transmitted.

Word 6 initially contains the request block thread. Upon
completion of a READ or WRITE operation the IOC sets
wo rd 6 to the number of retries attempted prior to comple
tion of the request.•

Status macro: The general form of the status (STAT)
.

macro 1s:

/abe/ STAT req,err, aaa,bbb,bus y

where the symbols have the definitions given in section
3.5.9.

The normal return is to the first word following the macro
expans1on.

The expansion of the STAT macro is :

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 0 J S R.X

Word 1 0373

Word 2 Address of lhe flO macro

Word 3 Address of lhe 110 error roullne

Word 4 aaa

Word 5 bbb

Word 6 Address of the busy or l / 0 -not -complele rou l ine

where aaa is the address of the end of file, beginning of
device or beginning of the tape routine and bbb is the
address of the end of the tape or end of the device routine.

Control block macro: The general form of the DCB macro
IS:

label

where the
3.5. 10.

DCB rl,buff, fun

symbols have the definitions given 1n section

The expansion of the DCB macro is:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 0 Record length

Word 1 D ~recl Address of user dat a area

Word 2 F unclion code

INPUT / OUTPUT CONTROL

The function code applies only to l / 0 drivers that allow:

a. The line pr inter to slew to top of form or to space
through the channel selection for paper-tape form
control.

b. The paper-tape punch to punch leader.

c. The card punch to eject a blank card as a separator.

The general form of the FCB macro is :

label FCB rl,buff. ace, key. 'xx ·. 'yy ', 'zz'

where the
3.5.11.

symbols have the definitions given in section

The expansion of the FCB macro is :

- .

01 Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Word 0 Record lenglh I

Word 1 Address of user dil l il ar ea
.

] Word 2 Acces~ melhod Prolec l ,on key
··--- - -

Word 3 Curren ! recorcJ number
-

Word 4 Curren l end-of -life it del ' ess
-

Word 5 Beg,nn1ng file address

Word 6 End,ng ftfe itddress
-~-- ----

Word 7 r lfe n;~me

Word 8 F1fe name

Word 9 F lfe name

The access method (word 2, bits 15 through 8) specifies
one of the four methods of reading or writ ing a f ile:

a. Direct access by logical record: The I 10 driver uses
the contents of FCB word 3 as the number of the logical
record within a file to be processed, but does not al ter
word 3 after reading or writing. Word 3 is set by the
user to the desired record number prior to each read 1

write.
Specifying FCB word three to zero will cause access to
the partition directory. Care should be taken when
supplying t his value so that directories are not
accidentally destroyed.

b . Sequential access by logical record: The l / 0 driver
uses the contents of word 3 as the number of the logical
record with in a file to be processed, then increments
the contents of word 3 by one. Word 3 is set initially
to zero when the FCB macro expands. Successive
reading and writing thus accesses records
sequentially.

3-9

- ··· ~ .. -. ~--~--··-- · ... - ··---- '-------------------------------=------·· ·--~-=..,.:'..:....· -

·-... - - - · -

INPUT / OUTPUT CONTROL

c. Direct access by physical record: The 110 driver uses
the contents of FCB word 3 as the number of the
VORTEX physical record to be processed within a file
(120-word length), but does not alter word 3 after a
read or write. Word 3 is set by the user to the desired
record number prior to each read/write.
Specifying FCB word three to zero will cause access to
the partition directory. Care should be taken when
supplying this value so that directories are not
accidentally destroyed.

d . Sequential access by physical record: The l/ 0 driver
uses the contents of FCB word 3 as the number of the
VORTEX physical record to be processed within a file
(120-word length), then increments the contents of
word 3 by one. Word 3 is set in it ia lly to zero when the
FCB macro expands. Successive reading and writing
thus accesses records sequentially.

3.5.1 OPEN Macro

Th is macro, which applies only to RMDs or magnetic-tape
units, enables l / 0 operat ions on the devices by initializing
the f ile information in the specified FCB. The macro has
the general form

where

label OPEN fcb,lun, wait, mode

feb is the address of the f ile control block

lun is the number of the logical unit being
opened

wait is 1 for an immediate return , or 0
(default value) for a return suspended
until the I / 0 is complete

mode is 0 (default value) for rewinding or 1 for
not rewinding. In the former case, word
3 (current record number) of the FCB is
set to 1, word 4 (current position -of-file
address) is set to the current position-of
file address given by the RMD file
·directory, and rewinds the magnetic
tape unit. In the latter case, the current
position -of-file address given by the
RMD file directory is copied into word 4,
converted to a record number and
stored in word 3 of the FCB, thus
initializating the user FCB, enabling
reading or writing from a previously
specified location, and the magnetic·
tape position is left unchanged (not
rewound).

OPEN must precede any other l / 0 request (except REW)
because the FCB file information must be complete before
any file-oriented I /0 is possible. If a fi le has already been
opened, an OPEN will be accepted.

3-10

The OPEN macro is file-oriented, while the REW macro is
oriented to the logical unit. An REW destroys information
completed by a previous OPEN on the same logical unit.

The OPEN macro changes words 3, 4, 5, and 6 of the FCB
(section 3.5.11).

If an attempt is made to apply the OPEN macro to any
device other than an RMD or a magnetic-tape unit, the I / 0
request is processed internally by the IOC but not by an
l /0 driver. The IOC indicates the status as l / 0 complete.

Example: Read a 120-word record from the F11 0 on logical
unit 18, an RMD partition with sequential , record-oriented
access. BUFF is the address of the user 's buffer area. Use
the wait and rewind options, and set the logical-unit
protection key to 1.

X1 EQU 18 (LUN assigned to unit X1)
RL EQU 120 (Record length 120)
WAIT EQU 0 (Wait option)
REW EQU 0 (Rewind option)
KEY EQU 1 (Logical-unit protection key)
SEQR EQU 1 (Sequential , record -oriented

access)
OPEN OPEN FCB,X1,WAIT,REW
READ READ FCB,X1,WAIT

•
•
•

FCB FCB RL,BUFF,SEQR,KEY,
'FI' '10' I ' , ,

3.5.2 CLOSE Macro

This macro, which applies only to RMDs or magnetic-tape
units, updates information in the specified FCB file. This
records and retains the current position within the file. The
mode option ignores the updating, thus retain ing the
previously defined position in the file. The macro has the
general form

where

label CLOSE fcb,lun, wait, mode

feb is the address of the FCB

lun is the number of the logical unit being
closed

wait is 1 for an immediate return , or 0
(default value) for a return suspended
until the I /0 is complete

. - - · - -------- -- -- . - - · - - , .. _______ - -
•

mode is 0 (default value) for not updating, or 1
for updating In the former case, there is
no change to the current position -of-file
address in the RMD file directory, words
3, 4, 5, and 6 of the FCB are set to zero,
and the magnetic-tape position is left
unchanged (not rewound). In the latter
case, the contents of FCB word 3
(current record number) are converted
to an address and stored in the current
position -of-file address in the RMD file
directory, words 3, 4, 5, and 6 of the FCB
are set to zero, and an end-of-file mark
written on the magnetic tape.

The CLOSE macro cannot be used if there is no such file
defined in the FCB (section 3.5.11).

If an attempt is made to apply the CLOSE macro to any
device other than an RM D or magnetic-tape unit, the l/0
request is processed internally by the IOC, but not by an
I / 0 driver. The IOC indicates the status as I / 0 complete.

Example: Close the fi le MATRIX on logical unit 180, an
RMD partition with sequential , record-oriented access. Use
the wa it and update options.

SEQR EQU

UPDATE EQU
WAIT EQU

•

•
•

CLOS E CLOS E
•
•

•

FCB FCB

1

1

0

(Sequential, record
oriented access)
(Update option)
(Wait option)

FCB, 180, WAIT,UPDATE

, , SEQR, , ' MA I , I TR I , I IX I

3.5.3 READ Macro

Th is macro retrieves a record of specified length from the
specified logical unit, and places i t in the specified area of
main memory. The macro has the general form

label

where

cb

lun

wait

mode

READ cb,lun.wait,mode

is the address of the data control block,
or of the file control block

is the number of the logical unit from
wh ich the record is read

is 1 for an immediate ret urn, or 0
(default value) for a return suspended
until the I / 0 is complete

specifies the l / 0 mode: 0 (default value)
for system b inary, 1 for ASCII, 2 for BCD,
or 3 for unformatted 1/ 0 (see appendix
C for format)

INPUT / OUTPUT CONTROL

The number of words read is stored in word 5 of the 110
macro.

Example: Read a record from logical unit 4 , a magnetic
tape unit. Use system binary mode and the immediate
return option. The record length is 60 word s, and the
address of the user's data area is BUFF.

I M
BIN
MT

RECL

MTRD

TAPE
BUFF

EQU
EQU
EQU

EQU
•
•

•

READ
•
•
•

DCB
BSS

1
0
4

60

(Immediate return)
(System binary mode)
(LUN assigned to
magnetic-tape unit)
(Record length 60 words)

TAPE,MT,IM,BIN

RECL,BUFF
60

(Data con trol block)
(User data area)

Note that the READ macro had a mode value of zero. Since
this is the default value, the macro could have been coded:

MTRD READ TAPE, MT , I M

3.5.4 WRITE Macro

This macro takes a record of specified length from the
specified area of main memory, and transmits it to the
specified logical unit. The macro has the general form

label WRITE cb,lun, wait, mode

where the parameters have the same defin it ions and take
the same values as in the READ macro (section 3.5.3).

The number of words written is stored in word 5 of the I / 0
macro. The fi rst byte of each print line is treated as a print
control character and not echoed when outputting to a
listing device.

Example: Obtain a system binary record 60 words in
length from the user 's data area BUFF, and transmit it to
logical unit 16, a magnet ic-tape unit. Use the immediate
return option.

IM
BIN
MT

RECL

MTWT

TAPE
BUFF

EQU
EQU
EQU

EQU
•

•
•

WRITE
•
•

•

DCB
BSS

1
0
16

60

(Immediate return)
(System binary mode)
(LU N assigned to magnetic
tape unit)
(Record length 60 words)

TAP E ,MT ,IM,BIN

RECL , BUFF
60

(Data control block)
(User data area)

3·11

-------------··-~ ______,._. ·-·--- - .----- -·-- ---- ·------ · - _ ... ___ . __ .. _ - .__

INPUT/ OUTPUT CONTROL

3.5.5 REW (Rewind) Macro

This macro, which app lies only to magnetic-tape or
rotating-memory devices, repositions the specified logical
unit to the beginning-of-unit position. It has the general
form

where

label REW cb,lun,wait

cb is the address of the FCB or OCB, which
is optional

lun

wait

is the number of the logical unit being
rewound

is 1 for an immediate return , or 0
(default value) for a return suspended
until the I / 0 is complete

Note that the OCB address is an optional parameter, but
that the FCB address is mandatory.

To reposition a named f ile on an RMO, use the OPEN
macro (section 3.5.1).

Magnetic-tape devices: REW rewinds the specified unit
and, upon successful completion of the task, returns a
beginning-of-device (BOO) status.

Rotating-memory devices : REW places the start -RMO
partition and end-RMO-partition addresses in words 5 and
6, respectively, of the FCB (section 3.5.11).

Examples: Rewind logical unit 23, a magnetic-tape unit.
Use the wait option, here specified by default.

MT EQU 23 (LUN assigned to magnetic·
tape unit)

•
•
•

REWT REW ,MT
•
•
•

Rewind logical unit 10, an RMD partition. Use the wait
option, here specified by default. Note that the REW for an
RM 0 must have an associated FCB (section 3. 5.11).

DISC EQU

RECL EQU
•
•

•
REWD REW

•
•
•

FCB FCB

BUFF BSS

3-12

10

120

(LUN assigned to RMD
partition)

FCB,DISC

RECL,BUFF,,, 'SY ', 'ST' ,'EM'
(section 3.5.11)
120

3.5.6 WEOF (Write End of File) Macro

This macro writes an end of file on the specified logical
unit. It has the general form

label

where

cb

lun

wait

WEOF cb,lun, wait

is the address of the control block

is the number of the affected logical unit

is 1 for an immediate return, or 0
(default value) for a return suspended
until the I / 0 is complete

Example: Write an end of file on logical unit 10. Use the
wa it option, here specified by default.

TAPE EQU 10

•

•

•

EOF WEOF CB,TAPE
•

•

•

3.5.7 SREC (Skip Record) Macro

Th is macro, which applies only to magnet ic-tape, card
reader, or rotating-memory devices, skips one record in
either direction on the specified logical unit. It has the
general form

where

label SREC cb,lun, wait, mode

cb is the address of the control block

lun is the number of the logical unit being
manipulated

wait

mode

is 1 for an immediate return , or 0
(default value) for a return suspended
until the I /0 is complete

specifies the direction of the skip: 0
(default value) for a forward skip, or 1 for
a reverse skip. Reverse skip does not
apply to the card reader .

If applied to an RMD, SREC adds or subtracts from the
value of word 3 of the FCB (section 3.5.11) .

If an attempt is made to apply this macro to a device other
than a magnetic-tape or rotating-memory unit, the I / 0
request is processed internally by the IOC but not by an
I /0 driver. The IOC indicates the status as I / 0 complete.

- - --- - - - ------• . .

3.5.5 REW (Rewind) Macro

This macro. which applies only to magnetic -tape or
rotating-memory devices, repositions the specified logical
unit to the beginning-of-unit position. It has the general
form

label

where

cb

lun

wait

REW cb,lun, wait

is the address of the FCB or DCB, which
is optional

is the number of the logical unit being
rewound

is 1 for an immediate return , or 0
(default value) for a return suspended
until the l/0 is complete

Note that the DCB address is an opt ional parameter , but
that the FCB address is mandatory.

To reposition a named file on an RMD. use the OPEN
macro (section 3. 5.1).

Magnetic-tape devices: REW rewinds the specified unit
and, upon successful completion of the task, returns a
beginning-of-device (BOD) status.

I WARNING I
VSIOC returns to the issu ing program prior to rewind
complet ion . When rewinding is complete. the issui ng
RQBLK is updated. Therefore. the issumg ROBLK m ust not
be modif ied pr ior to rew ind complet ion .

Rotat ing-memory devices: REW p laces the start -RMD
partit ion and end-RMD-partition addresses in words 5 and
6. respectively, of the FCB (section 3.5.11).

Examples: Rewind logical unit 23. a magnetic -tape un it.
Use the wait option. here spec if ied by default.

MT EQU
•
•
•

REWT REW
•
•
•

23

MT

(LUN assigned to magnetic
tape unit)

Rewind log ical unit 10, an RMD partit ion. Use the wait
option . here specified by default. Note that the REW for an
RMD must have an associated FCB (sect ion 3.5.11).

DISC EQU

RECL EQU
•
•
•

REWD REW
•
•
•

FCB FCB

BUFF BSS

1 0 (LUN ass igned to RMD
part1t ion)

120

FCB,DISC

RECL,BUFF,,, ' SYI
(sect ion 3.5.11)
120

I s T I • EM • , ,

INPUT /OUTPUT CONTROL

3.5.6 WEOF (Write End of File) Macro

This macro writes an end of
unit. It has the general form

file on the specified logical

where

label WEOF cb,lun, wait

cb

lun

wait

is the address of the control block

is the number of the affected logical unit

is 1 for an immediate return, or 0
(default value) for a return suspended
until the 1/0 is complete

Example: Write an end of file on logical unit 10. Use the
wait option. here specified by default.

TAPE EQU 10
•

•

•

EOF WEOF CB,TAPE
•

•

•

3.5.7 SREC (Skip Record) Macro

This macro. which applies only to magnetic -tape, card
reader, or rotating-memory devices, sk ips one record in
either direction on the specified logical unit. It has the
general form

label

where

cb

lun

wait

mode

SREC cb,lun. wait,mode

is the address of the control block

is the number of the logical unit being
manipulated

is 1 for an immediate return , or 0
(default value) for a return suspended
until the l / 0 is complete

specifies the direction of the sk ip : 0
(default value) for a forward skip, or 1 for
a reverse skip. Reverse skip does not
apply to the card reader .

If applied to an RMD, SREC adds or subtracts from the
value of word 3 of the FCB (section 3.5.11).

If an attempt is made to apply this macro to a device other
than a magnetic-tape or rotat ing-memory unit, the l / 0
request is processed internally by the IOC but not by an
110 driver. The IOC indicates the status as 110 complete.

3-13

!

T

... UT /OUTPUT CONTROl

Example: Skip back one record on logical unit 57, a
maanetic·tape unit. Use the immediate·retum option.

MT

RBV
IK

SltiP

BQU

BQU
BQU
•
•
SRBC
•
•

57 (LUN assianed to maanetic·
tape unit)

1 (Reve•se)
1 (Immediate return)

CB,KT,IK,RBV

3.5.8 FUNC (Function) Macro

This macro performs a miscellaneous function on a
specified logical unit. The function (when present) cannot
be defined by any of the preceding l/0 control functions.
The macro has the aeneral form

FUNC clcb.lun, wait

where

deb is the address of the data control block

wait

is the number of the logical unit being
manipulated

•

is 1 for an immediate return, or 0
(default value) for a return suspended
until the I /0 is complete

FUNC causes certain 110 drivers to perform special
functions specified by the function code fun in a OCB
macro (section 3.5.10):

l/0 Drlv•r

Card punch

Paper· tape punch

Line printer and
Teletype printer

Function
Code

0

0

0

1
2

3

Function

Eject blank card

· Punch 256 blank frames

1
· for leader

Advance paper to top of
next fouu. or on TeJ•
type 3 lines •

Advance paper one line
Advance paper two lines

Initialize Venical Forms
Unit (VFU). Load form
definition into Controller
Programmable VFU
memory.

!

T Statos 7

Slew channel control on
programmable VFU. Slew
printer on specified
channel.

Advance paper to bottom
of form

8
-g

Nonnal print size•
Larce print size•
- ·-

• Only if supported by Statos hardware character
•

1/0 Drtwer

Statos

•
70-755x

Fwlctlon
Code

()()

01
02
07

08 '

10
11
12
13
14
15
16
17
20
21
0
1

Function

Advance paper to top
of form

Advance paper one line
Advance paper two lines
Advance paper to bottom

of form
Step plotter one raster

line
Select small/upright
Small/ + 90 degrees
Small/ 180 degrees
Small/ -90 degrees
Larcetupright
large/ + 90 degrees
large/ 180 degrees
large/ -90 degrees
Cut paper
End cut
Identify unit (see 3.6.4)
Status of unit

Pfot data may be transmitted to the Statos by specifying
unformatted mode, 3. in the WRITE macro. Each 1 bit will
cause a dot to be printed in its corresponding position in
the output line. The most significant bit in the first word
output represents the leftmost dot position. Functions 10.
21 are processed only if hardware capability is available.

Statos
. - -

The WRITE macro enables the transfer
of one data buffer to the printer 1
plotter and allows for five different
modes of. operation:

Mode 1 --

tl.ode 3 ··

Mode 4 ··

Compatible line printer
(70-6701) mode

Pfot (raster) mode (binary
raster dat~ transfer)

•

Print mode selectable size
and orientation

ModeS--
•

Simultaneous print/plot
nlOd• (ASCII data transfer)

•

3-14 Update B

•

~

T

Mode 6 ·· Simultaneous print/ plot
mode (binary raster data)

All other modes default to mode 1.
Modes 4, 5, and 6 are processed
only if hardware capability is available.

If an attempt is made to apply the FUNC macro to any
other device. the l/0 request is processed internally by the
IOC but not by an l / 0 driver. The IOC indicates the status
as l/0 complete.

Example: Skip two lines on the printer, which is logical
un it 5. Use the wait option. here specified by default.

LP EQU 5 (LUN assigned to line

CNT EQU 2 printer) (Paper-tape

channel 2)

•
•
•

UPSP FUNC DCB,LP

•
•

•

DCB DCB 0, 0, CNT

Example: Slew printer to definition mark on VFU channel 7.
The printer is logical unit 5.

LP EOU 5

SLEW DATA 7

•
•

•
FUNC SDCB.LP

•

•
•

SDCB DCB 1 .SLEW.4

3.5.9 STAT (Status) Macro

(Lun assigned to
line printer)
(Slew channel)

Th is macro examines bits 5-6 of the status word in an 1/ 0
macro to determine the result of an 1/ 0 function request .
The STAT macro has the general form

label STAT req,err ,aaa,bbb,busy

Update 8

INPUT/OUTPUT CONTROL

where

req is the address of the 110 macro (e.g.,
READ)

err

aaa

bbb

busy

is the address of the I t O-error routine

is the address of the end of file .
beginning of device. or beginn ing of
tape routine

is the address of the end of device or
end of tape routine

is the address of the I t O-not-complete
routine

All parameters (except the label) are mandatory. The
contents of the overflow indicator and the A and 8 registers
are saved. Upon normal completion, control returns to the
user at the first word after the end of the macro expansion .

CAUTION

Foreground tasks should not loop to check for
completion of l / 0 tasks because this inhibits all
lower-level tasks.

Example: Rewind logical unit 12. a magnetic-tape unit .
and check for beginning of device (load point). Use the
immediate·return option.

MT I!!QU

IM I!!QU
•
•

REW RI!!W

•
•
•

BUSY STAT
•
•
•

BOT
•

•

•
I!!RR

12

1

(LUN assigned to magnetic
tape unit)
(Immediate return)

0. MT, IM (DCB can be omitted
for REW)

REW,ERR,BOT,EQT,BUSY

3-1 5

• 'M" ~-·- 0 oOOO 00 0 ,,.__ 0- ------ ___ _ _.. _ _ ..,_, , " 0< 0 ·- - .. _ 0 .00o ~· ·-- ' ' 00 ··- 00 · -• •• ·-· • -· - - --·-- " _ .. , ••• ••• - _ ,. 0'¥ •• ___ _____ ,

INPUT /OUTPUT CONTROL

3o5o10 DCB (Data Control Block) Macro
.

This macro generates a OCB as required by 1/0 macro
requests to devices other than RMDs. Note that not all
such requests (e.g., rewinding a magnetic·tape unit)
require a OCB. The macro has the general form

label

where

rl

buff

fun

OCB rl,buff, fun

is the length, in words, of the record to
be transmitted

is the address of the user's data area

is the function code for a FUNC request
and is unused for other requests (section
3.5.8)

Example: Read a record from logical unit 4, a magnetic·
tape unit. Use system binary mode and the immediate·
return option. The record length is 60 words, and the
address of the user's data area is BUFF.

IM
BIN
MT

RECL

MTRD

TAPE

EQU
EQU
EQU

EQU
0

•
•
READ
•
•
•
DCB

1
0
4

60

(Immediate return)
(System binary mode)
(LUN assigned to magnetic·
tape unit)
(Record length 60 words)

TAPE,MT,IM,BIN

RECL, BUFF (Data controf block)

3.5.11 FCB (File Control Block) Macro

This macro generates an FCB required by any 110 macro
request to an RMD. The macro has the general form

label

where

rl

buff

ace

3 -16

FCB rl, buff, acc,l<ey, • xx ·, •yy•. 'zz'

is the length, in words, of the record to
be transmitted

is the address of the user's data block

specifies the access method and is 0
(default value) for the direct access by
logical record. 1 for sequential access by
logical record. 2 for direct access using
the relative sector number (beginning

Update 8

key

xxyyzz

with 1) within the file. 3 for sequential
access using the relative sector number
within the file. 4 for direct access by
physical sector. 5 for sequential access
by physical sector. and 9 for sequential
access with file extension.

is the protection code, if any, required to
address that logical unit. This is a single
alphanumeric ASCII character coded
between single quotation marks (e.g .•
the protection code H would be coded
' H') or as the eight-bit octal equivalent,
in which case no quotation marks are
used {e.g., 0310 for the protection code
H). The default value is binary zero (not
the character 0).

is the name of the file being referenced.
The file name is one to six ASCII
characters, coded in pairs between
single quotation marks and separated
by commas, e.g. , the file named ARRIBA
is coded ' AR' , ' Rl' • ' BA' . Embedded
blanks are illegal.

Table 3-3 shows the use of FCB words 3, 4, 5, and 6 for the
l/0 macros .

Example: Create an FCB for the file FILEXX. Use the
logical-record-oriented, sequential-access method with a
record length of 120 words. The user's data area is BUFF
and the protection code is Z.

SEQR EQU

RECL EQU
•
•
0

DISC FCB
•
•
•

BUFF BSS

1

120

(Sequentiat. record
oriented access)
(Record length 120
words)

RECL,BUFF,SEQR, 'Z',
I FI • , • LE. , • XX •

120

Note that the protection code character Z is coded between
single quotation marks, i.e .. ·z·. but it can also be coded as

the octal value of the ASCII character, in which case no
quotation marks are used, i.e., 0332. Thus, the statement
given in the example above is equivalent to

DISC FCB RECL,BUFF,SEQR,
0322, 'FI', 'LE', 'XX'

- ·- 4 -- - --·· --· - -

INPUT / OUTPUT CONTROL

Table 3-3. FCB Words Under 110 Macro Control

Word OPEN READ WRITE SREC CLOSE REW

Sequential-Access Method

3 Set to lncre- lncre- Adds or Put into Current
posit ion ments ments subtracts posit ion record set
of cur· record record one of fi le (directory
rent rec- number number on d irec· partition)
ord by by one by one tory by to one or
mode mode beginning
chosen chosen address of

logical
unit (non-
directory
partit ion)

4 Set to Checks No Checks Cleared Set to
current end of action end of ending
position file file address
of file of logi·
as noted cal unit
on direc-
tory

5 Set to No No No Cleared Set to Skip f irst
beginning action action action beginning directory
of file address sector
address of logi- (d irectory
put in cal unit partit ion)
this word (non-

directory
partition)

6 Set to No No No Cleared Set to
end of action action action ending
fi le ad· address
dress of logi-

cal unit

•

Update B 3-16a

-- • -·-· ·- --- ·-· - - - - ·-· - - ... - • - -----·- - ·· --· 6 - ----- - - ·· ·--- - .. - - -- - - - --- ·· - - · - -

INPUT /OUTPUT CONTROL

Table 3-3. FCB Words Under l/0 Macro Control (continued)

Word OPEN READ WRITE SREC CLOSE REW

Direct-Access Method

3 Set to No No
position action action
of cur-
rent rec-
ord by
mode
chosen

4 Set to No No
current action action
position
of file
as noted
on direc-
tory

5 Set to No No
beginning action action
of file
address

6 Set to No No
end of action action
file ad·
dress

3.6 DISK DEVICE 1/0 OVERVIEW

This section applies only to the 70-755x. 70-7560. 70-7561
and 70-7562 disk devices.

No Put into Current
action position record set

of file (directory
on direc- partition}
tory by to one or
mode beginning
chosen address of

logical
unit (non-
directory
partition)

No Cleared Set to
action ending

address
of logi-
cal unit

•

No Cleared Set to Skip first
action beginning directory

address sector
of logi- (directory
cal unit partition)
(non-
directory
partition)

No Cleared Set to
action ending

address
of logi·
cal unit

3. 6. 1 Alternate Sector Partition

Each disk spindle contains an alternate sector part ition for
that spindle. The f irst 2n sectors (where n = number of

Update B
.

3-17

----------~-----· -·..,--~~------·----.. ·- _,_ -..
. . ---·-- ---------------------- _____ .. ___ _

--·

INPUT OUTPUT CONTROL

partitions per spindle) contain the alternate sector directory
for that spindle. The remainder of the alternate sector
partition is used for subsequent sector assignments and
additional directories if needed. The alternate sector
partit ion is the first partition on the spindle and can either be
specified at, or defaulted at system generation. The default
size is 1 percent of the spindle capac ity. The partition is an
unkeyed partition with a partition designator of* (asterisk).

Bad sectors are located and identified during the disk pack
formatting operation. The formatter creates a table of bad
sectors for the entire disk pack. During system generation.
partitions and their associated PST entries are created,
alternates to bad sectors are ass igned, and the alternate
sector table is built . Alternates to bad sectors are always
allocated from the alternate sector partition.

3 . 6 . 2 Alternate Sector Processing

When a bad sector is detected during a data transfer
operation, the alternate sector table for spindle being
accessed is read into memory and the table is searched for
an entry containing the address of the sector flagged bad. If
the entry is not found, the 1/ 0 request is terminated with the
appropriate error status. Refer to Appendix A for a list of
error conditions. When a match is obtained. the following
actions are taken by the driver:

1. A channel control block (CCB) specifying command
buffer out is created.

2 . A command buffer containing the position to transfer
data command and an alternate sector address is
created.

3 . A channel control block specifying data buffer in / out is
created for the data buffer corresponding to the
alternate sector.

4. The command buffer out CCB is command chained to
the data buffer in/out CCB, then an initiate channel
function is performed.

5. Upon receipt of the operation complete interrupt, the
read/ write heads are repositioned to the sector
following the bad sector and the data transfer
operation is continued to normal completion.

3 . 6 . 3 Dat a Record Block ing And
Deblocking

The operating system utilizes records of 120 words and
multiples of 120 words for 1/0 operations on disks. The use
of 120-word physical sectors for the disks yields a utilization
efficiency of approximately 73%. Increasing the physical
sector size improves the disk utilization efficiency by

3-18

. - - ·---- - --------- ·- -

increasing the data storage area with respect to fixed areas
of sectors. The disk controller provides the capability to
select one of several different hardware sector sizes
through the use of plug-in PROMs. When sector sizes larger
than 120 words are selected, the disk driver will perform
automatic blocking and deblocking of user data records on
all 1/ 0 requests, unless this feature is overr idden.

On write requests which specify one of the access modes 0
through 3, the disk driver will pack as many whole and
partial data records as a hardware sector can contain using
the following procedures.

1. User data records which reside on the same hardware
sector as the record to be written, are read into
memory .

2 . The new data record is data-chained to the other
records which were read in during step a.

3. All of the data records are written onto the sector .

A write request requiring a blocking operation w ill take a
minimum of 1. a maximum of 2 and an average of 1.5
revolutions to complete.

On read requests which specify one of the access modes 0
through 3, the disk driver w ill perform automatic deblocking
of user data records. On deblocking operations, the driver
util izes the "transfer-in" channel capability of the disk
controller to eliminate data on the same sector preceding
the desired record . Consequently, an additional revolution
of the disk is not required to perform a deblocking operation.

On read and write requests which specify access modes 4
and 5, user data records are read or written start ing on
hardware sector boundaries. Blocking and deb~ocking have
no significance when these access modes are selected.

3.6.4 Identification Buffer Description

A three-word record containing unit informatin is placed in
a user-supplied buffer in response to an identify function
(mode = 0). The format of the three word buffer is:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 0 CN ua

Word 1 type class

Word 2 size

.. ·- ·- ·-·-- --- - - - - - - -- .

•

SECTION 4

JOB-CONTROL PROCESSOR

The job-control processor (JCP) is a background task that
permits the scheduling of VORTEX system or user tasks for
background execution. The JCP also positions devices to
requ i red files, and makes logica l-unit and I/ O-device
assignments.

4.1 ORGANIZATION

The JCP is scheduled for execution whenever an unsolicited
operator key-in request to the OC logical unit has a slash
(/) as the first character.

Once initiated, the JCP processes all further JCP direct ives
from the Sl logical unit.

If the Sl logical unit is a Teletype or a CRT device, the
message JC ** is output to indicate the Sl unit is waiting
for JCP input. The operator is prompted every 15 seconds
(by a bell for the Teletype or tone for the CRT) until an
input is keyed in.

If the Sl logical unit is a rotating-memory-device (RMD)
partition, the job stream is assumed to comprise unblocked
data. In this case, processing the job stream requires an
I ASSIGN directive (section 4.2.6).

A JCP directive has a maximum of 80 characters,
beginning with a slash. Directives input on tile Teletype are
terminated by the carriage return .

All JCP directives are echoed to the SO logical unit if Sl ;e
SO. All directives, except IC and / P have the time of day
append onto the front of the direct ive when echoed to SO.
The format is

HH:MM:S$ I JCP directive

4.2 JOB-CONTROL PROCESSOR DIRECTIVES

This section describes the JCP direct ives:

a. Job-initiation / termination directives:

/ JOB
/ ENDJOB
! FIN I
!C
/ P
/ MEM

Start new job
Terminate job in progress
Terminate JCP operation
Comment
Pause
Allocate extra memory for
background task

b. I / 0-device assignment and control directives:

/ AFILE
/ ASSIGN
/ SFILE

Assign RMD file and open f i le.

Make logical-un it assignment(s)
Skip file(s) on magnetic-tape unit

/ SREC

! WEOF
/ REW

/ PFILE
/FORM
/ KPMODE
/ OPEN
/ CLOSE
/CFILE

Skip record(s) on magnetic-tape unit
or RMD partition
Write end-of-file mark
Rewind magnetic-tape unit or RMD
partition
Position rotating memory-unit file
Set line count on LO logical unit
Set keypunch mode
Open VTAM line or terminal
Close VTAM line or terminal
Close file on global logical unit

c. Language-Processor d irectives :

/ DASMR
/ FORT

/ RPG
/ DBGEN
/ COBOL

Schedule DAS MR assembler
Schedule FORTRAN compiler
Schedule RPG I I compiler
Schedule TOTAL system
Schedule COBOL compi ler

d. Util i ty directives:

/ CONC
/ SEDIT
/ FMAIN
/ LMGEN
/ IOUTIL
1 SMAIN
/ COMSY
/ FMUTIL

Schedule system -concordance program
Schedule symbolic source-editor task
Schedule file -maintenance task
Schedule load-module generator
Schedule I/O-utility processor
Schedule system-maintenance task
Schedule compression / edit system
Schedule f ile utility task

e. Program-loading directives:
/ EXEC Schedu le loading and execution of a

load-module from the SW unit f ile
/ LOAD

I ALTLIB

/ PLOAD

/ DUMP

/ TRACE

Schedule loading and execution of a
user background task
Schedule the next background task from
the specified logical unit rather than
from the background librar·;

Schedule loading and execution of a
user background task at priority level 1

Dump background at completion of task
execu tion
Invoke trace mode (V77 -800 only)

JCP directives begin in column 1 and comprise sequences
of character strings having no embedded blanks. The
character strings are separated by commas (.) or by equal
signs (=). The directives are free-form and blanks are
permitted between the individual character strings of the
d irective, i.e., before or after commas (or equal signs).
Although not requ ired, a period (.) is a line terminator.
Comments can be inserted after a period.

Each JCP directive begins with a slash {!).

The general form of a job-control statement is

/ name,p(l) ,p(2), ... ,p(n)

4 -1

·-- --· -----~--+-·---- - - ··-· . ---·----- . ---··--- - -· -· -···~ · - ...

••

JOB-CONTROL PROCESSOR

where

name

each p(n)

is one of the directive names given (any
other character string produces an
error)

ts a parameter required by the JCP or by
the scheduled task and defined below
under the descriptions of the individual
directives

Numerical data can be octal or decimal. Each octal number
has a leading zero.

For greater clarity in the descriptions of some directives,
optional periods, optional blank separators between
character strings, and the optional replacement of commas
by equal signs are omitted from descriptions.

Error messages applicable to JCP d irectives are given
Appendix A.4.

4.2.1 I JOB Directive•

This directive initializes all background system pointers
and flags, and stores the job name if one is specified. It
has the general form

/ JOB,name

where name is the name of the job and comprises up to
eight ASCII characters (additional characters are permitted
but ignored by the JCP).

The job name, if any, is then printed at the top of each
page for all VORTEX background programs.

The occurrence of the 1 JOB d irective causes the scheduling
of the background task V$ACT1. V$ACT1 is a dummy task
on BL which only performs an EXIT. However, V$ACT1 may
be replaced by a user task to perform any desired
accounting function.

Example: Initialize the job TASKONE.

/ JOB,TASKONE

4.2.2 /ENDJOB Directive•

This directive initializes all background system pointers
and flags, and clears the job name. It has the form

IENDJOB

4-2

i

Update B

The occurrence of the ! ENDJOB directiYe causes the
scheduling of the background task V$ACT2. V$ACT2 is a
dummy task on BL which only performs an EXIT. However,
V$ACT2 may be replaced by a user task to perform any
desired accounting function.

Example: Terminate the job in process.

IENDJOB

4.2.3 /FINI (finish) Directive•

This directive terminates all JCP background operations
and makes an EXIT request to the real-time execut1ve RTE
component (section 2.1.11). It has the form

! FINI

To reschedule JCP after a FINI, input any JCP directive
from the OC unit

The occurrence of the /FIN I directive causes the scheduling
of the background task V$ACT3. V$A~T3 is a dummy task
on Bl which only performs an EXIT. However, V$ACT3 may
be replaced by a user task to perform any desired
accounting function.

Example: Terminate JCP operations.

/ FINI

• The JCP directives JOB. ENOJOB. and FINI reset all logical
unit table 1 units to their default (system) values. These
directives also reinitialize the global FCBs (SI . Pl. PO, 81, 80,
SS. GO) to default record sizes based on assignment: to 40
words for non-RMO units. or to 120 words for RMO units. JOB
and ENOJOB do not set the Sllogical unit. Logica l unit 1 (0Cl is
not reset by the occurrence of I JOB. / ENOJOB. or / FINI.

4.2.4 IC (Comment) Directive

This directive outputs the specified comment to the SO and
LO logical units, thus permitting annotation of the listing. It
is not otherwise processed. It has the general form

I C,comment

where comment is any desired free-form comment.

Example: Annotate a listing with the comment Rewind all
mag tapes.

/C,REWIND ALL MAG TAPES

4.2.5 / MEM (Memory) Directive

This directive assigns additional 512-word blocks of main
memory to the next scheduled background task. It has the
general form

/ MEM,n

where n is the number of 512-word blocks of main memory
to be assigned.

1 MEM permits larger symbol tables for FORTRAN compila·
tions and DAS MR assemblies.

The total area of the 512-word blocks of memory plus the
background program itself cannot be greater than the total
area available for background and nonresident foreground
tasks. An attempt to exceed this limit causes the scheduled
task to be aborted.

Example: Allocate an additional 1,024 words of ma.n
memory to the next scheduled task.

I MEM,2

4.2.6 I ASSIGN Directive

Th1s d~rective equates and assigns particular logical units
to specific 110 devices. It has the general form

I ASSIGN,I(l) = r(l),/(2) • r(2) , ... ,/(n)- r(n)

where

each l(n)

each r(n)

is a logical -unit number (e.g.,
or name (e.g. , Sl)

102)

is a logical-unit number or name, or
a physical-device system name (e.g.,
TYOO, table 17·1)

The logical unit to the left of the equal sign in each pair is
assigned to the unit / device to the right.

If the controller and unit numbers are omitted from the name of l
a physical device. controller 0 and unit 0 are assumed. When
r(n) is alphabet ic and consists of two characters. it is first
interpreted as a logical name and then as an abbreviated
phys1ca1 name. If a matching logical name exists. the
ass1gnment w ill be made using that unit.

An inoperable device, i.e., one declared down by the

;DEVON operator key-.n request (section 17.2.10), cannot
be assigned. A logical unit designated as unassignable
cannot be reassigned.

Example: Assign the PI logical unit to card reader CROO
and the LO logical unit to Teletype TYOO.

I ASSIGN,PI•CR,LO•TY

T

Update 8

JOB·CONTROL PROCESSOR

4.2.7 / SFILE (Skip File) Directive

This directive, which applies only to magnetic·tape units
and card readers, causes the specified logical unit to move
the tape forward the designated number of end-of-file
marks. It has the general form

where

lun

/ SFILE,Iun,neof

is the number or name of the
affected logical unit

neof is the number of end-of.file
marks to be skipped

If the end·of·tape mark is encountered before the requ ired
number of f iles has been skipped, the JCP outputs to the
SO and LO logical units the error message JCbS,nn. where
nn is the number of files remaining to be skipped.

Example: Skip three files on the 81 logical unit.

/ SFILE,BI,3

4.2.8 /SREC (Skip ·Record) Directive

This directive, which applies only to magnetic -tape un1ts.
card readers, and RMDs, causes the spec1fied logical unit
to move the tape the designated number of records in the
requ ired direction. In the case of RMDs, word 4 of the FCB
is adjusted the appropriate number of records. It has the
general form

where

lun

nrec

direc

/ SREC,Iun,nrec, direc

is the number or name of the
affected logical unit

is the number of records to be
skipped

indicates the direction to be
skipped; F (default value) for
forward , or R for reverse.
Reverse skip does not apply to
the card reader.

If a f ile mark (forward skip only). end of tape, or beginning of
tape is enountered before the required number of records
has been skipped. the JCP outputs to the SO and LO log ical
units the error message JC05,nn. where nn is the number
of records remaining to be skipped.

Note: File marks are not detected on a reverse skip.

4·3

·-~·· ~- __ ,_ .. _ -- -__ .,, .. .,_,,__,_,, ---------- .. -..... - ········-- ·-.... ·--·-···-· .. ·- ·---· .. ···- -·· ··---- -·- ·-· ·· --~ -·- -- - -·--· -··.

JOB-CONTROL PROCESSOR

Example: Skip nme records forward on the 80 logical
unit.

/SREC,B0,9

4.2.9 / WEOF (Write End of File)
Directive

This directive writes an end-of-file mark on the specified
logica l unit. It has the general form

/ WEOF,Iun

where lun is the number or name of the affected logical
unit. (Not accepted for RMD.)

Example: Write an end-of-f ile mark on the 80 logical unit.

'
/ WEOF,BO

4.2.10 / REW (Rewind) Directive

This directive, which applies only to magnetic-tape units
and RMDs, causes the specified logical unit(s) to rewind to
the beginning of tape. It has the general form

/ REW,Iun,/un, ... ,/un

where lun is the number or name of a logical unit to be
rewound.

Example: Rewind the 80 and PI logical units.

I REW,BO,PI

4.2.11 /PFILE (Position File) Directive

This directive, which applies only t o RMDs and MT
assigned to global logical units causes the specified logical
unit to move to the beginning of the designated file. It has
the general form

where

lun

4-4

/ PFILE,Iun,key,name

is the number or name of the
affected logica l unit. The
logical unit must be one of
the system defined logical
units which has a global FCB

key

name

is the protection code required
to address lun

is the name of the file to which
the logical unit is to be
positioned

Global file control blocks: There are eight global file
control blocks (FC8, section 3.5.11) in the VORTEX system
that are reserved for background use. System background
and user programs can reference these global FC8s. The
/ PFILE directive stores key and name in the corresponding
FCB before opening/ rewinding the logical unit. To pass the
buffer address and size of the record to the corresponding
logical-unit FC8, make an RTE IOLINK service request
(section 2.1.13). The names of the global FCBs are SIFCB,
PIFCB, POFCB, SSFCB, BIFCB, BOFCB, GOFCB, and
LOFCB, where the first two letters of the name indicate the
logical unit.

Example: Posit ion the PI logical unit to beginning of f ile
FILEXY, whose protection key is $.

/PFILE,PI,$,FILEXY

4.2.12 /FORM Directive

This directive sets the specified line count on the LO logical
unit. This is the number of lines printed by DAS MR
assembler or FORTRAN compiler before a top of form 1s
issued. The directive has the general form

/ FORM, lines

where lines is the number (from 5 to 9999, inclusive) of
lines to be printed before a top of form is issued.

The default value of lines is defined at system-generation
time. If the directive contains a value outside the legal
range, the default value is used.

Example: Set a line-count value of 100.

/FORK, 100

4.2.13 /KPMODE (Keypunch mode)
Directive

This directive specifies the mode, 026 or 029, (BCD or
EBCDIC respectively) in which VORTEX is to read and
punch cards. It has the general form

-- ---:: ·--- -· -------- -

KPMODE,m

where m is 0 for 026 mode, or 1 for 029 mode.

Example: Specify that cards be read and punched in 029
keypunch mode.

I KPMODE,1

4.2.14 / OASMR (DAS MR Assembler)
Directive

•

This d irect ive schedules the DAS MR assembler (section
5.1) with the specified options for background operat ion on
priority level 1. It has the general form

/ DASMR,p(1),p(2), ... ,p(n)

where each p(n), if any, is a single character specifying one
of the following options:

Parameter Presence

B Suppresses binary
object

L Outputs binary
object on GO file

M

N

E

Suppresses symbol ·
table listing

Suppresses source
list ing

Assembles V75
extended instru
ct ions.

Flags implicit
indirect instru·
uctions with
'*I I error'.

Absence

Output binary object

Suppresses output of
binary object on GO
file

Output symbol -table
I isting

Outputs source
listing

Flags V75 extended
instructions with
'*OP error'.

Assembles implicit
indirect instructions.

The / DASMR d irective can con ta in up to four such
parameters in any order.

The DAS MR assembler reads source records from the PI
logical unit on the f irst pass. The PI unit must have been
set to the beginning of device before the / DASMR directive.
This can be done with an I ASSIGN (section 4.2.6), / SFILE

JOB-CONTROL PROCESSOR

(sect ion 4.2.7), / REW (section 4.2.10), or / PFILE (section
4.2.11) directive.

A load-and-go operation requ ires, in addition, an / EXEC
directive (section 4.2.22).

Example: Schedule the DAS MR assembler with no source
listing, but with b inary-object output on the GO f ile.

/JOB,EXAMPLE
/ PFILE,BO,,BO
IDASMR , N,L

1 JOB initializes the GO f ile to start of fi le. If 80 is assigned
to a rotating memory parti t ion , a / PFILE,BO, BO must pre
cede the 1 DASMR directive to initial ize the file (unless the
assembly is part of a stacked job - see section 4.3 for sample
deck setup).

4.2.15 / FORT (FORTRAN Compiler)
Directive

Th is di rective schedules the FORTRAN compiler (section
5.3) with the specified options for background operation on
prior ity level 1. It has the general form

/ FORT,p(1),p(2), ... ,p(n)

where each p(n), if any, is a single character specifying one
of the following opt ions:

Parameter

A

8

D

H

L

M

Presence

Produce DASMR
listing

Suppresses binary
object

Assigns two words
to integer array
items and to inte·
ger and logical
variables (ANSI
standard)

Generate code
using Floating·
Point Processor
(FPP)

Outputs binary
object on GO fil e

Suppresses symbol·
table list ing

Absence

Suppress DASMR
I isti ng

Output binary object

Assigns one word to
integer array items
and to integer and
logical variables

Generate no FPP
instructions

Suppresses output of
binary object on GO
f ile

Outpu ts symbol-table
listing

4-5

·--·-·· ·------·---------.. ·-... ·-- --- - ----.. ·- --- - - .. -..----.. -- ------ - - -----·--··- ----- -· - -........... __

JOB-CONTROL PROCESSOR

N

0

X

F

Suppresses source
listing

Outputs object·
module listing

Compiles condi ·
tionally

Generates code
with ca lls to
faster firmware
routines (see
section 20.2)

Outputs source
listing

Suppresses object·
module listing

Compiles normally

Generates subroutine
calls

The /FORT directive can contain any or all such parame·
ters in any order.

Sample deck formats are illustrated in section 4.3.

The FORTRAN compiler reads source records from the PI
logical unit. The PI unit must have been set to the
beginning of device before the / FORT directive. This can be
done with an I ASSIGN (section 4.2.6), /SFILE (section
4.2. 7), /REW (section 4.2.1 0), or /PFILE (section 4.2.11)
directive.

A load-and-go operation requires, m addition, an / EXEC
directive (section 4.2.22).

Example: Schedule the FORTRAN compiler with binary
object, source, symbol-table, and object -module
listings; normal compilation; and no binary-object output
on the GO file.

/FORT,O

4.2.16 /CONC (System Concordance)
Directive

This directive schedules the system concordance program
(section 5.2) for background operation. It has the form

! CONC, L

where L is an optional parameter to request that all
symbols in a source program be listed. Normally, CONC
only lists those symbols which were referenced.

The concordance program inputs from the SS logical unit
and uses the same source statements that are input to the

4·6

DAS MR assembler. It outputs to the LO logical unit a
listing ot all symbols and their referenced locations in the
same input program.

The SS unit is set to the beginning of device before the
ICONC directive.

Example: Schedule the system concordance program.

/ASSIGN,PI•MTOO
IRBW,PI
/ DASMR
/PP'ILB,SS,,SS
/CONC,L

4.2.17 / SEDIT (Source Editor)
Directive

This directive schedules the symbolic source editor (section
8) for background operation on priority level 1. It has the
form

/ SEDIT

Example: Schedule the symbolic source editor.

/SEDIT

4.2.18 /FMAIN (File Maintenance)
Directive

This directive schedules the file maintenance task (sect ion
9) for background operation on priority level 1. It has the
form

/ FMAIN

Example: Schedule the file maintenance task.

I FMAIN

4.2.19 /LMGEN (Load-Module Generator)
Directive

This directive schedules the load-module generator (section
6) for background operation on priority level 1. A memory
map is output unless suppressed. The directive has the
general form

- --

where

/LMGEN, M,X

M if present, suppresses the output of a
memory map.

X if present, specifies to print both an
a lphabetical and numerical sorted
map.

Example: Schedule the load-module generator task with
out a memory map.

ILMGEN , M

4.2.20 / IOUTIL (1/ 0 Utility) Directive

Th is directive schedu les the l / 0 uti l ity processor (section

1 0) for background operat ion on priority level 0. The
d irective has the form

/ IOUTIL

Example: Schedule the I / 0 utility processor.

IIOUTI L

4.2.21 / SMAIN (System Maintenance)
Directive

This directive schedules the system maintenance task
(section 16) for background operat ion on priority level 1.
The directive has the form

/SMAIN

Example: Schedule the system maintenance task.

/SMAIN

4.2.22 / EXEC (Execute) Directive

This d irective schedules the load-module loader to load and
execute a load module from the SW logical unit file. Since
this is not a VORTEX system task, execution is on priority
level 0. The directive has the general form

/EXEC,D

Where D, if present, dumps all of the background upon
completion of execution. The dump format consists of eight
memory locations per line. Both octal and ASCII represen
tation appear in the dump. During ASCII dump non-ASCII
characters appear as blanks. ASCII dump is suppressed if

dump is to a TY or CT device.

The dump format consists of eight memory locations per

I ine as follows:

JOB-CONTROL PROCESSOR

XXXXXX AAAAAA BBBBBB ... HHHHHH

where XXXXXX is the starting memory address location of
the eight following data words and AAAAAA through
HHHHHH are the octal values of those locations. The
occurrence of an asterisk between two lines indicates that
all dump lines between those lines have the same va lue as
the previous I in e.

/ EXEC can be used to create a load module (named SW)
on the SW logical unit and then schedule it , or to execute
an existing load module on the SW logical unit. The action
taken depends on the setting of b it 2 of the low core flag
V$JCPF. If the bit is set, LMGEN is scheduled to read
binary from the GO logical unit and cata log the task on SW.

If the bit is not set, the current load module on SW is
executed. Th is bit is set by performing a " load-and-go"

assembly or compulation using t he "L" option f lag. This b it
is cleared by the loading of any background program.

(Note: JCP directives wh ich do not load tasks, for
example, / ASSIGN, / PFILE, do not clear this bit.). The load

module on SW may be executed at anyt ime unt il SW is
modified (i.e., another load-and-go, LMGEN, COMSY, or any

other task that writes to SW).

Example: Schedule the loading of a user load module
from the SW unit f i le without a background dump.

I EXEC

Schedule a FORTRAN load-and-go operation.

IFORT,L
/EXEC

When a dump has been specified the dump wi ll be output
to the List Output unit after the task ex its or is aborted.
Once the dump has started, it may be terminated by use of
the Operator Communication ;ABORT. When the dump is

aborted in th is manner, it is required that the executing
task be aborted by a previous action.

Example:

/EXEC,D

;ABORT ,SW

;ABORT ,JPDUMP

;ABORT,SW

Executes a load module
from SW unit f i le re
questing background
dump on exit

Causes the task to abort
and dump the backgroun<

Causes the background
dump to be aborted

Causes the task to be
released and JCP to be
reloaded

4-7

-- ------ ---- ·-- -----· -------·--··· - --- ---·
'
---- - -------- -- - - ·-·- ____ ,._ .. ___________ ,.._._ - · ·- -- ----

----~-·--------····· -~-~~------·· ... ~·~--..... ,..

JOB-CONTROL PROCESSOR

Note: When executing load and go, /EXEC has additional
optional parameters. These parameters are used to replace
(Rl , ... ,R4) or insert (11 ,12,13) "canned" LMGEN directives.
Standard LMGEN canned load and go directives are (see
section 6 for further explanation):

TIDB,SW,1,0
LD,GO, ,GO
LIB
END

As LMGEN processes the canned d irectives (if insert or
replace have been specified), LMGEN will process further
directives from device Sl until an end-of-file is input. The
end-of-file will resume LMGEN processing of the remainder
of the canned directives.

Insert and replace parameters must be entered 1n the
following order:

R1,I1,R2,I2,R3,I3,R4

Note: Any number of parameters may be used.

Example: Request load and go execution, replacing the
canned LMGEN LIB d irective.

IEXEC,R3

The device PI specifies a library search from user library
logical unit 115 with protection code M. Directives will be
processed as follows:

Canned PI

1. TIDB,SW,1,0

2. LD, GO, ,GO

3. LIB, 115,m

4 . End of File

5. END

4.2.23 I LOAD Directive

This directive schedules a user task, which must be present
in the background library or alternate library, for back·
ground execution on priority level 0. The directive has the
general form

where

4-8

/LOAD,name,p(l),p(2), ... ,p(3)

name

each p(n)
(if any)

is the name of the user task being
scheduled

is a parameter required by the user
task

Each parameter specified, if any, will be in the job-control
buffer when the user task is scheduled. The parameter
string, which can extend to the end of the 80-character
buffer, will appear in the buffer exactly as it does in the
input directive. The address of the f irst word of the
parameter string is in location V$JCB.

Example: Schedule the user task TSKONE with parame
ters ALPHAl and ALPHA2.

/LOAD,TSKONE,ALPHA1,ALPHA2

4.2.24 I Al TLIB (Alternate
library) Directive

This directive replaces the background library with the
specified alternate library unit as the unit from which a
background task is to be loaded. The directive has the
general form:

where

lun

key

I Al TLIB,Iun,key

is the number or name of the
alternate library logical unit

is the protection code required
to address lun

This directive affects the loading of the next task which
would normally be loaded from the background library. It

affects the loading of VORTEX language processors and
utility tasks· in addition to user tasks loaded with the 1 LOAD
directive.

It has no effect on a /EXEC directive. After execution of the
background task, the background library is restored as the
logical unit from wh ich background tasks are to be loaded.

Example: Schedule the user task TSKONE from logical unit
25, protection key N.

/ALTLIB,25,N
/LOAD,TSKONE

4.2.25 /DUMP Directive

This directive causes all of background to be dumped upon
completion of execution of a task executed from the
background library or an alternate library. The dump
format is the same as the format for ! EXEC,D (see sect ion
4.2.22).

. - ·- · _,. -

Example: Schedule the execution of user task TSKON E with
a dump at completion of execution.

/DUMP
/LOAD,TSKONE

4.2.26 /CFILE Directive

This directive, which appl ies only to RMDs and MTs
assigned to global logical units. causes the file currently
attached to the global FCB file on a logical unit to be closed
with an update. It has the general form.

where

/CFILE,Iun

lun is the name or number of the affected
logical unit. The logical unit must be
one of the global logical units.

Example: Close the file currently attached to the PO global
FCB.

/CFILE,PO

4.2.27 /DBGEN (Data Base Generator) Directive

This directive schedules the Data Set Generator Program
(see TOTAL Manual for more detai led information) for
background operat ion on priority level 1. It has the form

/DBGEN

Example: Schedule the Data Base Generator for TOTAL.

IDBGEN

4.2.28 /PLOAD Directive

This directive schedules a user task, which must be present
in the background library or alternate library, for back
ground execution on priority level 1. The direct ive has the
general form

where

/PLOAD,xxxxxx,p(1) ,p(2), .. . p(n)

XXX XXX

p(n)

is the name of the user task being
scheduled. The name must not con
tain numeric characters.

is a parameter required by the user
task.

JOB-CONTROL PROCESSOR

Each parameter specified, if any, will be in the job-control
buffer when the user task is scheduled. The parameter
string, which can be extended to the end of the SO
character buffer, will appear in the buffer exactly as it does
in the input directive. The address of the first word of the
parameter string is in location V$JCB.

4.2.29 /FMUTIL Directive

This directive causes files, directories, and/or partitions to
be dumped or loaded from RMD's or magnetic tapes, and
schedules the file maintenance utility (section 21) for
background operation on priority level 1. The directive has
the form

/ FMUTIL

Examples: Schedule File Maintenance Utility.

IFMUTIL

4.2.30 /RPG (RPG II Compiler) Directive

Th is directive schedules the RPG II compiler (section 5.5)
wi th the specified options for background operations on
priority level 1. It has the general form

where

/ RPG,p(1),p(2), ... ,p(n)

p(n) is a single character specifying one
of the following options:

Parameter Presence Absence

8

D

L

Suppresses binary
object.

Output binary object.

Include RPG debug Suppress debug features.
features in object
module.

Outputs binary
object on GO file.

Suppresses output of
binary object on GO file.

4-9

' --~ M ~-· ·------ --...... _, _ _ , , __ , ~ .. --.... ___ , ~.-·--· ------~ .. -· - .. o OO!OO ,.._._, .. _ _ _ _ , , _,.. , , •• .__.. O Oo _ .. o ~----- .. _ ,.OO<o oo ... _ _ _ ,, ·~- ---·

JOB-CONTROL PROCESSOR

The t RPG directive can contain up to five such parameters
in any order.

.
Sample· deck formats are illustrated in section 4.3.

The RPG II compiler reads source records from the PI
logical unit. The PI unit must have been set to the
beginning of device before the t RPG directive. This can be
done with an I ASSIGN (section 4.2.6), t SFILE (section
4.2.7), t REW (section 4.2.10), or / PFILE (section 4.2.11)
directive.

Example: Schedule the RPG II compiler with binary object,
source, and symbol·table listings; normal compilation; and
no binary object output on the GO f ile.

I RPG

Example: Schedule RPG II for normal compilation but with
binary object output on the GO f ile instead of the 80 fi le.

IRPG,L,B

4.2.31 /P (Pause) Directive

This directive outputs the specified comment to the SO and
LO logical units and then causes JCP to be suspended. In
addition to the specified comment, instructions are output
to SO on how to resume JCP. It has the general form

/ P,comment

where

comment is any desired free-form
comment.

Example: Request that the current job requires MT # 800
on MTOO before it continues.

/ p, Mount MT 1800 on MTOO

in addition, JCP will output:

Pause---WHEN READY, TYPE --:RESUME, JCP

4.2.32 I A FILE Directive

This directive equates and assigns the specified global
logical un it to the specified RMD device and then opens
(with rewind) the specified file. It has the general form

/ AFIL£,1(1),1(2), key, filename

where

--- -
1(1)

1(2)

key

filename

is the global logical unit name or
number.

is the logical unit name or number of
theRMO device to be assigned.

is the protect code.

is the name of the file to which the
logical unit is to be positioned.

See note on global files in section 4.2 . 11 .

Example: Position the Sl logical unit to file PROG1 on
logical unit 30 (no protect key).

I AFI LE,S/,30., PROG 1

l 4 .2.33 / TRACE DIRECTIVE

T

The trace facility is a debugging aid available only on V77-800
systems. It permits the user to verify and. under certain user
specified conditions, to print register contents on the LO device
following each instruction executed in the traced program

The /TRACE directive causes the next scheduled background
task to be executed in the TRACE mode on the V77-800
system. This directive has the format

/ TRACE

Example: Schedule the execution of the user task TSKONE in
the TRACE mode.

/TRACE
/ LOAD,TSKONE

Foreground tasks can also be executed in the TRACE mode by
including the parameter T in the OPCOM ;SCHED command.
For detailed information regarding the use of the trace facility,
see section 7.4.

4.3 SAMPLE DECK SETUPS

The batch·processing facilities of VORTEX are invoked by
JCP control directives in combination with programs and
data. These elements form the input job stream to
VORTEX. The input job stream can come from various
peripherals and be carried on various media. These
examples illustrate common job streams and deck·prepara·
t ion techniques.

4·10 Updare B

Example 1 · Card Input: Compile a FORTRAN IV main
program (with source listing and octal object listing), and
assemble a OAS MR subprogram. Then load and execute

the linked program.

I JOB,EXAMPLE1
/ FORT,L,O

•
•

•

(Source Deck)
•

IDASKR,L
•

(Source Deck)
•

•
•

/ EXEC
/ ENDJOB

Example 2 • Card Input: Assemble a OAS MR program
(with source listing and load-and-execute) and generate a
concordance listing. The OAS MR program is cataloged on
RMO parti tion OOOK under f i le name USERl with protec·
t ion key U. Assign the PI logical unit to RMO partition
OOOK, open file name USERl for the assembler, assemble
the program, and execute the program with a dump.

I JOB,EXAMPLE2
I ASSIGN,PI•DOOK
I PFILE,PI,U,USER1
I DASKR,L
I PFILE,SS,,SS
/ CONC
IEXEC,D
I ENDJOB

Example 3 · Card Input: Assemble a OAS MR program
(with source list ing and object-module output on the 80
logical unit). Assign the PI logical unit to magnetic-tape
unit M TOO. the PO logical unit to dummy device. the SS
logical unit to the PI logical unit, the 80 logical unit t o
RMO partition DOOJ, and output the object module to file
name USER2 with no protection key. Before assembly,
posit ion the PI logical unit to the third file. Allocate four
additional 512-word b locks for the DAS MR symbol -table
area.

I JOB,EXAMPLEJ
I ASSIGN,PI•KTOO,PO•DUK,SS•PI,BO•DOOJ
I REW , PI
I SFILE,PI,2

Update B

I PFILE,BO,,USER2
I KEK,4
IDASKR
IENDJOB

JOB·CONTROL PROCESSOR

Example 4 · Card Input: After generation of a VORTEX
system, use FMAIN to initialize and add object modules to
the object-module library (OM) with protection key D .
Assign the 81 logical unit to CROO.

IJOB,EXAKPLE4
IASSIGN,BI•CROO
I P'KAIN
INIT,OK,D
INPUT,BI
ADD,OK,D

•

•

•
(Object Modules)

•
(2· 7 ·8·9 EOF Card)

•
•
•

/ ENDJOB

Example 5 . Card Input: Load and go operation. Compile a
FORTRAN IV main program, a subprogram and assemble a
DASMR subprogram. Save output on 80. Execute the
linked programs.

I JOB,EXAKPLES
I PFILE,BO,,BO
I FORT , L

•

•
•

(Source deck FORTRAN ma1n proqram)
•

(Source deck FORTRAN subproqram)
•

I DASKR,L

/ EXEC
/FINI

•

(Source deck DASKR subprogram)
•
•
•

4-11

·----~ ---·-M·~---·-·---· __._, -. --- -···- - - - -·4>-, _,,,,,., ____ , ____ ~·-·-~·----·-· .. ---------· .. ·- ---------~~ --------·- ··-- -- ' __ - "' .. --·- - '

SECTION 5
LANGUAGE PROCESSORS

The VORTEX operating system supports three language
processors: the OAS MR assembler (section 5.1), the
FORTRAN IV compiler (section 5.3), and the RPG IV
compiler (section 5.4), plus the ancillary concordance
program (section 5.2.).

5.1 DAS MR Assembler

DAS MR is a two·pass assembler scheduled by job·control
directive / DASMR (section 4.2. 14). DAS MR uses the
secondary storage device un it for pass 1 output. It reads a
source module from the PI logical unit and outputs it on
the PO unit. The source input for pass 2 is entered from
the SS logical unit.

When an END statement is encountered. the SS un it is
repositioned and reread. During pass 2, the output can be
directed to the 80 and / or GO units for the object module
and the LO unit for the assembly listing. The SS or PO file,
wh ich contains a copy of the source module, can be used as
input to a subsequent assembly.

A DAS MR symbol consists of one to six characters. the
f irst of which must be alphabetic, with the rest alphabetic
or numeric. Addit ional alphanumeric characters can be
appended to the first six characters of the symbol to form
an extended symbol up to the limit imposed by a single line
of code. However, only the first six characters are
recognized by the assembler.

DAS MR symbols may also be formed from the pound sign,
exclamation mark or dollar sign, in initial and other
positions.

Since the DAS MR assembler is used within the VORTEX
system under VORTEX l/0 control, the VORTEX user can
specify the desi red I / 0 devices. However, the PO and SS
logical units must be the same magnetic·tape unit or RM D
part it ion. Except when PI is equal to SS as shown in section
4.3 (example 3).

DAS MR has a symbol· table area for 175 symbols at f ive
words per symbol. To increase this area, input before the
/ DASMR directive a / MEM directive (section 4.2.5), where
each 512·word block enlarges the capacity of the table by
100 symbols.

A VORTEX physical record on an RMD is 120 words. Source
records are blocked three 40·word records per VORTEX
physical record, and object modules are blocked two 60·
word modules per record . However, in the case where Sl =

PI = RMD, records are not blocked but assumed to be one
per VORTEX physical record. When an input f ile conta ins
more than one source module each new source module
must start at a physical record boundary. Unused portions
of t he last physical record of the previous source modules
should be padded with blank record s. Proper blocking may

be ensured by following the END statement of the previous
source module with two blank records.

Detailed references to the DAS MR assembly language are
given in the appropriate Sperry Univac reference manuals
(see section 1.3). These references include descriptions of
the directives recognized by the assembler (table 5-1) ,
except for the t itle directive which is discussed below. DAS
MR wil l assemble the entire V70 extended instruction set if
the E parameter is specified in the / DASMR directive.

Table 5-l. Directives Recognized by the DAS MR
Assembler

BES IFF
BSS IFT
CALL LIST
COMN LOC
CONT MAC
DATA MZE
DETL NAME
DUP NLIS
EJEC NULL
END OPS Y
EMAC ORG
ENTR PZE
EQU RETU
EXT SET
FORM SPAC
GOTO SMRY

TITLE

Error messages applicable to the DAS MR assembler are
given in Appendix A.5.1.

5.1.1 TITLE Directive

This directive changes the title of the assembly list ing and
the identification of the object program. It has the general
form

TITLE symbol

where symbol is the new ti t le of the assembly listing; the
label field being ignored by the assembler. There are a
maximum of eight characters in symbol.

At the beginning of assembler pass 1. the title of the
assem bly list ing and the ident if ica tion of the object
program are initialized as blanks. When a TITLE directive
is encountered, title and identification assume the symbol
given in the directive.

Examples: Entitle the assembly listing and object pro·
gram NEWTITLE.

TITLE NEWTITLE

Rein it ialize the t itle and identificat ion, obliterating the old
title.

TITLE

5·1

·--·---·------ ·- - --- ·---·-- ----------·------ ------- --- ·..---... -- - -----

LANGUAGE PROCESSORS

5.1.2 VORTEX Macros

The DAS MR assembler contains macro definitions for the
real-time executive (RTE, section 2.1) and I / 0 control (IOC,
section 3.5) macros. Figure 5-1 illustrates these definitions .

•

5-2

•
M1

F

•
•
•
•
•
•
•
READ

•
•
•
•
•
•
•
WRITE

•
•
•
•
•
•
WEOF

•
•
•
•
•
•
REW

•
•
•
•
•
•
•

MAC
EXT
JSR
DATA
FORM
F
DATA
EMAC

VORTEX
READ

MAC
M1
EMAC

VORTEX
WRITE

MAC
M1
EMAC

V$IOC
0404,1
0100000
1,3,4,8
P(1),P(2),P(3),P(4)
P(S),O,O

READ MACRO DEFINITION
DCB,LUN,W,M

WHERE DCB • FCB OR DCB ADDRESS
LUN • LOGICAL UNIT NO .

W • WAIT OPTION
M • I/O MODE

P(3),P(4),0,P(2),P(1)

WRITE MACRO DEFINITION
DCB,LUN,W,M

WHERE DCB • FCB OR DCB ADDRESS
LUN • LOGICAL UNIT NO .

W • WAIT OPTION
M • IIO MODE

P(3) ,P(4), 1 ,P(2) ,P(1)

VORTEX WRITE END OF FILE MACRO DEFINITION
WEOF

MAC
M1
EMAC

DCB,LUN,W
WHERE DCB • FCB OR DCB ADDRESS

LUN • LOGICAL UNIT NO •
W • WAIT OPTION

P(3),0,2,P(2),P(1)

VORTEX REWIND MACRO DEFINITION
REW

MAC
M1
EMAC

VORTEX
SREC

DCB,LUN,W
WHERE DCB • FCB OR DCB ADDRESS

LUN • LOGICAL UNIT NO .
W • WAIT OPTION

P(3),0,3 , P(2),P(1)

SKIP RECORD MACRO DEFINITION
DCB,LUN,W,M

WHERE DCB • FCB OR DCB ADDRESS
LUN • LOGICAL UNIT NO •

W • WAIT OPTION
M • IIO MODE

Figure 5-l. VORTEX Macro Definitions for DAS MR

- - ... - - -·-

\

LANGUAGE PROCESSORS

SREC

*
*
*
*
*
*
FUNC

*
*
*
*
*
*
*

MAC
M1
EMAC

P(3),P(4),4,P(2) ,P(1)

VORTEX FUNCTION MACRO DEFINITION
FUNC DCB,LUN,W

MAC
M1
EMAC

WHERE DCB • FCB OR DCB ADDRESS
LUN • LOGICAL UNIT NO.

W • WAIT OPTION

P(3),0,5,P(2),P(1)

VORTEX OPEN MACRO DEFINITION
OPEN FCB,LUN,W,M

WHERE FCB • FCB OR DCB ADDRESS
LUN • LOGICAL UNIT NO.

W • WAIT OPTION
M • I/O MODE

OPEN MAC

*
*
*
*
*
*
*
CLOSE

*
*
*
*
*
*
*
*
*
*
*
*
STAT

*
*
*
*
*
*

M1
EMAC

P(3) ,P(4) ,6,P(2) ,P(1)

VORTEX CLOSE MACRO DEFINITION
CLOSE FCB,LUN,W,M

MAC
M1
EMAC

WHERE FCB • FCB OR DCB ADDRESS
LUN • LOGICAL UNIT NO.

W • WAIT OPTION
M • IIO MODE

P(3) ,P(4), 7 ,P(2) ,P(1)

VORTEX STATUS MACRO DEFINITION
STAT

MAC
EXT
JSR
DATA
EMAC

FCB,ERR,EOF,EOD,BUSY
WHERE FCB • FCB OR DCB ADDRESS

V$IOST

ERR • ERROR RETURN ADDRESS
EOF • END OF FILE, BEGINNING

OF DEVICE, OR BEGINNING OF
TAPE RETURN ADDRESS

EOD • END OF DEVICE OR END OF TAPE
RETURN ADDRESS

BUSY • BUSY RETURN ADDRESS

0373,1
P(1),P(2) ,P (3) ,P(4),P(5)

VORTEX DEVICE CONTROL BLOCK MACRO DEFINITION
DCB RL,BUF,CNT

WHERE RL • RECORD LENGTH
BUF • DATA ADDRESS
CNT • COUNT

DCB MAC
DATA
EMAC

P(1) ,P (2) ,P(3)

,
Figure 5-l . VORTEX Macro Definitions for DAS MR (continued)

5-3

~·-- _ .. -·-------··-----·--·------------~ ·--··--.. - ·-·-··--- ---- - ------- .. --...... ___ -----.. -........ --.... -- --- ----· ·- ----- -.._ ·----~ -· .

LANGUAGE PROCESSORS

5-4

•
•
•

VORTEX FILE CONTROL BLOCK MACRO DEFINITION
PCB RL BUF AC KEY 'N1' 'N2' 'NJ' , , , , , ,

WHERE RL • RECORD LENGTH
* BUF • DATA ADDRESS
* AC • ACCESS METHOD
* KEY • PROTECTION KEY
* N1 • FIRST 2 ASCII FILE NAME
* N2 • SECOND 2 ASCII FILE NAME
* N3 • THIRD 2 ASCII FILE NAME
FCB MAC

F

•
M2

•
•
•
•
•
•
• •
•
•

DATA
FORM
F
DATA
EMAC

MAC

P(1),P(2)
6,2,8
O,P(3),P(4)
O,O,O,O,P(5),P(6),P(7)

EXT V$EXEC
JSR 0406, 1
EMAC

VORTEX
SCHED

SCHEDULE MACRO DEFINITION
PL,W,LUN,KEY,'N1', 'N2', 'N3',P

WHERE PL • PRIORITY LEVEL
W • WAIT OPTION
LUN • LOGICAL UNIT NO . .
KEY • PROTECTION KEY
N1 • FIRST 2 ASCII TASK NAME
N2 • SECOND 2 ASCII TASK NAME
N3 • THIRD 2 ASCII TASK NAME
F • TIDB ADDRESS FLAG

SCHED MAC

F

F

•
•
•
•

M2
FORM
F
FORM
F
DATA
EMAC

2,1,1,6,1,5
0, P(8) ,P(2), 1 ,O,P(1)
8,8
P(4),P(3)
P(S) ,P(6) ,P(7)

VORTEX EXIT MACRO DEFINITION
BXIT

EXIT MAC

•
•
•
•
SUSPND

F

•
•
•
•

M2
DATA 0200
EMAC

VORTEX SUSPEND MACRO DEFINITION
SUSPND T

MAC
M2
FORM
P'
BMAC

WHERE T • TYPB OF SUSPENSION

4,6,5,1
0,3,0,P(1)

VORTEX RESUME MACRO DEFINITION
RBSUMB 'N1','N2','N3'

WHERE N1 • FIRST 2 ASCII TASK NAME
* N2 • SECOND 2 ASCII TASK NAME
* NJ • THIRD 2 ASCII TASK NAMB

Figure 5-l. VORTEX Macro Definitions for DAS MR (continued)

-- ----------- ------ -- . . - . .. ·-

LANGUAGE PROCESSORS

RESUME MAC

*
*
*
*
*
*
ABORT

*
*
*
*
*
ALOC

*
*
*
*

M2
DATA
EMAC

0400,P(1),P(2),P(3)

VORTEX ABORT MACRO DEFI NITI ON
ABORT

MAC
M2
DATA
EMAC

'N1', 'N2 ', 'N3'
WHERE N1 = FIRST 2 ASCII TASK NAME

N2 = SECOND 2 ASCII TASK NAME
N3 = THIRD 2 ASCII TASK NAME

OSOO ,P (1) , P (2) ,P(3)

VORTEX ALLOCATE MACRO DEFINITION
ALOC

MAC
M2
DATA
EMAC

ADDR
WHERE ADDR = ADDRESS OF REENTRANT

SUBROUTINE

0600 ,P (1)

VORTEX DEALLOCATE MACRO DEFINITI ON
DEALOC

DEALOC MAC

*
*
*
*
*
*

M2
DATA
EMAC

0700

VORTEX PRIORITY INTERRUPT MASK MACRO DEFINITION
PMSK NUM,MSK,TYP

WHERE NUM = PIM NUMBER
MSK = PIM LINE MASK
TYP = ENABLE OR DISABLE TYPE

PMSK MAC

F1

F

M2
FORM
F 1
FORM
F
EMAC

4 1 6 1 5 1 1
0,010,0,P(3)
8,8
P (1), P (2)

*
*
*
*
*
*
*
*

VORTEX
DELAY

DELAY MAC

F
M2
FORM
F
DATA
EMAC

DELAY MACRO DEFINITION
TS,TM,DT

WHERE TS • DELAY TIME IN 5 MILLI
SECOND INCREMENTS

TM • DELAY TIME IN 1 MINUTE
INCREMENTS

DT • DELAY TYPE

4,6,4,2
0 ,01 1 ,0,P(3)
P(1),P (2)

Figure 5-l . VORTEX Macro Definitions for DAS MR (continued)

5·5

-·-·--··------~--·-·--·-·--·-----------------.. ----------- ·-·------ - ··-·--- ... -- -·- -----· ···--- ·- .. ·--

LANGUAGE PROCESSORS

5-6

•
•
•
•
•
•
•
•
•
LDELAY

•
•
•
•

•

VORTEX LDELAY MACRO DEFINITION
LDELAY TS, TM, LUN,KEY

WHERE TS • DELAY TIME IN
INCREMENTS

TM • DELAY TIME IN
INCREMENTS

5-MILLISECOND

1- MINUTE

LUN • LOGICAL UNIT NUMBER FOR TASK LOAD
KEY • PROTECTION KEY

MAC
M2
DATA
FORM
F

EMAC

01107,P(1),P(2)
8,8
P('I),P(3)

VORTEX TIME REQUEST MACRO DEFINITION
TIME

TIME MAC

•
•
•
•
•
•
•
•

M2
DATA
EMAC

01200

VORTEX OVERLAY MACRO DEFINITION
OVLAY TF, 'N1', 'N2', 'N3'

WHERE TF • TYPE FLAG
N1 • FIRST 2 ASCII TASK NAME
N2 • SECOND 2 ASCII TASK NAME
N3 • THIRD 2 ASCII TASK NAME

OVLAY MAC

F

•
•
• •
•
•

M2
FORM
F
DATA
EMAC

'1,6,5,1
0,013,0,P(1)

P(2) ,P(3) ,P('I)

VORTEX IOLINK MACRO DEFINITION
IOLINK LUN,BUF,NUM

WHERE LUN • LOGICAL UNIT NO.
BUF • USER'S BUFFER LOCATION
NUM • BUFFER SIZE

IOLINK MAC

F

•
•
•
•
•
•
•
•

M2
FORM
F
DATA
EMAC

'1,6,6
0,01'1,P(1)
P(2),P(3)

VORTEX PASS MACRO DEFINITION
PASS COUNT,FROM,TO

WHERE COUNT • WORD COUNT
FROM • FROM ADDRESS
TO • TO ADDRESS

Figure 5-l. VORTEX Macro Definitions for DAS MR (continued)

•

*
PASS

F

*
*
*

*
*

*
*
*
*
*

LANGUAGE PROCESSORS

MAC
M2
FROM 4, 6, 6
F 0,016,0
DATA P { 1) ,P{2) ,P { 3)

!

EMAC

VORTEX TBEVNT MACRO DEFINITION
TBEVNT

WHERE

OPTIONS:

VALUE, , DISP , ,cis

VALUE • IS A BIT MASK

DISP • IS THE TIDB WORD TO BE ALTERED .
IT IS EXPRESSED BY WAY OF A NUMBER,
THE DISPLACEMENT {OR POSITION) OF THIS
WORD IN THE TIDB.

CI S • IS THE CLEAR/SET INDICATION (0 = CLEAR,
1 .. SET)

BOTH DISP AND C/S ARE OPTI ONAL AND
THE DEFAULT FOR BOTH IS 0.

IMPLEMENTATION:
WHEN DISP • 0 THE ACTION DEPENDS ON
THE VALUE OF VALUE:

VALUE, IF 0- 177776, IS SET INTO
THE REQUESTING TASK'S TIDB TBEVNT
WORD. IF VALUE IS 0177777, RETURN
IS WITH THE REQUESTOR'S TBEVNT IN
THE A REGISTER

WHEN DISP • 0, DISP WILL BE ALTERED
ACCORDING TO VALUE AND CIS.

CIS = 0 , ALL THE BITS IN DISP CORRESPOND I NG
TO THE ZERO (0) BITS I N VALUE
WILL BE RESET TO 0 .

CI S= 1 , ALL THE BITS IN DISP CORRESPONDING
TO THE ONE {1) BITS IN VALUE
WILL BE SET TO 1 .

TBEVNT MAC

*

M2
DATA
DATA
EMAC

01700
P(1) ,P(2} ,P(3 }

Figure 5-l . VORTEX Macro Definitions for DAS MR (continued)

5-7

. ~ ·----------------·---------·----··---~~-·---------.. -----·-·-----·~ -··----- -· ..

LANGUAGE PROCESSORS

5-8

•
•
•
•
•
•
•
•
ALOCPG

• •
•
•
•
•
•
•
•
•
•
DEALPG

•
•
•
•
•
•
•
•
•
•
•
•
•
•
MAP IN

VORTEX ALLOCATE PAGE MACRO DEFINITION
ALOCPG N,LOGICA ADDR,REJECT ADDR

MAC
M2
DATA
DATA
DATA
DATA
EMAC

WHERE N • NUMBER OF PAGES TO ALLOCATE
LOGICAL ADDR • LOGICAL ADDRESS

MODULO 01000, WHERE
PAGES ARE ALLOCATED

REJECT ADDR • ERROR RETURN ADDRESS

02000
p (1)

P (2)
P(3)

VORTEX DEALLOCATE PAGE MACRO DEFINITION
DEALPG N,LOGICAL ADDR,REJECT ADDR

MAC
M2
DATA
DATA
DATA
DATA
EMAC

02100
p (1)
P(2)
P(3)

WHERE N • NUMBER OF PAGES TO DEALLOCATE
LOGICAL ADDR • LOGICAL ADDRESS,

MODULO 01000, WHERE
PAGES ARE TO BE
DEALLOCATED

REJECT ADDR • ERROR RETURN ADDRESS

VORTEX MAPIN MACRO DEFINITION
MAP IN

MAC
M2
DATA
DATA
DATA
DATA
DATA
EMAC

N,LOBICAL ADDR,BUFFER ADDR,REJECT ADDR
WHERE N • NUMBER OF PAGES TO BE MAPPD

LOG~CAL ADDR • LOGICAL ADDRESS, MODULO
01000, WHERE PAGES ARE TO
BE ALLOCATED

BUFFER ADDR • PHYSICAL PAGE NUMBER
OR BUFFER ADDRESS CON
TAINING PHYSICAL PAGES
TO BE MAPPED

REJECT ADDR • ERROR RETURN ADDRESS

02200
p (1)

P (2)
P(3)
P(4)

Figure 5-l. VORTEX Macro Definitions for DAS MR (continued)
•

-·· .

*
*
*
*
*
*
*
*
*

LANGUAGE PROCESSORS

VORTEX PAGE NUMBER MACRO DEFINITION
PAGNUM LOGICAL ADDR

WHERE LOGICAL ADDR • ADDRESS WITHIN THE
REQUESTING TASK'S VIRTUAL
MEMORY WHERE IDENTIFICATI ON
OF THE ASSIGNED PHYSI CAL
PAGE IS REQUIRED

PAGNUM MAC

·------- - -------

M2
DATA
DATA
EMAC

023 0 0
p (1)

Figure 5-l . VORTEX Macro Definitions for DAS MR (continued)

5-9

___ '"" _________ __ _
- ·-·-

LANGUAGE PROCESSORS

5.1.3 Assembly Listing Format

Figure 5-2 is a sample listing following the format described
in this section.

Page format: The assembly listing is limited to the
number of lines per page specified by the VORTEX resident

PAGE 23 01/22/72 PROG1 VORTEX

EJEC

•

constant V$PLCT, with each line containing no more than
120 characters. Each page has a page number and title
line followed by one blank line, and then the program
listing containing two lines less than the number specified
by V$PLCT. (This specification can be changed through the
job-control processor (JCP).)

DASMR VSJCP

588
589 *
590 * SUBROUTINE PRINTS JCP DIRECTIVE ON SO AND LO DEVICE
591 *

000660 074056 A 592 JCPRT
000661 064056 A 593
000662 010412 A 594
000663 005311 A 595
000664 054003 A 596

597
000665 006505 A
000666 000604 E
000667 001405 A
000670 000665 R
000671 000051 A
000672 030400 A 598
000673 015003 A 599
000674 150463 A 600
000675 054274 A 601
000676 015002 A 602
000677 150463 A 603
000700 144271 A 604
000701 001010 A 605
000702 000714 R
000703 017000 I 606
000704 054004 A 607

000705 006505 A
000706 000630 E
000707 100000 A .
000710 010403 A
000711 000633 E
000712 000000 A
000713 000000 A

608

000714 030400 A 609 JCPR1
000715 015005 A 610
000716 150463 A 611
000717 144252 A 612
000720 001010 A 613
000721 0007 33 R
000722 017000 A 614
000723 054004 A 615

616

5-10

-- ·--- - _.

STX
STB
LDA
DAR
STA
IOLINK

LDX
LDA
ANA
STA
LDA
ANA
SUB
JAZ

LDA
STA
WRITE

LDX
LDA
ANA
SUB
JAZ

LDA
STA
WRITE

JSPRX
JCPRB
VSJCB

*+4
L0,*,41

V$LUT1
so,x
BM377
JCTA
SI,X
BM377
JCTA
JCPR1

JCFBCS+3
*+5
LOFCB,S0,0,1

V$LUT1
LO,X
BM377
JCTA
JCPRE

JCFCBS+3
*+5
LOFCB,L0,0,1

Figure 5·2. Sample Assembly Listing

GET BUFFER ADDRESS

SETUP LOFCB

ADRS OF LOG UNIT TBL

SO CUR ASSIGNMT

SO CUR ASSIGNMT
SO, SI SAME LUN

STORE 'LOFCB' ADRS IN CALL

NO - WRITE TO SO

LO CUR ASSIGNMT
LO, SO SAME LUN
YES

STORE 'LOFCB' ADRS IN CALL

NO - WRITE TO LO

- --,.....--- - - - - -

At the end of the assembly, the following information is
printed after the END statement:

a. A line containing the subheading ENTRY NAMES

b. All entry names (in four columns), each preceded by its
value and a flag to denote whether the symbol IS

absolute (A), relocatable (R), or common (C).

c. A line containing the subheading EXTERNAL NAMES

d. All external names (in four columns), each preceded by
its value and a flag to denote that the symbol is external
(E)

e. A line containing the subheading SYMBOL TABLE

f. The symbol table (in four columns), each symbol
preceded by its value and a flag to denote whether the
symbol is absolute (A), relocatable (R), common (C),
or external (E)

g. A line containing the subheading mmmm ERRORS
ASSEMBLY COMPLETE, where mmmm is the
accumulated error count expressed as a decimal
integer, right-justified and left-blank-filled

Line format: Beginning with the first character position ,
the format for a title line is:

a. One blank

b. The word PAGE

c. One blank

d. Four character positions that contain the decimal page
number

e. Two blanks

f. Eight character positions that contain the current date
obtained from the VORTEX resident constant V$DATE

g. Two blanks

h. Eight character posit ions that contain the program
identification obtained from the VORTEX resident
constant V$JNAM

i. Two blanks

j. The word VORTEX

k. Two blanks

I. The word DASMR

m. Two blanks

n. Eight character positions that contain the program title
from the TITLE directive

o. Blanks through the 120th character position

-· ---- ·- - - ------------···---------·- -

LANGUAGE PROCESSORS

Beginning with the first character position, the format for
an assembly line is:

a. One blank

b. Six character positions to display the location counter
(octal) of the generated data word

c. One blank

d. Six character positions to display the generated data
word (octa l)

e. One blank

f. One character position to denote the type of generated
data word : absolute (A), relocatable (R), common (C),
external (E), literal (L), or indirect-address pointer
generated by the assembler (I)

g. One blank

h. Four character positions containing the decimal
symbolic source statement line number, right-just ified
and left-blank-filled

i. One blank

j. Eighty character positions that contain the image of the
symbolic source statement. (I f the symbolic source
statement is not a comment statement. the label,
operation, and variable f ields are reformatted into
symbiotic source statement character positions 1, 8,
and 16, respectively. If commas separate the label,
operation, and variable fields, they are replaced by
blank characters.)

k. Blanks, if necessary, through the 120th character
position

Error Chaining: If syntax errors occur during an assembly
error, chaining is provided to assist in finding the errors. If
errors occur, the error message at the end of the assembly
contains a decimal value within parentheses corresponding
to the source line number at which the last error occurred.
The line number referenced in turn references the next line
number containing an error. The last line number
containing an error does not have a chaining reference. If
no errors occurred, the error message does not conta in a
chaining reference.

5.2 CONCORDANCE PROGRAM

The background concordance program (CONC) provides an
indexed listing of all source statement symbols, giving the
number of the statement associated with each symbol and
the numbers of all statements containing a reference to the
symbol. CONC is scheduled by job-con trol directive / CONC
(section 4.2.16). Upon completion of the concordance
listing, control returns to the JCP via EXIT.

Input to CONC is through the SS logical unit. The
concordance is output on the LO unit. CONC uses system

5-11

LANGUAGE PROCESSORS

global file control block SSFCB. If the SS logical unit is an
RMD, a / REW or / PFILE directive (section 10) establishes
the FCB before the /CONC directive is input to the JCP.

CONC has a symbol-table area to process 400 no-reference
symbols at five words per symbol, plus 400 referenced
symbols (averaging five references per symbol) at ten
words per symbol. To increase this area, input before the
ICONC directive a /MEM directive (section 4.2.5), where
each 512-word block enlarges the capacity of the table by
approximately 75 symbols.

CONC processes both packed records (three source
statements per 120-word VORTEX physical record) and
unpacked records (one source statement per record).

5.2.1 Input

CONC receives source-statment input from the SS logical
unit. There is, however, no positioning of the SS unit prior
to reading the first record. The source statements are
identical with those input to the VORTEX assembler and
thus conform to the assembler syntax rules.

As the inputs are read , each source statement is assigned
a line number, 1, 2, etc., which is identical with that
printed on the assembly listing. When a symbol appears in
the label field of a symbolic source statement, the line
number of that source statement is assigned to the symbol.
When the symbol appears in the variable field of a source
statement, the line number of that statement is used as a
reference for the symbol.

5.2.2 Output

CONC outputs the concordance listing on the LO logical
unit. Output begins when one of the following events
occurs:

a. CONC processes the source statement END

b. Another job-control directive is input

c. An SS end of file or end of device is found

d. A reading error is found

e. The symbol-table area is filled

If the output occurred because the symbol-table area of
memory was full, CONC clears the concordance tables,
outputs error message CNOl, and continues until one of
the other terminating conditions is encountered. In all
other cases, CONC terminates by calling EXIT.

The concordance listing is made in the order of the ASCII
values of the characters comprising the symbols.

Beginning with the first character position, the format for a
title line is:

5-12

.
•

a. Oneblank

b. The word PAGE

c. One blank

d. Four character positions that contain the decimal page
number

e. Two blanks

f. Eight character positions that contain the date
obtained from the VORTEX resident constant V$DATE

g. Two blanks

h. Eight character positions that contain the program
identification obtained from the VORTEX resident
constant V$JNAM

i. Two blanks

j. The word VORTEX

k. Two blanks

I. The word CONC

m. Blanks through the 72nd character position

Beginning with the first character position, the format for a
concordance cross-reference listing is:

a. Two blanks

b. Four character positions that contain the decimal line
number of the source statement assigned to the symbol
in item (e) below

c. One blank

d. One character position containing an asterisk (*) if
there are no references to that symbol (otherwise
blank)

e. Six character positions containing the symbol being
listed

f. Two blanks

g. Four character positions that contain the decimal line
number of a source statement referencing the symbol
in item (e) above

h. Items (f) and (g} are repeated as necessary for each
source statement referencing the symbol in item (e)
above, where up to nine references are placed on the
first line, and subsequent references on the next
line(s). Continuation lines that may be required for
ten or more references to the same symbol do not
repeat items (a) through (e)

i. Blanks through the 72nd character position of the last
line of the entry

Figure 5·3 illustrates the concordance listing.

----------·- -··

LANGUAGE PROCESSORS

PAGE 1 09/22/71 V$0PCM VORTEX CONC

509 B 841 859 879 990 1001 1002 1012 1068 1072
1074 1112 1230 1231

261 B10 *
262
263

1206
1937

B11
B12
ODATE
ONUM

*
*

1180
895

1406

1182
928

1418

1190
936 1 0 17 1182 119 0 119 6 1254 1284

Figure 5-3. Sample Concordance Listing

5.3 FORTRAN IV COMPILER

The FORTRAN IV compiler is a one-pass compiler sched
uled by job-control direct ive / FORT (section 4.2.15). The
compi ler inputs a source module from the PI logical unit
and produces an object module on the 80 and/or GO units
and a source listing on the LO unit. No secondary storage
is required for a compi lation.

If a fatal error is detected, the compiler automatically
terminates output to the 80 and GO units. LO unit output
continues. The compiler reads from the PI unit until an
END statement is encountered or a control directive is
read . Compilation also terminates on detection of an l /0
error or an end-of-device, beginning-of-device, or end-of-file
indication from l /0 control.

The output comprises relocatable object modules under all
circumstances: main programs and subroutines, func
t ion, and block-data subprograms.

Error messages applicable to the FORTRAN IV compi ler are
given in Appendix A.5.2.

FORTRAN IV has conditional compilation faci lities imple
mented by an X in column 1 of a source statement. When
the X appears in the / FORT directive, all source statements
with an X in column 1 are compiled (the X appears on the
LO listing as a blank). When the X is not present, all
conditional statements are ignored by the compiler. X lines
are assigned listing numbers in either case. but the source
statement is printed only when the X is present.

FORTRAN IV has a symbol-table area for approximately 70
symbols (i.e., names), if none of the logical units used is
ass igned to an RMD device. Each RMD assignment
requ ires buffer space of 120 words (except when 80 = GO
= RMD, in which case 80 and GO use the same buffer)
and the symbol capacity is reduced by 24 symbols per
buffer. To increase the symbol-table area, input before the
/ FORT directive a / MEM directive (section 4.2.5), where
each 512-word block enlarges the capacity of the table by
100 symbols. If a larger symbol-table is used, greater
subexpression optimization is possible.

A VORTEX physical record on an RMD is 120 words. Source
records are blocked three 40-word records per VORTEX
physical record, object modules are blocked two 60-word
modules per record , and list modules are output one record
per physical record. However, in the case where Sl = PI =

RMD, records are not blocked but assumed to be one per
VORTEX physical record. When the file con ta ins more than
one source module, each new source module must start at
a physical record boundary. The unused portion of the last
physical record of the previous module should be padded
with blanks.

Table 5-2 lists the VORTEX real-t ime executive (RTE)
service request macros available through FORTRAN IV.
These macros are detailed in section 2. 1.

Table 5-2. RTE Macros Available Through FORTRAN IV

ABORT
ALOC
DELAY
LDELAY

EXIT
OVLAY
PMSK
RESUME

SCHED
SUSPND
TIME
PASS

5.3.1 FORTRAN IV Enhancements

The VORTEX FORTRAN IV language additions and en
hancements make the VORTEX FORTRAN compiler more
consistent with IBM FORTRAN (level G). Except for these
additions and enhancements, FORTRAN compilation and
execution with the VORTEX operating system is the same
as with the Master Operating System (MOS) described m
the FORTRAN IV Reference Manual (98 A 9902 03x).

FORTRAN-complied programs can execute in either fore
ground or background.

Deta iled information on the VORTEX FORTRAN IV lan
guage additions and enhancements are given in the
VORTEX FORTRAN IV Reference Manual (98 A 9902 04x).

5.3.1.1 Variables

VORTEX FORTRAN IV variables are identifiers which
consist of a string of one to six alphanumeric characters
and correspond to the type of data the variable represents.
Variables are classified into the following five fundamental
types: INTEGER, REAL, DOUBLE PRECISION, COMPLEX,
and LOGICAL.

The following list shows each variable type with its
associated standard and optional length (in bytes):

5- 13

. ----·--- -------- ------------- --- - --··- - --·- - --·-------·"'·- ··· __ _., __ - .. -.. - -··- ---- ____ ._,__,..., , r ., , , . _.._ , _ .. ' ··~---

LANGUAGE PROCESSORS

Variable Type

INTEGER
REAL
COMPLEX
LOGICAL
DOUBLE PRECISION

5.3.1.2 Constants

Standard

2
4
8
2
8

Optional

4
8

There are four categories of VORTEX FORTRAN IV con·
stants: NUMERICAL, LOGICAL LITERAL, and HEXADECI·
MAL. These four constant data constructions are discussed
below.

•
NUMERICAL constants are integer, real , or . complex
numbers. Integer constants may be positive, zero, or
negative. If the constant has so sign, it is interpreted as
representing a positive value. If a zero is specified, with or
without a preceding sign, the sign will have no effect on the
value zero. The constant has the general form

sn

where

s

n

is the optional signed character
(+ or ·).

is a decimal character string
(maximum magnitude is 1073741823).

LOGICAL constants allow for the use of logical operations
through the medium of the logical expression. Thus, two
logical constants are provided to represent the "true" and
"false" logical values. The constant has the general form

. TRUE. or .FALSE.

LITERAL constants are a string of alphanumeric and/or
special characters. If apsostrophes del imit the literal, a
single apostrophe within the literal is represented by two
apostrophes. The number of characters in a string,
including blanks, may not be less than 1 or greater than
255. Blanks within the character string will be considered
part of the string. The constant has the general form

where

wHs or 's'

w is a positive non-zero constant denoting
the width of the character string.

s denotes the character string.

HEXADECIMAL constant consists of the letter Z followed by
1 to 16 hexadecimal digits. The constant has the general
form

Zn

5·14

where

n 1s a 1 to 16 hexadecimal digit string.

The maximum number of digits allowed in a hexadecimal
constant depends on the length specification of the
variable being initialized. If the number of digits is greater
than the maximum, the left-most digits are truncated. If
the number is less than the maximum, the left-most
positions are filled with zeros.

5.3.1.3 IMPLICIT Statement

The IMPLICIT statement must be the first statement in a
main program or the second statement in a subprogram.
The statement enables the user to specify the type,
including length of all variables, arrays, and function
names. The statement has the general form

where

IMPLICIT type *s(a 1 , ... ,)

type IS a type name.

*s

a

is optional; and, represents one of the
permissible length specifications (see
variable).

is an in it ial character string
(A. B ,Z,$,) in that order.

5.3.1.4 Explicit Type Statements

The Explicit Type Specification statement declares the type
of variable, function name, statement function name, or
array by its name rather than by its initial character.
Optionally, it may also in itialize the variable. The statement
overrides the IMPLICIT statement, which in turn overrides
the predefined convention. The statement has the general
form

where

type*s al *sl(kl)lxl! , ...

type

*s

a

(k)

.

IS a type name.

is optional; and, represents one of
the permissible length specifications.

is a variable, array, or function
name.

is optional ; and, gives dimension
information for arrays. When the
TYPE statement in which it appears
is in a subprogram, k may contain

•

l xl

integer variables of length 2
(section 5.3.1.1), provided that
the array is a dummy argument.

is optional; and, represents
initial data va lues (see DATA
statement).

5.3.1.5 DOUBLE PRECISION Statement

The DOUBLE PRECISION statement overrides any specifi·
cation of a variable made by either the predefined
convent ion or the IMPLICIT statement. The statement has
the general form

where

DOUBLE PRECISION a(k), ... ,

a

(k)

represents a variable, array, or
function name.

is optional; and, is composed of
one to seven unsigned integer con
stants that represent the maximum
value of each subscript in the
array. k may contain integer
var iables of length 2, provided
that the array is a dummy argument.

5.3.1.6 PAUSE Statement

The execution of the PAUSE statement causes the uncond i·
tional suspension (SUSPND) of the object program being
executed pending operator action. To resume the sus
pended task, input the operator-communication key-in
request RESUM E. The statement has the general form

where

PAUSE
or
PAUSE n or PAUSE m

n

m

is a str ing of one to f ive
decimal digits.

is a literal constant enclosed
in apostrophes.

5.3.1.7 STOP Statement

The execution of the STOP statement causes the uncondi·
tional termination of the execution of the object program
beging executed. The statement has the general form

STOP
or
STOP n or STOP m

where

n

m

LANGUAGE PROCESSORS

is a string of one to five decimal
digits.

is a litera l constant enclosed m
apostrophes.

5.3.1.8 CALL Statement

The execution of the CALL statement causes the specified
subroutine to be executed. The CALL statement arguments
must agree in number and order of appearance with the
dummy arguments in the SUBROUTI NE statement. The
statement has the general form

where

CALL name (a l ,a2), ... ,

name

a

is the name of a SUBROUTINE
subprogram.

is an actual argument that is
being supplied to the SUBROUTINE
subprogram. The argument may be
a variable array element, array
name, literal, or arithmetic or
logical expression. Each a may
also be of the form & n. where n
is a statement number.

5.3.1.9 RETURN Statement

The RETURN statement provides the method by wh ich the
calling program is reentered following the execution of a
subprogram. The normal sequence of execution following
the RETURN statement of a SUBROUTINE subprogram is
to the next statement following the CALL statement in the
calling program. The statement has the general form

where

RETURN or RETURN i

.
I is an integer constant or variable

whose value, for example n , denotes
the n-th asterisk in the argument
list of a SUBROUTINE statement.
RETURN i may be specified only in
a SUBROUTINE subprogram.

5.3.1.10 READ/ WRITE Statements

VORTEX FORTRAN IV al lows two optional parameters to
the READ/ WRITE statements. These optional parameters
allow for conditional exits on an end-of-data or transmis
sion error.

5·15

--~~---·- ·-------- - ·------·- - ----- ------- - - -- ·----·-- - -· ··-- -···-- - ·----·- -- -- ·-··· .

•

LANGUAGE PROCESSORS

Example: READ(4,10,ERR = 105,END = 200)A,B

In the above example, control will be transferred to
statement 105 if an I / 0 error occurs, or to statement 200 if
an end-of-data occurs on unit 4.

5.3.1.11 ENCODE/DECODE Statement

ENCODE/ DECODE statements perform data conversion
according to a FORMAT statement without performing
external 1/ 0 operations. ENCODE statement takes an 110
list, converts each element and places it in a specified
buffer. DECODE statement words from the buffer into the
110 list. For example:

DIMENSION 1(40}
READ(CDR,10)I

10 FORMAT(40A2)
DECODE(10,20,I)K,L

20 FORMAT(2IS)

These statements read an ASCII card image into array I.
The first two fields of five ASCII characters are then
decoded into their integer equivalent and placed into the
variables K and L.

5.3.1.12 Direct-Access INPUT /OUTPUT
Statements

The direct-access INPUT / OUTPUT statements allows a
programmer to go directly to any point in a file which
resides on an RMD, and process a record without having to
process all the records within the file. To use direct-access

INPUT / OUTPUT statements (READ, WRITE, and FIND),
the file(s) to be operated on must be described with a
DEFINE FILE statement. The statement has the general
form

where

5·16

DEFINE FILE a l(m 1 ,rl, f1 , vl), ...

a

m

r

f

v

specifies the unit number.

represents the relative position
of a record within the file.

specifies the maximum size of
each record in the file.

specifies whether the file is
to be read or written with or
without format control.

specifies an integer variable
(not an array element) called
an associated variable, which

-··---------~---

points to the record immediately
following the last record
transmitted.

5.3.1.13 Direct-Access READ Statement

The READ statement causes data to be transferred from a
direct-access device into internal storage. The statement
has the general form

where

READ(a 'r,b,ERR = Ec)list

a

r

b

ERR= Ec

list

specifies the unit number
and must be followed by an
apostrophe.

represents the relative
position of a record within
the file.

is optional; and, if given,
is either the statement
number of the FORMAT state
ment, or the name of an array
that contains an object-time
format.

is optional ; and, specifies
the numbE:r of a statement to
which control is given when
an error condition 1s
encountered

is optional; and, is an I 10
list. The 1/ 0 list must not
contain the associated
variable.

5.3.1.14 Direct-Access WRITE Statement

The WRITE statement causes data to be transferred from
internal storage to a direct-access device. The statement
has the general form

where

WRITE (a'r,b)list

a

r

b

specifies the unit number and
must be followed by an apostrophe.

represents the relative position
of a record within the file.

is optional; and, if given, is
either the statement number of
the FORMAT statement, or the

list

name of an array that contains
an object-time format.

is optional; and, is an l / 0
list The list must not
contain the associated vari·
able.

5.3.1.15 FIND Statement

The FIND statement causes the next input record to be
found while the present record is being processed. The
statement has the general form

where

FIND (a'r)

a

r

specifies the unit number and must
be followed by an apostrophe.

represents the relative position of
a record within the f ile.

At the conclustion of a FIND operation, the associated
variable points to the record found .

5.3.1.16 DATA Statement

The DATA statement is used to define initial values of
variables, array elements, and arrays. This statement
cannot precede any specificat ion statement that refers to
the same variables, array elements, or arrays. The DATA
statement may not precede an IMPLICIT statement It has
the. general form

where

DATA k/ d /, ...

k is a list containing variables,
array elements, or array names.

d is a list of constants (integer,
real, complex, hexadecimal, logical ,
or literal), any of which may be
preceded by i *, where i *
indicates that the constant is to
be specified i times.

5.3.1.17 TITLE Statement

The TITLE statement declares a module name which is
output to the top of each page of the source list ing and to
the object module. It has the general form

TITLE name

where

name

LANGUAGE PROCESSORS

is the title to be output.
The t it le contains up to
eight characters, and is
output in the object text
as the name by which the
program is to be referenced
by SMAIN.

If a TITLE statement is used, it must be the first source
statement. A TITLE statement forces a page eject on the LO
listing.

5.3.1.18 Subprogram Multiple Entry

VORTEX FORTRAN IV facilitiates mu lt iple entry into
SUBROUTINE and FUNCTION subprograms by specifying a
CALL statement or a FUNCTION reference that refers to an
ENTRY statement in the subprogram. Entry is made at the
first executable statement following the ENTRY statement.
The statement has the general form

where

ENTRY name(al ,a2,a3), ...

name

a

is the name of an entry point.

is a dummy argument corresponding
to an actual argument in a CALL
statement or FUNCTION reference.

5.3.1.19 SUBROUTINE Subprogram

The SUBROUTINE subprogram may contain any FORTRAN
IV statement except a FUNCTION statement, another
SUBROUTI NE statement, or an BLOCK DATA statement If
an IMPLICIT statement is specified, it must immediately
follow the SUBROUTINE statement. SUBROUTINE has the
genera l form

where

SUBROUTINE name(al,a2,a3), ...

name is the SUBROUTINE name.

a is a distinct dummy argument.
Each argument used must be a
variable or array name, the dummy
name of another SUBROUTINE, FUNCTION
subprogram, or an asterisk "*"

which denotes a return point specified
by a statement number in the calling
program.

The actual arguments can be:

5-17

-·- ---4·------·--~--------- --· - -· ----·-··~ ------ ---~~--- -- -~- - ---- #_ ._ ,. _ ___ ,. _ _ _ _ --- ---·· ~- -

LANGUAGE PROCESSORS

• A li teral, arithmetic, or logical constant

• Any type of variable or array element

• Any type of array name

• Any type of arithmet ic or logical expression

• The name of a FUNCTION or SUBROUTINE
subprogram

• A statement number

5.3.1.20 FUNCTION Subprogram

The FUNCTION subprogram is an independent subprogram
consisting of a FUNCTION statement and at least one
RETURN statement. It has the general form

type FUNCTION name*s(al,a2,a3), ... ,

where

type

name

•s

a

is INTEGER, REAL, DOUBLE
PRECISION, COMPLEX, or
LOGICAL. Its inclusion
is optional.

is the name of the

FUNCTION.

represents one of the
permissible length
specifications.

is a dummy argument or
dummay SUBROUTINE name or
other FUNCTION subprogram.

5.3.1.21 Subscripts

A subscript is a set of integer subscript quantities that are
associated with an array name to identify a particular
element of the array. A maximum of seven subscript
quantities, separated by commas, can appear in a
subscript. The following rules apply to the construction of
subscript quantities:

• Subscript quant ities may contain arithmetic
expressions that use any of the arithmetic operators:

+ * I ** ' . , ' ,

• Subscript quantities may contain FUNCTION
references

• Subscript quantities m ay conta in array elements

• In teger and real m ixed -mode expressions within
subscript quantities are evaluated according to normal

5·18

FORTRAN rules. If the evaluated expression is real, it
is converted to integer

• The evaluated result of a subscript quantity should
always be greater than zero

5.3.1.22 Z Format Code

The hexadecimal Z format code causes a st r ing of
hexadecimal digits to be interpreted as a hexadecimal
value and to be associated with the corresponding I / 0 list
element for purposes of data transmitting. It has the
general form

Zw

where

w denotes a str ing of hexadecima l
d igits. The maximum value that
can be read is FFFFFFFFFFFFFFFF

On input, if an input field contains an odd number of
digits, the number will be padded on the left with a
hexadecimal zero when it is stored.

On output, if the number of characters in the storage
location is less than w, the left -most print positions are
filled with blanks. If the number of characters in the
storage location is greater than w, the left-most digits are
truncated and the rest of the number is printed.

5.3.2 Execution-Time l / 0 Units

All FORTRAN 1/ 0 statements (FORTRAN IV manual)
include a FORTRAN unit nu~ber (FUN) or name, which
may or may not be identical with the logical unit containing
the required file(s). Four different cases of FORTRAN units
must be distinguished as indicated in figure 5·4.

Case 1, non-RMD unit: The logical-unit number is
assigned to the device by SGEN (section 15) or by the JCP
/ ASSIGN directive (section 4.2.6), where the FORTRAN unit
number is identical with that of the f ile unit. Thus, to
rewind the PO logical unit (unit 10, m agnetic-tape unit 0),
the job stack can be:

•
•
•
I ASSIGN,PO•MTOO
/ FORT
•
•
•

REWIND 10
•

•

- ·- -· ·--- ·- -- . ·- . .. - ·- · ·- - ·-·- -----

LANGUAGE PROCESSORS

Case 2, RMD file executing in background only: The JCP
/ PFILE directive (section 4.2. 11) positions the PI unit to a
background reassignable logical unit, and loads a global
FCB. As in case 1, the FORTRAN unit number is identical
with that of the file unit. Thus, to read the file FILE! on
logical unit 50 (protection code X) where PI is logical unit 4,
the job stack can be:

START

CHECK ACTIVE FCB
CHAIN FOR ONE
ASSOCIATED WITH
FUN

ASSOCIATED
FCB FOUND

YES

CON STRUCT AND
EXECUTE JOC CALL

FINISH

NO

LOG VO ERROR

ABORT

NO

NO

/ FORT,L,B
•
•
•
READ (4 , •.•
•

•

END

FUN
IS AN RMD
PARTITION

YES

YES

YES

CONSTRUCT AND
EXECUTE IOC CALL
(FUN == LUN)

FINISH

NO

CASE

CONSTRUCT DCB AND
EXECUTE IOC CALL
(FUN= LUN)

FINISH

NOTE: THE FORTRAN LOGICAL UNIT FUN IS NOT NECESSARILY IDENTICAL WITH
THE FILE LOGICAL UNIT (LUN) UNLESS SO INDICATED.
VSOPEN OVERRIDES A /PFILE ASSIGNMENT.

VT/1-1445

Figure 5·4 . FORTRAN l / 0 Execution Sequences

5-19

-····-·------------·------------~-- - ·--·-·----------- ---- --·- '"'--··------ ····-·- -·---· ·- -··--~---·····

LANGUAGE PROCESSORS

IASSIGN,PI•50
IPFILE,4,X,FILE1
I EXECC

Case 3, normal RMD file executing in foreground or
background: the CALL V$0PEN statement associates any
specified RMD file with the FORTRAN unit number. The
CALL V$0PEN statement overrides any / PFILE assignment
(case 2). The format of the statement is:

CALL V$0PEN(fun,lun,name,mode)

where

fun

lun

name

mode

is the name or number of the

FORTRAN unit which may be num·
eric value, defined by a DATA
statement, or an assignment
statement

is the name or number of the
logical unit which may be
numeric value, defined by a
DATA statement, or an assignment
statement

is the name of the 13-word array
containing the file name and the
protection code

is the mode of the I/O-control
open macro (section 3.5.1)

V$0PEN constructs an FCB in the first ten words of the
specified 13-word array, performs an IOC OPEN on this
FCB, and links it with the active FCB chain. The remaining
three words of the array contain an FCB·chain link, the
FORTRAN unit number, and the file logical unit number.
Thus, to reference file FIL on logical unit 20 (protection
code Q) by the number 2, rewinding upon opening, the job
stack can be:

•
•
•

/ FORT
•

•

•

DIMENSION IFCB (13)
DATA IFCB(3)/2H Q/
DATA IFCB(8) ,IFCB(9) ,IFCB (10)/2HFI,2HL ,2H I
•
•

•

CALL V$0 PEN (2,20, IFCB, O)
•
•
•

File Fl L can now be referenced by FORTRAN statements by
using 2 as the designation of the FORTRAN logical unit. For
instance,

5-20

READ (2, .•.

executes an IOC READ call, reading from FIL using IFCB as
the FCB.

Note: V$0PEN sets the record length to 120 words and
the access method to 3, sequential access using relative
VORTEX physical record number within the file. The user
should not change the record length or access method
parameters in the FCB because the FORTRAN Run-Time
1/0 package has reserved only a 120 word buffer.

Any record in a file opened by V$0PEN can be directly
accessed by operating on the FCB array. Thus, using the
job stack in the previous example, record 61 in file FIL is
read by inputting

•
•
•

IFCB(4)•61
READ(2, ...
•
•
•

To dissolve an existing association between an RMD file
and a FORTRAN logical unit, use the CALL V$CLOS
statement of the format.

where

CALL V$CLOS(fun,mod!)

fun is the name or number of the FORTRAN
logical unit

mode is the mode of the I/ O-control CLOSE
macro (section 3.5.2)

Thus, when the processing of file FIL in the previous
example-is complete, to close/ update FIL and take IFCB off
the active FCB chain so that FORTRAN statements with fun
-= 2 no longer reference Fl L, the job stack can be:

•
•
•

CALL VSCLOS(2,1)
•

•
•

Note: the auxiliary FORTRAN l / 0 statements REWIND,
BACKSPACE, and ENDFILE cannot be used with RMD files .
Use instead (where IFCB is the ECB array):

IFCB (4) • 1 For rewind
IFCB (4) • IFCB (4) - 1 For backspace
CALL VSCLOS (fun, 1) For endfile

·-- - - ---- - - ----- --- - - - - .

Case 4, blocked RMD file executing in foreground or
background: the CALL V$0PNB statement associates any
specified RMD file with a FORTRAN unit number. This
statement overrides any /PFILE statement. The format is:

CALL V$0PNB (fun, lun, name, mode, recsz, buff, rbwfl)

where

fun

lun

is the name or number of the
FORTRAN unit wh ich may be
numeric value, defined in a
DATA statement, or an assign
ment statement

is the name or number of the
file logical unit which may be
numeric value, defined in a DATA
statement, or an assignment
statement

name is the name of a 14-word FCB
array

mode

recsz

buff

rbwfl

is the mode of the I 10 control
OPEN macro

is the logical record s1ze in
words

is the address of a blocking
buffer array

is the read-before-write flag

The first parameters are identical in function to those of
the CALL V$0PEN statement. The other three specify
blocking information.

An RMD file opened by a CALL V$0PNB statement is
processed as though it were a consecut ive series of logical
records, each one recsz words in length. These logica l
records continue across physical record boundaries with no
space wasted (except possibly at the end of file). Input and
output is buffered through the user-supplied buffer array
buff as specified above.

Since actual physical l / 0 is performed on buff, the file must
be large enough to do 1/0 on the end of the last logical
record. It is sufficient to allocate RMD space for one more
logical record than will ever be used.

It is the user's responsibility to declare the size of the
buffer array buff sufficiently large, remembering that it is a
function of the logical record size recsz, that it must be a
multiple of the basic record size of 120, and that it must be
large enough to include enough basic 120-word physical
records to cover a logical record, even though the physical
record may overlap the physical record boundaries. The
following tables specify all conditions, where:

LANGUAGE PROCESSORS

Q(x/y) means the quotient of x/ y
R(x/ y) means the remainder of x/ y

recsz < 12 0

R(l20/ recsz)

recsz > 120

0
¢ 0

R(recsz / 120)

Size of Array Buff

120 words
240 words

Size of Array Buff

0 recsz
= 1 120 * (1 + Q(recsz /120))
> 1 120•(2+Q(recsz/ 120))

If recsz is not a multiple or factor of 120 words, the
blocking buffer buff must allow room for an extra 120-word
physical record at the start or end of a logical record .

On a WRITE operation where recsz is not a multiple of 120
words, data on the RMD can be overwritten unless a read
before-write is performed. In some situations, such as
initia l f ile creation in a strictly sequentia l fashion , this is
unnecessary and slow.

The parameter rbwfl allows the user to select this feature.
If rbwfl is zero, read-before-write is disabled. Any non-zero
value enables read -before-write.

Example: An RMD file opened by CALL V$0PNB can be
accessed randomly, as with CALL V$0PEN , by a replace
ment statement using the logical record number.

/FORT
DIMENSION IFCB(14),IBUFF(120)

DATA IFCB(3),IFCB(8),IFCB(9),IFCB(10)
/0,2HBL,2HFI,2HLE/

CALL V$0PNB(2, 10, IFCB, 0, 10, IBUFF, 1)
IFCB (4) • 5
READ (2) I
READ (2) J

This sequence causes the unkeyed file name BLFILE on
logical unit 10 to be opened and assigned FORTRAN unit
number 2. The first READ statement causes the entire f irst
120-word physical record (first 12 logical records) to be
input into blocking buffer IBUFF, and the first word of the
fifth logical record to be transferred to I _ The second READ
would not require another physical input for record 6 in
IBUFF. This READ statement would simply transfer the f irst
word of logica l record 6 to J.

To flush the blocking buffer, close the file and disassociate
the FORTRAN and logical unit numbers the CALL V$CLSB
statement is provided. Its format is:

CALL V$CLSB (fun,mode)

5-21

oM~--·-M-·-···-·-·---------------·------------· _ .. _____ .._, __________ _. ___ ·----------- ··- ·--·----· ••••

- - · -- -

LANGUAGE PROCESSORS

where

fun

mode

is the FORTRAN unit number

is the mode of the l / 0 control CLOSE
macro

The end-of-file information in a FILE NAME DIRECTORY
refers to a physical 120·word record number. Therefore, if
logical record size is not a multiple of 120 words, the user
may need to define his own end·of.file mark. Close and
Update, Open and Leave, and IOCHK (section 5.3.4) EOF
features all operate on this File Name Directory parameter
referring strictly to 120-word physica l record numbers.

5.3.3 Runtime 1/ 0 Exceptions

The FORTRAN runtime l/ 0 program allows a program to
detect l / 0 errors and end-of-file or end-of-device condi
tions. Status of a READ or WRITE operation is available
immediately after the operation is complete and before
another l / 0 operation is executed. This status can be
checked by executing a subroutine or function ca ll in the
form.

CALL IOCHK(status)

where status is the name of an integer variable which is to
receive the result of the status check.

If the last l / 0 operation had been completed normally, the
value of zero will be returned. If an error had occurred, the
value minus one is returned. If either an end-of-file or an
end-of-device had occurred, the value positive one will be
returned.

The status may be checked and the result tested in a single
statement by use of the form:

If (IOCHK(status)) label(l), label(2), label(3)

where

status

label(\)

5-22

is the name of an integer
variable wh ich receives the
result of the status check.
A value of zero indicates
normal completion. A neg
ative non.zero value indi·
cates an error. A positive
non·zero value indicates
EOF or EOD.

is a statement label
to which control is
transferred, if an l / 0
error occurred.

label(2)

label(3)

is a statement label to
which control is to be
transferred if the op
eration was completed
normally.

is a statement label to
which control is trans
ferred, if an end-of-file
or end-of-device was en
countered.

If the program does not check the status of a READ or
WRITE operation in which an error occurs, FORTRAN will
abort execution of the task upon the next entry to the
runtime l /0 routine. At that time the diagnostic message
will be output to the System Output device. Any data which
is input to a read in wh ich an error occurred will be inval id.
After a call to IOCHK is executed, any error status is reset
and the program may proceed with addit ional input and/ or
output.

5.3.4 Reentrant Runtime 1/ 0

The VORTEX runtime l /0 program processes all FORTRAN
READ, WRITE, auxiliary 1/ 0 , and open and close state·
ments at execution time. It is composed of two modules,
V$FORTIO and the reentrant task V$RERR. Both are in the
OM library. V$RERR is also in the nucleus portion of the
SGL. SGEN then automatically loads V$RERR in the
VORTEX nucleus, and all FORTRAN programs automati
cally link to it. If V$RERR is not desired in the VORTEX
nucleus, the SGEN directive DEL, V$RERR must be entered
during system generation. Each FORTRAN program will
then get its own copy of V$RERR from the OM library.
V$RERR is approximately 3K words long.

5.4 RPG IV COMPILER

5.4.1 Introduction

The VORTEX RPG IV System is a software package for
general data processing applications. It combines verstile
file and record defining capabilities with powerful process·
ing statements to solve a wide range of applications. It is
particularly effective in processing data for reports. The
VORTEX RPG IV system consists of the RPG IV compiler
and RPG IV runtime/loader program.

The VORTEX RPG IV compiler and the runtime/ loader
execute as level zero background programs in unprotected
memory. Both the compiler and the runtime/ loader will
operate in 6K of memory with limited work stack space.
The stack space may be expanded and consequently larger
RPG programs compiled and executed by use of the / MEM
directive.

--- - · .

The RPG IV language and its compilation and execution
under VORTEX are described in the Sperry Univac 70/620
RPG IV User's Manual (98A 9947 03x).

Error messages applicable to the RPG IV compiler are given
in Appendix A.

5.4.2 RPG IV l / 0 Units

The RPG IV compiler reads source records from the
Processor Input (PI) file, write object records on the Binary
Output (BO) file, and lists the source program on the List
Output (LO) file.

The RPG IV runtime/ loader will normally load the RPG
object program from the Binary Input (BI) f ile. When the
program executes, the READ CARD, PUNCH and PRINT
statements are performed on logical units 13, 14, and 15
respectively, statements for performing input and output to
logical units 16 through 22.

5.4.3 Compiler and Runtime Execution

The RPG compiler and the runtime package should be
cataloged into the background library (BL) using LMGEN.

The compiler and runtime package should be defined as
background unprotected tasks with the names PRGC and
RPGRT, respectively.

The compiler is scheduled from the background library by
the directive

/ LOAD,RPGC

The compiler terminates when the required END statement
in the RPG program is encountered. The compi ler exits to
the executive. There is no provision for stacking multiple
compilations or for operating in compile-and-go mode.

The compiler rewinds the PI , BO, and LO files at the
beginning of the compilation.

The runtime/ loader is scheduled from the background
library by the directive

/ LOAD,RPGRT

The loader expects the RPG object program is on the Binary
Input (BI), and loads and executes it. If the load directive
contains the name of an RPG program to be loaded in the
form,

/ LOAD,RPGRT,name

the runtime/ loader will assume the program mentioned is
in the background library and will load it from there. An
RPG object program may be 'cataloged ' into the back
ground library by creating a directory entry and allocating
fi le space with FMAIN and copying the RPG object program
into the file with IOUTIL.

LANGUAGE PROCESSORS

5.5 RPG II COMPILER

5.5.1 Introduction

The VORTEX RPG II System is an industry compatible
software package for general data processing applications.
It combines versatile file and record defining capabilities
with powerful process ing statements to solve a wide range
of applications. It is particulary effect ive in processing data
for reports. The VORTEX RPG II system consists of the RPG
II compiler and RPG II runtime interpreter.

The VORTEX RPG II compiler executes as a level one
background program in unprotected memory. The compiler
will operate in 4K of memory with limited work space. The
work space may be expanded and consequently larger RPG
programs may be compiied by use of the / MEM directive.

The RPG II language, and its compilation and execution
under VORTEX is described in the RPG II User's Manual.

5.5.2 RPG II 1/ 0 Units

The RPG II compiler reads source records from the
Processor Input (PI) f ile, writes object records on the
Binary Output (BO) file, and lists the source program on
the List Output (LO) file. Opt ionally, object records may be
written on the GO file.

5.5.3 Compiler and Runtime Execution

The RPG II compiler and the runtime package should be
cataloged into the background library (BL) using LMGEN.

The compiler and runtime package should be defined as a
background unprotected task, with the name RPG.

The compiler is scheduled from the background library by
the directive:

IRPG

The compiler terminates when the requ ired !'-' statement in
the RPG program is encountered. The compiler exits to the
executive. There is no provision for stacking multiple
compi lat ions or for operating in compi le-and-go mode.

The compiler rewinds PI , BO, and LO files at the beginning
of the compilation.

An RPG object program may be 'cata loged' into the
background library by creating a directory entry and
allocating file space with FMAI N and copying the RPG
object program into the f ile with IOUTIL.

5-23

·------------------~ .. - .. - - - - ---- ____ ,... __ -·-· __ ----- --- --· . ·-·--·

•

- ··

SECTION 6

LOAD-MODULE GENERATOR

The load-module generator (LMGEN) is a background task
that generates background and foreground tasks from
relocatable object modules. The tasks can be generated
with or without overlays, and are ~n a form called load
modules.

To be scheduled for execution within the VORTEX operating
system, all tasks must be generated as load modules.

6.1 ORGANIZATION

LMGEN is scheduled for execution by inputting the job
control processor (JCP) directive I LMGEN (section 4.2.19).

LMGEN has a symbol-table area for 200 symbols at five
words per symbol. To increase th is area, input a ! MEM
directive (section 4.2.5), where each 512-word block will
enlarge the capacity of the table by 100 symbols.

INPUTS to the LMGEN comprise:

• Load-module generator directives (sect ion 6.2) input
through the Sllogical unit.

• Relocatable object modules from which the load module
is generated.

• Error-recovery inputs entered via the SO logical unit.

Load-module generator directives define the load module
to be generated. They specify the task types (unprotected
background or protected foreground) and the locations of
the object modules to be used for generation of the load
modules. The directives supply information for the catalog
ing of files, i.e., for storage of the f iles and the generat ion
of fi le-directory entries for them. LMGEN directives also
provide overlay and loading information. The directives are
input through the Sl logical unit and listed on the LO
logical unit. If the Sl logical unit is a Teletype or a CRT
device, the message LMu is output on it to indicate that
the Sl unit is waiting for LMGEN input.

Relocatable object modules are used by LMGEN to
generate the load modules. The outputs from both the DAS
MR assembler and the FORTRAN compiler are in the form
of relocatable object modules. Relocatable object modules
can reside on any VORTEX system logical unit and are
loaded until an end-of-file mark is found. The last execution
address encountered wh ile generating a segment (root or
overlay, sect ion 6.1.1) becomes the execution address for
that segment. (Note: If the load module being generated is

a foreground task, no object module loaded can contain
instructions that use addressing modes utilizing the first
2K of memory, other than the base page (page 0). No
assembler generated indirects or literals are allowed.

A VORTEX physical record on an RMD is 120 words. Object
module records are blocked two 60-word records per
VORTEX physical record. However, in the case of an RMD
assigned as the Sl logical unit , object modules are not
blocked but assumed to be one object module· record per
physical record .

Error-recovery inputs are entered by the operator on the
SO logical unit to recover from errors in load-module
generation. Error messages applicable to this component
are given in Appendix A.6.

Recovery from the type of error represented by invalid
directives or parameters is by either of the following:

a. Input the character C on the SO unit, thus directing
LMGEN to go to the Sl unit for the next directive.

b. Input the corrected directive on the SO unit for
processing. The next LMGEN directive is then input
from the Sl unit.

If recovery is not desired, input a JCP directive (section
4.2) on the SO unit to abort the LMGEN task and schedule
the JCP for execution. (Note: An irrecoverab le error, e.g.,
l / 0 device fa ilure, causes LMGEN to abort. Examine the
I t O error messages and directive inputs to determine the
source of such an error.)

OUTPUTS from the LMGEN comprise:

• Load modules generated by the LMGEN

• Error messages

• Load-module maps output upon completion of a load-
module generation

load modules are LMGEN-generated absolute or relocat
able tasks with or without overlays. They contain all
information required for execution under the VORTEX
operating system. During their generat ion, LMGEN uses the
SW logical unit as a work unit. Upon completion of the
load-module generation, the module is thus resident on the
SW unit. LMGEN can then specify that the module be
cataloged on another unit, if requ ired, and output the load
module to that unit. Figure 6-1 shows the structure of a
load module.

6-1

--- ··- ·· ·
•

LOAD-MODULE GENERATOR

Foreground Global
Blank Common FCBs

Nucleus Table Nucleus Table
Module Module

Unused Unused

Programs Programs

Named Named
Common Common

Overlay Overlay
Information Information

01000 01000
Page 0 Page 0

Data Data
0 0

Foreground Background

All foreground tasks share the foreground blank common
area but may have their own named common area.

Figure 6-1. Load-Module Overlay Structure (virtual memory)

Note: LMGEN locks out the partition while it is modifying
the directory.

Load-module maps are output on the LO logical unit upon
completion of the load-module generation, unless sup·
pressed. The maps show all entry and external names and
labeled data blocks. They also describe the items given as
defined or undefined, and as absolute or relocatable, and
indicate the relative location of the items. The load-module
map lists the items in the format, four entries per line:

Error messages applicable to the load-module generator
are output on the SO and LO logical units. The individual
messages, errors, and possible recovery actions are given in
appendix A.6.

Error messages which apply to problems with a particular
object module will include the title of the object module
to which the error relates.

Print position 2345678 9 10 11 12 13 14 15 16

where

item

b

X

location

6-2

item b X b

is a left-justified entry or external name or
labeled data block

is a blank

is A for an absolute or R for a relocatable item

is the left-justified relative location of the item

location

The load-module map is sorted in alphabetical order
(right justified) by default. An additional numerically
sorted map may be output by specifying the 'X' option
(see section 4.2.19).

· · ~ - ··- - -- -- ·------... - ·. ·--- · . - ·-- -- - ---·- - -

The following appear at the end of the LMGEN map.

[$ lAP]

[$LIT]

($PED]

Top of indirect address pool, wh ich
begins at 0500

Bottom of litera l pool, which begins at
0777

Last loaded location. Foreground, word
size of load module. Background , last
location loaded (loading begins at
01000).

LMGEN performs special handling for an external of the
form 'V$PED'. LMGEN satisf ies this external with the last
loaded location plus one of the load modules for both
overlayed and non-overlayed tasks. This external can be
used for specifying table areas behind tasks that link with
external routines.

6. 1. 1 Overlays

Load modules can be generated with or without overlays.
Load modules with overlays are generated when task
requ irements exceed core allocation. In this case, the task
is divided into overlay segments that can be called as
requ ired . Load modules with overlays are generated by use
of the OV direct ive (section 6.2.3) and comprise a root
segment and two or more overlay segments (figure 6·1).
but only the root segment and one overlay segment can be
in memory at any given t ime. Overlays can contain
executable codes, data, or both.

When a load module with overlays is loaded, control
transfers to the root segment, which is in main memory.
The root segment can then call overlay segments as
required .

Called overlay segments may or may not be executed,
depending on the nature of the segment. It can be an
executable rout ine, or it can be a table called for searching
or manipulation , for example. Whether or not the segment
consists of executable data, it must have an entry point.

The generation of the load module begins with the root
segment, but overlay segments can be generated in any
order.

The root segment can reference only addresses contained
with in itself. An overlay segment can reference addresses
contained with in itself or with in the root segment. Thus, all .
entry points referenced within the root segment or an .
overlay segment are defined for that segment and
segments subordinate to it. if any.

For an explanation of DAS MR and FORTRAN calls to
overlays see section 2.1.8.

LOAD-MODULE GENERATOR

6 .1.2 Common

Common is the area of memory used by linked programs
for data storage, i.e., an area common to more than one
program. There are two types of common: named common
and b lank common. (Refer to the FORTRAN IV Reference

Manual, document number 98 A 9902 03x. or the OAS MR
COMN directive description in the computer handbook, for
the system being used.

Named common is contained with in a task and is used for
communication among the subprograms with in that task.

Blank common can be used like named common or for
communication among foreground tasks.

The extent of blank common for foreground tasks is
determined at system generation time. The size of the
foreground blank common can vary within each task
without disturbing the positional relationship of en tr ies but
cannot exceed the limits set at system generation time.

The extent of blank common for background tasks is
allocated with in the load module. The size of the back·
ground blank common can vary with in each task , but the
combined area of the load module and common cannot
exceed available memory.

Each blank common is accessible only by the correspond·
ing tasks, i.e. , foreground tasks use only foreground blank
common, and background tasks use on ly background
blank common.

All definitions of named and blank common areas for a
given load module must be in the first object module
loaded to generate that load module.

6.1.3 Shared Procedures

Load modules can be generated with or without shared
procedures. Shared procedures are uniquely defined
(shared procedure checksum) by name (1 to 6 ASCII
characters), size, logical starting address, and external and
entry point resolution. Shared procedures should be
reentrant programs with no internal modification.

When a task with shared procedures is initiated, VORTEX
will search for a previously loaded shared procedure with
the same checksum. If one is found currently loaded, the
shared procedure will not be loaded, but the remainder of
the task will be loaded and the shared procedure currently
in memory will be mapped into the task logical memory
space. The shared procedure will be "shared" by two
differen t tasks. Only one copy of the shared procedure will
occupy physica l memory.

Load module generation with shared procedures has the
following restr ictions:

6·3

·- ----- ·------- ·--·--· .. -· -..-~--------· .. ~-·- -----· , ... _. -----·-·- .. _ ... ···-----·----~ ·--·- -.. ··-·-~'"·--·· ·-

LOAD-MODULE GENERATOR

a. A load module may have up to ten shared procedures

b . All shared procedures must be loaded before any non
shared object modules

c. Each shared procedure must have no unresolved
externals at the completion of shared procedure
generation (externals may be satisfied by previously
loaded shared procedures or the LIB directive)

d . Generation of a shared procedure is terminated by a
LIB directive

6.2 LOAD-MODULE GENERATOR DIRECTIVES

• TIDB Create task-identification block .
• LD Load relocatable object modules
• ov Overlay
• LIB Library search
• CLD Load relocatable object modules

without re-opening or repositioning
• MEM Default extra memory pages
• SP Create shared procedure

• END

Load-module generator directives begin in column 1 and
comprise sequences of character strings having no embed·
ded blanks. The character strings are separated by
commas {,) or by equal signs (=). The d irectives are free
form and blanks are permitted between the individual
character strings of the directives, i.e. , before or after
commas (or equal signs). Although not required , a period
(.) is a line terminator. Comments can be inserted after the
period.

The general form of a load-module generator d irective is

where

name,p(l), p(2), ... ,p(n)

name

each p(n)
(if any)

is one of the directive names given above

is a parameter required by the
directive and defined below
under the descriptions of the
individual directives

Numerica l data can be octal or decimal. Each octal number
has a leading zero.

For greater clarity in the descriptions of the directives,
optional periods, optional blank separators between
character strings, and the optional replacement of commas
{,) by equal signs (=) are omitted.

Error messages applicable to load-module generator direc
tives are given in Appendix A.6.

6-4

6.2.1 TIDB (Task-Identification Block)
Directive

This directive must be input before any other LMGEN
directives can be accepted. It permits task scheduling and
execution, and specifies the overlay and debugging charac
teristics of the task. The directive has the general form

TIDB,name, type, segments, DEBUG, ropages

where

name

type

is the name (1 to 6 ASCII characters) of
the task

is 1 for an unprotected background task
on BL, or 2 for a protected foreground
task or 3 for a background task on an
alternate library

segments is the number (2 to 9999) of overlay
segments in a task with overlays, or 0 for
a task without overlays (note that the
number 1 is invalid)

DEBUG is present when debugging is desired

ropages is an optional reacf-only page specifier
(1-77). It can be a single number or a
range of consecutive numbers (e.g., 3,5).

The DEBUG parameter includes the DEBUG object module
as part of the task. If the task is a load module without
overlays, DEBUG is the last object module loaded. If the
task is a load module with overlays, DEBUG is the last
object module loaded in the root segment (section 6. 1.1).

The ropage parameter allows specification of a range of
virtual pages as read-only.

Examples: Specify an unprotected background task
named DUMP as having no overlays but with debugging
capability.

TIDB,DUMP,1,0,DEBUG

Specify a protected foreground task named PROC as
having a root segment and four overlay segments.

TIDB,PROC,2,4

6.2.2 LD (load) Directive

This directive specifies the logical unit from which relocat
able object modules are to be loaded. It has the general

form

LD,Iun,key, file

for loading from RMD logica l units, and

LD,Iun

for loading from any other logica l unit, where

lun

key

fi le

is the name or number of the logical un it
where the object module resides

is the protection code required to
address lun

is the name of the RMD file

From the object modules, LMGEN generates load modules
(with or without overlays) on the SW logical unit. Load ing of
object modules from the specified logical un it continues
unt il an end-of-f ile mark or an end-of-load module record
(appendix G.6) is encountered.

Successive LD directives permit the loading of object
modules that reside on different logical uni ts. The execu
tion address for the load module is the last encounter
execution address.

Examples: Load the relocata ble object modules from
logical unit 6 (BI) until an end-of-file mark is encountered.

LD,6

Open a file named DUMP on logical unit 9 (GO) with no
protection code. (LMGEN loads the relocatable object
modules and closes the f ile.)

LD,9,,DUMP

6.2.3 OV (Overlay) Directive

This directive specifies that the named segment IS an
overlay segment. It has the general form

OV,segname

where segname is the name (1 to 6 ASCI I characters) of
the overlay segment.

Example: Specify SINE as an overlay segment.

OV,SINE

6.2.4 LIB (library) Directive

This directive indicates that all load (LD, section 6.2.2)
directives have been input, i.e., all object modules have
been loaded except those required to satisfy undefined
externals. LIB also specifies the libraries to be searched
(and the order in which the search is made) to satisfy all
undefined externals. The d irective has the general form

LIB, fun(1), key(l),lun(2), key(2) , ... ,lun(n), key(n)

LOAD-MODULE GENERATOR

where

each lun(n) is the name or number of a resident
library RMD logical unit to be searched

each key(n) is the protection code requi red to
address the preceding logical unit

The search is conducted in the order in wh ich the logical
units are given in the LIB direct ive. When not specified by
LIB, the core-resident (CL) and object-module (OM)
libraries are searched after all specified libraries have been
searched. However, if LIB specifies the CL and/or OM
libraries, they are searched in the order given in Ll B.

If the generat ion of the load module involves overlays, a LIB
directive follows each overlay generation.

Examples: Specify to the LMGEN a sequence of libraries
to be searched to satisfy undefined externals. Use logical
un it 115, a user library, having protection code M; followed
by logical unit 103, the CL library, having protection code
C; and the OM library, having protect ion code D. (Because
the last two libraries are searched in any case, note that
the two inputs following are equivalent.) Input

LIB, 115,M, 103,C, 104,0

or, more briefly,

LIB,115,M

To change the order of search to logical units 104, 115, and
103, input

LIB, 104,0, 115,M, 103,C

or, more br iefly,

LIB,104,0,1 15, M

To search only the CL and OM libraries to satisfy undefined
externals, input

LIB

6.2.5 END Directive

Th is directive term inates the generation of t he load module
and, if specified, causes the creat ion of a f ile and a
directory entry (section 9) for the load-module conten ts on
the indicated logical unit. The indicated logical un it, if any,
is an RMD, and thus may require a protection code. The
d irective has the general form

END,Iun,key

6-5

........... -- ···· -- ----·--- -·- ~--·-----... ··-... ··-·--·--------···--- -------------·----·----··----------- ·-- - -- - - -- - -· ·---·----

LOAD-MODULE GENERA TOR

where

fun

key

is the name or number of the logical unit
on which the file containing the load
module will reside

is the protection code, if any, required to
address /un

If Tl DB (section 6.2.1) specified an unprotected back
ground task (TIDB directive type = 1), the logical unit, if
any, specified by the END directive must be that of the BL
unit, i.e., unit 105. If TIDB specified a protected foreground
task (TIDB directive type = 2), the logical unit, if any,
specified by the END directive must be that of the FL unit,
i.e., unit 106, or that of any available assigned RMD
partition. If TIDB specif ied an alternate library background
task (TIDB directive type = 3), the logical unit, if any,
specified by the END directive, may be that of any available
assigned RMD partition.

If the END directive does not specify a logical unit, the load
module resides on the SW logical unit only.

If there are still undefined externals, the load module is not
cataloged even if END speci.fies a legal logical unit. In this
case, the load module resides on the SW unit only.

Examples: Specify that the load module is complete (no
more inputs to be made), create a file and a directory entry
on the BL logical unit (105), and catalog the module. The
protection code is E. (Note: The load module will also
reside on the SW unit.)

END,105,E

Specify that the load module is complete (no more inputs to
be made) and is to reside on the SW unit only.

END

6.2.6 CLD Directive

Th is directive specifies the logical unit from which relocat·
able object modules are to be loaded. It has the general
forms

CLD,Iun,key, file

or

CLD,Iun

Where use of the two forms and the meaning of lun, key,
and file is as for the LD directive (section 6.2.2). This
directive specifies the same action as for the LD directive
except that successive CLD directives do not cause re·
opening or repositioning of the specified logical unit.

6 -6

6.2.7 MEM (Memory) Directive

This optional directive is used to specify the default
number of extra memory blocks to be attached to a
background task in a similar manner to the /MEM
directive of JCP. This value is in addition to a / MEM
request and is stored in word 12 of the task's pseudo Tl DB.
The directive has the general form

MEM,n

where

n is the number of 512 word blocks
(pages)

This directive, if used, must appear after the last LIB
directive and before the END directive.

6.2.8 SP (Shared Procedure) Directive

This directive specifies that a shared procedure is to be
generated as part of the load module. lt. has the general
form

SP,name

where

name is the name (1 to 6
ASCII characters) of
the shared procedure

Example: Specify AI DX as the name of the shared
procedure.

SP,AIDX

6.3 SAMPLE DECKS FOR LMGEN
OPERATIONS

Example 1: Card and Teletype Input

Generate a background task without overlays using LMGEN
with control records input from the Teletype and object
module(s) on cards. Assign the Bl logical unit to card
reader unit CROO. Assign the task name EXC4 and catalog
to the BL logical unit, and load DEBUG as part of the task
from the OM library.

(J.OB I EXAKPLE4
I ASSIGN,BI•CROO
I LMGEN
TIDB,EXC4,1,0,DEBUG
LD,BI
LIB
END,BL,E
/ENDJOB

(Teletype input)

Note: The object module deck must be followed by an
end of file (2· 7 ·8-9 in card column 1).

-· . . - -- ----- --- - ·-· - - ------- - -------- ·-.

Example 2: Card Input

Generate a foreground task with overlays using LMGEN
with control records and object modules input from the
card reader. Assign the Bl and Sl logical units to card
reader unit CROO. Assign the task name EXC5, overlay
names SGMl , SGM2, and SGM3, and catalog to the FL
logical unit.

IJOB,EXAMPLES
IASS IGN,BI•CROO,SI•CROO

•
(Deck)

•
/LMGEN
TIDB,EXC5,2,3
LD,BI
(Object Module(s) ·· root segment)

(End of File)
LIB
OV,SGM1
LD,BI
(Object Module(s))

(End of File)
LIB
OV,SGM2
LD,BI
(Object Module(s))

(End of File)
LIB
OV,SGM3
LD,BI
(Object Module(s))

(End of File)
LIB
END,FL,F
/ENDJOB

Example 3: Teletype and RMD Input

Generate a foreground task without overlays using LMGEN
with control records input from the Teletype and object
module(s) from an RMD. The object module resides on
RMD 107 under the name PGEX. Assign the task name
EXC6, search the OM library first to satisfy any undef ined
externals, and catalog on RMD 120.

/JOB, EXAMPLE6
ILMGEN
TIDB,EXC6,2,0
LD,107,Z,PGEX
LIB,OM,D
END, 120, X
I ENDJOB

Example 4: Shared Procedure Generation

Generate a background task with two shared procedures.
Control records are input from the Teletype, and object

- -·----------~--------··--------· -

LOAD-MODULE GENERATOR

modules from an RMD. The first shared procedure is name
PART! and is comprised of object module PRTlOB on RMD
107. The second shared procedure is named PART2 and ·is
comprised of object module PRT20B on RMD 107. The
remainder of the object modules are in the card reader.
The taskname is SHARED and ca taloged to the BL logical
unit.

/JOB,EXAMPLES
IASS IGN,BI•CROO
ILMGEN
TIDB,SHARED,1,0
SP,PART1
LD,107,Z,PRT10B
LIB
SP,PART2
LD,107,Z,PRT20B
LIB
LD,BI
LIB
END,BL,E
/ ENDJOB

6.4 RELINK

RELINK is a background program which is used to "relink"
(reestablish VORTEX nucleus pointers) an existing load
module with a modified nucleus (one recreated with a
SYSGEN and for which changes have been introduced that
moved. certain nucleus pointers or adresses) . The load
module may be restored on a library part ition by any copy
process such as FMUTIL, IOUTIL. or equivalent program.
RELINK makes the load module executable on the new
system without the need to perform an ent ire LMG EN
process. RELI NK needs to be executed only once for each
load module after the nucleus has been modified and the
load module restored. RELINK may also be used for rei inking
a load module that has been transferred from another
system, e.g. through CPU to CPU data links. on disk pack. or
on magnetic tape. This is particularly usef ul in a master
slave configuration where the slave system is not capable of
supporting development activities: programs are compiled
and LMGENed on the host system and transferred to the
slave system.

RELINK uses a Core Resident Symbol Table (CRST) located
at the end of the load module file (this is not part of the user
program space) which has been establ ished by LMGEN.
RELINK extracts entries from this table and searches for the
nucleus pointer name in the system CL directory. When th is
name is found, RELINK " patches" the appropriate locations
in the load module RMD file and continues this process unti l
the CRST table is complete. The VORTEX system loader
(VSSAL) does not use the CRST. since the load module has
been patched. There is no l imit to the number of times an
existing load modu le may be relinked. However. relinking is
possible only if all load module referenced nucleus pointers
exist on the new system on which the load module is to be
re i inked.

6 -7

- - ------·-- - --- -·--- -- ----- - - - -

LOAD-MODULE GENERATOR

Note: The RELINK program cannot be used to relink load
modules cataloged by SYSGEN (e.g _, OPCOM. JCP. FMAIN). tt
may only be usea to rel ink load modules cataloged by LMGEN.

l This means that SYSGEN cataloged modules cannot be
transported from one system to another. AJso, programs which
use Foreground Blank Common cannot be relinked if the
Foreground Blank Common is not currently at the same
address that it occupied when the load module was origM1ally

j catalogued.

REUNK may be executed by JCP command of the form

/ LOAO.RELINK

RELINK will respond with the prompt:

LUN.KEY.LO MODULES

The user then inputs the name of the load modules that are
to be relinked in the format:

LUN.KEY.mod name. mod name, ...

where

LUN

KEY

mod name

is the logical unit number on which the
load module resides (may be lun name)

is the protection key, if any. required for
that LUN

is the name of the load module on that
LUN. or the keyword word " ALL" if aU
load modules on the specified LUN are
to be reltnked.

Up to ten mod names may be specified on a single input line;
however. the directive may not contain any embedded
blanks. since a blank character terminates the directNe-li-ne
processing. AU the .. mod names" must reside on the
specif ied LUN.

A continuation directive may be used for .. mod names" on

6-8 UpdateS

the previously specified LUN b¥ staning the directive with a
comma and omiting the LUN and KEY parameters. A
continuation line may not be used as the f irst directive tine.
Each directive line is processed before the next directive
(either new or continuation) is accepted. If a load module
resides on a different LUN. it must be specified bv a new
directive giving the dirrerent LUN and KEY.

As each load module is relinked, the following message
appears on the SO device:

**xxxxxx REUNKEO ..

where

xxxxxx is the name of the module which has
been rel inked.

The prompt LUN.KEY.LD MODULES occurs oniy once.

To exit from RELINK and return to JCP the user may enter
the comma.,d

END

.
If a directive beginning with a slash Vt is encountered. an
1013 diagnostic message is output and REUNK exits.

Example: Relink the load modules PROGl . PROG2. and
PROG3 from the background library, and load modules
PROG4 and PROG5 from the foreground library.

/ LOAO.RELINK
LUN.KEY.t D MODULES
BLE.PROG 1,PROG2.PROG3
.. PROG 1 RELINKEO**
.. PROG2 RELINKED**
••PROG3 REUNKEo••
FL .. F.PROG4,PROG5
... PROG4 REUNKED* *
PROGS REUNK.ED
END

-··----- -· .. __ ... ----- - --- -
•

. --

SECTION 7

DEBUGGING AIDS

The VORTEX II system contains two debugging aids: the
debugging program (DEBUG) and the snapshot dump
program (SNAP) .

During the execution of DEBUG, the A, B , and X
pseudoregisters save the contents of the real A, B, and X
registers, and restore the contents of these registers before
terminating DEBUG. If the task uses V75. registers, the
contents of R3 through R7 are also saved and restored .

7.1 DEBUGGING PROGRAM

The 1414-word VORTEX debugging program (DEBUG) is
added to a task load module whenever the DEBUG option
is specified by a load-module generator TIDB directive
(sect ion 6.2.1). The DEBUG object module is the last object
module loaded of the root segment if the task is an overlay
load module. The load-module generator sets the load

module execution address equal to that of DEBUG.

When debugging is complete, the input of any job-control
direct ive (sect ion 4.2) return s control to the VORTEX
system.

INPUTS to DEBUG comprise tile directives summarized in
table 7-1 input through the Dl logical unit. When DEBUG is
first entered, it outputs on the Teletype or CRT device the
message DG** followed by the TIDB task name and the
address of the first allocatable memory cell. This message
indicates that the system is ready to accept DEBUG
directives on the Dl unit.

If DEBUG has been attached to the load module, DEBUG w ill
execute when the load module is loaded or scheduled.

Directive

A

Ax

B

Bx

~Rn

~Rnx

Cx

Fx

Gx

lx,y,z

0

p

oc

OL

QSv.w .x.y.z

Sx,y,z,m

Ty,x

Table 7-1. DEBUG Directives

Description

Display and change the contents of the A pseudoregister

Change, but do not display, the contents of the A pseudoregister

Display and change the contents of the B pseudoregister

Change, but do not d isplay, the contents of the B pseudoregister

Display and change the contents of the V75 register n (n = 0-7).

Change, but do not d isplay, the contents of the V75
register n.

Display and change the contents of memory address x

Set base address to value of x

Load the contents of the pseudoregisters into the
respective A, B, and X registers , and transfer to

memory address x

Init ialize memory addresses x through y with the value of z

Display and change the overflow indicator

Read DEBUG directives from Bl unit unt il EOF

Clear all traps and restore original
contents to trap cells

D1splay current trap locations

Place traps at memory addresses v.w.x.v.z

Search memory addresses x through y for the z value,
using mask m

Place a trap at memory address y, starting execution
at address x

7-1

. -- · -··---------~ ~ ·--- ·-·-·-- - - ----- _________ ,. ______ ~ - .-... .. - -·--- - ... _ _______ ~ -·-·- -- ·-·- ---~- -- ~

DEBUGGING AIDS

Directive

Tllble 7-1. DEBUG Oirectiwes (continued)

Description

Ty Place a trap at memory address y, starting execution
at the last trap location

.
X Display and change the contents of the X pseudoregister

Xy Olanee. but do not display, the contents of the X
pseudorecister

ZJUUCII Display the contents of memory address XXUJOC

Display the contents of memory addresses xxxxxx through

YYYY'I'I

• - V75 systems only

Each DEBUG directive has from 0 to 72 characters and is
terminated by a carriage return. Directive parameters are
separated by commas. but DEBUG treats commas. periods.
and equal signs as delimiters.

Numerical data are always interpreted as octal by DEBUG.
Negative numbers are accepted, but they are converted to
their two's complements by DEBUG.

The user may specify a " base address" using the F
command. The purpose of this command is to allow the use
of relocatable addresses in DEBUG. If the base address is
set to the load address of the program being debugged, all
subsequent DEBUG direct ive address parameters will have
this base address added before accessing memory. Thus. an
absolute location may be accessed by specifying its
relocatable address. Also. all addresses output on the DO
log ical unit w ill be relocatable addresses. not absolute
addresses.

The default value for the base address is zero. allowing the
use of absolute addressing. Although the base address can
be changed·at any time. to avoid confusion. the user should
set the base address as desired at t-he start of the debugging
operation and not modify it thereafter.

The base address can be used in a change command which
sets (but does not display)_ memory locat ions. The
parameters to which the base address is to be added should
specify a before the numerical data. These parameters
(normally representing relocatable addresses) will have the
base address added before storing in memory.

l .
Traps can be placed at as many as ftve memory addresses. but
no two of these can be consecutive addresses. tf the user
anempts to place a trap (with the OS or T command) where one
already exists. the trap is left in pJace and processing
continues. An anempt to set more than five different traps will
be unsuccessful and will result in the issuance of an errOf'

T message.

7·2

Update B

An error message, EX20.EX25. is output and the task ts
aborted, if a memory-map protection violation occurs.

OUTPUTS from DEBUG consist of corrections to registers
and memory, displays, listings on the DO logical unit. and
error messages. Numerical data are always to be inter·
preted as octal.

Error messages applicable to the debugging program are
given in Appendix A. 7.

Examples of DEBUG directive usage: Note that , in the
following examples, operator inputs are in bold type.
Entries in italics. are program responses to the d irect rves

Display the contents of a pseudoregister A:

A
(001200)

Display and change the contents of a pseudoregister B:

8
(001200) 010406

Change, but do not d isplay. the contents of a pseudoreg1s·
ter X:

X02050

Display, but do not change. the status of the overflow
indicator:

0
(000001)

Load the contents of the pseudoregisters into the respective
A, B, and X registers, and start execution at memory
address 001001:

GOOlOOl

Initialize memory addresses 000200 through 000210 to the
value 077777:

1000200,000210,077777

Search memory addresses 000200 through 000240 for the
value 000110 using the mask 000770, and display
addresses that compare:

S000200,000240,000110,000770
000220 (0 1 7110)
000234 (000110)
000237 (001110)

Load the contents of the pseudoregisters and the overflow
indicator status into the respective registers, and start
execution at memory address 001234, specifying a trap
address of 001236. Display the contents of the A, 8 , and X
registers and the sett ing of the overflow indicator when the
trap address is encountered:

T001236,001234
001236 (142340) 002000 010405 012345 000001

Execute the same trap if the task uses V75 instructions
(assuming Rn = n):

T001236,001234
001236 (142340) 002000 010405 012345 000001
000003 000004 000005 000006 000007

Display the contents of memory address 001234:

001234
(001200)

Display the contents of memory addresses 001234 through
001237:

001234,001237
001230 005000

Total of 8 values

7.2 SNAPSHOT DUMP PROGRAM

005000

The 294-word snapshot dump program (SNAP) provides on
the DO logical unit both register displays and the contents
of specified areas of memory. It is added to a task load

DEBUGGING AIDS

module if the task contains a SNAP request and calls the
SNAP external routine. SNAP is entered directly upon
execut ion of the SNAP display request CALL SNAP. The
SNAP display request is an integral part of the task and is
assembled with the task directives. Thus, no external
intervention is required to output a SNAP display.

SNAP outputs the message SN* '' followed by the task TIDB
name before listing the requested items. The calling
sequence for a SNAP display is

EXT
CALL
DATA
DATA
DATA

where

start

end

tidb

SNAP
SNAP
start
end
tidb

is the first address whose contents are
to be displayed

is the last address whose contents are to
be displayed

is less than zero if dump of task TIDB is
desired, is positive if TIDB dump is to be
suppressed

If start is a negative number, there is no memory dump. If
more than one location is specified to be displayed. the
output dump will be in complete lines of eight addresses.
e.g., if start is 01231 and end is 01236, the dump will
display the contents of addresses 01230 through 01237,
inclusive. SNAP displays octal data.

If there is an error in the SNAP display request. only the
contents of the A. 8, and X (and V75 if present) registers
and the setting of the overflow indicator are displayed.

Output examples: with the snap request at 01234, display
the contents of the A (017770), B (001244), and X
(037576) registers, and the overflow indicator (on).

SN** TASK0 1
00123 4 017770 00 12 4 4 037576 000001

*000003 000004 000005 000006 000007

Using the same data, display, in addition , the contents of
memory addresses 001002 through 001025, inclusive and
request a dump of the active TIDB.

7·3

. - ·- · ·- ---- -·- .. --·-· -------------·-------~ ------------ -- -- - ···--·-- - ---- ----- -·- --·--·- --- ------ - ·- ·-- ~ -------

DEBUGGING AIDS

SN** SW
001023

•000003

000500
000000 000000
000004 000005

TIDB LOC 055013 •CONTENTS•

055010
055020
055030
055040

•o5505o

000000
001527
000001
000500
000006

SNAP DUMP
oo1ooo oo6:;o5
001010 010002
001020 001101

000000
067001
001541
000000
000007

070275
075334
001101

001023
000006

000000
001326
000002
074627
000000

001402
000000
001014

~ These lines appear only if the task uses V75 register

7.3 SYSTEM MEMORY DUMP

000000
000007

000000
141146
000000
064604
000000

001031
000000
002000

The system memory dump facility consists of the following
three major components:

• DSYSTM and VZRMm (nucleus resident)

• DSPMEM (background task)

• FILl NT (foreground task)

These components combine to provide the user with a
system memory dump under three conditions:

a. pre·determined occurrence of an error

b. at any time by use of the CPU console interrupt

c. upon a system halt

The general run of events leading up to a system memory
dump are:

a. The foreground task FILl NT is activated upon system
boot, opening the appropriate RMD dump file and
transferring control to a portion of the nucleus task
DMEMRY, which saves the RMD set-up information
for later use. Control then returns to FILINT, which
exits.

b. Upon a selected condition (as mentioned above), the
VORTEX system passes control to DSYSTM, which
shuts down VORTEX and dumps all assigned maps to
the previously opened RMD file via a standalone RMD
driver VZRMm. Upon completion of the dump,
DSYSTM updates the f ile number, activates FILINT,
and reactivates VORTEX.

7·4

000001
001000
002000
055075
000000

000050
006505
001107

000000
065604
151727
000003
000000

006505
070137
001000

000000
000007
120240
000004
000000

066270
001005
001027

001527
001302
120240
000005
000000

100000
001101
001000

c. FILINT then outputs the dump file used to the OC
devices and opens the next sequential file. If all files
have been used, FILINT returns to the first file.

d. The user may, at some later point in time, examine the
selected dump file via the background program
DSPMEM.

7.3.1 DSPMEM Program

DSPMEM is a background ut'iity program used to display
the contents of the dump image file created by the VORTEX
II nucleus program DSYSTM. The contents of the file are
formatted and output to the system LO device. DSPMEM is
controlled by directives input from the system Sl device.

7.3.2 DSPMENT Directives

The following are DSPMENT directives:

.FIL

.TID

.TSK

.END

DSPMEM directives begin in column 1 and comprise
sequences of character strings having no embedded
blanks. The character strings are separated by commas.
Embedded blanks are not allowed. The occurrence of the
first blank terminates the directive. The general form of the
directive is

where

name,p(1),p(2),p(3)

name is one of the d irective
names given above

- --- ---- - --------· ·---

•

DEBUGGING AIDS

each
p(n)

is a parameter required
by the individual d irec
t ive (if any exists)

described below.

the TID and TSK directives apply, and has the general form

Error messages applicable to DSPMEM are g1ven in
appendix A.7.

7.3.2.1 Fll (Image File) Direct ive

where

FIL,name

name is the image file name
to be examined.

This d irective must be input before using either the TID or
TSK directives. It is used to specify the image file to which

No further FIL directives are needed until i t is desi red to
examine a different image file. The status at dump t ime is
output to LO in the format

Evoo ~RR-R !f'1 TA 0 1< ... ~. L, L..._ ' · ' · (J . , .__. '•,
t-=1DDF~= 00247 5 , I !'lST =
A=00030 3 8=000200
3= 000000 4=000000

D~9UG
056000

Example: Specify image file IMAGEO to be examined.

FIL,IMAGEO

7.3.2.2 TID (TIDB) Directive

This directive is used to request a list of one or all Tl DBs on
the TIDB chain at DMEMRY dump time. The d irect ive has
the general form

*******DEBUG **:t.****
011000- - TBTHRD= 07 1640 TBST -
011004--TBRSA -- 002476 TBRSB -
011010- - TBRSTS= 143152 TBENTY=
01 1 01 4 --T BISA - 00130 6 TBISB --
011020--TBISRS= 000000 TBIO --
01102 4--TBK!'l3 143640 TBTLC --
011030--TBRSE 0 101 22 TBSIZ -- -
011034--TBIST - 100041 TBRSR3=
011040--TBRSR6= 000000 TBRSR7=
01 1044--TBISR5= 000000 TBISR6=

6=000000

TID,name

where

name is the Tl DB name or
address (in octal);
or the characters
'ALL', signifying
that all Tl DBs are
to be displayed

Format of the Tl D directive output is

00142 1 TEPL :: 0404 02 TEEVNT=
0 00000 TBRSX - 011150 TERSP - -
001 0 00 TBT!1S -- 071527 TBTMIN =
000001 TBISX - 001251 TBISP -- -
000000 TBKN1 - 142305 TBKN2 :: -
001000 TBCPTH"' 00 0000 TBATSK==
008000 TB NUC L = 000001 TBMIMG=
000000 TBRSR4 = 000000 TBRSR5=
000000 TB I SR3 = 000000 TBISR4 "'
000000 TB!SR7= 000000

000000
002613
000000
001237
141325
071767
011050
000000
000000

If the subject Tl DB is a driver Tl DB, then the first f ifteen
words of the controller table (if attached) is output in the
format

CON TROLLER TABLE , FIRST
07 152'?--cr·rrDB= 1 73001
07 1533--CTRQBK= 0 1 1000
071537--CTSTAT• 000000

12 WORDS
CTADNC~
CTR TY =
CT BI CB•

000020
000 '?7 2
000000

C T OP M =
CIDVAT•
CTF CB •

000047
000001
00 4 364

CTDST =
CTIOA ,.
CTWDS •

063~ 80
000000
000000

7-5

.. -- ----. - - .. -·----··----------- ~-- ·--------·- --·- - - ----·- -.. ---~--~-----------·-·~------• + -·-·- - ~ ·- ·- - --· ··-

DEBUGGING AIDS

If request blocks are queued to the controller, then they are
output in the format

REQUEST BLOCK QUEUED TO CONTROLLER
011000--RSTPR = 000000 ROPWD ~ 010002 RFCB = 004364 RTIDB = 011100
011004--RADNR = 000000

-------------------·----------------------·------------------------------

Multiple TID directives can be issued to display more than
one TIDB. The TIDB of the task specified by the TSK
directive is output together with the TSK directive output.
The TID directive is thus not needed if a single TIDB is to
be displayed and the task is to be displayed using the TSK
directive.

Examples: Specify the displaying of all TIDBs at dump
time.

TID,ALL

Specify the displaying of the TIDB for task IOUTIL at dump
time.

TID,IOUTIL

7.3.2.3 TSK (Task) Directive

This directive is used to request a display of a specified
task's memory space at dump time. The directive has the
general form

TSK,name,p(1), ... ,p(n)

where

name is the task TIDB name
or address (in octal)

each
p(i)

is a dump limit para·
meter of the following:

*******DEBUG **:tete+: * *
011000--TBTHRD = 071640
011004- - TBRSA - 002476 -
011010--TBRSTS= 143152
011014--TBI S A - 001306 -
011020--TBISRS = 000000
011024--TBKN3 - 143640 -
011030--TBRSE = 010122
011034--TBI S T • • 100041
011040--TBRSR6= 000000
011044--TBISR5= 000000

MAP 01 TIDB MAP IMAGE
011050--002000 001002
**
011140--000000 000000

7·6

TBST --
TBRSB --
TBENTY =
TBISB =
TBIO --
TBTLC --
TBSIZ --
TBPSR3=
TBF.~ S R 7 =
TBISR6=

001003

00e.e00

p

T

F

is dump through program
region only

to dump through table
region only

to dump through fore·
ground common only

M to not dump mapped-in
page (MAPIN RTE call)

Sxxx where xxx is the starting
page number (octal or
decimal) to dump

Exxx where xxx is the ending
page number (octal or
decimal) to dump

V to exclude the dumping
of VNO tasks. Note: th is
parameter is requ ired to
suppress VNO tasks
even if P, T , F, orE are
specified

blank to dump entire task
space

Parameters P, T, and F are mutually exclusive. The last
encountered parameter takes precedence.

The output of the TSK parameter has the format

001421 TBPL = 040402 TBEVNT= 000000
000000 TBRSX = 011150 TBRSP - 002613 -
001000 TBTMS - 0 7 1 5 2 7 TBTMIN= 000000 -
000001 TBI SX - 001251 TBISP - 0 01237 - -
00000 0 TBKI'll - 142305 TBKN2 - 141325 -
00100 0 TB CPTH= 000000 TBATSK= 071767
006000 TBNUCL= 000001 TBMIMG= 011050
000000 TBRSR4= 000000 TBRSR5= 000000
000000 TBI S R3= 000 000 TBISR4= 000000
000000 TBI S R7= 000000

001004 000000 000000 000000 000000

000000 000000 000000 000000 000000

·- ·· -.

-...

-- ---- --

MAP 01 ACTUAL IMAGE AS READ
0 00000--002000 001002 001003

** 000070--000000 000000 000000

00:!.00 4 000000

000000

000000

000000

DEBUGGING AIDS

000000

000000

000000

000000

PAGE 00, RP ACCESS CON TR OL , PHYSI CAL PAGE 0000
000000--002000 021556 000000 000000 000000
00001 0-- 000000 00000,, 000000 000000 000000
000020- -002000 0 4 3344 002000 043133 002000
000030·- -002000 0 42 763 002000 043103 002000

000000
000000
043113
042757
OJ4272 4

000000
005000
002000
002000
001403
V'l~"'"""""

000000
072153
042773
042757
000000
01~0000

000040--00~- ~t5~ 001000 04 3762 00~
000050-- ' . ,. 1 20?.-A- 1 20241()

where (going from top to bottom) the first section is the
tasks TIDB contents at dump t ime, the second section is
the Tl DB map image as kept in memory, the third section
is the map RAM image as read in, the fourth section is the
task's memory space at dump t ime displayed on a page
basis, and the fifth section (if a map 0 task and VNO
(Virtual Nucleus Over lay) tasks are present) is a dump of
all VNO task on a page basis.

Multiple TSK directives can be issued to display more than
one task. A task 's TIDB address ought to be used, where
the spec ified task has the same Tl DB name as another.

Examples: Specify the displaying of the nucleus memory at
dump time. Use V$EROR as the task name.

TSK,V$EROR

Specify the displaying of the program USEROO memory at
dump time. Display only the program region and do not
display mapped-in pages.

TSK,USEROO,M,P

7.3.2.4 END Directive

Th is directive is employed to exit DSPMEM and return to
JCP. The directive has the form

END

There are no parameters to this d irective.

7.3.2.5 Usage Considerations

An image file is not protected from being used again before
it is examined by DSPMEM. To save a file for later
examination, use FMAIN to rename the f ile to a name
other than I MAG Ex and then create a new image file to
take its place. Note that procedure should not be used if
the system only has one dump image file (IMAGEO).

FILINT uses logica l unit 190 to open the next dump image
file. Attempting to reassign logical unit 190 to another disc
partition or another disc unit or type may result in dump
errors or possible damage to disc fi les. Hence do not
reassign 190 after VORTEX is active.

...._ _,...._

7 .3.3 System Generation Requirements

The following SYSGEN direct ives must be used to support
the System Memory Dump:

a. Assign logical unit 190 to the RMD partition which is to
contain the dump image files. This file must have a
protection key of 'Z' or be unprotected. The partition
should contain at least 1·112 * 5 * n sectors, where n
is the number of 512-word pages in the system.

b. EQP,RMOx,0,1,0,0 where x is the RM D model code for
the RMD which is to contain the dump files.

7.3.4 Post SYSGEN Requirements

The following post system generation requirements must be
met to support the System Memory Dump:

a. The foreground program FILINT and the background
program DSPMEM must be cataloged. This is done by
standard VORTEX II job streams.

b. The dump image fi les must be created by using the
following FMAI N directive

where

CREATE,190,Z,IMAGEx,512,n

X is the file number (0·9),
which must be contiguous
(i.e., 0, 1,2,3) and begin
with zero

n is the number of 512-word
records required, at least
1·1 12 t imes the number of
pages in the system.

Example: Direct DSYSTM to dump to the DOON partition

of a 70-7500 d isc, using three dump files on a 96K system.

SYSGEN
EQP,RMOC, 0,1,0,0
PRT,DOON,x,z
ASN,190•DOON

7·7

- ---------·- --- - -------- · . - - ---·- - - - -·--·--- ------·--- - - - - - --· . .

DEBUGGING AIDS

FMAIN
CREATE,190,z,IMAGE0,512,288
CREATE,190,z,IMAGE1,512,288
CREATE,190,z,IMAGE2,512,288

7.3.5 Invoking a Dump

A system memory dump may be invoked by using any one
of the following three methods.

a. A patch may be made to a nucleus program, causing a
call to DSYSTM when a predetermined condition
occurs. This is done by inserting a call to DSYSTM.
Thus the fo"owing patch ought to be employed to
cause a dump on any E20·E24 memory map violation:

V$PSTR,CALL,DSYSTM,JMP,V$DISP
V$FUNC+2065,V$PSTR

b. The console interrupt may be used to cause a dump at
any time when VORTEX II is running. By th is method,
VORTEX II will halt with I = 0444 and

7·8

A = dump file number (the
'x' of 'IMAGEx')

B error code (the 'xx'
of 'DMxx', equal to
zero if there are no
errors; see appendix
A.7)

Engaging console run continues VORTEX execution
from the point where it was shut down by the pressing
of console interrupt.

c. When the system has halted or has " locked up", a
DSYSTM dump can be invoked by commencing
execution at location zero. The results are the same
as for the employment of console interrupt save that
the system must be rebooted to bring up VORTEX
instead of merely pressing console run.

After each dump (except from a halt or "locked up"
system) the dump file name used is output to the OC
device and the next sequential file opened. If the
dump file just used is the last sequential file, an 1010
diagnostic will occur for FILINT and the first sequen
tial file will be opended. After any dump file is used, it
may be examined using DSPMEM at any time until it
is used again.

Rebooting the system always re-selects dump image file
IMAGE.O. To protect dump image file IMAGEO, use the
method described in section 7.3.1.6 and then imme·
diately reboot the system. In general, whenever dump
image file IMAGEO is recreated, the system should be
rebooted immediately after its recreation.

-- - - ----:-. - - -· . ·- --- - · - --·

l"MUH
CREATE,l90,Z,XMAG£0,512,288
CREATE,l90,Z,~GEl,5l2,288
CREATE,l90,Z,~G£2,512,288

7.3.5 Invoking a Dump

A system memory dump may be invoked by using any one
of the following three methods.

a. A patch may be made to a nucleus program. causing a
call to OSYSTM when a predetermined condition
occurs . This is done by inserting a call to OSYSTM.
Thus the following patch should to be employed to
cause a dump on any EX20-EX24 memory map
violation:

VSPSTR,CALL,OSYSTM,JMP,VSDISP
V$DSYS ,JMP,V$PSTR

To use OMEMRY / OCORE instead of OSYSTM use

V$PSTR,l00747 , 100444 , JMP , DMEMRY

b. The console interrupt may be used to cause a dump at
any time when VORTEX II is running. By this method,
VORTEX II will halt with I • 0444 and

A - dump fi le number (the
'x' of ' IMAGEx')

B - error code (the ·xx·
of 'OMxx', equal to
zero if there are no
errors; see appendix
A.7)

Engaging console run continues VORTEX execution
from the point where it was shut down by the pressing
of console interrupt.

c. When the system has halted or has " locked up". a
DSYSTM dump can be invoked by commencing
execution at location zero. The results are the same
as for the employment of console interrupt save that
the system must be- rebooted to bring up VORTEX
instead of merely pressing console run.

After each dump (except from a halt or " locked up"
system) the dump file name used is output to the 0C
device and the next sequential file opened. If the
dump file just used is the last sequential file, an 1010 ·
d iagnostic will occur for FILINT and the first sequen·
tial file will be opended. After any dump file is used, it
may be examined using DSPMEM at any time until it
is used again .

Rebooting the system always re-selects dump image file
IMAGEO. To protect dump image file IMAGEO, use the
method described in section 7.3.1.6 and then imme-

Update B

DEBUGGING AIDS

d iately reboot the system. In general, whenever dump
image fi le IMAGEO is recreated , the system should be
rebooted immediately after its recreation .

7 .4 V77-800 TRACE FACILITY

l

The trace facility is only implemented on the V77-800
processor . TRACE is a foreground task which allows the user
to specify conditions under which TRACE will pnnt current
register contents after execution of each instruction of the
traced task. The TRACE output is directed to the LO device.
TRACE commands are input from the Dl device; prompts and
error messages are output on the DO device.

The trace facili ty can be used for any foreground or background
task. but only one task can be traced at a time. The TRACE
request for a background task 1s made using the JCP / TRACE
directive. This directive specifies that the next task scheduled
by JCP will execute in the trace mode. A foreground task IS

•
traced if the parameter T is included in the OPCOM ;SCHED
command.

7 .4 .1 TRACE COMMANDS

When the traced task is ready for execution, TRACE w ill
request input from the user. If the Dl device is a user terminal,
the prompt 'TR**' is issued to the DO device. The commands
accepted by the trace facility are

Command type Format Name

Execution specif ier EX Exit

Execution speci f ier RE Restart

Test specifier WD.r.l,aaaaaa Wild Card

Test specifi er RG.r.l.aaaaaa.bbbbbb Range

w here:

r is the register selected (P.I.A.B.X.3.4.5.6
or 7).

I

aaaaaa.
bbbbbb

is the log1cal test required (A or 0).

are command parameters discussed
below .

7 .4 .1.1 Wild Card Command

The Wild Card command allows a user to specify particular
octal values for testing each digit pos1tion in the selected
register. Mult iple values can be specif ied for any pos1t1on by
enclosing the set of permissible values in parentheses. An
asterisk (*) in place of a particular value indicates that any octal
digit IS valid in th1s position.

T

7·9

-···-- --- ---·--··- --- ------·-------_____ ..,_____ ~ ----....... --·-·----· ..-.. ·-- --·-- _ .. ·- ... -~ - ·-·-·----·

DEBUGGING AIDS

•

Each of the six octal digit values must be specified in the wild
card command. The digit positions. symbolized by ·aaaaaa·. are
numbered 5 through 0 as follows:

aaaaaa 16-bit register value

543210 digit position numbers

Example: Specify a wild card which defines a set of octal
numbers containing a 1, 2, or 7 in digit position 1 for Register
A.

WD.A.O. •••••(127)*

This test specifies that only digit position 1 is to be tested. All
other digits can be any value, but digit position 1 must contain
a 1. 2. or 7 for the test to pass. The third parameter of this
command, 0 . is a logical test specifier. Its function is described
in section 7.4.2 .

7 .4.1.2 Range Command

The Range command specifies the range of octal values for
which the specified register is to be tested. The parameter
·aaaaaa · of the Range command is the lowest value in the
range; the parameter bbbbbb' is the highest value in the
range, The default low value is 0 and the default high value is
077777. These values are used by TRACE whenever the
corresponding range parameter is not specified in the Range
command. Negative numbers can be specified as parameters
by using the two's complement format.

Example: Specify a Range command which defines a range of
octal numbers from 777 to 3456. inclusive. for the P register.

RG.P.A.777,3456

This test will pass only if the P register contains an octal
number between 777 and 3456. The third parameter of the
command, A. is a logical test specifier. Its function is described
in section 7.4.2.

7 .4 .1.3 Restart Command

The Restart command is used to restart the TRACE input
command sequence and destroy the previously input
command specificat1ons.

7 .4.1.4 Exit Command

The Exit command is used to terminate TRACE command input
and begin tracing the designated traced task.

l

7· 10

•

!
7.4.2 LOGICAL SPECIFICATIONS

The logical specification parameter of the WO or RG command
allows the user to specify the operation performed by TRACE
when the test passes. fails, or the end of tests is encountered.
The operations performed by each specification choice for
each condition are listed below. All TRACE commands are
evaluated in the order they were input.

Condition
encountered

Test passes

Test fails

End of tests

Operation Performed

Choice A

Continue
testing

Do not
print

Print
registers

Choice 0

Print
registers

Continue
testing

Do not
print

7.4.3 TRACE EXAMPLES

Example 1 : Trace the foreground task T ASKA. located on the
Foreground Library. Require the trace facility to print the
contents of all registers whenever the A register is negative.

;SCHED ,T ASKA,2,FL,F, T

TR.. (trace prompt)

RG.A,O, 100000.177777 (range command)

m·· (trace prompt)

EX (exit and begin trace)

tf the A register contains a negative value. the test passes.
Since an 0 logical specifier was used. register contents are
printed when the test passes. The end of test condition is then
encountered, and this does not cause the register contents to
be printed.

Example 2 : Trace TASKB and print registers when any JAZ. or
JAZ.M instruction occurs. TASKS is a background task.

I JOB,TRACJOB

/ TRACE

/ LOAD.TASKB

m·· {trace prompt)

WO.I.0 .()()(1 2)01 0 {wild card)

(trace prompt)

EX (exit and begin trace)

i
Update B

- - · -

•

.- ··

1
The octal representatives of the JAZ and JAZM instructions
are 001010 and 002010. respectively. This test will pass if
either of these is contained in the I (instruction) register. The 0
logical specification causes the register contents to be printed
when the test passes (i.e .. when one of these instructions is
found).

Example 3: Trace T ASKC. a foreground task. and print
reg isters when reg1ster 3 contains 0, or if register B is positive.
or if an LOA instruction occurs between addresses 0 123 and
03456.

;SCHEO.TASKC.2.FL.F.T

RG.2.0 .0.0

RG.B.0.0.77777

RG.P.A. 1 23.3456

WD.I.0 .01 ••••

EX

i

(trace prompt)

(range test for R3=0)

(trace prompt)

(range test for RB 0)

(trace prompt)

(range test for address
bounds)

·(trace prompt)

(wild c ard for LOA
instruction)

(trace prompt)

(exit and begin trace)

Update B

DEBUGGING AIDS

l
If register 3 contains 0. the register values will be printed. This
is indicated by the 0 logical specification. If this test fails. the
succeeding tests will be evaluated. If register B contains a
positive number. the registers will also be dumped. Because
the LOA test is reQuired only for addresses in the range 01 23
through 03456. the logical specification 'A' is used. This
eliminates addresses outside these bounds. If this test passes.
the next test is evaluated; otherwise. register contents are not
printed. The final test specifies a wild card test of the
instruction register which will pass only if positions 5 and 4
contain the digits 0 and 1, respectively. This condition is true
only for the LOA instruction.

7 .4.4 TRACE ERROR CONDITIONS

TRACE error messages are sent to the DO device. They are of
the form

TRxx

where:

xx is one of the following error codes.

i

Code

01

Error Condition

Invalid character encountered in
TRACE directive

02 Unbalanced parenthesis or too many
commas

03

04

Invalid command. register. or logtcal
specification

Too many tests specified

. 7 - 11

-----------------------------~~~------------------~--------~· -------

-+

SOURCE EDITOR

Error messaees applicable to SEOIT are output on the SO
and LO logical units. The individual messages and errors
are given in Appendix A.8.

The listing of the SEDIT directives is made as the
directives are read. Source records, when listed, are listed
as they are input or outpt.;~. The VORTEX standard heading
appears at the top of each page of the listing.

LOGICAL UNITS referenced by SEOIT are either fixed or
reassignable units. The three fixed logical units are:

a. The Sl loeical unit, which is the normal input unit for
SEDIT directives.

b . The SO toeical unit. which is used for error·processing.

c. The LO lo&ical unit, which is the output unit for SEOIT
listings.

The three reassignable logical units are:

a. The SEDIT input (IN) loeical unit, which is the normal
input unit for source records. This is assigned to 'the PI
logical unit when SEDIT is loaded, but the assignment
can be changed by an AS direct ive with an IN
par~ meter (section 8.2.1).

b. The SEDIT output (OUT) logical unit, which is the
normal output unit for source records. This is assigned
to the PO logical unit when SEDIT is loaded. but the
assignment can be changed by an AS directive with
an OU parameter.

c. The SEDIT alternate input (AL T) logical unit, which is
the alternate input unit used for new or replacement
source records. This is assigned to the Bl logical unit
when SEDIT is loaded. but the assignment can be
changed by an AS directive with an AL parameter.

Note: If PI, or PO, or 81 are assigned to RMO units when
SEDIT is loaded. SEDIT will attempt to open files named
" PI " , or " PO'' or " BI" on the respective units. If the file does
not exist an "SE02" error message is presented; this message
is also generated if Pl. PO. or 51 is assigned to DUM.

8.2 SOURCE·EDITOR DIRECTIVES

This section describes the SEDIT directives:

a. Copying group:
• AS Assign logical units
• AD Add record(s)
• SA Add string
• REPL Replace record(s)
• SR Replace string
• DE Delete record(s)
• so Delete string
• MO Move record(s)

b. Auxiliary group: .
• FC Copy file
• SE Sequence records
• ll List records
• GA Gang-load all records
• WE Write end·Of·file
• REWI Rewind
• co Compare records

8·2

SEOIT directives begin in column 1 and compnse se·
quences of character strings having no embedded blanks.
The character strings are separated by commas (.) or by
equal signs (•). The directives are free·form and blanks
are permitted between individual character strings of the
directive, i.e., before or after commas (or equal s1gns).
Although not required. a period (.) is a line terminator.
Comments can be inserted after the period.

Update B

The general form of an SEDIT directive is

where

name,p(l) ,p(2), ... ,p (n)

name is one of the directive names given above
or a longer string beginning with one of
the directives names (e.g., AS or
ASSIGN)

each p(n) is a parameter defined below under the
descriptions of the individual directives

Where applicable in the following descriptions, a field
specification of the format (first,last) or (nl ,n2,n3) is still
separated from other parameters by parentheses even
though it is enclosed in commas. Note also that the
cnaracter string string is coded within single quotation
marks. which are, of course, neither a part of the string
itself nor of the character count for the string.

8.2.1 AS (Assign Logical Units) Directive

This directive specifies a unit assignment for an SEDIT
reassign able logical unit (section 8.1). It has the general
form

where

AS,nn •lun,key,file

"" is IN if the directive is making an
assignment of the IN logical unit . OU it
the OUT logical unit. or AL if the AL T
logical unit

tun is the name or number of the logical unit
being assigned as the IN. OUT, or ALT
unit

key is the protection code. if any, required to
address lun

tile is the name of an RMD file, if required

If the SEDIT reassignable units are to retain the assign·
ments made when SEOIT was loaded (default
assignments: IN • PI , OUT- PO, Al T • 81}, no AS direc-

- _.:...:;:= ·=- :.......::-::__.:...· _ __ .;:;;;!i;;.:____ -------------...,.------- . . - · --·--------· - - - -· -- . --- - ··-------

...

.
tive is required. Each AS directive can make only one
reassignment (e.g., if both IN and OUT are to be
reassigned, two AS directives are requ ired).

Any RMD affected by an AS directive 1s automatically
repositioned to beginning of file.

The AS directive merely fixes parameters in I / 0 control
calls within SED IT. It does not alter I / 0 control asstgn·
ments in the logical-unit table (table 3·1).

Note: AS resets the corresponding record counter; how·
ever, no physical rewinding of devices occurs.

Examples: Assign the PI logical unit as the SEDIT
reassignable IN unit.

AS,IN•PI

or, the unabbreviated form

ASSIGN,INPUT•PI

Assign logical unit 8 as the SED IT reassignable OUT unit.

AS,OU•8

Assign as the SEDIT reassignable IN unit the file FILEX on
logical unit 111, an RMD partition without a protect ion key.

AS,IN•111,,FILEX

8.2.2 AD (Add Records) Directive

This directive adds source records. It has the general form

AD,recno

where recno is the number of the record last copied from
the IN logical unit before switching to the AL T unit for
further copying.

The AD directive copies source records from the IN logical
unit onto the OUT logical unit beginning with the current
posit ion of the IN unit and continuing up to and including
the record specified by recno. Then, source records are
copied from AL T onto OUT from the current position of the
unit up to but not including the next end-of-file mark.

Example: Copy records from IN onto OUT from the
current position of IN up to and including IN record 7.
Then, switch to AL T and copy records from the current
position of that unit up to but not including the next end·
of-file mark.

AD, 7

SOURCE EDITOR

8.2.3 SA (Add String) Directive

This directive inserts a character string into a source-record
field . It has the general form

where

SA,recno,(first,last),' string'

recno

first

last

string

is the number of the source record in
which the character string is to be
inserted

is the number of the first character
position to be affected

IS the number of the last character
posit ion to be affected

is the string of ~haracters to be inserted
in the field delimited by character
positions 'first and last in record number
recno

The SA directive copies source records from the IN logical
unit onto the OUT logical unit beginning with the current
position of the IN unit and continuing up to but not
including the record specified by recno. The record recno is
read into the memory buffer. The character string string
shifts into the left end of the specified field first,last, with
characters shifted out of the right end of the f ield being
lost. There is no check on the length of string and shifting
continues until it is left-justified in the field with excess
characters, if any, being truncated on the right.

The record remains in the memory buffer, thus permitting
multiple string operations on the same record. (If IN is
already positioned at recno because of a previous string
operation, there is, of course, no change in position.)

The record recno is read out of the memory buffer and onto
the OUT unit when an SEDIT directive affecting another
record is input.

The field specification first,last is lost after one manipula·
tion . Subsequent string operations must specify the
character positions based on the new confjguration. For
example, for the character string ACDEGbb in positions 1
through 7, addit ion of the character 8 in position 2 requires
the field specification (2,7). Then, to add the character F
between E and G, one must specify the field (6,7) rather
than (5,7) because of the shift previously caused by
insertion of the character B.

Example: Change the erroneous DAS MR source-state·
ment operand in character positions 16·21 of the 32nd
record from LOCXbb to LOC,Xb.

SA,32,(19,20), ',I

8-3

-
----- ----- .. -- -----· - · .. ,...__4 ·------- - ~ -------~---···-·--- __ .• _.._ ... _ __ ----~--- - ---- -· ·- 4

SOURCE EDITOR

8.2.4 REPL (Replace Records) Directive

This directive replaces one sequence of source records with
another sequence of records. It has the general form

REPL,recno 1, recno2

where

recnol

recno2

is the number of the first record to be
replaced

is the number of the last record to be
replaced

If recno2 is omitted, it is assumed equal to recnol , i.e. , one
record will be replaced.

•
The REPL directive copies source records from the IN
logical unit onto the OUT logical unit beginning with the
current position of the IN unit and continuing up to but not
including the record specified by recnol . Then, records are
read from IN, but not copied onto OUT, up to and including
the record specified by recno2. Thus, the records recnol
through recno2, inclusive, are deleted. Then, source records
are copied from the AL T logical unit from the current
position of the unit up to but not including the next end-of
file mark.

Example: Copy records from IN onto OUT from the
current position of IN up to and including record 9 . Replace
IN records 10 through 20, inclusive, with records on ALT,
copying those between the current position of AL T and the
next end-of-file mark onto OUT. Do not copy the end-of-file
mark.

REPL,10,20

8.2.5 SR (Replace String) Directive

This d irective replaces one character string within a source
record with another character string. It has the general
form

SR,recno,(n l,n2,n3),' string'

where

recno

nl

n2

8-4

is the number of the source record in
which the character string is to be
replaced

is the number of the first character
position of the string to be replaced

is the number of the last character
position of the string to be replaced

n3

string

is the number of the last character
position of the field in which the string to
be replaced occurs

is the string of characters to be inserted
in the field delimited by character
positions nl and n3 in record number
recno after shifting out the characters in
positions nl through n2, inclusive

The SR directive copies source records from the IN logical
unit onto the OUT logical unit beginning with the current
position of the IN unit and continuing up to but not
including the record specified by recno. The re:cord recno is
read into the memory buffer. Field nl,n3 is then shifted to
the left and filled with blanks until the field nl,n2 is shifted
out. Then, the character string string shifts into the left
end of the field nl,n3. There is no check on the length of
string and shifting continues until it is left-justified in the
f ield nl,n3 with excess characters, if any, being truncated
on the right.

The record remains in the memory buffer, thus permitting
multiple string operations on the same record. (If IN is
already positioned at recno because of a previous string
operation, there is, of course, no change in position.)

The record recno is read out of the memory buffer and onto
the OUT unit when a SEDIT d irective affecting another
record is input.

The field specification nl,n2,n3 is lost after one manipula
tion. Subsequent string operations must specify the
character positions based on the new configuration.

Example: Copy records from IN onto OUT up to and
including record 49, and replace the present contents of
character positions 10 through 12, inclusive, in IN unit
source record 50 with the character string XYb.

SR, 50 , (1 0 , 1 2 , 12) , I XY I

8.2.6 DE (Delete Records) Directive

This directive deletes a sequence of source records. It has
the general form

DE,recnol,recno2

where

recnol

recno2

is the number of the first record to be
deleted

is the number of the last record to be
deleted

If recno2 is omitted, it is assumed equal to recnol, i.e., one
record will be deleted.

' \

.

The DE directive processing is exactly like that of the REPL
directive (section 8.2.4) except that there is no copying
from the Al T unit after the deletion of the records recnol
through recno2, inclusive.

Examples: Copy records from IN onto the OUT logical unit
up to and including record 49, but delete records 50
through 54, inclusive.

DE, 50,54

Position IN at record 2, deleting record 1.

DE, 1

8.2.7 SD (Delete String) Directive

This directive deletes a character string from a source
record . It has the general form

SD,recno,(nl,n2,n3)

where

recno

nl

n2

n3

is the number of the source record from
which the character string is to be
deleted

is the number of the first character
position of the string to be deleted

IS the number of the last character
position of the string to be deleted

is the number· of the last character
position of the field in which the string to
be deleted occurs

The SO directive processing is exactly like that of the SR
directive (section 8.2.5) except that no new character string
is shifted into field n2,n3 after the field nl,n2 is shifted out.

Example: Copy records from IN onto OUT up to and
including record 99, and delete characters 2 through 4,
inclusive, from record 100, shifting characters 5 through
10, inclusive, three places to the left, with blank fill on the
right.

SD, 100, (2,4, 10)

SOURCE EDITOR

8.2.8 MO (Move Records) Directive

This directive moves a block of records forward on a unit. It
has the general form

MO,recnol,recno2,recno3

where

recnol

recno2

recnol

is the number of the f irst record to be
moved

is the number of the last record to be
moved

is the number of the record after which
the block of records delimited by recnol
and recno2 is to be inserted

If recno2 is omitted, it is assumed equal to recnol, i.e., one
record will be moved.

The MO directive copies source records from the IN logical
unit onto the OUT logical unit beginning with the current
position of the IN unit and continuing up to but .not
including the record specified by recno 1. The records
recnol through recno2 are then read into a special MOVE
area in memory. The position of IN is now recno2 + 1.
When OUT reaches (by some succeeding directive)
recnol + 1, the contents of the MOVE area are copied onto
OUT. Multiple MO operations are legal.

Example: Copy records from IN onto OUT up to and
including record 4 , save records 5 through 10, inclusive, in
the MOVE area of memory, copy records 11 through 99,
inclusive, from IN onto OUT, and then copy records 5
through 10 from the MOVE area to OUT. This gives a record
sequence on OUT of 1-4, 11 -99, 5-10 (FC directive, section
8.2. 9.).

M0,5,10,99
FC

8.2.9 FC (Copy File) Directive

This directive copies blocks of files, including end-of-file
marks. It has the general form

FC,nfiles

where nfiles (default value = 1) is the number of files to be
copied.

If the IN logical unit and/or the OUT logical unit is an RMD
partition, nfiles must be 1 or absent: If OUT is a named file
on an RMD, there will be an automatic close/ update.
Whenever an end-of-file mark is encountered, all record
counters are reset to zero.

8-5

---------- ·- -*·-·-----·-----~·------·-·-----......... - ·--- - --... -~- -·- -------·--· ,._ -·- ·- ----· * •

SOURCE EDITOR

Examples: Copy files from IN onto OUT up to and
including the next end-of-file mark on the IN unit.

FC

Copy the next six IN files (including end-of-file marks) onto
OUT. This includes the sixth end-of-file mark. (Note: If IN
and / or OUT is an RMD partition, there will be an error.)

FC,G

8.2.10 SE (Sequence Records) Directive

This directive assigns a decimal sequence number to each
source record output to the OUT logical unit. It has the
general form

SE, (first, last), initial, increment

where

first

last

initial

increment

IS the first character position of the
sequence name field

is the last character position of the
sequence number f ield, where the de
fault value of first, last is 76,80

is the initial number to be used as a
sequence number (default value = 10)

is the increment to be used between
successive sequence numbers (default
value = 10)

There is also a special form of the SE directive to stop
sequencmg:

SE,N

where there are no parameters other than the letter N.

Examples: In the next record outpu t to OUT, place 00010
in character positions 76 through 80, and increment the
field by 10 in each succeeding record.

SE

In the next record output to OUT, place 030 in character
positions 15 through 17, and increment the field by 7 on
each succeeding record.

SE,(15,17),30,7

Stop sequencing.

SE,N

8-6

8.2.11 ll (list Records) Directive

This direct ive lists, on the LO logical unit , the records
copied onto the OUT unit. The Ll directive has the general
form

ll, list

where list is A (default value) if all OUT records are to be
listed, C if only changed records are to be listed, or N if
list ing is to be suppressed. Source records output to the
OUT file are listed with their OUT record number at the left
of the print list

Examples: List all records output to OUT.

LI

Suppress all list ing except that of SEDIT direct ives.

LI, N

8.2.12 GA (Gang-Load All Records) Directive

This directive loads the same character string into the
specified field of every record copied onto the OUT logical
unit. It has the general form

GA. (first, last),' string '

where

first

last

is the first character position of the field
to be gang-loaded

is the last character position of the field

"

to be ' gang-loaded, where the default value
of first, last is 73,75

string is the string of characters to be gang
loaded into character positions first
through last, inclusive in all records
copied onto out

There is also a special form of the GA directive to stop
gang-loading:

GA

where there are no parameters in the directive.

In every OUT record, GA clears the specified field, and
loads the string into it. There is no check on the length of
string and shifting continues until it is left-just ified in the
specified field with excess characters, if any, being
truncated on the r ight.

----- -- -- - ·-----

'

Examples: Load character string VDMbb in character
positions 11 through 15, inclusive, of every record copied
onto OUT.

GA, (1 1 , 1 5) , I VDM I

Stop gang-loading.

GA

8.2.13 WE (Write End of File)
Directive

This directive writes an end-of-file mark on the OUT logical
unit. It has the form

WE

without parameters. If OUT is a named file on an RMD,
there will be an automatic close/ update.

Example: Write an end·of·file mark on OUT, a magnetic·
tape unit.

WE

8.2.14 REWI (Rewind) Directive

This directive rewinds the specified SEDIT logical unit(s). It
has the general form

REWI,p(l),p(2),p(3)

where each p(n) is a name of one of the SEDIT logical
units: IN, OUT, or ALT. These can be coded in any order.

Example: Rewind all SEDIT logical units.

REWI,IN,ALT,OUT

8.2.15 CO (Compare Inputs) Directive

This d irective compares the specified field in the inputs
from the IN logical unit with those from the AL T logical unit
and lists discrepancies on the LO logical unit. The directive
has the general form

CO, (first , last), limit

where

first

last

is the f irst character position of the field
to be compared

is the last character position of the field
to be compared , where the default value
of first,last is 1,80.

·--·--- ------ ------------

SOURCE EDITOR

limit is the max1mum number of
discrepancies to be listed before
aborting the comparison and passing to
the next directive.

Any discrepancy between the IN and AL T inputs is listed in
the format

I recordnumber or EOF inrecord
A recordnumber or EOF altrecord

If the comparison terminates by reach ing the limit number
of discrepancies, SEDIT outputs on the LO the message

SEDIT COMPARE ABORTED

to prevent long listings of errors, for example, where a card
is misplaced or missing on one input. A normal termination
of a comparison (at the next end-of-f ile mark) concludes
with the message

SEDIT COMPARE FINISHED

Example: Compare character positions 1 through 80,
inclusive, from the IN and AL T units until either an end of
file is found or there have been 5 d iscrepancies listed on
the LO.

co ,, 5

8.3 EXAMPLE OF EDITING A FILE

Following is a sample job stream for editing an existing f ile
on a magnetic tape onto a new file on magnetic tape. The
input file consists of SO-character records followed by an
end-of-file mark. The job stream and the edit cards are
read through the system input device.

/JOB,EDIT
I ASSIGN ,PI•MTOO,PO•MT10
/ REW,PI,PO
/SEDIT
AS,IN•PI
AS,OUT•PO
AS,ALT•SI
DE,5
REPL,8,10

LDA TEMP
(EOF card, 2-7-8-9 punch)
ADD, 17
TBL BSS 5
(EOF card, 2-7-8-9 punch)
FC
REWI,IN,OUT
/ ENDJOB

8·7

- -- --- ·- ------ -- -------- - ---- - - -·-· --- ..

SOURCE EDITOR

T he result of running the preceding source ed i tor example
would be t he following:

Input File

1 *
2 * CATALOG ROUTINE
3 *
4 A$3 EQU 6
5 B$ 3 EQU 9
6 •
7 CAT LOG DATA 0
8 LDA TMX
9 LDB TMY

1 0 JBZM ODER
1 1 ADD PARM6
12 ANAl 0770
13 STA TBL+2
1 4 LRLA 6
1 5 STA TBL+4
16 TZB
17 JMP* CATLOG

8-8

Output File

1 *
2 • CATALOG ROUTINE
3 •
4 A$3 EQU 6
5 •
6 CAT LOG DATA 0
7 LDA TEMP
8 ADD PARM6
9 ANAl 0770

10 STA TBL+2
1 1 LRLA 6
12 STA TBL+4
1 3 TZB
14 JMP* CATLOG
15 TBL BSS 5

SECTION 9
FILE MAINTENANCE

The VORTEX file-maintenance component (FMAIN) is a
background task that manages file-name directories and
the space allocations of the files. It is scheduled by the job·
con trol processor (JCP) upon input of the JCP directive
I FMAIN (section 4.2.18).

Only f iles assigned to rotating-memory devices (disc or
drum) can be referenced by name.

Fi le space is allocated w ithin a partition forward in
contiguous sectors of the same cylinder, skipping bad
tracks. The only exception to this continuity is the file-name
directory itself, which is a sequence of linked sectors that
may or may not be cont iguous.

9.1 ORGANIZATION

FMAIN inputs file-maintenance direct ives (section 9.2)
received on the Sl logical unit and outputs them on the LO
logica l unit and on the SO logical unit if it is a different
physical device from the LO unit. Each directive is
completely processed before the next is input to the JCP
buffer.

If the Sl logical unit is a Teletype or a CRT device, the
message FM* • is output on it before input to indicate that
the Sl unit is waiting for FMAIN input.
If there is an error, one of the error messages given in
Appendix A.9 is output on the SO logica l unit, and a record
is input from the SO unit to the JCP buffer. If the f irst
character of this record is I, FMAIN exits via the EXIT
macro. If the first character is C, FMAIN continues. If the
first character is neither I nor C, the record is processed as
a normal FMAIN directive. FMAIN continues to input and
process records until one whose first character is I is
detected, when FMAI N exits via exit. (An entry beginning
with a carriage return is an exception to this, being
processed as an FMAIN directive).

FMAIN has a symbol-table area for 200 symbols at five
words per symbol. To increase this area, input a / MEM
directive (section 4.2.5), where each 512-word block will
enlarge the capacity of the table by 100 symbols.

9.1.1 Partition Specification Table

Each rotating-memory device (RMD) is divided into up to
20 memory areas ca lled partitions. Each partition is

referenced by a specific logical -unit number. The bounda
ries of each partition are recorded in the core-resident
partition specification table (PST). The first word of the
PST contains the number of VORTEX physical records per
track. The second word of the PST contains the address of
the bad-track table, if any. Subsequent words in the PST
comprise the four-word partition entries. Each PST is in the
format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 0 Size of bad track table (120-words)

Word 1 Address of bad track table (0 if none)
relative to word 0

Word 0 Beginning partition track address

Word 1 PPB Not used Protection code

Word 2 Number of bad tracks in partit ion

Word 3 Ending partition address + 1

•
•
• --

The partition protection bit, designated ppb in the above
PST entry map, is unused in file maintenance procedures.

Note that PST entr ies overlap. Thus, word 3 of each PST
entry is also word 0 of the following entry. The relative
position of each PST entry is recorded in the device
specification table (DST) for that partition.

The bad-track table, whose address is in the second word
of the PST, is a bit string read from left to right within each
word, and forward through cont iguous words, with set bits
f lagging bad tracks on the RMD. (If there is no bad-track
table, the second word of the PST contains zero.)

9.1.2 File-Name Directory

Each RMD partition contains a f ile-name directory of the
files contained in that partition. The beginning of the
directory is in the first sector of the partition. The directory
for each partition has a variable number of entries
arranged in n sectors, 19 entries per sector. Sectors
containing directory information are cha ined by pointers in

9-1

. ·~·--·- ... ·----~----- - - - -------- - - - · · ----~ -----··,_.___ _ _ _____ _."*. ··- ___ ... ~ .. - ----- - ·- -·

•

FILE MAINTENANCE

the last word of each sector. Thus, directory sectors need
not be contiguous. Each directory entry is in the format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 0 File name

Word 1 File name

Word 2 File name

Word 3 Current posit ion of file

Word 4 Beginning file address

Word 5 Ending file address

The fi le name comprises six ASCII characters packed two
characters per word, left justified, with blank fill. Word 3,
which contains the current address at which the file is
positioned , is initially set to the ending fi le address, and is
manipulated by I / 0 control macros (section 3). The extent
of the file is defined by the addresses set ·in words 4 and 5
when the file is created, and remains constant.

The f irst sector of each partition is assigned to the file
name directory. FMAIN allocates RMD space forward in
contiguous sectors, skipping bad tracks. Following the last
entry in each directory sector is a one-word tag containing
either the value 01 (end of directory), or the address of t he
next sector of t he file-name directory.

The file-name directories are created and maintained by
the file-maintenance component for the use of the l / 0
con trol component (sect ion 3). User access to the directo·
ries is via the l/0 control component.

Special entries: A blank entry is created when a file name is
deleted, in which case the file name is * * * * * * and words 3
through 5 give the extent of the blank file. A zero entry is
created when one name of a multiname file is deleted, in
which case the deleted name is converted to a blank entry
and all other names of the multiname f ile are set to zero.

9-2

WARNING
To prevent possible loss of data from the file
name directory during file-maintenance opera
t ions, FMAIN sets the lock bit (bit 12 of word 2
of the DST) before any directory operation, thus
inhibiting all foreground requests for I / 0 with
the partition being modified. Upon completion
of the directory operation, FMAIN clears the lock
bit. Except for the use of protection codes, this
is the only protection for the file-name direc
tory. Manipulation of foreground files with
FMAIN is at the user' s risk. For example,
VORTEX does not prevent deletion of a f ile
name from a file-name directory that has been
opened and is being written into by a fore
ground program. Therefore, foreground fi les
should be reassigned prior to manipulation by
FMAIN.

9.1.3 Relocatable Object Modules

Outputs from both the DAS MR assembler and the
FORTRAN compiler are in the form of relocatable object
modules. Relocatable object modules can reside on any
VORTEX-system logical unit. Before object modules can be
read from a unit by the FMAIN INPUT and ADD directives
(sections 9.2. 7 and 9.2.8), an I / 0 OPEN with rewinding
(section 3.5.1) is performed on the logical unit, i.e., the unit
(except paper-tape or card readers) is first positioned to the
beginning of device or load point for that unit. Object
modules can then be loaded until an end-of-f ile mark is
found.

The system generator (section 15) does not build any
object-module library. FMAIN is the only VORTEX compo
nent used for constructing user object-module libraries.

A VORTEX physical record on an RMD is 120 words. Object
module records are blocked two 60-word records per
VORTEX physica l record. However, in the case of an RMD
assigned as the Sl logical unit, object modules are not
b locked but assumed to be one object-module record per
physical record .

9.1.4 Output Listings

FMAIN outputs four types of listing to the LO logical unit:

• Directive listing lists, without modificat ion, all FMAIN
directives entered from the Sl logica l unit.

• Directory listing lists f ile names from a logical unit fi le
name directory in response to the FMAIN directive LIST
(section 9.2.5).

• Deletion listing lists f ile names deleted from a logical
unit file-name directory in response to the FMAIN
direct ive DELETE (section 9.2.2).

• Object-module listing lists the object-module input in
response to the FMAIN directive ADD (section 9.2.8).

All FMAIN listings begin with the standard VORTEX
head ing.

The directory list ing is further described under
discussion of FMAIN directive LIST (section 9.2.5),
deletion listing under DELETE (section 9.2.2), and
object-module listing under ADD (section 9.2.8).

9.2 FILE-MAINTENANCE DIRECTIVES

This section describes the file-maintenance directives:

• CREATE file • DELETE file

• RENAME file • ENTER new file name

• LIST file names • IN IT (initialize) directory

• INPUT logical unit for object module

• ADD object module

the
the
the

---- - --- -- - - - ----- - ---- . -- - --

File-maintenance directives comprise sequences of charac
ter strings having no embedded blanks. The character
strings are separated by commas (,) or by equal signs (=) .

The directives are free-form and blanks are permitted
between the individual character strings of the directive,
i.e. , before or after commas (or equal signs). Although not
required, a period (.) is a line terminator. Comments can
be inserted after the period.

The general form of a file-maintenance directive is

directive,lun,p(1),p(2), ... ,p(n)

where

directive

lun

each p(n)

is one of the directives listed above in
capital letters

is the number or name of the affected
logical unit

is a parameter defined under the
descriptions of the individual directives
below

Numerical data can be octal or decimal. Each octal number
has a leading zero.

For greater clarity in the descriptions of the directives,
optional periods, optional blank separators between
character strings, and the optional replacement of commas
(,) by equal signs (=) are omitted.

Error messages applicable to file-maintenance directives
are given in Appendix A.9.

9.2.1 CREATE Directive

This directive creates a new file on the specified logical
unit , allocates RMD space to the file, adds a corresponding
entry to the file-name directory, and sets the current end
of-file value to one greater than the address of the last
sector assigned to the new file.

The directive has the general form

CREA TE,Iun, key,name, words, records

where

lun

key

name

words

records

is the number or name of the logical
unit where the new file is to be
created

is the protection code. if any, required
to address lun

is the name of the file being created

is the number of words in each record
of the file

is the number of records in the file

FILE MAINTENANCE

Size parameters merely allocate space for the file and do
not limit file use to the specified record size. To each record
in the created file, FMAIN assigns n records of 120 words
each where n is the smallest integer such that words/ 120
is less than or equal to n. The file size is n times records
words. This value is converted to a sector count to make
assignments. Neither the file size value nor the sector
count value is saved.

Example: Create the file XFILE with ten records of 120
words each on logical unit 112, whose protect ion code is K.

CREATE,112,K,XFILE,120,10

9.2.2 DELETE Directive

This directive deletes the designated fi le and all file-name
d irectory references to it from the specified logical unit. It
converts the specified file-name directory entry to a blank
entry (name field = *"' ***'', section 9.1.2) and all other
directory references to this file to zero entries (all fields =

zero, section 9.1.2), and outputs a listing of deleted file
names on the LO logical unit. The directive has the general
form

where

DELE TE,Iun, key,name

lun is the number or name of the logical
unit from which the file is being deleted

key is the protection code, if any, required
to address lun

name is the name of the file being deleted (in
the case of a multiname file, any one of
the names can be used, all names are
deleted)

The outrut format has, following the FMAIN heading, a
two-l ine heading

DELETE LISTING FOR
FILE NAME START

lun
END CURRENT

where lun is the number of the logical unit from which the
file is being deleted. This heading is followed by a blank
line and a listing of all file-names being deleted, one per
line. Words 0-2 of the file-name directory entry (section
9.1.2) are placed in the FILE NAME column; word 3, (in
octal) in the CURRENT column; word 4, (in octal) in the
START column; and word 5, (in octal) in the END column.
After the last f ile name, there is an entry describing the
blank file created by the deletion, where the FILE NAME
column contains u u **, the START column contains the
next available address (word 2 of the PST entry), and both
the CURRENT and END columns contain the last address
+ 1 (word 3 of the PST entry).

9 ·3

----- - - --- --- -- ·---- ·- --- ---------- ------- ·-- ------... _ ... ~ . ~ ---·····-·· ··-~-~ .. -..-._ __ ... _.... ,_ .,.__ -~--------- -- ---- -----

FILE MAINTENANCE

Example: Delete the file ZFI LE (and all file-name directory
entries referencing it) from logical unit 112, whose
protection code is P).

DELETE,112,P,ZFILE

The name ZFILE is replaced in the f ile-name directory by
'~ ~' '':::.::.::, and the space allocation for th is blank entry
extended in both directions to include adjacent blank
entries, if any. Any blank entries thus absorbed are
converted to zero entries, as are all other entries that
reference the file ZFILE. All affected file-name directory
entries are listed on the LO logical unit.

9.2.3 RENAME Directive

This directive changes the name of a file, but does not
otherwise modify the file-name d irectory. The directive has
the general form

where

•

RENAME,Iun, key,old,new

lun is the number or name of the logical unit
where the file to be renamed is located

key is the protect ion code, if any, required to
address lun

old is the old name of the file being renamed

new IS the new name of the f ile being
renamed

Following RENAME, old can no longer be used to reference
the file.

Example: On logical unit 112, whose protection code is P,
change the name of the file XFILE to YFILE.

RENAME,112,P,XFILE,YFILE

9.2.4 ENTER Directive

This directive adds a new fi le name to be used in
referencing an existing fi le, but does not otherwise modify
the file-name directory. ENTER thus permits mult iname
access to a file. The d irective has the general form

where

ENTER,Iun,key,old,new

lun is the number or name of the logical unit
where the affected file is loca ted

key is the protection code, if any, required to
address lun

old is an old name of the affected file

new

9-4

is the new name by which the fi le can
also be referenced

Example: On logical unit 113, whose protection code is K,
make the file X 1 accessible by using either the name X 1 or
the name Yl.

ENTER,113,K,X1,Y1

9.2.5 LIST Directive

This directive outputs on the LO logical unit the file-name
directory of the specified logical unit. The output comprises
the file names, file extents, current end-of-file positions,
logical-unit name or number, and the extent of unassigned
space in the partition. All numbers are in octal. The
directive has the general form

LIST,Iun,key

where
lun

key

is the number or name of the logical unit
whose contents are to be listed

is the protection code, if any, requ ired to
address lun

The output format has a two-line heading

FILE DIRECTORY FOR LUN
FILE NAME START

lun
END CURRENT

where lun is the number or name of the logical unit whose
contents are being listed. This heading is followed by a
blank line and a listing of all file names from the directory,
one name per line. Words 0-2 of the file-name directory
entry (section 9.1.2) are placed in the FILE NAME column;
word 4, (in octal) in the START column; word 3, (in octal)
in the CURRENT column; and word 5, (in octal) in the END
column. After the last file name, if there is any unassigned
space in the partition, there is an entry describing the
unassigned space in the partition, where the FILE NAME
column contains * UNAS*, the START column contains the
next available address, and both the CURRENT and END
columns contains the last address + 1. All numerical
va lues are octal sectors.

Example: List the f ile-name directory of logical unit 114,
which has no protection code.

LIST,114

9.2.6 INIT (Initialize) Directive

This directive clears the entire f ile-name directory of the
specified logical unit , deletes all file names in it , and
releases all currently allocated file space in the partition by
reducing the file-name directory to a single end-of-directory
entry. The directive has the general form

where

INIT,Iun,key

lun is the number or name of the logical unit
being initialized

key is the protection code, if any, required to
address lun

- - -- ·- ·- --------·-- _ .. --·-------- --------

-

\

9.2.3 RENAME Directive

Th1s directive changes the name of a file. but does not
otherw1se modify the file-name directory. The directive has
the general form

where

RENAME,Iun, key,old,new

lun

key

old

is the number or name of the logical unit
where the file to be renamed is located

is the protectton code, if any, required to
address lun

is the old name of the f ile being renamed

new is the new name of the file being
renamed

Following RENAME. old can no longer be used to reference
the file.

Eumple: On logical unit 112. whose protection code is P.
change the name of the ftle XFILE to YFILE.

RENAME,112,P,XFILE,YFILE

9.2.4 ENTER Directive

Th1s directive adds a new ftle name to be used tn

referenctng an ex1sting file. but does not otherw1se mod1fy
the file·name directory. ENTER thus perm1ts multtname
access to a file. The dtrect1ve has the general form

ENTER,Iun. key, old, new

where

lun is the number or name of the logtcal un1t
where the affected f1le IS located

key IS the protect1on code. 1f any. requ1red to
address lun

old is an old name of the affected f1le

new IS the new name by which the file can
also be referenced

l Th1s directive w ill also include the creation date. access date.
extens1on numbers. and file type information in the
corresponding shadow directory.

i
9 .2 .5 LIST Directive

Th1s directive outputs to the LO logical unit the file-name
and shadow d1rectortes of the specified logical unit. The
output comprises the file name. file extent. current end-of-

Update 8

FILE MAINTENANCE

file position. logical un1t name or number. extent of
unassigned space in the partition. file type. file extension
number, and the dates the file was created and last
accessed. All numbers are in octal except for dates and
extensions. The directive has the general form :

LIST.Iun,key

where

lun

key

is the number or name of the logical unit
whose contents are to be listed.

is the protection code. if any, required to
access lun.

The output format has a two line heading :
FILE DIRECTORY FOR LUN XXX
FILE NAME START END CURRENT F-TYPE EX CREATED
ACCESSED

where

XXX is the number or name of the logical untt
whose contents are being listed.

The header is followed by a blank line and a listtng of all file
name from the directory. See section 9.1.2 for a description
of header items. After the last file name. if there is any
unass1gned space in the part it ton. there IS an entry
describing the unassigned space in the part it ion. where the
FILE NAME column contains *UNAS· . the START column
contains the next available address. and both the CURRENT
and END columns contain the last address+ 1. All numerical
values are octal sectors.

Example: List the file name directory of logical un1t 114
wh ich has no protection code.

UST. 114

9.2.6 INIT (Initialize) Directive

Th1s direct1ve clears the entire file-name directory of the
specified log1cal unit. deletes all file names in it. and
releases all currently allocated file space in the partition by
reducing the file-name directory to a single end-of-directory
entry. The directive has the general form

I NIT ,lun. key

where
lun

key

is the number or name of the logical unit
be1ng Initialized

ts the protection code, 1f any, requ1red to
address lun

9-5

·- ·- - ·- - -· --- ------- ------- ------ --------- - ---- ------ ------ -- ·---------------------·

FILE MAINTENANCE

Example: Initialize the file-name directory on logical unit ·
115, which has protection code X.

INIT,11S,X

9.2.7 INPUT Directive

This directive specifies the logical unit from which object
modules are to be input. Once specified, the input logical
unit number is constant until changed by a subsequent
INPUT directive. The directive has the general form

INPUT,Iun,key,file

where

lun is the number or name of the logical unit
from which object modules are to be
input

key is the protection code, if any, required to
address lun

file is the name of the RMD file containing
the required object module(s)

Neither key nor file are required unless lun is a RMD
partition.

NOTE

There is no default value. Thus, if an attempt is
made to input an object module (ADD directive,
section 9.2.8) without defining the input logical
unit by an INPUT directive. an error message
will be output.

Example:

Open and rewind the file ARCTAN on logical unit 104,
which has protection code D.

/ PFILE.1 04,0 .ARCTAN
.IF MAIN
INPUT,104.D.ARCTAN

INPUT,104,D,ARCTAN

9.2.8 ADD Directive

This directive reads object modules from the INPUT unit
(section 9.2.7) and writes them onto the SW logical unit,
checking for entry names and validating check-sums.
record sizes, loader codes, sequence numbers, and record

9-6 Update B

. ------- ---·- -··-··- -· - - ·---

.
structures. Reading continues until an end of file is
encountered. Entry names are then added to the file-name
directory of the specified logical unit and the object
modules are copied from the SW logical unit onto the
specified logical unit. The ADD directive also sets up the
date in word 5 of the corresponding shadow directory and
sets up the '"file type .. variable in word 3 of the shadow
directory to "object module" (bit 0 is set). The ADO directive has
the general form

AOO,Iun,key

wh'!re

lun

key

is the number or name of the logical unit
onto which object modules are to be
written

is the protection code, if any, required to
address lun

The specified logical unit lun references a system or user
object-module library.

The names of the object modules and their date of
generation. size in words (zero for FORTRAN modules),
entry names, and referenced external names are listed on
the LO logical unit.

To recover from errors in object-module-processing, reposi·
tion the logical unit to the beginning of the module.

Example: Add object modules to log•cal unit 104. which
has protection code D.

ADD, 104, D

Note: When using the INPUT and ADD d irectives with an
RMD device. the files must be previously positioned using
the / PFILE directive.

9.3 VORTEX FILE MAINTENANCE
DRIVER (VZFMA)

The VORTEX File Maintenance driver provides a user
programmable subset of the VORTEX FMAIN services.
VZFMA operates as a system driver assigned to logical unit
115. All requests to VZFMA must be made through the OM
library resident interface routine. VSFILE. Direct calls to
VZFMA are not allowed. This is because conflicts arise in
calling sequences if VZFMA services should be augmented.

- - ·-·- -- - ..-·- ···- - · - ---·

I

'

\

The calling sequence to request a file service is as follows:

where

EXT
LOA I
LOBI
JSR

code IS

0
1
2
3
4
5

VSFILE
code
fmcb
VSFILE,X

the operation - create - delete

- rename - enter

- unused
- find -

code for the requested service

fmcb is the address of the file maintenance
control block (see table 9 -1)

FILE MAINTENANCE

file which is that area of the file beyond the current end-of·
file.

Upon exit from a file request the A register contains the
completion status code.

The completion status codes are as follows:

0
1
2
3
4
5
6

15

request completed without error
invalid request code
name already in directory
name not found
unsufficient space
input/ output error occurred
directory structure error
f ile is empty

The create. delete. rename and enter requests perform the
same operations as in the VORTEX FMAIN program. The
unused request releases the unused portion of the named

Note: Completion code 5 can also indicate inval id LUN.
invalid "CREATE" sector count. (:50) or invalid protection
key.

The f ile mamtenance control blocks for the requests must be arranged as show n in Table 9- 1.

Table 9 -1 . File Maintenance Control Block

The file maintenance control blocks for the requests must
be arranged as follows:

Word

0
1
2
3
4
5
6
7

Create

logical unit
key

f ile name
number of sectors
0
0

Delete. Unused.
Find
logica I unit
key

f ile name

Words 0 and 1 are r ight justified and zero filled.

Rename. Enter

logical unit
key

current file name

new file name

The fi le name (words 2 -4) consists of two characters per word, left just ified and blank filled.

For CREATE. word 6 must be zero and word 5 is right j ustified and zero f illed. A lso. if the number of
sectors specified in word 5 is an odd number. it is rounded up to the next even number.

Upda:e- B

.. . . - - ···-·~ --.. ·---·· .. "··-·-· ··-------·---- ---· - · - - - ----· . .. - ... p ___ _.. _ .., _ _ _ _ ___ __ 4 ..

-

9 -7

-~ 0-0- 0pooOo•-·- - ---·-· 0 ·-·· j ... _ .. _ ____ ..,_ ·-

·--·- - ·· - p •• ---- --.... -· . -· --··

FILE MAINTENANCE

9 .3.1 IOC FUNC Requests to VZFMA

Note: In most instances. the user should call VZFMA via
VSFILE as describes in Section 9.3

Requests to VZFMA may be via an IOC FUNC request of the
form

FUNC

where

fab

lun

wait

fab.lun. wait

is the address of the file specification
block

is the VZFMA logical unit number
(usually 115)

is 0 for wait until request is complete

The FSB has the format:

Word

0
1
2
3
4
5
6
7
8
9
10
1 1
12

Contents

Opcode
LUN Range
Key
Record Count

Secondary File Name

Primary File Name

File Attributes
fife type
access date
creation date

9 .3.1 .1 Exit Conditions

optional

Upon ex•t . VZFMA returns lun in high byte of FSB word 2 for
FINO.

9-8

9.3.1.2 Errors

Error codes are returned in bits 9 -14 of 1/0 reQuest block
status word. Error codes are:

1 = invalid opcode
2 = invalid tun or high lun not ~ low tun
3 = tun not assigned to RMO
4 = insufficient RMO space
5 = 1/ 0 error
6 = directory structure error
7 = file name already in directory
8 = file name not found
9 = inval•d "CREATE" sector count (i . e .~ 0)

1 0 = partition locked out too long
11 = invalid protect key

9.3.1 .3 Explanation of FSB Contents

Opcodes

0 =Create
1 = Delete
2 = Rename
3 = Enter
4 = Delete Unused
5 = Find
6 = Find extension f ile
7 = Create extension file .
8 = Create file using supplied attributes
9 = Enter f ile using supplied attr ibutes

LUN Range
High byte = lowest lun of range of FINO

= lun for other opcodes
Low byte = highest lun of range for FINO

Key
Part ition protectiOn key in low byte

Record Count
Number of records for CREATE

Secondary file name
Name of new file new RENAME and ENTER

Primary file name
Name of old f ile for RENAME and ENTER. Name of file for
other opcodes.

File attributes

Update 8

The format of words 1 0-1 2 of the FSB is the same as that of
words 3-5 of t-he shadow directory (Section 9. 1 .2~ .

.... w

SECTION 10
INPUT /OUTPUT UTILITY PROGRAM

The 1/0 utility program (IOUTIL) is a background task for
copying records and files from one device onto another,
changing the size and mode of records, manipulat ing files
and records, and formatting the records for printing or
d isplay.

10.1 ORGANIZATION

IOUTIL is scheduled for execution by inputting JCP
direct ive / IOUTIL (section 4.2.20) on the Sl logical unit. If
the Sl logical unit is a Teletype or a CRT device, the
message IU** is output to indicate that the Sl unit is
waiting for IOUTIL input. Once activated, IOUTIL inputs
and executes directives from the Sl unit until another JCP
directive (first character is a slash) is input, at which time
IOUTIL terminates and the JCP is again scheduled.

" The IOUTIL buffer is usually 1024 words long. The / MEM
directive can be used to increase th is size by increments of
512 words."

IOUTIL has the option of ca lling V$RSW (mult i-volume reel
switch rout ine), when using a copy fi le, copy record , skip
fi le, skip record , format and dump, position f ile, and pack
b inary.

Error Messages applicable to IOUTIL are given in Append ix
A.1 0. Recovery from an error is by either of the following:

a. Input the character C on the SO unit, thus directing
IOUTIL to go to the Sl unit for the next d irective.

b. Input the corrected directive on the SO unit for
processing. The next IOUTIL directive is then input
from the Sl unit.

If recovery is not desired, input a JCP directive (section
4.2) on the SO unit to abort IOUTIL and schedule the JCP
for execution.

10.2 1/0 UTILITY DIRECTIVES

This section describes the IOUTIL directives:

• COPYF Copy file
• COPYR Copy record
• SFILE Skip f ile
• SREC Skip record
• DUMP Format and dump
• PRNTF Print fi le
• WEOF Write end of file
• REW Rewind
• PFILE Position file
• CFILE Close f ile
• PACKS Pack binary

IOUTIL directives begin in column 1 and comprise
sequences of character strings having no embedded

blanks. The character strings are separated by commas (,)
or by equal signs (=). The directives are free-form and
blanks are permitted between individual character strings
of the directive, i.e., before or after commas (or equal
signs). Although not required , a period (.) is a line
terminator. Comments can be inserted after the period.

The general form of an IOUTIL directive is

where

name,p(l),p(2), ... ,p(n)

name rs one of the direct ive names grven
above

each p(n) is a parameter defined below under the
descriptions of the individual directives

Numerical data- can be octal or decimal. Each octal number
has a leading zero.

For greater clarity in the descr iptions of the directives,
optional periods, optional blank separators between
character strings, and the optional replacement of commas
(,) by equal signs (=) are omitted.

The IOUTIL buffer is usually 1024 words long. The / MEM
directive can be used to increase this size by increments of
512 words.

10.2.1 COPYF (Copy File) Directive

This directive copies the specified number of f iles from the
indicated input logical unit to the given output logical
unit(s). The directive has the general form

where

COPYF, f ,iu,im,irl,ou(1),om,orl,ou(2), ou(3) , ... , ou(n)

f

.
IU

im

irl

is the number of input files to be copied
(must be 1 for RMD)

is the name or number of the input
logical unit

is 0 for binary, 1 for ASCII , 2 for BCD, or
3 for unformatted input files

is the number of words in each record of
the input files. If a value of zero is
specified then the record length is set to
the maximum buffer size. Following the

10-1

------ ------------·-·--·- - - ------- ----------- - - ----·--. _____ ,_ .. __ ·- -- ·--·-·- --·-----

INPUT /OUTPUT UTILITY PROGRAM

ou(n)

om

or I

read the actual physical record length
(word 5 of the RQBLK) is used as the
input record length.

is the name or number of an output
logical unit

is 0 for binary, 1 for ASCII, 2 for BCD, or
3 for unformatted output files

is the number of words in each record of
the output files. If a value of zero is
specified then the output record length
is equal to the input record length.

Any RMD involved with copying files, whether as input or
output medium, m~~tst have been previously positioned with
a PFI LE directive (section 1 0.2. 9).

If a difference in record lengths irl and orl causes a partial
record to remain when an end of file is encountered, the
part-record is filled with blanks and thus transmitted to the
output unit(s).

The following relation holds for input/output record

lengths:

Input
RCL

fixed

random

fixed
random

(0)

(0)

Output
RCL

fixed

fixed

random
random

Output Format

As defined (blocked or
unblocked)
As defined (blocked or
unblocked)

(0) Unblocked only
(0) Unblocked only

Record lengths of zero are useful in copying mixed ASCII
and binary data from cards to another media or vise versa.
ASCII read must be specified for this operation.

Example: Copy three f iles containing 120-word records
from the PI logical unit onto logical units LO, 50, and 51 in
40-word records.

COPYF , 3 I pI I 1 I 1 2 0 , LO I 1 , 4 0 I 50 I 5 1

10.2.2 COPYR (Copy Record) Directive

This directive copies the specified number of records from
the indicated input logical unit to the given output logical
unit(s). The directive has the general form

where

10·2

COPYR,r ,iu,im,irl,ou(l.),om,orl, ou(2), ou(3), ... , ou(n)

r is the number of input records to be
copied, or 0 if copying is to continue to
the end of file

.
IU

im

irl

each ou(n)

om

or I

is the name or number of the input
logical unit

is 0 for binary, 1 for ASCII , 2 for BCD, or
3 for unformatted input records

is the number of words in each record of
the input files. If a value of zero is
specified then the record length is set to
the maximum buffer size. Following the
read the actual physical record length
(word 5 of the RQBLK) is used as the
input record length.

is the name or number of an output
logical unit

is 0 for binary, 1 for ASCII, 2 for BCD, or
3 for unformatted output records

is the number of words in each record of
the output f iles. If a value of zero is
specified then the output record length
is equal to the input record length.

Any RMD involved with copying records, whether as input
or output medium, must have been previously positioned
with a PFILE directive (section 10.2.9).

If a difference in record lengths irl and orl causes a part ·
record to remain when an end-of-file mark is encountered,
the part-record is filled with bianks and thus transmitted to
the output unit(s).

Example: Copy 25 unformatted records of 200 words each
from the SS logical unit to the BO and PO units in binary
format with 40 words per record.

COPYR 1 25 1 SS 1 3,200 1 B0,0 1 40 1 PO

It may be necessary to copy from one file on an RMD
partition to another file on the same partition. This can be
accomplished by assigning two different logical units to this
RMD partition, and then issuing two PFILE directives
(section 10.2.9), positioning one logical unit to the
beginning of one file and the second logical unit to the
beginning of the other file. Additiona l positioning within
the files can be specified by SREC directives (section
1 0.2.4).

The following relation holds for input/output record
lengths:

Input
RCL

fixed

random (0)

Output
RCL

fixed

fixed

Output Format

As defined (blocked or
unblocked)

As defined (blocked or
unblocked)

.. ·- - -·--·-------- ·-... ~ ~- - · - - ·-- - ·- --·------ ·- -- - ·-

'

Input Output

RCL RCL Output Format

f ixed random (0) Unblocked only

random (0) random (0) Unblocked only

Record lengths of zero are useful in copying mixed ASCI I
and binary data from cards to another media or vise versa.
ASCII read must be specified for this operation.

Example: Copy the f irst ten records from fi le EDITl to
record 11 through 20 of file EDIT2. Both fi les are on RMD
partition DOOK. have record lengths of 120 words, are in
mode 1. and have no protection key (default value • 0).
Assign the 81 and 8 0 logica l units to the disc.

I ASSIGN,BI•DOOK
I ASSIGN,BO•DOOK
I IOUTIL
PFILE,BI,, 120 , EDIT1
PFILE,B0 , ,120,EDIT2
SREC, BO, 10
COPYR, 10, BI, 1, 120, BO, 1, 120

10.2.3 SFILE (Skip File) Directive

Th1s d irective . which applies only to magnetic -tape units.
and c ard readers. causes the specif ied log ical unit to move
the tape fo rward the designated number of end-o f- file
marks. The directive has the general form

SFILE.Iun,neof

where

lun is the name or number of the affect ed
logical unit

neof is the number of end·of.file marks to
be skipped

If the end·of· tape mark is encountered before the required
number of files has been skipped, IOUTIL outputs to the
SO and LO logical units the error message IUOS,nn. where
nn is the number of files remaining to be skipped.

E.xampie: Move tape on unit PI past three end·of.file marks.

SFILE,PI,3

10.2.4 SREC (Skip Record) Directive

This directive . wh ich applies on ly to magnetic-tape units.
card readers and AMOs. causes the spec if ied logical unit
to skip forward the designated number of reco rds. The
directive has the general form

SREC,Iun,nrec

where

lun

nrec

INPUT / OUTPUT UTILITY PROGRAM

is the name or number of the affected
logical unit

is the number of records to be sk ipped

Note that , unlike JCP directive / SREC (section 4.2.8). the
IOUTIL directive SREC cannot skip records in reverse.

If lun designates an RMD partition . the device must have
been previously positioned with a PFILE directive (section
10.2.9).

I f a fi le mark. an end·of· tape mark, or an end·of·device
mark is encountered before the requ ired number of records
has been sk ipped, IOUTIL outputs to the SO and LO logical
units the error message IUOS,nn. where nn is the number of
records rema.n.ng to be skipped.

Example: Sk ip 40 records on the 81 logical unit.

SREC,BI,/40

10.2.5 DUMP (Format and Dump)
Diredive

This directive copies the specif ied number of records from
the indicated input logical unit. formats them for listing,
and dumps the data onto the output unit in octal format.
ten words per line. with one blank between words. The
d irect ive has the general form

DUMP ,r ,iu,im,irl,ou

where

r

.
IU

im

is the number of input records to be
dumped or is zero i f dumping IS to
continue to an end·of· file

is the name or number of the inout
logical unit

is 0 for binary, 1 for ASCII , 2 for BCD, or
3 for unformatted input records

irl is the number of words in each record of
the input

ou is the name or number of the output
unit. wh ich cannot be an RMD part ition

The first line of the dump contains the record number
before word 1. but subsequent lines do not have the record
number.

If ASCII mode is specified by im then an ASCII scan and
dump will be made in addition to the octal dump. Printable

10·3

--- --- ·- ------------------------------- -------- ··--·- -"·----~·------..... . -·-----· .. --·--·--~ ~- - ~---.. . ..

INPUT !OUTPUT UTILITY PROGRAM

character bytes will appear to the right of each line of the
octal dump. Non-printable characters will appear as ASCII
blanks. ASCII scan and dump is suppressed if dump is to a
TY or CT device regardless of the mode.

Example: Dump 40 binary, 50-word records from the SW
logical unit onto the LO unit.

DUMP,~O,SW,O,SO,LO

10.2.6 PRNTF (Print File) Directive

This directive prints the specified number of files from the
indicated input logical unit to the list output logical unit(s)
specified. The directive has the general form

PRNTF,f,iu,ou(l).ou(2), .. . ou(n)

where

f
.
IU

is the number of files to be printed
is the name or number of the input
logical unit

each ou(n) is the name or number of a list output
logical unit

If an RMO is specified as the input logical unit, it must
have been previously positioned with a PFILE directive
(section 10.2.9) and only one file may be printed at a time
(i.e. , if it is greater than 1, it is defaulted to 1), because the
end-of-file terminates printing.

This directive is designed to print list output files directed
to devices other than a line printer (i.e., magnetic tape or
disc). Therefore, the input file is read in ASCII mode (1),
132 characters, and the list output records are written also
in ASCII mode.

Example: Print two (2) files on magnetic tape unit 18 on
LO.

IIOUTIL
REW, 18
PRNTF,2,18,LO
/!NDJOB

Example: Print an RMO file called SYSOUT in logical unit
25 to LO.

IIOUTIL
PFIL!,25,,120,SYSOUT
PRNTF,1,PI,LO
/ENDJOB

10·4·

10.2.7 WEOF (Write End of File)
Directive

This directive writes an end-of-file mark on each logical unit
specified. The directive has the general form

WEOF,Iun,/un, ... ,/un

where each lun is the name or number of a logical unit
upon which an end·of.file mark is to be written.

Example: Write an end-of-file mark on the 80 logical unit
and on the PO logical unit.

WEOF,BO,PO

10.2.8 REW (Rewind) Directive

This directive, which applies only to magnetic-tape units,
causes the specified logical unit(s) to rewind to the
beginning ~f tape. The directive has the general form

REW ,lun,/un, ... ,/un

where each lun is the name or number of a logical unit to
be rewound.

Example: Rewind the 81 and PO logical units.

REW,BI,PO

10.2.9 PFJLE (Position File)
Directive

This directive. which appl ies only to rotating-memory
devices. causes the specified logical unit to move to the
beginning of the designated file, and opens the file. The
directive has the general form

PFILE,Iun,key,recl,name

where

lun

key

recJ

name

is the name or number of the affected
logical unit

is the protection code required to
address lun

is the number of words in each record of
the file

is the name of the file to which the
logical unit is to be positioned

\

•

Since IOUTIL has only six fCBs. there can be a maximum
of six files open at any given time.

Example: Position the PI logical unit. using protection
code z. to the beginning of the file FILEXY, which contains
60-word records.

PFILE,PI,Z,60,FILEXY

10.2.10 CFILE (Close File) Directive

This directive. which applies only to RMD partitions. closes
the specified file. The d irective has the general form

CFILE.lun,key,name.add

where

tun

key

name

add

is the name or number of the logical unit
containing the file to be closed

is the protection code requ ired to
address lun

is the name of the file to be closed

is 0 (default value) if the current end-of·
file address on the RMD file-directory is to
remain unchanged. or 1 if it is to be
replaced by the current record (i.e .. actual)
address

A PFILE directive (section 10.2.9) must have been used to
position lun before the CFILE directive is issued. Closing a
file frees the associated FCB for use with another file. Since
IOUTIL has only six FC8s, there can be a maximum of six
files open at any given time.

Example: Close the file WORK on the SW logical unit
(protection code B) and update the file directory.

CFILE,SW,B,WORK,1

10.2.11 PACKS (Pack Binary) Directive

This directive copies the specified number of files from the
indicated input logical unit to the given output logical
unit(s). It causes each new system binary program to start
on a record boundary. The directive has the general form

where

PACKB, f ,iu,im,irl,ou(l),om,orl,ou(2), ... ou(n)

f

IU

is the number of input fifes to be copied

is the name or number of the input
logical unit.

. 1m

irl

ou(n)

om

or I

INPUT / OUTPUT UTILITY PROGRAM

is 0 for binary, 1 for ASCII . 2 for BCD. or

3 for unformatted input files.

is the number of words in each record of
the input files. If a value of zero is
specified then the record length is set to
the maximum buffer size. Following the
read the actual physical record length

4

(word 5 of the RQBLK) is used as the
input record length.

is the name or number of an output
logical unit.

is 0 for binary. 1 for ASCII. 2 for BCD. or
3 for unformatted output files.

is the number of words in each record of
the output files. If a value of zero is
specified then the output record length
is equal to the input record length.

The following relation holds for input/output record
lengths:

Input
RCL

fixed

random

fixed
random

(0)

(0)

Output
RCL

fixed

fixed

random
random

(0)
(0)

Output
Format

As defined (blocked
or unblocked)

As defined (blocked
or unblocked)

Unblocked only
Unblocked only

Any RMO used in this directive must have been previously
positioned with a PFILE directive (section 10.2.9).

This directive can be used for any output media and any
record length. It is primarily intended to be used for RMD
output of 120 words. Use with non-RMO output may not
produce the intended effect.

Example: Pack one binary file from the card reader onto a
RMO file on logical unit 25 in 120 word blocks:

PACXB,1,CR,0,60,25,0,120

10.3 MULTI-VOLUME TAPE HANDLING (V$RSW)

IOUTIL provtdes the operator with interfaces necessary for
handling multi volume (i.e .. mult i- reel), magnetic tape f iles.
The routine directs the operator to unload the current
magnetic tape volume and mount a new one whenever end·
of-tape is encountered.

10·5

.. ·- ·--~-·----·-------.. ---·~------ ··--- - - - - _ ,_ ·------~·-·----·· ,., ___

INPUT /OUTPUT UTILITY PROGRAM

The magnetic tape unit to be unloaded is given a rewind
directive and the following message is output to the
operator:

where

10-6

IOUTIL: UNLOAD LUN nn
IOUTIL: MOUNT NEXT VOLUME

nn is the logical unit number of the
magnetic tape to unload

- - -------- - - -

After the message for mounting a new magnetic tape has
been output to the operator, the subroutine issues a
suspend request. When the new volume has been success
fully mounted, the operator can continue execution by .
keying in the following:

;RKSUME, IOUTIL

If the mounting of a new magnetic tape volume is not
needed, the operator will key in the message ; ABORT,
IOUTIL on the OC device. which will return control to
JCP.

- ------·- --

\

SECTION 11
VSORT (SORT /MERGE)

The VORTEX Sort/ Merge (VSORT) task constructs a sorted
file in the order determined by fields selected by the user.

11.1 ORGANIZATION

VSORT is scheduled as a background task by the Job·
Control Processor (JCP. section 4.2.19) upon input of the
JCP directive

I LOAD,VSORT

Once activated, VSORT inputs the sort parameters from the
Sl logical unit. The maximum number of VSORT directives
is five records. The directive ENDSORT terminates the
input of VSORT directives within five records. Upon
completion of the sort/ merge, VSORT exits to JCP.

VSORT has a buffer area large enough for most sort/merge
operations. To increase the size of the buffer, input a
/ MEM directive (see section 4.2.3) immediately preceding
the I LOAD, VSORT directive.

Inputs to VSORT comprise

a. VSORT directives (section 11.2) input through the Sl
logical unit

b. File to be sorted, input through the INPUT logical unit

c. Additional file to be sorted, input through the Al TIN
logical unit.

Outputs from VSORT comprise

a. Sorted file on the OUTPUT logical unit

b. Listing of VSORT directives on the LO logical unit

c. Listing of VSORT totals for the sort/ merge on the LO
logical unit

d. Error messages, if any, on the LO logical unit

Error messageS applicable to VSORT are given in Appendix
A.ll .

VSORT performs either a full-record sort or a tag sort. In a
full ·record sort the entire records are moved in central
memory in order to accomplish the sort. In a tag sort. only
the concatenated sorting control fields and the record
numbers are manipulated in central memory. VSORT will
perform the more efficient tag sort unless one of the
following conditions occurs:

a. INPUT file is not an RMO

b. The file used for INPUT is also used for another file in
the sort, either as a WORK or OUTPUT file

c. A user input exit routine is specif ied (by the INEXIT
directive)

d. An alternate input has been defined

Workspace Requirements: Each work file must be large
enough to con tain a number of work records equal to the
number of input records. For tag sorts. the length of the
work records is equal to the sum of the length of the control
fields plus one word. On full -record sorts. the sum of the
control f ields plus one input record length is needed.

Work records are blocked with a blocksize equal to a fourth
or third of the central memory workspace for the merge
phase.

Work space for the sort phase in central memory is
allocated dynamically to overlay the in itialization routine
(about 2K). which occupies the highest memory loca tions of
VSORT. Work space for the merge phase occupies an
additional 1 K in central memory. Additional work space
may be allocated for a background sort by using the / MEM
directive (JCP, 4.2.3).

11.2 VSORT DIRECTIVES

This section describes the VSORT directives.

a. Required Group

• SORT
• INPUT
• OUTPUT
• WORK
• SORTKEY
• ENDSORT

b. Opticnal Group

• ALTIN

• ALTSEQ

• INCLF

• INCLC

Sort directives follow
Define log1cal unit for input
Define logical unit for output
Define work file(s)
Define sorting field(s)
Begin sorting

Describe alternate
sort input file

Define collating
sequence

Include this record
by field comparison

Include this record
by constant comparison

ll -1

..... _.,___ _ ______ ..__,,. _________________________________ ---------------------

VSORT (SORT I MERGE)

• · OMITF

• OMITC

• MOVEF

• MOVEC

-
• LOT

• IN EXIT
• OUTEXIT

Omit this record by
f ield comparison

Omit this record by
constant comparison

Move Field

Move Constant

Output sorted tags
(Record Numbers)

Use input preprocessor
Use output preprocessor

The general form of a VSORT directive is

name • p(t),p(2), ••• ,p(n) terminator

where

name is one of the VSORT directives

p(n) is a parameter required by VSORT and

defined below under the descriptions of
the individual directives

terminator is a blank or ri&ht parenthesis

11.2.1 SORT Directive

This directive signals the start of the sort directives. The
general form is

SORT

The word SORT must be followed by at least one blank.
The SORT directive must be the first directive on the firs
control record.

(

key

recordleneth

blocking
factor

is the single character
file protection key, as
conta ined in the file
directory for the· file
(required only if the
f ilename is present and
the RMD is protected)

is a 1· to 4-digit
decimal number specifying
the length in wcrds of
the logical records in
the file.

is a 1-4 character
decimal number
specifying the
number of logical
records per physical
record.

Example: Describe a sort input file on magnetic tape on
logical unit 18, which has 200-word records.

INPUT•(18,,,200)

11.2.3 ALTIN Directive

This optional directive describes an alternative input which
contains additional records to be stored. It has the form

where

AL TIN • {lun)

tun IS a 1·3 character
decimal number
specifying the
logical number of
the file (cannot
be an RMO).

Note: In this directive, the record length and blocking
factor defaults to the input file read (refer to the INPUT
d . recfive).

"-'-"c::.&?-) \Ito v ~;;"f
~~ Ex mple: Oescril:5e an alternate input file on logical unit

~ :J· L ~f/YJ-v€0 This directive describes the sort input file which contains
the records to be sorted. It has the general form

INPUT • (lun,filename,key,recordleneth,blocking factor)

where

tun

filename

11-2

is a 1· to 3-character decimal number
specifying the logical unit of the file

is a 1- to 6-character name of the file as
it exists on the RMO file directory
(required for aU RMO files)

ALTIN • (13)

This directive describes the output file which will ultimately
contain the sorted records. It has the general form

OUTPUT • (lun.filename,key,recordleneth,blocking factor)

where tun, filename, key recordlenilh and blocking factor
are the same as they are described in the INPUT direct ive
(section 11.2.2).

- - - - - - ------ -------- - - - ---

!

Example: Describe a sort output file on a line printer
logical unit 5, which has a 60-word record length.

OUTPUT•(5,,,60)

Note: The record length does not include the printer line
control character which is added by SORT.

11.2.5 WORK1-3 Directives

1
WORK 2 ,. (lun,fi/ename,key)

3

where lun, fi lename, and key are the same as described for
the INPUT directive (section 11.2.2).

Example: Describe intermediate sort files named Wl, W2.
and W3 on RMD logical unit 25. These files do not have
protection keys.

WORK1•(25,W1),WORK2•(25,W2),WORK3•(25,W3)

Note: The work files must be RMD files. Each file must
have sufficient space to contain the intermediate work
records equal to the number of records in the input file for
the sort.

11.2.6 SORTKEY Directive

This directive describes one to 29 control fields to be used
to sequence the records of the sort input file. It has the
general form

SORTKEY • (sc(l),ec(l),order(l) •... ,sc(29),ec(29),order(6))

where each

sc(n)

ec(n}

order(n)

is a one· to four·digit decimal number
specifying the starting character (or
byte) position of the control field as it
exists in the input record, or, if there
positions are modified by an INEXIT
routine, as they exist 1n the modified
input record.

is a one- to four-digit decimal number
specifying the ending character (or byte)
position of the control field. It must be
greater than or equal to the preceding
starting character position

is a single character A or D for
ascending or descending sequence.
respectively, for sorting the control field

At least one control field specification must be given. Each
control field specification must have all three parameters
specified.

VSORT (SORT I MERGE)

•

Con troi fields may overlap.

Character positions are numbered starting with one.

The significance of a control field depends on its placement
in the SORTKEY directive. The first control field defined is
the most important (or major) control field. The next is the
secondary (used in cases of matches in the first) control
field. Similarly, until the last specification given is the least
important.

Collating sequence: An algebraic collating sequence is used
to sort the data. Each word (in numeric data) or each byte
(in character data) is interpreted as an octal number
having an algebraic sign. Thus, ASCII characters have the
collating sequence from 0240 (low) to 0337 (high). If
characters are other than ASCII , the sign bit (bit 7) of each
8-bit character must be the same for all the characters.

Word·boundary data are treated as signed octal numbers
and have the collating sequence from 0100000 (low) to
077777 (high). Thus, FORTRAN variables of integer, real, .
complex or logical types may be sorted with SORT control
fields. FORTRAN double-precision numbers cannot be
sorted because the sign of the number is not in the first
word.

Example: Describe two control fields. one is bytes 27 and
28 in ascending order, and the other is byte 1 through 4 to
be sorted in descending order.

SORTKEY•(27,28,A,1,q,D)

11.2.7 ALTSEQ Directive

This optional directive allows specification of alternate
values from existing characters to be found in the file to be
sorted. thus providing a direct means of specifying an
alternate value for each character of concern when sorting.
It has the form

ALTSEQ • (x)

where

1 is a 64-character string

Example: Redefine the collating sequence where the vowels
(a.e,i,o, and u) will be replaced with blanks for sorting
purposes.

ALTSEQ • (!"t$% &'()•,-./0123456789
:. <•>? BCD FGH JKLMN PQRST VWXYZ [I) t-), ,

11.2.8 INCLF Directive

This optional directive provides for including an input
record by comparing one ASCII field against another ASCII
field. It has the form

11 ·3

·-------.... ·-·-...... ~-- ~ .. --... ... _ ·-·--------- ,, -----··--·-.,..·· -··--~·· .. ---·-·---·--- ---- ·--·- -·---·····-·- ·--··- ... ---··--·. -- ·--·-- ., .

VSORT (SORT I MERGE)

where

INCLE = (fsl , tel, rei, fs2)

fsl

fel

rei

fs2

is the first byte of
the first field.

is the last byte of
the first field.

is one of the following
relation tests (required
to include this record):

EQ
NE
LT
GT
LE
GE

Include if

fsl - fs2
fsl;J* fs2
fsl < fs2
fsl ::> fs2
fsl s fs2
fsl ~ fs2

is the first byte of
the second field.

Example: Accept any input record where byte 11 and 12
are equal to bytes 26 and 27.

INCLF • (11,12,EQ,26)

11.2.9 INCLC Directive

This optional directive provides for induding an input
record by comparing an ASCII Field against an ASCII
constant. It has the form

where

11 ·4

INCLC

fsl

fel

rei

- (fsl, fel, rei, con)

is the first byte
of the fietd.

is the last byte
of the field

is one of the
following relation
tests (required to
include this record):

Relation Test Include if

EQ fsl • con
NE fsl ~ con
LT fsl < con
GT fsl::> con

---· --.

con

LE
GE

fsl s con
fsl ~ con

is a constant of
up to ten char·
acters excluding
comma and right
parenthesis.

Example: Accept any record where byte 46 is not a 7.

INCLC • (46,46,NE,7)

11.2.10 OMITF Directive

This optional directive provides for rejectin& an input
record by comparing one ASCII field against another ASCII
field. It has the form

where

OMITE • (fsl, fel, rei, fs2)

fsl

fel

rei

fs2

is the first byte of
the first field.

is the last byte of
of the first field.

is one of the
following relation
tests (required to
reject this record):

Relation Test Reject if

EQ fsl - fs2
NE fsl ... fs2
LT fsl < fs2
GT fsl ::> fs2
LE fsl s fs2
GE fsl ~ fs2

is the first byte of
the second field.

E.xample: Delete any input record where bytes 1 and 2 are
equal to bytes 6 and 7.

•

OHITF • (1,2,EQ,6)

11.2.11 OM lTC Directive

This optional directive provides for rejecting an input
record by comparing an ASCII field against an ASCII
constant. It has the form

OMITC (fsl, fel, rei, con)

---- . - ·

where

fsl

fel

rei

con

is the first byte of
the field.

is the last byte of
the field.

4 is one of the following
relation tests (required
to reject this record):

Relation Test Reject if

EQ fsl - con
NE ts 1 ':;/;
LT tst <
GT fsl >
LE fsl s
GE fsl ~

is a constant of up
to ten characters
excluding comma

con
con
con
con
con

and right parenthesis.

Example: Delete any record where byte 26 is not a 2.

OKITC • (26,26,NE,2)

11.2.12 MOVEF Directive

This optional directive provides for moving a data field
within a record to another field within the record. It has the
form

where

MOVEF • (fsl, fs2, fe2)

fsl

fs2

fe2

is the first byte of
the from field.

is the first byte of
the to field.

is the last byte of
the to field.

Example: Move the data in bytes 30 through 40 to bytes 70
through 80.

MOVEP • (30,70,80)

11.2.13 MOVEC Directive

This optional directive provides for moving an ASCII
constant to a field within the record. It has the form

VSOAT(SORT!MERGE)

where

MOVEC • (con, fsl, fel)

con

fsl

fel

is a constant of up
to ten characters,
excluding comma and
parenthesis.

is the first byte of
to field.

is the last byte of
the to field.

Example: Move the constant SORTED to bytes 13 through
18.

MOVEC • (SORTED,13,18)

11.2.14 LOT Directive

This optional directive specifies that a list of sorted tags is
to be output. It has the form

lOT

The directive is applicable when a tag sort is performed.

11.2.15 INEXIT Directive

This optional directive specif ies whether a user-written
input-exit routine is to be called at the time the input file is

bemg read by the sort part of VSORT. The general form of
the directive is

INEXIT • YES
NO

The equal sign may be followed by a string of up to four
alphabetic characters. Unless YES is specified, the default
is NO (a user routine is not called). YES or NO must be
followed by at least one blank.

11.2.16 OUTEXIT Directive

This optional directive specifies whether a user-written
output exit routine is to be called at the time the final file
output f ile is being created by the merge phase of VSORT.
It has the general form

OUTEXIT• YES

NO

11-5

-- -------------------·---------------------------·-------------~· ·"· ·-- .. -- -~··---·-..... ---~ -·· ---~------ ------------ ·-··---· -··-·'--···

VSOAT(SOAT/MERGE)

The meaning of YES and NO is the same as described for
the IN EXIT directive (section 11.2.15).

11.2.17 EN DSORT Directive

This directive signals the end of the sort directives.
general form of this directive is

ENDSORT

The

The word ENDSORT must be followed by at least one blank
as the last directive on the last control record for VSORT.

11.3 USER EXITS

User exits provide for the insertion, deletion, or modifica
tion of input and output records by user-written routines.
Exits are requested by the VSORT directives, INEXIT -
YES and/or OUTEXIT - YES. The exit routines written by
the user are added to VSORT at load-module generation
time.

The input exit routine, if provided, is called for each input
record before it enters the sort. Possible uses of the input
exit are

• Add input records

• Delete input records

• Create part or all of the input file

• Change input records, such as control fields

The input record length may be changed to the output
record length specified on the OUTPUT directive.

The output exit routine. if provided, is called for each
output record before it is written on the output file.
Possible uses for the output exit are

•

•

Add output records, effectively merging one or more
files with the sorted file

Delete sorted output records, such as duplicates

• Change the sorted output records

If output records are added or changed, it's the user's
responsibility to ensure that the control fields of the output
records remain in sequence.

11.3.1 Calling Sequen<:e

VSORT uses the followina calling sequence for user exits:

11 ·6

- - - - .. --- - --

Word 1 JMPM XITn

Word 2 input buffer address
.

Word 3 output buffer address

Word 4 flag

where

n

input

buffer
address

output buffer
address

flag

is 1 for input exit and 2 for output exit

is the address of input record passed to
the user routine (INEXIT) or the address
to which the user must move a record if
it is to be inserted before the output
record (or EOF) passed to the user
routine (OUTEXIT)

is the address of the output record
passed to the user routine (OUTEXIT)
or the address to which the user must
move a record if it is to be inserted
before the input record (or EOF) passed
to the user routine (INEXIT)

is set by VSOAT as 0 for an EOF en
countered, 1 for IN EXIT. or 2 for OUT
EXIT; otherwise it is set by the user rou
tine as follows

Bit 0 - 1 accept input record (INEXIT)
or insert record in input buffer
before output record (OUT
EXIT)

- 0 is ignore the record in the
input buffer

Bit 1 • 1 accept the output record
(OUTEXIT) or insert record in
the output buffer before the
input record (INEXIT)

• 0 ignore the record in output
buffer

After EOF notification has been given to the user input
(output) exit routine, the user routine may continue to pass
records to VSOAT in the buffer, but the contents of the
buffer are ignored.

11.3.2_ Implementation

The exit routines written by the user must have the
following external names

XITl User input exit entry point

XJT2 User output exit entry point

To build a load module using user exits. place the user exit
modules in front of the YSORT object module and proceed
to generate a single load module.

11.4 VSORT MESSAGES

In addition to listing the YSORT directives. YSORT outputs
the following totals:

a. End of sort phase totals

SORT PHASE COKPLETE,TOTAL MERGE
RECORDS•XXXXX

INPUT XXXXX ACCEPTED•XXXXX
INSERTED•XXXXX DELETED•XXXXX

b. End of merge phase totals

SORT COKPLETE,OUTPUT RECORDS
COUNT•XXXXX

KERGE•XXXXX ACCEPTED•XXXXX
INSERTED•XXXXX DELETED•XXXXX

11.5 FOREGROUND SORT

VSORT may be scheduled as a foreground task on any
V75 compat ible processor. To schedule VSORT as a fore
ground task; load the required registers. and execute
SCHEO as follows:

' ...
, . I (I

I -,x' Q ... ;

-

VSORT (SORT I MERGE)

label SCHED level, wait.lun, key, 'VS','OR','r

Upon return . the AO register contains the sort status (AO =
0, - error free sort - AO 0: error)

Parameter Registers:

AO bit 14 = 0: No parameters in registers. use Sl to read
in sort directives.

AO bit 13 = 1: List of tags to be output (see 11.2.14).

RO bit 14 = 1: Sort d irectives are on a logical unit other
than Sl. Information on this unit contains
parameters in registers as follows:

Status:

RO = 0

' ,,
" . I' \

. ,\ '- \
'\ \ /"\ \ .~

'\c '\J ') .,_,
, .. ;-, ' ("
..., (' \1

AO = logical unit number (set b it 12 for
open without rew ind).

R2 = protect key (if RMD).

R3 = record length.

A4 =ASCI I fi le name (if RMO).

AS =ASCII file name (if RMO).

R6 = ASCII file name (if RMO).

sort complete.

error encountered:

AO bitO = 1: 1004 or 1010error (seeA.3).
RO bit n = 1: STn error (see A. 1 1) .

"· ,..
\ ~-:... I ~) ,..., .. ' ' 'J
' -1'" '(\ ·-; \

.... ' ·0 <i) •

--:-\ ... '
\.'-\; (l

-·

1 1 . 7

··----··-----·--------·-.. ·-·- -·--- - -·-·-..... _ ... , - ----....... -· -~- ··"··--· .. ··--,- - -----·-.-- ·- ---···-.-· ·· . -··------ _,. ..

--------------------- ------------------------------------

•

SECTION 12
DATAPLOT II

DA TAPLOT II is a collection of FORTRAN callable subrou
tines that provide the user with interface to the Varian
STATOS 31 and STATOS 33 electrostatic printer/ plotters.

Using DA TAPLOT II, the programmer can specify the
desired graphic output at the functional level. For example,
DA TAPLOT II enables the STA TOS printer / plotter to

• Draw a vector between two given points

,.
• Produce a scaled set of axes for a given magnitude

• Produce a plot from a set of input data. using specif ied
plot point markers

12.1 SYSTEM FLOW OUTLINE

OATAPLOT II consists of FORTRAN and DAS MR subrou
tines which permit STATOS 31 or STATOS 33 printer/
plotters to draw lines, numbers, letters, symbols, and chart
axes. Provision is also made for plotting lines from existing
X-Y arrays and/ or data from an external data base.

Figure 12-1 shows the relationship between the user and
the DATAPLOT II Graphics System.

12.2 HARDWARE REQUIREMENTS
DATA_PLOT subroutines can be linked to either foreground
or background tasks under VORTEX (see VORTEX installa
tion manual for memory requirements). OATAPLOT can be
used with the following considerations:

The ST ATOS equipmeat that is supported under
VORTEX is

Unit Model Width

STATOS 31 70-6602 14-718 inches
STATOS 31 70-6608 11 inches
STATOS 33 70·6611 / 21 8·1 / 2 inches
STATOS 33 70-6613123 11 inches
STATOS 33 70·6615 / 25 14-718 inches
STATOS 33 70-6617127 22 inches

STATOS 42 70-6661 8-1 12 inches
STATOS 42 70-6662 8-1/2 inches
STATOS 42 70-6663 11 inches
STATOS 42 70-6664 11 inches
STATOS 42 70-6665 14-7/ 8 inches
STATOS 42 70-6666 14-718 inches
STATOS 42 70-6667 22 inches
STATOS 42 70-6668 22 inches

•

Unit Model Width

STATOS 41 70-6651 8·1 12 inches
STATOS 41 70-6652 8-1/ 2 inches
STATOS 41 70-6653 11 inches
STATOS 41 70-6654 11 inches
STATOS 41 70-6655 14-7/ 8 inches
STATOS 41 70-6656 14-7/ 8 inches
STATOS 41 70-6657 22 inches
STATOS 41 70-6658 22 inches

b. The STATOS un it must be operated under SIC control
w1th PtM assigned interrupts. In addit ion. the STATOS
31 printer / plotters wi ll support the single-line Input
Buffer Option (Model31 ·152): except . those without a
hardware character genera tor.

c. DATAPLOT II does not support any of the Hardware
Character Generator options, the Simultaneous Print/
Plot options, or the High Speed option.

12.3 GENERAL DESCRIPTION

12.3.1 OAT A PLOT II Organization

DA TAPLOT II is organized into the following f ive logical
operations:

• Defining the Plot Fife and Initialization

• Building the Plot File

• Sorting the Plot File

• STATOS Paper Control

• Outputting the Plot File in STATOS Raster Format

These are shown schematically in figure 12·2.

Oefininc the Plot File: Subroutine DPINIT defines which
VORTEX logical unit will contain the Plot File, the logical
size of the plot file records, and the block size of the output
device for the plot data. If DPINIT is not called. the plot file
will default to System Scratch (SS) with 120-word records.
and plot data will be output in blocks of 88 words for the
14-7/ 8 inch STATOS. Subroutine DPINIT must be called
when Dataplot is operating in a foreground mode to
prevent a possible conflict with background programs
which may use System Scratch.

12-1

.. -~----.--... -·----·----- - - ------·------------ ·- ------- ------- ------ - - --

DATAPLOT II

SYSTEM
DIRECTIVES

USER
FORTRAN
PROGRAM

V171·J111

YTII·J174

12·2

Sl

PI

USER
FORTRAN
PROGRAM

,----------------
1 OPERATING SYSTEM

I

I

•

JC8 CCNTRCL
PRCCESSCR

OATAPLOT II
LIBRARY

OM

I

I
I r

I
I
I
I
I

I

FORTRAN

COMPILI:R

80/ BI LOAD
MODULE

I

I
I

GRAPHICS
OUTPUT

I

L ·-
LO

-- --

COMPILATION
LISTINGS

------- --- J

DATA FLOW >
CONTROL FLOW ---·~

Figure 12·1. DATAPLOT II Graphics System Data Flow

-

PLOT FILE
!OENTIFlCA TlON

AND
!NIT!AUZ.A TION

BUILDING
THE

PLOT FILE

SORTING
THE

PLOT Fllf

OUTPUTTING
THE

PLOT FILE

STATOS
PAPER

CONTROL •

DATA FLOW -->
CONTROL FLOW ---·~

PLOT FI LE

STATOS
PRINTER
PLOTTER

Figure 12-2. DA T APLOT II Organization

-·--- . - ·----:-

•

Building the Plot File: If the plot file is to be built through
calls to Dataplot subroutines ORIG, CHAR, PLOT, VECT,
NUMBER. SCALE, AXIS, OA TA, SYMBOL, APPEND, and
'liNE, the plot file must be assigned to an RMD device or
the sort subroutine will not work.

STATOS Paper Control: Subroutine CUT, ENOCUT, and
TOPFRM are auxiliary paper control subroutines. These
subroutines issue FUNC commands to the output driver
and will be processed as applicable to the driver.

Outputting the Plot File: Subroutine OPPLOT outputs
ST A TOS raster format data. OPPLOT is called by subroutine
PLOT when the plot is terminated.

12.3.2 System Considerations

OAT A PLOT II is supplied as three groups of object module
routines. The first group is the basic Dataplot Object
Module (BOPOM). It contains the subroutines for initializ·
ing the plot file, drawing lines, sorting and outputting the
plot f ile, and paper control. The second group is the
VORTEX (pen·plotter compatib le) Dataplot Object Module
(VDPOM). It contains higher level routines for building the
plot file. The third group is the MOS (compatible) Dataplot
Object Module (MPBOM). It contains calls which are
compatible to the MOS Dataplot II.

DA TAPLOT I I is put onto the object module library as a
combination of either the BOPOM and VOPOM, or the
BOPOM and MDPOM, depending on which set of higher
level subroutines the user wishes to call. The VOPOM
routines offer axes, character and number strings at any
angle. while the MDPOM offers only two angles (0 degrees
and 90 degrees). The MDPOM subroutines are provided for
use~ who have already wntten MOS programs calling
DATA PLOT II.

The MDPOM routines may be placed on an alternate object
module library and the VDPOM routines may be placed
on the standard OM library. Programs using the MDPOM
routines may search the alternate library before the stan
dard OM library, but this also prevents a load-and-go opera
tion.

"Yhen converting programs written for MOS OATAPLOT II,
a call to PLOTS must be substituted for the calls to OPEN,
HOPEN, and OOPEN. The call CALL PLOT (0.0.0.0,999)
must be substituted for calls to CLOSE, HCLOSE, and
DCLOSE. There is a shift in the logical plot origin if the
pseudo·pen encounters a plot boundary in VORTEX
DATAPLOT II (incl MOPOM). There is no such shift in the
MOS DATAPLOT II routines.

DATAPLOT II

Users of STATOS 42 models 70·6661 through 70·6668 (200
styliilinch) must include CALL DENSTY(200) prior to the
call to PLOTS. Omission of the call to OENSTY for 200
stylii tinch models will result in a plot size one·half that
expected from the program.

DA TAPLOT II subroutines are listed below:

Oataplot I I initialization

DPINIT
PLOTS
Dl!!NSTY

Building the Plot File

PLOT
VECT
ORIG
FACTOR
WHERE
MLTPLE
APPEND
NUMBER
NUMBER
SCALE
SCALE
AXIS
AXIS
DATA
LIN!!
SYMBOL
SYMBOL
CHAR

Sort and Output

DPSORT
DPPLOT

Paper Control

TOPP'RM
CUT
ENDCUT

BDPOK
BDPOK
BDPOK

BOP OM
BOP OM
BOP OM
BDPOM
BDPOK
BDPOK
BDPOM
MOP OM
VDPOM
MOP OM
VDPOM
MDPOM
VDPOM
MOP OM
VDPOM
MDPOM
VDPOK
MDPOK

BDPOM
BOP OM

BDPOM
BDPOK
BDPOM

12.3.3 VORTEX Considerations

(STATOS 42
models)

Plot File Assignment: The user must supply a secondary
storage file sufficiently large enough to hold the plot file
when the plot file is unsorted or generated by calls to
DATAPLOT II subroutines ORIG, VECT, CHAR, NUMBER.
SCALE, DATA, AXIS, LINE, PLOT, SYMBOL, or APPEND.
Four 16-bit words are used for each vector or character to
be plotted, and four 16·bit words are used for the end·of·
plot indicator. An error (OPOO) will be reported if the plot
file is overflowed.

12-3

--- ---- - - ----- ·-------- --- - ·--- --· - ·-·--. ·-·· - -·-·-·- __ .,__________ ___ , .., ____ ... , _____ .. · - -- ----· .. ···--·.-.---~-- - .,.. ·- -~

....................... -.. ·-----·-·· ····· . -··-·-· --" . ----

OATAPLOT II

The user may supply a sorted plot file in vector-end-point
format. Sorted data may be plotted directly from the plot
file by assigning the plot fi le to the logical unit conta ining
the data during the call to OPINIT.

User-Supplied Central Memory Buffers: OATAPLOT II may
use up to three types of buffers which the user must supply
by a FORTRAN DIMENSION statement. The buffer types
are:

• DATAPLOT II Working Buffer ·· defined in call to PLOTS

• Append FILE 110 Buffer ·· defined in call to APPEND

• Data Array Buffer(s) -~ used by DATA and SCALE
subroutines

OAT APLOT II Workine Buffer: The DATAPLOT II Working
Buffer is used in building, sorting, and outputtina the plot
file.

The algorithm for determining the size of the OATAPLOT II
working buffer is:

22 + PFIO + RO + 6(VECmax)

where

PFJO

RO

is the size of the plot file l/0 buffer

is the size of the raster (ST A TOS) output
buffer

is the maximum number of vectors or
characters on any one STA TOS scan line

The plot file I 10 buffer size is a multiple of the physical
record leneth of the plot file, and is specified in the call to
DPINIT.

The raster output buffer size is deten nined by the width of
the STATOS printer/ plotter for which the plot is intended,
as shown in the following table, and is specified in the call
to OPINIT.

STATOS Width No. Raster
Model Sty Iii/Line Buffer Size

70-6608 11 inches 1056 66
70·6602 14-7/ 8 inches 1408 88
70-6611 , 8-112 inches 800 50

70·6621,
70·6651, and
70-6652

70·6613. 11 inches 1056 66
70·6623,
70·6653. and
70·6654

70-6615, 14-7/8 inches 1408 88
70·6625,
70·6655, and
70-6656

12-4

STATOS Width No. Raster
Model Stylii/ line Buffer Size

70-6617. 22 inches 2048 132
70·6629.
70-6657, and

70-6658
70·6661 and 8·1 12 inches 1600 100

70·6662
70·6663 and 11 inches 2112 132·

70·6664
70·6665 and 14-718 inches 2816 176
70·6666

70-6667 and 22 inches 4096 264
70-6668

The buffer is also used to hold vectors and characters at
the time they are being converted to STATOS raster format.
A six·word entry will be placed in this buffer when the
vector or character is first to appear on a ST A TOS scan
line. The entry remains until the vector or character
reaches its last STA TOS scan line.

An erTor (DP01) will be reported if the concurrent vector
buffer is overflowed.

Example: DATAPLOT II is going to plot from a plot file
whose record length is 120. to a STATOS printer/ plotter
whose width is 14-718 inches. The maximum number CJf
vectors or characters expecte<·! on any one raster line is
130. The length of the workiP;, buffer should be:

22+120+88+780- 1010

Minimum and Maximum Plot Values: The minimum x value
is ·30.00 inches. The maximum x value is + 297.00 inches.
The maximum y value is determined by the width of the
STA TOS for which the plot is intended. These values are
shown in fieure 12·3.

1

WIDTH OF
STATOS

o.so·
--Ac-------------~

f-- 30 . 00" _ _, ____ 2<fl .00" ----·-11
A = ~y, ico l or igin (0 .0 ,0 .0)

B =Start ing log ical or ig in (0.0,0.0) or (0.0,0.5) phy, icol .

J'Tli-.HIU

Fieure 12-3. Minimum and Maximum Ptot Values

--------~---- - - -

The logical ongm may be moved by calling subroutine
PLOT or ORIG. Subroutine PLOT will move the logical origin
re1erenced to the last logical origin. Subroutine ORIG will
move the logical origin referenced to the physical origin.

If the plot boundaries are encountered while building the
plot file, the logical origin will be effectively shifted in a
manner similar to a pen plotter. An error (DP04) will be
reported.

12.4 DATAPLOT II SUBROUTINES

The general form of the DA TAPLOT II functions is:
•

(statement number) CALL S (p(l),p(2), ••• p(n))

where:

(statement IS the optional statement number.
number)

s is the name of the subroutine.

p(l), .•• p(n) are the parameters, if any.

12.4.1 DPINIT (System File Initialization)

This function enables the user to specify certa in in itial
conditions relating to the plot file and plot file l / 0 buffer.
In the absence of this function , the default parameter
values shown in the parameter description will exist.

The function has the general form

CALL OPINIT (lun,key,name,ipltbf,outsiz)•
*BDPOM
where

tun

key

is the number or variable of the plot
file logical unit (Integer).

is the protection key, if any.

Default

8

None

DATAPLOT II

Example: Select logical unit 25, file name PLTFll. protec
tion key Z. length 120 as the plot f ile. The output 1s to go to
a ST A TOS, width 14· 718 inches.

CAU OPINIT (25,2HbZ,6HPLTFIL,120,88)

12.4.2 PLOTS (Work Buffer Initialization)

The PLOTS function is used to initialize the OA TAPLOT II
work buffer. It must be called prior to any calls to the PLOT
subroutine and prior to calls to higher level plot subrou·
tines. STATOS models 70-6661 through 70·6668 are 200
stytii linch models and hence require CALL OENSTY(200)
prior to the call to PLOTS.

The function has the general form

CALL PLOTS (ibuf,nloc,lun)•

'BDPOM

where

ibuf

nloc

lun

Error Conditions:

Condition:
Action:
Message:

Conditions:

is the name of the user·supplied storage
area to be used as a work buffer by
DA TAPLOT II. This array should be
dimensioned by the user 1n his
FORTRAN program.

is the number which :dentif ies the size
of the work buffer (ibuf). It will normally
be the same number used in the
DIMENSION statement. The size is
determined by the algorithm supplied in
section 12.3.3 (Integer).

is the logtcal unit number of the output
device (Integer).

Work buffer stze IS too small
Incomplete Plot
OPOl

name RMO: is the six·character name of the
plot file. It may be given as an array
name or a Hollerith constant
non-RMO: Not used.

SS Action :
PLOTS not called
Abort Plot

ipftbf is the length, of the plot file 110 buffer.
(Integer)

(background Message:
scratch file)

Example:
120

OP05

DIMENSION IBUF (1 500)

outsiz is the block size of the output plot data 88 CALL PLOTS (IBUF,1500,5)
as given in section 12.3.3 (Integer).

Error Conditions: None

The above defines logical unit number 5 as the output
device for the data in STATOS raster format. Buffer IBUF,
of length 1500 words, will be used as a central memory
work area by OAT A PLOT II.

12·5

•

.--- ----- - ------- ... -- -·-· -·---·----~-- -------- ·--- --------- ------·-- ·------- -------...-- -----· ·------ - -- - . -~ ----

OATAPLOT II

12.4.3 PLOT (Generate Plot)

The PLOT function is basic to the generation of graphic
output. It may be used to draw lines between po1nts. define
new plot origins, sort plot data, cause the transfer of plot
information to the output device and terminate plot
aeneration.

The function has the general form

CALL PLOT (x,y, ±ldraw)•

where

x,y

i: draw

are the x and y coordinates, in inches
from the currently defined origin (Real).

is an integer wh ich determines whether
or not a line is drawn from the " current''
x,y coordinates to the coordinates
defined in the call. It may also be used to
define a new plot origin or to terminate
the plot generation process and cause
transfer of plot information to the output
device.

If IDRAW • 2, a line is drawn from the current x,y
coordinates to the coordinates defined in the call. The
new coordinates then become the current x.y
coordinates.

If IORAW • 3, the coordinates in the call become the
current x,y coordinates. but no line is drawn.

If IDRAW - ·2 or ·3, a new origin is defined at the call
coordinates and the operation is completed as if
IORAW were positive. The current x and y coordinates
are set to zero with respect to the new origin. If no
call has been made to ML TPLE. or if the last call to
Ml TPLE was made with INO - 0, the current plot
will be terminated and subsequent plotting will be
defined with reference to a new origin on the paper. If
the last call to ML TPLE was made with IN 0 - 1. a
redefinition of the origin will occur and subsequent
plot definitions will be treated as belonging to the
current plot.

If IORAW • 999, the plot generation proces.s will be
tea minated and all accumulated plot information will
be transferred to the output device. Further calls to
PlOT are not processed.

Error C4nditions:

The normal pen plotter routines do not keep track of the
actual location of the pen, but instead always assume that

12-6

the pen can be moved from the current location to the new
location and that enough commands are output to
accomplish this. If a mechanical stop is encountered during
plotting, the motion in that direction i ~ simply inhibited by
the plotter. Because the mechanical stops are not precise,
errors will be produced if a mechanical stop is encountered
durina plotting. However, this is sometimes done before
initiating a plot in order to position the pen in a known
location before beginning the actual plot.

OATAPLOT I I routines have software stops contained
internally and attempt to produce the same effect as a
mechanical stop. If a plot boundary is encountered, an
error (0P04) will be reported, the line will extend toward
the boundary and follow the boundary to the final position,
and the origin will be effectively shifted in a manner similar
to the pen plotter.

Examples:

CALL PLOT (1.0,2.0,3)
CALL PLOT (2.0,2.0,2)

The above calls will draw a line between (1 ,2) and (2.2).

CALL KLTPLE (1)

CALL PLOT (1 .0,2.0,3)
CALL PLOT (2.0,3.0,-2)
CALL PLOT (1 . 0,1 . 0,2)

The above calls will draw a line in absolute coord inates
from (1.2) to (3,4) and redefine the plot origin (0,0) to (2.3)
in absolute coordinates.

12.4.4 SCALE (Generates Scale Factor)
•

This subroutine scales data by computing a scale factor
and a displacement factor.

The subroutine has the general form

or

where

arr

npts

PiSZ

CALL SCALE (arr,npts,pgsz, + int)•

CALL SCALE (arr,pesz,npts, ~ int)••

is the name of the (real) array to be
scaled.

is the number of points to be scaled in
the array. Normally, all points are scaled
(Integer).

is the size of the page (linear interval in
inches) within which the data must fall.
It must be greater than 1.0 inch (Real).

: lnt is the interval at which the array is to be

sampled.
If INT is positive, the selected displacement
approximates a minimum, and the scale factor is
positive.
If INT is negative, the selected displacement
approximates a maximum, and the scaling factor is
negative (VORTEX call only).

The array must be dimensioned at least two elements
larger than the actual number of data values it contains.
The calculated displacement will be stored in
ARR(NPTS + 1). and the calculated scale factor will be
stored in ARR(NPTS + 2).

The subroutine scales data within the following constraints:

a. The scale factors is 1., 2 .. 4., 5., or 8. t imes 10E(n).

b. The displacement is an integral multiple of the scale
factor.

c. The displacement IS .LE. the minimum value in the
array.

d. The displacement + the scale factor (units/inch)* axis
length is .GE. the minimum value in the array.

Examples are shown in the sample programs (section 12.6).

Error Conditions: None

Examples;

1. Given an array of 24 data values to be plotted over a
5-inch axis, assume the minimum value in the array is
1.00 and the maximum is 42.00. The statement CALL
SCALE (ARR,5.0,24, + 1) would give the following
results:

Units/ inch - (42.00-1.00)/ 5.0 - 8.2
SF (scale factor) - 10.0
VLO (first value plotted) - 0.0

VLO value is stored in ARR(25)
SF value is stored in ARR(26)

Using these values. AXIS would draw the following axis line:

-----(Range of Data)-------..

I
0.00 10.00 20.00 30.00 40.00 50.00

2. Assume that the array of Example 1 is to be plotted on a
4 inch axis, from maximum to minimum. CALL SCALE
(ARR,4.0,24,·1) would give these results:

SF - (1.00-42.00)/4.0 • ·10.25, which is
adjusted to -20.
Minimum multiple • 0.00; VLO - Minimum
+ (AXLEN • SF) - 80.00

-~ .. --... -- ----·----.. ·--·-·--------- - - --- - ---- - - ·-------

OATAPLOT II

In this case the following axis·would be drawn:

,--- (Range of Data) ---

80.00 60.00 40.00 20.00 0.00

3. Assume 100 points are to be plotted on a 4 inch axis
from maximum (+ 22) to minimum (-9), using every
other data value in the array. The DIMENSION
statement should specify ARR(204). and the calling
sequence is CALL SCALE (ARR. 4.0,100,·2).

Initial SF - (·9 ·22)/ 4 • -7 .75. adjusted to -8.
Initial VLO • + 16. 00; last value on axis - ·16. 00.
The axis range is inadequate for the data range. so SF

is revised to the next higher interval.
Rev1sed SF ... ·1 0., stored in ARR(203).
Revised VLO - 30.00, stored in ARR(201).

The resulting axis would appear as follows:

---- (Range of Data) -----...

30.00 20.00 10.00 00.00 ·10.00

12.4.5 AXIS (Generate Segmental Axis)

Subroutine AXIS produces entries into the plot file for an
axis with the markers every inch, an axis label and number
labels for each tic mark, using the results of the SCALE
subroutine if desired.

The subroutine is of the general form

CALL AXIS (x,y,axlh ,idir,bcd,i nch,vlo,st) •
or

CALL AXIS (x,y,bcd,± nchar,axlh,angle.vlo,sf) • •

•MDPOM
.. VDPOM

where

x,y

axlh

idir

bed

is the starting point on the page of the
axis to be drawn (Real).

is the length of the axis in inches. The
value given will be truncated to the next
smallest integer value (Real).

is the axis direction. Zero for x direction.
Non-zero for y direction (Integer).

is the first word address of a character
string to be plotted as a label for the axis.
If there is no label. use a· dummy space.

12-7

- - ·--- -- ---------- ·---· ---

OATAPLOT II

=:;nchar

~nch -

vlo

sf

angle

NCHAR is the number of letters con
tained in the character string to be plot
ted as a title (Integer).

If NCHAR < 0: the title, tic marks
and interval labels
will be plotted on the
clockwise side of the

If NCHAR~O:

axis.

the title, tic marks
and inteNal labels
will be plotted on the
counter-clockwise
side of the axis.

NCH is the number of letters contained
in the character string to be plotted as
a title (Integer).

If NCH ~0. the title . tic marks. and inter·
val labels will be plotted on the clock·
wise side of the axis.

If NCrl~O. the title. tic marks. and inter
val labels will be plotted on the
counter-clockwise s1de of the axis.

is the number to be plotted at the start
ing point of the axis (Real).

is the scale factor (units/ inch) to be
used in labelling the 1 -inch inteNals. By
making SF • ARR(NPTS + 2) (see
SCALE routine). the axis and data will
have the same scale factor (Real).

is the angle at which the axis is to make
With the X aXIS.

The interval labels will be scaled by powers of 10 if they are
too large or too small to fit into two decimal place accuracy.
Thus, assuming a scale factOf' of 1000.1 inch, 12000. would
be printed 12.00 on the inteNal tic mark. but a note would
be added to the axis label: ··x 10 '."

The SCALE routine should be used prior to using AXIS if SF
• ARR(NPTS + 2).

Error Conditions: None

Example:

CALL AXIS (0.0,0.0,5.0,0,4HAXIS,
4,5.0, 100.0)•

CALL AXIS (0.0,0.0,4HAXIS,-4,5.0,
0.0,5.0, 100.0>••

• MOPOM

•• VOPOM

12·8

•

The resulting axis would appear as follows:

x,y I ang e. idir

~ \ / ...
v-~-------axlh---------

1 \
1 r

00.50 10.50
\ _,

vfo

I I
20.50 30.50

to• AXIS • I ,.._..,;r-f __ ,

ibcd,nchar

I I
40.50 50.50

12.4.6 SYMBOL (Generate Symbols)

This function generates plot file entries defin ing printable
characters. Each entry contains an x and a y coordinate. a
code which specifies that the entry is for a character, a
code identifying the character and codes for size and
orientation. The characters are software generated dot
matrix characters in two sizes (5 x 7 and 10 x 14) and four
orientations.

The function is of the general form

CALL CHAR {x,y,ibcd,lsoar,+nchar,lspac)•

or
CAU. SYMBOL (x,y,hfight.lbcd,angle,::: nchar)• •

, MOPOM

"
0 VOPOM

where

x,y

ibcd

isaor

height

are the x andy coordinates (in inches) of
the first letter to be plotted. x will be the

minimum x value of the character and y
will be the minimum y value of the
character (Real).

is the address of the first word contain
ing the ASCII character string to be
plotted. It can be given as an array name
or a Hollerith constant.

is the size and orientation :

0 - small. + 90 degrees
rotation from x direct1on.

1 - small, 0 degrees rotation
from x direction.

2 • large. + 90 degrees
rotation from x direction.

3 - large, 0 degrees rotation
from x direction.

selects the character height. If heights
0.1 0, the characters will be 0. 07
inches high. If height > 0 • 1 0 ,
characters will be 0 .14 inches high
(Real).

angle

ispac

nchar

is the angle, in degrees from the x-ax is,
at which the character string is to be
plotted. The individual characters will be
plotted at 0, 90, 180, or 270 degrees
depending on the value of " angle "
(Real).

is the spacing constant in styli or scans
from the starting coordinate of the pre
vious character. A negative number
causes default standard spacmg (In
teger).

is the total number of characters to be
plotted in the string (Integer).

if NCHAR = 0. one character will be
plotted from the low order byte o f the
word contaming the string. (VORTEX
call on ly)

If NCHAR :s - 1. one symbol wil l be
plotted. The symbol must be identi fied
by setting IBCD to an integer (0 through
5) . (VORTEX call only)

If NCHAR r: -2 or Jess. one symbol will
be plotted along with a vector from the
previous current location to the symbol
starting location. (VORTEX call only)

IBCO (when NCHAR 0) Symbol

1

2

3

4

5

0

0

0

•
•

Character Orientation and Coordinates:

Angle ·44
(in to
degrees) 45

lsaor 1,3

VORTEX

MOS

46
to

135

136
to
225

226
to
315

The dot references the starting coordinate of the character.

Error Conc:titions: None

DATAPLOT II

Example:

3 DIMENSION LABEL (3)
DATA LABEL/ 2HST,2HAT,2HOS/

17 CALL CHAR (5.0,5.0,6HSTATOS,2 ,6,-1l
20 CALL CHAR (5.0,5.0,LABEL,2,6,-1)

Statement 17 will place six entries for large letters. 90
rotat ion from the x axis, standard spacing, into the plot file.
Statement 20 will do likewise. The characters " STATOS"
will be printed starting at 5.0 ,5.0 from the last ongin.

25 CAll SYMBOL (2.0,2.0,0.14, SHST ATOS,45.0,6)

.
Statement 25 will place s1x entries for large letters into the
plot file . " STATOS" will be pn nted as follows:

y

A
- T -2.0 s ---,

2.0

s
0

T

X

12.4.7 NUMBER (Generate Number)

This function converts sing le prec1s1on real numbers to
character codes and places corresponding entries into the
plot fi I e .

This function has the general form

CAll NUMBER (x,y,fpn,lsaor,=:ndec)•

or

CAll NUMBER (x,y,height.fpn,angle,=: ndec) ..

MDPOM
o= VDPOM

where
x,y

fpn

lsaor

are coordinates (in inches) of the fi rst
number in the string (Real).

is the real number to be plotted. If nega
tive, will be prefixed with a minus sign .
Leading zeros will be suppressed . ex
cept the zero to the left of the dec imal
point. The real number is rounded by
adding five to the digit to the right of
the last digit to be plotted, then truncat
ing the result (Real).

is size and orientat•on:

0 = small, + 90 degrees rotation from
.x direction (Default).

, 2-9

__ _ -. ·---·---·---·~ .. ---.. ---~--------------------·------·------------·--------------··'" · ·---

DATAPLOT II

height

angle

ndec

1 = small, 0 degrees rotation from x
direction.

2 z la rge, + 90 degrees rotation from
x direction.

3 a large, 0 degr ees rotation from y

direction.

selects the character height. If height
- >0.10. the characters will be 0.07 -inches high. If height = 0.1 0, char-
acters will be 0.14 inches high (Real).

is the angle. in degrees from the x axis,
at which the character string is to be
plotted. The individual characters will
be plotted at 9. 90, 180. or 270 degrees
depending on the value of " angle"
(Real).

If this parameter is larger than zero. it
defines the number of digits to be plot
ted to the right of the decrmal point.

If NOEC • 0. the integer part will be
plotted followed by a decimal point only.

If NOEC • -1 . only the mteger part will
be plotted.

If NOEC is less than -1 . (NOEC) -1 digits
are truncated from the integer part (In
teger).

The following table illustrates the use of the NOEC parame
ter.

Suppose FPN • 123.4567; how the number actually will
appear is a function of the parameter NDEC.

NOEC Number Plotted Comments

4

3
2
1
0

·1
·2
·3
·4

123.4567
123.457
123.46
123.5
123.
123
12
1

Error Conditions:

Example:

Note rounding action

Note truncation action

Nothing is plotted

None

CALL NUMBER (1.0,2.0,12.3,3,1)•
CALL NUMBER (1.0,2.0,0.14,12.3,

0.0,1) ••
The above will produce the number 12.3 at location x •
l.O,y - 2.0 in 10 x 14 character matrix, zero degrees from
the x axis.

• MOPOM .. VOPOM

12-10

·,

12.4.8 LJNE (Generate Graph Line)

Subroutines DATA and LINE produce a data line with one
call. Prior to the call, the data must be placed in two arrays
wh ich have been d imensioned to provide two extra
locations in each array. These must be placed at the end of
the arrays and contain the displacement and scale factors
in that order. The two arrays must be of equal size, one
containing x values and the other y values.

The subroutine is of the general form

CALL DATA (xarr,yarr .npts,inc,! lty,ieq)•
or

CALL LINE (xarr,yarr,npts,inc.± lty,ieq)••

.
'" MOPOM

(le VOPOM

where

xarr

yarr

npts

Inc

~lty

is the name of the array from which x
values are to be extracted.

is the name of the array from which the
y values are to be extracted.

is the number of data points to be plot
ted from each array to the end of the
array (Integer).

is the increment at which the arrays are
to be sampled. INC = 1 means every
x,y pair is plotted. INC - 2 means every
other pair, etc. (Integer).

indicates the type of line desired (In
teger).

L T't'<O : A symbol will be plotted at each selected point
but no lines will connect the symbols.

L TY- 0: A line will be drawn connecting each selected
point. No symbols will be drawn.

L TY>O: A symbol wi ll be plotted at each selected point
and a line will connect all symbols.

leq is the positive integer designating sym
bol to be produced (1 ,2,3,4. or 5).

If L TY =- 0. lEO has no meaning.

Plot values will be generated by the following algonthm:

Plot Value - array value-displacement

scale factor

Error Conditions:

Condition:

Action:
Message:

The scale factor in the data
array =- 0.0
Incomplete plot
ARITH OVFL

Examples:

or

DIMENSION XAR (6), YAR (6)
DATA XAR/1.0,2.0,3.0,4.0,1.0,1.0/
DATA YAR/ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0/
•
•
•

CALL DATA (XAR,YAR,4, 1,LTY,1)

CALL LINE (XAR,YAR,4,1,LTY,1)

The above will produce the following plots:

LTY > 0 0 0 0 0
(1,1) (4,1)

LTY - 0
(1,1) (4, 1)

LTY < 0 0 0 0 0
(1 1 1) (4, 1)

12.4.9 MLTPLE (Multiple Plot)

The sign of the PLOT parameter I ORA W is used to indicate
whether a new logical origin is to be defined. The ML TPLE
call allows the user to change the origin without terminat
ing his current plot definition. If no call has been made to
ML TPLE, the PLOT origin change is treated as the
completion of the current plot and the start of the new plot. .

The subroutine is of the general form

•sOPOM
where

ind

CALL ML TPLE (ind)

+ 1 - on future calls to PLOT, a
redefinition of the logical origin will not
be treated as the end of the plot, and
multiple logical plots will be treated as
belonging to the same real plot.

0 - on future calls to PlOT, a redefinition of the
logical origin will also be treated as the end of
the plot.

- 1 • Same as + 1 except that the accumulated
information from past PLOT calls defines a complete
plot and it should be output. Note that the state
ment CALL ML TPLE (- 1) is exactly equivalent to:

CALL WHERE (x,y,fact)
CALL MLTPLE (0}
CALL PLOT (0.0,0.0,-3)
CALL MLTPLE (+1)
CALL PLOT (x,y,+3)

Error Conditions: None

Examples:

CALL PLOT (1.0,2.0,3)
CALL PLOT (2. 0, 2. 0,-2)
CALL PLOT (3.0,3.0,3)
CALL PLOT (4.0,4.0,2)
CALL PLOT (0.0,0.0,999)

OATAPLOT II

The above sequence will output two physical plots of one
line each.

CALL MLTPLE (1)
CALL PLOT (1 .0,2.0,3)
CALL PLOT (2.0, ,2.0,-2)
CALL PLOT (3.0,3.0,3)
CALL PLOT (4.0,4.0,2)
CALL PLOT (0.0,0.0,999)

The above sequence will output one physical plot with two
lines on the plot.

12.4.10 FACTOR (Alter Plot Size)

This function is used to alter the overall size of the plot by
changing the ratio of the desired plot size to the normal
SIZe.

The function is of the general form

*BOPOM
where

CALL FACTOR (fact)

fact is the ratio of the desired plot size to
normal plot size. If FACTOR is not called,
fact - 1.0 (Real).

Error Conditions: None

Example: Make plot one-half normal size.

CALL PACTOR (0.5)

12.4.11 WHERE (Locate Coordinates)

This function returns information to the user. The three
variables designated in the calling sequence are set to the
current x and y coordinates and the current plot sizing
factor.

12-11

-·-··---- - - - ------ ---------- ·------- - -··--·-·-- - -----·----- -------- --- - -···---·

DATAPLOT II

The function is of the general form

CALL WHERE (rx,ry,rfact)•
0 80POM
where

rx

ry

rtact

is the variable which will be set to the
current x coordinate.

is the variable which will be set to the
current y coordinate.

is the variable which will be set to the
current plot sizing factor.

Error Conditions: None

Example:

CALL MLTPLE (1)
CALL FACTOR (2.5)
CALL PLOT (1.0,2.0 , 3)
CALL WHERE (XA,YA , F)
CALL PLOT (3 . 0, 1. 0,-2)
CALL WHERE (XB,YB,F)

The above sequence will set the variables as follows:

XA • 1.0
YA • 2.0
F • 2 . 5
XB • 0.0
YB • 0 . 0 new origin defined

12.4.12 APPEND (Append File)

Previously generated files in vector-end-point format may
be added to the plot file and merged during the sort. A call
to APPEND must be made after the call to PLOTS. If the
file to be appended is not on an RMO device, it must be
previously positioned.

The function is of the general form

CALL APPEND (lun,key,name,abuff,Jabutf)*
0 80POM

where

lun

key

name

a buff

12-12

is the variable or number of the logical
unit containing the file to be appended
(Integer).

is the protection key, if any.

is the six-character name of the file to
be appended. It may be given as an
array name or a Hollerith constant.

the name of the APPEND fi le input
buffer.

•
iabutf

Error Conditions:

Condition:
Action
Message:

Condition:
~

Action:
Message:

is the length of abuff (Integer).

Wrong protection key
Append call is ignored
1004,xxxxxx

File name not found
Append call is ignored
101 O,xxxxxx

xxxxxx is the task name.

Examples:

117 CALL APPEND (18,0,0,BUFF,1024)
136 CALL APPEND (132,2HbP,6HMAPbb,

ABUFF , 960}

Statement 117 will cause the file on logical unit 18 to be
appended to the plot f ile. BUFF will be used as the input
buffer. Statement 136 will cause the file named MAP on
logical unit 132, with protection code P. to be appended to
the plot file. ABUFF will be used as the input buffer. Data
will be input in blocks of 960 words (8 sectors).

12.4.13 TOPfRM (Top-of-Form)

TOPFRM subroutine will ac vance the paper to the next
TOP-OF-FORM mark or eleven inches. whichever occurs
first (FUNC code - 0). A Top-of-Form command will be
output to the output driver at the time the subroutine is
called.

The subroutine is of the general form

CALL TOPFRM*
•soPOM

Error Conditions: None

Example:

CALL TOPFRM (Outputs FUNC (0}
to the plot output device)

12.4.14 CUT (Cut Paper)

The CUT subroutine issues a cut command (FUNC code -
20) to the output driver when the subroutine is called.

The subroutine is of the general form

CALL CUT•
~ sOPOM

Error Conditions:

Condition:
Action:
Message:

Paper cutter option not connected.
Command ignored
none

--------------------- - - ·

. - .. ~- -·--- ----

Example:

CALL CUT

A cut command (FUNC (20)) IS sent to the plot output
deVICe.

12.4.15 ENOCUT (Eject and Cut Paper)

The ENOCUT subroutine issues a FUNC code equal to 21
(cut command) to the output device and moves the paper
approximately 34 inches.

The subroutine is of the general form

CALL ENCUT0

«BQPOM •

Error Conditions:

Condit ion: Output device not .STATOS.
Action: Command ignored
Message: None

Example:

CALL ENDCUT

The above issues a cut and move paper command to the
plot output device.

12.4.16 DPSORT (Sort Plot File)

This function sorts an RMO plot file. No sort is attempted if
the plot file is not assigned to an RMO.

OPSOAT is also called by subprogram OPPLOT when
IOAAW • 999. or when IORAW 1. or when MLTPLE is
set 0.

The function is of the general form

CALL OPSORT0

=eOPOM

Parameter Description: None

Error Conditions:

Condition:
Action:
Message:

Condition:
Action:
Message:

Example:

Data Plot working buffer too small.
Abort program
DPOl

Plot file not assigned to RMD.
Abort program
DP07

CALL DPSORT

DATAPLOT It

12.4.17 DPPLOT (Output File)

OPPLOT subroutine converts the plot file to STA TOS raster
format and outputs the raster data to the output device
specified in the call to PLOTS. OPPLOT is called by

subroutine PLOT when IORAW == 999 or when IORAW <O.
and ML TPLE = 0 or when ML TPLE is set <o, to output
the plot data.

This subroutine is of the general form

CALL OPPLOT•
.. BOPOM

Parameter Description: None

Error Conditions:

Condition :
Action:
Message:

Condition :
Action :
Message:

Condition:

Act1on:
Message:

Condition :
Action :

Message:

Condition :
Action:
Message:

Example:

Working buffer overflow
Incomplete plot
DPOl

Attempted
Abort plot
OP02

End·Of·plot

Abort plot
DP03

to plot from unsorted File.

indicator not detected.

Mini Max x/ y values exceeded.
Line will follow plot boundary.
plot origin will be sh1fted.
OP04

PLOTS not called.
Abort plot
DP05

DIMENSION IBUF {1200)
CALL PLOTS {I BUF, 1200,5)
CALL DPINIT {107,2HbF,6HPLTFIL,

120,88)

CALL DPSORT } or CALL PLOT
CALL DPPLOT (0 .0,0.0,999)

The above program will output raster plot data to logical
unit 5. block size 88. from an unsorted plot file residing on
logical unit 107, protection code of F. name PLTFIL. block
size of 120.

If the plot f ile IS sorted. the call to DPSORT may be
eliminated.

If the plot file is on system scratch (SS) and the STATOS is
14-7/ 8 inches wide, the call to DPINIT may be eliminated.

12-13

------------- -- ----- ----· -- -------··- --- ---- --·--·--- .. - ·- ---· -- - ---· - .. --

DATAPLOT II

12.4.18 DPCLOS (Close Plot File)

OPCLOS subroutine closes and updates the plot file and
writes an end-of-file if the plot file is on magnetic tape. The
first three words of DPFCB (data plot fi le control block) are
set to zero, and the plot file cannot be referenced until a
call is made to DPINIT to restore DPFCB.

The subroutine is of the general form

CALL OPCLOS*
0 90POM

Parameter Description: None

Error Conditions:

If the plot file is assigned to a device other than an RMD or
magnetic tape, the close request will be ignored.

Example:

170 CALL DPCLOS

Statement 170 closes the plot file.

12.4.19 ORIG •• Offsetting the Origin
Entry Point

This function offsets the origin entry point of the plot.

The origin of the plot is the lower left hand corner of the
plot area, with the + y axis towards the right and the + x
axis pointing into the plotter.

J?.
PAPER MO VEMENT

0/ ,.........,_ ,.........__

J'71J. JOI7

Fieure 12-4. + x Axis and + y Axis Relative to
Paper Direction

12-14

The absolute y displacement may not go negative. If it is
destred to offset the origin in order to allow (relative)
negative numbers, or to allow large positive values to be
plotted without wasting paper, it is possible to offset both x
and y coordinates of the (relative) origin by the following
call of the general form:

~aoPOM

where

I

y

CALL OAIG (x,y)•

is the distance (in inches) along
the x axis which the new (relative)
origin will be offset (Real).

is the distance (in inches) along
the y axis which the new (relative)
origin will be offset (Real).

The coordinates used in locat ing plot elements are always
relative to the origin location.

Error Conditions: None

Example:

170 CALL ORIG (7.0,3.1)

Statement 170 offsets the origin 7.0 inches 1n the x
direct ion and 3.1 1nches in the y direction from the physical
origin (0. 0. 0. 0).

12.4.20 VECT ·• Vector Entry Point

This subroutine generates plot file entries defining straight
lines between two points. Four parameters define the
pomts in the following order:

x 1. y1 . x2. y2. The parameters are single precision, real
numbers representing inches from the origin. Provision is
made for retain ing the " current" (or last defined) point.
When xl • 999.0, a file entry is produced to generate
a line between the " current" point and the point defined
by x2 and y2.

The subroutine is of the general form

CALL VECT (x1 ,y1 ,x2,y2)•
*BOPOM

where

x1 is the starting x coordinate of line.

y1 is the starting y coordinate of line.

x2 is the ending x coordinate of line.

y2 is the ending y coordinate of line.

Error Conditions: The normal plotter routines do not keep
track of the actual location of the pen. but instead always
assume that the pen can be moved from the current location
to the new location and that enough commands are output
to accomplish this. If a mechanical stop is encountered
during plotting. the motion in that d irection is s1mply inhib
ited by the plotter. Because the mechanical stops are not
precise. errors will be produced if a mechanical stop is
encountered during plotting. However. this is sometimes
done before initiating a plot to position the pen 1n a known
location before beginning the actual plot.

OAT APLOT II routines have software stops contained inter
nally tn order to produce the same effect. If a plot boundary
is encountered. an error (DP04) will be reported. the line
w ill extend toward the boundary and follow the boundary
to the final position. and the or igin wil l be effectively sh ifted
in a manner similar to the pen plotter.

Example: 5 CALL VECT (3 .2, 1 .0.4.0.1 .0)

Statement 5 will place an entry in the plot tile for the vector
x = 3.2 to 4.0 and y "" 1.0.

12.4.21 Special SYMBOL Subroutine

Subroutine SYMBOL produces special symbols on the plot.

The subroutine is of the general form

CALL SYMBOL (x,y ,ieq) 0

¢ MDPOM

where

x,y

ieq

IEQ

1
2
3
4

5

are the x andy coordinates of the center
of the symbol (Rea l).

is the positive integer des,gnating the
symbol to be produced.

SYMBOL

0
0
0 • •

Error Conditions: None

Example:

CALL SYMBOL (1.0,2.0,4)

The above will place a filled in square (•) at location x ,.
1.0, y - 2.0.

DATAPLOT II

12.4.22 DENSTY (Alter Stylii / lnch)

This function is used to set the system stylii l inch constants
to 200 for STA TOS 42 models 70-6661 through 70-6668.
The function is of the specific form

CALL DENSTY(200)

•SQPOM

where

200

Error Conditions:

is the number of stylii /
inch. If DENSTY is not
called or if any raster
density other than integer
200 is specified, the
system will default to
100 stylii /i nch.

a. Condition--resultant plots will be one-half the s1ze
expected from the program.

b. Action--include or correct the call to DENSTY.

12.5 PLOT FILE DATA FORMAT

12.5.1 Vectors

X values represent distances from the beginning of the plot
in the oppostte direct ion of paper movement. A unit of x
corresponds to one step of paper movement in the
machine.

Y values represent stylus numbers.

-------- 16 bits--------

Xl

Yl

X2

Y2

Figure 12·5. Vector-Data Format

where

X2 $ X 1 ~ 3 2 , 7 0 0

Y1 and Y2 number of STATOS stylii

12-15

_ __ . ----····---··- --·-... ~-- .. ------- - - ------------- -----------·--- ---------- - -·-·--

DATAPLOT II

12.5.2 Characters

15 14 13 12 11 10 9 ~ 7 6 5 4 3 2 I 0

Xc Word 0

Yc Word I

077774 WCKd 2

Unused 10 9 8 ASCII COOE WCKd 3

Flcure 12-6. Character Data Format

Word 3, Bit 9 - 0 for small character (5x7)
- 1 for large character (10x14)

Word 3, Bit 8 and 10 determine the character orientation.
The x and y coordinates refer to the lower left-hand comer
of the character.

Bit 8
Bit 10

1
0

0
0

1
1

0
1

Ficure 12-7. Character Orientation Data Format

12.5.3 End-of-Plot Indicator

The end of the plot indicator is shown in figure 12-8.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

077777

077777

-077777

077777

Ficure 12·8. End-of-Plot Indicator

12.6 EXAMPLE OF APPLICATION OF DATAPLOT II

12.6.1 Program to Generate Sine Wave

c
c
c

12·16

SAMPLE PLOT (BDPOM/VDPOM CALLS)

DIMENSION XAR (34),YAR(34),
IBUPF(1000)

- - ----

c
c
c

XAR (33) • 0.0
XAR (3 4 l • 1 . 0
YAR (33) • -100.0
YAR (34) • 100.0
CALL PLOTS (IBUFF, 1000,5)
CALL MLTPLE (1)
CALL PLOT (1.0,1.0,-3)
XVA • 0.0
DO 200 I • 1,32
XVA • XVA + 0.25
XAR (I) • XVA

200 YAR (I) •100.0+200.0•SIN(XVA)

PLOT AXES, DATA

CALL AXIS (0.0,0.0,6HY-AXIS,
6,4.0,90.0,YAR (33), YAR (34)
CALL AXIS (0 .0,0 .0, 6HX-AXIS ,
-6,8.0,0.0,XAR (33),XAR(34))

- -
CALL LINE (XAR,YAR,32 ,1 ,-1,1)
CALL ?LOT (0.0,0.0,999)
CALL !XIT
END

(!ND-OP'-P'ILE)

c
c
c

c

.
SAMPLE PLOT (BDPOM/MDPOM CALLS)

DIMENSION XAR (34), YAR (34),
BUFF (1000)

XAR (33) • 0.0
XAR (34) • 1.0
YAR (33) • ·100.0
YAR (34) • 100.0
CALL PLOTS (IBUFF, 1000, S)
CALL ORIG (1.0, 1.0)
XVA • 0.0
00 200 I • 1, 32
XVA • X.VA + 0.25
XAR (I) • XVA

200 YAR (I) • 100.0 + 200.0 * SIN (X.VA)

C PLOT AXES, DATA
c

CALL AXIS (0.0, 0.0, 4.0, 1,
6HY·AXIS, ·6, YAR (33),
YAR (34))

CALL AXIS (0.0, 0.0, 8.0, O,
6HX·AXIS, 6, XAR (33),
XAR (34))

CALL DATA (XAR, Y AR, 3 2, 1, ·1-, 1)
CALL PLOT (0.0, 0.0, 999)
CALL EXIT
END

12.6.2 Program to Generate
Communication Network

c
c
c

SAMPLE COMMUNICATIONS NETWORK

DIMENSION IBUFF (1000),
XAR (1 2) , Y AR (1 2 l
CALL PLOTS (IBUFF, 1000,5)

--- ··- --- ·- - -

c

c

BUILD END-POINTS
DO 10 I • 1 , 1 2
X • 6.283 • FL OAT (I)/12 . 0
YAR (I } • 5.0 * SIN (X) +7.0

10 XAR (I) • 5 .0 * COS (X) +7.0

30

DRAW THE LINES
DO 3 0 I 1 • 1 , 1 1
K • I1 + 1
DO 3 0 I 2 • K , 1 2
CALL VECT (XAR(I1),YAR (I1),
XAR (I 2 } , Y AR (I 2 })
CALL PLOT (0.0,0.0,-3)
CALL EXIT
END

(END-OP'-P'ILE).

•
0 -•
"' ...
)(
~
•
>

..
0

"'
0 ..
(U

C>
C>

-
C>
0

0

C>
0

-

0

c c c
0

c

0

• 000 100

VTI/ -Jf19j

0
c 0 c

0
c

c
0

0
0

0
0

0
0

0
0

0

0

0 0

.. . . ·--...,.-- ------··,a_· 0

2 oo 3 oo 4 oc S Ou

X· AX lS

Figure 12-9. Sine Wave Plot Generated by OAT APLOT II

YTII-1094

Figure 12·10. Communication Network

Generated by OATAPLOT II
Plot

OATAPLOT II

12.7 OPERATING PROCEDURES AND

ERROR MESSAGES

12.7.1 VORTEX Operating Procedures

Use of the DATAPLOT II plot generat ion routines requ ires
the preparation c1f FORTRAN programs which make
appropriate calls to the FORTRAN and SPERRY UNIVAC
70/620 assembly language programs.

The user may execute in a compile-and-go mode by ending
his program with a call to PLOT (x.y. 999) or PLOT (x,y,·i)
and the plot output device assigned to the STA TOS printer 1

plotter (Ref. paras 12.4.2) .

12.7.2 Unsorted Plot Files

Unsorted plot f iles may be output by VORTEX DATA PLOT II
by transferring the plot file to an RMD (if not already
there) by IOUTIL or the APPEND subroutine. and calling
the following subroutines:

DIMENSION
CALL DPINT () if necessary
CALL DEN STY () if necessary
CALL PLOTS () if necessary
CALL DPSORT
CALL DPPLOT
CALL EXIT
END

12.7.3 Presorted Plot Files

Files which have been presorted may be in physical records
whose length is any multip!e of four 16-bit words. There is
no restriction on the number of records which may be
processed, other than the physical capacity of the periph
eral device. The file must have been sorted on the
numerical value of the Xl's, in descending order. Each X1
must be greater than or equc;l to its associated X2. An end
of-plot indicator (four words contain ing 077777) must
appear at the end of the significant data in the last record.

Presorted plot files may be output by VORTEX DA TAPLOT
II by assigning the plot file to the physical unit contain ing
the plot file (DPINIT) and call ing the following routines:

DIMENSION
CALL DPINIT (} if necessary
CALL DEN STY () if necessary
CALL PLOTS () if necessary
CALL DPPLOT
CALL EXIT
END .

, 2-17

. ··~ -·.. ·- -··· .,.._ .. , ' . ·- --------·--- ... -·-------- -- ·--·----------- ·--·--- -.. --... .. -..-. ____ --#·-·-·~----··--- ~·- '--·- ------- . - ·- -~ ... -.. ... _

DATAPLOT II

12.7.4 VORTEX Special Procedures

The VORTEX OA TAPLOT II package may be executed in
one, two, or three sections. No special modifications are
necessary to build, sort, and output the plot file in one
module.

Sorting and outputting the plot file may be separated from
building the plot file by supplying dummy sorting and
outputting routines. For example, this method may be used
if it is desired to build the plot file in the background and
output the plot file from the foreground. Subroutine PLOTS
must be included in each section or an error (DPOS) will be
output. For STATOS models 70·6661 through 70-6668,
CALL DENSTY(200) must precede the call to PLOTS or the
resulant plot will be half the expected size.

Exampte:

/P'ORT,B,L,M
C BUILD TH!! PLOT P'ILB

DIMENSION IBUFP' (142)

12-18

CALL DPINIT (25,2HbK,6HP'IL!bb,
120,88)
CALL PLOTS (IBUFP',124,27)
CALL AXIS (t.0,1.0,4HAXIS,4,5.0,
0.0,0.0,1.0)
CALL PLOT (0.0,0.0,999)
CALL EXIT
END

c DUMMY SUBROUTINES
SUBROUTINE DPSORT
RETURN
!!NO
SUBROUTINE DPPLOT
RETURN
!NO

/P'ORT,B,L,M
C SORT AND OUTPUT TH!! PLOT P'ILE

DIMENSION IBUP'P' (1000)
CALL DPINIT (25,2HbK,6HFIL!!bb,
120,88)
CALL PLOTS (IBUP'P', 1000,27)
CALL DPSORT
CALL DPPLOT
CALL EXIT
END

(END-OF-FILE)

The above programs referenced the plot file named FILE on
logical unit number 25. protection code K.

The IBUFF in the first program only needs to be the plot
file record size (120) plus 22. The size of IBUFF in the
second program may be increased to provide faster sorting
when large plot files are generated.

- - --- · - ·---·- . - · -------------------------- - ·

SECTION 13

SUPPORT LIBRARY

The VORTEX system has a comprehensive subroutine
library directly avai lable to the user. The library contains
mathematical subroutines to support the execution of a
program. plus many commonly used utility subroutines. To
use the library, merely code the proper call m the program.
or. for the standard FORTRAN IV functions. implicit ly
reference the subroutine (e.g., A - SQRT(B) generates a
CALL SQRT(B)). All calls generate a reference to the
required rout ine. and the load·module generator brings the
subroutine into memory and finks it to the calling program.

FORTRAN IV: General form :

statement number CALL S(p(l),p(2) p(n))

Generated code:

JMPM
DATA
DATA
•

•
•

DATA

s
q (1)

q (2)

q(n)

The performance of several routines in the support library
is improved through the use of the V70 series Floating
Point Firmware on V70 series systems having Writable
Control Store (WCS). The necessary firmware and library
rout ines which call the firmware are added to the Object
Module Library (OM) by executing the supplemental WCS
job stream supplied with the System Generation Library.

Where q(i) - p(i) if p(i) is a single variable or array name.
Otherwise. q(i) - address contain ing p(i).

13.1 CALLING SEQUENCE
13.2 NUMBER TYPES AND FORMATS

The subroutines in the support library are called through
OAS MR or FORTRAN IV. Integers use one 16·bit word. A negat ive number is in two's

complement form. An integer in the range - 32.767 to
+ 32.767 can be stored as an integer.

OAS MR: General form:

label CALL S,p(l). p(2) •.... p(n)

Expans1on :

label JMPM
DATA
DATA
•

•
•

DATA

Bit 15
n) s
n+ 1) 0

Bit 1 5
n) 0
n+1) s
n+2) 0
n+3) 0

s
p (1)

p (2)

Real numbers use two consecutive 16·bit words. For a
posit ive real number. the exponent (in excess 0200 form) is
in btts 14 to 7 of the first word. The mantissa is in bits 6 to
0 of the first word and bits 14 to 0 of the second word. The
s1gn bit of the second word is zero. The negative of this
number is created by one's complementmg the first word . . . ,,
Any real number m the range 10- can be stored as a

p (n)
stngle·precision floatmg.point number havtng a precision of
more than six dec1mal digtts.

Single·Precision Floating-Point Numbers

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
-------Exponent--------- ----Hi~h Mantissa----
-----------------Low Mantissa------------------
Double-precision floating-point numbers use four consecu·
t ive 16·bit words. The exponent (in excess 0200 form) is in
btts 7 to 0 of the first word. The mantissa of a positive
number is in the second. thtrd. and fourth words. Bit 15 of
the second. third and fourth words .and bits 15 to 8 of the
first word are zero. The negative of this number is created
by one's complementing the second word. Any real number
in the range 10: .: ... can be stored as a double· precision
floating·point number having a precision of more than 13
dec1mal digits.

Oouble·Precision Floating-Point Numbers

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 --------Exponent--------
-----------------Hiqh Mantissa-----------------
-----------------Mid Mantissa------------------
-----------------Low Mantissa------------------

13·1

·- - - - ~-~-- -- - - ·· .. -- ~--· -·------------- ·---·---------.- __ . ___________ ..._ _______________________ _____ _

SUPPORT LIBRARY

13.3 SUBROUTINE DESCRIPTIONS

The follow1ng defin it ions and notat ion apply to the
subroutine descr iptions g1ven in this sect ion :

Notation Meaning

AB Hardware A and 8 registers

AC Four·word software accumulator for double·

ACCZ

d

f

l

· precision numbers

Four-word accumulator for complex numbers
(the real part is in AB and the imaginary
part is in a temporary cell in subroutine V $8G)

Address of a double-precision number

Address of a two-word , fixed-point number

Address of an integer

r Address of a real number

s A six-character ASCII string

X Hardware X register

z Address of a complex number

0 0 Exponentiation

An additional name in parentheses indicates a replace·
ment by standard f irmware. For example, SSE(FSE)
.ndicates the firmware rout ine FSE replaces SSE on 70
senes systems using standard firmware. · Section 20.2
descn bes standard firmw~re.

The external references in table 13·3 refer to items in
tables 13·1 and 13·2. A subroutine with more than one
name is indicated by mult iple calls under Call ing Sequence.

Table 13·1. DAS Coded Subroutines

Name

$HE

SPE

SQE

ALOG

EXP

ATAN

SINCOS

SQRT

FMULOIV

13·2

Function

Given: A conta ins i1.
in A compute i l 00 i2 .

Given: AS conta ins r .
tn AB. compute rui.

Given : AB con tams rl .
in AB, compute r 1 00 r2.

In AB. compute In r . If r - 0.
output message FUNC ARG and

exit with A - 8 - 0 and
over11ow - 1.

In AB. compute e" 0 r . If there
1s underflow, AB • 0. If
overflow. AB - max1mum real
number and the message FUNC
ARG is output. In both
cases. overflow - 1.

In AB. compute arctan r

In AB. compute cos r with
COS. or sin r with SIN

In AB. compute square root of r

Given : AB contains r l. •n AB.
compute rl 0 r2 with SQM. or
rl t r2 w1th $QN. If there is
underflow. AB • 0. If
overflow, AB - max1mum value
and the message ARITH OVFL IS

output. In both cases.
overflow • 1. ·

Calling Sequence

CALL $HE.i2

CALL $PE.1

CALL SQE.r2

CALL ALOG,r

CALL EXP.r

CALL ATAN,r

CALL COS.r
CALL SIN.r

CALL SQRT.r

CALL SQM.r2
CALL SQN .r2

External References

SSE(FSE). SHM

SSE(FSE). SQM. $QN

ALOC<. SQM. EXP. SSE(FSE)

SEE. $QK(FAO). $QM. XOMU.

XOAO. $NML. XOOI.
XOSU. SSE(FSE). $PC. SQL(FSB).
$QN

XOMU. SQK(FAO). SNML. SEE.
SQM. SQN . SSE(FSE)

$QM. $QL(FS8). $QN. SQK(FAO)

SSE(FSE)

$QK(FAD),$QL(FS8), SQM, $QN,
SSE(FSE)

XOOI. $FSM. SSE(FSE)

XOMU. SFMS. XOOI.
SSE(FSE). SEE. SNML

..

•

Table 13·1. DAS Coded Subroutines (continued)

Name Function

FAOOSUB Given: AB conta•ns rl. m AB.
compute r 1 + r2 w1th $QK. or
rl - r2 w1th SQL If there
is underflow. AB • 0. If
overflow. AB • maximum value
and the message ARITH OVFL is
output. In both cases.
overflow a 1.

SEPMANTI Separate mant issa and
charactenst1c of r 1nto AB
and X. respectively

FNORMAL In AB. norma l1 ze r

XOOIV In AB. compute 11 112

XOMUL T In AB. compute fl "f2

XOAOO In AB. compute fl + f2

XOSUB In AB. compute fl - f2

XOCOMP In AB. compu te negative of f

$FLOAT In AB. convert the i m A
to floatmg-point and , for

SQS. store result in r

$1FIX In A. conver t the r m AB
to 1 and. for SHS. store
resul t m 1

lABS

ABS

I SIGN

SIGN

$HN

$HM

OSINCOS

OAT AN

In A . compute absolute 1

In AB. compute absolute r

Set the s1gn of •1. m A.
equal to that of 12

Set the s1gn o f r l . 1n AB.
equal to that of r2

Given : A holds d .
in A . compute 11 112

Given: A holds •1. m A
compute i 1 o i2

In AC, compute sm d or cos d

In AC. compute arctan d

Calling Sequence

CALL $QK .r2

CALL $QL.r2

CALL $FMS
CALL SFSM

CALL $NML

CALL XOOI.f2

CALL XOMU .f2

CALL XOAO.f2

CALL XOSU.f2

CALL XOCO

CALL $PC
CALL $QS.r

CALL SIC
CALL $HS.1

CALL IABS.1

CALL ABS.r

CALL ISIGN.12

CALL SIGN .r2

CALL $HN,12

CALL $HM.i2

CALL SOSI.d
CALL SOSIN ,d
CALL SOCO,d
CALL $0COS,d

CALL SOAN
CALL OATAN.d

•

SUPPORT LIBRARY

External References

SSE(FSE) . $FSM. $NML. SEE

None

xoco

xosu. xoco

XOAO. XOCO

None

None

None

SSE(FSE)

SSE(FSE). SEE

SSE(FSE)

SSE(FSE)

SSE(FSE)

$SE(FSE)

SSE(FSE). SEE

SSE(FSE). SEE

$ST0 .$0NO. $ZC. SZK. SZL.
SSE(FSE). SZM. SZN. AC
SOLO

SOLO. SSTO. SOAO.
SDSU, IF. SSE(FSE).
AC, SOMP. $001 .
POLY

13·3

-·___ -· .. ------------~- ·-·-.. ·· ·- ·--------~-------- --------- --·--.... ---............ _ _, __ .._ _, ____ , ___ ._ _______ - - ---- _ .. ___ - ·- ·-·-·---··

SUPPORT LIBRARY

Table 13·1. DAS Coded Subroutines (continued)

13-4

Name

DEXP

OLOG

POLY

CHEB

Function

In AC. compute exponentia l d

In AC. compute In d

In AC, compute double·precision
polynomial with t terms.
coefficient list starting at
address c. and argument at
address y

In AC. compute shtfted
Chebyshev polynom•al series
wtth t + 1 terms and coefftctent
list start ing at address c

OSQRT In AC. compute square root
of d

SDFR In AC. compute fract ional
part of d

IOINT In AC, compute •ntegral
part of d

DMUL T In AC. compute dl 0 d2

DDIVtOE In AC, compute d 1 l d2

DADDSUB In AC, compute d 1 + d2 with
SDAD. or dl - d2 with·
sosu

DNORMAL In AC. normalize d

OLOADAC load AC with d

OSTOREAC Store AC in d

RLOAOAC Load A w1th double-precis1on
mantissa s1gn word from AC

SINGLE In AB, convert the d 1n AC to r

DOUBLE In AC. convert the r tn AB to d

DBLECOMP In AC, compute negative of the
d in AC

$35 Store AB in memory address m

Calling Sequence

CALL $DEX
CALL DEXP,d

CALL OLOG,d
CALL $0LN

CALL POLY.t.c.y

CALL CHEB.t.c

CALL SDSQ.d
CALL OSQR.d

CALL SDFR.d

CALL $01T.d
CALL IOINT.d

CALL $0MP.d2
CALL $ZM.d2

CALL SOOt .d2
CALL SZN.d2

CALL $DAO.d2
CAL $0SU,d2
CALL SZK.d2
CALL SZL.d2

CALL $0NO

CALL SDLO.d
CALL SZF.d

CALL SSTO.d
CALL SZS.d

CALL SZI

CALL SRC

CALL $YC

CALL SZC

CALL $3S.m

External References

SOLO. $STO,
$SE(FSE), AC, $0NO. SEE.
SZC. SZK, SZL. SZM. SZN

SOLO, SSTO. $0NO, SEE
SSE(FSE), SZK. SZL SZM. $ZN

SOLO, $DAD. $0MP

SOLO. $STO. $DAD,
$0SU, $0MP

SOLO, $STO. SONO,
·SDAD, $DMP, $001 ,
$SE(FSE). AC

SOLO. SDNO, SDSU .
$OtT, AC. $SE(FSE)

$0NO, $SE(FSE)

SOLO. $STO. SDNO.
$DAD. AC, $SE(FSE)

SOLO. $STO. SDNO,
$DSU. AC, SSE(FSE)

$STO. SOLO, SDNO,
AC, SSE(FSE). SEE

SSE(FSE)

AC. SSE(FSE)
-.

AC, SSE(FSE)

AC

AC

AC

AC

$SE(FSE)

Name

A2MT

MT2A

EXIT

SUSPND

RESUME

ABORT

ALOC

PMSK

· DELAY

LDELAY

TIME

OVLAY

SUPPORT LIBRARY

Table 13-1. DAS Coded Subroutines (continued)

Function

Translate in memory a character
string of length n starting
at s and ending at e from
eight -bit ASCII to six-bit
magnetic tape BCD code

s is the start of the ASCII block
and e is the start of the BCD block.

Translate in memory a character
string of length n starting at
s and ending at e from s1x-bit
magnetic tape BCD code to
etght -bit ASCII .

s is the start of the BCD block

and e is the start of the ASCII block.

formats and executes an RTE
EXIT macro

Formats and executes an RTE
SUSPND macro with parameter i.

Formats and executes an RTE
RESUME macro to resume task s.

Formats and executes an RTE
ABORT macro to abort task s.

Formats and executes a!'l RTE
ALOC macro to call reentrant
subrouttne s.

Formats and executes an RTE
PMSK macro to operate on PIM
il with line mask 12 and
enable/ disable flag 13.

Formats and executes an RTE
DELAY macro w1th the 5·
millisecond count in i 1. the
mtnute count 1n t2, and delay
mode in i3.

'

Formats and executes an RTE DELAY
type 1 with additional parameters to
specify the LUN from which the task
(lun in i4 key in i5) is to be reloaded.

Formats and executes an RTE
TIME macro with the minute
count 1n i 1, and 5-millisecond
count in i2.

Formats and executes an RTE
OVLA Y macro with i 1 =- 0 to
execute. i2 = 0 to load. and
s tS the overlay name.

Update B

Calling Sequence

CALL A2MT.n.s.e

CALL MT2A.n.s.e

CALL EXIT

CALL SUSPND(i)

CALL RESUME(s)

CALL ABORT(s)

CALL ALOC(s)

CALL PMSK(i l.
i2. i3)

CALL DELAY(tl.
i2 ,13)

External References
and Return Conditions

None

None

V$EXEC

V$EXEC

V$EXEC. $RTENM

VSEXEC. SRTENM

VSEXEC

V$EXEC

V$EXEC

CALL LDELAY (i l,i2,i3, V$EXEC
i4, i5)

CALL TIME(i l ,i2) V$EXEC

CALL OVLAY(1l.
i2 .s)

VSEXEC. $RTENM

13·5

. --· ·- ----·- - - ---------- -· ------- ---·----- ·-- -· -··"···-·-- .. -.. - ·-·--··-··· ·-·-... - ~ -- ·- ... ---· -- .. - -··------ ---· -·- --·-·-- ·--·-

SUPPORT LIBRARY

Name

SCHED

SRTENM

SEE

SSE

VSRSW

VSHDR

$TC

$TE

OIAOOSUB

OIMULOIV

T

13-6

Table 13-1. DAS Coded Subroutines (continued)

FWM:tion

Formats and executes an RT£
SCHED macro with il • pnority,
i2 • wait flag. i3 -
loa1cal·unit number, sl • key
and s2 • task name.

Moves the six-character name
from X to 8

Outputs error messages on
the SO device. . . -
Fetches n parameters from a
subroutine call

Handles multi-reel volume
files and information.

To format a standard
VORTEX header.

Converts a OP integer to a real
value.

Raises a real value to its OP
integer power.

Adds or subtracts double word
integers. S6K is add. S6L is
subtract.

Multiplies or divides two double
word integers. S6M is multiply,
t6N is divide. S6NX is divide and
return remainder only.

UpdatE' B

Callinc Sequence

CALL SCHED(i l, i2,
i3,sl ,s2)

CALL SRTENM

CALL SEE

CALL SSE. n
BSS n

LDA•LUN to
unload.

LO}(<O for
no mount.

LOX -o for
mount next
~lume.

LDX>O addr.
of filename
for mount.

a-next
volume num
ber if X>O

CALL VSRSW

CAll VSHDR
DATA page
number ad
dress
OATA procr am
name address
DATA program
title address
(• 0 if not
used)

CALL STC

CAU STE.i2

CALL S6K.i2
CALL $6l.i2

CALL $6M.i2
CAU $6N,i2
CALL $6NX.i2

External References
and Retum Conditions

VSEXEC. SRTENM

None

VSIOC, VSIOST.
VSEXEC

None

A - Restored

8 - Restored

X - Restored

A.B.X restored
Header in 38
word external
buffer V$H8Uf

none

none

FSE

FSE

. -- ·-----,----- ---- -

Name

CB2A

CA2B

MOVE

CTIME

Table 13·2. OM l ibrary Subroutines

Function

Covert a 16-bit binary value
(positive or negat ive) to an
ASCII character string (octal
or decimal) with lead ing zeros
suppressed and right justi·
f ied minus sign on negative
decimal values.

Convert a decimal or octal
ASCII number (posit ive
or negative decimal) to
a 16"bit binary value.

Move a block of n words
from address t to address
t. If an overlap move.
then; move in reverse.

Convert the time of day
to an ASCII string of the
form:

HH:MM:SS:III

where Ill is miliseconds

Calling Sequence

LOA

JSR
DATA

JSR
DATA

DATA

-
-

0 for octal
convers1on

0 for deci·
mal conver·
SIOn
C82A.X
Address of
b inary value

CA28,X
ASCII
stnng ad·
dress
(campi •
lett byte,
pos • r ight
byte)
Address of
termination
character
block

The termination block
format is

DATA Legal termination
character (r ight
justi f ied)

DATA Legal termination
character (right
justified)

0

•
•
•
DATA 0 (end of block)

JSR MOVE.X
DATA n (word

count)
DATA f (from ad·

dress)
DATA t (to address)

JSR CTIME,X

SUPPORT LIBRARY

External References

(A) - Address of ASCII
string

(8) - Restored

(A) - Binary value
(8) - Next byte address

OVFL = Set if an illegal
character encountered

(A) • Restored
(8) • Restored

(A) • Address of ASCII
string

(8) • Restored

13·7

. ··-···- -·- ·--· -··---------·--- ~· .. --.. ·-··-··- ·----··-- ___ .., _,._,. _____ ... -....-----· ... --·-·--- --·-- -· . -. ---·· · ·~ ·- ····--··-·-·· ..

SUPPORT LIBRARY

Name

$9E

ccos

CSIN

CLOG

CEXP

CSQRT

CABS

CONJG

SAK

SAL

SAM

$AN

SAC

CMPLX

$8K

$8L

SSM

13·8

Table 13·3. FORTRAN IV Coded Subroutines

Function

Compute Accz ~oi

In ACCZ. compute cos z

In ACCZ. compute stn z

In ACCZ. compute In z

In ACCZ. compute exponential z

In ACCZ. compute square root of z

In AS. compute absolute z

In ACCZ. compute contugate of z

Add r to real part of ACCZ

Subtract r from the real
part of ACCZ

Multaply ACCZ by r

Oavede ACCZ by r

Convert AC to z and store in ACCZ

Load ACCZ with a value havang
a real part rl and an •maganary
part r2

Add z to ACCZ

Subtract z from ACCZ

Multiply ACCZ by z

Calling Sequence

CALL $9E(i)

CALL CCOS(z)

CALL CSIN(z)

CALL CLOG(z)

CALL CEXP(z)

CALL CSQRT(z)

CALL CABS(z)

CALL CONJG(z)

CALL SAK(r)

CALL SAL(r)

CALL $AM(r)

CALL SAN(r)

CALL SAC

CALL CMPLX(rl.r2)

CALL $8K(z)

CALL $8L(z)

CALL $8M(z)

External Re ferences

SSE(FSE). lABS. $8F.
$8M. $8N. $8S

SSE(FSE), CSIN. $8F.
$8K . $8S

SSE(FSE), EXP. $QN.
SIN, SQK(FAO). $QM.
COS. $QL(FSB). $8F

SSE(FSE). ALOG. SQM.
SQK(FAD). SQN. ATAN2.
$8F .

SSE(FSE). EXP. COS.
$QM. SIN. $8F

$SE(FSE). SQRT. CABS
SQK. $QN. $8F

$SE(FSE). SQRT. SQM.
SQK(FAO)

SSE(FSE). $8F

SSE(FSE). $85. SQK(FAO). $8F

SSE(FSE). $8S. SQL(FSB). $8F

SSE(FSE). $8S. SQM. $8F

SSE(FSE). $8S. SQM. $8F

$3S. CMPLX

SSE(FSE). $8F

SSE(FSE). $8S. $QK(FAO), $8F

SSE(FSE), $8S, $QL(FS8), $8F

SSE(FSE). $8S. SQM.
SQL(FSB). SQK(FAO), $8F

- - --- . ------- - --- - --

Name

$8N

$ZD

AI MAG

soc

REAL

$8F

S8S

SXE

$YE

SZE

OATAN2

OLOGlO

DMOO

OINT

DABS

OMAXl

OMINl

OSIGN

$YK

SYL

$YM

SUPPORT LIBRARY

Table 13-3. FORTRAN IV Coded Subroutines (continued)

Function

Divide ACCZ by z

Compute negative of z

Load AS with the 1maginary
part of z

Load AS with the real part of

ACCZ

Load AS with the real part of z

Load ACCZ with z

Store ACCZ in z

Compute d'" "i where d IS .n AC

Compute d '~ " r where d IS 1n AC

Compute dl ""d2 where dl IS 1n AC

In AC, compute arctan (d}! d2)

In AC. compute log d

In AC. compute d 1 modulo d2

In AC. compute 1nteger
port1on of d

In AC. compute absolute d

In AC. set~t the malltmum value
in the set d 1. d2 dn

In AC, select the minimum value
in the set dl. d2, ... ,dn

Set the s1gn of d 1 equal to
that of d2

Add r to AC

Subtract r from AC

Multip ly AC by r

Calling Sequence

CALL $8N(z)

CALL $ZD

CALL AIMAG(z)

CALL SOC

CALL REAL(z)

CALL $8F(z)

CALL $8S(z)

CALL SXE(i)

CALL $YE(r)

CA(L SZE(d2)

CALL DATAN2(dl.d2)

CALL DLOGlO(d)

CALL OMOO(d l.d2)

CALL DINT(d)

CALL OABS(d)

CALL DMAX 1(d l.d2

.. .. dn.O)

CALL OM IN l(dl.d2
.. .. dn.O)

CALL DSIGN(d l.d2)

CALL $YK(r)

CALL $YL(r)

CALL $YM(r)

External References

SSE(FSE). $8S. $QM.
$QK(FAO). SQN. $QL(FS8). $8F

$8S. $8F

$SE(FSE)

$8S

$SE(FSE)

SSE(FSE)

$SE(FSE). $3S

$SE(FSE), $ZF. MOO. $ZM.
$HN. $ZN . $ZS

$SE(FSE). $ZS, DBLE.
$ZE. $ZF

SSE(FS£). $ZS. DEXP.
DLOG. $ZM

SSE(FSE). SZF. $ZS.
SZI. $ER. $ZN .
SZL. SZK. DATAN

SSE(FSE). DLOG. SZM

$SE(FSE). OINT. $ZF.
SZN. SZS. SZM.

SZL. SZC

$SE(FSE), SZF. $JC. $XC

SSE(FSE). SZF. SZ I, SZC

SSE(FSE). SZF. SZS.
I$FA. $ZL, SZI

$SE(FSE), $ZF. $ZS,
I$FA, $ZL. $ZI

$SE(FSE). SZF, SZI , SZN

SSE(FSE). SZS. DBLE. SZK

SSE(FSE). SZS. DBLE.
SZL. SZC

$SE(FSE). SZS. DBLE. SZM

13-9

•-·•• 0 • ..,, Or-~· • O.o- O O"oO - .. ~··--------' ·--·----- - · ---"""-'' - -- ·- - - • • --... ,.,,,~,_, _ _ .. _ .,. _ ___ __._ ,,_ , ..__., , , _ _ ____ _ , ___ _ ... ••·--· - ----- ·--• • 0 ,, ,. ~0 M '.,,.,_ .._ • • _ •••

SUPPORT LIBRARY

Name

SYN

DSLE

$XC

TANH

ATAN2

ALOGlO

AMOD

AI NT

AMAXl

AMINl

AMAXO

AMINO

DIM

FLOAT

SNGL

MAXO

MINO

MAXl

MINl

MOD

13·10

Table 13-3. FORTRAN IV Coded Subroutines (continued)

Function

Divide AC by r

In AC, convert r to d

In AC, convert i to d where
i is in A

In AS, compute tanh r

In AS. compute arctan (rl tr2)

In AS, compute log r

In AS, compute rl modulo r2

In AB, truncate r

In AB. select the max1mum value
in the set rl.r2 , rn

In AB. select the m1n1m um value
•n the set r 1. r2 rn

In AB. select the max1mum value
in the set i 1. i2 m and
convert to r

In AS. select the m.n1mum value

in the set il.i2 in and
convert to r

In AB. compute the pos1t1ve
d ifference between rl and r2

In AS. convert 1 to r

In AB, convert d to r

In A, select the max1mum value
tn the set •l .i2 ,1n

In A. select the minimum value
in the set i l,i2, ... ,in

In A. select the maximum value
in the set rl ,r2 rn and
convert to i

In A. select the minimum value
in the set rl ,r2 •.... rn and
convert to i

In A, compute i 1 modulo i 2

Calling Sequence
•

CALL $YN(r)

CALL DSLE(r)

CALL SXC

CALL TANH(r)

CALL ATAN2(rl.r2)

CALL ALOG 1 O(r)

CALL AMOD(rl.r2)

CALL AINT(r)

CALL AMAXl (rl. r2)
... . rn .O)

CALL AM IN l (rl.r2)
.... rn . 0)

CALL AMAXO(i 1.12.
.. . ,m.O)

CALL AMI N0(1l.12.

.. .. 1n .O)

CALL DIM(rl.r2)

CALL FLOAT(i)

CALL SNGL(d)

CALL MAXO(Il.t2,
.... 1n.O)

CALL MINO(il ,i2.
.... in, 0)

CALL MAX1 (rl ,r2 .
.. .. rn .O)

CALL MIN l(rl ,r2.
.... rn .O)

CALL MOD(1l, i2)

External References

SSE(FSE). SZS. OBLE.
SZF. SZN

SSE(FSE). SYC

$PC, SYC

SSE(FSE), $QK(FA0). EXP.
SQL(FSB). SQN

$SE(FSE). SER . ATAN.
$QK(FAD). $QL(FS8). SQN

SSE(FSE). ALOG. SQM

SSE(FSE). AINT. SQN .
SQM. SQL(FSB)

SSE(FSE). SIC. $PC

SSE(FSE). ISFA. SQL(FSB)

SSE(FSE). ISFA, SQL(FSS)

$SE(FSE). 1$FA, FLOAT

SSE(FSE). I$FA. FLOAT

SSE(FSE). $QL(FS8)

SSE(FSE). $PC

SSE(FSE), SZF. SRC

$SE(FSE). ISFA

SSE(FSE). ISFA

SSE(FSE). ISFA. SQL(FSB), IFIX

SSE(FSE). ISFA. SQL(FSS). IFIX

$SE(FSE). SHN . SHM

Name

INT

I DIM

I FIX

SJC

lOR

lAND

NOT

IE OR

ISHFT

SUPPORT LIBRARY

Table 13-3. FORTRAN IV Coded Subroutines (continued)

function

In A, truncate r and convert
to i

In A. compute the positive
difference between i 1 and i2

In A, convert r to i

In AC, convert d to I and store
result in A

In A compute the inclusive or of m
and n (m.OR.n)

In A. compute the logical product
of m and n (m.ANO.n)

In A. compute the logical inversion
of m (.NOT.m)

In A. compute the exclusive or
(logical difference) of m and n
(m.XOR.n)

In A. compute either zero, if the
absolute value of n is greater
than or equal to 16. or m*2**n,
otherwise (negative n value
indicates a right shift. positive n
value indicates a left shift)

Calling Sequence External References
'

CALL INT(r) SSE(FSE). SIC

CALL IDIM(il,i2) SSE(FSE)

CALL IFIX(r) SSE(FSE). SIC

CALL SJC SRC, SIC

CALL IOR(m.n) SSE

CALL IAND(m.n) SSE

CALL NOT(m) SSE

CALLIEOR(m.n) SSE

CALL ISHFT(m.n) SSE

Update 8 13·11

!

i

·- ·· . . ~·· . . · • ·· --~ ·· ·~ ' ~ .. --- · -· .. ._ _ _ _______ __ ..__......_ - - .. - - -. ¥,,_ _ _ ... _ ··""' · ·-··- · · • · • ···----~·~··· •. . .,... .. ·• ""' " -·· -~ .. - ,._ ... ,.._ ______ _ -·~---.. ~----- - - ---.... - -·--··- .. ··--·"'• . . -

- ·- -------

SUPPORT LIBRARY

Tab~ 13·3. FORTRAN IV Coded Subroutines (continued)

Name

INT

I DIM

I FIX

SJC

Function

In A, truncate r and convert

to

In A. compute the positive
difference between 11 and i2

In A, convert r to i

In AC, convert d to and store
result in A

13.4 DECIMAL SUBROUTINE

The decimal subroutine performs requested decimal
operations (add, subtract . mult iply, divide. move, or
compare}. Besides operand addresses and sizes. the user
may specify pre-shifting of operands and post-shifting and
rounding of resu lt Note that pre-shifting is decimal
alignment and does not imply physical shifting. Operands

may be signed or unsigned.

Decimal compare sets the user result condition word as
follows:

-o
-1
-2

if operand A< operand B
if operand A -= operand B
if operand A > operand B

Parameter Block

Calling Sequence External References

CALL INT(r) $SE(FSE). SIC

CALL IDIM(i l.i2) SSE(FSE}

CALL IFIX(r) SSE(FSE), SIC

CALL SJC SRC. $1C

Decimal compare ari thmetically compares two decimal
operands.

On entry register RO(A) contains the address of an 85 word
temporary storage block available to firmware. R1 (B)
contains the address of the user result condit ion word. and
R2(X) contains the address of the users descr ipt ive
parameter block. Decimal math may be accessed ei ther via

JMPM VSDECM
or

JMP CSDECM

If CSOECM is used, return will be made to user suppl ied
location VCSRTN. If VSDECM is used, the user must still

define VCSRTN.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 0 CODE P LA UB LA LB

1 displacement4.

2 displacements

3 Q DA DB SA sa

4 R UC DC LC sc

5 displacementc

13·11

'

SUPPORT LIBRARY

Parameter Description:

CODE

p

UA

us

LA
LB
BN_..

Q

DA

DB

SA
58
R

uc

DC

LC
sc
BNc

Displacement
A, B. or C

represents operation to be performed:

0 - opA + opB
1 - opA · opB
2 - compare opA: opB
3 - move opA to opB
4 - opA • opB
5 - opA!opB

• 1 for presence of word 3.
• 0 for absence of word 3.
• 1 if operand· A is unsagned.
- 0 if operand A is signed.
- 1 if operand 8 is unsigned.
• 0 if operand B is signed.
- length of A in digits (1 to 31).
• length of B in digits (1 to 31).
- main storage base register number

of operand A.
- main storage register number of

operand B.
• 1 if returned in third operand

- 0

- 1
- 0
- 1
- 0 --
- 1

- 0

- 2
- 0
- 1
- 0 ---
-

(words 4 and 5 present).
if third operand not present
(words 4 and 5 absent).
pre shift operand A left
pre shift operand A right
pre shift operand 8 left
pre shift operand B right
Operand A shift amount
Operand 8 shift amount
if rounding to be applied to
result (only if result returned
in thtrd operand)
if rounding not applied to
result
if result unsigned
if result signed
to shift result lett
to shift result right
length of result field
result shift amount
main storage base register
number of result

Byte count used to calculate
byte address of decimal operands.

Error Conditions:

(Note that on an error, register R2 will be incremented past
the parameter block, and results will be unreliable.)

a. Result operand overflow · if the result operand has an
inadequate number of digits to contain the result, the
condition result word (CONDIT) will be set to the
value 3.

13·12

-

b. Invalid digit · if the number port ion of a digit (bits 23
·

2°) contains a value other than 0 · 910 or the zone
portion (bits 2

7
· 24

) contains a value other than 11 10 •

the condations result word will be set to the value 4.

c.

This is also true of values specified as signed having
signs other than blank (octal 240), minus (octal 255).
or plus (octal 253).

If the base word related to respective BN field is zero
then the condition result word CONDIT will be set to 5.

d. Attempted division by zero results in CONDIT being set
to 3.

Notes

If operand C is not specified. the result wi ll be returned in
operand A. except for move. Decimal move moves operand
A to operand B. Note that for a decimal move. the
parameter block may be a maximum of 4 words. In this
case. the Q bit is used to specify rounding. rather than a
third operand.

Parameter byte addresses are calculated as follows: (Rl +
1 + BN) •2 + displacement - byte address of least
significant byte of decimal operand.

This represented pictorially as follows:

Rl - Condition Word

Base register 0
address

Base register 1
address .

Base register 15
address

Optional
Word Address Byte Address Sign

byte decimal
-• ' " ,

" - - I .
displacement operand

When pre·shitting is specified, this does not imply physical
shifting of operands. Only the operand designated for
result is modified by a decimal operation.

When the operation is complete. only the integrity of
register R2 and R 1 are maintained. R2 will be incremented
to the address of the next word following the parameter
block.

This is meant to imply all other V75 registers are volatile.
The user must save and restore any registers R3 through
R7 he requires to be maintained when executing the
decimal operation.

·- - -- --- - -----··--

SUPPORT LIBRARY

Examples:

Note: The following may be used to create decimal
parameter blocks:

DWORDO
DWORD,
DWORD2
DWORD3
DWORD4
O'WORDS

DECOP

DECWD1

DECWD2

DECW03

FORM
FORM
FORM
FORM
FORM
FORM

MAC
IFT
GOTO

FOLLOWING ARE FORMS OF DECIMAL

INSTRUCTION.

3,1,11,5,5
4, 12
4' , 2
3,1,1,1,5,5
3 1 , 1 1 1 , 1 5 1 5
4' 1 2

DECIMAL OPERATION MACRO (DECIMAL

PARAMETER BLOCK)

P(12)-p(13)-P(5)-P(6)+P(14)
DECWD1

O'WORDO p(7) 101 p(,) 1 p(3) 1 p(4) 1 p(11)
DEC'WD2 GOTO

COUNT
OWOROO
CONT
OWORD 1
DWORD2
IFF

P(7), 1 1 P (1) 1 P(8) ,P(4) ,P{ 11)

P(2) 1 P(3)
P(9) ,P(10)
P(12)+P(13)+P(5)+P(6)+P(1 4)

Select appropriate Word 0
(Note no third. fourth,
or fifth word)

(Parameter block includes
at least word 3)

GOTO DECWD3 (Terminate if no word 3)
DWORD3 O,P(14)P(5) ,P(12} ,P(6) ,P(13)
IFF p (1 4)

GOTO DECWD 3 (Terminate it no third
DWORD4 0 , P (1 5) , P (1 6) , P (2 0) , P (1 9) , P (2 1) operand words 4 and 5)
OWOROS P(17),P(18)
CONT
EMAC

INTERPRETIVE PARAMETER BLOCK DEFINED AS FOLLOWS:

p (0,) OP1 SIGNED (S) OR UNSIGNED (U)
P(02) OP1 REG
P(03) OP1 DISPLACEMENT
P(04) OP1 LENGTH
P(OS) OP1 SHIFT LEFT (l) OR RIGHT (R)
P(06) OP, SHIFT AMOUNT
P(07) OPERATION (DADO, DSUB, SMULL. DDIV,

OMOV, OCMP)
P(08) OP2 SIGNED (S) OR UNSIGNED (U)
P (09) OP2 REG
p (1 0) OP2 DISPLACEMENT
p (1 ,) OP2 LENGTH
p (12) OP2 SHIFT LEFT (L) OR RIGHT (R)
p (, 3} OP2 SHIFT AMOUNT
p (, 4) •EQ IF RESULT IN THIRD OPERAND
p (, 5) F FOR ROUNDING
p (16) OP3 SIGNED (S) OR UNSIGNED (U)
p (1 7) OP3 REG
p (, 8) OP3 DISPLACEMENT
p (19) OP3 LENGTH
P(20) OP3 SHIFT LEFT (L) OR RIGHT (R)
P(21) OP3 SHIFT AMOUNT

13-13

SUPPORT LIBRARY

•
Following are equates to be used with the above macro:

BNO !!QU 0 BASE NUMBER 0
BN1 !!QU , BASE NUMBER 1
BN2 EQU 2 BASE NUMBER 2
BN3 EQU 3 BASE NUMBER 3
BN4 EQU 4 BASE NUMBER 4
BN5 EQU 5 BASE NUMBER 5
BN6 EQU 6 BASE NUMB!R 6
BN7 EQU 7 BASE NUMBER 7
BN8 EQU 8 BASE NUMBER 8
BN9 EQU 9 BASE NUMBER 9
BNA EQU 10 BASE NUMBER 10
BNB !QU 1 1 BASE NUMBER 11
BNC l!!QU 12 BASE NUMBER 12
BND EQU , 3 BASE NUMBER 13
BNE EQU 1 4 BASE NUMBER 14
BNF EQU , 5 BASE NUMBER 15
DADO EQU 0 DECIMAL ADD
DSUB !QU 1 DECIMAL SUBTRACT
DCMP EQU 2 DECIMAL COMPARE
DMOV EQU 3 DECIMAL MOVE
DMUL !QU 4 DECIMAL MULTIPLY
DDIV EQU 5 DECIMAL DIVIDE
EQ !!QU 1 RESULT RETURN ED IN
F !!QU 1 ROUND (ADJUST)
R EQU 0 SHIFT RIGHT
L EQU 1 SHIFT LEFT
s EQU 0 SIGNED
u !!QU , UNSIGNED

The above macro may be used as follows:

c

RO (A)
R 1 (B)

R2(X)

Before Operation

1016
3100
4102

After Operation

1 0, 6
3100
4106

2. D!!COP U,BN5,0,4,, ,DMUL,S,BNE,O,J,,,

EQ , F , U, BN 1 , 0 , 7 , R, 1

generates six word parameter block

114203
050000
160000
010000
0 14341
010000

Explanation: An unsigned 4 digit decimal string in memory
accumulator 5 is multiplied by a signed 3 digit decimal
string in memory accumulator 14. The result will be r ight
shifted one digit position, rounded. and stored in memory
accumulator 1 (note maximum resulting digit string length
is 7). If operand A • 0321 and operand B - 987 + result
of above operation would be 0003168.

Note following register settings:

RO (A)
R 1(B)
R2(X)

Before Operation

1200
, 1 0 5
3506

After Operation

1200
1 1 0 5
3514

1.DECOP U, BN1,2,4,R,1,DAD,U,BN2,0,4,L1

generates four word parameter block

16204
10002
20000
02041

Explanation: Operand A is an unsigned decimal string
resid ing in memory accumulator 1. tt begins (most
significant digit) two bytes into accumulator 1 w1th a length
of four bytes. Operand A will be logically reshifted right one
digit. Operand B is an unsigned decimal string beginning
in memory accumulator 2 with a length of four bytes.
Operand B will be logically pre·shifted left one digit. The
result of addition will be returned in operand A. If operand
A • 4310 and operand B • 0129, result of the above
operation would be 1721.

Note following register settings:

13-14

3. DECOP S,BNC,0,3,,,DCMP,S , BN 1 ,0,4

generates three word parameter block

040144
150000
010000

Example 3 compares decimal digit string in memory
accumulator D with decimal digit string in memory
accumulator 1. If operand A - 123 + and operand 8 -
9871 ·, condition word pointed to by Rl(B) would be set to
20.

Note following register settings:

RO (A)
R 1 (B)
R2 (X)

Before Operation

13012
65 12
1234

- - - - - - - - - - -

After Operation

13 012
6512
1237

SECTION 14
REAL-TIME PROGRAMMING

VORTEX real -time applications allow the user to interlace
directly with special devices, develop sottware that is
interrupt-driven, and utilize reentrant subroutines. Four
areas are covered in this section:

• Interrupts

• Task-scheduling

• Coding reentrant subroutines

• Coding l / 0 drivers

14.1 INTERRUPTS

14.1.1 External Interrupts

Priority interrupt module (PtM) hardware: A PIM com·
prises a group of eight interrupt lines and an eight-bit
register. The register holds a mask where each set bit
disarms a line. VORTEX allows up to eight PIMs for a
maximum of 64 lines. The system of PIMs and lines is
called the external interrupt system.

The processing of external interrupts is controlled by the
programmed status of the line. The lines are continuously
hardware-scanned, regardless of the status.

If more than one interrupt is detected on a single scan, the
highest-priority line is acknowledged, and, if the PIM is
enabled and the line armed, the interrupt is taken. If no
conflict occurs, the lines are acknowledged on a first-in /
first-out basis. If a signal is received on a disabled PI M, it
is stored by the PIM, and causes an interrupt when the
PIM is enabled.

Disabling the external interrupt system prevents any
interrupt from entering the computer. Enabling the entire
system allows acknowledgement of all interrupts. Enable/
disable selection on a PIM basis allows for more selected
control of the system. Individual line selection prevents
receiving a second interrupt while a line is still processing
the first.

Program setting of PIM registers causes the PIM to ignore
interrupts received on lines that are busy processmg an
interrupt or held off because of priority.

All PIMs and interrupt lines to be used in VORTEX are
specified at system-generat ion t ime and their status
specified when VORTEX is loaded and init ialized. VORTEX
does not disable any line unless so directed by RTE service
request PMSK (section 2.1.6).

When a PI M interrupt signal is acknowledged and the
interrupt taken, the computer executes the instruction in a

selected memory location. Under VORTEX, PIM addresses
are from 0100 to 0277. Linkage to VORTEX interrupt
processing routines is accomplished by a jump-and-mark
instruction in the interrupt location. Unspecified lines are
preset in VORTEX with no·operation instructions that
ignore unspecified or spurious interrupts.

~ince VORTEX always includes memory protection, certain
instruction sequences cannot be interrupted and acknowl
edgement is delayed until they are complete. These include
the instruction following an external control, halt. execu
tion, or any instruction manually executed in step mode .

VORTEX interrupt line handlers: At system-generat ion
t ime, a user spec ifies all interrupt-driver tasks. These
include those that allow VORTEX to service the 1nterrupt, as
well as those that are directly connected and service the
interrupt themselves. Then, VORTEX constructs a line
handler for each interrupt in the system (figure 14.1).

Directly connected routines preempt VORTEX and are thus
used only when response time demands it. Section 14.4.5
describes directly connected interrupt handlers in detail.

Common interrupt handler: The common interrupt han
dler is the interlace between PIM interrupts (via the line
handlers) and system or user interrupt-processing tasks.
Upon entry, the contents of the volatile registers are saved
and the interrupt event word is inclusively ORed into the
event word of the specified TIDB. A check then determines
whether to return to the interrupted task or to enter the
interrupt-processing task, depending upon prior ity. All
interrupts are enabled upon leaving the common interrupt
handler.

Interrupt-processing tasks: A task is activated by an
interrupt when: (1) task's TIDB interrupt-expected status
bit is set. (2) the interrupt event word contains a nonzero,
and (3) the task is suspended.

The interrupt-processing task can be memory-resident or
RMD·resident, In either case, the processing task clears the
event word. The event word distinguishes different interrupt
lines that could activate the same task. The dispatcher
c lears the interrupt expected bit and time delay activity tor
all tasks except TTY and CRT drivers.

An interrupt-processing task can exit with one of the
following opt ions:

a. Issue a suspend RTE (type 1 or 2) service call that
suspends the task and sets the interrupt-expected
status bit. Upon receiving the external interrupt or
simulated interrupt (TBEVNT word in Tl08 is set to
1) caused by IOC or l/0 completion events (type 2
only), the task continues execution following the
request.

14-,

• o- w~ _ _ _. __ , _ _ _______ ,...., _ • .,.._.,. ___ __________ · ·- -- ---•·~-·------·- .. • • · • ""_' _ _ _______ --·--··------ •• • • ••- o

REAL· TIME PROGRAMMING

•

Dedicated Interrupt Addresses

0100 ,
0102

3

0104
0105

0106

Jump-and-Mark lnstruc-
to L ine Handler 1
Jump-and-Mark lnstruc-
tion to Line Handler 2

.

(or, if directly con-
nected interrupt) -----.

Option 1
~~----~~----Jump-and-Mark Instruc-

tion to Line Handler 3
--~

(or. if d irectly con
nected 1nterrupt)

Option 2

Jump-and-Mark lnstruc·
tion to Line Handler

0 ,
2
3
4

5
6

0 ,
2
3
4

5
6

0
l

2
3
4

5

0
1
2
3
4
5
6

Line Handlers

Return Address
D1sable PIM Interrupts *
Disable Clock Interrupts *
Jump- and-Mark Instruction
to Common Interrupt Handler
Event Word
TIDB Locat1on

Return Address
Disable PIM Interrupts*
Disable Clock Interrupts *
Jump-and-Mark 1nstruct1on
to Common Interrupt Handler
Event Word
TIDB Location

Return Address
Disable PIM Interrupts *
Disable Clock Instruction
Jump-and-Mark InstructiOn
to User Code
Event Word

Return Address
Disable PtM Interrupts "*
Disable Clock Instruction
Jump-and-Mark Instruction
to VSDHO
User Code Entry Address
Event Word

0 Re
0

d
3

0
0 Re d

3

TIDBs

Thread Word

•
Event Word

•
Interrupt Stack:
A .B.X,OF,P.
and Stack Pointer

•

Thread Word

•
Event Word

•
Interrupt Stack: .
A .B.X.OF.P.
and Stack Po1nter

•

User Code for
Directly
Connected
Interrupt Task

VSDHD. system
routine to save
volatile registers

User code

* vn -200/400 CPUs only

Note: See section 14.4.5 on directly-connected int
handler.

errupt

return
to
user

VSDRTN, system
routine to restore
reg./map state

Ficure 14-1. Interrupt Line Handlers

b. Issue a delay . RTE (type 2 or 3) service call that
suspends the task and sets the interrupt-expected and
time-delay active status bits. The task is reactivated
when time-defay expires or upon receipt of external
interrupt or a simulated interrupt caused by IOC or
110 completions (type 3 only).

14-2

Upon entry, the event word non-zero indicates
interrupt activation by external or simulated interrupt
(1). Since IOC set the TIDB event word to a 1, the
event word in line handlers for external interrupts
should be set to something other than 1 if a type 3
delay is to be used. The word also clears the time·
delay status bit upon reactivation.
It should also be noted that for supspend (type 2) and
delay (type 3) service calls, bit 6 of TBPL word of
task's TIOB is set to cause IOC to set TBEVNT word to
1 on l/ 0 completion events. This bit is reset whenever
a suspend or delay service call of a type other than
the ones mentioned above.

c. If RMO-resident. set the interrupt-expected status bit
and call EXIT to release space. (TI DB must be
resident.)

Timin1 Considerations: The time neces~ary to process an
interrupt through the common interrupt handler depends
on when the interrupt occurred:

a. If a task is interrupted and the interrupt-processing
task has a lower priority, the interrupt is posted, and
VORTEX returns control to the interrupted task in
approximately 56 cycles.

b. If a task is interrupted and the interrupt-processing
task has a higher priority, the interrupt is posted, and
VORTEX transfers control to the d ispatcher (section
14.2.3) to start the higher-priority interrupt-process·
ing task (if all its conditions are met). The posting
time is 66 cycles, approximately.

·--·- -------

c. If an interrupt occurs during a dispatcher scan. the
posting time is about 32 cycles. VORTEX returns to the
dispatcher to restart the scan.

•

d. If the real-t ime clock interrupts the interrupt handler.
the RTC interrupt handler posts the interrupt and the
common interrupt handler returns to the clock
processor in approximately 40 cycles.

14.1.2 Internal Interrupts

VORTEX recognizes and services internal interrupts related
to various hardware components. The processing routines
are all directly connected and are the highest-priority tasks
in the system.

Memory protection interrupt: Memory protection interrupts
are generated when a task attempts to execute a privileged
instruction such as external control or halt. or attempts to
violate the access mode. The memory protection routines
process all protection violation interrupts which are the
highest priority interrupts in the system. When the
interrupt occurs, the system is forced to the executive
mode, state 0 (see table 1-1). Section 1.3 describes the
memory map concept and the access modes which can be
assigned to each virtual page.

VORTEX uses the memory protection interrupt for switch
ing from the user mode to the executive mode when an l/0
(section 3) or RTE (section 2) request is made.

The memory protection interrupt addresses for the various
violations are shown in table 14-1 .

Table 14-1. Memory Protection Interrupt Addresses

Error

HALT

110

WRITE

JUMP

Interrupt
Address

020

022

024

026

UNASSIGNED 030

INSTRUCTION 032
FETCH

Map Active
Access Control Status

Attempt was made to execute
HALT instruction.

A map number other than 0
attempted to execute an l/0
instruction.

Attempt was made to write
into read-only or execute
only location.

Attempt was made to jump
into read operand only
location.

Attempt was made to read
or write into unassigned
location.

Attempt was made to fetch
instruction from read
operand only location.

REAL-TIME PROGRAMMING

Power failure/restart interrupt: An interrupt occurs when
the system detects a power failure. The VORTEX power
failure processor saves the contents of volatile registers and
the status of the overflow indicator, sets a power failure
flag, and halts with the I register set to 077.

Following the power-up sequence, the PF/R hardware
generates an interrupt. Upon entry to the VORTEX power
up procesor, the power-failure flag is checked. A power

down sequence must have occurred or else a fatal error
condition is assumed to have occurred and VORTEX halts
with the I register set to 077.

Hooks are provided to the user to supply additional power
failure/restart functions_ These hooks consist of user sup
plied (in place of provided dummy routines) nucleus rou
tines. The power-down routine entry must be VSPFDN
and the power-up routine entry must be V$PFUP. Both
routines must be callable by a JSR. by X register instruc
tions, and should save and restore registers.

If a power-down sequence had occurred, the power-fai lure
flag is cleared, the PIM mask registers are set, the real
time clock 's variable interrupt interval is set. the saved
volatile registers are restored, the clock and PIMs are
enabled (if enabled upon interrupt). and control is
returned to the location before the interrupt. Any input or
output data transfers in operation at the t ime of the power
fa ilure result in the loss of data.

For peripheral devices such as magnetic tapes and RMOs,
the l/0 operation is automatically retried.

For other peripheral devices, such as the card reader,
paper-tape system, card punch and lineprinter. a retry is
not attempted.

The error message posted depends upon the error detected
by the respective I /0 driver, such as abnormal SIC stop,
parity error. interrupt time-out. etc. Data losses on the
RMD due to power failure could cause VORTEX to
malfunction, but other devices which are not system
resident are recoverable.

The power fa ilure-restart routines operate at the second
highest priority level in the system, which has memory
protection at the highest priority level.

The power-up routine reloads the volatile memory map
registers by scanning the TIOB thread and outputting the
map image for each task which has an assigned, non
checkpointed map. Each task's map key number is
contained in TBKEY and the map image adddress con
tained in TBMING.

The power-up routine also automatically reloads the
writable control store tor systems with WCS. Sections
20. 1.3 and 20.1.4 describe the manner in which the
microutility task saves the WCS image in the OM library file
named WCSIMG and how the WCS reload task. WCSRLD.
utilizes the file to restore the WCS content The power-up
routine checks location 017 to determine if WCS has been

14-3

-. ·-·· ~- -- -·- ~--~---~·----- ---·~··-· ... ~ ···-····· ·- ... ,.. ... _._. __ .,,_, _ _..·------·-· - - ~-· " '"'· - - ---· ~-- ····· ···-- ·'-···-···---· _, .. __ , ___ .. ___ - - - ·· -···"' --~·--·--·-·-- - · . . _ ... -., . ..

REAL·TIME PROGRAMMING

loaded. A zero value indicates no WCS. A non·zero value is
assumed to be the WCSRLD TIDB address. The Fl library
logical unit number and protect key are stored in TBRSTS
and the WCSRLD TIDB (resident TIDB. non·resident task)
is set active.

Real-time clock interrupt: The real·time clock interrupt
provides the basis for t imekeeping in VORTEX. It can be set
to a minimum resolution of 5 milliseconds. However, a
value greater than 5 mill iseconds (i.e .. 10·20 milliseconds)
reduces overhead when the system does not have high·
resolution t imekeeping requirements. Upon receipt of an
interrupt. the t ime·of·day is updated and the TIDBs are
scanned for any t ime·driven task requiring activation. PI Ms
are disabled for approximately 18 cycles during real ·time
clock interrupt·processing. The clock rout ine is the third·
highest pr iority interrupt in VORTEX.

14.1.3 Interrupt-Processing Task
Installation

To install an interrupt·processing task that is not directly
connected, at system·generat ion t ime provide line handlers
and resident TIDBs by using a PIM directive (section
15.5.11) with s(n) zero and a TDF direct ive (section 15.6.2)
using the same task name in both directives. Additional
dummy TIDBs can be added during system generation.
(Once a TIOB is in the system, OPCOM directive :ATIACH
can be used to connect different interrupt·processing tasks
to an interrupt line.)

Then, code the interrupt·processing task and add the task
via system generation to the VORTEX nucleus as a resident
task.

Then, use the :ATIACH directive to link the resident task to
the interrupt line (if PIM directive not used).

14.1.4 Interrupt State

When a memory·protection, real·time (RT) clock or PIM
interrupt occurs, the system is forced to the executive
mode, state 0. The interrupts are enabled or disabled as
follows:

a. Memory·Protection Interrupt

14-4

1. RT clock is unaffected and remains in the enabled
state.
2. Memory protection is disabled and is enabled prior
to exiting the memory· protection processing routine
(EXC 0646).
3. P!Ms are disabled when the JMPM instruction is
executed and PIMs are enabled prior to exiting (EXC
0244).

b. PIM Interrupt
1. RT clock is unaffected and remains in the enabled
state. The common interrupt line handler routine
disables and enables the RT clock. The clock is not
enabled if the PIM interrupted out of the RT clock
processor (see section 14.4.5 for directly connected
interrupt handlers).
2. Memory protection is unaffected and remains in
the enabled state.
3. PIMs are disabled when the JMPM instruction is
executed. The common interrupt line handler routine
enables the PJMs upon exiting.

c. RT Clock Interrupt
1. The RT clock processor disables and reenables the
RT clock.
2. Memory protection is unaffected and remains in
the enabled state.
3. The P!Ms are disabled when the JMPM instruction
is executed. The RT clock processor enables the PI Ms.

14.2 SCHEDULING

14.2.1 System Flow

VORTEX is designed around the TIOB (table 14·1). This
block contains all of the information about a task during
its execution. The setting and clearing of status bits in the
TIDB causes a task to fir:· ~ through the system. Two
register stacks are saved within the TIDB: a reentrant
(suspend register) stack, and an interrupt stack.

The dispatcher (section 14.3) is the prime mover of tasks
through the system. When any function has reached a
termination point or has to wait for an 110 operation, the
task gives control to the dispatcher, which then finds
another task to execute. A task maintains control until it
gives control to the dispatcher, or to the interrupt task if
the interrupt·processing task has a higher priority. The
contents of the interrupted task's volatile registers are
saved in its Tl DB interrupt stack and control goes to the
dispatcher, which searches for the highest·priority active
task for execution.

Each Tl 08 is placed in sequence by priority level and
threaded. Two stacks are maintained in the system: a
busy stack and an unused stack. When a task is scheduled
for execution, a TIDB is allocated from the unused stack
and threaded onto the busy stack according to priority
level.

The status word of each TIDB, starting with the highest·
priority task, is scanned. Depending upon the setting of
status bits, the task is activated, passed over, or made to
activate a related system task.

Two resident system tasks are activated by the dispatcher
to process functions relat ing to the execution of a
task: (1) search, allocate, and load (SAL), and (2)
common system errors (ERROR). SAL searches, allocates,

- -. - - -- ------·---- - - .

loads, and exits a scheduled task. ERROR posts common
system error messages. These two tasks are not reentered
once they start execution. so the dispatcher holds tasks
requiring identical functions until they are completed.
Then, the highest-priority waiting task is given control of
the required function .

In VORTEX, SAL assigns a map (1·15) to each non-resident
task scheduled to be executed. If a map is not available,
SAL: (1) checkpoints any executing background task's map
(memory is checkpointed as required only); (2) checkpoints
a lower priority foreground task's map; or (3) checkpoints a
higher priority foreground task's map (if TBST bit 8 is set);
or (4) exits and does not execute the task until a map
becomes available.

Each map defines a logical memory space of 32K words
which is segmented into 512-word pages (see section 1.3).
SAL sets each logical page to one of tour access modes:
unassigned, read only, read operand on ly, or read-write.
Each logical page which is assigned an access mode other
than unassigned is linked to a physical page of memory. If
the access mode is violated by the executing task, a
memory protect interrupt occurs. The memory protection
interrupt processing is described in section 14.1.2. Page 0
(logical addresses 0-0777) is always assigned to physical
page 0, which is the system data region as defined in table
14-1.

Each task, foreground or background, executes within its
own logical memory space. The amount of logical memory
space available to a task is reduced by: (1) page 0 for
system data; and (2) the VORTEX nucleus module accessed
by the task and mapped into its logical memory (see
section 2.2). If none of the VORTEX nucleus module is
accessed, the task has available all but one page (page 0)
of the 32K logical memory space. Each task tS loaded and
executed from logical address 01000. Section 1.3 describes
in greater detail available logical memory space.

SAL allocates physical memory by pages. SAL maintains a
table designating the allocatability of each physical page
within the system as defined during system generation.

If space is not available and the background is in
operation, the background task is checkpointed on the
RMD checkpoint file and its space allocated to foreground.
Upon release of this space by the foreground tasks, the
background is read in from the RMD and reactivated.

REAL· TIME PROGRAMMING

If space is required to load a program and the background
has already been checkpointed, the task waits for a
currently running task to exit and release memory.

A task may dynamically request more memory space via
the ALOC?G and MAPIN RTE requests. Sect ions 2.1.15 and
2.1.17 further describe these RTE requests.

The background memory allocation depends on the size of
the background task being loaded. Only the amount
needed is so allocated automatica lly, although the JCP 1

MEN directive can allocate extra memory for a background
task. Figure 1~-2 is a VORTEX memory map of map 0,
figure 14-3 shows the priority structure. table 14-2 is a
descript ion of a TI OB. and table 14-3 is a detailed
description of lower memory.

14.2.2 Priorities

Thirty-two priority levels (0 through 31) are provided in the
VORTEX system. levels 2 to 31 are reserved for protected
foreground usuage. level 26 is reserved for SAL2. level 25
is reserved for the two VORTEX system tasks. SAL and
ERROR. Levels 24 and 23 are reserved for I 10 drivers. All
other foreground levels are avatlable to the user. More than
one task per level can be scheduled.

levels 1 and 0 are reserved for tasks runn ing tn the
background allocatable memory and res iding in the
background library. level 1 is reserved for VORTEX system
protected tasks. e.g., the job-control processor, the load·
module generator, the FORTRAN compiler, the OAS MR
assembler, etc. These tasks run with memory protection
disabled and can be checkpointed when their space is
needed by a foreground task. level 0 tasks cannot modify
or destroy the system (figure 14·3).

Only one background task can be act ive and in memory at
any given time. If other background tasks have been
scheduled, the active background task must execute an
EXIT service request before the scheduled task(s) can be
loaded and executed. If a background task calls EXIT and
no tasks are scheduled for the background area, and the
requesting task is not the job-control processor, the JCP is
scheduled. Otherwise, there is a normal ex it.

14-5

----- - -- - - _________ ,__.._., _____ . -~· _, ~-· ·••··· ..
· - · • ••· - · • • - ---- ·- - - ._ • ..., __ _ .. ,_, .,_ o oOo o o -o ' o AM , ,.,. , , , .____ ____ ~·--__.. ... _,,,_, _ , , _ _ U_.,., __ ,.,_._ ... ,,_..--··- ··- - ---· O O · -

REAL-TIME PROGRAMMING

14-6

Address

0

512

Interrupt Locatton and System Pointers
Back ground Literal Pool

Nonresident Background Tasks

Allocatable
Memory
Pool

-·- - - - - ·

Nonresident Foreground Tasks

'~--~

M=
Highest
Memory
Address

Resident Foreground User Tasks
and Subroutines

• System Common
• Reentrant Stack
• System and Unused TIOBs
• Line Handlers
• Common Interrupt Handler
• Dispatcher
• Executive Call Handler
• Real· Time Clock
• Memory Protect1on Processing
• Power Failure / Restart
• Real· Time Executive Services

•
• IOC
• Dr ivers
• System Tasks (SAL and ERROR)

If a configuration increases memory, the allocatable
memory pool would increase and resident routines would
reside in a higher position in memory.

• 7K is enough room for the minimum VORTEX nucleus
components, plus four empty TJDB's and three 110 drivers.
Users with more l/0 devices or a greater number of TIDB's
will need more than 8K.

Figure 14-2. VORTEX Memory Map

Protected
memory

Unprotected
memory ts
allocated
starting at 512

Protected
memory ts
allocated
starting from
high memory

Protected
memory

Foreground
Priority
Levels

Background

Priori ty I
Levels l

.

Priorit y
Level

31
•
•

•
26 System Task SAL2

25 VORTEX System Tasks SAL and ERROR

24 Driver Tasks (Low-Speed Dev•ces l

23 Driver Tasks (High -Speed Devices)

22
•

•
•

•

•

11 I
10 Operator Communicat ion Task

9
•

•
•
2

1 VORTEX System Protected Tasks

0 User Unprotected Tasks

Figure 14-3. VORTEX Priority Structure

REAl-TIME PROGRAMMING

14-7

. -· . - -- -... -· ···-·- - -------.. --·-.... ··- ····- _ .-..._. -----..... ..-........ -·· ' .. - --· ··-··· ·-· -···- ·· _ .. _____ , __ "---- "--· --·-·~-.. ···--··-· ,.. __ .._. .. . ~ - ----· . ·-·..

REAL·TIME PROGRAMMING

,4-8

Symbol

TBTRO

TBST

TBPl

TBEVNT

TBRSA

TBRSB

TBRSX

TBRSP

TBRSTS

TBENTY

TBTMS

TBTMIN

TBISA

TBISB

TBISX

TBISP

TBISRS

TBIO

TBKNl

TBKN2

TBKHJ

TBTLC

TBCPTH

TBATSK

TBRSE

TBSIZ

TBNUCL

TBMING

TBIST

•TBRSRl· TBRSR7

•TBISRl· TBISR7

Word

0

1

2

3

4

5

6

7

a

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29-33

34-31

Bits

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Task Thrud

Task St~tus

Tuk St~tus Prior~ty level

Interrupt Event

A Register (Rtentr ~nt and Suspension Stack)
.

•
8 Register (Reentrant and Suspension Stack>

X Register (Reentrant and Suspension Stack)

OF P Register ! Reentrant and SuspensiOn Stack)

Temporary Storage (Reentr~nt and Suspension Stack)

Tuk Entry Address

Time Counter · Clock Resolution Increments

Time Counter · Minute Increments

A Register (Interrupt Stack)

8 Register (Interrupt St~ck)

X Register (Interrupt Stack)

OF P Register (Interrupt Stack)

Reentrant Stxk Address (Interrupt Stack)

No. of It O No. of I t O
ReQuests ·Threaded Requests Act•¥e

Task Name

Task Name

Task N~me

First Address in Allocatable Memory

Back ground Task Queue

Address of Scheduling TIDB

Task Error Code

Tuk Size Unused

Nucleus Module Unused
I

M~p T
lnd•cators c Key

Map Image Address

Interrupt Status

V75 Registers (reentrant and suspension st~ck)

V75 Resisters (interrupt stack)

•words 29 through 38 are present only if the V75 flag was
set at SYSGEN and the task had a long TIDB created.

Figure 14-4. TJOB Description

REAL-TIME PROGRAMMING

Table 14-1 . TIDB Layout V77-800 (Continued)

Srmbol Word Bits

1s 14 13 12 11 10 9 a 1 6 s • 3 2 1 o

TBTRO 0 Task Thread

TBST 1 Task Status

TBPl 2 Task St~tus Priority level

TBEVNT 3 Interrupt Event

TBRSA 4 A Reeister (Reentr~nt ~nd Suspension Stack)
.

TBRSB 5 B Register (Reentrant ~nd SuspensiOn Stack)

TBRSX 6 X Reeister (Reentrant and Suspension Stack l

TBRSP 7 OF P Register (Reentrant and Suspension Stack)

TBRSTS a Temporary Storage (Reentrant and Suspension Stack }

TBENTY 9 T .. k Entry Addreu (or RECOV)

TBTMS 10 Time Counter · Clock Resolution Increments

TBTMIN 11 Time Counter · Minute Increments

TBISA 12 A Register (Interrupt Stack)

TBISB 13 B Reeister (Interrupt Stack)

TBISX 14 X Register (Interrupt Stack)

TBISP 15 OF P Register (Interrupt Stack)

TBISRS 16 Reentrant Stack Address (Interrupt Stack) .

TBIO 17 No. of 110 No. of I t O

Requests Threaded Requests Act1ve

TBKN1 1a Task Name

TBKN2 19 Task Name

TBKNl 20 Task Name

~.A - ;... ,.~_. -

Update 8 14-9

--- ---·- -------------- ----------- --------·- ------------·--- - - -------

14 -10

. .

REAL-TIME PROGRAMMING

TBTLC

TBCPTH

TBATSK

TBRSE

TBSIZ

TBNUCl

TBMING

TBIST

TBRSR3-TBRSR7

TBISRl· TBISR7

TBABP

TBMSC1

TBTRCE

TBPRST

TBRPSW

··- ·-· ~ - --·-- ----- -· ·· -·

Table 14-1 . nOB layout V/7-800 (Continued)

21

22

23

24

25

26

27

21

29-33

39

40

41

42

43

......... _.,... r "' """"-
~~

/

First Address in AUocatable Memory

.
Background Task Queue

Address of Schedut•ne TIDB

Task Error Code

Task Size Unused

Nucleus Module Un-
Ill I Map f

T used c
lnd•cators 0 e Key v

Map lmaee Address

Interrupt Status

V75 Re1isters (reentrant and suspension stack)

V75 Registen (interrup1 stackl

•
Shared Procedure Table Block Pointer

Reserved for future use

Trace mode word
B•t 15 set •f task tn trace mode Bits 0 -14
contatns trace address .

V77-800 processor status

PSW IOC and serv storage

~ ._
~ - / -....., -._. ._

Update B

... -- - ... ----~-----·~--··- - -- -

-.

Key:

Symbol Word Bits

TBTRO 0 15-0

TBST 1 15-0

TBPL 2 15

14

13

12

11

10

9

8

REAL-TIME PROGRAMMING

Table 14-2. Tl08 Description

Set •

Task thread

Task status

Task opened

long TIDB

Load overlay

Background
checkpoint
l/0 wait

Allocation
override flag

Background
being check
pointed

TIOB not
available

Description

Points to next Tl DB rn
chain. V$TB points to the
highest -priority active task.
Last Tl DB on queue has zero rn
TBTRD.

See table 15-5.

Bit set when SAL has
opened task but not
loaded it (memory not
available).

Bit set if V75 SYSGEN and task had
a long TIDB created. Ten words are
allocated at the end of TIDB to save
extra registers.

RTE overlay request
made by task with
overlay name in user
request. 1 • overlay load.

Foreground task wait·
ing for background l / 0
to complete so it can
be checkpointed to make
allocatable memory
available. 1 - yes.

Overrides bits 9 and 12
of TBPL and bit 5 of
TBST. When FNIS routine
of SAL releases memor1
and/ or a TIOB, sets bit
11 for tasks having bits
9 and 12 of TBPL and bit
5 of TBST set. SAL then
tries to allocate memory;
nor scheduler, a TIOB.
1 - override.

Background task being
written on checkpoint
file. 1 • yes.

Schedule request made
but no TIOBs available
for allocation. The task .
is suspended until one becomes
available. 1 • TIOB
not available.

Task waiting for available
map. 1 a map has been
assigned to task.

14-9

- - --- - - - - -·- - - - --- - ~ ~- --- -------·-~- · ·-····· ~---·· · - 0 - - --· _ ___ .,. _ ,.. _ _ _ _ _ _ ,,_,.._ •• _ __ - · - - ··-·- ~-· -·-·· _____ _ _ _ ,.. _ _ , - - - T - - ~- - · -

REAL· TIME PROGRAMMING

Symbol Word

TBEVNT 3

TBRSA 4

TBRSB 5

TBRSX 6

TBRSP 7

TBRSTS 8

TBENTY 9

14-10

--

Table 14-2. TIDB Description (continued)

Bits

7

6

5·0

15·0

15·0

15·0

15-0

15

Set •

Delay type
3 request

Task priority
level

Interrupt
event

A register
(reentrant
and suspen
sion stack)

B register
(reentrant
and suspen·
sion stack)

X register
(reentrant
and suspen·
sion stack)

OF (overflow)
register (re
entrant and
suspension
stack)

14-0 P register
(reentrant
and suspen
sion stack)

15·0

15·0

Tem_porary
storage
(reentrant
and suspen·
sion stack)

Task entry

Description

Task map checkpoint. 1 -
task 's map has been checkpointed.

Set by RTE when a delay, type 3
request is made. Cleared by IOC
upon completion of 110 request.

Specifies prior i~y level
(0·31) of task to be exe
cuted.

Matches bits in interrupt·
handler call ing sequence. .
Interrupt-handler event
inclusively ORed into Tl DB
word 3 when processed by line
handler. If a bit sets
wh ile status bits 3 and 14
are set, dispatcher
activates task. Clear
event word before exiting.

IOC and RTE calls store
volatile register contents
in this stack (words 4·8).

Absolute address of first
executable data of a task.

Symbol Word

TBTMS 10

TBTMIN 11

TBISA 12

TBISB 13

TBISX 14

TBISP 15

TBISRS 16

TBIO 17

TBKNl 18

REAL· TIME PROGRAMMING

Table 14·2. TIDB Description (continued)

Bits

15·0

15·0

15·0

15·0

15-0

15

Set •

Time counter
(clock reso·
lution incre·
ments)

Time counter
(minute in
crements)

A register
(interrupt
stack)

8 register
(interrupt
stack)

X register
(interrupt
stack)

OF (overflow)
register (inter·
rupt stack)

14-0 P register
(interrupt
stack)

15·0

15·8

7-0

15-0

Reentrant
stack pointer
(interrupt
stack)

Number of
ItO requests
threaded

Number of
active ItO
requests

Task name

Description

Words 10 and 11 indicate
time left before execution.
(Clock routine increments
both words when bit 6 or
7 is set in status 1.)

Words 12·16 store volatile
register contents during
interrupt by higher-priority
task. (Upon reactivat ion,
words 12·16 , volatile reg
ister contents. and reen·
trant stack pointer are re·
stored and execution rs
continued.)

Incremented by IOC when
110 request is received,
and decremented upon com·
pletion. (A task cannot
exit or abort until counter
is zero.)

Incremented by IOC when
it sets an ItO driver ac·
tive, and decremented upon
completion.

First two characters of
six-character task name.

, 4-11

-· ----- - - - -·- - -- ·- ~~- ·----------- ... -------... .. . -- --- --·- -----·-- ---------· ... - .. . ·- - .. ~-- ..

REAL· TIME PROGRAMMING

Symbol Word

TBKN2 19

TBKN3 20

TBTLC 21

TBCPTH 22

•

TBATSK 23

TBRSE 24

TBSIZ 25

TBNUCL 26

14-12

- -- - - - ---·- ---- ·----

Table 14-2. TIOB Description (continued)

Bits

15-0

15·0

15·0

15·0

15·0

15·0

15-10

Set •

Task name

Task name

First address
in allocatable
memory

Background
task queue

Address of
scheduling
task's TIOB

Task error

Task size

· 9·0 Reserved for
future use

15-8 Nucleus
indicator

Description

Second two characters of
six-character task name.

Final two characters of
six-character task name.

Points to first address
allocated for use by task.
After a task has been loaded,
SAL save the read-only page
number and number of pages
in TBTLC as described for
TBNUCL, b it 12.

Any background task wait·
ing to be loaded in back
ground allocatable memory
is queued through this
word. (A runn ing back
ground task can schedule
other background tasks.
but cannot load them
until space is available.)

Stores this address. and
upon EXIT or ABor.· r (if
bit 1 of TBST set) reac
tivates scheduling.

Upon error, system rou:
tines store error codes
here and set error status
bit (4 of TBST). ERROR
routine decodes and prints
message.

Number of pages of memory
to be allocated to task.

Bit 8 reserved for future
VORTEX use.
Bit 9 when set indicates
map foreground blank
.common in task; read
write access mode.
Bit 10 when set indicates
map nucleus table module
in task; priority 0 tasks
are mapped with module
set to read operand only.
All other priority tasks
are mapped with the module
set to read-write access
mode.

Symbol Word

TBKEY 26

TBMIMG 27

TBIST 28

T8RSR3 29

T8RSR4 30

TBRSR5 31

TBRSR6 32

TBRSR7 33

REAL-TIME PROGRAMMING

Table 14-2. TIOB Description (continued)

Bits Set=

7-5 Reserved for
futu re VORTEX
use

4

3·0

15·0

15-0

15-0

15-0

15-0

15-0

15-0

lTC

Key

Map image

Interrupt
status

V75 register
3 (reentrant
and suspension
stack)

V75 register 5

V75 register 6

V75 register 7

Description

Bit 11 when set indicates
map global FCB in task;
this module is mapped read
write access mode.
Bit 12 when set indicates
map pages read-only
specified by LMGEN. Read
only pages have been
designated during load
module generation. The
logical page number and
the number of pages are
set in the load module
pseudo TIDB and temporarily
stored in TBTMIN bi ts 15-8
and bits 7-0 respectively.
After the task is loaded in
memory, the page numbers
are stored in TBTLC. SAL
sets the specified pages
to read -only access mode.

Tasl< has active lTC request.

Task map key. This is the
map number (0-15) assigned
to the task by SAL or SGEN.

Address of task map image.
This is the map 0 logical
address of the task's map
image. Normally it would
be immediately following
the task's Tl 08.

Bit 15 is 0 if V$KEY to be
set to zero and is 1 if
V$KEY to be set to TBIST
(bits 3-0).
Bits 14-0 are the map status
as input from hardware.

IOC and RTE call store
volatile register contents
in this stack (words 29-34).

14-13

- - ·- --·----·-- . '. ~·----·-- ... ~ ... ··--·--··· - - --··· ... --··-··---~·····~ - ... ~--- ·-·· --- - ---- ~--·- -·· _. , -~- ·-·- ··· .. ~ -·- · ·-'·'· •-·-- ... --------........ .._ _________ .. ~__ ·· ···---- .. - -..... _. ______ _

REAL· TIME PROGRAMMING

14-14

Symbol

TBISR3

TBISR4

TBISR5

TBISR6

TBISR7

Address

00·01

02-015
016

017

020.021

022,023

024.025

026,027

030,031

032,033

034,037

040.041

-- - -----

Word

34

35

36

37

38

Table 14·2. TIDB Description (continued)

Bits

15·0

15·0

15-0

15-0

15·0

Set=

V75 register 3

V75 register 4

V75 register 5

V75 register 6

V75 register 7

Description

Words 31-35 store volatile
register contents during
interrupt by higher
priority task (see descrip·
tion of TBISA).

Table 14-3. Map of Lowest Memory Sector

Symbolic Name Description

CPU interrupt code (preset to NOP)

Unassigned: available to the user
Unassigned. Reserved for future VORTEX II use

TIOB address for WCS reload task

Memory protection interrupt: halt
(jump-and-mark to VSMPER)

Memory protection interrupt: 1/0
(jump-and-mark to V$MP3)

Memory protection interrupt: write
(jump-and-mark to VSMP2)

Memory protection interrupt: JUmp
(jump-and-mark to V$MAP2)

Memory protection interrupt: unassigned
(jump-and-mark to V$MAP1)

Memory protection interrupt: instruction
fetch (jump-and-mark to VSMAPE)

Reserved for future VORTEX II use.
Jump-and-Mark to V$MPIO to ignore
spurious interrupts

Power-down interrupt (jump-and-mark
to VSPFDN)

- - - --- - ---- .

Address

042,043

044,045

046

047

050-053

054

055

056-057

060-061

062

063

064

065

066

067

REAL· TIME PROGRAMMING

Table 1~3. Map of lowest Memory Sector (continued)

Symbolic Name

V$CROM

V$JCTM

V$JNAM

V$LCNT

V$JCFG

V$TCTL

Description

Power-up interrupt (jump-and-mark

to V$PFUP)

Variable- interva.l interrupt address
(jump-and-mark to VSCLOK)

Keypunch (0 "" 026, 1 - 029):
Bit 0 SGEN nominal keypunch
Bit 1 Set to 1 (if V75 system)
Bit 8 Current keypunch spec ified by JCP

/ KPMOOE directive (I JOB. ! FIN I. or
t ENOJOB resets the curren t value to
nominal va lue)

JCP Temporary Storage

Eight-character job name

Line count (set by a JCP / FORM
directive): used by DAS MR assem
bler and FORTRAN compiler to deter·
mine the number of lines printed
before a top of form is issued.

JCP flags:
Bits 15-10

Bits 9-6
Bit 5
Bit 4

Bit 3

Bits 2-0

Number of extra mem
ory blocks to be
allocated with back·
ground task (cleared
after loading)
Unused.
JPOUMP active
Dump flag if load and go
Dump flag (if set,
the background dumps
after a normal EXIT
or abortion)
load-and-go flags

Reserved for future use

Memory parity trap

· V77 memory protect error
address

Bit 0 VIDEO control
Bits 1-15 Reserved

Reserved for future use

Bits 8-15 VOLA page
Bits 0·7 VOLA size (in pages}

RPG II control flag

VSVOL T address

14-15

REAL·TIME PROGRAMMING

Address

070-073

074

075

076-077

0100-0117

0120·0137

0140-0157

0160-0177

0200-0217

0220-0237

0240-0257

0260-0277

0300

0301

0302

0303

0304

14-16

Table 14·3. Map of Lowest Memory Sector (continued)

Symbolic Name

V$0ATE

V$PLCT

V$8GLB

V$CTL

V$CPL

V$CRS

V$T8

V$UT8

Description

Eight-character date set up by
OPCOM directive ;DATE.mmldd/yy

Permanent line count set up at
system-generation time

Protection code and logical unit
number of the Bl unit

FPP (Floating-Point Processor)
interrupt (jump and mark to V$FPP)

PIM 0 jump-and-mark to individual
line handlers. Unassigned lines are set
to JMPM V$MPIO to ignore spurious interrupts

P!M 1" jump-and-mark to individual
line handlers

PIM 2" jump-and-mark to individual
line handlers

PIM 3* jump-and-mark to individual
line handlers

PIM 4* jump-and-mark to individu;!l
line handlers

PIM 5" jump-and-mark to individual
line handlers

P!M 6* jump-and-mark to individual
line handlers

PIM 7" jump-and-mar~ to individual
line handlers

Address of currently executing task
TIOB (0177777 - dispatcher. 037, -
real-time clock routine)

Priority level of currently executing
task

Address of current reentrant stack
(zero if the currently executing
task is not executing a reentrant
subroutine)

Address of highest-priority TIDB
in the active stack

Address of dynamically allocated page.
If zero, no page yet allocated. This
is the top of the thread for pages allocated
for dynamic memory allocation as required
for TIOB space, 1/0 request. etc.

- · . -- . - _....._ __ _ -- •. . ----

Symbol

TBISR3

TBISR4

TBISRS

TBISR6

TBISR7

TBABP

(V77-400/ 600)

TBEXTN

TBOROS

(V77-800)

TBMSC1

TBTRCE

TBPRST

TBRPSW

TBAFAU

TBAEXT

TBISFP

TBEXTN

TBOROS

. -·· -----..-..---·-· . --·- .__., ____ __ ______ ··-- -·.

REAL-TIME PROGRAMMING

Table 14-2. TIDB Description (continued)

Word

34

35

36

37

38

39

40

41

40

41

42

43

44

45

46-49

50

51

Bits

15·0

15·0

15·0

15·0

15·0

, 5-0

, 5-0

15·8
7-0

15-0

, 5-0

, 5-0

, 5-0

15-14

, 3-6

5 -0

15-0

15-0

15-0

15-8

7-0

Set~

V75 register 3

V75 register 4

V75 register 5

V75 register 6

V75 register 7

•

Update 8

. . .. -- --- -----·- - ·- - ... -

Description

Words 31 ·35 store volatile
register contents during
interrupt by higher
priority task (see descrip·
tion of TBISA).

Pointer to first shared
procedure table block ·

Pointer to f irst TIDB extension
block (used by Executive Services)

Permanent VNO ordinal
Current VNO ordinal

Reserved

Trace mode storage

Processor Status Word (inter .)

Processor Status Word (Exec and l / 0 calls)

Anthmetic fault enable

Reserved

Arithmetic fau lt flags

Arithmetic fault service add

FPP register storage

same as for V77-4001600

same as for V77-400/ 600

same as for V77-400/ 600

14-17

• ·- - - ·-. • -.. - ·--- # 0 --

REAL-TIME PROGRAMMING

14-18

00-01

02-015
016

017

020,021

022,023

024,025

026,027

030,031

032,033

034,037

040.041

Tllble 14-3. of lowest Menwy Sector

Description

CPU interrupt code (preset to NOP)

Unassigned: available to the user
Unassigned. Reserved for future VORTEX I I use

TIDB address for WCS r:eload task

Memory protection interrupt: halt
(jumo-and-mark to V$MPER)
(V77-400/ 800 Non-jump memory protect)

Memory protection interrupt: l/0
(jump-and-mark to V$MP3)
V77-800 Trace interrupt (jump-and-mark to VSTRAC)

Memory protection interrupt: write
(jump-and-mark to V$MP2)
(V77-800. 24 = Processor Status Word)
(V77 -800. 25=Cache Status Word)

Memory protection interrupt:
(jump-and-mark to V$MAP2)

Memory protection interrupt:
(jump-and-mark to V$MAP1)

.
aump

unassigned

(V77-800. 30 = Arithmetic fault address)
(Vn-800. 31 = System PSW setting)

Memory protection interrupt: instruction
fetch (jump-and-mark to V$MAPE)

{
Bit 15 = FPP available flag (V77 -800)

32 Bits 14-0 Reserved (V77 -800)

33 vn-800 reserved

Resen'ld for future VORTEX II use.
Jump-and-Mark to V$MPIO to ianore
spyrious interrupts

Pvwer-duwn interrupt (jump-and-mark
to V$·Pf0N)

Update B

. .

Mdtess

042,043

044,045

046

047

050-053

054

055

056-057

060-061

062

063

REAL-TIME PROGRAMMING

Table 14-3. M-., of lowest Memory Sector (continued)

Symbolic Name

V$CRDM

V$JCTM

VSJNAM

V$LCNT

V$JCFG

VSTCTL

Descri9tion

Power-up interrupt (jump-and-mark
to V$PFUP)

Variable-interval interrupt address
(jump-and-mark to VSCLOK)

Keypunch (0 • 026. 1 - 029):
Bit 0 SGEN nominal keypunch
Bit 1 Set to 1 (if V75 system)

Bit 4 -2

Bit 8

=0 for V77-600 (software)
= 1 for V77 -400
= 2 for V77-600 (micro)
= 3 for V77-800 (soft)
= 4 for V77-800 (micro)
Current keypunch specified by JCP
I KPMODE directive (I JOB. / FIN I. or
/ ENDJOB resets the current value to
nominal value)

JCP Temporary Storage

Eight-character job name

line count (set by a JCP /FORM
directive): used by DAS MR assem
bler and FORTRAN compiler to deter·
mine the number of lines printed
before a top of form is issued.

JCP flags:
Bits 15·10

Bits 9-7
Bit 6
Bit 5
Bit 4
Bit 3

Bits 2·0

Number of extra mem·
ory blocks to be
allocated with back·
ground task (cleared
after loading)
Unused.
(V77 -800 trace selected)
JPDUMP active
Dump flag if load and go
Dump flag (if set,
the background dumps
after a normal EXIT
or abortion)
load-and-go flags

Reserved for future use

(Micro. 56 = Address of dispatcher)
(Micro. 57 = Size of background task)
(ERCC memory interrupt)

Memory parity trap

V77 memory protect error
address

Bit 0 VIDEO Control
Bits 1-14 Reserved
Bit 15 Disable TSAR

(VIP time slicer)

Update B

l

r

...... ~~ - · · ··

REAL-TIME PROGRAMMING

Address

064

065

066

067

070-073

074

075

076-077

0100-0117

0120-0137

0140-0157

0160-0177

0200-0217

0220-0237

0240-0257

0260-0277

0300

0301

0302

Table 14-3. Map of Lowest Memory Sector (continued)

Symbolic Name

V$DATE

V$PLCT

V$BGLB

V$CTL

V$CPL

V$CRS

Description

Reserved for future use

Bits 8-15 VOLA page
Bits 0-7 VOLA size (in pages)

RPG II control flag

V$VOL T address

Eight-character date set up by
OPCOM directive ;DATE,mm/dd/yy

Permanent line count set up at
system-generation time

Protection code and logical unit
number of the BL unit

FPP (Floating-Point Processor)
interrupt (jump and mark to V$FPP)

PIM 0 jump-and-mark to individual
line handlers. Unassigned lines are set
to JMPM V$MPIO to ignore spurious interrupts

PIM 1 * jump-and-mark to individual
line handlers

PIM 2* jump-and-mark to individual
line handlers

PIM 3* jump-and-mark to individual
line handlers

PIM 4* jump-and-mark to individual
line handlers

PIM 5* jump-and-mark to individual
line handlers

PIM 6* jump-and-mark to individual
line handlers

PIM 7* jump-and-mark to individual
line handlers

Address of currently executing task
TIDB (0177777 = dispatcher, 037, =
real-time clock routine)

Priority level of currently executing
task

Address of current reentrant stack
(zero if the currently executing
task is not executing a reentrant
subroutine)

--------------------·-·-

Address

0305

0306

0307

0310

0311

0312

0313

0314

0315

\

0316

0317

0320

0321

0322

0323

0324

0325

0326

0327

0330

0331

REAL· TIME PROGRAMMING

Table 14-3. Map of Lowest Memory Sector (continued)

Symbolic Name

V$PTVB

V$FLRS

V$LRSK

V$CKPT

V$0PCL

V$LSAL

V$LER

V$TJCP

V$8T8

V$NPAG

V$LLUP

V$1M

V$MAP

V$8T8M

Description

Address of next entry in reentrant
stack

Address of first locat ion of re·
entrant stack

Address of last loca tion of re
entrant stack + 1

Checkpoint flag (set if background
checkpointed)

Address of Tl DB for OPCOM task

Address of TIDB for system SAL task

Address of Tl DB for system ERROR
task

Address of Tl DB for JCP task

Address of current active back·
ground task TIDB (zero if no back·
ground task active)

Number of available physical pages
remaining in V$PAGE for allocation

Logical address specifying the end
of the execution background tasks
allocated memory space

Interrupt mask for PIM 0 (0 - enable,
1 - disable) (bit 0 = line 0)

Interrupt mask for PIM l

Interrupt mask for PIM 2

Interrupt mask for PIM 3

Interrupt mask for PIM 4

Interrupt mask for PIM 5

Interrupt mask for PIM 6

Interrupt mask for PIM 7

Map key availability flag word. Bit
0 - map 0. bit 1 - map 1, etc.
A zero indicates that the map is un
available for assignment, a 1 -
map is available for assignment

Base address of nucleus table module.
Top of nucleus table module defined
by V$GFC8

14-17

-·----·-----· ... -- -----'"---.:..-- -.-- , ,, _____ .__ .. -....... -· ____ .. ___ ~ _., ------~----....... ~----- ·- ·-

REAL-TIME PROGRAMMING

14-18

Address

0332

0333

0334-0337

0340

0341

0342

0343

0344

0345 ___...,
0346

0347

0350

0351

0352

0353

0354

Table 14-3. Map of Lowest Memory Sector (continued)

Symbolic Name

VSGFCB

V$MIMG

V$STO. V$ST1.
VSST2, V$ST3

VSKEY

V$CRDR

VSTBGT

V$TMS

V$TMN

V$LUNT

VSOPCF

VSFGLB

VSFREE

VSCTMS

V$SCV

VSLPP

V$CRM

Description

Base address of global FCBs

Map 0 image address

FUNCI word for executive mode states
0, 1. 2. 3. Used by map 0 tasks to
switch executive mode states. See
section 1.3 for description on the
use of VSSTO-V$ST3. These words are
set up by the dispatcher. Bits 0·3 are
set to the map number in TBKEY. If
the task has been interrupted. the
map number in bits 0·3 of TBIST is
used

VORTEX currently executing map key

Address of resident directory. See
section 14.4.8

Top of thread of background tasks
waiting for allocation

Time-of-day in 5-millisecond incre
ments (fractions of a minute stored
in this word; upon reaching 1-minute
V$TMN increments. VSTMS resets). The
range is 0 to 12000.

Time-of-day in minutes (full minutes
up to 24 hours stored in this word;
upon reaching 24 hours (24 x 60
minutes). V$TMN resets). The range is
0 to 1440.

Address of logical-unit name table

OPCOM lockout flag (busy)

Protection code and logical-unit
number of the FL unit

Reserved for future VORTEX use

Clock resolution in 5-millisecond
increments (user-specified milli
second interrupt rate/5) speci
fied at system-generation time

Selected clock count (1 to 4095)
([user·specified millisecond
interrupt rate] x [1000/VSCKB])

Pointer to last tested word in V$PAGE

Clock resolution increments for frac· •
t ions of a minute in S·millisecond
increments

·- .. - - ·- ·-------- - --

,..
.;

r

•

Address

0355

0356

0357

0360

0361

0362

0363-0372

0373-0374

0375

0376

0377

0400

0401

0402

0403

0404-0405

0406.0407

.
0410

0411

0412

REAL-TIME PROGRAMMING

Table 14-3. Map of Lowest Memory Sector (continued)

Symbolic Name

V$0STB

V$LIT

V$PGT

V$CTAO

V$SCTL

V$NCTR

V$PIMN

JUMP V$10ST

V$SLFG

V$ERFG

V$JOP

V$LUT1
·•

V$LUT2

V$LUT3

·---
V$1MIN

JUMP V$10C

JUMP V$EXEC

V$10A

V$CKIT

V$JC8

Description

Address of OST block

Last address in background literal
pool

Address of V$PAGE. physical page
availability mask.

Base address for controller address
table

Current controller in scan

Number of controllers

External device address table for
PIMs

VORTEX II link for I OC STAT CALL

System SAL task busy flag (1 - busy)

Error task busy flag (1 - busy)

JCP operating flag (1 - busy)

Starting address of logical-unit
table for JCP I OPCOM-assignable
logical units (1 · 1 00)

Starting address of logical-unit
table for unreassignable logical
units (101-179)

Starting address of logical-un it
table for OPCOM-assignable logical
units (180-255)

Clock constant set up by SGEN where
V$1MIN • 32767 - (600001(5•V$CTMS))
+ 1

VORTEX II link to IOC

VORTEX II link to RTE

110 algorithm

Clock interrupted PIM before it
could be locked out (common inter
rupt handler and clock-processor
flag)

Address of 41 -word JCP buffer (all
system background programs and JCP
input directives into this sytem buffer)

14-19

.. . . . -- - - ·----·---·---·- ··-----···--··- - .. ·- --...-----·-·-.. --·---- -... -------- --------- · -----~---- A 0

REAL· TIME PROGRAMMING

14-20

Address

0413

0414

0415

0416

0417

0420

0421

0422

0423

0424

0425

0426

0427

0430

0431

0432

0433

0434

0435

0436

0437

0440

0441

0442

0443

Table 14·3. Map of Lowest Memory Sector (continued)

Symbolic Name

V$0C8

V$BVN

V$8FC

V$TFC

V$PST

ZERO

B50

B51

BS2

BS3

BS4

B55

BS6

B57

BS8

B59

BS10

B511

B512

B513

B514

B515

BRO

BR1

BR2

Description

Address of 41 -word OPCOM buffer
(OPCOM reads operator key-in re·
quests into this buffer; if JCP
is not active and a slash record
is read, OPCOM moves the directive
to V$JC8 before schedul ing JCP)

Bottom of VORTEX nucleus. SGEN sets
to virtual address. lnitializer sets to
page number

Bottom of foreground blank common

Top of foreground blank common,
top of VORTEX nucleus core

Maximum RMD partit ions per un it 1n system

Zero word

Bit mask contents 0000001

Bit mask contents 0000002

Bit mask contents 0000004

Bit mask contents 0000010

Bit mask contents 0000020

Bit mask contents 0000040

Bit mask contents 0000100

Bit mask contents 0000200

Bit mask contents 0000400

Bit mask contents 0001000

Bit mask contents 0002000

Bit mask contents 0004000

Bit mask contents 0010000

Bit mask contents 0020000

Bit mask contents 0040000

Bit mask contents 0100000

Bit mask contents 0177776

Bit mask contents 0177775

Bit mask contents 0177773

--

REAL· TIME PROGRAMMING

Address

0444

0445

0446

0447

0450

0451

0452

0453

0454

0455

0456

0457

0460

0461

0462

0463

0464

0465

0466

0467

0470

0471

0472

0473

0474

0475

0476

0477

0500.0777

Table 14-3. Map of Lowest Memory Sector (continued)

Symbolic Name

BR3

BR4

BR5

BR6

BR7

BR8

BR9

BRIO

BRll

BR12

BR13

BR14

BR15

NEG

LHW

RHW

THREE

FIVE

SIX

SEVEN

NINE

TEN

BM17

BM37

BM77

BM177

BM777

BM1777

Description

Bit mask contents 0177767

Bit mask contents 0177757

Bit mask contents 0177737

Bit mask contents 0177677

Bit mask contents 0177577

Bit mask contents 0177377

Bit mask contents 0176777

Bit mask contents 0175777

Bit mask contents 0173777

Bit mask contents 0167777

Bit mask contents 0157777

Bit mask contents 0137777

Bit mask contents 0077777

Bit mask contents 0177777

Left·half word mask (0177400)

Right·half word mask (0000377)

Data word (000003)

Data word (000005)

Data word (000006)

Data word (000007)

Data word (000011)

Data word (000012)

Bit mask word (000017)

Bit mask word (000037)

Bit mask word (000077)

Bit mask word (000177)

Bit mask word (000777)

Bit mask word (001777)

Background literals and pointers

-
- --- - - ----~-~---------·- · ·· · - "" •' - - -------.. - "•N__.., ___ __ __ _ ----·--~--~- -·-·- - ·-. --- ,,, _, ·- · -~ -···-·· ~·'·~-HO

14·21

_____ ,.. ·-·-··-·-------'"·. ·-·--

•

REAL·TIME PROGRAMMING

14.2.3 Timing Considerations (Approximate)

Reaf..tirne clock interrupt processor: At each incrementa·
tion of the real-t ime dock, there is a TI08 service scan
reqUtrtng

where

X

y

z

x + 8y + 7z cycles

is 48 when the scan interrupts the
dispatcher, or 63 when it interrupts a
task and must establish a reentrant
stack and store the contents of the.
volatile registers

is the number of TIOBs searched

is the number of tasks having time- or
schedule-delay status bits set

The clock interrupt is d isabled during the execution of the
clock processor. and PIM interrupts are disabled for 26
cycles following the initial entry of the clock processor.

Dispatcher interrupt processor: The time required to
begin execution of a task through the dispatcher is a
function of the number of TIOBs searched before execu
tion. The time required to begin execution of the nth task is

where

14-22

t + 14u + 17v + 12w + 18x +25y + z

t

u

v

w

X

y

z

is 17 or 25, depending on the entry to
the d ispatcher

is the number of tasks with task·
suspended bits (TSST bit 14) set

is the number of tasks with events
expected but event word reset

is the number of tasks with error bits
(TBST bit 4) set but error task busy

is the number of tasks with either task·
aborted (TBST bit 13) or task-exited
(TBST bit 12) set but 110 not completed

is the number of tasks active but not
loaded

is one of the following values:

107 to activate the ERROR task
110 to activate the SAL task on aborting
or exiting
114 to activate a loaded task that is not
suspended, or to activate the SAL task to
load the requested task
104 to activate an interrupted.
suspended task
62 to activate a task when the event
word is set and the interrupt suspended

- -- - - ·- -- •

Search, allocate, and load:

Load processing requires, for a foreground task

where

852(k) + v(k) + w(k) + x + y + ny

k

v

X

y

ny

w

is the cycle time

is the nucleus module required by the
task and is 28 + A + 8 + C cycles

where

A is 28 + 8 times the size
of common, in pages

8 is 81 cycles as an average
tor the nucleus table module

C is 11 + 11 times the number
of specif ied read-only pages

is the time to process an OPEN request

is the time to read an RMO record
(pseudo Tl 08)

is the time to read a task from RMO into
memory (variable depending on RMO
device and task size)

is the page allocation 45 + 35 times the
task size, in pages

For a background task, load processing requires

where

945(k) + v(k) + w(k) + x + y + ny

k

w

v

is the cycle time

is the page allocation and is 45 + 35
t imes the task size, in pages

nucleus module required by task and is
28 +A+ 8 + C

where

A is 53 cycles (global FCB
module)

8 is 81 cycles (average,
nucleus table module)

C is 11 + 11 times the number
of specified read-only pages

x. y and ny are as defined for foreground task.

Resident task load processing requires

(533 + 9(x) + y)k

where

k is the cycle time

X is the task size. in pages

- ---- ·-·- - ·· .

I

y is the nucleus module required by task
48+A+B+C+D

where

A is 28 + 8 times the size
of common, in pages

8 is 53 cycles for global FCB
C is·81 cycles for nucleus

table module
0 is 11 + 11 times the number

of read-only pages

14.3 REENTRANT SUBROUTINES

The user can write a reentrant subroutine and·add it to the
VORTEX nucleus. RTE service requests ALOC and DEALOC
interlace between a task and a reentrant subroutine.

A task calls a reentrant subroutine via an ALOC request
that allocates a variable-length push-down reentrant stack
with the external name V$CRS. The reentrant subroutine
address is specif ied in the ALOC call ing sequence. The f irst
word of the reentrant subroutine contains the number of
words to be allocated.

A reentrant stack generated by the ALOC request has the
format:

Word

I

2

3

4

5

•

•

•

n

n + I
to

n+5

Of

A Rec•st•

e Recttt•

X RectSt.-

P Rte~~ttr

F'otnt.- to Pr...ous R-'ITWit Stacl<

Avallab .. IM Rftf'IITat~t Subroutines

•

•

•

•

V7'5 R .. 1Stlr1 3-7

When writ ing a reentrant subroutine, ensure that the entry
location contains the number (~ 5) of words to be
allocated, execution starts at the address (entry address +
1), and that V$CRS contains the reentrant-stack address.
No IOC or RTE calls except DEALOC can be made while in a
reentrant subroutine. The subroutine makes a OEALOC
service request to return control to the calling task.
OEALOC releases the reentrant stack, restores the A, B.
and OF register contents, and returns control to the
address following the ALOC request. No temporary storage
is available for the reentrant subroutine except that
allocated in the reentrant stack.

Parameters or pomters can be passed to the reentrant
subroutine in the A and / or B (and V75 if present) regtsters.
as well as in-line after the ALOC macro.

REAL-TIME PROGRAMMING

Two tasks make ALOC calls to RSUB. RSUB reserves six
words of allocatable memory with the sixth word as
temporary storage. The A register (reentrant stack) returns
a value to the calling task. If task A is on priority 1evel 5
and task B is on level 6, RSUB runn ing on level 5 is
interrupted and the level 6 task 8 executed. This, in turn ,
makes an ALOC request and executes RSUB. RSUB then
executes to completion before RSUB on level 5 can be
completed.

Example:

VSCRS
RSUB

ALOC
JAZ
•

•
•
END

ALOC
JAZ
•
•

•

END

Task A

RSUB

Task B

RSUB

Reentrant Subroutine

NAME
EQU
DATA
LDX

•
•
•
STA

•
•

•

RSUB
0302
6 Allocate six-word
V$CRS Stack (one temporary

location)

5 , , Save A '" temporary
storage

LOA 5, 1 Get temporary storage
value

•
•
•
STA 0,1

•
•
•
DEALOC

•
•

•
END

Modify return in A
register

Return to location
following ALOC call

14-23

- - --- -- ··-· -··------~- - -----.. ··--- .. -·--------·---·-·· ·~· ·---·-· _________ _ -·-------.. - .. -- -·- -------- - ··· ----

REAL-TIME PROGRAMMING

14.4 CODING AN l/0 DRIVER

The IOC (section 3) activates l /0 drivers. When a user task
makes an I 10 request, it executes a JSR 0404,X instruc·
tion. JOC then makes validity checks on the parameters
specified in the request block (RQBLK) that immediately
follows the JSR instruction. IOC queues RQBLK to the l /0
driver controller table (CTBL), and activates the corre·
sponding controller-table TIDB. The TIDB contains the
entry address for the I 10 driver. To determine the proper
CTBL and corresponding TIOB, IOC obtains the logical·unit
number from RQBLK. By referring to the logical-unit table
(LUn. IOC then finds the device assigned to that logical
unit. Each device has a device specification table (DSn
associated with it. and each OST has a corresponding
controller table.

In VORTEX all RQBLKs are moved to map 0 dynamically
allocable space. Upon completion of the 1/ 0 request. IOC
moves the RQBLK to the requesting task 's logical memory.

14.4.1 l/0 Tables

Not all the data discussed in this section are required for
coding every special·purpose driver, but it is presented to
provide maximum flexibility in defining driver interfaces.

When an 110 driver is entered, it has the data, system
pointers, and table address necessary for the 110 driver
processing. At system·generation time, additional working
storage space can be assigned to the I 10 driver as an
extension of the controller table. The data available are:

a. V$CTL (lower·memory system symbol defining the
current TIOB) - address of TIOB associated with the
I I 0 driver controller table.

b. TSRSTS (word 8 of controller TIOB)
controller table CTBL

c. Within CTBL the following:

- address of

' ·

"

d. Device specification table (DST):
(1) OSUNTN (b its 13 and 14 of word 2) • number (0·
3) of this device on its controller
(2) DSPSTI (bits 6-10 of word 2) • RMO partition
number (1·20) used to access the PST

e. Request block (RQBLK): Contains user tas~ 110
request information. The address of RQBLK is ·
contained in CTRQBK (word 4 of the controller table).
Word 1 of RQBLK contains the operation code in bits
8· 11 and the mode specification in bits 12·14 . Word 0
bits 5-14 contain the status.

f. File control block (FCB): The FCB is used for RMO
devices. CTFCB contains the address of FCB.
(1) FCRECL (word 0) - record length
(2) FCBUFF (word 1) - user buffer
(3) FCACM (word 2) • bits 8-15, access method. and
bits 0-7, protedion code
(4) FCCAOR (word 3) =- current record number
(relative within file)
(5) FCCEOF (word 4) • current EOF record number
(relative within partition)

(6) FCIFE (word 5) - beginning-of-file record
number (relative within partition)
(7) FCEFE (word 6) • end-of-file record number
(relative within partition)
(8) FCNAMl , FCNAM2. and FCNAM3 (words 7, 8,

and 9) - file names in A~CII

g. Data control block (DCB): The OCB is used for non
RMO devices. CTFCB contains the address of DCB.
(1) OCRECL (word 0) - record length
(2) OCBUFF (word 1) - user buffer
(3) OCCNT (word 2) • function count

~' h.
V$CTL, TIDB. CTBL. OST, and the RQBLK reside in map
0. The FCB and OCB reside in the user 's logical memory
and to access the data. the I 10 drivers must switch to
the proper executive mode state (see section 1.3).

"' ' .
·~ "¥'

.• . -. . , . (1) CTIDB (word 0) - controller TIOB address
(V$CTL) "'
(2) CTOST (word 3) - address of OST
(3) CTRQBK (word 4) - address of RQBLK to be
processed Q
(4) CTOVAT (word 6) • controller device address : -··
(5) CTST AT (word 8) - temporary storage available ~

\
for dri'ler .<..
(6) CTBICB (word 9) - address containing assigned
BIC address (e.g., 020,022)
(7) CTFCB (word 10) - FCB or OCB address for l/0
request specified in CTRQBK (word 4)
(8) CTWDS (word 11) - contains, upon exit, number
of words transferred
(9) CTSTSZ (word 13) - number of words per RMO
sector
(10) CTTKSZ (word 14) • number of sectors per RMO
track
(11) CTPSTO(word 15) - base address of theRMO for
unit 0 on this controller
(12) CTPSTl, CTPST2, and CTPST3 (words 16, 17, and
18) • PST addresses for units 1, 2. and 3

14-24

14.4.2 l/0 Driver System Functions

Each l / 0 driver under IOC performs certain
and post- processing functions.

system pre-

Pre-interrupt processing: The I 10 driver must switch
executive mode states to fetch or store data from user
mode (see section 1.3). If the 110 driver uses a BIC, the
driver calls V$81C with the X and A registers set to the
initial and final buffer addresses respectively to bu ild and
execute the initial BIC transfer instruction. If the BIC is
shared. the interrupt line handler is modified to the proper
interrupt event word setting (TBEVNT) and TIOB address.
V$81C performs this modification if the word immediately
following the call (JSR V$81C,8) is nonzero. since this is
assumed to be the interrupt event word setting. If it is zero,
no line handler modification is performed. The I 10 driver
clears the interrupt event word (TBEVNT) in the controller
TtDB immediately preceding a DELAY (type 2) call. To wa it

for an interrupt, the I /0 driver executes a DELAY (type 2)
call with a time-out. The return to the driver. either from a
time-out or in terrupt is to the address immediately
following the call. The contents of the X register is not
restored following a DELAY call but the A and 8 registers
are. Executing a TXA immediately preceding and a TAX
following the DELAY call X restores the value in the X
register.

Interrupt processing: The driver clears the time-delay flag
(TBST bit 6) set by the OELA Y call, and checks TBEVNT to
determine if an interrupt occurred (TBEVNT - 0 indicates
a time-out). Following the interrupt processing, the driver
clears TBEVNT and calls DELAY (type 2) for the next
instruct ion.

Post-interrupt processing (no errors): Upon the completion
of mterrupt processing, the driver sets the status bits (5·

14) of RSTPR (word 0) in RQBLK, and enters the number of
words transferred in CTWOS. The driver then rel inquishes
control and exits to IOC by executing JMP V$FNR.

Post-interrupt processing (errors): If an error is encoun
tered during interrupt processing, the driver sets the status
bits (5-1 4) of RSTPR, according to the type of error. The
driver then sets the A register to zero if the unit is not
ready, negative if there is a parameter error. or positive if
there is a hardware error. Finally, the driver exits to the IOC
error routine by executing JMP V$ERR.

14.4.3 Adding an l/0 Driver to the System File

System-generation directives: The following dire<:tives
are required for linkages to the controller table, controller
TIDB. 110 driver entry location, OST. PST, and the PIM line
handler (section 15):

Directive

EQP

PIM

Description

DSTs are generated by SGEN. one for
each unit specified by the EQP directive.
All OSTs generated for a controller point
indirectly to the controller table
specified by EQP. The pointer is to the
entry name in the controller table
assembly.

A PIM directive is required for each PIM
line where an interrupt is expected. The
PIM directive causes the system
initializer to enable the mask for that
line (except for the TTY or CRT output
line, in which case it is initially disabled).
If the driver processes both input and
output interrupts. it may be
advantageous for processing to set the
interrupt event word for the input line to
one value (e.g .. 01) and the interrupt
event 'Nord for the output line to another
value (e.g .. 02). The PIM directive also
specifies if a directly connected interrupt
handler is to ·be used (see section
14.4.5).

ASN

PRT

REAL-TIME PROGRAMMING

This d irective ass1gns logical un1ts to
physica l un its. If a new device is being
added and it is necessary to assign that
device to a logical unit when the system
is initialized, an ASN is input. Otherwise.
the JCP or OPCOM ASSIGN directive can
be used. The logica l-unit table IS

established by these directives.

This directive for RMOs specifies the
size and the mnemonic name of each
partition. A PST and OST are created for
each partition.

TOF This VORTEX nucleus-generat ion
control record direct ive defines and
builds the controller TIDB. It specifies
the name of the driver, status word
(TBST) sett ing, and priority level.

Adding controller tables: A controller table is assembled
as a separate entity and added to the system-generat ion
library (SGL) for loading at system-generation time. The

· controller table name is CT followed by the three- or four
character ASCII name of the controller, e.g. , CTTYOA,
CTMTOA, and CTOOB.

VORTEX Input/Output Control (IOC) assumes the first 13
words of all non-RMO controller tables to be identical. i.e ..
word 0 - CTIOB; word 1 - CTAONC, etc. For RMOs the
first 18 words are assumed to be identical. Additional
words may be added to the controller table by use by the
individual I I 0 driver.

The controller table comprises parameters that are
constant for a controller, and parameters that are variables
for SGEN and can change with system configuration.

Constants are assembled as OAT A statements. OAT A
statements can be added to the controller table to provide
additional working space for an l / 0 driver.

The following standard items are required by IOC:

Word Item Description

0 CTIDB =- Name of the rei a ted controller Tl DB (TB
followed by the same three or four-character name used
in the controller table e.g.,. TBDOB (for CTDOB). An
EXT statement must specify the TIDB name as an
external name.

EXT TBOOB
DATA TBDOB

1 CT AONC - Th is word is used by IOC as temporary
storage.

2 CTOPM - The operation code mask specifying the type
of I / 0 operation the driver is capable of processing 1 =

driver is capable of processing.

, 4-25

. -·-· · --·· ···- ~ -·····-·-· ···"··· ·-·····- ·- ··· .. ·- ·------------·-·-.. --.. -----...---·-··"- "-"'' _.. -~ , . .,._. -··---------- .. ---~ , ·--·-··· ·- -· ··- -"' ~·-·· _. .. _______ ,.,__, ____ ~-- -~·-·- -- . ··-----~··-·-----·--~-- . _... ----

REAL· TIME PROGRAMMING

Bit

0
1
2
3
4
5
6
7
8-16

Operation

Read
Write
Write EOF
Rewind
Skip record
Function
Open
Close
Reserved for future use

Example: OA TA 037
For all operations excluding Function,
Open. and Close.

3 CTOST • Set by IOC to DST address
Example: OAT A 0

4 CTRQBK • Set by IOC to l/ 0 request block being
processed.

Example: OAT A 0

5 CTRTRY • Error retry count. # T followed by the name
of the controller.

Example: OAT A
EXT

#TTYOA
#TTYOA

6 CTDVAD • Controller device address. :t A followed by
the name of the controller

. Example: OAT A
EXT

#ATYOA
#ATYOA

7 CTIOA • 1/ 0 algorithm. The ratio of device transfer
rate to OMA transfer rate + 10 percent of the resu lt
times 32767. Zero for all non-BIC devices.

Example: when a disc transfer rate is
1 OOK words per second and DMA rate is
300K words per second, the ratio is about
.33. Set CTIOA to: DATA 030000
If ratio is .25 or 25 percent set
CTIOA (DATA 020000): 50 percent
set CTIOA (DATA 040000), etc.
To make CTIOA a SGEN selectable parameter
(refer to section 15.5.2, EQP directive)
assemble as an external e.g. , EXT # 0 followed
by the name of the controller:

EXT
DATA

#OCIOA
#OCIOA

for process I 10

8 CTSTAT • DATA 0, for driver use.

9 CTBICB - Address of SIC flag table. 8 followed by the
name of the name of controller.

Example: DATA BOOB
EXT BOOB

When the driver is entered the item
points to a cell contain ing the BIC
device address, 020, 022, 024, etc.

10 CTFCS • Set by IOC to the OC8 or FCB address. Set to
DATA 0

14-26

11 CTWOS • DATA
words transferred.

0. Dnver use for number of

12 CTFRCT - 1/ 0 algorithm frequency count. The
number of retires to be attempted by IOC before
sus~ding all subsequent 110 operations until the
request in CTRQBK (word 4) is activated. DATA 0
for non-SIC devices.

13 CTSTSZ • RMO only. Number of words in an RMO
sector.

Example: OA TA 120

14 CTTKSZ - RMO only. Number of sectors in an RMD
track

Example: DATA 48

15 CTPSTO - RMO only. Base address of the PST for
RMO unit 0 connect to this controller. P followed by the
four character dev1ce name.

Example: OAT A
EXT

! POOOB
! POOOB

16 CTPSTl - RMO only. Base address of the PST for
RMO unit 1.

Example: OAT A
EXT

! POOlS
! POOlS

17 CTPST2 • RMO only. Base address of PST for RMO
unit 2 .

Example: OAT A
EXT

! P0028
!PD02B

18 CTPSTJ • RMO only. Base address of PST for RMO
unit 3.

Example: OAT A
EXT

!P0038
!PD038

14.4.4 Enabling and Disabling PIM
Interrupts

The disable and enable PIMs and RT clock instructions
(EXC 0147, EXC 0747, EXC 0244, EXC 0444) are priv
iledged instructions and cannot be executed in a user map
(non-map 0) without creating a memory protect interrupt.
The memory protect processor recognizes the interrupts
caused by the disable/ enable instructions and returns to
the foreground task in the proper disabled or enabled
state. The following restrictions apply:

a. Only foreground tasks are permitted to execute the
disable/ enable PIMs and RT clock instructions. EX21
error message is output of a background task
attempts to execute those instructions.

b. The return to the foreground task is at location n + 2.
In other words. both the disable PIMs and clock
instructions (EXC 0747, EXC 0444 or vice versa) or
enable PIMs and clock instructions (EXC 0147, EXC
0244 or vice versa) must be together. The second EXC
instruction is not executed.

,_...__ -· - - --- ·-- . . - ------------------•

(

Example:

Location

n

n +l

n+2

Instruction

EXC 0444

EXC 0747

I

I
l

n

Disable RT clock
instruction creates
interrupt.

This instruction IS

not executed.

Return location from
the memory protect
processor with PIMs
and RT clock disabled.

Interrupt
Trap
Loc at ion

r ru pt L ne I I
'

REAL-TIME PROGRAMMING

.EXC 0444 disables all PIM interrupts. EXC 0244 enables all
PIM interrupts that are not masked. There is a PIM
directive for each PIM line at system-generation time. The
system initializer enables PIM lines. The mask is enabled
unless the l / 0 driver specif ically disables it. If a PIM
directive is omitted, the linkage between the trap and the
interrupt line handler cannot be established. If a PIM line
mask is enabled or disabled by a driver. the system mask
is updated to reflect the current status. The system mask
configuration is given at low memory address V$1M (0320
for PIMl, 0321 for PIM2, etc.).

EXC 0747 disables the real-t ime clock interrupt and EXC
0147 enables i t.

Figure 14-5 shows the standard VORTEX driver interface.

I
, , te

Handler <Us1ng

Common
Interrupt
Handler

I

Common Handler J
1

• l

Task TIDB
! I -~

I

2 I

I I 3
110 Dr iver

•
Controller ~- ~ ~

L
Controller

!
Table I Addres s I •
(for Drivers l

4 ~
i

Table

4
Device 4
Spec if ication 4

T abies 4

(for Drivers J 4

KEY:
1. The trap address corresponding to the PIM number

(from PIM directive) points to the SGEN-generated line
handler. The line handler points to the TIDB (named
in PIM directive), using the matching TIDB name (on
TDF control record).

2. The TIDB name (on TDF control record) points to the
task, using the entry name in the assembly of the task.

3. For OPCOM dev;ce drivers only. The task TIDB points to
the device controller table name (on TDF control
record). using the entry name in the controller table
assembly.

4. The DSTs are generated by SGEN. one for each unit
specified on the EQP directive. All DSTs generated for a
controller point indirectly to the controller table
(named in EQP directive), using the entry in the
controller table assembly.

Figure 14-5. Driver Interface

.

14-27

-- - .,_ ·- .. · ·--~ ·-·-.,._ ___ _ ... ,. ·--- ------·---···- .. ' _ ~. , ··-- -· - - ····· __ .. , ~··-----· .. ·-· -.... ------ _ .. _ - -----· .. _ ·- · --~-- _,_,. ---- _,._., .. ________ ___ -···· ·-··· , ,,,...,_ ··-"' __ .__ , ... _,, , .. ··~· _..... -- ··-

REAL-TIME PROGRAMMING

14.4.5 Directly Connected Interrupt Handler

VORTEX provides a user two options of specifying directly
connected interrupt handlers. The use of a directly
connected interrupt handler, in lieu of the VORTEX
common interrupt handler, is specified on the PIM directive
during system generation (section 15.5.11). The interrupt
handlers must be resident in executive mode, map 0.

Option 1 (specifying 1 as the S(n) parameter on the PIM
directive) requires the user to:

a. Save and restore the overflow indicator and all volatile
registers used by the directly connected interrupt
routine before returning to the interrupted task.

b. Not allow IOC and RTE calls.

c. Min imize execution t ime.

d. Continue to lockout interrupts during processing, then
enable the PIMs upon exiting. The RT clock is
enabled in all cases except when the real time clock
processor has been interrupted. Location 0300,
V$CTL, will contain 037 if the RT clock processor had
been interrupted. The interrupt handler must provide
a check for interruption out of the RT clock processor
and enable or disable the RT clock accordingly.

e. Restore the VORTEX system to the proper pre
interrupted state, executive or user mode. Any
interrupt forces the system to executive mode, state 0
(see table 1·1). The interrupt handler must return to
the proper state. V$KEY. location 0340, contains the
map key number of the interrupted task. If the
interrupt task is the user mode (1 s VSKEY s 15) ,
the switch from " executive to user mode enable"
instruction (EXC2 0246) must be executed. The " clear
executive mode state mask" instruction (EXC2 0546)
must also be executed.

Example:

•

•
•
LOB
LOA
SUB
JAZ
LOBI
LOAI
JMP

DIH10 LDA
STA
STB
ROF
LOA
JANZ
SOP
LOB
LDA

14-28

05000
0300
0473
DIH10
0104546
0100147
DIH10+1
DSOOO
OIH30

Check location 0300
System constant - 037
Zero - interrupt out of
RT clock
Otherwise enable clock

- 5000
Enable clock instruction

DIH30+ 1 Enable mask instruction

ROV
*+3

05000
0340

Restore overflow

NOP instruction
V$KEY check interrupts

~A 0472 Task map key
JAZ DIH20 0 • map 0
LOB 0104246 Switch to user map

DIH20 STB C%1130+2
LOB RB Now restore A. 8 , X
LOX RX
LOA RA
EXC 0244 Enable PIM

DIH30 EXC 0147 Modified to enable clock
or NOP

!!XC2 0546 Modified to clear mask
!!XC2 0246 Modified to switch to

user map
EXC2 0646 Enabled memory protect
JMP • Modified to return

address
05000 DATA 05000

f. Obtain the interrupted task return address. The
directly connected interrupt line handler is entered via
a JMPM instruction from the line handler (see figure
14·1) and as such the f irst word in the interrupt
handler must be a mark location. The return address
of the interrupted task is found in word 0 of the line
handler, which is obtained by subtracting four from
the contents of the interrupt handler's mark location.

Option 2 (specifying 2 as the S(n) parameter on the PIM
directive) permits the user to use system routines to save
(V$0HD) the volatile registers and overflow indicator and
restore (V$0RTN) the volatile registers, overflow indicator,
and reset the system to the ; roper pre-interrupted state as
described above. Option 2 relieves the directly connected
interrupt handler of the housekeeping chores. The A. 8 , X
registers, overflow indicator are saved, PIM and clock
interrupts are disabled prior to entering the user code (via
JMPM), (see figure 14·1). The user code is entered with the
A register set to the TBEVNT value and the X register set to
the user code entry address.

Upon completion of processing, the directly connected
interrupt handler exits to system routine, VSDRTN.

Example:

TASK
NAME
!!NTR
STA
•
•
•

EXT
JMP

TASK

EVNT

VSDRTN
VSDRTN

Save TBEVNT word
Do processing
•
•

Exit to common
processor

where task must be specified on SGEN PIM directive, e.g .•
PI M,Ol 0, TASK,Ol ,2.

14.4.6 VORTEX Use of BICs and BTCs

VORTEX supports a maximum of 15 SICs or BTCs. The
practical system limit may be considerably less than ten
depending on the availability of device addresses. the type

I

•

and number of peripherals. and other configura tion
considerations. The SIC or STC transfer complete inter·

rupts must be assigned by ascending SIC or STC numbers
(020, 022, '024, 026, 070, 072. etc.) starting with the f irst
PIM and the f irst interrupt i.e., PIM 0, line 0 assigned to
SIC 020; PIM 0. line 1 assigned to SIC 022. etc. The f irst
SIC must have a device address of 020; the second, 022:
the th.rd, 024: the fourth. 026: the fi fth, 070; the s1xth. 072:
etc. Unless the special DEF control direct ive is used.

110 drivers utilizing SICs or STC must call the common SIC
rout ine V$SIC. The X register is set to the initial buffer
address and the A register set to the f ina l buffer address.
The call to V$81C is:

JSR V$BIC, B
DATA Interrupt event word or 0 if no

line handler modification to be
performed.

DATA Map number

14.4.7 VORTEX II and VORTEX Compatibility

User programs written to operate under VORTEX will be
operable under VORTEX II under the following conditions:

a. Programs which contain any RTE service requests or
Input/ Output Control requests must be assembled by
the VORTEX II version of OAS MR. Any program
which builds these requests without the OAS MR
macros must be modified so that the requests
conform to the VORTEX II calling sequence.

b. Any foreground task which executes hardware l/0
instructions except disabl ing and / or enabling PIMs
and RT clock, see section 14.4.4, must be included as
part of the resident nucleus when the system is
generated. Foreground library tasks which are made
resident during system generation by use of the TSK
directive are not considered nucleus tasks and
therefore must not contain any hardware I / 0 instruc
tions (see section 14.4.8 for discussion on resident
tasks)_

c_ lntertask communications can be accomplished:
through the use of foreground blank common; by
establishing named tables and buffers in the nucleus
table module and referenc ing the named block by an
external statement; by use of the RTE PASS request
between a user map and map 0; by switching
executive mode states (see section 1.3); by sharing
the same physical pages utilizing the MAPIN and / or
PAGNUM RTE requests.

d- User tasks (except priority 1 system tasks) may not
write into or execute instruction from the first physical
page. This page is the VORTEX II low memory area_ It
is mapped as read-operand only into a!l user tasks
(see f igure 2-2), except priority 1 tasks where page 0
is mapped as read-write access mode.

REAL-TIME PROGRAMMING

e. User tasks (non-nucleus) must not communicate with
the nucleus except through the use of standard
executive service and I 10 requests or by referenc ing
entry points wh ich are contained in the core-resident
library.

f. A user task can request a transfer of a block of data
from map 0 to the user may by executing a RTE PASS
request.

g. Direct connect interrupt handlers must restore the
system to the pre- interrupted map state atter servicing
the interrupt. An alternative is to utilize the SGEN
PIM directive, opt ion 2, as described in section
14.4.5.

h. l / 0 drive rs written for VORTEX operation m ust
be modified for VORTEX II as fo llows:

yyy

1. The map number must be passed when ca ll
ing V$81C, common BIC ! BTC ro utine (see section
14.4.6) .
2. The 1!0 drivers must switch executive mode
states (see section 1.3) to fetch / store data from
a user map (DCB, FCB. buffer). RQBLK data are
stored in map 0 by dynamic memory a llocation .
3. Rotating memory device (RMD) drivers must
determine if a data transfer (read, write) 110 re
quest is by SAL (search-allocated-load task). If
it is a SAL request. the map number is obtained
from TBEVNT of the T IDB for SAL. Otherwise.
the requestor 's map number is obta ined from
TBKEY. SAL is the ATE component which loads
non- resident tasks into memory. The check may
be accompl ished as fo llows:

LOA RTIDII , II RTIOB • word 4 of RQBLK
SUII VSLSAl. VSLSAL - locat•on 0312 - SAL TIDB
JAMZ XXX Jump •f not SAL
LOll VSLSAL Yes SAL G.t map k...,
LOA TII&VMT, II From TBEVNT
J KP yyy Now rommon p<ocessrn e
!.DB RTIDII , II 110 reque5t not by SAL
I.DA Tlllt!!Y , II G.t map key from T13 KEY
ANA liM 1 7 Mask b>ts 4·0

4 . Following a BIC transfer complete interrupt the I 10
driver sense for a map memory protection l / 0 data
transfer error:

SEN 0101+da,er

where da is the SIC device address (which is found in
word 011 of the controller table). and er is the
address of the error processing routine which must
set up an 1046 error code prior to calling V$ERR.

i. If a user wants to fetch/store from the nucleus tables.
the user must ensure that the nucleus table module is
mapped into the user's logical memory. He does this
through an external reference to a symbol, TIOS,
controller table, etc- , within the nucleus module.
Example -- have an "EXT TSTYOA."

14-29 .

----·------ -- --- - ---··- -----... ·-··· ______ , ___ ,._.. .. ' . ~ . . • ------·# - ·.•··•·,__. ____ ~-··---··'"--~·-~- · · •H-••"" ,_.,,-.,. --- ·- - - ---.. ..-. .. - - ' •- • •· ·•·· . -. ,._,. _ _..~_. ~ ·-~-·~-·-- - ·-... · .. - •••- - ·· ·- ·-

REAL-TIME PROGRAMMING

j. TIDBs for non·resident tasks·· except JCP and OPCOM
·· are dynamically allocated in map 0. Hence a
foreground user task cannot load a register (B.X)
from location 0300 (VSCTL or an address from any
other low·core location) and directly fetch the TIOB
data. In VORTEX, it is possible; in VORTEX II, such an
attempt would result in a memory protect interrupt.
The foreground user can fetch the TIDB data by use
of the PASS macro. Except for clearing the TBEVNT
word, via the RTE TBEVNT request, a foreground user
task cannot modify the TIDB.

14.4.8 Resident Tasks

The VORTEX II user may specify two types of resident tasks
during system generation; user mode resident tasks; and
executive mode map 0 resident tasks.

a. User mode resident tasks. These tasks are foreground
library tasks that are made resident via the SGEN
TSK directive. These tasks execute as user mode
tasks and cannot execute any 110 type instructions
except enable/ disable PIMs and RT clock. They reside
in memory and may be scheduled via OPCOM or RTE
SCHED requests specifying LUN - 0. As these tasks
do not reside in map 0 virtual memory, the dynami·
cally allocated space (see f igure 1.2) is not reduced as
it would be for the executive mode map 0 resident
tasks. These resident tasks are defined in the
resident directory specified by VSCRDR (0341). Each
entry in the directory is as follows:

1s 1• 11 12 11 10 ' a 1 6 s • 1 2 1 o

0 T.sk Name. lint two cna~ten

1 Task Nai'M.. second two charldrs

2 T a•k Name. tfllrd two cnar~~eters

Entry Potnt

Start•nc physcal P-al• number

' Number of paps

' N~ moaule A••r• ect for
indiattor f\lt\lre UM

b. Executive mode, map 0 resident tasks. These tasks
reside in the nucleus program module in map 0. No
special SGEN directive is required to include these
tasks as part of the nucleus. The VORTEX II user
specifies the generation of these resident tasks by
adding the program object modules on the SGL
between the CTL,21 and CTL.PART3 control records
(see figure 15·2). The program name should not start
with the characters "VZ .. " as these are reserved for
110 drivers. SGEN processes l / 0 drivers selectively
and ignores all l / 0 driver object modules unless a
SGEN EQP directive specified the corresponding
peripheral. These executive mode resident tasks: (1)

14-30

- - - - · _ .. _

are permitted to execute I / 0 · type instructions: (2)
cannot normally be scheduled via the OPCOM or RTE
SCHED request. but are activated by resetting bit 14
of the TIDB status word TBST (table 15·5) as are the
l / 0 drivers and SAL; (3) must have a resident TIDB
created by a SGEN TDF directive. An alternate means
of executing these tasks is via an OPCOM RESUME
request. However, caution must be exercised as the
RESUME request activates the highest priority task
with a matching name.

14.4.9 Purge Cache Command

Multi ·processor systems which include shared memory,
cache, and map hardware in their configurations need the
ab1lity to purge cache memory. This capability is provided
by the PURGE CACHE function . The PURGE CACHE
function code. which is 04000, is output to the map device
by an OME instruction. This feature is restricted to
foreground tasks only.

The overflow indicator determines the state of the CLOCK
and PIM 1nterrupts following the execution of a PURGE
CACHE function . If the overflow indicator is reset. the
CLOCK and PIM interrupts are enabled; and if the overflow
indicator is set. the CLOCK and PI M interrupts are disabled
following the execution of the OME instruction.

Example: Purge cache memory and leave the CLOCK and
PIM interrupts enabled.

ROF

OME,046,PCACHE

•
•

•
PCACHE DATA 04000

reset overflow to indicate
interrupts enabled.

output purge cache function
code to map device.

purge cache function code

14.5 INTERTASK COMMUNICATION

The lntertask Communicat ion Module {lTC) provides a
means by which concurrently running tasks in a VORTEX
II system may communicate w ith one another. The lTC
module consists of a group of reentrant subroutines
called through the VORTEX ALOC service request. The
module. which resides in map 0. can only be used in sys
tems havi ng the extended instruction set.

The following functions are provided by the modu le:

MAILBOX Establishes the ownership of a mailbox entry
in the mailbox list. Th is request must be IS

sued by a receiving task before it can receive
mail items.

FREEM

POST

COPYM

FINO

AWAKE

Releases ownersh ip of a mailbox entry.

Queues a mailbox item to a receiver's mail
box and conditionally activates the receiving
task.

Copies a message from a sender's map to a
• • recetver s.

Returns the TIDB address of a specified task.

Set the T BEVNT word of a spec ified task.

The receiving task would provide a mai lbox header and a
list of empty mailbox items prior to establ ishing a mai lbox
entry. Sending tasks may then POST mail i tems to there
ceiver's mailbox. The receiving task may serially process
the mai l item, issu ing COPYM or MAPIN requests to re
cetve i nformation from the re ce 1vmg tasks .

14.5.1 lTC Module Operation

The lTC module has been given a driver-l ike name
(VZIT C) so it may be excluded from systems not need1ng
this feature . In order to incorporate the lTC module into
the nucleus. the user must inc!ude the follow ing d irective
at system generation:

EOP,CTITOA.0,1,0.0

The entry names of the individual reentrant subroutines
{VI$MBX . . VI$FRE. VIS PST. VISCPY. VISFND. VISAWK)
wi ll be placed in CL at system generat ion.

A receiving task will initialize its mailbox headers. queue
ing a suffic ient number of empty mai lbox items to the free
list . It will then perform one or more MAILBOX calls toes
tabl ish ownership of entries in the mailbox list. A sending
task may then communicate w ith the receiver using the
POST call. specifying a mailbox key. (If the receiver's
TIDB address is used as the key. the sender may acquire
this th rough the FIND call.) The POST will dequeue a mail
item from the receiver's free list. insert the message con
trol information into it and queue to the receiver's active
list. If the receiving task is in a type 2 or type 3 delay. the
POST wi ll activate it by setting its TBEVNT word . {If this
mechanism is used. the receiving task must reset the
TBEVNT word and the interrupt expected bit by using the
TBEVNT macro.) The POST will also logically-OR the
activity mask into the activity flag so the receiving task
may identify on which matlbox header the act1v1ty took
place. T he receivi r.g task would then dequeue the mai l
i tem and use its contents to transfer a message by means
of a MAP IN or COPYM call. T he task would then return the
processed mail item to the free list . If the sending task
were suspending itself until the complet ion of the mess
age transfer. the receiving task could activate it w ith an
AWAKE call.

REAL-TIME PROGRAMMING

14.5.2 lTC Calling Sequences

The following are lTC cal ling sequences:

MAILBOX Establish mailbox list entry ownership

Call: RO = mailbox key
R~ = matlbox header pointer

label ALOC VISMBX

Return: RO =completion status
Where:

0 = Successful completion
1 = Memory not available for extend

ing list
2 = Duplicate mailbox key found

The malibox key may be any one-word non-zero va lue
mutually agreed upon by the sending and receiving tasks.
The receiv ing task 's T l DB address may be used since th is
un iquely ident ifies any task in the system A function
{FIND) . which is described below. has been prov ided to

. return the TIDB address of a named task. Since multiple
copies of a task in the system. all bearing the same name.
cannot be uniquely identified by the FIND request. the
SCHED request has been modified to include a new par
ameter. The new form is:

SCHEO level, wai t. lun, key, 'xx', 'yy ', "zz' , flag

Where flag = 1 the T IDB address of the scheduled task
is returned in RO. and if 0 {o r om itted) the orig inal con
tents ot RO w i ll be reta ined. Th is permits a task sched
uling mult iple copies o f another task to uniquely iden
tify each one.

Duplicate keys are not permitted and any request spec ify
ing one w ill be rejected .

There is a permanent ly allocated b lock of memory in the
lTC module for the mailbox list which w il l support ten list
entries. If more entries are requi red. a block of memory
from the system's allocatable memory pool will be ob
tained for mailbox list extens ions. The user is cautioned.
however . that the mailbox list is manipulated with inter
rupts disabled and an inordinately long list may create
system problems.

Tasks having mailbox entries allocated to them will be so
identified by the system. The task should deallocate all
mailbox entries it had establ ished prior to exit ing using
the FREEM requests. however, if it fails to do so the sys
tem will deallocate.

FREEM

Call:

label

Free mailbox list entr/

RO = mail box key o f entry to be deleted or if
zero, all entries associated w itn cal ling
task.

ALOC VISFRE

14-31

~-- ---- - - - ---- ... --·-~·-,_._-~----------···- ~ -·-- ____ __.. .. _ __ 4---------- ·- - - - ---·---- ----- - ·- ----· ---- -- .. ··--.. - -

REAL-TIME PROGRAMMING

Return: RO = completion date
Where:

0 = Successful completion
1 =Specified key not found in list, or if

found, does not belong in this task.

If the calling task specifies a mailbox key for which it does
not have responsibility (i.e .. it did not perform MAILBOX
request which established it) , the FREEM request will be
ignored.

POST Post mail item to the receiver's mailbox.

Call: R1 = pointer to 3-word message control
block.

label ALOC V1SPST

Return: RO = completion status
Where:

0 = Successful completion
1 = Mailbox key not found
2 = Mail item free list empty
3 "" Map loadi"'g error

The message control block contains:

0 ,
2

Mailbox key

Message address

Message size

Where the mailbox corresponds to the key used by there
ceiving task to establish a mailbox entry, the message
address is a physical page number or the address of a
message in the sender's map, and the message size is a
page count or the number of words in the message.

If the receiving task is in a map-check pointed state when
the POST request is processed, the sender's map will be
used to complete the posting and will be restored to the
sending task before it is resumed.

The structure of the mai lbox header in the receiver's map
is as follows:

0 ,
2

3

4

5

Free l ist front pointer

Free list rear pointer

Active list front pointer

Active list rear pointer

Activity f lag pointer

Activity mask

The mailbox header points to the list of empty mail items
(each item consisting of a four-word block}. to a list of
active mail items. to an activity flag. and contains an activ
ity mask. A POST will remove an item from the free list.
insert message control information into it and queue it to
the active list. The POST will also logically OR the act ivity
mask contained in the mailbox header into the activrty flag
pointed to by the header. If the receiving task 's interrupt
expected bit is set when the POST is performed (denoting
execution of a type 2 or type3 delay). the POST will cause
the receiving task 's TBEVNT word to be set.

At the completron of a POST. a mail item in the active list
would contain the following information:

0

,
2

3

Pointer to next mail item
(0 if last item in list

Sender's TIOB addr•··ss
-------1

Page number or n .. .:ssage address

Page count or word count

When the receiving task has acted upon the informatron
contained in a mail item. it would dequeue it from the ac
tive list and requeue it to the free list. The receiving task
is also responsible for resetting the activity flag rf th is rs
requ ired. Note that when queueing and dequeueing an

· item. or when reseting the activity flag, system interrupt
must be disabled to avoid possible contention with POST.
See section 14.4.4 regarding disabling/ enabling inter
rupts.

The initial state of a mailbox header would be:

Free list (full) • Active list (empty) •

Front pointer Rear pointer 0 Rear pointer Activity flag pointer Activity mask

Pointer Pointer 0 Activity flag

0

14·32

-- - · - ----- - - - -- --

•

Example:

Location

n

n+l

n+2

REAL-TIME PROGRAMMING

Instruction

EXC 0444 disables all PIM interrupts. EXC 0244 enables all
PIM interrupts that are not masked. There is a PIM
directive for each PIM line at system-generation time. The
system initializer enables PIM lines. The mask is enabled
unless the l / 0 driver specifically disables it. If a PIM
directive is omitted, the linkage between the trap and the
interrupt line handler cannot be established. If a PIM line
mask is enabled or disabled by a driver, the system mask
is updated to reflect the current status. The system mask
configuration is given at low memory address V$1M (0320
for PIMl, 0321 for PIM2, etc.).

Disable RT clock
instruction creates
interrupt.

EXC 0747 This instruction rs
not executed.

• Return location from
the memory protect
processor with PI Ms
and RT clock disabled.

EXC 0747 disables the real-time clock interrupt and EXC
0147 enables it.

Figure 14-3 shows the standard VORTEX driver interface.

Interrupt
Trap ·
Location ,

Interrupt Line
Handler f Using
Common Handler)

Common
Interrupt
Handler

1

Task TIDB f- - .,
1

I

2 I

13
I

110 Onver I

I

'
I

Controller f-. - J Controller

Table Address

(for Dnver s l
4 Table

4
Device 4
Specif ica t ion 4
Tables 4

(for Dr ivers l 4

KEY:
1.

.
The trap address corresponding to the PIM number
{ from PIM directive) points to the SGEN-generated line
handler. The line handler points to the TIOB (named
in PIM directive), using the matching TIOB name (on
TOF control record).

2. The TIDB name (on TOF control record) points to the
task. using the entry name in the assembly of the task.

3. For OPCOM device drivers only. The task Tl DB points to
the device controller table name (on TOF control
record), using the entry name in the controller table
assembly.

4. The DSTs are generated by SGEN, one for each unit
specified on the EQP directive. All DSTs generated for a
controller point indirectly to the controller table
(named in EQP directive), using the entry in the
controller table assembly.

Figure 14-3 . Driver Interface

Update 8 14 · 33

-~· -----------------~ -·---··--------- -· ··- ·--- -· .. ·- ___ _.. ___ ---- ·---·--- - --·· ·- -·---

REAL-TIME PROGRAMMING

• •

14.4.5 Directly Connected Interrupt Handler

VORTEX provides a user two options of specifying directly
connected interrupt handlers. The use of a directly
connected interrupt handler, in lieu of the VORTEX
common interrupt handler, is specified on the PIM directive
during system generation (section 15.5.11). The interrupt
handlers must be resident in executive mode, map 0.

Option 1 (specifying 1 as the s(n) parameter on the PIM
directive) requires the user to:

a. Save and restore the overflow indicator and all volatile
registers used by · the directly connected interrupt
routine before returning to the interrupted task.

b. Not allow IOC and RTE calls.

c. Minimize execution time.

d. Continue to lockout interrupts during processing, then
enable the PI Ms upon exiting. The RT clock is
enabled in all cases except when the real time clock
processor has been interrupted. Location 0300,
V$CTL, will contain 037 if the RT clock processor had
been interrupted. The interrupt handler must provide
a check for interruption out of the RT clock processor
and enable or disable the RT clock accordingly.

e. Restore the VORTEX system to the proper pre
interrupted state, executive or user mode. Any
interrupt forces the system to executive mode, state 0
(see table 1-1). The interrupt handler must return to
the proper state. V$KEY, location 0340, contains the
map key number of the interrupted task. If the
interrupt task is the user mode (1::::; V$KEY ::s:; 15) ,
the switch from "executive to user mode enable"
instruction (EXC2 0246) must be executed. The " clear
executive mode state mask" instruction (EXC2 0546)
must also be executed.

Example:

•
•
•

LDB
LDA
SUB
JAZ
LDBI
LDAI
JMP

DIH10 LDA

STA
STB
ROP
LDA
JANZ
SOP
LDB
LDA

14-34

D5000
0300
0473
DIH10
0104546
0100147
DIH10+1
DSOOO

DIH40
DIH30

ROV

*+3

DSOOO
0340

Check location 0300
System constant = 037
Zero = interrupt out of
RT clock
Otherwise enable clock

= 5000
Enable clock instruction
Enable mask instruction

Restore overflow

NOP instruction
V$KEY check interrupts

- - --. -· ---- ·-

ANA 0472
JAZ DIH20
LDB 0104246

DIH20 STB DIH30+1
LDB RB
LDX RX
LDA RA

DIH30 EXC2 0546
EXC2 0246

EXC2 0646

EXC 0244
DIH40 EXC 0147

JMP *
DSOOO DATA 05000

Task map key
0 = map 0
Switch to user map

Now restore A, B, X

Modified to clear mask
Modified to switch to
user map
Enabled memory protect

Enable PIM
Modified to enable clock
or NOP
Modified to return
address

f. Obtain the interrupted task return address. The
directly connected interrupt line handler is entered via
a JMPM instruction from the line handler (see f igure
14-1) and as such the first word in the interrupt
handler must be a mark location. The return address
of the interrupted task is found in word 0 of the line
handler, which is obtained by subtracting four from
the contents of the interrupt handler's mark location.

Option 2 (specifying 2 as the s(n) parameter on the PIM
directive) permits the user to use system routines to save
(V$DHD) the volatile registers and overflow indicator and
restore (V$DRTN) the volatile registers, overflow indicator,
and reset the system to the proper pre-interrupted state as
described above. Option 2 relieves the direct ly connected
interrupt handler of the housekeeping chores. The A, B, X
registers, overflow indicator are saved, PIM and clock
interrupts are disabled prior to entering the user code (via
JMPM), (see figure 14-1). The user code is entered with the
A register set to the TBEVNT value and the X register set to
the user code entry address.

Upon completion of processing, the d irectly connected
interrupt handler exits to system routine, V$DRTN.

Example:

TASK
NAME
ENTR
STA
•
•
•

EXT
JMP

TASK

EVNT

VSDRTN

Save TBEVNT word
Do processing
•
•

V$DRTN Exit to common
processor

where task must be specified on SGEN PIM directive, e.g.,
PIM,010,TASK,Ol ,2.

14.4.6 VORTEX Use of BICs and BTCs

VORTEX supports a maximum of 15 BICs or BTCs. The
practical system limit may be considerably less than ten
depending on the availability of device addresses, the type

--- - · -

and number of peripherals, and other configuration
considerations. The BIC or BTC transfer complete inter·
rupts must be assigned by ascending BIC or BTC numbers
(020, 022, 024, 026, 070, 072, etc.) starting with the first
PIM and the first interrupt i.e., PIM 0, line 0 assigned to
BIC 020; PIM 0, line 1 assigned to BIC 022, etc. The first
BIG must have a device address of 020; the second, 022;
the third, 024; the fourth, 026; the fifth , 070; the sixth, 072;
etc. Unless the special DEF control directive is used.

1/0 drivers utilizing BIGs or BTG must call the common BIG
routine V$BIC. The X register is set to the initial buffer
address and the A register set to the final buffer address.
The call to V$BIC is:

JSR
DATA

DATA

V$BIC,B
Interrupt event word or 0 if no
line handler modification to be
performed.
Map number

14.4.7 VORTEX II and VORTEX Compatibility

User programs written to operate under VORTEX will be
operable under VORTEX II under the following conditions:

a. Programs which contain any RTE service requests or
Input/Output Control requests must be assembled by
the VORTEX II version of DAS MR. Any program
which builds these requests without the DAS MR
macros must be modified so that the requests
conform to the VORTEX II calling sequence.

b. Any foreground task which executes hardware I 10
instructions except disabling and/or enabling PIMs
and RT clock, see section 14.4.4, must be included as
part of the resident nucleus when the system is
generated. Foreground library tasks which are made
resident during system generation by use of the TSK
directive are not considered nucleus tasks and
therefore must not contain any hardware l/0 instruc
tions (see section 14.4 .8 for discussion on resident
tasks).

c. lntertask communications can be accomplished:
through the use of foreground blank common; by
establishing named tables and buffers in the nucleus
table module and referencing the named block by an
external statement; by use of the RTE PASS request
between a user map and map 0; by switch ing
executive mode states (see section 1.3); by sharing
the same physical pages utilizing the MAPIN and/or
PAGNUM RTE requests.

d. User tasks (except priority 1 system tasks) may not
write into or execute instruction from the first physical
page. This page is the VORTEX II low memory area. It
is mapped as read-operand only into all user tasks
(see figure 2-2), except priority 1 tasks where page 0
is mapped as read-write access mode.

REAL-TIME PROGRAMMING

e. User tasks (non-nucleus) must not communicate with
the nucleus except through the use of standard
executive service and l / 0 requests or by referencing
entry points which are contained in the core-resident
library.

f. A user task can request a transfer of a block of data
from map 0 to the user may by executing a RTE PASS
request.

g. Direct connect interrupt handlers must restore the
system to the pre-interrupted map state after servicing
the interrupt An alternative is to utilize the SGEN
PIM directive, option 2, as described in section
14.4.5.

h. I I 0 drivers written for VORTEX operation must
be modified for VORTEX II as follows:

XXX

yyy

1. The map number must be passed when call
ing V$BIC, common BIC / BTC routine (see section
14.4.6).
2. The I I 0 drivers must switch executive mode
states (see section 1.3) to fetch /store data from
a user map (DCB, FCB, buffer). RQBLK data are
stored in map 0 by dynamic memory allocation.
3. Rotating memory device (RMD) drivers must
determine if a data transfer (read. write) 110 re
quest is by SAL (search-allocated-load task). If
it is a SAL request, the map number is obtained
from TBEVNT of the TIDB for SAL. Otherwise,
the requestor's map number is obtained from
TBKEY. SAL is the RTE component which loads
non- resident tasks into memory. The check may
be accomplished as follows:

LOA RTIOB ,B RTIDB = word 4 of RQBLK
SUB V$ LSAL V$LSAL = location 0312 ~ SAL TIDB
J ANZ XXX Jump it not SAL
LOB V$LSAL Yes SAL Get map key
LOA TBEVNT, B From TBEVNT
J HP yyy Now common processing
LOB RTIOB,B l / 0 request not by SAL
LOA TBKEY,B Get map key from TBKEY
ANA BH 17 Mask bits 4·0

4. Following a BIC transfer complete interrupt the 1/0
driver sense for a map memory protection 1/0 data
transfer error:

SEN 0101+da,er

where da is the BIC device address (which is found in
word 011 of the controller table), and er is the
address of the error processing routine which must
set up an 1046 error code prior to calling V$ERR.

i. If a user wants to fetch/store from the nucleus tables,
the user must ensure that the nucleus table module is
mapped into the user's logical memory. He does th is
through an external reference to a symbol, TIDB,
controiler table, etc., within the nucleus module.
Example-· have an "EXT TBTYOA."

14-35

REAL· nME PROGRAMMING

j. TIDBs for non-resident tasks -· except JCP and OPCOM
•• are dynamically allocated in map 0. Hence a
foreground user task cannot load a reg1ster (B,X)
from location 0300 (VSCTL or an address from any
other low-core location) and directly fetch the TIOB
data. In VORTEX, it is possible; in VORTEX II, such an
attempt would result in a memory protect interrupt.
The forqround user can fetch the TIDB data by use
of the PASS macro. Except for clearing the TBEVNT
word, via the RTE TBEVNT request, a foreground user
task cannot modify the TIOB.

14.4.8 MICRO-VORTEX (CPU-3) AND
VORTEX II COMPATABILITY

The micro-VORTEX option (CPU-3) replaces certain
VORTEX II nucleus modules with modules that have been
recoded to make BCS (branch to control store) calls to a 2
page firmware set. These modules reduce system overhead
by 20 to 40 percent (depending on the system configuration
and usage) and reduce the nucleus space requirements by
approximately 7 pages. The micro-VORTEX version of
VORTEX remains fully user compatable at the ATE and IOC
levels but does contain some internal changes that might
affect the system level programmer. The following
paragraphs describe these changes. The descriptions are
not intended to provide full internal informat ion but rather
to provide a starting point for further investigation if
warranted.

Micro-VORTEX contains unique versions of the following
system tasks :

VSLMEMBK
System lnitializers (disc models C. D. E. F H only)
WCS Loading Tasks (replaces WCSRLD)

-+ VSSYTASK
VSFUNC
VSSERV
VSIOC

Whereas these modules have been significantly recoded
they still perform the same basic functions. Where full
subroutines (i.e .• VSMALC) have been coded in microcode. a
software " envelope" still exists that uses the same calling
sequence to perform the function of the subroutine. The
user may directly use the BCS for the function or he may
continue to perform the function using a call to the software
envelope. The f irmware suppon for micro-VORTEX requires
2 pages of V77-600 WCS and may reside in either pages 1
and 2 or in pages 3 and 4 (user option). The firmware uses
BCS entry points B and C and does not contain any user
available micro space.

l4-36

14.4 .8.1 Functional Changes

The memory pool allocation scheme for nucleus dynamic
memory has been changed so that dynamic memory
fragmentation has been reduced. Nucleus dynamic memory
is allocated from logical page 2. up with the thread header
located in location 02000 and 02001 (not pointed to by
VSUTB). The thread scheme remains the same as for
software VORTEX II. Dynamically allocated blocks of
memory are allowed to cross a page boundary. If the block
must reside within a physical page then the user should call
a new routine VSMALP to insure such a requirement. Also.
physical pages are allocated out of VSPAGE from the top of
memory down instead of the bottom up as in software
VORTEX II.

The TSK option and special SAL processing has been
removed (from software VORTEX II as well). The Search
Allocate-Load code has been rewritten to be reentrant and
runs at the priority of the task being loaded. Thus. a h1gh
priority task to be loaded does not have to wait for a low
priority task to be loaded as in software VORTEX II. Because
the core resident directory (TSK tasks) has been eliminated.
the user can no longer schedule a foreground library task by
specifying logical unit zero.

Log ical page zero is set ot read -operand-only mode for all
priorities of tasks (it was set to read-write for priority one
tasks). This elminates the special mapping of the nucleus
program region into priority one tasks but does prevent such
a task from storing into page zero logical space direct ly. If
the user must do th is. then he should use the VSSTR
subroutine in VSFUNC.

The background job thread has been eliminated. The
threading of TIDB by the TIDB allocation routine has been
changed so that tasks of either priority zero or one are
threaded after the active background task and the
dispatcher prevents the activation of a background task if
one is already loaded.

Checkpointing for the background is handled by a separate
task. When it is determined that checkpointmg is required. a
separate res1dent TIDB is added to the top of the TIDB
thread. This task takes care of writing the background to the
checkpoint file and setting the proper values in the
background TIDB. When it is finished this TIDB is moved to
the bottom of the TIDB thread where it is activated to reload
the background when memory becomes available. Upon
completion of the reload. the checkpointing task exits.

JPDUMP (invoked by either / DUMP or I EXEC.Dl runs as a
background task after the current active background task
has completed 1/ 0 and is ready for exiting

UpdatE' B

- -·- - --- ---··-.. - - ----- -- - - -- - · - .

•

- ·- - -

Return:

RO = Completion status. where

-1 = ITE busy -- Go to sleep and try again later
0 = Successful completion
1 = ITE memory pool not initialized
2 = Invalid key
3 = Map loading error
4 = Buffer length too short
5 = Page list pending
6 = M ailbox queue is empty

R1 = Number of words required if RO = 4

VI$GTK

The entry point VI$GTK is used by a task requesting a
mailbox key. No entry parameters are used.

On Exit: RO will conta in the completion status

RO = Completion status. where

-1 = ITE busy -- Go to sleep and try later

0 = Successful completion
1 = Memory not available for extending list
2 = No more segments available for extending

mailbox list
3 = Map loading errors
4 = No pages have been specified for the ITE

memory pool
5 = No physical pages available for memory pool
6 = Dynamic memory required for initialization

unavailable
7 = No space available in map 0 for the ITE memory

pool

R1 = Mai lbox key if RO is zero

VISGTP

VISGTP is used by the receiving task to get the page or
pages sent with a message. If the page(s) were deallocated
from the sender 's map, the pages will be allocated to the
rece iver (Bit 15 of the corresponding map image word will
be set). If the pages were not deallocated by the sender, ITE
w ill map the pages (Bit 14 of the map image word will be
set.)

Calling sequence :

RO = address of the request parameter block, consisting of
three words:

Word 1 = requestor's mailbox key
Word 2 = logical address from which to begin linking

the page or pages
Word 3 = the number of pages to link

R1 = The number of pages to process

REAL-TIME PROGRAMMING

Return:

RO = Completion status, where

-1 = ITE is busy -- Go to sleep and try again later
0 = Successful completion
1 = ITE memory pool has not been initia lized
2 = Invalid mailbox key
3 = Map loading error
4 = No page list is pending
5 = Logical address or number of pages invalid

R1 = Number of pages processed if RO = 0, or
The logical address in error if RO = 5.

VISDRP

VISDRP is used by the calling task to drop the page list of
the current message. This function enables the user to
proceed to the next message without first processing the
pages associated with the prior message.

Calling sequence:

RO = Mailbox key

Return :

RO = completion status, where

-1 = ITE is busy -- Go to sleep and try again later.
0 = Successful complet ion
1 = ITE memory pool not initialized
2 = Invalid mailbox key
3 = Map error
4 = No page list pending

VI$RMB

VISRMB is used by the call ing task to rel inquish ownership
of a mailbox.

Calling Sequence :

RO = mailbox key of entry to be released or zero 1f all
mailboxes belonging to the task are to be released.

Return:

RO = Completion sta tus. where

-1 = ITE is busy -- Go to sleep and try again later
0 = Successful completion
1 = ITE memory pool has not been in itialized
2 = Invalid key
3 = Map error
4 = No mailboxes assigned to calling task
5 = A mailbox with an unempty queue encountered

Rl = Key of the mai lbox if RO = 5

14-53

.. ~·---·-.. - .. ·-~--.. -·--~-·-~- """'' . -· ... ·-· ·~ _. -..... -......... _ -.... ·-··· ,.~.. - ... _ -.......... - -... -.

REAL· TIME PROGRAMMING

LIMITATIONS. RESTRICTIONS & CONSIDERATIONS

1. Any task establishing ownership of an ITE mailbox will
have the responsibility of checking the mailbox for
messages prior to exiting and going to sleep.

2. A task which issues an 1/0 without wait and then issues
a delay type 3 will have to determine for itself what event
caused to be activated.

3. If a task exits or aborts prior to emptying its mailbox, ITE
will release the mailbox elements but no notification will
be made to the senders that messages were thrown
away.

4 . Four possible cases can occur in the disposition of a
physical page when a sender requests that the page be
transferred by ITE.

a . The sender allocated the page and requests that
the page be unlinked from his map.

b. The sender allocated the page and does not want
it unlinked .

c. The sender mapped m the page and wants it
unmapped.

d. The sender mapped in the page and does not want
it unmapped.

In the first case, the ownership of the page would be
transferred to the receiving task (i.e .. the receivtng task
would be able to deallocate the page and release it to
VORTEX). In all the other cases. the page would merely be
mapped into the receiving task 's logical memory. Therefore,
in the event that an abort occurs in the receiving task before
it was able to get its pages. ITE will release to VORTEX only
those pages wh ich would have been allocated to the
rece1ver . (Case A.)

SYSTEM GENERATION REQUIREMENTS

The following DEF directives are requ ired :

where

n

where

m

14-54

DEF.VISMXO.n

Is the number of elements in the main box
queue.
The value is placed in bits 9 - 15 and must be
octal i .e .. a value of 10 would be represented
by DEF.VI$MX0.012000.

DEF.VI$NPG.m

Is the number of physical pages to be used for
ITE internal pool. This number of pages is
made unavailable to VORTEX.

-

14.6 MEMORY PARITY CONSIDERATIONS

This paragraph describes VORTEX software handling of
parity errors.

14.6.1 Memory Parity Considerations
(V70/V77 -600)

If it is desired to halt operations upon detection of a parity error
in the nucleus, six words are provided, staning at VSPERA. in
which to place a halt patch.

If the parity rout ines are not desired. definitions for VSPERR
and PARANY must be made.

14.6.2 Memory Parity Considerations
(V77-200/400)

Memory parity detection is a supported feature under
VORTEX on the V77 model 200/400. A parity error is re
ported by an EX35 error message (see appendix 11 .2) .
The map tracking register contains the address being
fetched when the parity error occurred. Memory parity is
a feature of the SYSGEN selection parameter.

14.6.3 V77-600 Parity Error Handling

Parity Error Handling software on V77-600s consists of the
following components :

• A nucleus module named VSPERR.

• When ERCC is used. library load modules: DMPPAR and
INITPR on the background and PAROUT, PARCHK, and
PERCHK on the foreground.

• An error log file named PARITY on logical unit Fl.
containing 2 records each of which is 120 words long.

The nucleus module VSPERR is created during SYSGEN.
The library load modules OMPPAR. INITPR. PAROUT.
PARCHK and PERCHK and the error log file PARITY can be
loaded on disk by executing a segment of the post-SYSGEN
job stream.

There are two types of parity errors associated with ERCC
memory : single-bit (correctable) and double-bit
(uncorrectable). Single-bit errors are transparent to the user
except in the case of the log file overflow. Double-bit parity
errors result in the current task being aborted and the
operator being informed of an error .

Single-bit errors are ignored by the system. and
automatically corrected by the hardware. The foreground
task PARCHK will request the operator to input a testing
interval . initialize the log file and schedule task PERCHK.
which will do the actual test ing and logging of single-bit
errors. PARCHK (never PERCHKi should always be
scheduled for single-b1t error logging. The log file may be

Update B

-· - ·- ---

reinitialized at any time by the execution of the background
task INITPR. The file may be displayed at any time by the
execution of another background task named DMPPAR. The
output from DMPPAR is in the following format :

PARITY ERROR LOG

ERROR COUNT = XX)OCX

BOARD
X

MM/ 00/ YY

MODULE
X
•

HH/ MM HOURS

SYNDROME
XXX

The entries under BOARD and MODULE indicate the board
number and module number where the parity error
occurred. The entnes under SYNDROME are a list of parity
bit configurations which indicate the failing bit of a single bit
error. For additional information. refer to Section 3 of the
V77-600 128K Error Correction Memory Operation and

Service Manual (UP-9008).

Whenever the log file overflows. a message appears on the
console to inform the operator of the condition. When this

message appears. the operator should (1) display the
current log fi le. (2) rein it ial ize the log file. and (3) cont1nue
system operation with single-bit par ity checking disabled
(by abortmg task PERCHK). Step (3) is des1rable if single-bit
errors occur in clusters. The PARCHK task might only be
act ivated on a scheduled basis rather than continuously. to
avoid unnecessary system overhead.

Double -b it errors or parity memory errors. if they occur
during execution of either the dispatcher or the initia l izer,
cause an error message to be displayed. Otherwise. the
current task wi ll be aborted. and a message of the following
format will appear on the console :

DOUBLE BIT PARITY ERROR IN TASK XXXXXX

BOARD NUMBER = xx. MODULE NUMBER = xx

Due to ERCC hardware design. the informat ion in the above
message may be incorrect if smgle-bit errors and double-bit
errors occur together. The message. however. w1ll only be
diSplayed when double-btt errors occur . even if the
conta~ned Information is incorrect .

Note : It is advisable to always schedule and run PARCHK
to log smgle-bit errors. in order to take advantage of the
ERCC hardware.

14.6 .4 V77-800 Parity Error Handling

Panty -error-handling software on V77 -800s consists of the
follow ing components;

• A nucleus module named VSPERR.

• When ERCC is used. library load modules· DMPARR and
INITPR on the background. and PAROUT. PARUP. and

PARDWN on the foreground.

• An error log file named PARITY on logical unit 190.
containing 2 records each of which is 120 words long. -

REAL-TIME PROGRAMMING

VSPERR is created during SYSGEN. and the other components
can be loaded on disk by executing a segment of the post
SYSGEN job stream.

There are two types of par ity errors : single-bit (correctable)
and double-bit (uncorrectable). Single-bit errors are
transparent to the user except in the case of the log file
overflow. Double -b it parity errors result in the current task
being aborted or the system being halted.

Upon entering any interrupt handler. single-b1t par ity errors
are suppressed by hardware while double-bit errors w ill
result in the machine going into step mode and the message
" PE" appearing on the console.

For sing le -b it errors. the handler enters a one word
information (conta ining the board number. the module
number and syndrome pattern) in a system-res1dent queue
and wakes up a res1dent task PARERR wh ich . when
executed. wntes the 1nformat1on on the log file . The
interrupt handler then resumes execution of the interrupted
task . The log file may be remitiahzed at any time by the
execution of the background task INITPR. The fi le may be
displayed at any time by the execution of another
background task named DMPPAR. The output from
DMPPAR is in the format

PARITY ERROR LOG

ERROR COUNT = XXXX

BOARD
X

MM / 00/ YY

MODULE
X

•
•
•

...

HHMM HOURS

SYNDROME
XXX

The entries under BOARD and MODULE indicate the
number of the board and module where the error occurred.
The entry under SYNDROME is the error syndrome pattern
for single btt errors . Refer to Section 4 of the V77 -800
Memory System Functiona l Ana lysis and Servicing
Manual (UP-8704) for additional information.

Whenever the log file overflows. a message appears on the
console to inform the operator of the overflow cond1t1on.
upon which he should 1) display the current log file. 2)
reinintialize log file. and 3) continue system operation w i th
single-bit parity disabled (by executmg the foreground task
PARDWN). Step (3) should be .executed if smgle-blt errors
occur in clusters . The foreground task PARUP is available
for re-enabllng smgle-blt panty.

Double-bit errors . if they occur dunng execution of e ither
the d1spatcher or the ln lllal1zer. cause the system to ha lt
Otherw•se. the current task w ill be aborted. and a message
of the followmg format appears on the console:

DOUBLE-BIT PARITY ERROR IN TASK XXXX
BOARD NUMBER :: XX. MODULE NUMBER = XX

Update B 14-55

· ~~··· ~-------·---- ·-- ·-·-- ----------- -.. --·-· . . . --·~-····-- ----·---·----·-------·--· ·----·---- - - - -· ________ .._,._

"·

SECTION 15
SYSTEM GENERATION

The VORTEX system-generation component (SGEN)
tailors the VORTEX operating system to specific user
requirements. SGEN is a collection of program on
magnetic tape, punched cards. or disc pack. It includes
all programs (except the key-in loader, section 15.3)
for generating an operating VORTEX system on an
RMO.

Figure 15·1 is a block diagram of the data flow through
SGEN.

15.1 ORGANIZATION

SGEN is a five-phase component comprising:

• Building the VORTEX nucleus (section 15.6)

• Building the library (section 15. 7)

• Resident-task con figuration

l / 0 interrogatien specifies the peripherals to:

a. Input VORTEX system routines (LIB unit)

b. Input user routines (AL T unit)

c. Input SGEN directives (DIR unit)

d. Output the VORTEX system generation (SYS unit)

• I t O interrogation (section 15.4)

• SGEN directive processing (section 15.5)
e. List special information and input user messages (LIS

unit)

DIR INPUT UNIT l LIB INPUT UNIT AL T INPUT UNIT

System Generation Library User Routines
SGEN DIRECTIVES

(Object modules and con· (Object modules and
trol records) control records)

\)__

~ SGEN ROUTINES ~

-
\)

VORTEX

NUCLEUS
FOREGROUND BACKGROUND USER

LIBRARY LIBRARY ' LIBRARIES I (And system
in itializer)

I I

I

I .

SYS OUTPUT UNITS

l

VTII · J12"Z

Figure 15·1. SGEN Data Flow

15-1

---~---· -···-··- -------- - -------·-.. -·~ . -·------·--- ..-- --- . - -·--- ------·· -

SYSTEM GENERATION

l/0 interrogation also specifies that the Teletype on
hardware address 01 is the OC unit. After these peripherals
are assigned, appropriate drivers and I 10 controls are
loaded into memory.

Note: SGEN does not build an object-module library. To
construct the VORTEX object-module library (OM) or any
user object-module library, use the file-maintenance
component (FMAIN, section 9).

SGEN directive processing specifies the architecture of the
VORTEX system based on user-supplied information that is
compiled and stored for later use in building the system.
SGEN directives permit the design of systems covering the
entire range of VORTEX applications.

Building the VORTEX nucleus consists of gathenng object
modules and control records from the system-generation
library (SGL section 15.2) and from user input, and
constructing the VORTEX nucleus from these data. SGL
items are input through the LIB input unit, and user items
through the AL T unit according to rules set up by the SGEN
directives.

Building the library and the resident-task configurator
consists of generating load modules from the object
modules and control records input from the SGL and user
data. These load modules are then cataloged and entered
into the foreground, background, and user libraries. During
library building, load modules can be added, deleted, or
replaced as required to tailor the library to any of a wide
variety of formats. After the libraries are completed,
designated load modules are copied into the VORTEX
nucleus to become resident tasks. The resident-task
configuration of SGEN can also be generated without
regeneration of the VORTEX nucleus or libraries (section
15.7).

SGEN directive format requires that. unless otherwise
indicated (e.g., section 15.5), the directives begin in
column 1 and comprise sequences of character strings
having no embedded blanks. The character strings are
seperated by commas (,), equal signs (•) or semi-colons
(;). The directives are free-form and blanks are permitted
between individual character strings, i.e., before and after
commas. equal signs, or semi<olons. Although not re
quired, a period (.) is a line terminator. Comments can be
inserted after the period. For greater clarity in the
descriptions of the directives, optional periods, optional
blank separators between character strings, and the
optional replacement of commas by equal signs are
om itted. Section 14.4.8 describes resident tasks in greater
detail.

Numerical data can be octal or decimal. Each octal number
has a leading zero.

Error messages applicable to SGEN are given in Appendix
A.l5.

15-2

---~-.

SGEN errors are divided into five categories according to
type. The category of each error, as well as the specific
error, is given by the error code. Recovery is automatic
where manual intervention is not required. When manual
intervention is necessary, the OC device expects a response
after the error message is posted. The response can be
either a corrected input statement (where the statement in
error was an ASCII record) or the letter " C: . In the latter
case, the corrected input is expected on the input device
where the error occurred, immediately after the " C' is
input. If the input media is magnetic tape or disc pack,
positioning to reread an input statement is also automatic.

15.2 SYSTEM-GENERATION LIBRARY

The System-generation library (SGL) is a collection of
system programs (in object-module form) and control
records (in alphanumeric form) from which a VORTEX
system is constructed.

In the case of punched cards or of magnetic tape, the SGL
occupies contiguous records, beginning with the first record
of the medium.

In the case of disc pack, the SGL occupies contiguous
records beginning with the second track. Track 0 contains
the partition-specification table (PST, section 3.2) that
specifies one partition exten --:J ing from the second track
(track 1) to the end of devic""

The SGL and the VORTEX system cannot be on the same
disc pack during system generation.

The SGL is divided in to five functional parts, each
separated by CTL control records (figure 15·2).

Part 1 of the SGL comprises a VORTEX bootstrap loader
and an /10 interrogation routine. It also comprises the
SGEN relocatable loader, the basic 110 control routine, and
library of peripheral drivers for the use of SGEN. Part 1
consists entirely of object modules. It is loaded with device·
sensitive key-in loader (section 15.3) that also serves the
bootstrap loader as a read-next-record routine. The
bootstrap-loader /interrogator is a core-image sequence of
records generated by a VORTEX service routine. Because it
calls the key-in loader to read records, the bootstrap
loader ! interrogator is itself device-insensitive.

Control record CTl,PARTOOOl terminates part 1 of the
SGL

Part 2 of the SGL contains the directive processor. After
being itself input, the directive processor obtains all input
from the OIR and OC input devices. The system generation
directives are to be placed betw~n the directive processor
and the CTL.PART0002 control record if the CIS and OIR
input units are the same.

The control directive 'CPU .n' is used in conjunction wrth
the SYSGEN CPU directive in selectrng the proper mod-

- -- ·-·· --··- -·---

I

•.

-

Bootstrap Loader and
l / 0 Interrogation

PART 1 Retocatable Loader and
1/ 0 Control Routine

~ SGEN Driver Library --
• CTl,PARTOOOl

PART 2 Directive Processor

• CTL.PART0002

VORTEX Nucleus Processor

• SLM,INIT

System lnitializer

PART 3 • END

• SLM,VORTEX

1- VORTEX Nucleus -
1- Library -

a END

• CTL,PART0003

~ Library Processor

PART 4

l
~ System library
~ Routrnes

• CTL.PART0004

PART 5 l Resident-Task Configurator

•• CTL,ENOOFSGL

NOTE:

• - Alphanumeric control record

figure 15-2. System-Generation Library

ule where multiple versions exist. The ·n· specifies the
number of versions of the module that exist. These ver
sions must be contiauous. The value of ·n· is used to derive -
the module skip count before and after the selected mod
ule is processed.

Note: The value of ·n· may be less than the value ·n· of the
SYSGEN CPU d irective. Such a case may be used to indi
cate that none of the versions of the module apply to the
specified system.

Control record CTL,PART0002 terminates part 2 of the
SGL

Part 3 of the SGL comprises all system routines and
control records required to build the VORTEX nucleus
(figure 15-3):

• VORTEX nucleus processor ·· the SGEN-processing
portion

• SLM control re<:ord ·· indicates the beginning of the
system initializer portion

• System-initializer routines ·· object modules to be
converted into the system initializer

SYSTEM GENERATION

• END control re<:ord ·· indicates the end of the system
initializer portion

• SLM control re<:ord ·· indicates the beginn ing of the
VORTEX nucleus portion

• VORTEX nucleus routines ·· control records and object
modules to be converted in to the VORTEX nucleus

• £NO control record ·· indicates the end of the VORTEX
nucleus portion

• Control- Re<:ord CTL,21 .. specifies the end of the
nucleus table module. All user data and programs to be
included in this module must precede the CTL,21
control record.

• All programs contained on the SGL between the CTL,21
and CTL,PART0003 control records are included in the
nucleus program module

••

•

•
•

•

SLM.INIT

System lnitializer

low Memory Package

END

SLM, VORTEX II

All TOF Control Records

Global FC8s

V$0P8f and V$JP6f Buffers

l / 0 Controller Table

CTL,21

IOC Program

RTE Services

RTE System Tasks

RTE Functions

~ 110 Drivers

END

CTL,P ART0003

.

.
NOTE:

• - Alphanumeric
control record

Figure 15-3. VORTEX Nucleus

Control record CTL,PART0003 terminates part 3 of the
SGL

Part 4 of the SGL comprises all system rout ines and
control records required to build load-module libraries on
the RMO. The library processor converts these inputs into
load modules, catalogs them. and enters them. into the
foreground . background. and user libraries. The library
processor is followed by groups of control records and
object modules, with each group forming a load-module
package (LMP).

15-3

----~-· ... -- --·--·- - ... -.. ~-~ -..------·. ··~ -___ .,._ , ·- -· ·-----·----··~---.... ---- -----·-····-··- - ·--·· -----------··----····-...._ , .. . , _ __,~ - --·· .. · ·--------~--------·

SYSTEM GENERATION

15-4

REQUIRED

(fOREGROUND)

SYSTEM

TASKS

REQUIRED

(BACKGROUND)

SYSTEM

TASKS

- -- - -

• -

• -

.•.. ..

... ,.

• ..

• -
• , .

SLM,FV$0PC

TID. VSOPCM,2.8.106

V$0PCM Program

ESB

END

SLM,FJCDUM

TID,JCDUMP,2.0 .106

JCOUMP Program

ESB

END

SLM,FRAZI I
.

TID,RAZ1 ,2,0.106 I

RAZI Program

ESB
.

END

SLM,BJCP

TID,JCP, l.O, l05

Job-Control Processor

ESB

END I

SLM,BLMGEN

TID.LMGEN.l,O, lOS

Load·Module Generator

ESB

END

SLM,BFMAIN

TID,FMAIN.l.O,lOS

File Maintenance

ESB

END

SLM,BSMAIN

TID,SMAIN,l ,O, lOS I
System Maintenance

ESB

END

NOTE:

.. ' ..

,, ..•

... ..

• ,.

• .,.

.. ...

.. ...

... .•.

.

SLM,BFORT

TID.FORT, l.O. lOS

FORTRAN Compiler

ESB

END

SLM,BCONC

TID.CONC, l ,O,lOS

Concordance Program

ESB

END

SLM,BIOUTI

TID,IOUTIL,l ,O, lOS

It O Utility Program

ESB

END

SLM,BSEOIT

TID. SED IT ,1,0 ,105

Source Editor

ESB

END

SLM,BDASMR

TID.OASMR,l .O. l OS

OAS MR Assembler

ESB

END

• - Alphanumeric control record

Fieure 15-4. Load-Module Library

-.... .

I

Control record CTL,PART0004 terminates part 4 of the
SGL

Part 5 of the SGL contains the resident-task configurator
portion of SGEN. The configurator copies specified load
modules from the foreground library into the VORTEX
nucleus. i.e., makes them resident tasks.

Control record CTL,ENDOFSGl terminates the SGL.

15.3 KEY-IN LOADER

SGEN is initiated on a new or tnt ttalized system by
inputting the key·in loader through the CPU. The key· in

SYSTEM GENERATION

loader loads the VORTEX bootstrap loader ~ part 1 of the
SGL). Key-in loaders are available for loading from
magnetic tape, punched cards. or dtsc pack. The requtred
key-in loader IS input to memory through the CPU console
and then executed to load the VORTEX bootstrap loader.

Automatic bootstrap loader (ABL): In systems equ tpped
with an A8L. load the key·in loader from the tnput medtum
into memory starting wtth address 000000. To execute the
key-in loader. clear the A. B. X. I. and P regtsters: then
press RESET. set STEPt RUN to RUN. and press START.

See hardware handbook for details on manual loading.

Table 15-1. SGEN Key-In Loaders

RMD RMD
70-76x3 Address Magnetic Tape Card Reader 70-76x0

000000 010030 010054 0 10064 010064
000001 001C10 00 1010 140066 140066
000002 001114 001114 001010 001010
000003 040030 040054 001114 001114
000004 001000 001 000 001000 001000
000005 000012 000012 000012 000012
000006 000000 000000 000000 000000
000007 006010 0060 10 006010 006010
000010 000300 000300 000300 000300
000011 050027 050053 050065 050065
000012 10412-Z a~;o 1002zz 1004zz 1004zz
000013 1 ooou 'iitQ•IO 002000 1002zz 010063
00001 4 001000 000046 010063 110072
000015 000021 1025zz 110072 1031zz
000016 1025zz~~)O 002000 1031 zz 1002zz
000017 057027 000046 101uzz 10ldzz
000020 040027 1026zz 000023 000023
000021 10 1ll~~;;:v b 004044 001000 001000
000022 000016 004444 0000 17 000017
000023 10 12u. -:N 'V 057053 1025zz 1025zz .
000024 100006 005001 150071 150071
000025 001000 040053 001016 001016
000026 000021 004450 000012 000012
000027 - ooo5oo 002000 1000yy 1000yy
000030 - 177742 000046 1003zz 500~

000031 1026zz 010064 010064
000032 004044 110072 110072
000033 004450 103lzz 1031Z2
000034 002000 010065 010065
000035 000046 103lxx 103lxx
000036 1022Z2 120070 120070
000037 057053 005012 005012
000040 040053 1031yy 103lyy
000041 067053 1000xx 1000xx
000042 040053 lOOOzz 1000Z2
000043 001000 1014zz 1014zz
000044 000013 000043 000043
000045 101 1 zz 1025zz 1025Z2
000046 000000 150071 150071
000047 1 016zz 001016 001016
000050 100006 000012 000012 -
000051 001000 060065 060065
000052 000045 040064 040064
000053 000500 010064 010064

15·5

... ·-·"-·-·~ -.. - ----------- - -· .. ,,, __________ ,. __ ,.,_ .. __ ,. ~ -· ·--- --·--·-- ·- - · ------------ · - ·- ·- ·-- --- .. - ··---.... .,-. ··-· ·-·- -·-·-·-· ,.__ -

SYSTEM GENERATION

Table 15·1. SGEN Key-In Loaders (continued)

RMO RMD
Address Magnetic Tape Card Reader 70·76x0 70-7613

where

000054
000055

000056
000057
000060
000061
000062
000063
000064
000065
000066
000067
000070
000071
000072

xx • even SIC address
yy • odd SIC address
zz • device address

u - RMD unit number in Sense Instruction
u - 0 for unit 0
u • 1 for unit 1

Note: To SGEN VORTEX II VNO from magnetic tape or
cards, change bootstrap location 2 from 1106 to 1114; if
from RMO, change location 3 from 1106 to 1114.

15.4 SGEN 1/0 INTERROGATION

Upon successful loading of the bootstrap loader and 1/0
interrogation, the OC unit outputs the message

IO INTBRROGA~ION

after which the SGEN peripherals are specified by inputting
on the OC unit the five l/0 directives:

•
•
•

•

•

OIR Specify SGEN directive input unit
LIB Specify SGL input unit
Al T Specify SGL modification input unit
SYS Specify VORTEX system generation

output unit
LIS Specify user communication and

list output unit

These directives can be input in any· order. SGEN will
continue to request l / 0 device assignments until valid ones
have been made for all five functions.

SGEN drivers are loaded from the SGEN driver library
according to the specifications of the SGEN l / 0 directives.
Errors or problems with reading the drivers will cause the
applicable error messages (Appendix A.15) to be output.

The general form of a SGEN l/0 directive is

function • driver,device.bic

15-6

177742 140067 140067
001016 001016
100006 100006
050064 050064
040063 040063
001000 001000

100006 100006
000001 000001
000001 000001
000500 000500
000037 000037
000060 000060
000074 000074
007760 007760

OvOOOO wwOOOO

v - RMO untt number in unit Select Instruction
v a 0 for unit 0
v • 4 for unit 1

d • RMD drive number (0·3)
ww - drive (bits 15-14) ! platter (bit 13)

(i.e. , platter 1 drive 0 . 02)

where

function

driver

device

bic

MTcuA

LPcuA

LPcuB

LPcuO

LPcuK

CRcuA

CPcuA

PTcuA

TYcuA

DcuAl

DcuA2

OcuA5

DcuB

is one of the directive nam~s given
above

is one of the driver names given below

is the hardware device address

is the SIC address .

Type of Device

Magnetic-tape unit

Line Printer

Line Printer

Statos 31
Statos 33, 41 or 42

Card reader

Card punch

Paper-tape
read/punch

Teletype or CRT

Rotating memory

Rotating memory

Rotating memory

Rotating memory

Model Numbers

70-7100

70-6701

70-6602

70-6200

70-6320

70-6100,
70-6104

70-7702

70-7703

620-49

70-7600,
70-7610

·- - - -· ··- --- ----- - ·- ----- ·- -·-

(

r
•

'

15.4 PATCH IMAGE FILE FORMAT

The control directives .DUMP, .APND, and .HIST use the patch
image file for building and listing patches. The patch image file
must meet the following criteria:

• The file is supplied by the user prior to its first use
and must reside in the system foreground

library. The f ile name must be PTCHIM.

• The file must be large enough to hold all the
patches that are to be made on an automatic
basis. Each patch image record is 120 words in
length and can hold 40 patch entries.

Each patch entry consists of a triplet with the following

contents:

Word

1
2
3

Contents

Effective change address
Original contents of that address
New contents of that location

In order to indicate that a patch image file is valid, the first entry
in the patch image file consists of a triplet containing a change
address value and new contents value of -2 (0177776). This
entry is placed in the file by the execution of either the .DUMP
or .APND control directives. The user does not supply this

entry. The final triplet of the patch image file consists of a
change address and new contents of -1 (01 77777). This entry
is placed in the file by the termination of the .DUMP or .APND
control directives. The user does not supply this entry.

Virtual nucleus overlay (VNO) control blocks may be embedded
in the patch image file. The format of the triplet consists of
word 1 = -3. word 2 = 0. and word 3 = the TIDB address of the
TIDB associated with the VNO task being patched. These VNO
control triplets are not listed by the .HIST control direct1ve and

are not supplied by the user.

The second word of a patch image triplet is set by the executi on
of the foreground program BTPTCH znd hence. will remain
zero until BTPTCH is executed. This means that requesting a
history of the patch image file prior to the execution of BTPTCH
will produce a history output with invalid entries for the
original contents of the effective location.

Note: Terminating PATCH while under the control of .DUMP
or .APND with the OPCOM directive ;ABORT may leave the
patch image file without the proper terminator. Always
terminate these directives with another PATCH control

direct1ve.

15.5 PATCH DIRECTIVE LOG FILE FORMAT

The PATCH d1rective log file must reside on the foreground
library and have the name "PDLOG". All permanent PATCH

directives (both contro l and change) are logged to this file in
"card image" format (one record per logical sector). Each entry

·-· -~·-· - - --. ~ ·- • • • • --· # .. -·· ··--·· - .. ---~ · •

THE PATCH PROGR A M

is also date and time stamped (ASCII format) in character
positions 81 through 100. The last logged record is always
followed by an EOF. Invocation of PATCH opens the log file (no
rewind) and the .EXIT directive closes the file (with update}. If
the PATCH program is aborted instead of using the .EXIT
command. the EOF pointer in the log file will not be updated
and all patch activity logging for the PATCH session will be lost.

The .HIST d1rective may be used to list the contents of the log
file. However. any ASCII list program (such as IOUTIL) may also
be used. The contents of the PATCH log file may be used as
inputs to the PATCH program for the target system or another
identical system. The log fi le does not contain any patch
directives that were rejected under .SLCT or .MANL control
(except for the actual .CNTL directive). any temporary patches
made under .PTCH control . any .HIST .. EXIT, or .READ
directives. and thus is not a complete image of the enti re
"universal" patch directives.

The size of the PATCH directive log file. PDLOG. depends on
the extimated patching of the target system. A minimum of
500 records is recommended. Using multiple change values
on a single change directive will help conserve space on the log
file. When a new file is created. it should be initialized with the
directive RECD,INIT prior to performing any patch activity on
the system.

15.6 BTPTCH INTERFACE

The PATCH program has a companion program. BTPTCH.
which utilizes the patch image fil e to perform patches without
user intervention. This program resides on the system
foreground library and can be schedu led in one of two ways.

• If SSW1 is not set before or during the execut ion
of the VORTEX system bootstrap. BTPTCH is set
act1ve when the system is activated.

• BTPTCH can be schedu led with the OPCOM
;SCHED directive any time aher the patch image

file is created.

The first method allows a user to apply selected patches.
without the need to enter patches with the . PTCH control
directive. whenever the VORTEX system is loaded. The seconrl
method allows the user to select when the patches are to be
made and make the patches without using the conversational
mode of PATCH. The second method also allows the use of
multiple patch image fi les by using FMAIN to rename the
appropriate fil es. and then scheduling BTPTCH. When using
BTPTCH by the second method. the user should ensure that
the patches are not already in the nucleus. If the patches are in
the nucleus. the second entry (original contentsj of the history
image will reflect the new value mstead of the original value,
since BTPTCH updates this entry every time it is executed.

BTPTCH does not have any effect on patches made to a load
module file under control of the .LIBR directive.

BTPTCH opens and rewinds the patch image file. PTCHIM.
checks for a valid file indicator. and performs the patches using

15-7

- --· ... ·- _. .. -· -- -· ------·

THE PATCH PROGRAM

•

the patch entry triplets until the end of image indicator is
encountered. When patching is completed. the message

PATCHING COMPLEtED

is output to the OC logical unit. If the patch image fi le is empty
or does not contain a valid file indicator. no patching is done

and the previous message is output.

If the file PTCHIM does not exist. the messge

FILE PTCHIM NOT FOUND

is output to the OC logical unit and BTPTCH terminates. If the
patch image file is invalid. BTPTCH terminates and does not
output any message to the OC logical unit.

15.7 SYSTEM GENERATION INTERFACE

PATCH and its associated programs are included in the
standard VORTEX II system generation libraries. If these
programs are to be in the system. no user action is required. If
these programs are not to be in the system . then they may be
deleted by the SYSGEN directives:

DEL.VSSTWO
LOE.PATCH.BTPTCH

Note: The nucleus module of PATCH consists of less than
040 w ords. The PATCH program and its related programs may
be required if a user requires a patch supplied by Sperry
Univac. Hence, these modules shou ld not be deleted unless it
is absolutely necessary.

When patch ing the VORTEX nucleus. it may be necessary to
jump out of in -l ine code to make a patch. Such changes requ1 re
that the system have an area included within the nucleus
region that may be used as a patch space. The SYSGEN DEF
direct1ve:

DEF.VSPTSZ.n

where :

n
Is the number of words to be reserved

can be used to guarantee that a patch space of n words is
! ava'ilable. The patch space is created at the bonom of the

VORTEX nucleus. just above the VNO region. The first word is
specified by the CL name VSPSTR. The last word is specified by
the CL name VSPEND. Neither PATCH nor its related tasks

T limit the user to this area. Hovwver. the CL pointers are

available to the user,

The word associated 'with VSPSTR is always set (by system
generation) to the bonom of a memory page • 1 and hence. the
size of the reserved patch area may exceed the size requested
with the DEF directive. If nucleus memory space is critical. care
should be taken that the requested patch area size does not
cause the nucleus to overflow into another memory page.

15-8

If the DEF directive is not used. the CL label VSPSTR is still
generated and a patch space is created down to the bottom of

the current last page of the nucleus. This means that some
patch space may exist even if the DEF directive is not used. Of
course. the size of this space may vary from 0 to 511 words .

In order to have all patch activity logged. the file PDLOG must
be created on the foreground library. If this f ile is not created.
PATCH will automatically disable directive logging.

15.8 PATCHING CONSIDERATIONS

The following considerations should be made when using the
PATCH program:

Update 8

• Whenever possible. the CL directory name
should be used instead of an actual numeric
number. Th1s allows a patch· to functron

independently of a particular system generat1on

• When mak ing patches that cause a Jump out of
the system code. it is advisable to create the
patch area first and then patch in the Jump to the
patch area

• When patching in a jump. make sure that both
the JUmp instruction and the jump address are
entered in the same PATCH change direct ive.

• Make patches while the system is in as calm and
predictable state as poss ible to avo1d poss1ble
complicat ions while entering a patch

• Use the .BASE directive to set a base symbol
value when making patches to an external
subroutine of a load module fi le.

• When entering more than one patch that is
making use of the patch space generated by
system generation. make sure that the patch
space contents do not overlap. PATCH does not
handle this for the user.

• Special diagnostic patches can be kept on an
alternate foreground library f ile which can be

renamed. When these patches are needed.
BTPTCH can be schedu led without using the
conversational mode of PATCH.

• When an asterisk is used as a defined base
symbol. it should be remembered that the
astensk w ill keep its base value until it is reset.
This may affect other patches.

• When a VNO task is to be patched. its entry
name should be used- -never its address or other

task labels.

• The PATCH directive stream is in "card image"
format and thus can be modified or added to by
using any suitable line editor. Th1s allows the

. . - __ . __ ,_ .. __ _

•

'

user to revise patches and add new patches to
the system patch stream. When adding new

patches. be sure to include the approprrate
.CNTL d irectives and terminate the patches wi~h
a .EXIT d irective if the patch stream is to be used

under control of .SLCT or .MANL.

If the load module to be patched contains an l
ORG statement. all addresses after the ORG
value are absolute (A appears in the type field of

the listing instead of R). When a relocatable
address is specified to PATCH w ith a base

symbol. the address provided is the address
minus 01000. For example. to patch in an

address that is absolute due to an ORG
statement the user can enter

· +addr -1 000

If this format is not followed. the PATCH program
will generate too large a value for the address
upon adding 0 1000 to the supplied value. The
user can specify an absolute address by not

using a base symbol ; in this case. the PATCH
program will not add a relocation value to the
supplied address.

When a load module is to be patched, the user
should note that load map addresses are
absolute (they already include a relocation

value l The PATCH program adds in a relocation
value to any address that includes a base symbol

and to address expressions that start a change
line. When load map addresses are used. the
appropriate relocation value must be subtracted

out of the provided address (for instance. the
address for start of overlays. size of the overlay
directory. etc) i

15.9 ERROR MESSAGES

Error messages output by PATCH have the following format

PTnn. error

where:

nn
Is the error number

error
Is a brief descnptor of the error
•

In addition to the PTnn error messages. VORTEX may also

generate an 1010 PATCH diagnost •c 1f a d~rectory search error
is caused

All error messages and error recovery are directed to the SO
log1cal unit Aher postmg the appropnate error message.
PATCH outputs the prom pt pp · and awaus the appropnate
recovery. Two opt1ons ex1st for error recovery:

Update B

. --- •· -- . -·-- -··-... -···---... - --------- --·-· ·-. ·- .. _ . . - ----------

THE PATCH PROGRAM

• Enter a C on the SO log1cal unit to mdicate that
the directive in error is to be reread from the 0 1

log•cal unit . Repos•tionmg is automatrc for
magnetic tape and RMD devices.

• Enter the entire corrected directrve on the SO
log ical unit. Upon completion of processing of
the directive entered from SO. subsequent
direct ives are read from the 01 log1cal unit .

An error recovery directive may be either a control d1rect1ve or
a change directive regardless of the type of directive that
caused the error.

PATCH error messages are listed in Appendix A.1 5.

15.10 EXAMPLES

The following examples illustrate severa l methods of mal<.mg a
patch to an operational VORTEX system

Example 1 : Define (reserve) a patch area of 300 (decimal)
words in the VORTEX nucleus region .

Enter the followmg system generat1on d1rect1ve:

DEF, VSPTSZ.300

Example 2: Change the nucleus locations 200.201 .204. and
206 to contain 1.2 :3. and 4 respectively

Enter the followmg PATCH directives:

.PTCH
200.1 .2 ... 3 .. 4

Example 3: Continue the patch address rnto the next change
directive.

The change d~rect1ves might be·

200.1 .2 .. . 3 .. 4
,5 ,6 .7

(This would mod1fy locat1ons 200.201 .204.206.207.210. and
21 1)

Example 4 : Place a patch in the nucleus program PROG 1 to
add a bit test after location 0123 relative to the start of the

program The code at location 0124 and 0 1 25 must be saved
and currently contams a LOA 4.X and a STA 9 .8 . Use the patch
area created by system generation to hold the patch The entry
name PROG 1 is located at the first loaded locat•on of the
program PROG 1

The PATCH d1rect1ves m1ght be.

.PTCH
VSPSTR.645 1 .PROG1 • 1 45.15004.5601 1
1 OOO.PROG1 .. 126
PROG1 +1 24.1 OOO.VSPSTR

.EXIT

, 5 9

-· -- - -··- - · --·~--------·-- _. ·-- ...

THE PATCH PROGRAM

Example: Make the same patch as in example 4 but use the
instruction mnemonics.

The change directives might be:

.PTCH
VSPSTR.BTA0+11,PROG1+145,LOAX+4

,STAB+11 ,JMP.PROG1+126
PROG1+124,JMP.VSPSTR
.EXIT

Example 6 : Change locations 0245 and 0246 of the load
module file on logical unit 25 (no protect key), filename TEST to
a jump to program location 0310.

The PATCH directives might be:

. LIBR
25 .. TEST
245.JMP.*+310
.EXIT

Example 7 : Make another change to the program TEST in
example 6 which places a jump at location 0276 to location 6
of the external subroutine SUBR that is linked with TEST on the
load module file.

From the LMGEN map it is determined that subroutine SUBR is
loaded at relative location 0544. The patch in example 6 has
already been made.

15-10 Update B

The follow ing PATCH directives might be used:

.UBR
25 .. TEST
276,JMP. •+544+6

or

.BASE
$=544
.UBR
25 .. TEST
276,JMP,S+6

Example 8 : Display the current BASE value.

The PATCH directives would be: •

.BASE

Example 9: Change locat ion 0245 of the OPCOM overlay
OPPRO to contain the relative address of 0247.

The PATCH directives m1ght be:

.UBR
Fl,F.V$0PCM.OPPRO
245,*+247
.EXIT

,
'

I

DcuC

DcuD

DcuE

Type of Device

Rotating memory• •

Rotating memory• •

Rotating memory• •

Rotating memory• •

Model Numbers

70.7500

70-7510

70-7520,
70-7530

70-7603

• where c stands for the controller number (0. 1. 2, or 3),

and u for the unit number (0. 1. 2. or 3).

• • Always specify t~e first master unit of a particular device

as being on controller 0, the second master unit on
controller 1, etc. Regardless of the controller specifications
in the EQP directives, different controller numbers must be
used for each RMD type. (i.e., if using MT 1 on DA 12.
specify MTOOA). If the system has a 7600 and 7500 RMD,

then specify DOOS and DlOC.

• • • Unit number u is a value in the range 0 through 7.

15.4.1 OIR (Directive-Input Unit)
Directive

This directive specifies the unit from which all SGEN
directives (section 15.5) . will be input (DIR unit). The

directive has the general form

where

DIR • driver,device.bic

driver

device

bic

is one o1 the driver names MTcum,
TYcum, PTcum, or CRcum (m is a model
code, as given in 15.4)

is the hardware device address

is the SIC address (used on ly, and then
optionally, for magnetic-tape units)

Example: Specify Teletype unit 0 having model code A
and hardware device address 01 as the DIR unit.

DIR•TYOOA,01

15.4.2 LIB (Library-Input Unit) Directives

This directive specifies the unit from which the SGL will be
input (LIB unit). The directive has the general form

where

LIB a driver,device,bic

driver

device

is one of the dr iver names MTcum,
CRcum, or Dcum

is the hardware device address

bic

SYSTEM GENERATION

is the SIC address (used only, and then
optionally, for magnetic-tape units)
mandatory for RMDs

Example: Specify magnetic-tape unit 0 having model code

A and hardware device address 010 (no SIC) as the LIB
unit.

LIB•MTOOA,010

15.4.3 Al T (library-Modification
Input Unit) Directive

This directive specifies the unit from which object modules
that modify the SGL will be input (Al T unit) . The directive
has the general form

AL T • driver,device,bic

where

driver

device

bic

is one of the driver names MT cum,
PT cum or CRcum

is the hardware device address

is the SIC address (used only, and then
optionally, for magnetic-tape units)

Example: Specify card reader unit 0 having model code A
and hardware device address 030 as the Al T unit.

ALT•CROOA,030

15.4.4 SYS (System-Generation
Output Unit) Directive

This directive specifies the RMO(s) onto which the VORTEX
system will be generated. with the VORTEX nucleus on the
first such device specified. Up to 16 RMOs can be specified.
The directive has the general form

SYS • driverl ,devicel,bicl ;driver2.device2.
bic2; .. . ;drivern. devicen, bien

where

driver

device

bic

is an RMD driver name such as Ocum.
where c - controller, u - unit. and m
- model code

is the hardware device address of the
corresponding driver

is the mandatory address of the
applicable SIC or STC

All RMOs specified in the EQP directives (15.5.2) must be
specified in the SYS directive. Subsequent SYS directives
will overlay the pr~ious directives. If all RMDs cannot be
specified in a single line, then the directive must be

15-7

-·- ·- -----· ------ - - ----·· -- ~- .. - ---- .~----· ---·- ~-·- .. --------- ·--·--- -.... --------~-----------· - .

SYSTEM GENERATION

terminated with a colon. This will cause the next input line
to be treated as a continuation of the previous SYS
directive. The additional input lines begin with the dri~er
parameter. The directive "SYS • " must not be used on
additional SYS directive input lines.

Examples: Specify RMD 0 having model code B. hardware
device address 016, and BIC address 020 as the SYS unit.

SYS•OOOB,016,020

Specify two SYS units: RMO 0 with model code A2,
hardware device address 014, and BIC address 020; and
RMO 0 with model code B. hardware device address 015,
and BIC address 022.

A system with 70-7500 (620·34)or 70·7510 (620-35) disc
requires a special formatting program, described in section
18.4. This program formats disc packs and performs bad·
track analysis.

SYS•OOOA2,014,020;D10B,015,022

15.4.5 LIS Directive

This LIS (User-Communication and List Output Unit)
directive specifies the unit that will be used for user
communication and list output (LIS unit). The directive has
the general form

where

LIS • driver,device

driver

device

is one of the driver names TYcum or
LPcum

is the hardware device address

The following information appears on the LIS unit:

a. Error messaees

b. Load map of each load module

c. Directives input through the OIR unit (section 15.4.1)

d . Partition table for each system RMO

To suppress listing during system generation set "map" to
zero in EOR directive.

Example: Specify line printer 0 having model code A and
hardware device address 035 as the LIS unit.

LIS•LPOOA,035

15.5 SGEN Directive Processing

Upon successful loading of the SGEN directive processor,
the OC and LIS (section 15.4.5) units output the message

, 5-8

INPUT DIRECTIVES

to indicate that SGEN is ready to accept SGEN directives
from the DIR unit (section 15.4.1).

•

The SGEN directives described in this section can be input
in any order, except for the EOR directive (section 15.5.14),
which is input last to terminate SGEN directive input.

In cases of conflicting data. SGEN treats the last informa·
tion input as the correct data.

Errors cause the output of the applicable error messages
(Appendix A.l5).

The general form of an SGEN directive is

aaaa,p(l)xp(2)x ... xp(n)

where

aaaa

each p(n)

each x

IS a three or four character SGEN
directive name

is a parameter as
specifications for
directives

indicated in the
the individual

is a punctuation mark as indicated in
the specifications for the individual
directives

In contrast to most VORTEX system d irect ives, the
punctuation in SGEN directives is exactly as defined in the
specifications for the individual directives, although blanks
are allowed between parameters, i.e., before or after
punctuation marks. SGEN directives begin in column 1 and
can contain up to 80 characters.

SGEN directives are listed on the OC and LIS units.

15.5.1 MRY (Memory) Directive

This directive specifies the memory-related parameters of
SGEN. It has the general form

MRY,memory,common,size G V75] ,npg,lpg

where

memory

common

.
SIZe

V75

is the extent of the memory area
available to VORTEX (minimum 12K -
027777)

is the extent (0 or positive value) of the
foreground blank-common area

is the total physical memory available to
VORTEX in units of 1024 (K) words.
The minimum is 32 and the maximum
is 1024

specifies that the system is to be

generated 1or a V75 system

- ·-·- -- -------- - ----- --- -- - -------------------

.
c

•
1

npg

lpg

specifies the total number of 512·
word physical pages required by all
Virtual Nucleus Overlay tasks (see
VOL directive). npg will be con
verted to a sector count and added
to the nucleus image size on RMD.
npg may affect the track number
of the initial RMD part it ion.

specifies the last or highest num·
bered physical page to be assigned
to Virtual Nucleus Overlay tasks.
VNO tasks normally occupy consec
utively numbered physical pages
ending with the page specified by
lpg. However, the sequent ial
assignment of physical pages to
VNO tasks may be altered by the
presence of unavailable pages (see
the NMRY d irect ive). If the page
specified by lpg is within unavail·
able pages. then assignment of
pages to VNO tasks will begin
immediately below the unavailable pages.
If the page specified by lpg is
greater than the highest unavail ·

able page. but insufficient to
provide the number of consecutive
pages specified by npg, then
pages above and immediately below
the unava1lable pages will be
assigned to VNO tasks. lpg
must be 64 :> and ~ (2*
size - 1).

Examples: Specify a 64K memory for VORTEX with a
foreground blank common area of 0200 words. Save
locat ions 075777 to 077777 of the first 32K memory for
AID IJ. Fifteen physical pages are reserved for VNO tasks.
with page 127 being the highest physical page to be
occupied by the VNO tasks.

MRY,075777 ,0200,64,, 15,127

Specify an 18,000-word memory for a VORTEX V75 system
with no foreground blank-common area.

MRY, 18000,0,V75

15.5.2 EQP (Equipment) Directive

This directive defines the peripheral architecture of the
system. It has the general form

EOP ,name, address, number ,bic,retry ,alg,mul

-· --·. ,_ .. _______.._ __ ~-------- ~ - . . -·· _____ .. .,_. __ _ - . . '

where

name

address

number

bic

retry

alg

mul

SYSTEM GENERATION

is the mnemonic for a peripheral
controller

is the controller device address (01
through 077 inclusive)

is the !)Umber (1 through 4, inclusive) of
peripheral units attached to the
controller

is the SIC or STC address (0 if no SIC
applies)

is the number (0 to 99, inclusive) of
retries to be attempted by the l / 0 driver
when an error is encountered

is the 110 algonthm value (0 'S a 1 g <
1) as a decimal fraction (see sect1on
14.4.3. word 7 for the calculat1on of
th1s value). NOTE: th1s is an opt1onal
parameter and is not needed unless a
change is destred 1n the algonthm value.
If th1s parameter is to be used on non·
process 110 controller tables. the subJect
controller table must conta1n CTIOA as
an entry name

is the multiplexor address (th1s
parameter applies only to process I t O
drivers)

Acceptable mnemonics for name are:

• MTnm Magnetic-tape un1t
• LPnm Line printer
• CRnm Card reader
• PTnm Paper· tape reader 1 punch

• TYnm Teletype
• CTnm CRT dev1ce
• CPnm Card Punch

• Dnm RMO

• Cl Process input
• co Process output
• wcs Writable control store

• SPnm Spool Un1t
• MXnm Commun 1ca t 10n Multiplexor
• TCnm Psuedo TCM

Where n is the controller number (0, 1. 2. or 3). and m tS

the model code (table 15-2).

Controller tables are arranged accord ing to the pnonty
levels of their task -ident ificat ion blocks (TI 08s). On any
given level. the tables are arranged 1n the 1nput sequence
of the corresponding EQP d1rect1ves. Oev1ce-spec lficat1on
table (DST) entnes are unsorted.

1 S-9

. ··-

SYSTEM GENERATION

The following order is suggested for peripheral controllers:

a. RMOs

b. Operator·communication (OC) device (sect ron 17)

c. Magnetic· tape units

d. Other units

For the 70-760317013 disc. a special DEF directive must be
included for each EQP directive used for this model disc.

OEF,V$0SKx,y

where

X is the controller number (0·3)

y is a bit pattern in bits 0·7. Bit(n)
corresponds to platter(n). The bit is
set if the corresponding platter is
part of a dual platter driver.

Example: A system contains two 70·76x3 controllers with
the following drives attached:

Controller 0 has 1 dual unit and 3 single units
Controller 1 has 2 dual units, and 1 single

unit, and 1 dual unit

the corresponding directives would be:

EQP,DOF,016,5,020,5
D!F,VSDSK0,3
EQP,D1F,017,7,022,5
DEF,VSDSK1 ,01 57

Table 15·2. Model Codes for VORTEX Peripherals

TYnA

CTnA

CRnA

CPnA

MTnA

MXnA

DnA

DnB

, 5-10

Model Number

70-6104
(620-08)

70-6401

70-6200
(620-22,

620-25)

70-6201
(620-27)

70-7100
(620-30)
(620-31A)
(620-318)
(620-31C)
70-7102
(620-32)
70-7103
(620-32A)

70-520X (520X)
70-521X

620-47,·48,-49
70-770X
(620-43C,-43D)

70-7600
(620-36)
70-7610
(620-37)

Description

ASR Teletype Model 33
ASR Teletype Model 35

CRT keyboard / display

Card reader: 300 or 600 cards/minute

Card punch: 35 cards/ minute

Magnetic·tape: 9-track, 800 bpi, 25 ips

Magnetic-tape: 7-track, 200-556 bpi
Magnetic-tape: 7-track, 200-800 bpi
Magnetic-tape: 7-track, 556-800 bpi
Magnetic tape: 9-track, 800 bpi, 37 ips

Slave unit with 620-32

Data communications multiplexor

Rotating memory
Rotating memory

•

Rotating memory

Rotating memory

- - - - ---

\

·--· . · ~ . ----···· -· ·····- ~----·--.. ---

Table 15-2. Model Codes for VORTEX Peripherals
(continued)

Code

DnC

DnD

OnE

DnF

PTnA

LPnA

LPnB

LPnD

LPnE

LPnG

LPnH

LPnJ

LPnK

LPnl

LPnM

LPnN

ClnA

COn A

wcs

Model Number

70-7500
(620-35)

70-7510
(620-34)

70-7520
70-7530

70-7603
70-7613

70-6320
(620-55A)

(620·51A)

70-6701
(620-77)

70-6701

70-6602

70-6603
(620-76)

70-6603
(42,51.71)

70-7702

70-66xx

See sec. 19

See sec. 19

70-4002

Description

Rotating memory

Rotating memory

Rotating memory

Rotating Memory

Paper· tape reader/ punch

Line Printer

Line printer with print
buffer 24 characters

Statcs-31 Printer / plotter

Statos-31. w1th 041 option

Statos-31 with 042 opt ion

Statos-31 with 041.
051, 052 options

Statos-33

Statos41 w ith 145
character generator

Statos41 with 144
character generator

Statos 42 with 146
character generator

States 42 with 144
character generator

Process I/O

Process 110

Writable control store

Note: Other peripheral devices can be added to the
system by creating an EQP directive with a unique phsyical
unit name for the device. A controller table with the same
name is then added to the VORTEX nucleus by an ADD
directive (section 15.5.5).

, __ ~·-·· .. -'"' "' ' . -·-

SYSTEM GENERATION

15·11

SYSTEM GENERATION

Example: Oe1ine a system containing one model B RMO,
one model A magnetic- tape unit. one mode A card reader,
one model A line printer, one model A Teletype, one model
A high-speed paper-tape reader/punch, one model A card
punch. and a writable control store.

EQP,DOB,016,1,020,3
EQP,MTOA,010,1,022,5
EQP,CROA,030,1,024,0
EQP,LPOA,035,1,024,0
EQP,TYOA,01,1,0,0
EQP,PTOA,037,1,0,0
EQP,CPOA,031,1,022,0
EQP,WCS,074,1,0,0

The paper width of each Statos on the system must be
defined through use of the SGEN OEF directive (see section
15.5.14). This directive has the form

DEF,V$SWnm,c

where

n is the controller number (0. 1 or 2)

m is the Statos model code (O.E.G.H.J,K.L, M. or N)

c is the width code. defined as

0 -
1 -
2 -
3 -

8· 112-inch
11-inch
14·7 / 8-inch
22-inch

4
5
6
7

• single buffer 8·1/ 2 inch
- single buffer 11 inch
- single buffer 14·718 inch
• single buffer 22 inch

Example: Specify a SGEN directive for model G States on
controller 1 with 14·718- inch width paper

DBl',VSSW1G,2

15.5.3 PRT (Partition) Directive

This directive specifies the size . ~.Jf each partition on each
·• RMO. It has the general form ·

where

15· 12

PRT ,De up(1), s(1),k(1); Dcup(2),s(2), k(2): .. . ;
Dcup(n),s(n),k(n)

Dcup(n)

s(n)

k(n)

is the name of the RMO partition with c
being the number (0, 1, 2. or 3) of the
controller, u the unit number (0, 1, 2. or
3). and p the partition letter (A through
T, inclusive)

is the number (octal or decimal) of
tracks in the partition. The maximum
partition size on any RMO is 32,768
sectors

'

is the protection code (single
alphanumeric character including $) for
the partition, or • if the partition is
unprotected

At least s1x paritions are required for the system rotating .
memory. PRT directives are required for every part ition on
every RMO in the system. While the partition specifications
can appear in any order, the set of partitions specified for
each RMO must comprise a contiguous group. e.g .. the
sequence OOOA. OOOC, 0000. 0008 is valid, but the
sequence OOOA, OOOC, 0000, OOOE constitutes an error.

NOTE: If the LIB unit is an RMO, the PRT directives for
that RMO are ignored and the existing PST for the RMO is
used. However. even though the PRT directives are ignored
the RMO unit should have at least one PRT directive. RAZI
may be used to partition the RMO unit after system
generation. If the RMO SGL is to be saved, it must be
replaced with a scratch pack prior to executing RAZI for
that unit.

Logical units 101 through 106 inclusive have preassigned
protection codes. Do not attempt to change these codes.

Preassigned Protection Codes
Unit Number 101 102 103 104 105 106

F Code S B C 0 E

Total number of tracks of all partitions and the capacity of
VORTEX nucleus must not exceed rotating-memory track
capacity. The nucleus size is equal to the memory size
div1ded by the product of the number of sectors per track
and 120. Tracks not included by a PRT direct1ve are not
accessable to the system.

Example: Specify the following partitions on two RMOs.

RMD No. Partition Tracks Protectton Code

0 A 2
0 B 20
0 c 25
0 0 40
0 E 8
0 F 18
0 G 18
0 H 66
1 A 40
1 B 60
1 c 50
1 0 52

PRT,DOOA,2,C;DOOB,20,F
PRT,DOOC,25,E;DOOD,40,D;OOOE,8,S
PRT,DOOF,18B;DOOG,18,•;DOOH,66,•
PRT,D01D,52,X;D01C,SO,•
PRT,D01A,40,•;D01B,60,R

15.5.4 ASN (Assign) Directive

c
F
E
D
s
B
None
None
None
R
None
X

This directive assigns logical units to physical devices. It
has the general form

ASN,Iun(l) • dev(l),/un(2) • dev(2), ... ,/un(n) • dev(n)

- - - - - - ------ - '~ --·

' (

(

..•... . ,
' •

where each

lun(n) is a logical unit number (1 through 100
or 107 through 255, inclusive) that can
be followed optionally by a two-character
logical unit name e.g. , 107:Y7

dev(n) is a four-character physical-device
name. e.g. , TYOO.DOOG (table 17·1)

If a new assignment specifies the same logical unit as a
previous assignment. the old one is replaced and is no
longer valid. All logical units for wh1ch physical device
assignments are not explicitly made are considered dummy
units, except preassigned.

SYSTEM GENERATION

Restrictions: Any attempt to chang·e one of the preset
logical unit name:number or name:number:part1tion rela·
tionships given in table 15-3 will cause an error to be
flagged. Table 15·4 indicates the permiss ible physical unit
assignments for the first 12 logical units (with PO
automatically set equal to SS for normal assembler
operation).

Example: Specify physical device ass ignments for logical
units 1-12. inclusive, 107 and 108. and 180 and 181, where
the last two units have. in addition to their numbers, two
character names.

ASN, 1•TY00 ,2•CR00,3 •TY01 ,4•CROO
ASN,S•LP00,6•MT00,7•DOOI,8•DOOG
ASN,9•DOOH, 10•DOOG, 11•TY00,12•LPOO
ASN , 107•LPOO, 108•CROO
ASN, 180:S6•MTOO, 181 :S8•MT01

Table 15-3. Preset Logical-Unit Assignments

Preset logical-unit name/number relationships:

oc =- 1 LO ,., 5 GO = 9 13 "" RPG IV READ

Sl ,.. 2 81 z:: 6 PO = 10 14 = RPG IV PUNCH

so .. 3 80 .. 7 Dl = 11 15 - RPG IV PRINT

Pt =- 4 ss - 8 DO = 12

Preset logical-unit /RMO-partition relationships:

logical-Unit
Name

CL
FL
8L
OM
cu
sw

Logical-Unit
Number

103
106
105
104
101
102

Partition
Name

DOOA
D008
DOOC
DOOD
DOOE
DOOF

Optional logical-unit/RMD-partition relationships

GO 9 DOOG
ss 8 DOOH
PO 10 DOOH
81 6 DOOI
80 7 DOOI

1. CU file must be as large as background task's largest
part in central memory at one time (24K assumed
above).

2. SW file must be as large as the largest single task
Including overlays (24K assumed above).

3. GO file must be somewhat larger than the largest task
run in load·and-go mode (24K assumed). If system is

Pro tee tion
Key

c
F
E
D
s
8

none
none
none
none
none

Minimum
VORTEX Sector
Allocation

025 (see note 5)
0106

01135
0417
0310 (See note 1)
0310 (See note 2)

0310 (See note 3)
vanes
0515 (See note 4)
vanes
vanes

foreground only or all tasks will be entered in libraries
before execution. this partition may be eliminated.

4. PO file must be large enough for source images of the ·
largest task to be assembled or compiled. Source
images are stored 3 card images per sector (1000
cards assumed above). If this function is assigned to
magnetic tape, this partition may be eliminated.

5. There are 12 entries per 2 sectors. Number of sectors
equals numbers of entry + 6.

15-13

SYSTEM GENERATION

Table 15-4. Permissible logical-Unit Assignments

Permissible Physical Units

Logical Units
Teletype
or CRT

RMD or
MT

1

2

3

4

5

6

7

8

9

10

11

12

(OC)

(SI)

(SO)

(PI)

(LO)

(BI)

(80)

(SS)

(GO)

(PO)

(0 1)

(00)

15.5.5 ADD (SGL Addition) Directive

X

X

X

X

X

X

X

This directive specifies the SGL control records and object
modules after which new control records and/ or object
modules are to be added during nucleus generat ion. It has
the general form

AOO,p(1),p(2) •. ... p(n)

where each p(n) is the name of a control record or an
object module after which new items are to be added.

When the name of a specified item is read from the SGL.
the program is processed and the message

ADD AFTER p(n)
READY

appears on the OC untt. User response on the OC unit is
either

if an item is to be added from the SGEN AL T input unit
(section 15.4 .3), or

LIB

if processing from the SGL is to continue. If the former
response is used, SGEN reads an object module from the

15-14

X

X

X

X

X

X

X

X

line
Printer

X

X

Other
Output
(CP,PT)

X

X

Other
Input
(PT,CR)

X

X

X

X

AL T unit and adds it to the SGL. then prints on the OC unit
the message

READY

to which the user again responds with either AL T or LIB on
the OC unit.

Example: Specify that 1tems are to be added during
nucleus generation after control records or object modules
named PROGl , PROG2. and PROG3.

ADD,PROG1,PROG2,PROG3

15.5.6 REP (SGL Replacement) Directive

This directive specifies the SGL control records and obtect
modules to be replaced with new control records and / or
object modules during nucleus generation. It has the
general form

REP,p(1),p(2), ... ,p(n)

where each p(n) is the name of a control record or an
object module to be replaced.

- - ·- --- - . - - - ---

(
•

(
•

f

•

When the name of the specified item is read from the SGL.
the i tem is skipped and the message

REPLACE p(n)
READY

appears on the OC untt. User response on the OC umt ts
ei ther

if an item is to be replaced by one on the SGEN Al T input

unit (section 15.4 .3), or

LIB

if processing from the SGL is to continue. If the former
response is used, SGEN reads an object module from the
Al T unit and replaces p(n) with 1t in the SGL. then prints
on the OC unit the message

READY

to which the user agam responds wtth ei ther AL T or LIB on
the OC unit.

Example: Specify . that control records or object modules
named PROGA and PROG8 are to be replaced dur ing
nucleus generat1on .

REP,PROGA,PROGB

o Al T has a specia l form which allows searching the Al T
device for a specif ied program. The form is

ALT,name

where

name is one to six alphanumeric characters
represen ting the TITLE name of the
model to be added

name can either specify an object module name or a TOF
record name. When speci fied , Al T w ill search the alternate
unit from its current position for the specified module. If an
EOF is encountered prior to finding the module an SG08
diagnostic occurs. To cause the alternate un1t to rewind
prior to each search, set Sense Switch 1 prior to entering
the AL T directive. If no module name is specified. AL T will
load from i ts current position.

For example, to search for and load an object module
named PGRM 1. specify

ALT,PGRM1

To search for and load a TOF direct ive for TBLPOF. speci fy
ALT.TSLPOF

SYSTEM GENERATION

Systems using the line printer driver model code 8 require
a DEF direct ive to define the size in characters of the first
print buffer. The format is

where

OEF, V$LPcB,x

c IS the controller number

X is the printer buffer SIZe
(in characters)

15.5.7 DEL (SGL Deletion) Directive

Th is direct1ve specifies the SGL control records and ob1ect
modules that are to be deleted durmg nucleus generatiOn. ! t
has the general form

OEl,p(1). p(2) p (n)

where each p(n) 1s the name of a control r ecord or an

obJect module to be deleted.

WhP.n the name of a speclf1ed 1tem tS read from the SGL.
the i tem is skipped and processtng contmues wtth the
following control record or object module.

Example: Delete. dunng nucieus generat1on. all control
records and object modules named PROG 1 and PROG2.

DEL,PROG1,PROG2

15.5.8 LAO (Library Addition) Directive

This direct ive specifies the SGL load·module package after
which new load-module packages are to be added dunng
library generation. It has the genera l form

LAO,p(1), p(2), ... ,p (n)

where each p(n) is the name of a load·module package
from an SLM control direct ive after which new i tems are to

be added.

When the name of a spec1fied load·module package is read
from the SGL. the program ts processed and the message

ADD AFTER p(n)
READY

appears on the OC unit. User response on the OC un tt 1s
e1ther

ALT

i f a load-module package is to be added from the SGEN
ALT input unit (section 15.4.3), or

LIB

15-15

··· · ··-· ·---·-- ·---------· · ·"" • • • -R- ·--~------ - ··--- ·-- 00 - - - - ·--·· 0 ~---·· .. -..-.~· ··· --··~·· 0 0 0 · ·~-"""--·--·-•00•0oO- · - -·· ·---·-··---- - ··---- ··- - - -· 0 ... o 0'0

SYSTEM GENERATION

if processing from the SGL is to continue. If the former
response is used. SGEN reads a module from the AL T un1t
and adds it to the library. then prints on the OC unit the
message

READY

to which the user again responds with either AL T or LIB on
the OC unit.

Example: Spec1fy that items are to be added. dur~ng
library generation, after load-module packages named
PROG 1. PROG2. and PROG3.

LAD,PROG1,PROG2,PROG3

15.5.9 LRE (Library Replacement) Directive

This directive specifies the SGL load-module package to be
replaced with new load-module packages during library
generation. It has the general form

LRE,p(1), p(2), ... , p(n)

where each p(n) is the name of a load·module package
from an SLM control directive to be replaced.

When the name of the specified load-module package is
read from the SGL, the program is skipped and the
message ·

REPLACE p(n)
READY

appears on the OC untt. User response on the OC unit is
either

ALT

if module is to be replaced by one on the SGEN AL T input
unit (section 15.4.3), or

LIB

if processing from the SGL is to continue. If the former
response is used, SGEN reads a module from the Al T unit

and replaces p(n) with it in the SGL. then prints on the OC
unit the message

READY
.

to which the user again responds with either Al Tor LIB on
the OC unit.

Example: Specify that load-module packages named
PROGA or PROGB are to be replaced during library
generation.

LRE,PROGA,PROGB

•

15-16

15.5.10 LDE (library Deletion) Directive

This directive specifies the SGL load·module packages that
are to be deleted during library generation. It has the
general form

LDE,p(l),p(2) ,p(n)

where each p(n) is the name of a load-module package
from an SLM control directive to be deleted.

When the name of a specified load-module package is read
from the SGL, the load-module package is skipped and
processing continues with the following load module.

Example: Delete, during l ibrary generation, all load·
module packages named PROGl and PROG2.

LDE,PROG1,PROG2

15.5.11 PIM (Priority Interrupt) Directive

This directive defines the interrupt-system architecture by
specifying the number of priority interrupt modules (PIMs)
in the system, the interrupt levels to be enabled at system·
initialization time, and the interrupts to be manipulated by
user-<:oded interrupt handlers. The PIM directive has the
general form

PIM,p(1),q(1),r(1),s(1);p(2),q(2). r (2),

where each

p(n)

q(n)

r(n)

s(n)

s(2); ... :p(n),q(n),r (n).s(n)

is an interrupt line number comprising
two octal digits with the first being the
PIM number and the second the line
number within the PIM. The two diljits
must be preceded by a zero, e.g .•
002,011

is the name (1 to 6 characters) of the
task handling the interrupt. The name
format is TBxx..u, where xxxx is the
hardware code name. For s(n) - 2, q(n)
is the interrupt processor entry name.

is the content of the interrupt event
word in octal notation (see appendix F
for nonzero values for standard
hardware)

is 0 for an interrupt using the common
interrupt-handler or 1 for a directly
connected interrupt option 1. or 2 for
directly connected interrupt option 2.
(Described in section 14.4.5)

' •

• .

If an interrupt line is to use the common interrupt handler,
a TIDB is generated for the related interrupt-processing
routine. which can be in the VORTEX nucleus or in the
foreground librar-y.

If an interrupt line is to have a direct connection, the
interrupt-processing routine must be added to the VORTEX
nucleus. Failure to do so results in an error message.

Example: Specify two interrupt lines, one handled by the
common interrupt handler, the other directly connected,
option 1.

PIM,002,TBMTOA,00001,0;003,TBLPOB,01,1

Note: The only interrupt used by the magnetic-tape l / 0
driver is the mot ion complete.

Note: The interrupt event word , r(n) for a Teletype or CRT
(Teletype compatible) must be set to 01 for input interrupt
on 02 for output interrupt.

15.5.12 CLK (Clock) Directive

This directive specifies the values of all parameters related
to the operation of the real -time clock. It has the general
form

ClK,ctock,counter ,interrupt

where

clock is the number of microseconds in the
basic clock interval

counter

interrupt

is the number of microseconds in the
free-running counter increment period.
Stored in V$FREE but not used 1n
VORTEX II. Its nominal value is 100.

is the number of milliseconds in the user
interrupt interval: This value must be
between 5 and 50.

The value of interrupt, when not a multiple of 5 millisec·
onds, is increased to the next multiple of 5 milliseconds;
e. g., if interrupt is 31, the interrupt interval is 35
milliseconds.

Example: Specify a basic clock interval of 100 microsec·
onds, a free-running counter rate of 100 microseconds. and
a user interrupt interval of 20 milliseconds.

C LK , 1 0 0 , 1 0 0 , 2 0

For models V77-200/ 400 running on 60 cycle power. the
clock directives must be:

CLK.100.100.15
OEF. V$CKCT. 3

SYSTEM GENERATION

For models V77-200/ 400 runn ing on 50 cycle power:

CLK.1 00. 100.20
OEF. VSCKCT. 3

15.5.13 TSK (Foreground Task) Directive

This directive specifies the tasks in the foreground library
that are to be made resident tasks. It has the general form

TSK, task(1). task(2)• task(n)

where each task(n) is the name of an RMO foreground
library task that is to be made a resident task.

If this directive is input as part of a full system generation,
the names are those of tasks that will be built on the
foreground library during the library-building phase (sec·
tion 15.7).

Resident TIDBs are not created for the tasks defined on
the TSK directives to be resident tasks. A TIDB is created
each time a resident task is specified on a SCHED call. A
resident TIDB is created at system generation for each task
specified on a TDF directive .

These tasks are treated as user mode tasks and are not
executed in map 0. Hence, I 10 instructions cannot be
executed by these tasks. Resident map 0 tasks are added
to the nucleus by adding the programs on the SGL between
the CTL,21 and CTL.PART003 control records. Section
14.4.8 describes resident tasks.

Example: Specify that foreground-library tasks RT A. RTB,
and RTC be made resident tasks.

TSK,RTA,RTB,RTC

15.5.14 DEF (Define External) Directive

This directive enters a name with a corresponding absolute
value into the SGEN loader tables and the CL library. It has
the general form

OEF,name(l), value(l);name(2). value(2); ... ;name(n)
value(n)

Modules processed by either SGEN or LMGEN can refer
ence any names defined by the OEF directive

Example: Use the DEF directive for the VTAM LCB address
in CTMXOA. The entry in CTMXOA for the LCB address
might be

EXT
DATA

VSLCWO
VSLCWO

Then, the followmg DEF directive would define the LCB to
be at location 075000

DEF,VSLCW0,075000

15-17

~ ~----~----______ ,.. _________ - _ --·- -~ ~-···----· ·----- .. --- ~ .. -... -- - . __ , --- _, ·-·· .. - -~ ~~-- ... -....... - , --~ .. ,_ . .._. -· ... ,..- - ---- -....... ·-·· - . --- ···-· -........ ---· - ·-· -· ··-·---~- - · -............ _ -~··--

SYSTEM GENERATION

15.5.15 EDR (End Redefinition)
Directive

This directive, which must be the last SGEN directive.
specifies all special system-parameters. or terminates
SGEN directive input. If only a redefinition of resident tasks
is required, the EDR directive is of the form

EDR,R

but if a full SGEN is necessary, the EDR directive has the
general form

EDR,S, tidb,stack,part,list,kpun,map.analysis

where

tidb

stack

part

list

kpun

map

analysis

is the number (01 through 0777.
inclusive) of 25-word empty Tl DBS
allocated

is the size (0 through 037777, inclusive)
of the storage and reentry stack
allocation, which is equal to the number
of words per reentrant subroutine
multiplied by the number of levels
calling the subroutine summed overall
subroutines

is the maximum number (6 through 20,
inclusive) of partitions on an RMD in the
system

is the number of lines per page for the
list output, with typical values of 44 for
the line printer and 61 for the Teletype

is 26 for 026 keypunch Hollerith code. or
29 for 029 code

is L if map information is to be listed, or
0 if it is to be suppressed

is 0 or blank if a complete bad track
analysis is desired on all RMD's, or 1 if
the bad track tables from the last SGEN
are to be reused. If this parameter is
omitted, a full analysis is performed. A
value of 1 may be entered only when an
analysis has been made on a previous
SGEN effort. If SGL is on slave disc,
bypass (SET 1) the bad track analysis.

Bad-track or RMO partitioning analysis is performed
following input of the EDR directive. When that process is
complete, the VORTEX nucleus or resident-task processor is
loaded into main memory.

Examples: Specify redefinit ion of resident tasks only.

EOR,R

Specify full system generation with no stack area, a
maximum of five partitions per RMD, 44 lines per page on

15-18

•

the list output, 026 keypunch mode, and a list map. and a
new bad track analysis is wanted.

EOR , S,O,O,S,q4,26,L

Specify full system generation with 0500 addresses in the
stack area. a maximum of 20 partitions per RMO, 30 lines
per page on the list output. 029 keypunch mode. and sup
pres.sion of the list map. Assume bad track tables from
the last SGEN are still good. and reuse them.

EOR,S,O,OS00,20,30,29,0,1

15.5.16 VOL (Virtual Overlay Task Definition)
Directive

This directive specifies the tasks which are to be made into
Virtual Nucleus Overlays. YNO tasks are loaded into
memory by the VORTEX system initializer. Just before a
YNO task executes, the physical pages it occupies are
output to the mapping hardware and the VNO task is then
executed as other nucleus-resident tasks are. The directive
form is

VOL, taskname(l), taskname(2), •.. , taskname(n)

where

taskname(i) is a 1 to 8 alphanumeric
character name associated
with a ta:•. k. It must match
the nam' : in the first
record of an object module
on the SGL

The following restrictions apply to VNO tasks:

a. DCBs, FCBs, and 110 buffers used by VNO tasks may
not be part of the task. They must reside in map zero
logical memory during 110 transfer.

b. Jumps to VNO tasks may not be performed without
first having mapped the task into map zero logical
memory.

c. VNO tasks may not exceed 31 pages 1n size or the
capacity of the nucleus.

d. The task must be attached to a resident TIDB and the
taskname attached to that TIDB (see the TOF
directive).

Example: Specify the 110 drivers VZDC, VSTYA, YZMTA,
and VZLPA as VNO tasks.

VOL,VZDC,VSTYA,VZMTA,VZLPA

15.5.17 NMRY (No Memory) Directive

This directive specifies the physical pages of memory which
are made unavailable for use by the VORTEX II operating
system. The general form is

NMPY ,pgnu(l),nu(1);pgnu(2),nu(2); .•• :pgnu(n),nu(n)

--------- - · - - ------- ·--

'

\

where

pgnu(i) specifies the starting
phys1cal page number of
a block o f pages to be
made unavailable to
the operatmg system.
pgnu must be ~
64 and s the highest
numbered page in the
system . .

nu(i) specifies the number of
consecut1ve pages start ·
ing at pgnu(i) wh ich
are to be made unavai l·
able.

Example: Declare pages 64 through 127 and 192 through
255 as unavailable.

NKRY,64,64;192,64

15.5.18 Required Directives

VORTEX system including writable control store (WCS)
must include an EQP.WCS .. . d1rective.

Systems without a WCS must delete certa in WCS support
software modules. In particular. the followmg d irect1ves
should be included to delete the MIUTIL and WCSRLD
tasks :

LDE,FMIUTI
LDE,FWCSRL

In addition. the following d irectives may opt ionally be used
to delete the remaining mtcroprogrammmg support mod·
ules. These modules may be used on systems without WCS.
but their deletion will make extra space ava ilable rn the
background library. The follow1ng d1rect1ves delete the
microprogram assembler and the simulator:

LDE,BMIDAS
LDE,BKICSI

Systems including VTAM requ ire a DEF directive to define
the LcB address. The format is:

DEF. VSLcWn. aaaaaa where n is the DCM number
and aaaaaa is the LcB address for the OCM

Systems including a states pnnter · plotter requ ire a DEF
directive to <lefine the bed width . The format is

DEF. V$SWcm.a
where c - controlle; number

m - model code

a "" 0 for 8· 112 inches 4 - with SUB
l for 11 inches 5 - with SUB
2 for 14-518 inches 6 - with SUB
3 for 22 inches 7 =- with SUB

SYSTEM GENERATIO N

15.5.19 CPU Directive

This directive (optional) specif ies the type of V70 series
CPU (central) processing unit) that the system contains.
Th is direct1ve is used in conjunction with the SGEN2
controi directi ve of the same name to select the proper
version of multi version modules. The general form of the
directive is.

CPU,n

where

.
n is defined as:

1 = (default) for all V71 through V76 and V77-600.
2 = fo r V77 -200/ 400 CPUs.

Example. Specify the system as a V77-400

CPU . 2

15.6 BUILDING THE VORTEX NUCLEUS

If a full system generat ion has been requested by the S
form of an EDR directive. the nucleus processor is loaded
upon completion of direct1ve processing. Once loaded. the
nucleus processor reads the SGL routines and builds the
VORTEX nucleus as specified by the routines and the SGEN
control records.

There are three SGEN control records used 1n building the
nucleus:

• SLM Start load module
• TDF Build task -Ident i fication block
• MEM Default extra memory pages
• EN D End of nucleus l1brary

Normally these control records are used only to replace
ex1st ing SGL control records.

VORTEX nucleus processmg consists of the automat ic
reading of control records and object modules from the
SGL. and. according to the specifications made by SGEN
directives, either ignoring the i tem or incorporat ing 1t into
the VORTEX nucleus. The only manual operations are the
addition and replacement of object modules during system
generation. In these cases. follow the procedures given 1n
the ADD and REP directives respectively.

15.6.1 SLM (Start Load Module)
Direct ive

Th1s directive specifies the beginning of a load module. lts
presence indicates the beg1nning of the system 1n1tJalizer or
VORTEX nucleus. The directive has the general form

SLM,name

15-19

·--~~-------.. - - M & ... _.._ __ _ ,____ , - - - -- - - - ---·- · 0 ~, ••-• - o•••-•o o o oO •0 00 _ ,.. __ _.._.. o'o - .. <0 0 0 0 Ooo o - __ -.. - -· 0 -·-• •• ~-- - 0 00 o 0 ...

SYSTEM GENERATION

where name is the name of the load module that follows the
directive.

Example: Indicate the beginning of the VORTEX nucleus.

SLM,VORTEX

15.6.2 TDF (Build Task-Identification Block)
Directive

Th1s directive specifies all parameters necessary to build a
task·identification block in the VORTEX nucleus. It has the
general form

where

name

exec

TOF,name,exec,ctrl,stat,level [V75 J , taskname

is the name (1 to 6 alphanumeric
characters) given to the TIDB for linking
purposes

is the name (1 to 6 alphanumeric
characters) associated with the
execution address of the task

ctrl

stat

levi

V75

Example:

is the name (1 to 6 alphanumeric
characters) of the controller table
required for Teletype and CRT
process1ng tasks. or is 0 for any other
task

is the 16·bit TIDB status word where the
settings of the individual bits have the
significance shown in table 15·5

is the priority level of the related tasks

if present. indicates a V75 system

Define a foreground resident task PROGl
on priority level 10 to execute on boot.

TDF,TIDB,P1,PROG1,0,05400, 10,V75

The TDF directive causes a resident TIDB to be created for
the specified task. The task itself may or may not be a
resident task, as defined by the status word (stat). See the
TSK directive for generation of resident tasks without
resident TIDB.

If the taskname parameter is specified, then the VNO task
and associated TIDB must be resident.

Table 15·5. TIOB Status-Word Bits

15·20

Bit When Set Indicates

15 Interrupt suspended

Explanation

The task is suspended during the
processing of a higher·priority
task. The contents of volatile
registers are stored in Tl DB
words 12·16 (interrupt stack).

---------------~----------------~---------

14 Task suspended

13 Task aborted

12 Task exited

The task is suspended because
of l/0 or because it is wait·
ing to be activated by an inter·
rupt, time delay, or another
task. The task is activated
whenever this bit is zero. or
if TIOB word 3 has an inter·
rupt pending and the task ex·
pects the interrupt.

The task is not activated. All
stacked 110 is aborted, but
currently active 110 is com·
pleted.

The task is not activated. All
stacked and currently active
110 is completed.

-~-~---------~------------------~-~--------

-· -- ·- ·--- - - .- -------- - - - . •

('
l

·.

SYSTEM GENERATION

Table 15-5. TIOB Status-Word Bits (cont inued)

Bit When Set Indicates

1 1 Tl 08 resident

10 Task resident

9 Foreground task

Explanation

The Tl 08 (drivers. task -
interrupt processors. resident
tasks, and time-scheduled tasks)
is resident and not released
when the task is aborted or -
exited.

The task IS res;dent and not
released when aborted or
exited.

The task IS 10 protected fore
ground.

-------------------------------~-----------
8

7

6

Check-point flag

Task scheduled by
time increment

Time delay active

Set: may be check -potnted by a lower
priority task.

Reset: may not be check pomted by a
lower priority task.

The task becomes nonsuspended
when a specified time interval
is reached.

The clock decrements the time
counter that. upon reachmg zero.
clears bit 14.

5 Task checkpointed

4 Error 1n task

3 Task interrupt expected

The background task is check
pointed and suspended. 1/0 ;s
not activated.

The task contains an error that
will cause an error message to
be output.

A task 1nterrupt IS expected.

15.6.3 END Directive

2

1

0

Overlay task ·

Task-schedule th1s task

Task searched. allo
cated and loaded

This directive indicates the end of the system initializer or
the VORTEX nucleus. It has the form

END

Example: Indicate the end of the system initializer.

END

The task contams overlays.

The scheduling task 1s suspended
until the scheduled task ex1ts
or aborts.

The task IS loaded 1n memory and
is ready for execut1on.

15.6.4 MEM Directive

This ootional direct ive performs the same function as the
same directive in LMGEN (see section 6.2.7). The directive
has the general form

MEM.n

15-21

------------·-·---~-·-·-"·--·------- _____ ... ____ ~""-·---..-..........__ .. _ ~--·--·--··--....... _ ,_ ~ .~. ~- _., ____________ -. ___ ,_._ ____
·-- ---~~ - ~-~-· ·-·- ·-·--··---------···" ---· ·--· ··~- -

SYSTEM GENERATION

where

n is the number of extra pages desired.

This directive. if used. must appear after the last ESB
directive and before the END directive.

15.6.5 Memory Parity Considerations
(V70/V77 -600)

Memory parity is not a supported feature under VORTEX
on the V70 series and V774300 processor. For those sys
tems which require the use of memory parity. the user
may write his own memory-parity service routine (see
section 14) and add 1t to the system. The following are
considerations when using memory parity.

• The memory parity interrupt trap must be an even
modulo-8 address. e.g .. 010. 0100. 0110. 0200. etc. The
exact address depends upon the number of PIMs in
the system. For example. a system with 3 PIMs can
use any of the following addresses: 0160, 0170. 0200,
0230, 0240, 0250, 0260, 0270. or 010. If 4 PIMs are
in the system, then any of the above addresses except
for 0160 and 0170 may be used. In the case where all
8 PIMs are used. the only available address will be
010.

• For trap addresses between 0100 and 0277. the SGEN
PIM directive. specifying the direct connect option.
may be used to link up the trap address witt- the user's
memory-parity routine. If a trap address of 01 0 is used,
the PIM directive cannot be used. In this case. the
easiest means of linking the trap address and the
service routine would be to modify the " low-core"
module (V$LMEMBK) to specify an EXT to the user's
interrupt service routine.

• No enable/disable memory parity instructions are
required and hence no changes are required for the
system initializer.

15.6.6 Memory Parity Considerations
(V77-200/400)

Memory parity detection is a supported feature under
VORTEX on the V77 model 200/400. A parity error is re
ported by an EX35 error message (see appendix 11 .2).
The map tracking register contains the address being
fetched when the parity error occurred. Memory parity is
a feature of the SYSGEN selection parameter.

15.7 BUILDING THE SYSTEM LIBRARIES AND
RESIDENT TASK CONFIGURATION

If a full system generation has been requested by the S
form of an EDR directive (section 15.5.15), the library
generator is loaded upon completion of nucleus processing.
If only reconfiguration of resident tasks has been requested

15-22

(R form of the EDR directive), the resident task configura
tor is loaded immediately after directive processing.

A load module is a logically complete task or operation that
can be executed by the VORTEX system in foreground or
background. It resides in the foreground or background
library. or in the user library. load modules are constructed
from sets of binary object modules interspersed with
alphanumeric control records. The control records indicate
the beginning and end of data for incorporation into each
load module, and specify certain parameters to the load
module. The group of object modules and control records
used to construct a load module is called a load-module
package (LMP). Figure 15-5 shows an LMP for a load
module without overlays. and figure 15-6 shows an LMP for
a load module with overlays. Each LMP runs from a SLM
control record to an END control record . and includes all
modules and records between the SLM and END.

-.,

SLM.name 1

TIO.name2,. . .

Object Modules Comprising
the Root Segement

ESB

END

NOTE: • - Alphanumeric control record

.

Figure 15-5. Load Module l.ickage for Module Without

Overlays

There are five SGEN control records used in b~tlding the
library:

• SLM Start load module
• TID Task-ident ification block specification
• OVL Overlay
• ESB End of segment
• END

libnry processing consists of the automatic reading of
control records and object modules from the SGL. and
construction of the library from these inputs. The only
manual operations are the addition and replacement of
load modules. In these cases. follow the procedures given in
sections 15.5.8 and 15.5.9, respectively.

Resident-tasx configuration takes place upon completion of
library processing. All tasks specified by TSK directives
(section 15. 5.13) are copied from the foreground library
into the VORTEX nucleus, thus becoming resident tasks. To
change the resident-task configuration of a previously
generated system. input the TSK directives followed by the
R form of the EOR directive (section 15.5.15). thus
bypassing nucleus and library processing and allowing the
resident-task configurator to alter the existing system.
Note: If a specified program is not found in the
foreground library, configuration continues, but an appro
priate message is output.

---· ------- - ----------- - - - ..

. . . . '

15.7.1 SLM (Start LMP) Directive

This directive indicates the start of an LMP. It has the
general form

SLM,name

where name is the name of the LMP that begins with this
directive.

Example: Indicate the start of the LMP named ABC.

SLM,ABC

15.7.2 TID (TIDB Specification)
Directive

This directive contains the parameters necessary for the
generation of the task-identificat ion block required for each
generated load module. The Tl 0 directive has the general
form

where

TID,name.mode,ovly ,lun

name

mode

ovly

is the name (one to six alphanumeric
characters) of the task

is 1 if the task is a background task, or 2
if it is a foreground task

is the number of overlay segments, or 0
if the task has no overlay segments,
(note that the value 1 is invalid)

lun is the number of the logical unit onto
which the task is to be cataloged

Once a Tl 0 directive is input and processed, object
modules are input, processed, and output to the specified
logical unit until the ESB directive (section 15.7.4) is found.

Examples: Specify a TIOB for a task PROGl without
overlays for cataloging on the Bl unit (105).

TID,PROG1,1 ,0,105

Specify a TIOB for the task PROG2 with four overlay
segments for cataloging on an FL unit (1 06).

TID,PROG2,2,4,106

SYSTEM GENERATION

Note: If a specified program is not found in the foreground
library, configuration continues. but an appropriate mes
sage is output.

NOTE=

0

•o

SLM,namel

TID,name2, . . .

Object Modules Comprising
the Root Segment

ESB

OVL.name3,. . .

. . .
~ Ob1ect Modules Compr~srng
t the First Overlay Segment

:: I ESB

0 OVL.name4, ...

Object Modules Comprising
the Second Overlay Segment

Object Modules Comprising
the nth Overlay Segment

0 ESB

END

• - Alphanumeric control record

.

i

I
I

.

Figure 15-6. Load Module Package for Module With
Overlays

15.7.3 OVL (Overlay) Directive

This directive indicates the beginning of an overlay
segment. The OVL directive has the general form

OVL,segname

where segname is the name (one to six alphanumeric
characters) of the overlay segment.

Example: Indicate the beginning of the overlay segment
SINE.

OVL,SINB

15·23

. - ~--·-· · ... - -... -· -·-- 0-- -·-· ··· · ·~ · . ----·---··--··------~--··--..._.,.-·-·~- ···-· .. . - -···-·-- · - -·-- - -·-- - -· ... _ -·- ··- , ___ - .. - --- -·k·- ... ·-- ·-- "<-·-- · ---··. -------- --·

SYSTEM GENERATION

15.7.4 ESB (End Segment) Directive

This directive indicates the end of a segment. i.e .. that all
object modules have been loaded and processed. The
directive has the form

ESS

The ESB directive causes the searching of the Cl library,
which was generated during nucleus processing, to satisfy
undefined externals.

The ESB directive concludes both root segments (following
TID, section 15.7.2) and overlay segments (following OVL.
section 15.7.3) of a load module.

Example: Indicate the end of a segment.

ESB

15.7.5 END (End library) Directive

This directive indicates the end of load-module generation.
It has the form

END

Example: Specify the end of load-module generation.

END

15.8 SYSTEM INITJALIZATlON AND
OUTPUT LISTINGS

Upon completion of load-module processing, SGEN outputs
on the OC and ~IS units the message

VORTEX SYSTEM READY

•

The system initializer and VORTEX nucleus are then loaded
into memory, the initializer is executed to initialize the
system, and the nucleus is executed to begin system
operation. If writable control store is present in the system,
the following messages will appear on the OC device at this
time:

I010,WCSRLD
PILE WCSIMG NOT FOUND
WCS RELOAD ABORTED

These messages are output by the WCS reload task. In
WCS systems. this task is automatically scheduled upon
loading the system in order to restore WCS contents. To do

15-24

this, it uses the contents for WCS which were saved on a
disc file the last time WCS was loaded. At this point,
however, WCS has not yet been loaded. Thus. the reload
task cannot restore WCS and ex1ts after outputting the
above messages. At this time, the OM library should be
loaded and build on the RMD using FMAIN.

The OM library is provided as job streams as the second
through thirty-fifth files on the SGL. An EOF separates the
SGL from the OM stream. A system generation leaves

magnetic tape and card SGls prior to this EOF, thus it
must be skipped over before executing the OM job stream.
For disc SGls the OM library object modules are on the
second partition -of the disc pack (DeuS). Refer to the
VORTEX !VORTEX II Installation Manual for details.

The VORTEX system is now operating with the peripherals
in the status specified by TID control records.

If the EDR directive specified a listing, linking information
is listed on the LIS unit during nucleus processing and
library generation. Regardless of the EDR directive, RMD
and resident-task information is listed during nucleus
processing or resident-task configuration, respectively.
Figures 15-7 through 15-10 show the listing formats of load
maps for the VORTEX nucleus, the library processor, the
RMD partitions, and the resident tasks.

CORE RESIDENT LIBRARY

NAME

AAA
BBB

•

•

•

zzz

LOCATION

017285
021255

• •

•

•

075777

NONSCHEDULED TASKS

NAME

TBABC
TBDEP

•

•

•
TBXYZ

LOCATION

072620
074640

•

•

•

076400

Figure 15-7. VORTEX Nucleus Load Map

- --·- · --~---- . . ··~ - .. ----------:--------- . -- -

i

.. ~

0 -~

I'

SLM, BGTSKI

TID , JCP, 1,0,1 0 5

ESB

MOP A 032556
QRS R 000200

• • •

• • •

• • •

TUV A 032501

SLM , FGTSKI

TID, V$ 0 PCM, 2, 8 ,10 6

ES B

GHI
JKL

•

•

•

MNO

•

R

R

•

•

•
R

000010
0 00012

•

•

•

000077

Figure 15-8. Library Processor Load Map

RMD PART IT I ONING

NAME FI RST LAST
TRACK TRACK

DOOA 00 0 7 0008
DOOB 0009 0028
DOOC 00 29 00 5 3
0000 005 4 0 0 93
DO OE 0 0 9 4 0 1 0 ,
DOO P 0102 0 1 19
DOOG 01 2 0 01 3 7
DOOH 0 1 3 8 0203

001A 000 1 0 0 3 9
D01B 0040 00 99
D0 1C 010 0 0 149
0010 0 15 0 0 203

Figure 15-9. RMO Partition Listing

MEMO RY RES I DENT TASKS

NAME LOCATIONS

PROG 1 0 146 3 0
PROG2 0 146 3 0
PROG3 NOT P' OUND
PROG4 0145 0 0

Figure 15-10. Resident-Task Load Map

BAD
TRACKS

0000
0000
0000
0 000
00 0 0
0 000
0000
00 0 0

0000
0000
00 00
0 000

SYSTEM GENERATION

PAGES (OCTAL) ALLOCATED TO

0 PAGE 0 SYSTEM DATA
1 - so UNALLOCATED

5 1 - 72 NUCLEUS PROGRAM MODULE
72 - 75 NUCL EUS TABLE MODULE

75 GLOBAL FCB PAGE
75 FOREGR OUND BLANK COMMON

100 - 1 6 3 UNALLOCATED
164 - 177 VIRTUAL OVERLAY TASKS
200 - 277 UNAVAILABLE

VORTEX SYSTEM READY

Figure 15-11. Physical Memory Allocation

15.9 SYSTEM GENERATION EXAMPLES

EXAMPLE 1

Problem: Generate a VORTEX system usmg the followmg
hardware:

a. Compu ter with 32K main memory

b. A model 70-7610 (620-37) disc unrt wrth devrce address
016on BIC20

c. Teletype keyboard / pnnter

d. Card reader

e. Two buffer interlace con trollers (SICs) with device
addresses 020 and 022

f. One pr ior ity in terrupt module (PIM) With dev•ce
address 040

g. No writable control store

and having the characterist ics listed below:

a. Foreground common size - 0200

b. Storage/ reentry stack area SIZe - 0200

c. Number of disc partitions - 9

d. All eight interrupt lines connected through a common
interrupt handler 0 - 81Cl, 1 - BIC2. 2 • CR. 3 ""'
Disc seek , 4 • TY read , 5 =- TV wr i te. 6 -7
unassigned

e. One user-coded task added to the res1dent module
(PROGl)

f . JCP replaced w1th a new vers1on

g. ~e user-~oded load module added to the background
library (after LMGEN) (PROG2)

h. The syst em fi le listed after system generation

15·2 5

- · - ···---~·----·· ... - - - .• -........ - - , _ ------- -----· -· - · w _, ______ _ .. ___ _ , ,._ .. -. ·-·- · · - -" • •• -· - · ·----· • -. .. - ---·----- · - - · - - --- ·-·-

SYSTEM GENERATION

15-26

Procedure:

Step

1

2

3

4

5

6

- - - - --- --· . - - - ---

User Action

Load and execute the card
reader loader (table 15-1)

On the OC unit, input

DIR • TYOOA,Ol
LIB • CROOA,030
Al T • CROOA,030
LIS • TYOOA,Ol
SYS • OOOB,016,020

On the Teletype (DIR unit),
type

CLK, 100,100,20
MRY ,75J/77 ,0200,32
EQP,D08,016,1,020,3
EQP, TYOA,Ol, l ,O,O
EQP,CROA,030,1,022,0
PRT,OOOA,2,C;DOOB,20,F
PRT,DOOC,25,E;DOOD,40,D
PRT,DOOE,8,S;DOOF, 18,B
PRT,DOOG,l8, •;DOOH,52, •
PRT,DOOI,14, •
ASN,1 • TY00,2 • TY00,3
ASN,4 • CROO,S • TY00,6

• TYOO
• CROO

ASN,7 • 0001,8 • OOOH,9 • OOOG
ASN, 10 • OOOH, 11 • TYOO, 12 • TYOO
ASN,180 • DOOH,181 • 0001

PIM,03, TBDOB,Ol,0;02, TBCROA,Ol,O
PIM,03, TBDOB,Ol,0;04, TBTYOA,Ol,O
PIM,05, TBTYOA,02,0
TSK,PROGl
LRE,BJCP
LAD,BLMGEN
LDE,FMIUTI
LDE,FMICSI
LDE,fMIDAS
LDE,FNCSRl
EDR,S,20,0200,9,61,26,L

Load revised version of
BJCP load module in the
card reader, and on DIR
type:

All

Load the remainder of the
load module library in the
card reader, and on OIR type

LIB

Load the PROGl load module
in the card reader, and on
OIR type

- --------

SGEN Response

Loads the 1/0 interrogation
routine punched cards from
the card reader, and outputs
on the OC unit

l / 0 INTERROGATION

Loads the SGEN drivers and
directive processor, and
outputs

INPUT DIRECTIVES

Processes the directives,
partitions the disc. loads
the nucleus processor and
builds the nucleus. loads
the library processor and
builds the library until
load module JCP is encoun
tered, and outputs

REPLACE BJCP
READY

Reads and processes the
new load module. and
outputs:

READY

Processes the load mod·
ule library until the
completion of LMGEN,
and outputs

ADO AFTER BLMGEN

READY

Reads and processes PROGl ,
and outputs

SYSTEM GENERATION

Procedure: (continued)

Step

7

8

9

User Action

ALT

Load the PROG2 load module
in the card reader, and on
DIR type

ALT

Load the remainder of the
load module library in the
card reader, and on DIR type

LIB

None

EXAMPLE 2

SGEN Response

READY

Reads ai•O processes PROG2.
and outputs

READY

Processes the remainder of
the load module library,

•

copies PROGl from the FL
unit to the VORTEX nucleus.
lists the resident task in
formatiol"! . and outputs on
OC and LIS

VORTEX SYSTEM READY

Loads and initializes the
VORTEX nucleus

Problem: Replace the current resident tasks in the
foreground library with the tasks listed below in an
operational VORTEX system. Assume the SGL is on
magnetic tape unit 0. The system has a line printer and a
620·48 RMD on DA014. AL T is on the slave MT.

Procedure:

Step

1

2

3

4

User Action

PROGl
ABC
TEST
EFG

Load and execute the magnetic
tape loader (table 15·1)

On the OC unit. input

DIR a TYOOA,Ol

LIB • MTOOA,OlO
Al T • MTOlA,OlO
LIS • LPOOA,035
SYS • OOOA2,014,020

On the Teletype (DIR unit),
type

TSK,PROGl,ABC
TSK, TEST,EFG
EDR,R

None

SGEN Response

Loads the l/ 0 interrogat ion
routine from magnetic tape
and outputs from the OC unit

10 INTERROGA TJON

Loads the SGEN drivers and
directive processor, and
outputs

INPUT DIRECTIVES

Processes the directives,
loads the resident-task
processor, enters the
PROGl. ABC, TEST, and
EFG load modules from FL.
lists resident information,
and outputs on OC and LIS

VORTEX SYSTEM READY

Loads and in it ializes
the VORTEX nucleus

15-27

00 - ~-· 0 -----··- .,.......,._ __ 0 - _ , _____ -0-000 · · ------·· -·-- .. ~- !• 0 ... >.- ,,_._ -· ·- o O ... - -··-·- ····- .. 0 0 - - --- ... _ , 0 oo o <o .. 0 0 0 ·- ---- -· •-•••-~ 0 0 o . .. 00 - ··- ~'0 _ .. -0 0• M o-- - • • 0

•

SECTION 16
SYSTEM MAINTENANCE

The VORTEX system-maintenance component (SMAIN) is a
background task that mainta ins the system-generation
library (SGL). The SGL (fi gure 15·2) comprises all object
modules and their related control records required to
generate a generalized VORTEX operating syste.cn.

16.1 ORGANIZATION

SMAIN is scheduled for execution by inputting the job·
control-processor (JCP) directive / SMAIN (section 4.2.21).

LOG I CAL UNIT
SPECIFIED BY
SMAIN DIRECTIVE IN

I
OL D SYSTEM
GENERATION
LIBRARY (SGLJ

\ \

•

• •

...

5Y $ T£:.• ! NPIJ T
. 5 I)

LOG IC..:..L u~: r

SMAIN DIREC
TIVE iNPUT

,,

,

Once SMAIN IS so scheduled. loaded, and executed , SMAIN
d irectives can be mput from the Sl logical un1t to mamtam
the SGL. No processing of the SGL takes place before all
SMAIN d irectives are input and processed. Then user·
specified ob ject modules and / or control records are added.
deleted. or replaced to generate a new SGL.

SMAIN has a symbol-table area for 200 symbols at f ive
words per symbol. To increase this. input a ! MEM d~rective
(section 4.2.5). where each 512-word block will increase the
capac ity of the table by l 00 symbols.

SYS TE.•A CUTFUT
'so ,

LOGICAL vNI T

E~i<CR \IES SAG ES
AND ~~covnv

LOGICAl UNIT
SPECIF IED BY
SMAIN DIR ECT I'/E OUT

I

..
\

NEW SY SiEM
GENERATION
LIBRARY ' SGL)

\

SGL AND SMAIN
DIRECTIVE
LISTINGS

VTII-J11J

LIST OUTPU T
ILO l

LOGICAL UNii

Figure 16-1. SMAIN Block Diagram

16· 1

-· .. ·----~---------·---- ·------·· --··-·-·~--- ~-··--··-.. ----- ----~· _. __ ... _ ·• - . - ·• ~ -· ·---~-..---· ~ ·--· 04--~~------ - ·-- --· -

•

SYSTEM MAINTENANCE

INPUTS to the SMAIN comprise:

a. System-maintenance directives (section 16.2) input
through the Sllogical unit.

b. The old SGL input through the logical unit specified by
the IN directive (section 16.2.1).

c. New or replacement object modules and/or control
records input through the logical unit specified by the
ALT directive (section 16.2.3).

d. Error-recovery inputs entered via the SO logical unit.

System-maintenance directives specify both the changes to
be made in the SGL. and the logical units to be used in
making these changes. The directives are input through the
Sl logical unit and listed, when specified. on the LO logical
unit. If the Sl logical unit is a Teletype or a CRT dev1ce. the
message SM• • is output to indicate that the Sl unit is
waiting for SMAIN input.

The old SGL contains three types of records: 1) control
records and comments (ASCII), 2) the system-generation
relocatable loader and BOOTLODR (the only SGL absolute
core-image records), and 3) relocatable object modules
such as are output by the DAS MR assembler and the
FORTRAN compiler.

New or replacement object modules ancflor control records
have the same specifications as their equivalents in the old
SGL.

Error-recovery inputs are entered by the operator on the
SO logical unit to recover from errors in SMAIN operations.
Error messages applicable to this component are given
Appendix A.l6. Recovery from the type of error represented
by invatid directives or parameters is by either of the
following:

a. Input the character C on the SO unit, thus directing
SMAIN to go to the Sl unit for the next directive.

b. Input the corrected directive on the SO unit for
processing. The next SMAIN directive is then input
from the Sl unit. ·

Recovery from errors encountered while processing object
modules and / or control records is by either of the
following:

a. Input the character R on the SO unit. thus directing a
rereading and reprocessing of the last record.

b. Input the character P on the SO unit, thus directing a
rereading and reprocessing from the beginning of the
current object module or control record.

In the last two cases, repositioning is automatic if the error
involves a magnetic-tape unit or an RMO. Otherwise, such
repositioning is manual.

16·2

If recovery is not desired. input a JCP directive (section
4.2) on the SO unit to abort the SMAIN task and schedule
the JCP for execution.

OUTPUTS from the SMAIN comprise:

a. The new SGL

b. Error messages

c. The listing of the old SGL, if requested

d. Directive images

The new SGL contains object modules and control records.
It is similar in structure to the old SGL.

Error mess~ges applicable to SMAlN are output on the SO
and on LO logical units. The individual messages. errors.
and possible recovery actions are given in Appendix A.l6.

The listing of the old SGL is output. if requested, on the LO
unit. The output consists of a list of all control records and
the contents of all object modules. At the top of each page,
the standard VORTEX heading is output.

The image of an object module is represented by the
identification name of the module, the date the module
was generated, the size (1n words) of the module (0 for a
FORTRAN object module), and the external names refer·
enced by the module, in the following format:

ld-na•• date s1ze entry-naaes ezterna l-naaes

Directive images are posted onto the LO unit. thus
providing a hardcopy of the SMAIN directives for perma
nent reference.

16.1.1 Control Records

In SMAIN there are two types of control record:

a. SGL delimiters

b. Object-module delimiters

SGL delimiters divide the SGL into five parts. Each part is
separated from the following part by a control record of the
form

C'l'L,PAR'l'OOOn

where n is the number of the following part. and the SGL
itself is terminated by a control record of the form

C'l'L,ENOOP'SGL

•

Within SMAIN directives. these control records are refer·
enced in the following format

PARTOOOn
ENDOP'SGL

Object-module delimiters precede and/or follow each group
of object modules within the SGL. Each delimiter is of one
of the forms

SLM,name
TID,name
OVL,name
TDF,name
ESB
END

The control records containing a name can be referenced by
use of the name alone in SMAIN directives. These control
records and therr uses are described in the VORTEX II System
Generation User Guide/ Programmer Reference (UP-9083).

A set of object modules preceded by an SLM control record
and followed by an END control record is known as a load·
module package (LMP). To add, delete, or replace an entire
LMP, merely reference the name associated with the SLM
control record. Thus, if the directive specifies deletion and
includes the name associated with the SLM record , the
entire LMP is deleted. Additions and replacements operate
analogously.

16.1.2 Object Modules

Relocatable object -module outputs from the DAS MR
assembler and the FORTRAN compiler are described in
appendix G.

16.1.3 System-Generation Ubrary

The SGL is a collection of system programs in binary -obJect
form . and of control records in alphanumeric form. from which
a VORTEX system is generated. The structure of the SGL rs
described i n VORTEX II System Generat ion User
Guide/Programmer Reference (UP-9083).

16.2 SYSTEM-MAINTENANCE DIRECTIVES

This section describes the SMAIN directives:

•
•
•

•
•
•
•
•

IN
OUT
ALT

ADO
REP
DEL
LIST
END

Specify input logical unit
Specify output logical unit
Specify input logical
unit for new SGL items
Add items to the SGL
Replace SGL items
Delete items from the SGL
List the old SGL
End input of SMAIN directives

-

-

Update B

SYSTEM MAINTENANCE

SMAIN directives begin in column 1 and comprise
sequences of character strings having no embedded
blanks. The character strings are separated by commas (.)
or by equal signs (,..). The di recttves are free· form and
blanks are permitted between the individual character
strings of the directive, i.e., before or after commas (or
equal signs). Although not required, a period (.) is a line
terminator. Comments can be inserted after the period.

The general form of an SMAIN directive is

where

name,p(l) ,p(2), ... ,p(n)

name

each p(n)

is one of the directive names given
above (any other character string
produces an error)

. ' rs a parameter defined below under
the descrrpt ions of the individual
directives

Numerical data can be octal or decimal. Each octal number
has a leading zero.

For greater clarity rn the descriptions of the directives,
optional periods, optional blank separators between
character strings, and the optional replacement of commas
(.) by equal signs (=-)are omrtted.

Error messages applicable to SMAIN directives are given in
Appendix A. l6.

16.2.1 IN (Input Logical Unit) Directive

This directive specifies th~ logical unit from which the old
SGL is to be input. It has the general form

where

IN, lun, key, filename

tun is the name or number of the logical unit
to be used for the input of the old SGL

key

filename

is the protection code, if any, required to
address lun

is the name of the input file only when

lun is a11 RMO oartition with a dir~tory

There is no default value for tun. If it is not specified. any
attempt at SGL processing will cause an error message

output.

Once specified, the value of lun remains constant until
changed by a subsequent IN directive. Each change of lun
requires a new IN directive .

16·3

-~ - - - ' ~ • - • • • - • - • •- .. a., __ , ... •--• .. • ' - - -·- ·- -··-- ···-·--- - - -· ... ·-----· ~ ----··---·-· ·~ _ .. ___ -- -~----·- ~·- --.

SYSTEM MAINTENANCE

If lun specifies an RMD partition and no filename is specified,
the RMD is rewound to the first sector following the start of the
partition before any processing takes place.

Examples: The old SGL resides on logical un it 4, the PI
unit. Specify this unit to be the SGL input unit.

IN,il

The old SGL resides on logical unit 107, which requ ires the
protection code G. Specify this unit to be the SGL input
unit. (This is a non-directoried partition.)

IN, 1 01, G

16.2.2 OUT (Output Logical Unit) Directive

This d irective specifies the logical unit on which the new
SGL is to be output. It has the general form

OUT ,lun, key, filename

where

lun is the name or number of the logical unit
to be used for the output of the new SGL

key is the protect ion code, if any, required to
address lun

filename is the name of the output file when lun is
an RMD partition

The default value of lun is zero. When lun is zero by
specification or by default, there is no output logical unit.

Once specified, the value of lun remains constant until
changed by a subsequent OUT directive. Each change of
lun requires a new OUT directive.

If lun specif ies an RMD partition and no filename is specified,
the RMD is rewound to the f irst sector following the PST before
any processing takes place. The PST comprises one entry
defin ing the entire RMD.

Examples: Specify the PO logical unit, unit 10, to be the
output unit for the new SGL.

OUT, 10

Specify that there is to be no output logical unit.

OUT,O

.16-4

16.2.3 AL T (Alternate Logical Unit)
Directive

Tllis directive specifies the logical unit from which new
object module(s) and / or control record(s) are to be input to
the new SGL. It has the general form

where

Al T,lun,key,filename

lun is the name or number of the logical unit
to be used for the input of new items to
the SGL

key is the protection code, if any, requ ired to
address tun

filename is the name of the input file when lun is
an RMD partition

There is no default value for lun. If it is not specified, any
attempt to input new object modules or control records to
the SGL will cause an error message output.

Once specified, the value of lun remains constant until
changed by a subsequent AL T directive. Each change of lun
requires a new Al T directive.

Examples: Specify that new object modules and control
records are to be input to the SGL from the 81 logical unit
only.

ALT ,6

Make the same specification where 81 is an RMD partition
without a protection code. Use file FILEX.

ALT,BI,,FILEX

Note: SMAIN expects binary input on RMD to be packed
(two 60 word binary re.cords per secto-r)."

16.2.4 ADD Directive

This directive permits the addition of object modules and /
or control records during the generation of a new SGL, the
additions being made immediately after each of the items
specified by the parameters of the ADD directive. The
directive has the general form

ADD,p(l),p (2), . .. ,p(n)

where each p(n) is the name of an object module or control
record after which additions are to be made.

Each p(n) has the option of selecting the occurrence of
the module (they must be contiguous). The form is:

p(n)/ #

where I# is the selected occurrence of the module (pin) as
handled. For example. to add a new module after the
second occurrence of V$10C. enter:

ADO. V$ 10Ci 2

SMAIN copies object modules and control records from the
old SGL into the new SGL up to and including an i tem
specified by one of the parameters. p(n). of the ADO
directive. After thts item is copied, the message

ADD AFTER p{n)
SM**

is output to indicate that SMAIN is watting for a control
character (Y or N) to be mput on the SO logical unit.

If the control character input is Y. SMAIN adds the next
object module or control record contained on the logical
unit specified by the AL T directive (section 16.2.3). then
repeats the message requesting another control character.
Thts continues unttl the control character input is N.

If the control character input is N. SMAIN assumes the
additions at this point are complete. It continues copying
from the old SGL and outputs the message

END REPLACEMENTS

The entire process is repeated when the next item specified
by one of the parameters. p(n), of the ADD directive is
found. The items in the d irect ive need not be in the same
order as they appear on the old SGL.

E.xample: During generation of a new SGL, add object
module(s) and / or control record(s) after the old SGL
control record PART0001 and after the old SGL object
module LMP. the added items to be input from the logical
unit specified by the AL T directive. Input

ADD,PART0001,LMP

then. when the message

ADD AFTER PART000 1
SM•*

appears. input the control character Y. SMAIN then inputs
the next item on the logical unit specified by the AL T
directive, and again outputs the message

SM**

and awaits another control character. If more is to be
added here. input Y. If no more addit ions are required at
this point. input N. After receiving the N, SMA IN · outputs
the message

END REPLACEMENTS

and cont inues to read the old SGL and copy it into the new
SGL up to and including the object module LMP. SMAIN
then outputs the message

SYSTEM MAINTENANCE

ADD AFTER LMP
SM**

at wh ich time the process is repeated.

Note that PARTOOOI does not have to precede LMP in the
old SGL. If the positions of the items are reversed relative
to their order in the directtve. the order of messages will be
reversed. In any case, the items on the logical unit
specified by Al T must be in the order in which they are to
be added to the SGl.

16.2.5 REP (Replace) Directive

This d irective permt ts the replacement of object modules
and / or control records during generat ion of a new SGL.
The d irective has the genera l form

REP ,p(1),p(2) ,p(n)

where each p(n) is the name of an object module or control
record that is to be replaced.

Each p(n) has the opt ion of select ing the occurrence of
the module (they must be cont iguous). The form is:

p(n)/ #

where It is the selected occurrence of the moduie p(n) as
handled. For example . to replace all occurrences of
VSFUNC and the second occurrence of VSIOC. enter:

REP. V$FUNC. VSIOC/2

SMAIN copies object modules and control records from the
old SGL into the new SGL until it encounters one specified
by one of the parameters. p(n), of the REP directive. SMAIN
then read~ the item to be replaced, but does not copy it
into the new SGL After this is completed. the message

REPLACE p(n)
SM**

is output to indicate tha t SMAIN is wa iting for a control
character (Y or N) to be input on the SO logical unit. These
control characters operate just as in the ADO directive
(section 16.2.4), allowing the add ition (in this case,
replacement. since the parameter item was not copied into
the new SGL) of new items to the SGL. The items in the
directive need not be in the same order as they appear in
the old SGL.

E.xample: Dun ng generation of a new SGL. replace the old

SGL object module IOCTL with object modules and / or
control records from the logtcal unit specified by an AL T
direct ive (section 16.2.3). Input

REPLACE,I OCTL

16-5

·-----·--~-·~J·· ... ----- ~ -·-·- -··--- ~.-...-.--___ ... _._,. ... 4--.. ' "'- · ···· . __ _ , __ _.. ·-·· · · ,_ _ ' ····---· ·· --·--· . ·~-~ -- _ __ ___ , _ - - - ···----- ·--.-· -·- - ··-·..----·· ·-· ·· - · -·-·--· ··

SYSTEM MAINTENANCE

then, when the message

REP IOCTL
SM**

appears, continue as for an ADD directive (section 16.2.4).

16.2.6 DEL (Delete) Directive

This directive permits the deletion of object modules and/
or control records during generation of a new SGL The
directive has the general form

DEL,p(l),p(2), ... ,p(n)

where each p(n) is the· name of an object module or control
record that is to be deleted.

Each p(n) has the option of selecting the occurrence of
the module (they must be contiguous). The form is:

p(n)/#

where# is the selected occurrence of the module p(n) as
handled. For example, delete all occurrences ot V$FUNC
and the second occurrence of VSIOC, enter:

DEL. VSFUNC, V$10C/2

SMAIN copies object modules and control records from the
old SGL into the new SGL until it encounters one specified
by one of the .parameters, p(n), of the DEL directive. SMA IN
then reads the item to be deleted, but does not copy it into
the new SGL The items in the DEL directive need not be in
the same order as they appear on the old SGL

If a listine of the old SGL is specified either by a LIST
directive (section 16.2.7) or by the l parameter of an END
directive (16.2.8), the deleted items are preceded on the
listing by asterisks (•).

Example: During generation of a new SGL, delete the
following old SGL items: object module lOST and control
record LMGENCTL

OEL,IOST,LMGENCTL

16.2.7 LIST Directive

This directive lists. on the LO logical unit, the old SGL as
found on the logical unit specified by the SMAIN directive
IN (section 16.2.1). The LIST directive has the form

LIST

Example: List the old SGL

LIST

Figure 16·2 shows the format of output from this directive.

16·6

16.2.8 END Directive

This directive indicates that all ADD (section 16.2.4), REP
•

(section 16.2.5), and DEL (section 16.2.6) directives have
been input. END initiates the SGL maintenance process.
The directive has the general form

END,L

where L, if present, specifies that the old SGL is to be
listed.

Examples: After all ADO, REP, and DEL directives have
been input, initiate SGL maintenance processing.

END

Initiate the SGL maintenance processing as above, but list
the old SGL

END,L

16.3 SYSTEM-MAINTENANCE OPERATION

The normal SMAIN operation consists of copying an
existing SGL from the logical unit specified by the IN
directive (section 16.2.1) to the logical unit specified by the
OUT directive (section 16.2.2). making the modifications
specified by the ADO (section 16.2.4), REP (section 16.2.5),
and DEL (section 16.2.6) dir~tives, and thus creating a
new SGL

Input of the END directive (section 16.2.8) initiates the
copying process. All ADD, REP, and DEL directives, if any,
must precede the END directive.

Modifications to the SGL are made through the logical unit
specified by the Al T directive (section 16.2.3). Such
modifications are in the form of additions and/ or replace·
ments of object modules and / or control records. (These
items can also be deleted, but this process does not, of
course, require input on the Al T unit.)

When an object module is input, SMAIN verifies that there
is no error with respect to check·sum, record size, loader
codes, sequence numbers, or structure.

16.4 PROGRAMMING EXAMPLES

Example 1: Schedule SMAIN, copy the old SGL from
logical unit 4 onto logical unit 9 without listing the old SGL.
and return to the JCP.

/SHAIN
IN,4
OUT,9
END
I ENDJOB

Example 2: Schedule SMAIN; copy the old SGL from
logical unit 4 onto logical unit 9. listing the old SGL and

deleting object modules A. B. C. D. and E; and return to
the JCP.

I SMAIN
IN, 4
OUT,9
DEL,A
DEL,B,C,D,E
END,L
I ENDJOB

Example 3: Schedule SMAIN. list the contents the old SGL
on logical unit 4. and return to the JCP.

/ SHAIN
IN, 4
LIST
IENDJOB

lO

A"!!o -·-· -~·

-....... - •.,;,:·

-~ :: :::: ·-
~--:.:::--

J;~

.-;::::a
-r.:;;t

. -.::! ..:.• ·.--

-. ··--· -· ~.:.:

. :::"":
-~-

. ~----. ··--
,_ - · ' . -... ·-· --
·-........ '
:· •• ~J -
' ..

~ ;~·~

~:!"a:: -

f.' AGE 1

lN,lU
uur.Pu
UST
1t.OUT.LODR
10 NAHE
Y.SSGEN~O

l.Q._~~~f
V l.C.QO A 1

l.D ~~M!

'(SOD..o.!2

40 NAI'If
VJPno•'

.1.0... N..A~f
VS0tOA1

10 NAr-E
V_I.O 1.0 A2

10 NAI'If
VS01~A5

10 NA~E
V~020Al

11/13/72

UATE SIZE
10/02/12 1,~1

OATE SIZE
02/2./72 3o

IJ ATE SIZE
02/2~/12 3fll

04TE' SIZE
02/24/72 36

OATE SIZE
0'./24112 lfll

04TE StZf
02/2./72 3t;

OATE SIZE
02/24172 3e

UATE StZE
02/'.4/72 J"'

SYSTEM MAINTENANCE

Example 4: Schedule SMAIN; copy the old SGL from
logical unit 4 onto logical unit 9 without listmg the old SGL;
add object modules or control records from logical unit 6
after control record PART0002 and after object module A;
replace load module LMGEN and control record JCPDEF;
delete object modules B. C. 0 , and E; and return to the
JCP.

/SHAIN
IN, 4
OUT,9
ALT,6
ADD,PART0002,A
REP,LMGEN
DEL,B,C,D,E
REP,JCPDEF
END
IENDJOB

VCl~TEX SMAI~

ENTRY ~UMfS !XT!R~AL NAM!J
SG~OR TI'ROfi SJi l SUI'

8STACK lt!U~
SPUe ILUN
SI.U8

E~TRY ~AME' El(I[B~Al ~.A~fl
000&1 O~W£0,. ~SIAl'

CRSf<~O CRUll
ORR.lT.f CBBfMQ
ORR!AO

F~TRY NAMES !XTE~~I. ~-~_u
0<'042 O.R.~!C' QB~IAI

ORSKRO c.B.s.!Il..
OR"ITE 0 .R fiJ r; !(.0

OR!EAO
E,.,.TRY ~AlliE:! !XTfliUUI. ~. ~!!!J

OOOA~ o.-•~o, ~!liT
o~~IJO OBI~IL.
O~~IT! ll!!R!~
OR~!AO

!NTRY ,.,.,"~ES fXTUM!.i. ~!~~~
OtOA1 O'h•fO' O.B 3.T_~ T

ORSI<RO 0!!1'-l.L.
ORRITE OBBEI!D
OR~f40

E~TRY NAMES !XT!RNA~ NAI1!S
010A2 OR•fQ.f DB~IAI

ORSt<RO llR lll.l.
ORRITE ORR.!.~
OR~f -~0

ENTRY NAMES F.XT!RNA~ ~A~!.~
01c)A~ Olhi!O' 0 lit.$.1 AT

ORSK11D CR3lii.
OR~ IT! ORR!~O
ORRf~O

fNT~Y ~AMES EXT!:Rr-!AI. ~AM.S
D20A1 OJhcfOf' O~'TAT

Fieure 16-2. SMAIN LIST Directive Listine

16·7

·----. --·-- -------·---·- . --· . ···-- ----- --- .._ ... ,.,_ ___ ___.. - .. - -- -~ ·---- -- --..... - . ·--.. - - ---- - - --· - ·- ··-

- .

SECTION 17
OPERATOR COMMUNICATION

The operator communicates with the VORTEX system
through the operator communication component by means
of operator key-in requests input through the operator
communication (OC) logical unit.

17.1 DEFINITIONS

An operator key-in request is a string of up to 80
characters beginning with a semicolon. The request is
initiated by the operator and is input through the OC unit.
An operator key-in request is independent of l /0 requests
via the IOC (sect ion 3) and, hence, is known as an
unsolicited request.

The operator communication (OC) logical unit is the logical
unit through which the operator inputs key-in requests.
There is only one OC unit in the VORTEX system. Initially,
the OC unit is the first Teletype, but this assignment can
be changed by use of the ;ASSIGN key-in request (section
17.2.9).

17.2 OPERATOR KEY-IN REQUESTS

This section describes the operator key-in requests:

• ;SCHED Schedule foreground task
• ;TSCHED Time-schedule foreground task
• ;ATIACH Attach foreground task to PIM line
• ;RESUME Resume task
• ;TIME Enter or display time-of-day
• ;DATE Enter date
• ;ABORT Abort task
• ;TSTAT Test task status
• ;ASSIGN Assign logical unit(s)
• ;DEVON Device down
• ;DEVUP Device up
• ;I OUST List logical-unit assignments

Operator key-in requests comprise sequences of character
strings having no embedded blanks. The character strings
are separated by commas (,) or by equal signs (=).

However, the key-in requests are free-form and blanks are
permitted between the individual character strings of the
key-in request, i.e., before or after commas (or equal signs).
Although not required, a period (.) is a line terminator.
Comments can be inserted after the period. A carriage
return is required to terminate any key-in request, however,
regardless of whether it contains a period.

The general form of an operator key-in request is

;request,p(l),p(2), ... ,p(n)cr

where

request is one of the key-in requests listed above
in capital letters

each p(n) is a parameter defined under the
descriptions of the individual key-in
requests below

cr is the carriage return , which terminates
all operator key-in requests

Each operator key-in request begins with a semicolon (;)
and ends with a carriage return. Parameters are separated
by commas. A backarrow (-) deletes the preceding
character. A backslash (\)deletes the entire present key-in
request.

Table 17-1 shows the system names of physical I /0 devices
as used in operator key-in requests.

Peripherals for data communication are not used in
OPCOM request, but are controlled with the Network
Control Module (NCM) described in the VTAM Reference
Manual.

For greater clarity, optional blank separators between
character strings, and the optional replacement of commas
(,) by equal signs (=) are omitted from the descriptions of
the key-in requests.

Error messages applicable to operator key-in requests are
given in Appendix A.17.

Table 17-L Physical l / 0 Devices

System Name Physical Device

DUM Dummy

CPcu Card punch

CRcu Card reader

CTcu Cathode ray tube (CRT) device

Dcup Rotating-memory device (RMD)
(disc/drum)

LPcu Line printer or Statos

MTcu Magnetic tape unit

PTcu High-speed paper tape reader/punch

TYcu Teletype printer / keyboard

ClmA. COmA Process 110

17-1

- - -- ' - ··- - · ------·--·---·····. -·-·~-·--""· - --- -- ~-·~~------- ·-----·- ---··----···- _.. ... ~- __ ,. ____ ..,_......_.._.._,. ____,_ ------···------- ---------..·--- ·-..... - ------··-··"·· - .--....... -·-

OPERA TOR COMMUNICATION

'
Table 17·1. Physical l/ 0 Devices (continued)

System Name Physical Device

MXcu Communication Multiplexor

TCcO Psuedo TCM

SPcO Spool Unit

NOTES

c - Controller number. For each type of device.
controllers are numbered from 0 as required.

u - Unit nuniber. For each controller, units are
numbered from 0 as required (within the
capacity of the controller).

p - Partition letter. RMD partitions are lettered
from A to T as required to refer to a partition on
the specified device, e.g., DOOA.

m • Multiplexor number

17.2.1 ;SCHED (Schedule Foreground Task)
Key-In Request

This key·in request immediately schedules the specified
foreground·library task for execution at the designated
priority level. It has the general form

;SCHEO, task,level,lun,key, trace

where

task

level

tun

key

trace

17-2

is the name of the foreground task to be
scheduled

is the priority level (from 2 to 31) of
the scheduled task

IS the number or name of the
foreground·library rotating-memory
logical unit where the scheduled task
resides

is the protection code, if any, required to
address lun

is T if the task to be schedu led IS to be
executed in TRACE mode. (Applies to
V77-800 systems only) see paragraph
7.4 .

A dump of the contents of a library can be obtained by use
of the VORTEX file-maintenance component (section 9).

Operator key-in examples: Schedule on priority level 3
! the foreground task DOTASK residing on the Fl logical

unit. Use F as the protection key. The task is to be executed in
the TRACE mode.

j :SCHED,DOTASK,3,FL,F,T

Updat~ B

Schedule on priority level 9 the resident foreground task
COPYIO.
;SCHBD,COPYI0,9,0

17.2.2 ;TSCHED (Tim•Schedule Foreground
Task) Key-In Request

This key-in request schedules the specified foreground·
l ibrary task for execution at the designated time-of-day and
priority level. It has the general form

where

'

;TSCHEO, task,level,lun,key, time

task

level

lun

key

time

is the name of the foreground task to be
scheduled

is the priority level (from 2 to 31) of the
scheduled) task

IS the number or name of the
foreground·library rotating-memory
logical unit where the scheduled task
resides (0 for scheduling a resident
foreground task)

is the protection code. if any, required to
address tun

is the scheduled time in hours (from 00
to 23) and minutes (from 00 to 59), e.g.,
1945 for 7:45p.m.

Note: If a task has already been scheduled using a
TSCHED command. a subsequent TSCHED request for the
task replaces the f irst request.

Operator key-in examples. Schedule for execution at
11:30 p.m . on priority level 3 the foreground task DOT ASK
residing on the US logical unit. Use T as the protection key.

;TSCHBD,DOTASK,3,US,T,2330

Schedule for execution at 8:30 a.m. on priority level 9 the
resident foreground task TESTIO.

;TSCHBD,TBSTI0,9,0,0830

- --- -----------

17.2.3 ;ATTACH Key·ln Request

This key·in request attaches the specif ied foreground task
to the designated PIM (priority interrupt module) line. It
has the general form

where

;ATTACH, task,line,iew.enab/e

task

line

.
•ew

enable

is the name of the foreground task to be
attached to the PIM line

is the two·digit number of the P!M line to
which the task is to be attached. with the
tens digit specify•ng the PIM number (0·
7) and the units d igit the line number (0·
7) on that PIM

is the value (from 0 1 to 0177777) of the
interrupt event word (section 14 or
appendix F) and identifies the bit(s)
to be set in the task TIDB when an
interrupt occurs on line

is E (default value) to enable the line. or
0 to d isable it

The task can be resident or nonresadent. However, its Tl DB
•

must have been defined 'at system·generation t ime.
A TIACH provides a flexibJ-1 way of altering interrupt
assignments without havin~ to regenerate the system.

Operator key-in example: Connect task INTRPT
to PIM 0, line 3. Use 020 as the interrupt event
word value (i.e .• set bit 4 of the interrupt event
word in TIOB if INTRPT is scheduled due to an
interrupt on PIM 0, line 3).

;ATTACH,INTRPT,03,020

A P!M directive with the PIM line to be attached must have
been specified during system generation to set up the link
to the interrupt line handler region.

Note: This directive detaches the PIM from a previous task.

17.2.4 ;RESUME Key·ln Request

This key·in request reactivates the specified task for
execution at its specified priority level. It has the general
form

;RESUME. task

where task is the name of the task to be resumed

OPERATOR COMMUNICATION

Operator key-in example: Resume the task DOT ASK.

;REStJME,DOTASl<

17.2.5 ;TIME Key·ln Request

This key·in request enters the specified time. i f any, as
system time-of·day. If no t ime is specified in the key·in
request, ;TIME displays the current time·of·day. The key-in
request has the general form

;TIME, time

where time is the time-of-day in hours (from 00 to 23) and
minutes (from 00 to 59), e.g., 1945 for 7:45 p.m.

The time-of·day output for a ;TIME request without time is
of the form

T hhmm HRS

where hhmm is the t ime of day in hours and minutes.

Operator key-in example: Set the system time·of·day to
3:00p.m.

; TIME, 1500

17.2.6 ;DATE Key-In Request

This key-in request enters the specified date as the system
date. It has the general form

;OATE,mm/ dd / yy

where

mm is the month (01 to 12)

dd is the day (01 to 31)

Y'l is the year (00 to 99)

Note that since the entire date is considered one
parameter, there are no commas other than the one
immediately following DATE. The components of the date
are. however. separated by slashes as shown. VORTEX does
not support date roll·over.

0p4!rator key ·in example: Set the system date to 25
December 1971.

;DATE, 12/25/71

17 ·3

--. __ ... ________________ .. ______ . ----- --- - ·----- -- ~ .. - ___________ , __ ,_ _ ---···-·--- --- - ------------ -·- --

OPERA TOR COMMUNICATION

17.2.7 ;ABORT Key-In Request

This key-in request aborts the specified task. It has the
general form

;ABORT,task

where task is the name of the task to be aborted

Operator key-in example: Abort the task DOT ASK.

:ABORT,DOTASX

17.2.8 ;TSTAT (Task Status) Key-In Request
This key-in request outputs the status of the specified task,
if any. If no task is specified, ; TST AT outputs the status of
all tasks Gueued on the active task identification block
(TIDB) stack. This request is not applicable to tasks having
no established TIDB. The request has the general form

;TSTAT,task

where task is the name of the task whose status is to be
output.

The status-output for a ;TSTAT key-in request is of the form

where

task Plevet Sstatus TMmin TSmilli

task

level

status

mm

milli

is the name of the task whose status is
being output

is the priority level (from 0 to 31) of the
task

is the status of the task as found in
words 1 and 2 of the TIDB (table 17·2)

is the value of the counter in TIDB word
11

is the value of the counter in TIDB word
10

The values of min and milli are printed only if bit 6 and/or
7 of TIDB word 1 (table 17·2) is set.

Table 17-2. Task Status (T10B Words 1 and 2}

T108
Word Bit Meaning of Set Bit

1 15 Suspend interrupt
1 14 Suspend task
1 13 Abort task

17·4

1
1
1
1
1
1
1
1

1
1
1
1

1
2
2

2

2
2
2
2
2
2
2
2

12
11
10

9
8
7
6
5

4
3
2
1

0
15
14

13

12
11
10

9
8
7
6

5·0

Exit from task
TIDB resident
Resident task
Foreground task
Protected task
Task scheduled by time-delay
Time-delay acti>/e
Task waiting to be loaded

(check pointed)
Task error
Task interrupt expected
Overlay task
Scheduled task upon
termination of active
task
Task search-allocated-loaded
Task opened, but not loaded
Task loaded in background
(checkpoint) area
Load overlay

Background checkpoint l/0 wait
Allocation override flag
Background being checkpointed
TIDB not available
Unused
Unused
Delay type 3 request
Tas·~ prior ity level

Operator key-in examples: Request the output of the
status of the task BIGJOB.

;TSTAT,BIGJOB

The output will be

!IGJOB P02 5000 100 , 000000 TH077777 TS0774JO

if the status BIGJOB is such that it is on priority level 2.
contains a status of 0100 in TIDB words 1 and 2. with time
counters (TIDB words 1 and 10) of 077777 and 077430,
respectively. The latter two octal complement counters
show zero minutes and 0347 5-millisecond increments.

Request the output of the status of all active tasks.

;TSTA'l'

and receive as a typical response

VZDB P24 S047401, 000000
VS'l'YA P23 S047411, 000000
VSTYA P23 S047~11, 000000
VZLPA P22 5047401, 000000
VZCRA P22 S047401, 000000

---- ----------------------------- -------..... __ __________________ _ - - --- .. -

VZMTA P22 S047401, 000000
VZMTA P22 S047401, 000000
V$0 PCM P10 S005405, 020000
PROG 1 POS S041501, 000000
JCP P01 5044400 , 000000

17.2.9 ;ASSIGN Key-In Request

This key-in request equates and assigns particular logica l
units to specific 110 devices. It has the general form

where

;ASSIGN,I(l) = r(l),/(2) ,. r(2) 1(n) ""r(n)

each l(n)

each r(n)

1s a logical-unit number (e.g., 12) or
name (e.g., Sl)

is a logical-unit number or name. or a
physical-dev1ce system name (e.g., TYOO
or TY. table 17· 1)

The logical unit to the left of the equal sign in each pair is
assigned to the unit / device to the r ight.

An inoperable device, i.e., one declared down by :DEVON
(section 17.2.10), cannot be ass igned. A logical unit
designated as unassignable (unit numbers 101 through
179) cannot be reassigned.

Operator key-in examples: Assign the card reader CROO
as the Sl logical unit and the Teletype TYOl as the OC unit.

;ASSIGN,SI•CROO,OC•TY01

Assign a dummy device as the PI unit.

;ASSIGN , PI•DUM

17.2.10 ;DEVON (Device Down) Key-In
Request

This key-in request declares the specified physical device
inoperable for system use. It is not applicable to the OC
unit or to devices containing system libraries. The request
has the general form

· ;OEVON,device

where device is the system .name of the physical device in
four ASCII characters, e.g., LPOO (or LP). TYOl, (table 17-1)

Operator key·in example; Declare TYO 1 inoperable for
system use.

;DEVDN,TY01

OPERATOR COMMUNICATION

17.2. 11 ;DEVUP (Device Up) Key-In
Request

This key-in request declares the specified physical deVICe
operationa l for system use. It has the general form

;OEVUP ,device

where device is the system name of the physical dev1ce in
four ASCII characters, e.g. , LPOO (or LP). TYO 1 (table 17-1)

Operator key-in example: Declare TY02 operational for
system use.

; DEVUP,TY02

17.2.12 ;IOLIST (List l / 0) Key-In
Request

This key-in request outputs a list ing of the specif ied logical·
unit assignments. if any. If no logical unit is specif ied,
;IOLIST outputs all logical-unit assignments with names.
The key-in request has the general form

;lOLlS T.lun(l).Jun(2) •... ,lun(n)

whef"e each lun(n) is the name or number of a logical unit,
e.g., SI .S.

Where the ;IOLIST key-in request specifies a log1cal-unit
name, the output is of the form

whef"e

name (number) • device D

name is the name of the logical unit. e.g., LO

number

device

D

is the number of that logical unit. e.g.,
005

is the name of the physical device
assigned, e.g., LPOO

if present. indicates that the physical
device has been declared down and is
thus inoperable

If the key-in request specif ies the number rather than the
name of the logical unit. the output will repeat the number
in both the name and number f ields.

In a listing of all assignments, the ou tput uses a name and
number where applicable. logical units without names
assigned at system-generation time are not listed and must
be individually specif ied by number.

17-5

' 4 ·- -·- • • ··~------ -··· .. 4~·- ·--W··-------------···""- 00° --·· ---------- - ·-- · · 0<1 -~-· .. '' ''" · - · ______ .. ooOO <O , ., ... _ 0 0 --· .. ~- ·- OO --- ,, -... ·~·-·- ·- O •Oo - ---·--··--

OPERATOR COMMUNICATION

Operator key-in examples: Request the output of the
logical-unit assignments for the 81 and 80 units. Input

;IOLIST,BI,BO

and receive as a typical response

BI (006) • CROO
80 (007) • CPOO D

Request the output of the logical-unit assignment for logical
unit 180. Input

;IOLIST,180

and receive as a typical response

180 (180) • D11H

Request the output of all logical-unit assignments. Input

;IOLIST

and receive as a typical response

oc (00 1) • TYOO
SI (002) • TYOO
so (003) • TYOO
PI (004) • CROO D
LO (005) • LPOO
BI (006) • CROO D
80 (007) • PTOO
ss (008) • DOOH
PO (009) • DOOH
cu (100) • DOOE
GO (1 0 1) • DOOG
SW (102) • DOOP
CL (103) • DOOA
OK (, 04) • DOOD
BL (10 5) • oooc
P'L (106) • DOOB

17.3 BLOSKD

The standard VORTEX teletype drivers support the fore
ground scheduling task BLDSKO. BLOSKO allows the
operator to define selected control characters (A-Z, ex
c luding G and M) to cause scheduling of a selected task.
Use of the defined control character as the input to an
unsolicited request results in the same function as using
the OPCOM; SCHEO request. The operator may add,
delete, or list control characters and their definitions.
Using an undefined control character schedules
BLOSKO. therefore it is suggested that one control char
acter be reserved for BLOSKO scheduling. Entering a
carriage return only once BLDSKD has been activated
causes BLOSKD to exit.

17.3.1 Set-Up Requirements

Before attempting to use BLOSKD the operator must
create a file called SCHDAD on the foreground library

17·6

containing two 120 word records. This should be done
with FMAIN. For example:

FMAIN
CREATE. FL. F, BLOSKD. 120. 2

17.3.2 TASK SCHEDULING

Typing a control character will schedule BLOSKO. If the
particular control character has not previously been as
signed to a task, BLOSKO will respond with

TY*~ ADO TASK. DELETE TASK, OR LIST? ENTER
A. D. OR L

TY*"

The operator then responds appropriately with either A .
D. or L

'A' Command

TY*" ENTER TASK NAME

Operator enters a 6 character (or less) alpha numeric task
name he wishes to have scheduled, followed by (carriage
return) :

TY"" ENTER PRIOR ITY LEVEL
TY""

Operator enters the priority level at which the task is to be
scheduled.

TY** ENTER 1 FOR WAIT OR 0 FOR IMMEDIATE
TY**

Operator enters 0 or 1

TY** ENTER OCTAL LOGICAL UNIT NUMBER
Tv··

Operator enters LUN where task to be scheduled resides.

TY .. ENTER PROTECT KEY OR CARRIAGE RETURN
TY**

Operator enters LUN protect key or Carriage Return if un
protected.

TY** CHARACTER ADDED
TY*! INITIALIZATION COMPLETE. EXITING TASK

SCHEDULER

Task is now scheduled automatically. Henceforth, upon
entering a control character. with an already assigned
task. BLDSKD will immediately schedule the user task.

·o· Command

TY•• ENTER ALPHA ONLY OF CHARACTER TO BE
DELETED

After a contro l character has been assigned a task via
BLDSKD 'A' command, it may at any time be deleted via
the ·o· command. Upon entering the character to be de
leted. BLDSKD responds with:

TY"" CHARACTER DELETED
TY"" EXIT

OPERATOR COMMUNICA TJON

'L' Command

BLDSKD responds with:

a bbbbbb
where

a is the defined control character
bbbbbb is the task attached to character a

17· 7

--- • .. _.,, •-·- --- -- -• ,. " ••• " - • --•oo•-- •• .. ,,. __ ,,_. •-• · ~ ·-·-.. -·•-n - ·- ·""" •--•··- - --·- - ----- - - --- -

'

- ·-

SECTION 18
OPERATION OF THE VORTEX SYSTEM

This section explains the operation of devices in the
VORTEX system, the loading of the system bootstrap
loading and initializing of writable control store and
procedures for changing and initializing the disc pack
during VORTEX operation.

18.1 DEVICE INITIALIZATION

18.1.1 Card Reader
(Model 70-6200)

a. Turn on the card reader.

b. Place the input deck in the card hopper.

c. Press READY I ALERT.

18.1.2 Card Punch
(Model 70-6200)

a. Turn on the card punch.

b. Place blank cards in the card hopper.

c. If the visual punch station is empty, insert a card into it
as follows:

(1) Ptace a card in the auxiliary feed slot.

(2) Clear all registers.

(3) Set the instruction register I to 0100131.

(4) Set REPEAT.

(5) Press STEP. The card should move from the
auxiliary feed slot to the visual punch station.

(6) Reset REPEAT.

18.1.3 Une Printer
(Model 70.6701)

a. Tum on the line printer.

b . Wait for the READY light to come on.

c. Set the ON LINE/ OFF LINE switch to ON LINE.

d. For manual paper ejection set to OFF LINE, then press
the TOP OF FORM switch.

18.1.4 Statos-31 (Model 70.6602 and -6603)

a. Tum on plotter/ printer

b. Set the ON LINE/ OFF LINE switch to ON LINE

c. Select roll or z-fold paper switch for paper type used

d. For manual form feed press FORM FEED

18.1.5 33135 ASR Teletype
(Models 70-6200 and 6201

a. Turn on the Teletype.

b. Set the Teletype in off-line mode and simultaneously
press the CONTROL and D, then the CONTROL and T,
finally the CONTROL and Q keys.

c. Set the Teletype on-line.

18.1.6 High-Speed Paper-Tape Reader
(Model 70-6320)

a. Turn on ihe paper-tape reader.

b. Position the input paper tape in the reader with blank
leader at the read ing station and close the reading
gate.

c. Set the LOAD/ RUN switch to RUN.

18.1.7 Magnetic-Tape Unit
(Models 70-7100,-7102. and 620-31

a. Turn on the magnetic-tape unit.

b. Mount the input magnetic tape.

c. Position the magnetic tape to the loading point.

d . Press ON LINE.

18.1.8 Magnetic-Drum and Fixed-Head
Disc Units

(Models 620-47 through 620-49,
70.7702 and 70.7703

a. Turn on the drum unit.

b. Wait for the drum unit to reach operating speed.

18.1.9 Moving-Head Disc Units
(Models 70-7600 and 70-7610

a. Place the START ! STOP switch in the STOP posit ion.

b. Press POWER ON button and wait for the SAFE light to
come on.

c. Mount the disc pack.

d. Place the START ! STOP switch in the START position.

e. Wait for the disc unit to reach operating speed (READY
indicator lights).

18-1

-. - ------_________ , _____ .. __________________________ _ - ------- - -- - - - --·''

OPERATION Of THE VORTEX SYSTEM

f. Turn off WRITE PROTECT.

18.1.10 Moving-Head Disc Units
(Model 70.7500)

a. Mount the disc pack

b. Press POWER·ON button and wait for unit to reach
operating speed and for the heads to emerge

c. Press on-line button.

18.1.11 Moving-Head Disc Units
(Model 70-7510)

a. Mount the disc pack(s).

b. Turn power on and wait for the unit(s) to reach
operating speed (unit-ready light comes on).

18.1.12 Moving-Head Disc Units
(Models 70-7603. 70-7613)

a. Mount disc pack.

b. Press START button and wait for Ready light.

18.1.13 Moving Head Disc Units
(Models 70-7520. 70.7530)

a. Mount disc pack.

b. Place in run.

c. Wait for unit to reach operating speed (run light will
stop blinking).

18.2 SYSTEM BOOTSTRAP LOADER

System key-in loaders initiate loading of the VORTEX
system from a drum or disc memory. The key-in loader loads
the system 1nitializer from the RMO to main memory
(locations 000000 to 001127). The system initializer then
loads and initializes the system. Table fS·l contains the
key-in loader programs.

18·2

Table 18·1. Key-In Loader Pro1rams

Address Drum Disc Disc Disc
-48,49 70-7510 70-7500 70-7600,

-7220, -7610,

·7530 -7603 or

c'A~~~ 7613

001130 1000yy 005302 005302 1004zz
001131 006020 006030 006030 1040zz
001132 000002 000005 177773 1002zz
001133 005001- --···005001 005001 005001
001134 1031xx 100022 1000zz 1031zz

-A001135 006120 1031zz 103lzz 101022
001136 001127 1005zz 100522 001141
001137 1031yy 1010zz 1010zz 001000
001140 1000xx 001143 001143 001135
001141 lOOOzz 001000 001000 1025zz
001142 1032zz 001137 001137 151167
001143 lOlOxx 1025zz 1025zz 001016
001144 000600 001016 001016 001130
001145 001000 001200 .. ·- 001130 1000yy
001146 001143 005123 005122 1003zz
001147 006120 005021 005102
001150 000167 006120 1032zz
001151 004460 000167 1031xx
001152 1000zz 004460 006010
001153 1000yy l OOOzz 001130
001154 103lxx 1000yy 1031yy
001155 1032yy 1031xx 1000xx
001156 1000xlt 1032yy 1000zz

~ 001157 005041 1000xx 1014zz
001160 1'031zz 005041 001157 - · ·--
001161 1004zz 006150 1025zz
001162 1014zz 000007 151167
001163 001166 1031zz 001 016
001164 001000 1004zz 001130
001165 001162 1014zz 001000
001166 1025ZZ 001171 000600
001167 001016 001000 007760
001170 \1-oaooo 12D 001165
001171 005145 1025ZZ
001172 006140 001016
001173 000012 001130

•• 0 ·--- -~ 001174 001002 005144
001175 00060 001040
001176 001000 000600
001177 001146 001000
001200 000000 001146

where xx - even BIC address, yy - odd BIC address, and
zz • device address.

18.2.1 Automatic Bootstrap loader

Where the automatic bootstrap loader option is available,
the appropriate key-in loader is loaded from the required
medium (high·speed paper-tape or Teletype reader) into
locations starting with 001130. If the system contains a
V70 RMO ABL the boot program is automatically loaded
and executed.

To in itiate the loader : (1) clear the A, B. X, I, and P
registers; (2) with the computer in STEP. press the RESET
switch on the front panel; (3) place the STEP / RUN switch
in the RUN position; and (4) press and release the LOAD
switch.

18.2.2 Control Panel loading

The appropriate key-in loader is entered through the
computer control panel. Refer to the hardware handbook

for details.

To initiate the bootstrap, clear the A. B. X, and I registers,
and load 001130 into the P register. Then. press RESET,
place the STEP/ RUN switch in the RUN posit ion, and press

START. See sect ion 15.8 and 20.1.4 for details as system
in itialization messages.

NOTE: To facilitate reloading, the key-in loader may be
dumped out on paper tape and then loaded by the binary
loader (BLD II).

18.3 DISC PACK HANDLING

VORTEX provides for dynamic mounting of d isc packs
during program execution by means of a system utility
program called rotating memory analysis and initialization
(RAZI). RAZI handles:

a. A disc pack not previously used with VORTEX that is
replacing a disc pack presently in the system.

b. A disc pack previously formatted under VORTEX that is
replacing a disc pack presently in the system.

The normal RAZI operating procedure is:

a. The task requiring the disc pack change issues an
operator message directing him to switch packs.

b. The task suspends itself.

c. The operator makes the necessary pack changes.

'd. The operator schedules and executes RAZI.

e. Upon completion of RAZI , the operator resumes the
suspended task. The task can now p~orm I 10 on the
new pack.

RAZI is a foreground program residing in the foreground
library (Fl). It is scheduled by a request of the form:

;SCHED,RAZI,p,Fl.F

where p is the priority level.

If the Sl logical unit is a Teletype or a CRT device, the
message RZ• • is output to indicate that the Sl unit is
waiting for RAZI input.

OPERATION OF THE VORTEX SYSTEM

Each directive is completely processed before the next is
entered. All directives are output on the SO device. In
addition. partitioning information is listed on the LO device
when integration of the requested disc pack is complete.

OUTPUTS from the RAZI comprise:

a. Error messages

b. The listing of the RAZI directives on the SO unit

c. Partition description listing

Error messages applicable to RAZI are output on the SO
and LO logical units. The individual messages and errors
are given in Append ix A.l8.

The partition description listing is output on the LO device
upon completing the integration of a new disc pack into the
vORTEX system. After the VORTEX standard heading,
there are three blank lines followed by the RAZI heading:

PARTITION
NAME

FIRST
TRACK

LAST
TRACK

BAD
TRACKS

followed by one more blank tine. Then the information
concern ing each partition of the device is output, one
partition per line, as shown in the following example.

PARTITION
NAME

010A
0108
D10C
0100
010!!
01011'
010G
010H
D10I
010J
010K

FIRST
TRACK

0002
0020
0053
0083
0119
0127
0142
0157
0207
02"3
0252

LAST
TRACK

0019
0052
0082
0 1 1 8
0126
0 1" 1
0156
0206
0242
0251
0256

BAD
TRACKS

0000
0001
0000
0000
0000
0000
0000
0002
0000
0000
0000

The RAZI directives are:

• PRT Partition

• FRM Format rotating memory

• INL Initialize

• EXIT Exit

RAZI directives begin in column 1 and comprise sequences
of character strings having no embedded blanks. The
character strings are separated by commas (.) or equal
signs (-). The directives are free-form, and blanks are
permitted between the individual character strings of the
directive. i.e., before or after commas (or equal signs).

18-3

. - ---- ·. - ~- ~"'··~·-- ···--.. - -.-... _._, -..... --... ·--~--· .. ·- - . ·--·-- ·---·-~ - -·- --·--·~- · ·-- __ ,.. ___ -··- -.. -· ·-·---·--- -- __ ., - .. -· ··· _,_ . ~-··· ..

OPERATION OF THE VORTEX SYSTEM

The general format of a RAZI directive is

name,p(l),p(2) •... ,p(n)

where

name

each p(n)

as one of the directive names gsven
above

is a parameter required by the directive
and defined below under descriptions of
the individual directives

Numerical data can be octal or decimal. Each octal number
has a leading zero.

For greater clarity in the descriptions of the directives,
optional periods, optional blank separators between
character strings, and the optional replacement of commas
(,) by equal signs (•) are omitted.

Note: The disc pack containine the VORTEX nucleus
cannot be replaced.

18.3.1 PRT (Partition) Directive

This directive specifies the size and protection code for
each RMD partition. It has the general form

PRT,p(l),s(l),k(l),p(2),s(2),k(2), ... ,p(n),s(n),k(n)

where

each p(n)

s(n)

k(n)

is theRMO partition letter (A through T,
inclusive)

is the number (octal or decimal) of
tracks in the partition. This value must
be greater than zero.

is the protection code, if any, required to
address p, or • if the partition is
unprotected

While the partition specifications can appear in any order,
the set of partitions specified for each RMO must comprise
a contiguous group, e.g., the sequence A, C, 0, B is valid
but, the sequence A, C, 0 , E constitutes an error.

Consecutive PRT directives redefine partitions, if p(n) has
been specified, or adds partitions if p(n) is new partition
letter.

Example: Define three partitions on an RMO. The first
occupies ten tracks and uses protection code Q, the second
two tracks and code S, and the third 48 tracks without
protection.

PRT,A,10,Q 1 B,2,S,C,060,•

18-4

18.3.2 FRM (Format Rotating Memory)
Directive

This directive causes RAZI to run a bad-track analysis on
the specified RMD and build a new PST for it or accepts a
previously constructed bad-track-table from the RMD and
builds a new PST for it. • The directive has the general form

FRM,Ju, size, flae

where

lu

size

ftae

is the logical-unit name or number to
which the subject RMO is assigned. This
must be assigned to the first
partition.

is the number (octal or decimal) of
tracks on theRMO

is 1 to perform a complete bad-track
analysis, or 0 to accept a bad-track-table
from theRMO

•FRM clears all PSTs and directories. It should not be used
when a unit contains a good BIT and files as these will be
destroyed.

C~ution: When performing a bad-track analysis or accept·
ing a bad-track table from an RMO the bad-track table is
positioned adiacent to the resident foreground task area.
Unless there already exists an active bad-track table for the
prior RMO, the bad-track table for the new RMO will be
overlayed, if the resident foreground area is increased by
means of a partial SYSGEN. Thus if a partial SYSGEN is
performed which increases the resident foreground size,
another RAZI must be performed.

Examples: Clear the RMO assigned to PO, having 203
tracks, and build a PST for it according to previously
defined partition information.

l"RM 1 P0,203,0

Run a complete bad·track analysis on the RMD assigned to
25, having 128 tracks, and build a PST for it according to
previously defined partition informati<?n.

P'RM , 2 5 I 1 2 8 I ,

620-35 and 620-34 discs in a system require the formatting
program (describe in section 18.4) to format disc and
analyze bad tracks.

18.3.3 INL (Initialize) Directive

This directive causes RAZI to incorporate a PST and a bad
track table from the named RMO into the VORTEX nucleus.
It has the general form

I

. .
)

where

lu

size

flag

is the logical-unit name or number to
which the subject RMD is assigned. This
must be assigned to the first
partition.

is the number (octal or decimal) of
tracks on theRMO

is 1 to perform a complete bad-track
analysis, or~ to accept a bad-track-table
from theRMO

•FRM clears all PSTs and directories. It should not be used
when a unit contains a good BIT and files as these will be
destroyed.

Caution: When performing a bad-track analysis or accept
ing a bad-track table from an RMD the bad-track table is
positioned adjacent to the resident foreground task area.
Unless there already exists an active bad·track table for the
prior RMO, the bad-track table for the new RMO will be
overlayed, if the resident foreground area is increased by
means of a partial SYSGEN. Thus if a partial SYSGEN is
performed which increases the resident foreground size,
another RAZI must be performed .

Examples: Clear the RMD assigned to PO, having 203
tracks, and build a PST for it according to previously
defined partition information.

P'RM,P0,203,0

Run a complete bad-track analysis on theRMO assigned to
25. having 128 tracks, and build a PST for it according to
previously defined partition information.

P'RM,25,128,1

620·35 and 620·34 discs in a system require the formatting
program (describe in section 18.4) to format disc and
analyze bad tracks.

18.3.3 INL (Initialize) Directive

Thas directive causes RAZI to incorporate a PST and a bad·
track table from the named RMD into the VORTEX nucleus.
It has the general form

INl,lu,size

where lu and size have the same defin it ion as in the FRM
directive (section 18.3.2).

Example: Read the PST and bad-track table from the unit
assigned to 80, having 128 tracks, and incorporate them
into the VORTEX nucleus.

INL,B0,128

Update B

OPERATION OF THE VORTEX SYSTEM

18.3.4 EXIT Directive

This directive terminates RAZI. It has the general form

EXIT

Example: Terminate RAZI.

EXIT

18.4 WRITABLE CONTROL STORE (WCS)

The writable control store must be loaded with the
appropriate firmware. The WCS is loaded by the V73 WCS
Microprogram Utility (MIUTIL). MIUTIL is a foreground
program scheduled by a request :

:SCHED,MIUTIL,p,Fl,f

where p is the priority level. Use of the MIUTIL program is
described in detail in the Microprogramming Guide.

- - - ·

If the optional V70 series Floating Point Firmware is to be
used, i t must be loaded into page 1 of WCS. The WCS
microprogram is catalogued mto the OM library under the
name WCSFP, and must be transferred to the 81 device for
loading by MI UTIL. The WCS should be initialized through
the use of MIUTIL prior to loading the floating-point
mtcroprograms.

Section 20 gives additional information about writable control
store.

18·5

. ------- --·- ·- --- ·-·- ·----·· - --· - · ... _,.. _ _ ,_ ·- - .._ __ --.--.. - - - -·- - -·---· - - · ·-- · -·- · -~·-·-·-----.#

(

,

I NL.Iu. size

where lu and size have the same definition as in the FRM
directive (section 18.3.2).

Example: Read the PST and bad-track table from the unit
assigned to 80. having 128 tracks, and incorporate them
into the VORTEX nucleus.

INL,B0,,28

18.3.4 EXIT Directive

This directive terminates RAZI. It has the general form

EXIT

Example: Terminate RAZI.

EXIT

18.4 70-7500 (620-35) DISC PACK
FORMATTING PROGRAM

Each 70-7500 (620-35) disc pack reqUtnes formatting
before any input or output operation can be perlormed on
it. Before VORTEX can be prepared on a 70·7500 disc pack
or any 70-7500 discs can be used under VORTEX. disc
packs must be formatted. The formatting program forms
120-word sectors, which are grouped 24 per track. The
program also examines the disc pack for bad tracks.

The formatting program operates in a stand-alone mode. It
may be loaded and executed with either AID or BLD.
Execution begins at location 01354. Upon execution the
formatting program requests some parameters to be input
from the keyboard. The following requests are made. An
inappropriate response causes the request to be repeated.

Request

INPUT BTC NUMBER

Type a value and a carriage return. The
acceptable values are octal 020, 022. 024. 026
and 070

INPUT DEVICE ADDRESS

Type a value in the range from octal 014
through 017 followed by a carriage return

INPUT VARIABLE SECTOR GAP

Type a value and carriage return. Acceptable
values are 1, 2, 3, 4, 6. 8, 12. or their equivalent
octal representations. This value determines the
physical location on the disc pack of sequentially
addressable sectors. as such sequential trans
fers may be accomplished without wait ing for a

OPERATION OF THE VORTEX SYSTEM

full revolut ion of the disc unit. Recommended
setting is 3. Another sett ing may be more
effective depending upon various application
parameters such as number of tasks, frequency
of d isc transfers. and types of d isc transfers.

INPUT UNIT NUMBER

Type unit number followed by a carriage return .
Acceptable values are 0 through 3. Up to four
units can be connected to a single controller.

In addition the formatting program performs bad-track
analysis and creates and maintains a bad-track table,
which is entered on each disc pack at the completion of its
formatting. The bad-track table is located on sectors 0
through 2 of the first track. The table is 254 words long,
starting at word 64 of sector 0. The first 64 words of sector
0 reserve the necessary space for the PST. The remaining
unused words of sector 2 are filled with zeroes. Each disc
110 error will generate a ten-event retry sequence, which
upon failure will set the bad-track flag within the track
header. The program also sets the corresponding bit in the
bad-track table. No alternate tracks are assigned.

If the first track is determined to be bad. the bad-track
table may not be placed there. The program prints the
error message,

FIRST TRACK BAD

and aborts formatting the current disc pack. The program
returns to the keyboard interrogation routine. After the
bad-track table has been written on the disc pack. the

•
formatting program resumes the keyboard interrogation to
obtain parameters for formatting the next disc. In this way,
more than one disc pack can be formatted in the same
session. The formatting program may be terminated at this
point when no disc packs (except those w1th bad first
tracks) remain unformatted. If an unsafe condit ion
(SELECT LOCK light on) occurs. reload and execute the
program. Formatting disc packs is not necessary before
f!!Yery VORTEX system generation.

18.5 70-7510 (620-34) DISC PACK
FORMATTING PROGRAM

Each 620·34 disc pack requires formatting before any input
or output operation can be perlormed on it. Before VORTEX
can be prepared on a 620·34 disc pack or these disc can be
used under VORTEX. the packs must be formatted. The
formatting program forms 120-word sectors. which are
grouped 24 per track. The program aiso examines the disc
pack for bad tracks.

The formatting program operates without an operat ing
system. It may be loaded and executed either with AID II or

18·5

·- ·- - - - - -~ .. - -· ·------· - - -···--- ·-·· ~- . ·-_ -~---·- ·-----. _ .._ _____ _ -·--- ____ ... --------- -------·· -·- ··· -- --- ... -. . ------·----- ---·-- - . -- -·-· -- -- - - -

OPERATION OF THE VORTEX SYSTEM

BLD II. Its execution begins at location 01354. Upon
execution the formatting program requests some parame·
ters to be input from the keyboard. An inappropriate
response causes the reQuest to be repeated. The following
requests are made.

INPUT BTC NUMBER

Type a value and a carriage return. The
acce6table values are octal 020, 022, 024, 026
and 070.

INPUT DEVICE ADDRESS

Type a value in the range from octal 014
through 017 followed by a carriage return .

INPUT VARIABLE SECTOR GAP

Type a value and a carriage return. Acceptable
values are 1, 2. 3, 4, 6, 8, 12, or their equivalent .
octal representations. This value determines the
physical location on the disc pack of sequentially
addressable sectors, as such sequential trans
fers may be accomplished without waiting for a
full revolution of the disc unit. Recommended
setting is 3. Another setting may be more
effect ive depending upon various application
parameters such as number of tasks, frequency
of disc transfers, and types of disc transfers.

INPUT UNIT NUMBER

Type unit number followed by a carriage return.
Acceptable values are 0 through 3. Up to four
units can be connected to a single controller.

In addition the formatting program performs bad-track
analysis and creates and maintains a bad·track table.
which is entered on eacn aasc pack at the completion of its
formatting. The bad-track table is located on sectors 0
through 4 of the first track. The table is 508 words long,
starting at word 64 of sector 0. The first 64 words of sector
0 reserve the necessary space for the PST. The remaining
unused words of sector 4 are filled with zeros. Each disc
110 error will generate a ten-event retry sequence, which
upon failure will set the bad·track flag within the track
header. The program also sets the corresponding bit in the
bad-track table. No alternate tracks are assigned.

If the first track is determined to be bad, the bad-track
table may not be placed there. The program prints the
error m~ge:

FIRST TRACK BAD

and aborts formatting the current disc pack. The program
returns to the keyboard interrogation routine. After the
bad-track table has been written on the disc pack, the
formatting program resumes the keyboard interrogation to

18·6

obtain parameters for formatting the next disc. In this way,
more than one disc pack can be formatted in the same
session. The formatting program may be terminated at this
point when ·no disc packs (except those with bad first
tracks) remain unformatted. If an unsafe condition
(SELECT LOCK light on) occurs, reload and execute the
program. Formatting disc packs is not necessary before
every VORTEX system generation.

18.6 70-760317613 DISC PACK
FORMATTING PROGRAM

Each 70-761317613 disc pack requires formatting before
any input or output operatron can be performed on it. The
formatter forms 120 word sectors which are grouped 48 per
track. The program also performs a bad-track analysis.

The formatter (format F pi n 92A0205-030) operates under
the MAINTAIN Ill executive. For instructions on loading
from magnetic tape, cards or paper tape, see the MAIN
TAIN Ill Manual (98A9952·07x). Execution begins at
location 500. Some parameters are requested from the
keyboard. Inappropriate responses cause the request to be
repeated. All inputs are terminated by periods.

INPUT BIC NUMBER

Enter an even value in the range octal 020 through 076.

INPUT DEVICE ADDRESS

Enter a value in the range octal 014 through 017.

INPUT UNIT

Enter a value in the range 0 through 7. This must be the
physical unit number calculated as follows:

where

UU is unit number 0·3
P is platter 0 fixed

platter 1 removable
(Note: System RMD is always
000 regardless of which
platter.

INPUT KNOWN BAD TRACKS

Enter octal track numbers in the range 0 through 0625
separated by commas and terminated by a period. If there
are no known bad tracks. input only a period.

In addition, the formatting program performs bad·track
analysis and creates and maintains a bad-track table.

..

which is entered on each disc pack at the completion of its
formatting. The bad·track table is located on sector 0 of
the first track. The table is 26 words long, starting at word
64 of sector 0. The first 64 words of sector 0 reserve the
necessary space for the PST. The remain ing unused words
of sector 0 are filled with zeros. Each disc 1/ 0 error will
generate a five event retry sequence which. upon fa ilure,
will set the corresponding bit in the bad·track table. No
alternate tracks are assigned.

If the first track is determined to be bad, the bad-track
table may not be placed there. The program prints the
error message,

FIRST TRACK BAD

and aborts formatting the current disc pack. The program
returns to the keyboard In terrogation routine. After the
bad-track table has been wntten on the disc pack. the
formatting program resumes the keyboard interrogat ion to
obtain parameters for formatting the next disc. In this way,
more than one disc pack can be formatted in the same
session. The for- matting program may be terminated at
this point when no disc packs (except those with bad first
tracks) remain unformatted. Formatt ing disc packs is not
necessary before every VORTEX system generation.

18.7 70·752017530 DISC
PACK FORMATTING PROGRAM

Each 70-752017530 disc pack requires formatting before
any input or output operation can be perlormed on it. The
formatters form 120 word sectors which are grouped 48 per
track. The program also performs a bad track analysis.

The formatter operates under the MAINTAIN Ill executive.
For instructions on loading from magnetic tape, cards, or
paper tape, see the MAINTAIN Ill Manual (98 A 9952-07x).
Execution begins at location 500. Some parameters are
requested from the keyboard. Inappropriate responses
cause the request to be repeated. All inputs are terminated
by periods.

INPUT BTC NUMBER

Enter an even value in the range octal 020 through 076.

INPUT DEVICE ADDRESS

Enter a value in the range octal 014 through 017.

INPUT UNIT

Enter a value in the range 0 through 3.

INPUT KNOWN BAD TRACKS

OPERATION OF THE VORTEX SYSTEM

Enter octal track numbers in the range 0 through 017667
separated by commas and terminated by a period. If there
are no known bad tracks, input just a period.

In addit ion. the formatting program perlorms bad track
analysis and creates and maintains a bad track table,
which is entered on each disc pack at the completion of its
formatting. The bad track table is located at sector 0 of the
first track. The table is 508 words long, starting at word 64
of sector 0. The first 64 words of sector 0 reserve the
necessary space for the PST. Each disc l / 0 error will
generate a three event retry sequence. which upon failure
will set the corresponding bit in the bad-track table. No
alternate tracks are assigned.

To bypass a full bad-track analysis. set SSWl on. This
option should not be used on new packs which require a
fu II verification.

If the first track is determined to be bad, the bad-track
table may not be placed there. The program prints the
error message

FIRST TRACK BAD

and aborts formatting the current disc pack. The program
returns to the key-board interrogation routine. After the
bad-track table has been written on the disc pack, the
formatting program resumes the keyboard interrogation to
obtain parameters for formatting the next disc. In this way,
more than one disc pack can be formatted in the same
session. The formatting program may be terminated at this
point when no disc packs (except those wtth bad first
tracks) remain unformatted. Formatting disc packs is not
necessary before every VORTEX system generation.

18.8 WRITABLE CONTROL STORE (WCS)

The writable control store must be loaded with the
appropriate firmware. The WCS is loaded by the V73 WCS
Microprogram Utility (MIUTIL). MIUTIL is a foreground
program scheduled by a request:

;SCHED,MIUTIL,p,Fl,F

where p is the priority level. Use of the MIUTIL program is
described in detail in the Microprogramming Guide.

If the optional V70 series Floating Point Firmware is to be
used, it must be loaded into page 1 of WCS. The WCS
microprogram is catalogued into the OM library under the
name WCSFP, and must be transferred to the 81 device for
loading by MIUTIL The WCS should be initialized through
the use of MIUTIL prior to loading the floating-point
microprograms.

Section 20 gives additional information about writable
control store.

18-7

0 ooo • • -••• ,,.. ••• •-·-------• _ ___ ,_,, ,. .. ._ ,, ~ -~··- ---·----- ·-----·-----_._, , ~ ·- •• ·--uo••-•• • O•• • •O • • ~-·--.,,...._, __ ,. .. .,.,..,,. _.,. ... , ., ,.,--•-•• ••--·n-- •·-·• .. •- ·'"'''''- •·- • o

•

...

SECTION 19
PROCESS INPUT/OUTPUT

19.1 INTRODUCTION

To support process input/output. VORTEX uses special
interface drivers and FORTRAN subroutines. This section
describes the F2963 Data Acquisition and Control System
(19.2). ISA FORTRAN Process Control Subroutines (19.3). and
the IEEE Standard 488-1975 Driver (19.4).

19.2 F2963 DATA ACQUISITION AND
CONTROL SYSTEM

i

Th is section contains a decription of the VORTEX 1/0 driver
for the Model F2963 Data Acquisit ion and Control System
(DA/ CS). All I/ O operations to the DA/ CS are performed by
the 1/ 0 driver. thus. eleminating the necessity for the user
to be concerned with the details of performing input and
output from the DA/ CS .

19.2.1 1/ 0 Macros

1/ 0 requests in assembly language programs are in the
form of macro calls. The DASMR assembler provides a
standard set of system macros which specify 1/ 0
operations. The macros provide uniformity and ease of
coding 1/0 request. The following macros are available:

READ

WRITE

19,.2.2 Required Hardware

M inimum hardware required for a Data Acquisition and
Control System is one master chassis and controller. Sperry
Univac model number F2963-xx (consisting ofoneAnalogic
AN5400 chassis and one MCO controller). plus applicable
user selected printed circuit boards (PCBs) necessary for the
user's unique applicat ion .

Figure 19-1 shows a typical system configuration for the
DA/CS.

V 77 COMPUTER

•

(REMOVABLE SIGNAL . ..,. .,.
PROCESSING PRINTED '
CIRCUIT BOARDS)

,

F2963·xx CONTROLLER

CABLES

•
F2963-xx MASTER CHASSIS

CABLES

STRESS ANALYSIS
TRANSDUCERS

(CUSTOMER SUPPLIED)

Figure 19- 1. Typical System Configuration

Update B

SERVO CONTROLLED
STRESS PRODUCING

MECHANISM
(CUSTOMER SUPPLIED)

19-1

----- -- -- ·-- - -- ------~ . - ·- - ... _____ ·-- --·------------.----- -·- - -- --.. -· .. _.___ --- ---~-- ·-·--·· ---..---- -- __ ·-

19-2

PROCESS INPUT/OUTPUT

19.2.3 Hardware Description

The F2963 Data Acquisition and Control System is a general
purpose, computer oriented. analog-to-digital (A/0)/
digital-to-analog (0/ A) data conversion system. Offering
field add-on modular flexibility, and expandability, this
system is designed for commercial. scientific, and industrial
process monitoring and control and data-acquisition
applications. The self-powered and self-contained F2963
can process and convert both multi-channel analog input
signals and digital input and output signals within a single
chassis. This feature. combined with a variety of plug-in
signal-translation PCBs. offers the user freedom to
configure inputs and outputs in any order or manner to meet
his particular requirements.

Based on a single master chassis that holds up to 16 user
selected multiplexer / signal conditioning input PCBs. the
F2963 system is expanded by adding up to seven expander
chassis for a total of eight chassis. Consequently, up to 1 28
(16 x 8) user-selected PCBs can accommodate up to 4096
high-level single-ended, or 2048 high-level differential.
multiplexer data channels. In any single chassis, differential
multiplexing can be provided.

Standard multiplexer PCBs provide a variety of input
formats . signal levels, isolation. transducer and
thermocouple accomodations. and. when needed, cold
junct ion compensation. A single chassis can also contain up
to 64 simultaneous sample and holds and up to 64 0 / A
converter outputs. Standard 0 / A converters provide 10- to
16-bit resolution. and various speeds, accuracies. and
stabilities. Standard analog-to-digital converters provide
from 8 to 16 bit resolution. moderate to very high speeds.
moderate to very high stabilities and bipolar or unipolar
input voltage ranges. There are also standard digital
input/ output PCBs to choose from.

The format for addressing input units is

19.2.4 Software Addressing

19.2.4.1 Device Address

Four device addresses are available for Sperry Univac
OA/CS controllers. They are 050, 051. 052, and 053 (octal).
An individual call to the VORTEX driver can read or write
data from one controller only.

19.2.4.2 Unit Address

There are 16 slots for individual signal processing printed
circuit boards on each chassis. One F2963-xx master
chassis and one to seven F2963-03 expansion chassis can
be connected to a Sperry Univac controller at an individual
device address. Each individual slot with in each chassis is
referred to as a unit. Therefore. a controller with one chass is
connected to it could have as valid unit addresses 0 through
15 (0 through 01 7). A controller with 8 chassis connected to
it would have valid unit addresses 0 through 127 (0 through
0177).

19.2.4.3 Channel Address

Each unit (individual signal processing printed circu it board)
has 1. 2. 4. 16 or 32 individual sample points, depending
upon the function of the individual unit. Each sample point
is calle" a channel. A 4 sample point unit will have val id
channel addresses 0. 010. 020. and 030. A 16 sample point
unit will have valid channel addresses 0, 02. 04. 06. 010,
012. 014, 016. 020. 022. 024, 026. 030. 032, 034. and 036.

19.2.4.4 Addressing Format

1151,4113112111 110 1 9 is 1 7 is 1 5 1 4 1 3 1 2 11 1 o J (binary word)

..... ----~,-----~~...._ ~~------.. ~ T .
Unused

for
Addressing

Unit
Address

The format for addressing output units is

15 14 13 12 1 1 10 9 8 7 6 5

Unit Unused
for

Addressing
Number

Note: Only 2 bits are required for specifying output channel
numbers. since output units can have a maximum of four channels
per unit.

Update B

4 3

Channel
Number

2 1 0

Channel
Number

(binary word)

•

19.2.5 Input

19.2.5.1 READ Macro

Input to the DA/CS is by use of the IOC 'READ' macro. The
macro call has the format

READ dcb.lun.wait.mode

where

deb is the name of data control block (DCB)

lun is the logical unit number

wait is the wait flag

mode is the data mode (ignored)

Data is always input directly, without modification, so the
data mode is effectively system binary.

19.2.5.2 Data Control Block

The READ macro Data control block (OCB) format is:

Input Buffer Count Word 0

Input Buffer Address Word 1

Opcode Word 2

Status Word Address Word 3

Unit / Channel List Address Word 4

Trace Area Begin Address Word 5

Trace Area End Address Word 6

Opcode (Word 2)

z = 1
Z =O

y = 1
Y=O

X= 1

X=O

Digital input data
Analog input data

Sequential Addresses
Random Addresses

Place amplifiers in hold mode before
input.
Th is is not a sample and hold operation.

...

w = 1

W=O

V = O

PROCESS INPUT/ OUTPUT

Only one input address specified.
Repeat same address until input buffer
is full.

Number of addresses specified is
identical to number of words in input
buffer.

Reserved for special application . Must
be zero.

Analog/ Digital - If input data is digital. all other bits in the
opcode should be set to 0.

Sample and Hold - If X=1 in the opcode, then the amplifiers
in all sample and hold type units w ill be simultaneously
placed in the 'hold' state. After this is performed. all
channels listed in the unit/ channel address list (word 4) w ill
be input. When input is complete, all units will be reset to
'sample' state.

Random Addresses - In this mode. the unit / channel
address list may specify one or several addresses. Upon
completion of the sampling of the first address. the next
address in the list will be sampled. The operation terminates
when the count specified in the input buffer count (Word 0)

is reached.

Sequential Addresses - In this mode. the un1t / channel
address list specif ies only one address. After inputting data
from the specified channel. the address is incremented to
the address of the next input channel in sequence. This is
normally valid only for analog input cards with 32 channels
per card. The operation terminates when the count
specified in word 0 is reached.

Input Buffer Count (Word 0) -This is the octal number of
words in the input buffer . This must not be less than the
number of words contained in the unit/channel address list
(Word 4) or a loss of data will occur.

Input Buffer Address (Word 1) -This is the address of the
input buffer area .

•

Status Word Address (Word 3) - The status word is a word
in the calling program in which status of the IOC call is
maintained. This parameter contains the address of that
word. Status is an octal number returned in the Data Control
Block. Its contents give the status of the call as follows:

1 110 correctly completed

2 1/ 0 in execution

Update B 19-3

~-- ·- - _ ,_ .., _ _ • --_ _ ___ •• 0 .,., ___ .. _ - - · - - - -· _ - ·- · - ·--- -- --. - ... - - ------ . ·--- --

19-4

PROCESS INPUT/OUTPUT

3 Cable between V70 and DA/CS IS not connected
(hardware malfunction)

4 DA/CS is in local mode. Put in remote

5 "DONE" line from control is in incorrect state
(hardware malfunction)

6 BlC transfer error (hardware malfunction)

7 Unsuccessful attempt to place amplifiers in hold state
(hardware malfunction)

Unit/Channel Ust Address (Word 4)- This is the address
of a list which contains the gain setting and the unit and
channel numbers to be input. The format is as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Gain Unit/ Channel Address

Gain Field Portion of Unit/Channel Ust
,.

GAIN= 000 Unity Gain

0001 Gain of 2
Single-Ended Amplifier

001 0 Gain of 4

0011 Gain of 8

1000 Unity Gain

1 001 Gain of 2
Differential Amplifier

1010 Gain of 4

1011 Gain of 8

•

READ DCB 1.22,00,0
•

DC81 DATA 32
DATA INBUF
DATA 02
DATA STAT
DATA CHLIST

DATA BEGTR

DATA ENDTR

Update B

·- ·- · --- --

Any values not specified are invalid. For a signal processor
card without programmable gain (i.e .. F2963-07). the gain
field is used only to determine whether the amplifier is
single-ended or differential .

Unit/Channel Addresss Portion of Unit/Channel Ust -
This is as specified in section 26.3.

TRACE Area Begin Address (Word 5) - This is the address
of the beginning of a memory area inwhichatraceofalll/0
instructions to and from the DA/CS can be stored. If tracing
is not desired. then this field must be zero. Since tracing is
performed only during debugging, this field will normally be
zero.

TRACE Area end Address (Word 6) - This is the end
address of the trace area. If more 1/0 operations are traced
than can be contained within this area. tracing will "wrap
around" and begin at the address specified in "Trace Area
Begin Address". If tracing is not desired. this field must be
zero.

19.2.5 .3 Programming Examples

Example 1: A DASMR program is to sample single-ended
analog input channels 0 through 31 on unit number 7 in
sequential mode. Do not return until 1/0 complete. Do not
set gain. Logical unit number is 22 .

(length of 32)
(input buffer is "INBUF'')
(OP code is sequential)
(status is at address "STAT"}
(channel number list is at address
"CHLIST")
(TRACE area begins at address
"BEGTR")
(TRACE area ends at address " ENDTR")

Example 1:

A DAS MR program is to sample an input channel 100
times at a rate of 1 input/50 microsecond . The channel is
number 5 on device address 062, which is assigned to
logical unit number 22, and the data is to be input into
buffer IBUF. Do not return till 1/0 complete.

PCBl

CHNO

•

•

•

READ
•
•

DATA
DATA
DATA
DATA
DATA

PCBl, 22, 0, 0

100
IBUF
CHNO
0
1

DATA 50
•

•

DATA 02005

Example 2: (see section 19.4)

A FORTRAN program is to input sequentially from channels
04001, 04002, and 04003, which are assigned to logical
unit number 35, storing the input values into IBUF. Do not
return till 1/0 complete. Set the input rate ~o 1 word/20
microsecond. The device address to which the input module
is assigned is seen to be 064 (52 in decimal digits, and the
decimal equivalent of 04000 is 2048).

•

•

INTEGER STAT, PTLIST
DIMENSION IBUF(3)
DATA PTLIST /2049/
•

•

•

CALL V$0PIO (52, 35, 20, STAT)
•

•

CALL AISQW(3, PTLIST, IBUF, STAT)
•

•

19.3.4 low-level Multiplexor Gain Control

Control of the low-level mult iplexor amplifier gains is
accomplished through the use of the IOC FUNC macro.
FORTRAN source programs can set amplifier gains by
calling one of the subroutines described in section 19.4.1,
which will construct and execute such a macro.

PROCESS INPUT/OUTPUT

The macro call has the general form (see section 3.5.8).

FUNC

where:

deb

lun

wait

dcb,lun, wait

the address of the data control block.

the number of the logical unit (ADCM)
being manipulated .

unused.

The DCB macro has the general form

where:

DCB rl,buff,fun

rl is the number of channels for which the
gain will be set.

buff address of the channel table.

fun is the function code.

0 Set gains on sequential channels to a
fixed value, delay 5 milliseconds.

1 = Set gains on random channels through a
table, delay 5 milliseconds.

2 Set gains on sequential channels to a
fixed value, immediate return.

3 - Set gains on random channels through a
table, immediate return .

The format of the channel table when fun = 0 or 2 is:

STARTING CHANNEL ADDRESS Word 0

GAIN OF CHANNELS Word 1

The format of the channel tables when fun = 1 or 3 is:

Word

0 - ADDRESS OF CANNEL a
1 -- GAIN CODE FOR CHANNEL a
2 - ADDRESS OF CHANNEL b
3 - GAIN CODE FOR CHANNEL b
4 ADDRESS OF CHANNEL c

etc.

19-5

. · ·- ._.,.._ .. • , · - ·_,_..,_.,__._ ... -~--...... __. - -- · · · ~· _,. ; ., • • - , • • - ·- · • .,.. • .__. __ ... ---~ - -... • .• • - - ••• . • ,,_,, ______ -~· - _ __ - ·- -........ __, ... _ ___ __ - · .. -· - 4 -- -·- ···--- --- ~ - · ~"'-"" ''

19-6

PROCESS INPUT/OUTPUT

19.2.6 Output

19.2.6.1 WAITE Macro

Output to an AN5400 is by use of the IOC WRITE-' macro.
The macro call has the format:

WRITE dcb,lun.wait,mode

where

deb is the name of Data Control Block (DCB)

lun is the logical unit number

wait is the wait flag

mode is the data mode (ignored)

Data is always output directly, without modification, so the
Data Mode is effectively System Binary.

Data Control Block

Output Buffer Count WordO

Output Buffer Address Word 1

Opcode Word 2

Status Word Address Word 3

Unit/ Channel List Address Word 4

Trace Area Begin Address Word 5

Trace Area End Address Word 6

Mask Word List Address Word 7

Pulse Width Word Word 8

Output Word Count (Word 0) - This is the octal number of
words of data to be output. This must be the number of
words in both the output buffer and the unit/ channel list,
and, if specified. the Mask Word Ust.

Update B

Output Buffer Address (Word 1)- This is the address of the
output data buffer. Data must be in a position in the buffer
corresponding to the position of the desired channel in the
unit/ channel list.

Opcode (Word 2)

jojofojojojojojojo{olololo!ololz I
Z = 0 output data is analog

Z = 1 output data is digital

Status Word Address(Word 3) - The Status Word is a word
in the calling program in which the status of the IOC call is
maintained. Th is parameter contains the address of that
word. See Paragraph 26.4.2 for format of this word.

Unit/ Channei Ust AddreN (Word 4)- This is the address of
a list that shows to which unit/ channel addresses to output
the data.

Mask Word Ust Address (Word 5) - The mask word is used
to select specific bits within a digital output word which
need to be changed. Bits set to one in the mask words flag
bits that are to be updated. The list must contain the same
number of entries as the output buffer and the unit/ channel
list. In order to use this function, all units referenced in the
unit/ channel list must be able to perform readback. The
VORTEX driver will read back the previous setting of the
channel, update only those bits selected by the mask word.
then output to the channel the previous setting of any bits
not selected in the mask word, plus the updated setting of
any bits selected in the mask word. If the mask word list
address is zero. the entire word in the output buffer is output
and latched, with the mask function being ignored.

Pulse Width Word (Word 6)- The pulse width word gives
the length of time in VORTEX basic cycles (5 milliseconds)
that digital output points are to remain set. At the conclusion
of this waiting period, the VORTEX driver will output a word
of zeros to every channel in the unit/ channeJ list.

'

19.2.6.2 Examples

Example 1 : A DASMR source program is to output the first
3 words from buffer OBUF to channel 1 on unit number 3
and channels 0 and 1. on unit number 2. Data is analog.
Logical unit number is 17. Do not wait for completion.

.
PROCESS INPUT/OUTPUT

WRITE DC81,17,0.0

DCB1

CHLIST

STAT

OBUF

DATA
DATA
DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA

BSS

DATA

3
OBUF
0
STAT
CHLIST
0
0

0141
0100
0101

1

01 ,02,03

Example 2: A DASMR source program is to output the first
3 words from buffer OBUF to channels 1 on unit number 3,
and channels 0 and 1 on unit number 2. logical unit number
is 22. Data is digital. The first word in the output buffer is to
update only the low order 2 bits, the next two words will
update the entire word. Leave output latched indefinitely.
Do not wait for completion. Report Status in word STAT.

DCB2

WRITE

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DC82,22,0 ,0

3
OBUF
01
STAT
CHLIST
BEGTR
ENDTR
MASK
0

(length of 3)
(output buffer is "OBUF")
(OP code is analog output)
(status is at address "STAT")
(channel number list is at address " CHLIST")
(do not TRACE)
(do not TRACE)

(binary equivalent = 0000000001100001)
(binary equivalent = 0000000001 000000)
(binary equivalent = 0000000001000001)

(length of 3)
(output buffer is " OBUF")
(QP code is digital output)
(status is at address " STAT")
(channel number list is at address " CHLIST")
(begin TRACE at address "BEGTR")
(end TRACE at address " ENDTR")
(mask is at address "mask")
(leave output latched indefinately)

Update B

19· 7

19-8

PAOCES81NPUT!OUTPUT

CHUST

MASK

STAT

OBUF

BEGTR
ENDTR

19.2. 7 Throughput Considerations

19.2.7 .1 Sequential Input

DATA
DATA
DATA

•

DATA
DATA
DATA

•

ass
•

•

DATA

BSS
ass

0141
0100
0101

03
01 ,..77.,..,777
0177777

0

01.02.03

500
0

If one range (gain) is applicable to all channels to be
sampled and they are in sequential order in contiguous

addresses (or the same channel is to be sampled
repeatedly), the F2963-xx witt be able to automatically
sequence through the channels. The VORTEX driver wilt
setup the operation. start the BIC, and will not be interrupted
until all points have been sampled. The following table
represents throughput rates for the different signal
processors and AI D conveners.

A / 0 THROUGHPUT MATRIX FOR SEQUENTIAL INPUT

A / 0 Convener
Module

F2963-09
(AC2710)

F2963-10
(AC2712)

F2963-1 1
(AC2713)

F2963-12
(AC2714)

F2963-13
(AC8016)

With F2963-07 (AC262)
Signal Processor
Module

50,000

50,000

50.000

50,000

50,000

With 2963-06 (AC260)
Signal Processor
Module

50,000

50.000

27,000

27.000

15.000

Note: Figures represent number of Analog to Digital conversion per second. All timings
were performed on V77/ 600 with 660 ns. semiconductor memory with no cache.

Update B

- .

19.2.7.2 Random Input

Throughput for any operation which samples more than one
channel and requires the range (gain) to be set and/or
requires addresses to be specified in any given order will
require VORTEX 1/ 0 driver setup and handling for each

PROCESS INPUT/OUTPUT

individual channel. The BIC will not be used. The 1/ 0 driver
will operate in a programmed 1/ 0 mode. Timings may vary
between adjacent channels and these figures are maximum
under ideal conditions (no other tasks running
conc:.Jrrently).

A / 0 THROUGHPUT MATRIX FOR RANDOM INPUT

AID With F2963-07 (AC262) With F2963-06 (AC260)
Converter Signal Processor Signal Processor
Module Module Module

F2963-09 6 .000 6.000
(AC2710)

F2963-10 6.000 6.000
(AC2712)

F2963-1 1 6.000 6.000
(AC2713)

F2963-12 6.000 6.000
(AC2714)

F2963-13 6.000 6.000
(AC80 16)

Note: Figure!i represent number of Analog to Digital conversions per second. All timings
were performed on a V77/ 600 w ith 660 ns. semiconductor memory with no cache.

19.3 FORTRAN PROCESS CONTROL
SUBROUTINES

The Instrument Society of ~.merica (ISA) has defined as
standards a number of FORTRAN subprogram calls useful in
process input/ output applications. VORTEX includes the
following subroutines modeled after the ISA standards:

call

AISQ(WXHl
AIRD(WXHI
AIRP(W)(Hl
AO(W)
DI(W)
DOM(W)
DOUW)

name

Analog Input Sequential
Analog Input Random
Analog Input Repeat
Analog Output
Digital Input
Digital Output-Momentary
Digital Output-Latching

The (W) opt1on for each of these subroutines selects a wait
mode; that is. it spec1f1es that the return is not to be made from
the subroutine unt1l the I/ 0 is fin1shed. either normally or by
an error condit•on.

i

Update B

The (H) option for some subroutines selects a sample and hold
mode; that 1s. 1t specifies that the amplifiers m all sample and
hold type un1ts are simultaneously placed in a hold state. Then
all channels listed m the unit/ channel address list are input.
When input is complete. all uni ts are reset to the sample stare.

The funct1on performed by each subprogram IS descnbed m

19.3.2.

1 9 .3 . 1 PROCESS 1/ 0 PARAMETERS

The following list indicates the parameters used With process
110 FORTRAN subroutine calls. Not all parameters are used
with all calls.

parameter

lun

count

description

is the logical unit number of the DA/ CS
system

is the number of words 1n the input buffer
'ibuf or the output buffer 'obuf

l

T

19· 9

~ M-- 0 0 - -· ·~·--· .. • ··-·· - · ·-------·-- --- o , ·- 0 0

19-10

PROCESS INPUT/OUTPUT

l
ptlist

ibuf

obuf

time

mask

stat

is the point list. For AlSO and AIRP calls
(with or without theW and H options}. this
is a single point address. For all other
calls. 'ptlist' is an array containing 'count'
point addresses. For the output calls AO.
OOM. and DOL (with or without the W
option). each point address is a word with
the unit number in bits 2-8 and the
channel number in bits 0-1 . For AIRO and
01 calls (with or without options). each
point address is a word with a channel
number in bits 0-4. a unit address in bits
5-11 . and a gain value in bits 12-15.

is an array of (at least) size 'count' into
which data is read.

is an array of (at least) size ·count' out of
which data is written .

is a number indicating a time interval.
This parameter is used only with the
DOM and DOMW calls. If 'time· is not
equal to zero. then S* 'time' milliseconds
after output a word of zeros is output to
every channel indicated in 'ptlist'; that is.
the random digit channels are reset.

is a mask word used only with calls DOL
and OOLW. Bits set to 1 in ·mask ' indicate
those bits that the device driver program
changes in the most recently output word
from 'obuf.

is a status word whose value indicates
the status of the process 1/ 0 call:

v•lue

1
2

3-7

status

l / 0 correctly completed
1/ 0 in execution
Error condition (see
19.2.5.2)

19.3.2 PROCESS 1/0 Calls

The formats for process 110 FORTRAN subroutine calls are
presented below. Following each instruction format is a brief
description of the func·tions performed by the subprogram.

CALL

i

AlSO
AISQW
AI SOH
AISQWH

(Jun. count, ptlist, ibuf. stat)

l
This subprogram reads 'count' analog inputs into the buffer
'ibuf'. The first channel read is channel Ox001 . where 'ptlist'
contains the word Oxyyy. Channels are then read sequentially.

CALL

AIRO
AIR OW
AIROH
AIROWH

(fun, count. ptlist. ibuf, stat)

This subprogram reads 'count' analog inputs into the buffer
'ibuf. The inputs are taken from the 'ptlist' list of random
points.

CALL

AIRP
AIRPW
AIR PH
AIRPWH

(fun, count. ptlist, ibuf. stat)

This subprogram reads 'count' analog inputs into the buffer
'ibuf' . All inputs are taken from the single channel given in
'ptlist'.

CALL
AO
AOW

(fun. count. ptlist. obuf, stat)

This subprogram outputs 'count'.analog values from the buffer
'obuf. These values are output to the list of random points
'ptlist'.

CALL 01
OIW

(fun. count. ptlist. ibuf. stat)

This subprogram reads 'count' words of digital i nput into the
buffer 'ibuf'. These words are input from the list of random
digital channels 'ptlist ·.

CALL DOM
OOMW

(fun, count. ptlist. ibuf. time. stat)

This subprogram outputs 'count' words of digttal output from
the buffer 'obuf. These words are output according to the fist of
random digital channels 'ptlist' . If 'time· is zero this completes
the operation; otherwise. after S*'time· in mill iseconds a word
of zeros is output to every channel in 'ptltst'. thus resening all
channels.

CAll
DOL
OOLW

(lun. count, ptlist. obuf. mask. stat)

Th is subprogram outputs 'count' words of digital output from
the buffer 'obuf These words are output according to the list of
random digital channels 'ptlist'. The device driver program
saves the previous word output to each channel and changes
only those b1ts specified by 1 -bits in ·mask · The 'mask · IS an
integer array parallel to 'obuf' and ptltst'.

T

Update B

. - - - - - --------- --·----- --

19.4 IEEE STD 488-1975 DRIVER

19.4.1 Description

The IEEE STD 488- 1975 driver is designed to provide a
means for managing information interchange between a
V77 minicomputer and devices connected to the IEEE
Standard Bus within a VORTEX environment. This will
enable var1ous programmable instruments to tranfer digital
data among themselves directly. and not necessitate
intermediate processing by an intervening controller unit.
The user directs the mformauon management th rough the

execut1on of various VORTEX 1/ 0 macros and a series of
general interface management commands.

19.4 .2 User Interface

19.4 .2 .1 General Capabilities

The IEEE · 488 VORTEX driver uses a BIC to pass a buffer
to ' from the mterface bus. Th1s buffer conta inS an ASCII
strmg wh1ch represents command mstructions as well as
data mput for programming a device. These instructions and
data enable a devtce to be addressed then listen and
transm1t the buffer to the device under control ; address a
dev1ce to talk and transmit 1ts measurement r ead1ng to the
buffer; or command a device or devices to perform a certain
funct1on or to assume a specific state.

19.4.2 .2 Program Interface

The IEEE . 488 interface driver is initiated by the user
through the execut1on of VORTEX 1/ 0 control macros READ
and WRITE. W ith these two macros. the user is able to send
data to a device or receive measurement readings from a
dev ice . Also available to the user. is the FUNC macro which
provtdes the ability to execute umversal commands of the
IEEE controller

READ Macro:

Th is macro rs used to receive data from a bus instrument.
Thrs involves address1ng a device to talk. receiving the
instrument 's data. and un-address1ng the device after
receiving all 1ts data. Only one device may be addressed to
talk at any given t ime. The form of the 1/ 0 call ing sequence
.
IS:

READ DCB. LUN. WAIT, MODE

·update B

where

DCB

LUN

WAIT

MODE

WRITE Macro

PROCESS INPUT/ OUTPUT

is the address of the data control block
(see section 2. 2. 1).

is the number of the log•cal un1t to
wh ich to IEEE controller has been
asstgned.

specifies the type of return . and should
be coded 0 for a return suspended until
1/0 is complete.

s~ectftes the 1 0 data mode and should
always be coded as 1 for ASCII

Thts macro will transm1t data from a user buffer area to a
bus instrument. This includes addressing the dev1ce to
listen. sending data or programming instructions. and un·
addressing the dev ice after it has accepted all data M ore
than one device may be addressed to listen at any g1ven
time. The form of the I. 0 ca llmg sequence 1s:

WRITE DCB. LUN . WAIT. MODE

where the parameters have the same definitions and take
on the same values as tn the READ macro.

FUNC Macro

This macro allows the user to perform various un1versal
command functions of the IEEE - 488 controller The form of
the FUNC macro is:

FUNC DCB . LUN. WAIT

Where the parameters have the same definitions and take
on the same values as in the READ macro

The part1cular acuon wh1ch is initiated by the FUNC call is
dependent on the funct ion code FUN in the data cont rol
block . Possible act1ons are:

19 . 11

19·12

PROCESS INPUT/ OUTPUT

Function
Code

0

1

2

3

NOTE:

Universal
Command

DCL

LLO

TCT

SPE

Operational
Function

Device Clear . Initializes all devices to a
pre-defined state. The particular state
is device dependent and should be
described in the operating manual.

local Lockout. Disables the 'Return to
Locar button on all bus instruments.
While in remote mode this prevents
a return to local mode via
local controls.

Take Control. This allows a bus
instrument other than the V77 to
act as a controller device.
Serial Poll Enable. This allows a serial
poll to be taken to determine the source
and nature of a pending service request .

Function 2 is in an addressed command which requ ires a
device be addressed to talk.

Data Control Block

The Data Control Block is required for all three macro
requests READ. WRITE and FUNC. The general form of this

.
macro rs :

DCB RL. BUFF, FUN

where

RL

BUFF

FUN

is the record length. in words. of the
record to be transmitted or received.

is the address of a buffer contatning
user parameters and a pointer to the
data buffer to be transmitted (or in the
case of a READ. the buffer into which
data will be received).

is the function code of the FUNC
request, and is unused for other
requests.

DCB Buffer Description for READ

The BUFF parameter of the READ DCB contains a pornter
address to a buffer of user data. The structure of that user
data buffer is:

Update B

-·---· ·-- - ---- -

Word 1 Mask Talk Address

Word 2 Pointer to Buffer to Receive Data

Word 1
The lower byte of the f irst parameter word provides
the talk address of a selected device.

The upper byte is an eight bit mask which is applied to
received data before it is stored in the user · s buffer . A
" 1 .. in any mask position will cause the
corresponding bit of a received data byte to be set to
" 1 •· before being sent to the user. The primary
purpose of this mask is to force a set panty for the
ASCII data recerved .

Word 2
The second parameter word is an address pointer to
the user buffer which will receive the data returned
from the talk device.

DCB Buffer Description for WRITE

The BUFF parameter of the WRITE DCB contains a pointer
address to a buffer of user data. The contents of that user
buffer may be a number of listen addresses. programming
commands. universal or addressed commands. or devrce
dependent data. A great deal of flexibility is provided for the.

user to set up a buffer designed for his own specific

purposes. The contents of the buffer will control the
transmrssion of data to listening devices and also handle
certain system status lines (i .e .. Remote Enable).

The universal commands issued via a FUNC request may be
placed into the WRITE buffer if desired. There is no
distinction between a FUNC 0 Device Clear and placing the
code for a Universal Device Clear in the WRITE buffer. Their
inclusion as FUNC requests are for user convenience only.
The only exception is Function Code 3 which performs an
entire serial polling routine to determine the source and
nature of a service request. A Serial Poll Enable in the
WRITE buffer will set the system in a mode ready to do a
serial poll , but will not perform the actual polling sequence.

DCB Buffer Description for FUNC

The BUFF parameter of the data control block for a FUNC
macro contarr.s an address pointer to a buffer location of
user data. This buffer is only used for Function Codes 2 and
3. The structure of the user data area is :

Word # of Devices Talk Address 1

Word 2 Talk Address 2

Word 3 Talk Address 3

• • •

• • •

• • •

Word n Talk Address n

Word n + 1 Status Byte Talk Address of SRO

Word 1
The lower byte of the first parameter word for
Function Code 3 is the TALK address of a device to be

polled for a service request. For Function Code 2. it is
the TALK address of the dev1ce which is to take

control.

The upper byte of the first parameter word represents
the number of devices to be serially polled for a
pending service request. The upper byte is only used
for Funct ion Code 3.

Word 2 thru n
The lower byte of these words is used only for
Function Code 3 and contain the TALK address of all
devices whrch are to be polled for a service request.

PROCESS INPUT/OUTPUT

The upper byte for Words 2 thru n are ignored for

FUNC requests.

Word n +1
The IEEE - 48 interface driver will store in the lower

byte of this word the TALK address of the device
making a service request .

The driver will place the status byte of the device into
the upper byte of Word n + 1 . This word is only used
for a FUNC 3 request.

19.4.3 Data and Instruction Formats

The user has the capability to incorporate into his WRITE
buffer a series of programming commands (EXC. EXC2) In
order to accommodate the use of a BIC for the transference
of data through the bus. 1t became necessary to change the

format of the EXC and EXC2 instructions. The EXC format is :

BIT 15 98

5
Funct ion
Code

65

Devrce Address: 76

the EXC2 format is:

BIT 15 98

101
Function
Code

65

Devrce Address : 76

When Bits 9 and 1 1 are set. the word rs interpreted as an

EXC instruction. Bits 9 and 15 indicate an EXC2 instruction.

Programming commands. listen addresses and other device
dependent messages should be placed in the buffer in the
lower byte of each buffer word. Measurement readings
returned to the application program will be stored in the
lower byte of each buffer word.

Programming commands wh1ch are ava ilable to the user:

Command Function

Program Identify True
Program Identify False
Progam Remote Enable True
Program Remote Enable False
Program Attention False
Program Attent ion True
Issue an Interface Clear

0

0

EXC 076
EXC 176
EXC 276
EXC 376
EXC 576
EXC 676

EXC 776
EXC2 076 Program Take Control Synchronously True

Update B

.1 9-1 3

- . · -·· . _ .._ ___ · -·--~ - ·--· ··· '· ·~---·--~--· '~· ··· '"·--· "'·--· .. ---~- .. ···-·- · -- . ---~- ·--·-·--- - ---.. .. - ·-·--- . . -~ - ... -.

19-14

PROCESS INPUT/OUTPUT

19.4.3.1 Identify

The Program Identify True or False is used strictly for a
parallel polling operation. Polling occurs when both
Attention and Identify are true and stops when either A TN
and lOY is False.

19.4.3.2 Remote

Setting Remote Enable true will allow devices to go to the
remote state when their LISTEN address is transmitted.

0

Programming this line False places all bus instruments into
local state.

19.4.3.3 Interface Clear

Issuing an Interface Clear will in itialize the system by
placing the system controller in charge and clearing the bus.

19.4.3.4 Take Control Synchronously

There are times when the controller may take control of the
bus by a synchronous interruption of an action TALKER. To
prevent the loss of data which is currently being
transmitted. the Take Control Synchronously (TCS)
interface function is executed. This does not have to be set
for each transmission performed. but need on ly be execu ted
once. It is reset by an Interface Clear or System Reset.

19.4.3 .5 Attention

Messages wh ich are sent through the BUS may be
interpreted in one of two ways depending on the state of the
Attent1on line. by placing an EXC 676 instruction in the
WRITE buffer. the line is set true. Th1s places the bus in
command mode where all data in the buffer followmg the
EXC command is read as universal or addressed commands.

In a similar manner. the Attention line is programmed false
via an EXC 576 instruction. This will put the bus in the data
mode in w hich the following data is interpreted as device
dependent messages.

Update B

Once the controller has been programmed to the data or
command mode. it retains that state unti l it is
reprogrammed to the alternate mode.

19.4.4 System and User Requirements

19.4.4.1 System Generation Considerations
•

The environment for wh ich the IEEE . 488 Interface Driver
has been designed to perform in should have the following
characteristics:

•

•

•

System generated in conformance with the standard
procedure for a VORTEX system generat ion

The inclusion of the V75 extended instruction set is not
necessary

A dedicated BIC for the IEEE controller

19.4.4.2 User Program Considerations

There are times when an instrument on the IEEE bus will
generate a service request interrupt. The driver will note the
presence of the service request by placing a byte of all 1 ·s (i.e ..
0377) in event word TBEVNT of the TI08. It is the responsibility
of the application program to periodically check TBEVNT to see
if a service request is pending. and. if so. to handle it
accordingly.· The appl ication program should respond to all
pending service requests before issuing an 1/ 0 request.

To determine the source and nature of a service request. the
user must perform a serial poll. This is done by issuing a FUNC
3 command. The result of th is request w ill be the TALK address
of the device with a pending service request and a status byte
Bits 0-6 of th is byte will represent the spe~1 f ic nature of the
request. The application program must interpret b1ts 0-6
(interpretation is device dependent) and perform whatever
actions are warranted by the request The event word TBEVNT
should be cleared after a serial poll is performed. •

• Note: The RTE "TBEVNT" request should be used to examine
and clear TBEVNT (Section 2.1. 1 5).

•

SECTION 20
WRITABLE CONTROL STORE AND
FLOATING-POINT PROCESSOR

The Writable Control Store (WCS) option extends the
SPERRY UNIVAC 70 series processor's read-only control
store to perm it the addition o f new instructions. develop
ment of microdiagnostics, and optimal tailoring of the
computer system to its application . Unlike the read -only
control store. wh ich contains the 70 series standard
instruction set and cannot be altered, the WCS can be
loaded from main memory under control of certain 110
instructions. The capabilities of WCS give the user more
complete access to the resources of the 70 series
computer system .

20.1 MICROPROGRAMMING SOFTWARE

Supporting software for the WCS includes the following :

• M icroprogram assembler MIDAS

• Microprogram simulator MICSI M microprogram

• Microprogram utility loader and diagnostic MI UTIL

• WCS reload task

All software f or microprogram development operates
under VORTEX. The capabilities and use of WCS and its
supporting software are described in the SPERRY
UNIVAC Microprogramming Guide.

20.1.1 Microprogram Assembler

The MIDAS program allows the user to prepare micropro
grams for SPERRY UNIVAC 70 series WCS, using
operation mnemonics, symbolic addressing , address
field calculations, macro definitions, error detection and
automatic program documentation.

Under VORTEX, MIDAS is scheduled from the background
library at level 0 by

/LOAD,MIDAS

20.1.2 Microprogram Simulator

The SPERRY UNIVAC microprogram simulator (MICSIM)
helps the programmer to verify and optimize micropro
grams. MICSIM runs the output from MIDAS with in the
system's main memory. At selected times, conditions and
the contents of data locations can be examined and
changed. MICSI M is scheduled from the background
library at level 0 by

/ LOAD, MICS IM

20.1.3 Microprogram Utility

Loading the control store with the assembled and tested
microcode is performed by microprogram util1ty. MIUTIL.

In addition, on-line debugging directives are available
through the utility on a special configuration . The MIUTIL
program operates as a foreground program at priority level
set by the user. The program is scheduled by operator
input over the OC device. For example,

;SCHED, MIUTIL,3,FL,F

The microprogram utility is also responsible for maintain·
ing an up-to-date image of the contents of the WCS on an
RMD file, named WCSIMG on the OM library, see sect ion
15.8. This image is then used by the WCS reload task,
WCSRLD, to restore the WCS following a power fa ilure/
restart and VORTEX reload. The RMD file image is updated
each time the R directive is used to exit from the utility .

If the update is completed successfully, the message:

WCS SAVED

is output on the OC and LO devices before the utility exits.
If the RMD fi le for saving the WCS is not present on the
OM library the OM library. the system outputs

I010,MIUTIL
FILE WCSI MG NOT FOUND
WCS SAVE ABORTED

110 errors wh ich may occur during the save operation
result in outputting messages

IOxx, MIUTIL
WCS SAVE ABORTED

If the restoration of WCS is completed successfully, the
message WCS RELOADED will be output to the OC and LO
devices before the reload task exits.

To exit from the microprogram utility without updat ing the
RMD file, the operator may issue the directive.

;ABORT, MIUTIL

20·1

•~ · ••' - -·• ----· ,... ~,.--n• ·-·-· - - ·· - · · --· · '

•

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

20.1.4 WCS Reload Task, WCSRLD

This task, WCSRLO, reinitializes the WCS to the contents
specified by the RMO file image of WCS, WCSIMG on the

OM library. It is automatically scheduled on power failure/
restart or upon the reloading of the VORTEX system. In this
way, WCS contents are preserved through any periods
without power.

Though usually scheduled automatically by the system, the
reload task may also be scheduled manually by the
operator. For example. the following directive schedules the
reload task at priority level 15:

;SCHED,WCSRLD,15,FL,F .

20.2 STANDARD FIRMWARE

Standard firmware is available on the 70 series computers
to provide faster and more compact code. The executable
code wh ich uses the firmware, or microprograms, is
automatically generated by the VORTEX FORTRAN IV
compiler when the option F is specified (in the JCP
directive / FORT, see section 4.2.15). The firmware also
extends the capabilities of the user's assembly language
programs and the support library (see section 13).

Standard firmware includes routines wh ich are loaded mto
the system 's WCS for the following categories of operations:

• Arithmetic for two-word f ixed-point and integer
numbers

• Arithmetic for real (floating-point) numbers

• Transfer of two-word values. such as a memory to
memory move

o FORTRAN oriented routines

• Byte manipulation

• Stack manipulation

Executing a branch-to·control -store (BCS) instruction
causes a transfer of control from the system's read-only
memory to the WCS at the address specified in the BCS
instruction. The MIUTIL program (see section 20.1.3) loads
the standard firmware as well as any extensions to the
instruction set the user may write. To execute firmware, the
program must use a BCS instruction with the appropriate
entry address and calling sequence for passing parameters.

A FORTRAN IV program specifies the option F on its
request for compilation, and then BCS instructions are
generated. The FORTRAN IV programs use this firmware
without any changes to the FORTRAN IV statements.

Due to size constraints, some firmware is unavailable
under certain hardware configurations. Table 20-1 shows
these restrictions.

Table 20·1. Firmware Availability
Hardware Configurations

Firmware Routine without FPP with FPP

XAD,XSB YES
XMU,XDV YES
IMU,IDV NO
FAO,FSB,FMU,FDV YES
FSQ NO
FLO,FST,FMV YES
FSE,FOO,FD01 YES
FTNE,FTEQ, ... ,FTGT NO
FJNE,FJEQ, ... ,FJGT NO
FAIF,FIOP NO
FRSC,FRSR.FJAG NO
Byte Firmware YES
Stack Firmware YES
FIMPY NO
NOX120 NO

20.2.1 Fixed-Point Arithmetic
Firmware

YES
NO
YES
NO
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES

Two-word f ixed-point and integer numbers use the following
arithmetic firmware:

Mnemonic Function

XAD
XSB

XMU
xov
IMU
IOV

Fixed-point and integer add
Fixed-point and integer sub-

tract
Fixed-point multiply
Fixed-point divide
Integer mult1ply
Integer divide

BCS Call

0105334
0105374

0105274
0105234
0105227
0105067

These operations are performed on the hardware A and B
registers (AB), using the number specified by the second
word of the respective BCS call. If overflow occurs. AB is set
to the maximum number with the proper sign and the
overflow flag (OVFL) is set.

For two·word fixed-point numbers. the decimal point is
assumed to be to the left of bit 15 of the most significant
word. For two-word integer numbers, the decimal point is
assumed to be to the right of bit 0 of the least significant
word. As a result, rounding and overflow conditions are
different for multiply and divide. For example, multiplying
two double-word numbers produces a logical four-word
result. The fixed-point function returns the high order two
words and drops the lower two. The integer multiply returns
the lower two-words of the logical result and sets overflow if
either of the two higher words are non-zero.

20·2 Upda!e B

- ·----

•

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

20.2.1.1 Fixed-Point Multiply (FIMPY)

The following firmware is used for single word fixed-point
and integer numbers.

FIMPY Fixed-point (one word) multiply

This operation is performed on an operand in the A register
and a value located at an address which has been provided
as a parameter, and returns its result in the A register.
Overflow is not checked for. The parameter address may be
indexed by the X register.

The BCS ca II is

0105015
0105055

if no index1ng desired.
if indexing is desired.

20.2.2 Floating-Point Arithmetic

Firmware

The addition, subtraction. multipl ication, and division of
single-precision real. or floating-point, numbers can be
perlormed with the following firmware.

Mnemonic

FAD
FSB
FMU
FDV
FSQ

Function

Floating-point add
Floating-point subtract
Floating-point multiply
Floating-point d ivide
Floating-point square root

BCS Call

0105134
0105174
0105074
0105034
0105127

A floating-point arithmetic operation is performed on AB
using the floating-point number specified by the second
word of the BCS call. If underflow occurs, AB is set to zero.
If overflow occurs, AB is set to the maximum floating-point
number with a proper sign. Taking square root of a
negative number results in the overflow being set and AB
set to zero.

20.2.3 Data Transfer Firmware

The data transfer firmware routines load AB from memory,
store AB in memory. and move the contents of two
contiguous memory locations to another place in memory.

Mnemonic Function BCS Call

FLO Load AB with two words 0105032
from memory

FST Store AB into memory 0105033
FMV Memory-to-memory move 0105037

of two words

20.2.4 FORTRAN-Oriented Firmware

These microprograms are oriented toward FORTRAN IV
operations. However, they have a similar utility to assem
bly-language programs.

Mnemonic

FINE
FTEQ
FTLT
FTGE

FTLE

FTGT
FJNE
FJEQ

FJLT
FJGE

FJLE

FJGT
FA IF
FlOP

FRSC

FRSR

FJAG

FSE

FOO
FOOl

NOX120

Use

Test for not equal
Test for equal
Test for less than
Test for greater than

or equal
Test for less than or

equal
Test for greater than

Jump if not equal
Jump if equal

Jump if less than
Jump if greater than
or equal
Jump if less than or
equal
Jump if greater than
Arithmetic IF processor
Indexed operand proces·
sor
Reentrant subroutine
call
Reentrant subroutine
return
Jump if A reiister
greater

Pass parameters between
subroutines
Terminate DO loop
Terminate DO loop
(1 increment)
General indexed array
processor

BCS Call

0105024
0105064
0105124
0105164

0105324

0105364

0105026
0 105066

0105126
0105166

0105326

0105366
0105226
0105167

0105025

0105065

0105125

0105036

0105035
0105027

vanes
(see macro)

For FSE. the calling routine would use the following
sequence:

CALL SUB
DATA P1 Address of f irst
• data to be moved
•

DATA Pn Address of last
data to be moved

In the subroutine being called, the following sequence 1s
necessary to receive the data or data address:

20-3

. ··~~·~---· ·----------·- ' · ·-· _ ._.... --·- - - --- .~ .. ~- ·----~-- --_.,.. ·------ ---- ·-·-·- -· ·-· _______ ,. ___ ---··-

WRIT ABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

SUB BSS
DATA
DATA
BSS

1

0 1 0 5 0 3 6 BCS transfer for FSE
n
m

Number of parameters
Number of parameters

The second instruction, FDO to control a DO loop, uses the
following calling sequence:

DATA 0105035
DATA P1

DATA P2

DATA P3

DATA

BCS transfer to FOO
Address of DO
increment

Address of DO loop
counter

Address of DO loop
limit

Address for jump if
the counter is not
greater than the
limit

The third instruction, FOOl to control a DO loop with
increment of 1 uses the following calling sequence.

DATA 0105027 BCS transfer to FDO 1
DATA P1 Address of DO loop

counter
DATA P2 Address of DO loop

limit
DATA P3 Address for jump

if the counter is
not greater than the
limit

The DO loop is incremented and tested against the DO loop
limit. If the loop counter is less than the limit. execution
continues at the address specified by the BCS call word 5.
If the value of the loop counter is equal to or greater than
the value represented by the limit, execution continues at
the instruction following this calling sequence.

The calling sequence for all the relational test (FT··) and
jump (F J ..) instructions are as follows:

20-4

BCS
DATA
DATA
DATA

Address of first number
Address of second number
Jump address

These routines compare the two single precision floating
point numbers pointed to be the words following the BCS.
The A register is set to minus one or zero, depending on
the specified relation being met or not met, respectively.
For the jump instructions, F J •.• the branch address is taken
only when the condition is met, (i.e., when the A register
equals minus one). Note that the specified relat ion is that
of the first number to the second. For example. FTGT tests
for the first number greater than the second.

The calling sequence for the arithmetic IF processor (FAIF),
is as follows:

BCS
DATA Address of first number
DATA Address of second number
DATA Branch address if less than
DATA Branch address if equal
DATA Branch address if greater than

This BCS also compares two single precision floating-point
numbers. It determines if the first number is less than,
equal to, or greater than the second number, and then
takes the appropriate branch address.

The indexed operand processot is used to compute the
effective address of an element in a FORTRAN real array. It
has the tollowing call sequence:

BCS
DATA
DATA

Address of index value
Base address

The effective address is computed by subtracting one from
the index value. multiplying the result by two. and then
adding in the base address. This allows for an array with
two-word entries and induces from one to ·n·. The effective
address is stored in the second word of the following
instruction.

The reentrant subroutine call, FRSC, has the following call
sequence:

BCS
DATA Subroutine address

The B register points to a memory location which is used as
a stack pointer. This memory location is decremented and
the resulting value used as the address where the return
address is stored.

. . . ··- -- - - ·· ..

WRIT ABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

Control is then transferred to the subroutine. Note that the
subroutine address should be that of the first instruction of
the subroutine.

The reentrant subroutine return, FRSR. has a calling
sequence consisting of just the BCS without parameters.
The return address is popped off the stack using the 8
register and the memory stack pointer as in the subroutine
call. Note that no limit checks are made on the stack by
either the call or the return. Also, the stack pointer format
is not consistent with that of the general stack firmware.

The BCS calling sequence for F JAG (jump if A register
greater than zero) is as follows:

8CS
DATA Jump address

The jump address is taken only if the A register is strictly
greater than (and not equal to) zero.

The General Indexed Array Processor is used to compute
the effective address of an element in a one or two
dimensional FORTRAN array, where an array element is
one. two, or four words.

The calling sequences are:

For one-dimensional arrays
A(m)--

A(l) dimensioned

BCS word
address of index value (I)
address of array base address
(next instruction, word 1)
(next instruction, word 2)

For two-dimensional arrays A(I.J) dimensioned
A(m,n)--

BCS word
address of index value (I)
address at dimension (m)
address of index value (J)
·address of array base address
(next instruction, word 1)
(next instruction, word 2)

All operand addresses may be indirect. The array base
address must not reflect the offset due to base zero, base
one addressing. The actual (direct) address of the desired
element of the array will be placed in the second word of
the instruction following the BCS call.

The table below gives the 8CS word for all combinations of
1, 2, and 4 words; one or two dimensional arrays.

BCS Word Contents (Octal)

one dimension two dimensions

one word/element 105216 105016

two words/element 105356 105156

four words/element 105316 105116

The effect address is computed by the algorithm

where

((((J · 1) • m) + m) + (I · 1)) • L) + 8

I,J.m

L

B

are as defined above

is words/element

is the array base address
(i.e., the address of
element (1.) or (1))

For a one dimensional array, J is assumed to be one in the
above formula.

20.2.5 Byte Manipulation Firmware

The byte instructions use a byte pointer address where bits
15-1 specify the word number and bit 0 is 0 for the left byte
and 1 for the right byte. The byte-oriented instructions
implemented in firmware are:
Mnemonic Function BCS Call

CBS
M8S

Compare byte strings
Move byte string

0105030
0105070

In the first microprogram c;equence. the CBS instruction
requires that the second word contain the address to which
control is returned if the strings are not equal. The B
register contains the byte starting address of the first
string, the X register is the byte starting address of the
second string, and the A register spectfies the number of
bytes to be compared.

The second byte-oriented microprogram sequence. the MBS
instruction, moves the number of bytes specified in the A
regtster from the location specified by the B register to the
location specified by the X register.

20-5

-----------~--- __________ .. __ ..._,.,._ .. __ ~ ... ~·o•-•-Mo<w---------0'~-- -· -.-.-.... -- ~-~- .. --· ~------·~·-------·-· ----·- _ .. _ •• -~--- · · --·-~- ·~- ~ -... .-......... . _, ________. -··- ·- - ·--

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

Both share a common BCS entry point. and this may be
extended for six more instructions.

20.2.6 Stack Firmware

A stack is kept in memory for use for return addresses.
temporary storage or arithmetic operations. The base and
limit of the stack (see figure 20-1) are defined by the user.
The stack control block is indicated by a pointer in the
second word of the calling sequence. Figure 20·2 is the
format of the stack control block.

The following BCS instructions correspond with each of the
stack operations:

Operation BCS Operation BCS

Add 0105031 Push 0105231
Subtract 0105071 Pop 0105331
Multiply 0105131 Push double 0105271
Divide 0105171 Pop double 0105371

Eight stack instructions transier to the same initial entry
point in the WCS, where the decoder determines the
specific instruction to be executed.

20-6

or-------------------

t-----------.1 LIMIT
STACK GROWS
TOWARD LOW
ADDRESS

STACK ~

~--------------~~BASE

32K~------------------~

INITIAL
POINTER

Figure 20·1. Base and Limit of Stack

On all stack operations, if the top-of-stack pointer (PTR)
ever exceeds the boundaries of the stack (as the user
defined them in the stack control block), no further
processing takes place and a JMPM is made to the fourth
word in the stack control block.

Single-Precision Integer Stack Arithmetic

Add: adds the top two words of the stack. increments the
pointer and replaces the new topmost word. If the result
exceeds the maximum positive number (077777), the
overflow indicator (OF) and the sign in bit 15 are set to
one. For example, adding 000002 to 077777 sets OF to one
and the result to 100001.

Subtract: subtracts the next stack word from the top of
stack word (by adding the top word to the two's comple·
ment of the next stack word), increments the top-of-stack
pointer, and stores the remainder in the new top-of-stack
word. If the result exceeds the maximum negative number,
it sets the overflow indicator and resets the sign.

Multiply: multiplies the two words at the top of the stack
and replaces them by their 32·bit product (see figure 20·3).
The most sign ificant part of the product is placed in the top
word, and the least signi1icant portion wilt be placed in the
next word. The sign bit of the top word gives the sign of the
product, and the sign of the next word is set to zero. The
overflow indicator { OF) is not set.

Word

0 CURRENT STACK POINTER

1 LIMIT OF STACK

2 BASE OF STACK

3 ADDRESS OF INSTRUCTION
WHICH CAUSED STACK
OVERFLOW OR UNDERFLOW

4 ERROR ROUTINE FOR OVERFLOW
OR UNDERFLOW

Fi1ure 20-2. Stack Control Block

- - ---- -

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

OivMie: divides the top stack word into the following two
words. The top-of-stack pointer (PTR) is incremented and
the single-precision quotient with the sign of the dividend is
stored in the new top-of-stack location. The remainder is
stored in the next stack location (see figure 20.4).

BEFORE AFTER
0 0

PTR PTR
s X s X - y (MS)

s y p X - y (LS l

32K 32K

Figure 20-3. Stack Multiply

If the quotient overflows. the contents are unpredictab le,
and control is returned with the overflow indicator set (OF).

BEFORE AFTER
0 0

p TR
X X

PTR
Y (MSl q

Y (MS) r

-

32K 32 K
+ yt t. x • t quotient q w•th remainder r

Figure 20-4. Stack Divide

Stack operators: these opera tors also requtre a stack
control block as in f igure 20-2.

Push (SPUSH): the A register (RO) is placed on the stack at
the location addressed by the decremented top-of-stack
pointer (see figure 20-5.)

PTR

BEFORE
SPUSH

0 y----.;.._--...,

p

0

TR

AFTER
SPUSH

A-REGISTER

32K '----------' 32K

Figure 20-5. Stack Push

Pop (SPOP): the A-register (RO) ts loaded from the top
stack word and the stack pointer is incremented (see figure
20-6).

BEFORE SPOP AFTER SPOP
0 0

INTO
A REG· .. ISTER

p TR X X

PTR

Figure 20-6. Stack Pop

20-7

' ----·----- - - --· ·-.. --- -·- -· -- ·- ---- ----- -----~·- · ~ .. _ _ ... - ··- _.._ .. ,, .. ,, __ ··-·· ·-··· . ,.,._..____ - - .. __ . ---.. ___ .__ ~ --- ··- ---- --·· - ----·- - -- ~ ..

WRITABLE CONTROL STORE AND F\..OATING·POINT PROCESSOR

Push Double (PUSHD): decrements the stack pointer and
stores the 8 register (Rl), and then decrements the pointer
and stores the A register (RO) (see figure 20-7).

PTR

BEFORE
SPUSHED

or---------,

32K ~--------'

0

.

p TR

32K

.

AFTER
SPUSHO

A REGISTER

8-REGISTER

.

Fieure 20-7. Stack Double Push

20·8

Pop Double (POPO): loads the A register (RO) with the word
addressed by the top-of-stack pointer and then increments
the top-of-stack pointer; loads the B register (Rl) with the
word addressed by the new value of the top-of-stack
register and then increments the top-of-stack pointer again
(see figure 20-8).

BEFORE POPO AFTER POPO
0 0

INTO A
REGISTE R

PTR)(X

y y

INTO 8
PTR REGISTE R

Figure 20-8. Stack Double Pop

--- ----- - ··-- . -- .. --4-·.

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

20.2. 7 Firmware Macros

The mnemonics given are not supported by the DAS MR
assembler. The assembly-language programmer must
supply his own macros in order to use any of these
mnemonics. The following are examples and poss1ble use of
the requ ired macros.

Macro

Fixed point add:

XAD MAC
DATA
EMAC

Fixed point subtract:

XSB MAC
DATA
EMAC

Fixed point multiply:

XMU MAC
DATA
EMAC

Fixed poant divide:

XDV MAC
DATA
EMAC

Integer multiply:

IMU

P'IMPY

MAC
DATA
BMAC

MAC
DATA
DATA
EMAC

Integer divide:

IDV MAC
DATA
EMAC

0105334,P(1)

0105374,P(1)

0105274,P(1)

0105027,P(1)

0105015 + P(1)
P(2)

0105067,P(1)

and, immediately following the macros
for floating point divide, add:

Floating square root:

P'SQ MAC
DATA .
EMAC

0105127,P (1)

Use

XAD address

XSB address

XMU address

XDV address

IMU address

P'MPY ,address
or

FMPY 040,address

IDV address

FSQ address

20·9

. .. ~·····--··~----·------·--- ·-··· ·~· ··- - ··· ... ··-····-.. ·----- ---·· .. . ···--··-· .. · --4···~-.... ' ... ~ - -... .. . ·· ~· -· _ _ .__ ____________ . ___ . - ·-·--···

WRITABLE CONTROL STORE AND FLOATING·POINT PROCESSOR

20-10

Floating point add:

FAD MAC
DATA
EMAC

0105134,P(1)

Floating point subtract:

P'SB MAC
DATA
!MAC

0105174,P(1)

Floating point multiply:

P'MU MAC
DATA
!!MAC

Floating point divide:

P'DV

Load AS:

P'LD

Store AS:

P'ST

MAC
DATA
!MAC

MAC
DATA
BMAC

MAC
DATA
!MAC

Memory to memory:

P'MV MAC
DATA
BKAC

Pass parameters:

P'SB

DO loop:

FDO

MAC
DATA
BSS
BKAC

MAC

DATA

!!MAC

0105074 ,P(1)

0105034,P..(1)

0105032,P(1)

0105033,P(1)

0105037,P(1),P(1)

0105036,P(1)
p (1)

0105035,P(1) ,P(2),
P(3),P(4)

DO loop (one increment):

FD01 MAC

DATA
!MAC

0105027 ,P(1) ,P(2) ,P(J)

FAD

P'SB

FMU

P'DV

P'LD

P'ST

P'MV

P'S!

P'DO

P'D01

address

address

address

address

address

address

from address to address

tparams

inc addr, count addr,
lim addr, loop addr

count addr, lim addr,
loop addr

WRIT ABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

Test for not equal:

P'TN! MAC
DATA
EMAC

01 05024 , P (1), P (2)

(Typical relationa l test form).

Jump if not equal:

P'TNE

P'JNE DATA 0105 026,P (1} ,P (2), P (3) FJ NE

(Typical relat ional Jump form).

Arithmetic IF processor:

OP address, OP address

OP address, OP address
jump address

P'AIF MAC
DATA
EMAC

FAIF CP address, OP a ddre s s ,
01 05226 , P (1) ,P (2), P (3) ,P (4) ,P (5) LT address , EQ address ,

GT addre s s

Index operand processor :

P'IOP MAC
DATA
EMAC

0 10 5167,P (1) ,P (2)

Reentrant subroutine call:

P'RSC li..AC
DATA
EMAC

0 10502S , P (1)

Reentrant subroutine return:

P'RSR MAC
DATA
EMAC

0105065

Jump if A register greater:

I' JAG MAC
DATA
EMAC

General subscripting:

0105 125,P (1)

FI OP

FRSC

FRSR

FJAG

NOX1 2 0 MAC
DATA 0 1050 16 + ((2-P(1)) • 128)

+ (((4- P (2) / 2)

DATA

Il'P
GOTO
DATA
DATA
DATA
GOTO

1 DATA
2 CONT

- ((4- P(2)/2) / 4) • 4)
• 128)
P(3)

p (1) ,
I 1

1
p (4)

p (5)
p (6)
2
P (4)

i ndex address~ base
address

sub address

j ump address

20·11

,, _. _.,_..,.., _ _ _ _, , _, _ ___ ___ _ "'"' ' -~-·----- ··----·"'-· -·--'"""._.,_ , , • · ~ ·- - • ·'"•--" ·•-..... , ..,. ~ n ' ' ,,_,..,_ , __ __ , , , • · - .. ------·· -·-· --- -· ·- ·- -· .. - ·- . - . .

WRITABLE CONTROl STORE AND FlOATING-POINT PROCESSOR

20-12

EMAC

NOX120 should have the format

number dimensions, words/ element. first
subscript address, address of base

or

number dimensions, words/ element, first
subscript address, first dimension address,
second subscript address, address of base

Compare string:

CBS MAC
DATA.
EMA.C

Move string:

MBS

Stack add:

SA.DD

MAC
DATA.
EMA.C

MAC
DATA
EMA.C

Stack subtract:

SSUB MAC
DATA
!MAC

Stack multiply:

SHUL MAC
DATA.
ENAC

Stack divide:

SDIV

Stack push:

SPUSH

Stack pop:

SPOP

MAC
DATA
BNAC

MAC
DATA
BNAC

MAC
DATA
EMAC

0105030,P (1)

.
0105070

0105031 ,P(1)

0105071,P(1)

0105131 ,P(1)

0105171 ,P(1)

0105l31,P(1)

0105331,P(1)

CBS non compare addr

MBS

SA.DD stack addr

SSUB stack addr

SMUL stack adc1r

SDIV stack addr

SPUSH stack ac14r

SPOP stack addr

..

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

Stack push double:

SPUSHD MAC
DATA

EMAC

Stack pop double:

SPOPD MAC
DATA

EMAC

SPUSHD
0105271,P(1)

SPOPD
0105371 ,P(1)

The Floating Point Processor has the following OP codes.

Mnemonic Ope ode Operation

FLD 0105420 Floating load single
FLDD 0105522 Floating load double
FAD 0105410 Floating add single
FADD 0105503 Floating add double
FSB 0105450 Floating subtract single
FSBD 0105543 Floating subtract double
FMU 0105416 Floating multiply single
FMUD 0105506 Floating multiply double
FDV 0105401 Floating divide single
FDVD 0105535 Floating divide double
FLT 0105425 Fix to float
FIX 0105621 Float to fix
FST 0105600 Floating store single
FSTD 0105710 Floating store double

Load or Float interrupts are locked out until a store or fix.
EX34, .. as time out.

An interrupt after a store may change floating-point
registers. User should restore their contents.

Mnemonics for floating-point operations are not supported
by DAS MR. The following are possible macros wh ich must
be included by the user to define the mnemonics:

FLO

FLDD

FAD

FADD

Macro

HAC
DATA
EHAC

HAC
DATA
EHAC

HAC
DATA
EHAC

HAC
DATA
EHAC

0105420,P(1)

0105522,P(1)

0105410,P(1)

010 5 503,P(1)

Use

FLO

FLDD

FAD

FADD

stack addr

stack addr

address

address

address

address

20·13

......

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

P'SB

PSBD

PKU

PKUD

FDV

PDVD

PLT

FIX

FST

FSTD

HAC
DATA
BHAC

HAC
DATA
BHAC

HAC
DATA
EHAC

HAC
DATA
BKAC

HAC
DATA
BHAC

MAC
DATA
BHAC

HAC
DATA
BKAC

HAC
DATA
BMAC

MAC
DATA
BMAC

MAC
DATA
BKAC

20.2.8 Commercial Firmware

0105450,P(1)

0105543,P(1)

0105416,P(1)

0105506,P(1)

0105401 ,P(1)

0105535,P(1)

0105425,P(1)

0105621,P(1)

0105600,P(1)

0105710,P(1)

Commercial firmware is available on the 70 series comput
ers for supporting VORTEX, COBOL, and TOTAL.

Commercial firmware includes the following operations:

• Load / Store multiple registers
• 32 01t unsigned math

Load/Store Registers

Multiple register loadinl or storing is performed by the
following BCS instructions:

20·14

•

Update B

DATA

DATA

PSB address

P'SBD address

P'KU address

PKUD address

FDV address

PDVD address

l'LT address

FIX address

PST address

l'STD address

Re1isters loaded/ stored

0105020
0105060
0105120
0105160
0105220
0105260
0105320
0105360

0105017
0105057
0105117
0105157
0105217
0105257
0105317
0105357

load

load

store

store

RO
RO,R1
RO , • •• , R2
RO , •• • ,R3
RO, ••• ,R4
RO, ••• ,RS
RO, •• • , R6
RO, • • • ,R7

RO
RO,R1
RO, ••• , R2
RO, • •• , R3
RO, • • • ,R4
RO, • • • ,RS
RO, • •• ,R6
RO, • • • ,R7

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

R7 contains the main storage address for loading or storing
registers. Register contents are stored in main storage as
follows:

R7 before storage _..,. •• Rn

Rn-1

•
•
•

RO

R7 after storage

addr
X

x-1

x-n

x-n-1

R7 is decremented to the location following the contents of
RO. For load registers. R7 initially points to the word
following RO. After loading is complete, R7 will point to the
last register loaded.

32 Bit Integer Math

These routines perform the operations add, subtract.
multiply, and divide on 32 bit unsigned integer operands.
Register RO(A) contains the four word parameter block
address. The four word parameter block contains the two
operands and received the results as follows:

-

Update 8

subtract

multiply

divide

Operand two is replaced by the sum of the
two operands.

Operana two IS replacea by operand one

minus operand two.

Both operands are replaced by the 4 word
product of the two operands .

Operand one receives the quotient of
operand one divided by operand two;
operand two is replaced by the remainder.

The hardware overflow flag is set when any of the following
occur:

• carry out of the most significant bit during an add.
• subtracting a larger number from a smaller one.
• divid ing by zero.

The call ing routine uses one of the following
instructions:

Add
Subtract
Multiply
Divide

DATA 0105023
DATA 0105063
DATA 0105123
DATA 0105163

20· 15

-· ··-· .. ·- ~ - - ----·- · --~- ..

•

SECTION 21

FILE MAINTENANCE UTILITY

21 .1 INTRODUCTION

The File Maintenance Utility program. (FMUTIL) is a
background task which performs the following functions:

•

•

•

..

•

•

Copies files. file directories. and/ or partitions from one
device to another

Loads files. file directories. and/ or partitions onto a
device.

Manipulates files and records

Formats files and records which are to be printed or
displayed.

Manages filename · directories

Manages space allocation for files .

The following items should be noted when using FMUTIL.

•

•

Only files assigned to disk devices can be referenced by
name.

Filespace allocated by FMUTIL is allocated
contiguously within a partition. skipping bad tracks.

21.2 ORGANIZATION

FMUTIL is scheduled for execution by the JCP directive
/ FMUTIL. If the Sl logical unit is a teletypewriter or a CRT
device. the message FL •• is output to indicate that the Sl
unit is waiting for FMUTIL input. Once activated, FMUTIL
accepts directives from the Sl unit until another JCP
directive (first character is a slash) is input. or the exit
directive. E is input.

In either case. FMUTIL terminates and JCP is scheduled.

If there is an error. one of the error messages given in
Appendix A is output on logica l unit SO. and a record is input
from the SO unit to the JCP buffer. If the first character of
t his record is I. FMUTIL exits via the EXIT request. If the first
character is C. FMUTIL continues. If the first character is
neither I or C. the record is processed as a normal FMUTIL
directive.

21.3 OUTPUT LISTINGS

FMUTIL outputs the follow ing two types of listings to the LO
logical un1t:

• Directive Usting - lists. without modification. all
FMUTIL directives entered from Sl logical unit .

• Directory Listing - l ists file names from a logical unit
filename directory in response to the FMUTIL P.O.T.C
and L directives.

All FMUTILiistings begin with the standard headings.

21.4 FMUTIL- OVERVIEW

The FMUTIL directives are listed and described in Table 21-1 .
The list order corresponds to the order of the subsections that
follow, in which the directives are discussed in detail.

Table 21-1 . FMUTIL Directives

Directive Function

0 Dump individual files or entire partitions to a
magnetic tape.

l

R

E

s

p

u

T

X

Load individual files or entire partitions from a
magnetic tape.

Rewind magnetic tape.

Exit from FMUTIL or write end-of -f ile (EOF) to
magnetic tape.

Search for specified partitions on magnetic tape.

Print contents of a partition in alphabetical order.

Release unused space in a specified file.

List contents of magnetiC tape created by a dump.

Set expiration date for use in conJunction with the L
or C directive.

Initialize disk partition.

C Copy individual fi les or an entire partition to another
disk partition.

File maintenance utility direct ives consist of sequences of
character strings having no embedded blanks. The
characters strings are separated by commas (.) or equal
signs (=). Although not required. a period (.) is a line
terminator. Comments can be inserted after the period.

The general form of a file maintenance utility directive is:

where

Update 8

directive,p(1),p(2) •... ,p(n)

directive

p(n)

Is one of the directive names given in
Table 21-1 .

Is a parameter.

l

i

21 -,

FILE MAINTENANCE UTILITY

Numerical data can be octal or decimal. Each octal number
must have a leading zero.

For greater clarity in the descriptions of the directives,
optional blank separators between character strings. and
the optional replacement of commas(,) by equal signs(=) are
omitted from the descriptions.

Error messages applicable to file maintenance utility
directives are given in Appendix A.

21.5 0 DIRECTIVE

The 0 directive dumps information contained in files,
partitions, and/or directories onto magneti~ tape. Once this
information is on magnetic tape, it can be reloaded onto
disk. or stored for later use. There are three types of 0
directives; dump file, dump partitions, and dump directories.
Each D directive is described in the following paragraphs.

21.5.1 Dump File

The directive for dumping a file has the general form:

where

0 ,lun.key. file, tapelun

lun

key

Is the number or name of the input
logical unit.

Is the partition protection code.

file Is the name of the file being dumped.

tapelun Is the number or name of the output
logical unit (magnetic tape only). Note
that tapelun cannot be equal to 50.

When individual files are dumped. the tape format consists
of a file header. "EOF text record. file image (in 5760word
blocks, except for last block). and an "EOF ... text record.

Note: Magnetic tapes created by pre-VORTEX Gl FMUTIL
have EOF tape marks in place of the "EOF." text record.

File information is listed to the LO device as the file is
dumped in the following format:

file name. file type, extension, sectors used, sectors
unused. total sectors. first sector number. last sector
number. create date. access date.

All values are expressed in decimal.

Note: Dumping indrvidual files only, does not terminate the
output tape properly for all input functions (S and T) The E
command must be used twice to properly terminate the
output tape if the last operation to the tape was an individual
file dump. No logical unit is kept in the individual file header
when this directive is used. This means that the dumped file
can be loaded to a different LUN than from which it was
dumped.

Example: Dump the file DEBUG from the OM library with a
protection code 0 to logical unit 18.

D.OM.D.DEBUG.18

A sample listing produced by this directive is shown rn
Ftgure 21-1.

VTAM DATA 0 2221 1279 3&00 6909 10429 05/ 18.'79 06/ 18/79

t t t
filename file type extens•on

21-2

t t t t t
sectors used sectors unused total sectors first sector number last sector number

Figure 21-1. Sample Output Produced by Dump File
Directive

Update B

t t
create date access date

SECTION 21
FILE MAINTENANCE UTILITY

The File Maintenance Util ity program (FMUTIL) is a
background task for copying and / or loading files. file
directories and /or partitions from one device onto another.
for manipulating files and records, for formatting files and
records which are to be displayed or prin ted. and for
managing filename directories and space allocations of the
files.

Only files assigned to rotating memory devices (disc or
drum) can be referenced by name.

File space is allocated contiguously within a partition.
skipping bad tracks.

21.1 ORGANIZATION

FMUTIL is scheduled for execution by inputting the JCP
directive / FMUTlL If the Sl logical unif is a teletype or a
CRT device, the message FU • • is output to indicate that
the Sl unit is waiting for FMUTIL input. Once activated.
FMUTIL accepts directives from the Sl unit until :

a. Another JCP directive (f irst character is a slash) ts
input. or

b. The exit directive, E. is input.

In either case, FMUTIL terminates and JCP is scheduled.

If there is an error, one of the error messages given in
appendix A is output on the SO logical unit, and a record is
input from the SO unit to the JCP buffer. Jf the first
character of this record is I . FMUTl L exits via the EXIT
request. If the first character is C. FMUTI L continues. If the
first character is neither 1 or C. the record is processed as
a normal FMUTIL directive.

21.2 PARTITION SPECIFICATION TABLE

For a description of the Partition Specification Table (PST)
and File Name Directory, refer to section 9.1.

21.3 OUTPUT LISTINGS

FMUTIL outputs the following two types of listings to the LO
logical unit:

a. Directive Listing lists, without modification. all FMUTIL
directives entered from Sl logical unit.

b. Directory Listing, lists file names from a logical unit
filename di rectory in response to the FMUTIL.P,D. and
L directives.

All FMUTIL listings begin with the standard VORTEX
headings.

21.4 FILE MAINTENANCE UTILITY DIRECTIVES

The following file maintenance util ity functions are sup·
ported by FMUTIL:

D Dumps RMD files. partitions, and file name directones
to magnetic tape.

L Loads RMO files. part itions. and file name directories
from magnetic tape.

R Rewinds magnetic tape.

E Writes end-of-file on magnetic tape.

S Searches for RMO files. partitions. and file name
directories on magnetic tape.

P Prints a listing of file names contained on each
directory.

U Releases all unused space in each file.

E Exits from FMUTIL.

Fi le maintenance utility directives comprise sequences of
character strings havmg no embedded blanks. The charac·
ters strings are separated by commas (.) or key equal signs
(•). Although not required , a period (.) is a line
terminator. Comments can be inserted after the period.

The general form of a file maintenance utility directive is

where

directive, p(l). l (2) p(n)

directive

p(l)

is one of the directive
names given above.

is a parameter

Numerical data can be octal or decimal. Each octal number
has a leading zero.

For greater clarity in the descriptrons of the directives.
optional blank separators between character strings. and
the optional replacement of commas {.) by equal signs (-)
are omitted.

21·1

...... ~ .. _ .. ____ --------·-.. , ,. __ ___ -·- ·------------ - ---- --- .. -----·- ·-- - --- -·----·--·---- ------~··-- ---- ----.. ---- --- -· -- ·- -·

FILE MAINTENANCE UTILITY

Error messages applicable to file maintenance utility
directives are given in appendix A.

21.5 D DIRECTIVE

This directive dumps information contained in files,
partit ions, and / or directories onto magnetic tape where
this information can be later re-loaded onto the RMD, or
stored for later use. There are three types of D directives;
one for file, one for partitions, and one for directories.

21.5.1 Dump File

The directive for dumping a file has the following general
form

where

run

key

file

tapelun

D,lun,key, file, tape tun

is the number of name of the input
logical unit.

is the partition protection code.

is the name of the file be.ng dumped.

is the number or name of the output
logical unit. (magnetic tape only)

When a file is dumped to magnetic tape, it is organized
wi th a header record, end-of-file, n file records, and
terminates with a double end-of-fi le. The file, af1er the
dump with the header record, is formatted as follows:

Each n file record has 5, 760 words, except for the last
which has the remaining number of words in the file. In
other words, the last record may have less than 5. 760
words.

On a dump file directive a listing IS output. The listing
output format is as follows:

PAG. ~~XX XX/ XXIXX XX : XX : XX VORTEX PMTLCX PMUTIL

D,22,X,COBINT, 18
COBINT 141 0 , 4 ,

The top heading line consists of:

a. One blank

b. The word PAGE

c. Four character posit ions that contain the decimal page
number

d. Two blanks

e. Eight character posit1ons that contain the current data
obta1ned from the VORTEX resident constant V$DA TE.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 0 'F' • ' I'
Word 1 'L' 'E.
Word 2
Word 3
Word 4
Word 5
Word 6 FCB
Word 7
Word 8
Word 9
Word 10
Word 11

end-of· file

5760 word data record

•
•
•

5760 word data record

.
S 5760 word last data record

end-of-file
end-of· file

21 ·2

f. Two blanks

g. Eight character posit ions that contain the current time
HR: MN: SC.

h. Two blanks

i. Name of run ·time operating system.

j. Two blanks

k. The 1 JOB name of ·.vhich the system is executing

I. Two blanks

m. Eight character positions that contain the job processor
name. FMUTIL

n . Blanks through the 120th character position.

Beginning wi th the first character position . the next line
(after 2 blank lines) contain s the list of the input d irect ives.

Beginning with the first character position the next line
contains: the name of the f i le, number of sectors used ,
number of sectors unused, and the number of total sectors
allocated to the file.

Example: Dump the file COBINT contained on logica l unit
22, whose protection code is X, onto magnetic tape unit 18.

0,22,X,COBINT, 18

FILE MAINTENANCE UTILITY

21.5.2 Dump Partition

The directive for dumping a partit ion has the following
general form

where

D,lun,key,All, tapelun

fun

key

tapelun

ALL

is the number or name of the input
logical unit.

is the protection code requ ired to
address lun.

is the output log ical unit (magnetic
tape only).

keyword specifying partition dump.

All partit ions dumped onto magnetic tape are organ ized
w1th a header record , n files record , and terminated by an
end-of-file.

The header record is formatted as follows :

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 0 ·p· . A,

Word 1 'R' 'T'

Word 2 number of file entries

Word 3 logical unit number

Word 4

Word 5 all zeros

Word 6

Word 7

end·Of·file

21·3

·····-· - ··----------- - ·--·-- "'·--- - --- - - -- ·--·---·---·-------- --------·· ·-- -----~ ___ .., __ ---·------. -- - ..

•

FILE MAINTENANCE UTILITY

An alternate name record has the format shown below:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 0 'E' 'N'

Word 1 'T' 'R'

Word 2

Word 3 Entry Name

Word 4

Word 5
.

Word 6 Original Name

Word 7

Word 8 file size

end-of-file

A partition dump directive produces a listing. This listing
output format has the following FMUTIL heading, a one line
heading as shown below:

FILENAME USED UNUSED TOTAL LOGICAL UNIT-XXXX

The heading line consists of:

a. One blank

b. The word FILENAME that shows an alphabetical list of
all the file located on a particular partition.

c. Four blanks

d. The word USED shows many sectors. of each .file.
contain information.

e. Four blanks

f. The word UNUSED shows how many sectors contain
blanks.

g. Five blanks

h. The word TOTAL shows the total number of sectors
allocated to each file.

i. Forty spaces

J. The words LOGICAL UNIT shows what logical unit the
files are located on.

k. Four character positions that contain the logical unit
number.

21 ·4

Example: Dump the partition contained on logical unit
OM. protection code D, onto magnetic tape unit 18.

D,OM,D,AL,18

21.5.3 Dump File-Name Directory

The directive for dumping a directory has the following
general form

where

D,lun.Jcey,OIR, tapelun

lun

key

tapelun

is the number or name of the input
logical unit.

is the protection code requ ired to
address lun.

is the number or name of the
output logical unit. (magnetic tape
only.)

DIR keyword specifying directory dump.

A filename directory dumped to magnetic tape is organized
into a header record , d irectory record . and double end·Of·
file. The header record is formatted as follows:

•

FILE MAINTENANC[UTILITY

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 0 ·o· 'I '

Word 1 'R' blank

Word 2 all zeros

Word 3 logical unit number

Word 4

Word 5 all zeros

Word 6

Word 7

end-of-file

The directory record has the following format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 0 Directory Sector Addr

1-120 120 word directory block

121 Directory Sector Addr

122-24.1 120 word directory block

•
•
•

5639 Directory Sector Addr

5640 5759 120 word directory block

end-of-file

end-of-file

21-5

---- -- ----- ·-- ··~ -· - ~-- ----- _ ... , --·---- - ·--- ,_ _ __ -- - - - - -·- - -· -·------ 0 -- , _.. • • _ .. 0•0 • ·~ 0• A
. _ ... _ ·- ~-· ·-.. -·--- .. ······- ~ .. ~ --- - ...,.._,_,_ __ ·-.. --.. ·- ____ ., _______ ... - -- -·- ~ ~

FILE MAINTENANCE UTILITY

Example: Dump directories for partition contained on
logical unit OM, protection code D, onto magnetic tape unit
18.

D,OK,D,DIR,18

21.6 L DIRECTIVE

This directive loads information into RMD files, partitions,
and / or directives from magnetic tape.

There are three types of L directives, one for files, one for
partit ions, and one for directories.

21.6.1 Load File

The directive for loading a file has the following general
form

where

L,lun,l<ey, file, tapefun

lun

l<ey

file

tapelun

is the number or name of the output
logical unit.

is the partit ion protection code.

is the name of the file being loaded.

is the number or name of the input
magnetic tape unit.

When a file is being loaded from magnetic tape, a search is
made for that file. After the search, the tape is positioned
in front of the file within the correct partition dump. The
search stops if a double end·of·file is encountered and an
error message is output. After the file is located, an
attempt is made to create the file space. If the file already
exists the existing file is used. If the existing file is too
small , an error message is output.·

When creating a file for loading, the file size of the created
file will include all of the original extent of the file,
including the unused portion.

When a file already exits, the only check made is to see if
there is enough space for the used portion of the file as on
the tape, and the original extent of the fi le is ignored.

On a load file directive a listing is output. The listing output
format is the same as the 0 directive when files are called.
The only change would be the directive shown on the
listing.

Example: Load the file COBINT contained on magnetic
tape unit 18 onto RMO logical unit 22, protection code is X.

L,22,X,COBINT,18

21·6

21.6.2 Load Partition

The directive for loading a partition has the following
general form

L,lun,l<ey,All, tapelun

where

lun

key

tape fun

All

is the number or name of the
output logical unit.

is the partition protection code.

is the number or name of the input
magnetic tape unit.

keyword specifying partition load.

When a partit ion is loaded, from magnetic tape, a search is
made for it as specified by the logical unit number
parameter. After the search tape is positioned in front of
the required partition dump, the search stops if a triple
end-of-file is encountered and an error message is output.

When the partition is found, the files are loaded as
indicated key file loading in the order in which they appear
on the tape. If any non-previous record names are
encountered, an entry is made in the directory tor them.

During the loading of a partition, space for the directory is
allocated at the beginning of the partition. After loading,
however, there is no embedded unused space in the
partition. All unused space is at the end of the partition.

On a partition load directive, a listing is output. The listing
output has the following FMUTIL heading, a one·l ine
heading as shown below:

PILDIAJ&a UlaD UWSKD TOTAL STU1' &MD LOGICAL U1CI1'-U7..X

The heading line consists of:

a. One blank

b. The word FILENAME that gives a list of all fi lenames
now contained in the partition.

c. Four blanks

d. The word USED shows how many sectors per filename
contain valid information.

e. Four blanks

f. The word UNUSED shows how many sectors per
filename contain blanks.

g. Five blanks

. - ··- -- - - -- . - ---- - - --

Whenever a file header is encountered it is l isted to LO in
the format

FILE: FCB = file name . file BOO file EOD

Whenever an entry header is encountered it is listed to LOin
the format :

ENTR: ENTRY NAME = entry name , ORG NAME = root
name

A ctual f ile contents and control records " EOF. " . " EOP. " ,
and " EOT" are not listed.

Example: Display the contents of the FMUTIL tape on
logical un it number 18.

T, 18

21 .13 X DIRECTIVE

Th is directive is used to set the expiration date to be used in
conjunction with the " L ALLNEW", " 0 ALL" , " C ALL" , or "C
ALLNEW" directives. Files (except load modules) wh ich have
not been accessed since the specif ied date will not be reloaded
onto a partition dunng the performance of a L or C directive .
The X directive is useful for removing obsolete files.

The X direct ive has the format

X.MM/ 00/ YY

or

X.T

where

MM is a two-digit month number.

DO is a two-digit day number.

YY is a two-digit year number.

If X,T is used then the current system date is the expiration
date. This form of the directive can be used to dump only the
files accessed that day. The only way to revoke an expiration
date is to provide a new date w ith another X directive.

Example: Set an expiration date of January 1. 1979.

X.0 1 / 0 1/ 79

/

FILE MAINTENANCE UTILITY

l

i

21.14 I DIRECTIVE

This directive is used to initial ize a partition directory. The
initialized partition is provided w ith the long di rectory format
including access dates, creation dates. and file types. The 1
directive has the format

where

Uun,key

lun is the number or name of the input logical un it.

key is the protection code, if any, required for
addressing the lun.

Example: ln itta lize the directory for log1ca1 un1t 30. protectiOn
code M.

1,30,M

21 .15 C DIRECTIVE

This direct ive is used to copy a single fi le or entire partition
from one disk partition to another. It is not used for loading f iles
from or dumping f iles to magnetiC tape. The functionrng of th1 s
directive is similar to that of the L directive. The C directive has
the format

where

C.lun 1.*ey 1, filename 1 .lun2.key2. fi lenam e2

lun1

lceyT

filename1

lun2

key2

fi lename2

is the input logical unit name or
number.

is the protection code. if any.
required for addressing lun 1.

is the name of the file to be copied
or one of the keywords ALL or
ALLNEW.

is the output logical un it name or
number.

is the protection code. if any,
required for addressmg lun2.

is the opttonal output file name.
This parameter is not used if
filena me 1 is a keyword. ALL or
ALLNEW .

Update B

l

i

21 · 7

. --- - .. ·- -~·· --- --··----·~- - --- ·-- --- --- ---------------------------

FILE MAINTENANCE UnLITY

! If filename 1 is a specific file name. then that file and its alias
names will be copied to the output logical unit. If filename1 is
either All or ALLNEW. then all files on the input logical unit
are copied to the output logical unit under the same conditions
as for the l directive (see 21 .6.2).

T

If filename2 is omined and filename1 is a specific file name.
then filename1 is used as the output file name. If the specified
output f ile name already exists on the output logical unit. the
input file will be copied into that file. provided that the existing
file on the output unit contains sufficient space.

Note: The output file extent must be as large. or larger than.
the input file extent--including unused space. i.e. that beyond
the current EOF. The C directive copies the entire input file.
including that information beyond the current EOF. If this is not
desired. then the FMUTll directive U can be used to remove
unused space before the copying procedure is begun.

If the input file name is either of the keywords ALL or ALLNEW.
. then the output file name is not used. When panitions are
copied. the output file partition directory is not initialized. The
user should use the I directive before the C directive if the
output logical unit is not to keep its current files.

The C directive does not perform its own file directory handling;
it uses VZFMA for its file creation needs. If the panition to be
copied contains a large number of files. the C directive ..
operation will exhibit progressively slower processing per file
as the number of entries in the output panition increases. The
C directive has a l imit of 1600 file names for the input logical
unit if this limit is anained. anempts to copy that panition will
result in the message

CAPACITY EXCEEDED

The user can use the FMUTlL directives D and L in this case.

Note: If the C directive is used to copy an entire partition into
the Background Ubrary using the All parameter and FMUTil

21·8

! 1S one of the files being copied. the Background Library copy of
FMUTIL should not be used because of the overlayered
structure of FMUTIL. If this operation is required. the user
should execute the copy of FMUTIL on the input partition
instead of the copy on the Background library.

T

Update B

Example 1: Copy the file FMAIN from partition BL protection
code E. to logical unit number 23.

C.BL.E.FMAIN.23

Ex.wnple 2: As above except that the output file name is to be
FMAINC.

C.BL E.FMAIN.23 .. FMAINC

Example 3 : Copy the FL panition to logical unit number 25
and then back to FL in order to remove fragmentation.

1.25
C.FLF.ALL25
I.FL.F
C.25 .. All.FL.F

Example 4 : Remove files on logical unit number 195.
protection code T. that have not been accessed since January
15. 1980. Use .partit ion 25 as the Intermediate scratch
partition .

X.01 115/ 80
1,25
C,195.T.ALL.25
1.195,T
C,25 .. ALL295. T

Example 5 : Copy all files on logical unit 30. no protection
code. to partition 31 . protection code A. that are not already on
partition 31 .

C.30 .. ALLNEW.31 ,A

. ··---- ·- - -·- .. . ··- - --- ----·· . .. --- - - - - ---- ----

..... ~ .

'

h. The word TOTAL shows how many sectors have been
allocated to each file.

1. Ten blanks

J. The word START shows the beginning sector number

k. Seven blanks

I. The word END shows the ending sector numbers.

m . Fifteen blanks

n . The word LOGICAL UNIT shows on which logical un1t
(partition) these files are contained.

o. Four character positions that conta in the logical un1t
number.

Example: Load the partition contained on magnetic tape,
which is on log1cal unit 18, onto RMD logical unit name
OM. protection code.

L,OM,D,ALL,18

21.6.3 Load Directory

The directive for loading filename directories has the
following general form

where

l ,lun,key,OIR, tapelun

lun

key

tapelun

DfR

is the number or name of the
output logical unit.

is the protection code required

to address lun.

is the number or name of the

1nput magnetic tape unit.

keyword specifying directory load.

When a directory is being loaded, a search is made for it on
the input magnetic tape, after the search tape is positioned
in front of the required partition directory.

If the directory is found its sectors are loaded onto their
former recorded sectors. No reorganization takes place.

If the directory is not found or if a triple end-of.file is
encountered. an error message is output, and the search
stops.

FILE MAINTENANCE UTILITY

Example: Load directory for partition contained on
magnetic tape. on magnetic tape unit 18, onto RMO logical
unit OM, protection code is 0 .

L,OM,D,DIR, 18

21.7 R DIRECTIVE

This directive rewinds a magnetic tape to the beginning of
tape. The directive has the general form

R,lun

where

lun is the number or name of the
input or output magnetic tape
unit.

Example: Rewind magnet ic tape located on logical unit
18.

R, 18

21.8 E. DIRECTIVE

This directive writes an end-of.file on a magnetic tape. The
directive has the general form

E,lun

where

lun is the number or name of the

output magnetic tape un1t.

This directive shou ld be used after writing a ser ies of files
onto magnetic tape instance:

!Header Record I EOF I Ser1es of P3rt1t1on Files J EOF I EOF I EOF "I

*The E directive is used to write the th ird end-of-file.

E, 18

21.9 S DIRECTIVE

This directive searches tor files, partitions. and directories
located on magnetic tapes. The directive has the genera l
form

S,lun, key, tapelun

21· 7

0 ___ .., .. - • -· .. -- 0 •• - ----- ------ - - - - - - ow ____ -·- • • •• - ·• • ._• ----- - . ·--.. . -----~.-........ _ - -. -... ----- ·- --. ·-------·-·---- - ---- · ---- .

FILE MAINTENANCE UTILITY

where

lun

key

tapelun

is the number or name of the

RMD's Jog1cal un1t

is the protect ion code required
for addressing Jun.

is the number or name of the

input magnetic tape unit.

After the search. the tape will be positioned after the
partit ion or file identification record , and is now ready for
the loading of individual files. ·

Example: Search for the partition, f ile or directory named
OM, protection code D. located on logical unit 18.

S, OK, D, 1 8

21.10 P DIRECTIVE

This directive prints out a listing of the file directory on the
LO for each partition spec1fied. The directive has the
general form

P,lun,key

where

tun is the number or name of the
1nput logical unit.

key is the protection code required
for addressing Jun.

Files are listed in alphabetical order. The output listing has,
following the FMUTIL heading, a one-line heading as shown
below:

FIL .. AK& UI&D UMUIID TOTAL START IND LOGICAL UNIT·~J~

The heading line consists of:

a. One blank

b. The word FILENAME that gives a Jist of all filenames
contained in a partit ion.

c. Four blanks

d. The word USED shows how many sectors per filename
contain information.

e. Four blanks

f. The word UNUSED shows how many sectors per
filename contain blanks.

21 -8

g. Five blanks

h. The word TOTAL shows how many sectors have been
allocated for each file.

c. Ten blanks

j. The word START shows the beginning sector number.

k. Seven blanks

I. The word END shows the ending sector number.

m. Fifteen blanks

n. The words LOGICAL UNIT, one charac ter. a dash (-),
shows upon which log1cal unit (partit ion) these files are
contained.

o. Four character positions that contain the :ogical unit
number.

Example: Print a listing of OM, protection code D.

P,OM,O

21.11 U DIRECTIVE

This directive releases unused !'.pace from files. after they
have been written on the R~1D. The direct1ve has the
general form

U,lun,key,file

where

run

key

file

is the number or name of the
logical unit where space to be
released is located in the
protection code

is the protection code required
for addressing lun.

is the name of the file where
the unused space is located.

Example: Release unused space located in file COBINT,
on partition 22. protection code X.

U,22,X,COBINT

21.12 EXIT DIRECTIVE

This directive exits from FMUTIL. The directive has the
general form

E

'

•

where

E keyword specifying EXIT from

FMUTIL

Example: Exit from FMUTIL

!

FILE MAINTENANCE UTILITY

21 ·9

... - ··--- ·----- - -- -- - · -..... -.... __....-........ -. ___ ., ___ . --.. ----·-- - ----·· ·-·· .. ··- - ---··-- -·- --... ··------- -- ----- - -·--·-·---~- ·· - ·· - - - --·"

•

. -·- .. -:-----------

SECTION 22
COMPRESSION/EDIT SYSTEM

(COMSY)

COMSY is a source record COMpression and edit SYstem. It
is a background task that constructs files of programs in a

~

compressed format for later updating and decompression.
It has provision for maintaining these fi les as sequential
files on magnetic tape and RMO or as random accessed
files on RMD.

Figure 22·1 is a block d iagram of the general data flow
through COMSY.

22.1 ORGANIZATION

COMSY is scheduled by the job·control processor (JCP)
direct ive/ COMSY. Once activated. COMSY inputs and
executes directives from the Sl logical unit. COMSY
directives specify both the action to be taken and the
logical units and files to be used.

Sl

DIRECTIVE INPUT

GO

COMMON DECKS

PI

80 CHARACTER SOURCE

COMSY COMPRESSED SOURQ

CM

COMMON DECK

STORAGE

VTII-J$17

,
SW

COMSY OIRECTlYES

AND EDIT RECORDS

••

COMSY

22.1.1 COMSY Compression

COMSY compresses 80 character ASCII records into
modules called decks. A COMSY deck consists of an ASCII
deck identification record and any number of 60·word
binary records. The deck identificat ion record is described
in section 22.3.15.

COMSY binary records consist of a sequence count in word
0, a checksum in word 1. and compressed ASCII text in
words 2 through 59. The last record of a deck contains its
sequence number as a negative number. The checksum is
a value wh ich is obtained by summing the 116 8 bit bytes
contained in words 2 through 59 in an unpacked array with
each byte right justified in a word with the remainder of the
word zeros.

COMSY compresses the ASCII text by reducing two or more
imbedded blanks to a two character sequence the f irst of

LO

EDIT HISTORY

80 CHARACTER SOURCE LISTING

,
ss

80 CHARACTER SOURCE

(PACKED INTO 120 WORDS)

so
COMSY COMPRESSED SOURCE

80 CHARACTER SOURCE

Fieure 22-1. COMSY Data Flow

22 ·1

. ·-- ~ · ·~ --- . - .. --.. ·--··- - ---- - -- ·-.......... ··---·--- - ------ ----····- .. ------.. - --... ·--·-- -----·-·--- --·---· --· -·- · .. _.____ -- -- - - .. _ ·-· .. ··-- - -··-·

COMPRESSION /EDIT SYSTEM (COMSY}

which is an ASCII NUL character (200) and the second of
which is the count of the number of blanks imbedded
minus two. During compression , characters 73 through 80
are ignored and any tra iling blanks are dropped and
replaced by an end of record character represented by an
ASCII rub-out (377). The last compressed record of a deck
is followed by an ASCII EOT character (204).

22.1.2 Sequential Files

A sequential COMSY fi le is a file of COMSY decks which
contain unpacked records. The last deck is followed by a
. FILE directive and an end-of-f ile. Sequential files may be
recorded on magnetic tape or RMD. Although COMSY will
allow input of decks from a card reader . i t is not
programmed to consider the handling of fi les from cards.

22.1.3 Random Files

A random COMSY f ile is an RMD fi le which contains a deck
directory and COMSY decks. COMSY decks are recorded in
120 word blocks of two 60 word records per block. This
provides faster access to specif ic COMSY decks that can be
obtained on a sequential file.

22.1.4 Common Files

A COMSY common f ile is a file containing up to nineteen
decks which may be inserted into COMSY decks as
updates. Each common file contains a directory which
allows random accessing of the decks which it contains.
Common decks may be entered into a common file by
transferring an existing COMSY deck or by input of 80
character source records. Common decks are stored on an
RMD in uncompressed form to allow for speedy insertion
into other decks.

When initialized. COMSY assumes that the common file is
assigned to unit CM with the default logical unit as lun 9
(GO File). A different common file may be utilized by
assigning it to unit CM with a UNIT directive.

22.1.5 Sequence and Edition Numbers

During the compression of 80 character source records,
COMSY truncates characters 73 through 80. Any identifi·
cation or sequence numbers contained in these characters
is lost. In order that different versions of the same deck
may be ident i f ied, COMSY maintains a deck ed it ion
number. A decks edition number appears in its identifica·
tion records.

Within a deck. COMSY identifies records by their relative
positions in the deck. The first record has a sequence
number of one. the second, two. etc. COMSY updat ing
direct ives requ ire the use of these sequence numbers to
specify the location of insert ions and deletions.

22 ·2

When 80 character source records are output. COMSY
inserts the deck ed it ion number in character positions 73
through 74 and the record sequence number in positions
75 through 80 of each record. When a new COMSY deck is
not being output. the edit ion number used is the edition
number of the input and the sequence numbers refer to
each records position in the input deck. Inserted records
are denoted by the insertion of asterisks in place of edition
and sequence numbers. If a new COMSY deck is being
output, the edition number used is the ed it ion number of
the new deck and the sequence numbers refer to each
records position in the new deck. In th is case, inserted
records will have an edition and sequence number.

22.2 INPUT / OUTPUT

COMSY util izes seven logical units. some of which are
reassignable by use of the .ASSIGN and .UNIT d irect ives.
Table 22 ·1 contains the logical unit names, default
assignments and usage.

Table 22·1. Default VORTEX

COMSY
Name

Sl

PI

80

LO

ss

sw

CM

LUN

2

4

7

5

8

102

9

Default
Unit

Sl

PI

80

LO

ss

sw

GO

Usage

Directive input.
Source record 1n put.
COMSY deck input.

Source record input.
COMSY deck input.
COMSY f ile input.

Unblocked decompressed
output.

COMSY deck output.
COMSY fi le output.

List outpu t.

Block decompressed
output.

Temporary update
storage.

Common deck
storage.

Note: SS, SW and CM must be on RMD.

22.3 COMSY DIRECTIVES

This section describes the COMSY directives:

a. I 10 assignment and option select ion d irectives

ASSIGN Assign non-RMD logical unit

UNIT Assign and open RMD f ile (w1th rewind)

SET

GANG

Set COMSY options

Select and specify out of
ident ification field

These directives are used to replace the default logical
units assigned by COMSY with user specified logical units
and to select user options.

b. Deck creation. copying and check ing directives

DECK Build COMSY deck from source input

COMOECK Build a common deck

COPY Copy decks or f iles

RANDOM Build a random file

APPEND Append to a random file

EDIT Edit a random file

LIST List decknames in a file

CHECK Check sequence and checksums

These directives are used to create. copy and check the
validity of COMSY decks and f iles.

c. Updating directives

INSERT
(ADO)

REPLACE
(DELETE)

COMMON

COMSY

Record insertion

Record deletion and replacement

Common deck insertion

Deck decompression

These directives are used to update an exist ing COMSY
deck and to cause decompression when required. The
updating directives INSERT. ADD. REPLACE, DELETE
and COMMON must directly precede as a group the
COMSY directive which specifies the deck to be
processed. All other directives required to produce a
desired result must precede the updating directives.
Sequence numbers must always be in ascending
order (note: Equal is not considered ascending).

d. End-of-f ile and exit d irectives

FILE Logical end-of-file
END Exit COMSY

These directives are used to specify a logical end-of-file
and to exit from COMSY.

COMSY directives must begin with a period as the first
character of the record and must contain no imbedded
blanks. Directives are terminated at the first blank with the

COMPRESSION/EDIT SYSTEM (COMSY)

exception of the .COMSY record which is the f irst record of
a COMSY deck. Comments may appear after the terminat
ing blank.

The general form of a COMSY directive is

.name,p(l). p(2) ... p (n)

where

name

each p(n)

is one of the directives names
gtven above

is a parameter defined below
under the descriptions of the
individual d trectives.

22.3.1 ASSIGN Directive

This directive specifies a logical uni t assignment for a
COMSY reassignable unit. Th ts di rect ive cannot be used for
an RMD logical unit. It has the form

where

unit

lun

R

.ASSIGN,unit,lun. R

is the name of a COMSY reassignable
unit. Allowable unit may be Sl , Pt.
80. LO. and SS.

is the two character name or the
logical unit number of the VORTEX
logical unit to be assigned.

is the character R which along with
its preceding comma is optional.

If present. it indicates the unit
is to be rewound pnor to use.

If the result of the assignment is a reassignment of unit 80
or the logical unit. lun, currently assigned to BO, COMSY
checks to see if any COMSY output had been written on BO
since the last assignment of 80. If so, a .FILE directive and
an end-of-file are output to 80 prior to making the
assignment. Additionally, if the current assignment of 80
is to an RMD file (see section 22.3.2), the file is closed with
update.

If the logical unit, lun, being assigned is currently assigned
to unit PI and the current assignment is to an RMD file,
the file is closed without update prior to making the
assignment.

Reassignment of a lun to the same unit as is currently
assigned is permitted and sho·uld be used to rewind units
when necessary.

Example; Assign MO as PI and logical unit 25 as 80
specifying rewind of BO.

.ASSIGN,PI,MO

.ASSIGN,80,25 , R

22·3

-- -- ----- -- .-- ------- - ·-- ---- ·---·- --·--· _____ , _ - ' ··· - ~- ----··-··----··- -·- --~ .. ,.. ___ -·---- --- ... ___ ., -·--. ·--. - -··-

COMPRESSION/EDIT SYSTEM (COMSY)

22.3.2 UNIT Directive

This directive specifies a logical unit and file assignment
for a COMSY reassignable unit on RMO. It has the form

where

unit

lun

file

key

.UNIT,unit,lun, file,key

is the name of a COMSY reassignable
unit which may be assigned to RMO.

Allowable units may be PI, 80 or CM.

is the two character name or the

logical unit number of the RMO

partition containing the file to be
assigned.

is the name of the file to be assigned

and ooened.

is the one character key for the
assigned partition, lun. This parameter
along with its preceding comma may
be omitted when the partition does
not require a key.

If the result of the assignment is a reassignment of unit 80
or the logical unit, lun, currently assigned to 80, COMSY
checks to see if any COMSY output had been written on 80
since the last assignment of 80. IF so. a .FILE directive and
an end-of-file are output to 80 pr1or to making the
assignment. Additionally, if the current assignment of 80
is to an RMO fi le, the file is closed with update.

Since COMSY compares only the partition logical unit
numbers and ignores file names, it is not possible to have
two files referenced with the same logical unit number. If
this is required. an alternate logical unit number should be
assigned to the partition outside of COMSY. The normal
logical unit number is then used for one file and the
alternate may be used for the other.

Reassignment of a lun and file to the same unit as is
currently assigned is permitted and should be used to
reposition to beginning of file when necessary.

Example: Assign file OFILE on logical unit 25, key equal X,
to Pl.

.UNIT,PI,25,0FILB,X

Assign files OFILE to PI and NFILE to 80. Both files are on
logical unit 20. The partit ion has no key.

22·4

IASSIGN,25,20
ICOMSY
.UNIT,PI,20,0FILE
.UNIT,B0,25,NFILE

'

22.3.3 SET Directive

This directive is used to turn on selected user options. It
has the general form

where

each P(i)

.SET,P(l) ,P(2) ... P(n)

is one of the parameters listed
in the table below.

The appearance of a parameter in the list turns the
selected option on. All options whose parameters do not
appear in the list are turned off. Any options which are
previously set on and which are to remain on must appear
in the list. The resulting option setting remains in effect
until another SET directive is encountered.

If no parameters appear. the standard default options as
indicated in the table below will be set. The standard
default options are automatically set when COMSY •s
initialized. The acceptable parameters are:

Parameter Default Option

A on Addition / deletion listing

c on Compile file output
'

E off C:nd·of-file inser1ion

I off Input source records from PI

l off List output

N off New decks to be output

s off Source record output

1/n off VORTEX option switch

y off Copy option

Examples: Set the options to input source records from PI
and output a new COMSY deck.

.SET , I,N

Set the standard default options which are to output to the
compile file and list all additions/ deletions.

.SET

The following describes the characteristics of the SET
options:

•

Addition/ Deletion List Option (A)

When this option is turned on. all records which are added
or deleted are listed on the LO unit. Records wh ich are
deleted are preceded on the line by 0 o•. Records wh ich are
added or inserted are preceded by "A o . The update
directive which caused deletions and / or additions is listed
preceding the deleted or added records.

Compile File Option (C)

When this option is turned on. it indicates that 80
character source records which are decompressed are to be
output to SS for submission to FORTRAN or OASMR.
Records are packed three to a sector. The last sector will be
blank f illed when necessary. Records from successive
decompression of d ifferent COMSY decks may be concate·
nated on the compile fi le. however, the last RMO sector
occupied by records from a deck may contam up to two
trailing blank records. If each deck is a separate subpro
gram. the last record is an END. FORTRAN and OASMR
will ignore the trailing blank records and begin processing
with the first record of the next sector. COMSY closes the
file with update after each deck insertion.

Source Record Output Option (S)

When this option is turned on, it indicates that 80
character source records which are decompressed are to be
output a record at a time to unit 8 0 .

End-of-file Option (E)

When this option is turned on and the source record output
option is also on (S). an end-of-fi le is output on 80 after
the last record of each deck is output.

New Deck Option (N)

When this option is turned on, it indicates that a new
COMSY deck is to be output to 80 for each COMSY deck or
source deck input. Any updates which are applied to a
COMSY deck input will be included in the deck output. The
new deck retains the same name and date of origination.
however, the edition number is incremented by one and
the date of last update is set to the current date.

Copy Option (Y)

When this option is turned on. it has the same effect as the
new deck option (N). with the following addition. In
addition to outputting a new deck for each COMSY deck or
source deck processed, any COMSY decks which are passed
over during a search for a specific COMSY deck will be
copied without modification to 80.

Input Source from PI Option (I)

When a DECK d irective is encountered. this option will
cause COMSY to input source records from PI until a FILE

directive or an end-of-file is encountered. When this option
is turned off source records are input from Sl.

COMPRESSION/EDIT SYSTEM (COMSY)

List Output Option (l)

When this opt ion IS turned on . 80 character source records
will be listed on unit LO.

VORTEX Switch Option (Vn)

This option is used to control the conditional assembly of
programs. When the option is turned on, it causes COMSY
to examine the first source record of each COMSY deck
which is being decompressed. If the first record is a
OASMR SET d irective of the form:

1 8 16

I VORTEX I SET

where

c is any character

The character in posit ion 16 1s replaced by character n .
Character n may be om itted. in wh1ch case a 2 is placed 1n
posit1on 16.

Examples:

A OASMR SET d irective of the following form appears as
the first record of a deck.

VORTEX SET 1

A COMSY SET directive of the form:
•

. SET , V4,

would cause the above record to be changed to :

VORTEX SET 4

and a COMSY SET directive of the form:

. SET, V,

would cause the above record to be changed to :

VORTEX SET 2

Note: If the f irst record of a deck does not contain a SET
d irective in the form indicated above, the opt ion has no
effect on that deck.

22.3.4 GANG Directive

This directive specifies a three character identificat ion code
which is to be inserted into the iden tif icat ion fieid .
character positions 73 through 75, of all 80 character
source records which are output as a resu lt of the source
record output opt ton (S) is set. The identif icat ton code

···~·- '"0000 0 00·-0-0KO---~ ·----·-oO o _ , .. ,_,___ ---·-·----- ··-··· -- _ __ __ .. ______ __ ____ ,,._.. _ _ _ ,,._._..,0 __ , - .. ---~--- ___ .., ___ ____ -------- -.---~-·--- ... -< -·-·

•

COMPRESSION/EDIT SYSTEM (COMSY)

replaces the deck edition number which is normally
1nserted in each record. The GANG directive has the
general form

where

lXX

.GANG,xxx

is any three ASCII characters. including

blank.

If the parameter is omitted, the comma is absent. the
normal edition number 1nsertion made is reinstated. The
GANG directive has no effect on other forms of COMSY
output.

E.xample: Output a COMSY deck in 80 character source
record mode, with the identificat ion field set to COM.

.GANG,COM

.S!T,S

22.3.5 DECK Directive

This directive is used to specify the name of a deck and to
direct COMSY to input 80 character source records from
unit Sl or Pl. The form of the directive is

where

.DECK. deckname

deck name is a one to eight ASCI I character
name to be assigned to the deck.

If the input from PI option is on (I), input is from unit, PI ;
otherwise, input is from unit Sl. Records are input until a
FILE directive or an end·of-file condition is encountered on
the input unit. Output created as a result of this directive is
controlled by the on or off conditions of the user options as
specified by the last SET directive encountered.

Example: Input source records from Sl and output a new
COMSY deck with the deckname SOURCE, listing the
records on the printer.

.SET,N,L

.D!Clt,SOURCE
n 80 character source
records

.PILE

Example: Input source records from logical unit MO and
output a new COMSY deck wtth the deckname ALPHA on
logical unit 25.

22·6

.ASSIGN,PI,MO

.ASSIGN,B0,25

- - ----- --

.SET,I,N

.DECK,ALPHA

22.3.6 COMDECK Directive

This directive is used to specify the name of a common
deck and to cause COMSY to transfer the deck to the
common file (see section 22.1.4). A special form of the
directive is used to open an existing common file. The
directive has the form:

where

deck name

s

.COMDECK,deckname,S

is a one to eight ASCII character
name to be assigned to the deck.

is the optional character S. which

when present. causes COMSY to
tnput 80 character source records
from PI until a .FILE or end·of.file
is encountered.

If no parameter appears. COMSY will input a COMSY deck
from Sl using the name of the COMSY deck input as the
common deck name. If parameter S and its preceding
comma are absent. COMSY will search the COMSY file on
PI for the named COMSY deck and transfer it to the
common file.

Common decks are transferred to a common file as
uncompressed records packed three records per RMO
sector. Decks may be added to an existing common file up
to a maximum of nineteen decks, after which an error will
be indicated. Common decks which are to be used in any
one update of a COMSY deck must reside in the same
common file as there is no provision for changing common
file once an update is started.

Upon initialization. the common file is defaulted to the
VORTEX GO file. The UNIT directive may be utilized to
assign CM to a different user file. A special COMOECK
directive of the form:

.COMD!!CK,•

will cause COMSY to open the file currently assigned to CM.
assuming that the file already contains a directory and
existing common decks. If this directive does not appear,
COMSY will assume that the file assigned to CM does not
contain valid common information. It should be noted that
a common file which resides in the VORTEX GO file will not
be retained between COMSY executions within the same
job.

Example: Assign an exist ing common file. CMFILE, on
logical unit 25 as the common file and add COMSY deck
COMMON from the file on PI into it.

• -------- - -- - - - - - · .

\

.r

.UNIT,CM,25,CMFILE

.COMDECK,*

.COMDECK,COMMON

Example: Input 80 character source records from PI and
transfer them to the common file with a common deck
named COMF.

.COMDECK,COMF , S

22.3.7 COPY Directive

This directive is used to copy COMSY decks on unit PI to a
file on unit 80. It has the form

where

first

last

.COPY. first.last

is the optional deckname of the first

deck to be copied. COMSY wilt search

the file on PI for the named deck.
If the parameter is absent , COMSY

will copy decks from the current

position on Pl.

is the optional d~kname of the last
d~k to be copied. If the parameter
is absent. COMSY will copy decks

until a FILE direct ive or end·of-fil e

is encountered on Pl.

Input to COPY is always in the form of COMSY decks. PI
may be an existing random file in which case decks are
copted in the order in which they were placed in the file.
Output from COPY is controled by the settings of the user
selectable output options. If the new deck (N) or copy (Y)
options are set, output is in the form of COMSY decks.
Otherwise. output is in the form selected by the rema ining
user options (S.E, C and L). The output fi le is always
sequential. Random files may be copied by utilizing the
RANDOM directive.

Example: Copy decks from the current position on PI until
the deck named ADECK is copied. Output is to be COMSY
decks.

.SET,N

. COPY I , ADECK

Copy decks starting from deck FIRST to end·of.file

.COPY,P'IRST

Copy the d~k named MYDECK on ly

.COPY,MYDECK,MYDECK

COMPRESSION / EDIT SYSTEM (COMSY)

22.3.8 RANDOM Directive

This directive is used to copy COMSY decks from an
existing sequential or random COMSY file mto a new
random file. It has the form

where

first

last

.RANDOM. first. last

is the optional deckname of the first
deck to be copied. COMSY will
search the file on PI for the named

deck. If the parameter is absent.

COMSY will copy decks from the
current position on Pl.

is the optional deckname of the last

d~k to be copied. If the parameter

is absent. COMSY wt ll copy decks

unt il a FILE dir~tive or end·of-file

is encountered on Pl.

During the process of copying, COMSY constructs a
directory which will allow random accessing of the file. The
input file may be an existing random file. If so. any deleted
decks (decks which contain the deckname *DELETED) will
be omttted from the output f ile.

At the completion of the copy, the owtput file is closed and
must be reopened for subsequent use. Once a random file
is created, additions to the file are made by use of the
APPEND directive.

Example Build a random fi le called RFILE on logical unit
22. key X. from a COMSY file on tape unit MO.

. ASSIGN,PI,MO

.UNIT,B0,22,RFILE,X

.RANDOM

In the above example. include only those decks which are
between and include DECKA and DECKZ.

.RANDOM , DECKA,DECKZ

22.3.9 APPEND Directive

Th is directive is used to copy COMSY decks from an
existing sequential or random COMSY file into an existing
random file. It has the form

.APPEND, first. last

22·7

- - •• · -·-- - - - · ·-···- --·- - - ----- - ------ - -· ___ _, _ .. _______ _ _____ 4 ... · ---·· ·-- --- -· ~ · -- ~- ... -- ··· • ... 4 ._ - - - - · - --- - --- ··-··

COMPRESSION/EDIT SYSTEM (COMSY)

where

first

last

is the optional deckname of the first

deck to be copied. COMSY will search
the file on PI for the named deck.

If the parameter is absent, COMSY
will copy decks from the current

position on Pl. .

is the optional deckname of the last

deck to be copied. If the parameter

is absent. COMSY will copy decks

until a FILE directive or end-of-fi le

is encountered on Pl.

Decks which are copied are appended to the end of the
ex isting random file. At the completion of the copy, the
output file is closed and must be reopened for subsequent
use.

Example: Append decks FDECK to and including LDECK
from a tape on logical unit 18 to an existing random file.
RFILE. on logical unit 22. key X.

.ASSIGN,PI,18,R

.UNIT,B0,22,RPILE,X

.APPEND,PDECK,LDECK

Append decks from FDECK until the end of the input file.

. APPEND,PDECK

Append all decks from current position to the end-of-file

.APPEND

22.3.1 0 EDIT Directive

This directive used to edit existing random files. It may be
used to delete a deck, rename a deck. or change a deck
edition number. It has the form

where

22·8

op

.EDIT ,op,deckname,newname. newedition

is DEL to delete deckname or REN to
rename deckname and 1 or change
the edition number

deckname is the current name of the effected

deck.

newname is the optional new deckname for the
specified deck.

newedition is the optional new edition number

for the specified deck.

COMSY does not remove the entry for a deleted deck from
the directory or is the deck removed from the fi le. The
deckname is replaced by the name • DELETED m both the
d irectory and in the deck's COMSY record. Deleted decks
may be dropped by copying a random file to a new fi le
utilizing the RANDOM directive.

Examples: Delete deck named ALPHA

.EDIT,DEL,ALPHA

Rename deck currently named as BETA with new name
GAMMA and edition 01

.EDIT,REN,BETA , GAMMA,01

22.3.11 LIST Directive

This directive is used to list the deck Information from the
COMSY records of all the decks conta ined an the f1le
assigned to Pl. It has the form

.LIST

Listing starts from the current position on PI , with no
rewind. and continues until a FILE direct ive or end-of-file is
detected. The listing contaans deck pos1tion. deckname,
edition. original COMSY date. last update date. deck s;ze.
and file accumulated size. D ~k size is the number of
records in the deck including ~~ le in itial COMSY record .

22.3.12 CHECK Directive

This directive is used to verify the contents of a COMSY file
on PI to list the deck information from the COMSY records
of the decks contained in the f ile. It has the form

.CHECK

Verification starts from the current position on Pl. with no
rewind, and continues until a FILE directive or end-of-file is
detected. A listing is produced with the same format as
that produced by the LIST directive. All records contained
within the decks are checked for checksum and sequence.
When an error is detected, an error message is output prior
to the deck information for the erroneous deck.

'22.3.13 INSERT (ADO) Directive

This directive is used to insert new records after the record
with the sequence number specif ied. It has the form

.INSERT,seqno

or

.AOO,seqno

------------------------- -----

where

seq no is the sequence number (in the COMSY

deck to be processed). of the record

after which new records are to be

inserted. Records directly following

the INSERT directive are inserted

until 3nother directive is encountered.

When an addition / deletion listing IS

checked (see SET directive) added
records are preceded by • A •.

Example: Insert new records after record number 8 and
after record number 15.

.INSERT,S
ABX•10
ABY•ABX*25

.INSERT,15
READ (5 I 1 0 0) IBUF

.COKSY,HTEST

22.3.14 REPLACE (DELETE) Directive

This directive is used to delete old records and to optionally
replace the deleted records with new records. It has the
form

where

first

last

.REPLACE, first,last

or

.DElETE, first,/ast

is the sequence number of the first
record to be deleted.

is the optional sequence number of

the last record to be deleted. If
omitted, only the record specified

by first is deleted.

REPLACE and DELETE both operate in the same manner
and are interchangeable. Records are first deleted from
output and then replaced by new records which directly
follow the directive until another directive is encountered.
New records may be omitted to cause deletion only. When
an addition/deletion listing is created (see SET directive),
deleted records are preceded by •o• and added recor.ds by
•A•.

Example: Replace records 15 through 19 with new records
and delete record 24.

COMPRESSION/EDIT SYSTEM (COMSY)

.REPLACE 15,19
LDA TEMP

ALPHA STAE
.DELETE,24
.COMSY (process next

deck from PI)

22.3.1 5 COMMON Directive

This directive is used to insert a deck from the common file
after a specified input record, or in place of specified input
records. It has th.e form

where

name

action

first

last

.COMMON, name, action, firs t,last

is the name of the deck to be inserted
from the common file currently open.

is the directive INSERT or the direct ive

REPLACE to specify designed action.

ADO or DELETE are not acceptable.

is the sequence number of the input

record after which the common deck

is to be inserted, or is the first

record to be replaced.

is the optional sequence number of
the last record to be replaced. If

omitted. only the record specified by

first is replaced.

This directive essentially operates in the same manner as
INSERT and REPLACE. with the exception that the new
records are in the common file rather than following the
directive.

Example: Place decks COM l and COM2 1n the common
file and then insert COMl at record 2 and replace records
25 through 32 with COM2.

.COKDECK,COM1

.COMDECK,COM2

.COMMON,COM1,INSERT,2

. REPLACE , 1 6
LDXI 5

.COMMON,COM2,REPLACE,25,32
•

•

.COMSY,PROGA

22 9

. --.-- --~-- ·-·--·- ·-~·----·- ... -··- ---- --~--· , .,.~ . ··•·· --- ----·-----.... ·-·-· ~ - ,_.._ _______ _. __ . __ ~-.. --.-.... _ .. _., __ - - ----- ··--··· -. - · -··-----· · ·- _... -.. -.--.. -·.......... .,. ___ .,. ___,. ___ ..• _ .,_.,, _______ .. _ , __ - -

COMPRESSION/ EDIT SYSTEM (COMSY)

22.3.16 COMSY Directive

This directive specifies the COMSY deck which is to be
processed. Updates directly preceding the COMSY directive
will be applied during processing. I t has the following two
forms

form 1:

form 2:

where in form 1

deck name

newname

newedition

where 1n form 2

deck name

edition

odate

update

.COMS Y, deckname.newname,newedition

or

.COMS Y ,deck name, edition,odate,udate

is the optional name of the deck

to be processed

is the optional new name to be
assigned to the deck if a new

COMSY deck is to be output

is the optional new ed ition number

to be assigned to the deck if a

new COMSY deck is to be output

is the eight character deckname
(including blanks)

.
is the two character edition

number (00·99)

is the date the original COMSY
edition was created

is the date the deck was updated

When deckname is omitted in form (1), the deck to be
processed is the next deck on unit Pl. When deckname is
present. it is the name of the deck to be searched for in the
COMSY f ile assigned to Pl. The input file may be in
sequential or random format. During the search on a
sequential file, decks passed over will be copied to 80 if the .
copy option is selected (see SET directive).

The second form of the COMSY d irective is the COMSY
record which is output by COMSY as the f irst record of a
COMSY deck. When a COMSY deck is to be processed from
Sl . form (1) must be omitted. Although COMSY or iginates
form (2) i t may be modified or replaced by the user:
however, character positions within the record are fixed,
therefore, field sizes must not be changed.

~2· 10

. ---

-

Example: Process deck ABLE changing its name to
BAKER and edit ion to 09 .

. COKSY,ABLE,BAKER,09

22.3.17 FILE Directive

This directive is used to specify a logical end·of-file. It may
replace or be replaced by a physical end ·of-file or a d isc
end·of·file. It has the form

.FILE

22.3.18 END Directive

This directive causes COMSY to exit. It may optionally
specify that a series of JCP directives be executed. It has
the form

where

NN

directive

.END. NN, directive

is an optional numeric parameter
specifying the number of pages

to be alloca ted by a JCPt MEM

d irective. If omi tted. the preceding

comma is omitted.

is optionally, any legal JCP d irective
without a slash (1).

Prior to exiting, a check is made to determine if any new
COMSY decks have been output on 80. If so. a FILE
directive and an end·of-file are output to 80. If BO is
assigned to a file on RMD. the fi le is closed with update.

.

When the f irst parameter is presen t. COMSY performs the
JCP! MEM function as if a ! MEM,NN direct ive had been
processed by JCP. If the second parameter is present. the
parameter. preceded by a slash (!). is transferred into the
JCP input buffer; and, if the compile file output option is
on, the JCP functions

I ASSIGN,PI•SS,PO•DUK
/PP'IL!!,PI,,SS

are preformed as if they had been input to JCP.

Example:
I COMSY
.SET,N,C
.DELETE,S
.COMSY,PROG1
. END,3,DASMR,B

The above directives will cause program PROGl to be input
from PI , record 5 will be deleted, a new COMSY deck will be

output to 80, assembler input will be blocked and output

to SS. and COMSY will cause the following JCP functions to
be performed:

IASSIGN,PI•SS,PO•DUM
/PPILE,PI,,SS
IKEM,J
IDASKR,B

22.4 COMSY LOAD MODULE GENERATION

COMSY is normally executed as a priority 1 task from the

VORTEX Background library (BL). It may also be executed
from an alternate library.

COMSY contains eighteen overlays. During load module
generation. the error code LG16 will be output to SO for
each overlay. This diagnostic is normal and should be
ignored. COMSY requires l OK (20 pages) of memory for
execution.

22.5 COMSY EXECUTION

COMSY is executed by input on the 51 logical unit of a
directive of the form

/COMSY

There are no parameters.

22.6 ERROR PROCESSING

When COMSY detects an error. a diagnostic message is
printed on the LO logical unit and processing is terminated.
COMSY exits by executing a FORTRAN STOP statement

Update 8

COMPRESSION / EDIT SYSTEM (COMSY)

which contains the error number of the error detected.

FORTRAN displays the STOP statement in the form

COMSY STOP n

where n is the error number

22.7 COMSY EXAMPLE

This example shows how to convert VORTEX COMSY source
into a file containing t railing blanks by removing the COMSY
line numbers. Such a file is then more efficiently stored as a
VIP text fi le.

Example:

Decompress the deck LOGOUT in the file <;PSRCE and use th e

SEDIT utility to remove the COMSY line numbers from
columns 73-80 of each record. The stripped file is to be copied
to logical unit 25 with the file name LOGOUT. FMUTIL is then
to be used to release any unused space in the file.

/ JOB
/ COM SY
.SET.C.E
.UNIT.PI.189.CPSRCE
.COMSY.LOGOUT
I F MAIN
CREATE.25 .. LOGOUT.120.5000
I S EDIT
AS.IN.SS .. SS
AS.OU.25 .. LOGOUT
GA.(73. 80).'~ ~ L4 tJ L4 li .S li '
FC
/ FMUTIL
U,25 .. LOGOUT
/ FIN I

22 11

!

i

•

•

Upon completion of processing of a spool file status or spool
file delete request . SSSPC writes a prompt message to the
operator console and waits for the next operator request to
be entered. After in itiation of communication to a spool print
task, SSSPC exits from the VORETX system.

23.4 .1 EX (Spool Print Task Exit)

End of communication and exiting of either SSSPC or a
spool print task may be requested by use of the EX
command.

The format of the EX command is:

EX

23.4.2 SG (Spool Print Task Go)

End of communication with a spool print task may be
requested by use of SG. the spool print task go command. A
spool print task upon recognition of the SG command,
resumes processing at the point of interruption to
communicate with the operator console.

The format of the SG command is:

SG.nn

where

nn is a two-digit number in the range 01-
14. This number specifies the spool
print task with which communication is
desired.

Example: Initiate communication w ith the spool print task
SSSP01 . The spool communication task SSSPC. is to be
scheduled at priority level 9 . The task resides on the
foreground library whose protection code is F.

;SCHED.SSSPC.9,FL.F
SSSPC,SPu
58.01
SSSPC.SP05.01

After SSSPC is scheduled. communication is initiated with
the spool print task 5SSP01 . The communication initiated
message (SSSPC. SP05.01) is written to the operator
console and SSSPC exits from the system.

23.5 INITIATION OF COMMUNICATION
WITH A SPOOL PRINT TASK

After schedul ing SSSPC. the spool print break command SB
is entered from the operator console to in i t iate

MULTITASK SPOOLER

communication to a spool print task. If communication is
init iated to the spool print task specified in the spool print
break command. SSSPC outputs a communication initiated
message on the operator console and exits from the
VORTEX system. If the spool break command is not valid or
communication cannot be initiated to the spool print task
specified in the break command, SSSPC outputs an error
message on the operator console . In this case. if no further
attempt to communicate with a spool print task is to be
initiated. the spool communication exit command EX may
be entered from the operator console to request SSSPC to
exit from the VORTEX system.

The format of the 58 command is:

SB.nn

23.6 SPOOL FILE STATUS DISPLAY

The status of spool files is obtained by use of the display
status (05) command. The status of the requested spool
files is displayed on the operator console in the order of the
spool files in the spool file directory. The format of the
display status command is

Update B

where

.ALL
OS

,printclass.jobname

ALL

printclass

jobname

is a constant wh ich specif ies a display of
the status of all spool f iles 1n the spool file
directory.

is a single alphabetiC character (A
through Z) used to relate individual spool
f i les. Th1s relationship or grouping
together of individual spool files can be
for any desired reason. but most often the
grouping is based on the similarity of
information in the grouped fi les.

is a one- to eight-character job name: this
parameter is applicable only to spool fi le
output from background tasks.

Example: Obtain the status of all spool files w 1thin print
class A

;SCHED.SSSPC.9FL.F
SSSPC.SP"•
DS.A

·-- ·- -- ------ -~·-""'·- - - --"- _., ____ __ - - - -----... · ~ --- 4·-~ - - ·......-----~ ~-->4 - ·----·- - --- ··----.4 .

l

i

. 23 .3

!

i

23-4

MUL TITASK SPOOLER

JOB
NAME

JOB ONE
JOBONE
JOBONE

TASK
NAME

TASKA
TASKB
TASKC

SPOOL
NAME

S00036
500037
500038

S$SPC.SP05,04

After SSSPC is scheduled. operator console display of the
three spool files associated to class A is initiated. The
display is followed by the status display completion
message (SSSPC.SP05,04}

A spool file may have one of four possible status settings

Status

open for write
available for print
open for print
printed and held

where

SSSPO

0

SSSPnn

nnnnn

Indication Status Display

SSSPO
0
SSSPnn
nnnnn

is the name of the spool output task

indicates that the spool file is complete
and has not been printed

is the name of the spool print task and
nn is a two digit number in the range
01 -14

is a count of the number of times a file has
been printed using the PO command.

23.7 DO (SPOOL FILE DELETE)

.
A Multitask Spool System command for deleting spool files is
available. The spool file delete command. DO. removes the
specified spool file from the spool file directory and deletes the
specified spool file from the directory of the RMO partition on
which the spool fi le resides. A spool file to be deleted must
have a status of closed or held.

The format of the DO command is:

where

DO. print class. jobname. filename

print class is one alphabetic character (A through Z)

j obname tS a one- to eight-character VORTEX
jobname

filename is a 6-character spool file name

-. -·-- - -

PRINT
CLASS

A
A
A

T

Update B

LUN NO.

5
5
5

OST
STATUS

43
43
43

SSSP01
0

SSSPO

Example: Delete the closed spool file named S00038 in print
class A.

;SCHEO.SSSPC.9.FL.F
SSSPC.SP*•
OO.A .. S00038
SSSPC.SP05.05

After SSSPC is scheduled. the spool file S00038 is removed
from the spool file directory, deleted from theRMO partition
directory on which it resided and the delete complete
message (SSSPC.SP05,05) is written to the operator
console.

23.8 PA, PH, PO (SPOOL FILE PRINT)

Three Multitask Spool system commands are available to
print spool files. The three commands are:

Command
Code

PA

PH

PO

Description

Spool File Print and Align - If the first
record of the specified spool file is a
forms control record. it is displayed on
the operator console then the number of
records specified in the PA command are
written to the line printer specified in
the PA command. Specifying the line
printer lun as a dummy lun allows a
forms control record to be displayed
with no printing.

Spool Print and Hold · Executes the print
request and does not delete the spool file
after completion of print. If the first
record of a spool file is a forms control
record, it is displayed on the operator
console. The spool records are then
written to the line printer specified
in the PH command. If the print is of
spool files in a print class and all
spool files in the print class are printed,
then the print task waits for a time
interval to lapse before searching the
spool file directory for additional spool
files to print.

Spool Print and Delete - Executes the
print request and deletes each spool file
after completion of print . As with PA and
PH. a forms control record. if present
for a spool file. is displayed on the
operator console.

The format of the PA.PH. and PO commands is

PA

PH .printer lun.print cteas.filename.record
number

PO

where

printer lun

print class

filename

record number

is a one- to three-digit logical
unit number assigned to a
printer or dummy device.

is one alphabetic character (A
through Z).

is a 6-character spool file
name.

is a one- to nine-digit number.
For the PA command this
parameter is required and it
specifies the number of
records to be printed. For the
PH and PO commands the
parameter may be included
only if a spool file name
('file~me') has been specified;
in this case. the record number
parameter specifies the record
number w ithin the specified
spool file at which printing is to
begin.

Example 1: SPOOL FILE PRINT AND ALIGN - The spool
print task SSSP01 is to print the first 10 records of the spool
file 500037 from the print class A. Printing is on the line
printer to which the logical unit number 15 is assigned.

;SCHEO,SSSPC,9.FL.F
SSSPC.SP""
SB.Ol
SSSPC.SP05.01
S$SP01, SP**
PA,l5,A,S00037,11
S$SP02,SP05,06

The first record of the spool file 500037. if it is a forms
control record. is displayed on the operator console . The first
10 print records of the spool file are written to the line
printer to which the lun 15 is assigned and the print and
align complete message (SSSP01 .SP05.06) is written to the
operator console.

Example 2 : SPOOL PRINT AND HOLD - The spool print task
SSSP01 is to print all spool files generated for print class B.
Printing is on the line pr inter to wh ich the logical unit
number 1 5 is assigned.

l

T

Update B

----- . -~··--··-- --· .. ··-·-· - ~ ~ ···-··-·--........ _________ .. _____ ...

;SCHEO.SSSPC,9,FL,F
SSSPC.SP""
58.01
SSSPC,SP05.01
SSSP01 ,SP""
PH,15,B

MULTITASK SPOOLER

After SSSPC is scheduled and communication is
established with the spool point task SSSP01 . each spool
file in print class B that is available for printing (closed) is
written to the line printer to which lun 15 is assigned. When
printing of all spool files in print class B is complete. the
spool print tzsk S$SP01 waits for a time interval to elapse
and then searches the spool file directory for additional print
class B spool files to print.

23.9 SC (Spool Print Cancellation)

The SC command directs the system to cancel the spool
print task currently in process. When the spool print task is
cancelled, the spool file record number of the last printed
line is displayed on the operator console.

The format of the SC command is

sc

Example: Cancel the spool print in progress of print class A
by the spool print task SSSP01 .

;SCHEO.SSSPC,9,FL.F
SSSPC.SP""
SB.01
SSSPC,SP05,01
SSSP01 ,SP""
sc
500118,0000000047
SSSP01 ,SP05,02
SSSP01 ,SP""

The spool print in progress by the spool print task SSSP01 of
spool file 500118 within print class A is cancelled after the
printing of record number 47. The spool print task SSSP01 is
now waiting for a command to be entered by the console
operator as indicated by the spool print prompt message
(S$SP01 .SP"").

23.10 ST (Spool Print Terrnination)

A spool print in progress is terminated by use of the ST
command. When the ST command is entered, the spool f ile
print cont inues to spool to f ile end. If no spool file pnnt is in
progress when the ST command is entered. the spool print
task outputs a prompt message to the operator console . The
format of the ST command is

ST

23-5

- ·-· - - ·-·"· - - --- - --~ - k • • ,. ___ _ ··- - ·· ~~ - . - • • - ... - •. · ..-·-· • • ... ,._., ... ---~ • ··~·

23-6

MULTITASK SPOOLER

Example: Terminate the spool file print currently in
progress by the print task SSSP01

;SCHED.SSSPC,9,FL.F
SSSPC.SP**
SB,01
SSSPC,SP05
SSSP01 .SP**
ST

After SSSPC is scheduled and communication is
established with print task S$SP01 . the ST command is
entered. The spool print task SSSP1 completes the spool file
print in progress. then waits for initiation of communication
via SSSPC.

•

23.11 SPOOL FILE ALLOCATION

Spool f ile records are 80 words in length. Word 1-66 of a
spool f i le record contain forms control or print and words
67-80 contain spool f ile control information.

Spool files are created only on RMD partitions on the disk
pack mounted on the drive to which the spool directory
logical unit number 107 is assigned.

Spool files are created w ith a primary space allocation as
specified in the SPOPN subroutine call or w ith the default
space allocation of 100 sectors. When the pr imary space
allocation of a spool file is exhausted, the spool f ile is
extended by the secondary space allocation specified in the
SPOPN subroutine call or by the default space allocation of
100 sectors.

The search for space to allocate a spool f ile begins on the
disk partition on which the spool f ife directory resides. The
search for space continues on each succeeding partition
until the end of the disk or until either the required amount of
space is located, or space allocation has been
unsuccessfully attempted on each partition available. Note
that partitions w ith a protection key are not used for
allocation of spool f iles. If the space allocation search was
not successful and the search was for an amount of
requested space greater than the default space allocation,
then a search to allocate the default space amount is
performed in the same manner as the previous search for
space.

23.12 COMPONENT DESCRIPTION

The VORTEX II Multitask Spool system consists of six
components :

•

•

VZSDA - spool dummy driver; nucleus, map 0, resident
task

SPOPN - spool f i le open subroutine. Resides in object
module library

-· .- -

Update B

•

•

•

SPCLS - spool file close subroutine. Resides in object
module library

SSSPO - spool output task. Foreground task with a
resident TIOB

SSSPC - spool print communication task. Foreground
task with a non-resident T108

• S$SP01 - spool print task. Foreground task with a non
resident T108

VZSOA. the spool dummy driver, accepts open (spool file
create). write. and close requests from either background or
foreground tasks for logical units assigned to VZSOA. These
requests are passed by VZSDA to SSSPO, the spool output
task. VZSDA upon indication by SSSPO . of request
processing completion, posts an 1/ 0 completion status to
the initiating task.

A call to SPOPN, the spool file open subroutine, requests the
creation of a spool fi le . In addit ion, SPOPN performs the
following f unctions: specifies spool f ile disk space
allocation, specifies the logical unit used in the requesting
task's WAITE statement which directs output to a spool f ile,
and specifies a print class to be associated with the spool
f ile.

A print class is a single alphabet ic character (A through Z)
used to relate individual spool files . Th is relat ionship or
grouping together of individual spool files may be for any
desired reason but most often is based on the importance or
similarity of information in the associated spool files. All
spool f iles associated w ith a given print class may be printed
by the computer operator by means of a print request that
designates the pr int class to be printed and the line printer
lun to which the pnnt output is to be directed. This facil ity
allows printing of spool files w ith no knowledge of e ither the
names of tasks that generated the information in the spool
f iles or names of the spool f iles associated to a print class.

A spool f ile may also be created w ithout the use of the
SPOPN call. Upon each WRITE from a background or
foreground task to a logical unit assigned to VZSDA the
spool output task, SSSPO, checks to see if a spool file has
been created (opened) for both the task issuing the WRITE
and the logical unit number to which the WRITE is directed.
If a spool file is not found to be open, then the spool output
task creates a spoo l file w ith a default disk space allocation
of 100 lines and a default print class of A for a background
task and 8 for a foreground task.

A call to SPCLS, the spool file close subroutine, is a request
to close a spool file for the task issuing the SPCLS call and
for the logical unit number specified in the call. A spool file
may also be closed without use of the SPCLS call. At least
once every 500 mill iseconds SSSPO, the spool output task,
scans a table containing an entry for each open spool file to
determine if the task that requested opening of the spool file

remains active within the system. Open spool files for which
the associated task is not active are closed and removed
from the table of open spool files .

SSSPO. the spool output task. processes spool file created
(open). write, and close requests from VZSDA. the spool
dummy driver. SSSPO also performs spool file close
processing based on a core table of open spool files as
previously described in the discussion of the SPCLS
subroutine. After processing an open, write or close
request. SSSPO informs VZSOA of the result of request
processing and waits for either another request to process
from VZSDA or a time interval to lapse before resuming
exeCL!tion.

SSSPC. the spool print communication task. is scheduled by
the computer operator for spool file status display, spool file
deletion or to initiate communication with a spool print task.

The Multitask Spool system allows from 1 to 14 spool print
tasks to be concurrently active with in a system. Spool print
tasks are named SSSPO 1 through SSSP14. One spool print
task. SSSP01. is assigned at system generation time. Other
spool print tasks may be created using the procedures
described in this manual.

A spool print task is scheduled by entry of the SCHED
directive from the operator console . Once a spool print task
is scheduled, the task remains active until terminated by
entry of the EX. spool print task exit command. from the
operator console. Use of the ABORT directive to term inate a
spool print task may result in unpredictable MSPOOL
system operation.

The following Mult itask Spool system actions are controlled
by a spool print task and are available from each scheduled
spool print task.

• Spool File Pr int

• Spool File Print Cancellation

• Spool file Print Termination

• Spool Print Task Exit

When a spool print task is scheduled or when a scheduled
spool print task recognizes a communication request from
SSSPC, the spool print communicat ion task, it writes a
prompt message to the operator console and waits for an
operator entry. If the operator entry is a valid command for a
spool print task then the action directed by the entered
command is taken otherwise an error message and then the
prompt message are written to the operator console and the
spool print task aga in waits for an operator entry.

Update 8

MULTITASK SPOOLER

23.13 SYSTEM GENERATION

To incorporate the Multitask Spool sub-system into a
VORTEX II system, include the following EOP directive at
SYSGEN time:

EOP.SDOA.O, 1 ,0,0

This will incorporate the dummy driver front-end to spool.
Include from 1 to 15 ASN directives for each spool logical
unit desired. For example, if it is desired to incorporate three
spool channels using logical unit numhers 6, 40 and 41 ,
include:

ASN,6=SDOO
ASN,40=SDOO
ASN.41 =SDOO

Include an ASN directive for logical unit number 1 07; it
must be assigned to an unprotected RMD partition. For
example.

ASN. 1 07=000J

Include an ASN directive for logical unit numbers 108 and
1 09; they must be assigned to a dummy device as follows:

ASN. lOB=DUM
ASN.109=DUM

Include an ASN directive for logical unit numbers 110
through 123 as needed. 110 is used by print task number
one (SSSP01), 111 is used by print task number two
(SSSP02), etc. They must be assigned to a dummy device.
For example. for a system using spool print tasks SSSP01,
SSSP02 and SSSP04, include:

ASN, 11 O=DUM
ASN, 111 =DUM
ASN, 112=DUM

Spool print tasks in addition to SSSP01 are obtained by use
of the File Maintenance ENTER directive. For example. to
reference also the spool print task SSSP01 as SSSP02 and
SSSP04 from the foreground library w ith logical unit
number 106 and protection code F. use the File
Maintenance ENTER directive as follows :

ENTER.1 06,F.SSSP01.SSSP02
ENTER. 106,F,SSSP01.SSSP04

23· 7

CONSOLE LOGGING PROGRAM

25.4.2 OFF Command

The OFF command terminates console logging. By including
one of the optional parameters. LOG 1. LOG2. or All. the
operator may also cause the specified file to the
printed. Console logging may be activated at any subsequent
time by rescheduling CONLOG. via the ;SCHED command.
and entering the ON command. If the operator does not
want any printout. he enters only the command OFF. The
fi les may be printed at a later time by reschedul ing CONLOG
with the SCHED macro, and then entering the print
command.

The general form of the OFF command is:

.LOG1
OFF .LOG2

,All

Example: Terminate console logging and print both LOG 1
and LOG2

OFF.All

25.4.3 PRINT Command

The PRINT command outputs the specified file to the list
output (LO) device (lun = 5). LOG1, LOG2 or ALL may be
specified. If the. optional parameter is not included the
default is All.

•

The log files printed with the PRINT command are initialized
(rewound) after printing unless the optional parameter .S is
included.

The PRINT command has the format

,LOG1
PRINT ,LOG2 .S

,All

. Example: Print file LOG 1. Initialize LOG 1 after printing.

PRINT,LOG1

25.4.4 SWITCH Command

The SWITCH command causes the CONLOG program to
output information the alternate device. If console
messages were being placed on LOG 1 and a SWITCH
command entered, the console logging would then
commence output to LOG2 to LOG2 and vice versa.

The form of the SWITCH command is:

SWITCH

Update B

25-2

25.4.5 HELP Command

The HELP command is included as an aid to the operator in
reminding him of the commands and their format. If the
HELP command is entered after CONLOG has been
scheduled and the operator is still in the conversational
mode with CON LOG. each of the commands. along with its
optional parameters. will be output to the OPCOM device.

The form of the HELP command is:

HELP

25.4.6 EXIT Command

The EXIT command causes CONLOG to leave the
conversational mode. The operator enters an EXIT command
at the point when all the required control commands have
been issued. After this command is issued. CONLOG will still
log or print messages as specified by the operator. but will no
longer expect additional commands from the operator.

The form of the EXIT command is:

EXIT

25.4.7 STATUS Command

The STATUS command causes the CON LOG program to

output a status list in the form:

CONSOLE LOGGING ON/OFF
PRINT MODE AUTO/MAN
CURRENT LOG FILE LOG 1/LOG2
LOGFILE LOG1/LOG2 FULL

The form of the STATUS command is:

STATUS·

!
.25.5 STATUS WORDS

The status word CLSTA T is maintained by both the
teletypewriter device and the CONLOG program. The
conditions indicated by each bit of this word are described in
Table 25-1.

The status word CLSTA 1 is reserved for future use.

t

bit

0

1

2

3

4

5

6

7

8

9

10

, ,

12

13

14

15

Table 25 .1 . Status Word (CLSTAT)

0 = console logging inact ive;
1 = console logging acitve

0 = printing must be requested;

1 = f i les automatically printed
when full

0 = f irst half of buffer to be f illed;

1 = second half of buffer to be filled

0 = do not initialize files;

1 = init ial ize f i les

0 = LOG 1 is current logging file;
1 = LOG2 is cur rent logging fi le

0= LOG 1 not full;

1 = LOG1 i s f ull

0= LOG2 not full;

1 = LOG2 is full

0= do not print LOG 1;

1 = print LOG 1

0= do not print LOG2;

1 = print LOG2

1 - Disk 1/0 error in TIYLOG -

!

1 - No memory available for allocating 1 23-word -
buHer

, - Logging terminated by files full condition or -
OFF command (deallocate 1 23-word buHer)

1 - TIYLOG has called CONLOG via the SCHED -
macro

1 - Open file 1 -

, - Open file 2 -

1 - CON LOG scheduled by operator (the busy -
flag)

T

CO N SO LE LOGGIN G PROG RA M

25.6 OUTPUT FORMAT

Each message w ill be preceded by the time of day in
HH :MM :SS format. In additon. the date. logical unit number

of the sending / receiving device. and the name of the
corresponding task will be appended to the message.
Output consist of 120word blocks of data . Each block of data

will thus contain two messages. At the time the output goes
to the logging device. a three word block of all ones is added
to the buffer and a 123 word WRITE command is issued.
This results in a 120 word record being w r itten to one sector
and a three word record of negative ones being wr itten to the
succeeding sector. The three word record serves as an end of
fi le ind1cator and as a current record location. When coming
back up after a system crash. the program can search for this
last record written indicat ion and continue output at that
locat1on in that f ile. Each time a new output occurs. the
prev1ous three word record is wrinen over. This action is
performed until the buHer becomes full . The output format is

as follows:

Buffer

Word Contents

1 HH
2 :M
3 M :
4 ss
5 blanks
6 message

4 5
46 blanks

47 mm

48 / d
49 d /

50 yy

51 blanks
52 tun

53
54 blanks

55 task

56 name

57

58 unused

59 ...
60 ...

~------~-------------
61 HH
62 :M
63 M :
64 ss

Update B

25 -3

·-· ~· ··- -.. --·····-----· ·- ·---·- ____________ _ ---·-- -· .

CONSOLE lOGGING PROGRAM

25·4

65

105
106
107
108
109
110
1 1 1
112
113
114
115
116
117
118
119
120

message

blanks
mm
/d
d/
yy
blanks
lun

blanks
task
name

unused

--------~----------121
122
123

- - --

-1
-1
-1

·-- - ·- - - -

!
25.7 TELETYPEWRITER DRIVER (V$TYB)

INTERFACE

If logging is active and a message is sent from hardware device
address 1, but not to logical unit number 5. VSTYB will move
the message to the rrYLOG buffer and activate TIYLOG.

The ;SCHED command sets the A register to 0143152 before
the requested program is called, so CONLOG uses the A
register as an indicator which shows whether it was called
from rrYLOG or from the operator SCHED request. Only one
copy of CONLOG can be scheduled by the operator.

25.8 II YLOG

TIYLOG collects messages two at a time and then writes them
to the log file. If a log file becomes full or if an error occurs.
TTYLOG will schedule CONLOG to print an appropriate

T message.

Update B

APPENDIX A
ERROR MESSAGES

This appendix comprises a d irectory of VORTEX operat ing
system error messages, arranged by VORTEX componen t.

A.l ERROR MESSAGE INDEX

Except for the language processors (section 5). VORTEX
error messages each begin with two letters that indicate
the corresponding component :

Messages
beginning
with:

CN
DG
OM

DP
EX
FH
FM

10
IU
JC

Are from
component:

Concordance program
Debugging program
DSYSTM/ OSPMEM

Dataplot II
Real-ttme executive
Disk Formatter

File maintenance

110 control

It O utility
Job-control processor

Listed in
subsections:

A.5.3
A.7
A.7

A. l 2

A.2
A.18.1
A.9
A.3

A. lO
A.4

A.2 REAL-TIME EXECUTIVE

Message

EXOl,xxxux

EX02,xxxxxx

EX03,xxxxxx

Condition

Invalid RTE serv1ce
request by task xxxxxx

Scheduled task xxxxxx
name not in specified
load-module library

Task xxxxxx made
RESUME request but re
quested task not found

LG Load-module generator A.6
MS Microprogram s1 mulator A.20 .2

MU Microprogram utility A.20 .3
NC VTAM Network control A.21
oc Operator communtcation A. l7
PT Patch Program A.15
RL RELINK A.6.l
RP RPG IV Compi ler A.5.3
RZ RMD lnit and Analys1s Al8

SE Source ed itor A.8
SM System mamtenance A. l6

ST VSORT A. l l
0 DAS MR assembler A.S. l

Section A.25 gives explanations of error codes listed under
" Possible User Action " in the last column of the following
sect ions.

Error messages from the following components do not have
identifying prefixes.

Component

COMSY -Compression/ Edit
FMUTIL-File Maintenance Utility
Parity Errors

Action

Abort task
XXX XXX

Abort task
xxxxxx

Continue
scheduling
task

Possible
User
Action

0 0 1,0 02,P01

0 0 1.003

0 01,0 03

Subsection

•

A.23
A.22
A.24

EX04,xxxxxx Task xxxxxx made ABORT
request but requested
task not found

Task xxxxxx
continues

001.003

EXOS,xxxxxx

EX06,xxxxxx

EX07,xxxxxx

Background task xxxxxx
larger than allocatable

Not enough allocatable
space available for
ALOC request

OVLA Y requests a seg·
ment not in library

Update 8

Task xxxxxx
not loaded

Abort task
XX XX XX

Abort task
XXX XXX

M0 1,M02.M03
M04.P02

M06

001.003

A-I

- ----··--· ____ -·--··-·-------- - ······--- ----- ·- -·-e..---------------... - ·------ - - - - ------ · _ --~··-· ..- ... _____ -· - ..

ERROR MESSAGES

EX lO,xxxxxx

EX ll,xxxxxx,n

EX12,xxxxxx

EX13,xxxxxx

EX 14,xxxxxx

EXlS,xxxxxx

EX16,xxxxxx

EX17,xxxxxx

EX20,xxxxxx,n,p
t 2

Scheduled request has
a library task priority
conflict (task priority
0 from foreground
library, task priority
2 from background
library). Scheduled
request specifies a
foreground task to be
executed at priority
0 or 1

Memory protection
violation at address n,
math firmware gen-
erated (i.e., attempt to
divide by zero)

I /0 link error (fore-
ground task making
request, or incorrect
logical unit number)

Attempted to load map
registers and a sense-
DMA-error stop condition
occurred

Lack allocable TIDB
memory space for task
xxxxxx attempted to
be scheduled

Foreground common
specified by back-
ground task

PASS macro specified
zero or negative word
count

RMD l / 0 error detected
when SAL attempted to
load scheduled task,
xxxxxx. Al~o pseudo
TIDB data assumed bad,
execution address less
than 01000

Map memory-protection
HALT violation at
virtual address n in
task xxxux

Note: xxxxxx is the name of a task.

A-2

- - ------ - - --

Schedule
request ig-
nored,
scheduling
task continues

Abort task
xxxxxx

Abort task
xxxxxx

Abort task
xxxx:xx

If an OPCOM
request, OP-
COM is
aborted. If
the schedule
is not an
OPCOM,
the request is
reattempted

Abort task
xxxxxx

Abort task
xxxxxx

Abort task
xxxxxx

Abort task
xxxxxx

D04,D02,P01

P03

POl

H05

M02

POl

POl

H06,P01

P17

'

ERROR MESSAGES

EX21,xxxxxx,p
1 2

EX22,xxxxxx,n,p
1 2

EX23,xxxxxx,n,m ,p
1 2

EX24,xxxxxx,n,m,p
1 2

EX25,xxxxxx,n,p
1 2

EX26,xxxxxx,m
I

EX27,xxxxxx

1

Map memory-protection
I 10 violation at
virtual address n in
task xxxxxx. User
attempted to execute
l/0 command in a map
other than map 0

Map memory-protection
WRITE violation at
virtual address n in
task xxxxxx. User
attempted to write/
store into read-only
or read-operand-only
location

Map memory-protection
JUMP violation at
virtual address n in
task xxxxxx. User
attempted to jump into
read-operand-only
location m + 2

Map memory-protection
UNASSIGNED violation
at virtual address n
in task xxxxxx. User
attempted to read or
write into unassigned
location m

Map memory-protection
instruction-fetch
violation at virtual
address n in task
xxxxxx_ User attempted
to fetch an instruction
from read-operand -only
location

Firmware floating
point or stack over
flow or underflow
occurred at logical
address or in task
xxxxxx.

ALOCPG request error.
Parameter error or
pages not available
for allocation.

Abort task
XXX XXX

Abort task
xxxxxx

Abort task
xxxxxx

Abort task
XXX XXX

Abort task
xxxxxx

Task is
continued at
location n + 2

Program con
tinues execu
tion at speci
fied reject
address

P17

Pl7

Pl7

P17

None

POl

The instruction which generated the memory-protection violation and the contents of
the A B. and X (and V75) registers are also posted_ Note that on non-micro-VORTEX. if
errors occur in two tasks almost simultaneously, the register values for the first task may
incorrectly be the same as those for the second task_

2

Where p is the physical page associated with the logical address of the instruction.

A-3

0 4 , - ' • o - - o , _,, 0 , .. - 0 (o 0 ···~ , 0.-·-··--- -·-·-· ... - .. -------··, .. -, ,,,_..., h , o - oo , _ _ _ ,.. ___ --- ---· ·- --·· .. - - -Aooo>• ~~ 0 0 0 - • _. - ... ~ ••• 0 - oO o oO ' ' 0 00 · - ' " ' '" ' " ' ''• o O ,,_,. - - , ... _ • o· .. _ _,, .,. 0 .~..,.·-·---.--... -..-- '" ' "" ·0 ··- ,__,,,_. ' " .. O ' ' '' '' ''¥' OO

ERROR MESSAGES

EX30,xxxxxx

EX3l,xxxxxx

EX32,xxxxxx

EX33,xxxxxx

EX34,xxxxxx

EX35,xxxxxx,n,m

EX36,xxx.ux

l EX37 ,xxxxxx

EX40.xxxu.x

i

DEALPG request error.
Parameter error. Pro·
aram continues execution
at specified reject
address

MAPIN request error.

Attempted to schedule
a task from a non-RMO
unit

Floating-point proc
essor, FPP, error

For V77 -800:
indicates arithmetic
overflow

Floating-point proc·
essor, FPP, timeout

Memory parity
error. n is the
P reg ister. m is
the tracking register.

For V77-800:
indicates arithmetic
underflow

REALPG request
error.

Attempt to schedule
a f ile that is not
a load module.
Error during RTE
SELECT request.

Attempt to schedule
a task with TRACE
while TRACE is
already active.

Note: xxxxxx is the name of a task.

A-4 Update B

Program con· ..
tinues execu·
tion at speci·
fied reject
address

Program con
tinues execu
tion at specified
reject address

Directive
ignored

Program con
tinues at the
address follow
ing the FPP
store instruc
tion

Program con·
tinues at
interrupted
instruction

Program con-
tinues execu-
tion at specified
reject address

Task not
scheduled

Task not
scheduled

POl

POl

002,P01

None

None

P01

P01

P01

/

. -~--~-- . . - . ,_., .

ERROR MESSAGES

A.3 1/0 CONTROL

A device status code word is displayed following the task name for some 110 messages. For
information about the meaning of this 16-bit word. see Appendix H.

IOOO.xxxxxx

IOOl,XXXXII

1002,11111X

1003,1XIIII

1004,111111

IOOS.xxxxxx

1006,XIXIII

1007 ,IXIXXI

IOlO,XIXIII

IOll,xxxxxx

1012,1111XX

Unit not ready, or
unit file protected.

Device declared down

Invalid LUN specified

FCB/ OCB parameter error

Invalid protection code

Request block. FCB.
or buffer extends
into unassigned
memory.

110 request error,
e.g., I/ O-complete
bit not set. prior
request may be queued

Attempt to read from a
write-only device. or
.

vtce versa

File name specified in
OPEN or CLOSE not found

Invalid f ile extent.
record number, address
or skip parameter, file
already closed

RMD OPEN/ CLOSE error,
or bad directory thread.
seek or read error on OPEN
request.

Update 8

Repeats
message until
condition is
corrected

Repeats mess
age until con
dition is cor
rected

Abort task
or request

Abort task
or request

Abort task
or request

Abort task
or request

Abort task
or request

Abort task
or request

Abort task
or request

Abort task
or request

Abort task
or request

H01.H03.
H07

H04,019

002,P01

P04

001 .002.P01

P0 1

POl

002.P01

D01,003,P01 .
029

P04,P01

H05,003

.. .-.... -- ·----· ,....._.,.,_, -----~---· ···--~· •e<--· - - ·-·· ---- ··--- ---- - ·-· ,,,. , • -··- - -· .__., , ,_..._. ·oo•••••.J•• -., • o "'' .,.,_• ~· ,. _,_ • • .,._,, ,,w_ ,., •·~--•·• ~ .__._ ,._.., •---.--~---• • '••

T

l

T

A- 5

ERROR MESSAGES

1013,xxxxxx

1014,xxxxxx

1015,xxxxxx

1016,xxxxxx

1017,xxxxxx

1020,xxxx

1021 .xxxxxxx

1022,xxxxxxx

1023,xxxxxxx

1024.xxxxxxx

1025 ,xxxxxxx

1026 ,xxxxxxx

1027,xxxxxxx

1030,xnxxx

1031,1XXIXX

level 0 proaram read a
JCP (/) directive

lnteaupt timed out or
no cytinder-search·
complete interrupt

Disc cylinder-search
or malfunction error

Disc read/ write timing
error

Disc end-of-track error

BIC: abnormal stop,
not ready, or t ime out
error on device xxxx

Memory parity error

Map error

Memory timeout error

Rate error

Memory/ data bus
verification error

Memory access error

Alternate sector
partition full

Parity error

Reader or tape error

Note: uuxx is the name of a task or device.

A-6 Update 8

- - ·· ··- --

Task xxxxxx
is aborted.

directive
passed to JCP
buffer

Abort task
or request

Abort task
or request

Abort task
or request

Abort task
or request

Abort task
or request

Abort task
or request

Abort task
or request

Abort task
or request

Abort task
or request

Abort task
or request

Abort task
or request

Abort task
or request

Abort task
or request

Abort task
or requ~t

None

H05,D05

H05

H05

H05

D05,H05

H05

H05

H05

H05

H05

H05

H05

H05,D02

H05,Pl9

1032,xxxxxx

1033,xxxxxx

1034,xxxxxx

1035,xxxxxx

1036,xxxxxx

1037 ,XXXXXX

1040,xxxxxx

1042,xxxxxx

1043,xxxxxx

1044,xxxxxx

Odd-length record error

Invalid terminal
identifier or logical
line number

Line or terminal not
opened

line or terminal down

line or terminal already
open

Request still pending

Action on terminal not
opened

Invalid physical line
address

Invalid TCM type

No temporary storage
available

Note: xxxxxx is the name of a task or device.

Update B

Abort task
or request

Request
ignored

Request
ignored

Request
ignored

Request
ignored

Request
ignored

Request
ignored

Request
ignored

Request
ignored

Request
ignored

ERROR MESSAGES

H05,Pl2

027

028

028

028

None

028

027

027

None

A -6a

-----·-- ----

104S,xxxxxx

1046,xxxxxx

1047,xxxxxx

1050.xxxxxx

105x,xxxxxx

1060,xxxxxx

1061,xxxxxx

l062,xxxxxx

1063,xxxxxx

1066.x.u.xxx

1066,xxxxxx

RMD error. Format,
end-of-file or head
selection error

Map memory pr->tection
l/0 data transfer error

User write specified
word count::> 7 J

R MD read error

RMO read error on spool
stream X. Specified
stream is last digit
of error number

RMD file full

User parameter error
in request

RMD write error

Buffer unavailable
for spooler

Alternate sector
directory record read error

Alternate sector
directory record write error

Note: xxxxxx is the name of a task or device.

Update B

Abort task
or request

Abort task
or request

Record is
truncated

Data is used

The data is
used

The program
waits until
space is avail·
able on the
file. The
message is re
peated every
200 ~imes the
condition
occurs

Request es
ignored

The bad sec
tor is
skipped. This
is likely to
cause an 105x
error later,
but no data
will be lost

Spooler waits
until buffer
is available

Abort task
or request

Abort task
or request

-- ·--- ·-·---· -· ·------ ----· -·-· _ ··-. ·--·---- ... --- - ----·--·-... _ - --~-· ----·--. --- .. -.... ·------·- ···-·· --.. ··-·· -· .. - .-

ERROR MESSAGES

H05,013

HOS

P04

H08

H06

008

POl

H06

None

HOS

H05

A-7

··-· - ·-·- ··"' ·- -- . .-.. -~ ------ ... -- ·-·

ERROR MESSAGES

A.4 JOB-CONTROL PROCESSOR

JCOl

JC02

JC03

JC04

JCOS,nn

•

JC06

JC07

JC08

T

A-8

Condition

Invalid JCP directive

Invalid or missing
parameter in a JCP
directive; or illegal
separator or terminator

Specified physical
device cannot perform
the functions of the
assigned logical unit

Invalid protection
code or file name in
a JCP directive

End of tape before the
number of files spec·
ified by an I SFILE
directive has been
skipped; or end of
tape, beginning of tape,
or file mark before the
number of records spec·
fied by an t SREC di·
rective has been skipped
where nn is the num·
ber of f iles (or
records) remaining
to be skipped

An irrecoverable l/0
error while compiling
or assembling; or an
error during a load/go
operation; or insuf·
ficent symbol table
memory (insufficient
/ MEM directive), or
an EOF was encountered
before an END staternent

Invalid or illegal
logical 1 physical-unit
referenced in JCP
directive

1/ 0 error encountered
while performing
operation

Update B

Action

Ignore
directive

Ignore
directive

Ignore
directive

Ignore
directive

SFILE, SREC
terminates
upon error
condition

Job flushed
to next / JOB
directive

Ignore
directive

Terminates
directive
operation

Possible
User
Action

001,002

001 ,002

007,H06

001 ,002

P07

P07,M0l ,P06

001 ,002,H06

H05.H06.
001

ERROR MESSAGES

•sz

•uo

•E

•R

•MQ

·-

Nested DUP statements

Symbol table full

Tag error (undefined or illegal index register
specifications)

Expression value too large for the size of the
subfield, or a DUP statement specifying more than
three statements to be duplicated (m parameter)

Undefined digit in an arithmetic expression

The symbol in the label field has, during pass 2,
a value different than that in pass 1

Syntax error (source statement incorrectly formed)

Relocation error (relocatable item encountered
where an absolute item was expected)

Missing right quotation mark in character string

Invalid use of literal

Implicit indirect reference when I parameter 1s

present on the I OASMR directive

A.5.2 FORTRAN IV Compiler and Runtime
Compiler

During compilation, source statements are checked for
such items as validity, syntax, and usage. When an error is
detected, it is posted on the LO usually beneath the source
statement. The errors marked T terminate binary output.

All error messages are of the form

ERR xx c(1)-e(16)

where xx is a number form 0 to 18 (notification error), or T
followed by a number from 0 to 9 (terminating error); and
c(1)-c(16) is the last character string (up to 16) encoun
tered in the statement being processed. The right-most
c,!laracter indicates the point of error and the @ indicates
the end of the statement. The possibfe·error messages are:

Notification

Error

0
1
2
3

Definition

Illegal character input
Construction error
Usage error
Mode error

Notification
Error

4
5
6
7
8

9
10

11
12
13

14
15
16
17

18
19
20
21
22
23
24

Definition

Illegal DO termination
Improper statement number
Common base lowered
Illegal equivalence group
Reference to nonexecutable
statement
No path to this statement
Multiply defined statement
number
Invalid format construction
Spelling error
Format statement with no
statement number
Function not used as variable
Truncated value
Statement out of order
More than 29 named common
reg1ons
Noncommon data
Illegal name
DO index not referenced
Name is dummy
Array name previously declared
Exponent underflow or overflow
Undefined statement number

A-9

I._,, ~· ·• • • •

ERROR MESSAGES

Terminating

Error

TO
Tl
T2
T3
T4
TS
T6
T7
T8
T9
TlO
Tll
Tl2
Tl3
Tl4
Tl5
Tl6
Tl7
Tl8
Tl9
T20
T21
T22
T23
T24
T25
T26
T27
T28
T29

T30
T31
T32

Oilfinition

110 error
Construction error
Usage error
Data pool overflow
Illegal statement
Improper use
Improper statement number
Mode error
Constant too large
Improper DO nesting
DO not parenthesized
Item not operand
Item not function
Invalid unary + .
Invalid hierarchy

Invalid -
Illegal operator
Function statement without parameters
Logical If follows logical If
Invalid dimensions
Operand is not a name
Too many numeric characters
Non-numeric exponent
Terminator not
Illegal terminator
Not statement end
Invalid common type
Target statement precedes DO
Subscript variable not dummy
Not first statement
(Title statement)
First two characters not DO
Not in subprogram
Subscript not integer constant

Note: due to optimization. the error message may appear
on the next labeled statement and not on the actual
statement error.

RUNTIME

When an error is detected during runtime execution of a
program, a message is posted on the LO device of the form:

taskname message

Fatal errors cause the job to be aborted; execution
continues for non-fatal errors. The messages and their
definitions are:

A-10

Message

ARITH OVFL

GO TO RANGE

FUNC ARG

FORMAT

MODE

DATA

l/0

Cause

Arithmetic overflow

Computed GO TO out of
range•

Invalid function argument
(e.g., square root of
negative number)

Error in FORMAT statement•

Mode error (e.g., outputting
real array with I format)•

Invalid input data (e.g.,
inputiing a real number
from external medium with
I format)•

l / 0 error (e.g., parity,
EO F)•

• indicates fatal error: all others non-fatal

A.5.3 RPG IV Compiler a ·1d Runtime
Compiler

During compilation, source statements are checked for
such items as validity, syntax and usage. When an error is
detected an arrow is printed pointing to the discrepancy in
the source statement and an error message is output on
the LO device. Detailed descriptions can be found in the
RPG IV User's Manual (98 A 9947 03X). The possible error
messages are:

Messages

Indicator
Invalid
Label
Literal

Name
Relational
Size
Syntax

If an 110 error occurs during compilation one of the
fcllowing messages is posted on Lo&ical Unit 15 and
compilation ts terminated:

. _, - -· - ··-~ -- --· -·--·- --

Message

RPOl,nnn

RP02,nnn

RP03,nnn

RP04

RPOS

Condition

1/0 error

End of file error

End of device error

End card error (End
card encountered before
procedure card)

Available memory
exceeded

where nnn is the logical unit number on which the error
occurred.

RPG Runtime/ loader during the loading or executing of an
RPG IV object program in the background any of the
following conditions will cause an error. The message •s
posted on logical Unit 15 and the task aborted:

Message

RTOl,nnn

RT02,nnn

RT03,nnn

RT04

RTOS

RT06

RT07

RT08

RT09

RTlO,xxxxxx

Condition

l /0 error

End of file error

End of device error

Program too big

Invalid object record

Checksum error

Sequence error

Program not executable

Work list overflow

Invalid call to sub
routine or missing sub
routine where xxxxxx
- subroutine name

Action

Compilation
terminated

Compilation
terminated

Compilation
terminated

Compilation
terminated

Compilation
terminated

Action

Task aborted

Task aborted

Task aborted

Task aborted

Task aborted

Task aborted

Task aborted

Task aborted

Task aborted

Task aborted

ERROR MESSAGES

Possible
User
Action

H06

P07

P07

P07

MOl .M03,M04

Possible
User
Action

H06

P07

P07

P07

P08

P08

P08

P08

MOl.M02.M03
M04

P08

A-11

·-------·- - ------ -------- --·-·----··--------- -- - -- - - - ----- -·- -·-----·

ERROR MESSAGES

Concordance Program:

Message Condition

CNOl Symbol table full

A.6 LOAD-MODULE GENERATOR

Message -
LGOl

LG02

LG03

LG04

LGOS

LG06

LG07

LG08

LG09

LGlO

LGll

A-12

Condition

Invalid LMGEN directive

Invalid or missing para·
meter in an LGMEN direc
tive

Check-sum error in
object module

READ error in object
module

WRITE error in load
module loading

Cataloging error, name
already in library,
library full, or refer
ence, subroutine with·
out 'NAME' statement

loader code error in
object module

Sequence error in object
module

Structure error in ob·
ject module (i.e., non
binary record)

Uteral pool overflow
or use of literal or
indirect by foreground
progTam

Invalid redefinition of
common-block size during
load-module generation

Action

Partial con·
cordance out
put, then next
segment is
processed

Action

Ignore
directive

Ignore
directive

Abort loading

Abort loading

Abort loading

Abort loading

Abort loading

Abort loading

Abort loading

Abort loading

Abort loading

Possible
User
Action

MOl

Possible
User
Action

001,002

001,002

P08,D02

P08.H06

P08,H06

D03.H06

P08

P08

P08

P08.P09

P08

--- - -- ----- - ------- -'-- ---,.------------ - ------ ---- -- ·--- --- - ..

Concordance Program:

Message Condition

CNOl Symbol table full

A.6 LOAD-MODULE GENERATOR

Message

LGOl

LG02

LG03

LG04

LGOS

LG06

LG07

LG08

LG09

LGlO

LGll

Condition

Invalid LMGEN directive

Invalid or missing para
meter in an LGMEN direc
tive

Check-sum error in
object module

READ error in object
module

WRITE error m load
module loading

Cataloging error, name
already in library,
library full, or refer
ence, subroutine with
out 'NAME' statement

Loader code error m
object module

Sequence error in object
module

Structure error in ob
ject module (i.e., non
binary record), or
directory structure error.

Li teral pool overflow
or use of literal or
indirect by foreground
program

Invalid redefinition of
common-block size during
load-module generation

Action

Partial con
cordance out
put, then next
segment is
processed

Action

Ignore
directive

Ignore
directive

Abort loading

Abort loading

Abort loading

Abort loading

Abort loading

Abort loading

Abort loading

Abort loading

Abort loading

Possible
User
Action

MOl

Possible
User
Action

001 ,002

001,002

P08,002

P08,H06

P08,H06

003,H06

P08

P08

P08

P08,P09

P08

ERROR MESSAGES

A -13

. . --· --·- -- ------- ------- --·- ·-· _ .. ___ ___________ ,.._. _______ _ --- -- ---- --------- -----------·~ - - ··-··· .. - ..

ERROR MESSAGES

LG12

LG13

LG14

LG15

LG16

LG17

LG18

A.6.1 RELINK

Message

RL01

RL02

xxxxxx

RL03

RL04

RL05

A-14

Condition

Input error

Load-module size exceeds
available memory or SW
file size

LMGE internal tables
exceed available memory

Number of overlay seg
ments input not equal
to that specified in
TIOB

Undefined externals

No program execution
address

Attempt to load pro·
tected task on back·
around library or
unprotected task on
foreground library

No load module
to catalog

Action

Ignore input

Load module Ignore
. xxxxxx en error

Abort loading

Abort loadina

Abort loading

Loading
continues

Loading con·
tinues. Ad·
dress defaults
to the first
location of
the program

Abort loading

Abort
cataloging

Invalid CAST

item in module

xxxxxx

Ignore module

Nucleus pointer

name xxxxxxx not

found in CL

Invalid displ.

found in CAST

Abort relinking

Abon relinking

Update 8

0 - - - - -Me 0 >oeoO ••-•• o • • o -- - -·

P02,034

MOl

001,002

PlO

P11

001.002,033

P08

Possible

User

Action

correct syntax

Check validity

of load module

Load module not

relinkable . re-LMGEN

Load module not

relinkabfe on this system

CAST is invalid,

Re-LMGEN

. - -··---··- '

FMlO

FMll

FM12

FM13

FM14

Loader code error in
object module

Sequence error in ob·

ject module

Non-binary record 1n

object module

Number of input logical
unit not specified by
INPUT

Insufficient space 1n
memory

• Messages FM07 through FM14 apply only to the
processing of object modules. The occurrence of any of
these errors requires that the processing of the object
module be restarted after the error condition is removed.

A.lO l/0 UTILITY

Message

lUOl

IU02

IU03

IU04

IUOS,nn

Condition

Invalid IOUTIL directive

Invalid or missing para
meter in IOUTIL direc·
tive

PFILE directive not used
to open an RMO file

110 error

END-OF-FILE before the
specified number or rec·
ords skipped. When
nn - the number of
records remaining when
the END-OF-FILE or
END-OF-DEVICE (on RMD
only} occurred. END·
OF-TAPE outputs MSG

where operator has op
tion to ;RESUME or
ABORT. Note: nn 1s
module ·o to 100.

FMAI N process
terminated

FMAIN process

terminated

FMAIN process
terminated

FMAIN process

terminated

FMAIN process
terminated

Action

Directive
ignored

Directive
ignored

Directive
ignored

IOUTIL process
terminated

SFILE. SREC
terminates
upon error
condition

ERROR MESSAGES

P08

P08

Pl2

0 01,002

MOl

Possible
User
Action

D01,002

001,002

D02

H06

P07

A-15

. · -~· ---___ ...,. ____ , ______ , -· ··-·· _., ,, ___ .. _ -·- ,,.______ -···- _ __ _ .. _________ ..._ .. -· ________________ , ____ ~ - ·---·-·---'

ERROR MESSAGES

A.ll SORT ERROR MESSAGES

Message

STOl,x:nxx:nx

ST02

STOl

ST04

ST05,xxxxxx

ST06,xxxxxx

ST07,xxxxxx

ST08

ST09,XXXXXX

A.12 OAT A PLOT

Messa a•

OPOO,xxxxxx

OPOl,xxxxxx

OP02,xxxxxx

OP03,xxxxxx

A-16

--·· · ·-

Condition

Invalid or missing
parameter or control
WOfd for the SORT
control word xxxxxxxx

Alternate input on RMO

SORT control fiefd
ending character po·
sition is less than
start character posi·
tion, or character
position is past end
of SORT record

Insufficient memory
available for work .
space.

OPEN error on file
xxxxxx

l/0 error on file

Attempt to write past
end-of· file XXXXl.l.

(Work file or output

file too small.)

Last of tags (LOT)
requested, but tag
SORT cannot be per·
formed.

Syntax error on
control word I NCL
OMIT. or MOVE XXXXXX

Condition

P1ot file overflow

Buffer overflow

Attempted to plot from
unsorted plot file

End-of-file detected
before end-of-plot
indicator

- -----------------

Action

Abort job

Abort SORT

Abort SORT

Abort SORT

Abort SORT

Abort SORT

Abort SORT

Abort SORT

Abort SORT

Action

Incomplete
plot

Incomplete
plot

Abort plot

Incomplete
plot

001

001

001

MOl

001.H06

H06

032

001

001

Possible
User
Action

030

M05

P20

P07

FM04

FMOS

FM06

FM07

FM08

FM09

FMlO

FMll

FM12

FM13

FM14

FM 15

Insufficient space for
entry

I /0 error

Directory structure
error, including
writing over the direc
tory by direct ad
dressing of an RMO
partition

Check-sum error 1n

object module

No entry name 1n ob
ject module

Record-size error m
object module

Loader code error in
object module

Sequence error in ob
ject module

Non-binary record 1n

object module

Number of input logical
unit not specified by
INPUT

Insufficient space m
memory

Released unused reques!
made to an empty file.

* Messages FM07 through FM14 apply only to the
processing of object modules. The occurrence of any of
these errors requires that the processing of the object
module be restarted after the error condition is removed.

Module not
added

FMAIN process
terminated

FMAIN process
terminated

FMAIN process
terminated

FMAIN process
terminated

FMAIN process
terminated

FMAIN process
terminated

FMAIN process
terminated

FMAIN process
terminated

FMAIN process
terminated

FMAIN process
terminated

Space not
released

ERROR MESSAGES

007,008,009
037

H06

H06

P08

P08

Pl2

P08

P08

Pl2

001 ,002

MOl

036

A -17

-·-- . -·----~------ -··--···- ·--....... ,.,., _____________ .. ~·· --· - __ ..,. ___ .. _____ -··---·-- -··· -..-...... -... ... ____ ····--·-·_ --- ·-.. -- ·- -- _ _ _ ____ .. ___ - _ , .. _._ __ _

ERROR MESSAGES

A.lO l/0 UTILITY

IUOl

IU02

IU03

IU04

IUOS,nn

-+ IU06

A -18

- -- . ,.. __

Condition

Invalid IOUTIL directive

Invalid or missing para
meter in IOUTIL direc
tive

PFILE directive not used
to open an RMD file

l/0 error

END-OF-FILE before the
specified number or rec
ords skipped. When
nn - the number of
records remaining when
the END-OF-FILE or
END-OF-DEVICE (on RMD
only) occurred. END·
OF-TAPE outputs MSG
where operator has OP·
tion to ;RESUME or
ABORT. Note: nn is
modulo 100 (i.e. 0 -99)

IOUTIL buffer is too
small for record size

Update 8

--~--- -:-

Action

Directive
ignored

Directive
ignored

Directive
ignored

IOUTIL process
terminated

SFILE, SREC
terminates
upon error
cond ition

Directive
ignored

Possible
User
Action

D01,D02

D01,D02

D02

H06

P07

M01

'

•

. -· -- - - - · ·-- - - -- --- - -

OP04,xxxxxx

DPOS,xxxxxx

OP06,xxxxxx

OP07,xxxxxx

Minimum/ maximum x or
y value exceeded

PLOTS not called

Data Plot l/0 error

Attempted to sort from
a non-RMD media

where XXXXXJ: is the task nam·e.

A.l3 SUPPORT LIBRARY

There are no error messages unique to this section of the
manual.

A.l4 REAL-TIME PROGRAMMING

There are no error messages unique to this section of the
manual.

A.lS SYSTEM GENERATION

RECORD-INPUT ERRORS: Errors in input record found
before processing.

Message

SGOO

SGOl

SG02

SG03

SG04

SG05

Condition

Read error (1/0)

Syntax error in
SGEN directive

Invalid or missing
parameter in SGEN
directive

Syntax error in control
record

Invalid or missing
parameter in control
record

Binary-object check·
sum error

Line will
follow plot
boundary,
or igin will
be shifted

Abort plot

Abort task

Abort task

Action

Waits for
corrected
input

Waits for
corrected
input

Waits for
corrected
input

Waits for
corrected
input

Waits for
corrected
input

Waits for
corrected
input

ERROR MESSAGES

P21

P22

H06,H05

031

Possible
User
Action

Pl9,011

001.011

001,011

011

001 .011

P08.011

A-17

- . -· -· --. _ ----·-. - ·----·--- ·- -- - --------___ , -------·-_ ... -·--- -----_____ _..,... ______. . . - ---- -------

ERROR MESSAGES

A-18

-

SG06

SG07

SG08

SG09

Binary-object sequence
error

Binary-object record
code error

Unexpected end of file,
end of device, or
beginning of. device

Improper ordering of
load-module· package
control records

OUTPUT ERRORS: Errors in the attempt to perform l/0
on an RMO or listing unit.

Message

SGlO

SGll

SG12

SG13

SG14

SG15

Condition

RMO I /0 error in
directive processor

RMO l/0 error in
nucleus processor

RMO l/0 error during
library generation

RMO 1/C error during
resident-task generation

First track on RMO bad
(unable to write PST I
bad-track table)

Write error on listing
device

SYSTEM-GENERA TOR PROCESSING ERRORS: Errors pre
venting the correct functioning of the system generator.

Message

SG20

Condition

~equested SGEN driver
not available

- - ·-- - ---- -·

Waits for
corrected
input

Waits for
corrected
input

Waits for
corrected
input

Waits for
corrected
input

Action

Waits for
indicated
corrective
action

Waits for
indicated
corrective
action

Waits for
indicated
corrective
action

Waits for
indicated
corrective
action

Waits for
indicated
corrective
action

Waits for
indicated
corrective
action

Action

System halts

P08,0ll

P08,011

P07,011

011

Possible
User
Action

012

012

012

012

012

None

Possible
User
Action

M05,022,018,
015

...

SG21

SG22

SG23

SG24

SG25

SG26

SG27

SG28,xx

SG29

loading error in dire<:
tive processor

loading error in
nucleus processor

loading error in
library processor I
resident-task
configura tor

Stacks exceed avail
able memory

In complete system
defin ition (missing
directive or con
flicting ASN defin i
tions

RMO error (too many
sectors allocated. or
nonsequent ial par
tition assignments)

Error while loading
SGEN loader . 1/0
control, or drivers.
Driver not found in
SGL

Error while loading
SGEN component
xx - 05 · checksum

06 · sequence
07 · record
21 other in

SGEN1
22 · other in

SGEN2
23 · other in

SGEN3
24 - other in

SGEN4

Last part it ion listed
begins on a bad track

MEMORY ERRORS: E~rors of compatibility between allo
cated memory and a portion of the VORTEX system.

SG30 Size of nucleus larger
than that of defined
foreground area

Waits for
indicated
corrective
action

Waits for
indicated
corrective
action

Waits for
indicated
corrective

•

action

Waits for
indicated
corrective
action

Waits for
indicated
corrective
action

Waits for
indicated
corrective
action

System halts

Waits for
indicated
corrective
action

Waits for
indicated
correc tive
action

Waits for
indicated
corrective
action

ERROR MESSAGES

012

Dl2

012

M03.012

001.012

001,025,012

015

P08,012

P25

M03.D12

A-19

+- ... ·--- _. ___ .. __ ... - ·---·~------------ --·~. --·-------- --·-----·----- _.. -·--------- · ---------·-- ----·- ---

ERROR MESSAGES

A-20

Messaee

SG31

SG32

SG33

SG34

SG35

SG50

Condition

Load-module literal
pool overflow

Size of load module
larger than defined
memory area

Invalid definition of
common during load
module generation

Number of overlays in
put not the same as
specified by TID
control record

InsuffiCient space
in two largest RMO
partitions to con
tain VNO task ob
ject modules

Task Tl 08 set for
VNO, but no VOL
directive for task

SYSTEM LOADING AND LINKING ERRORS: Errors that
prevent normal loading or linking of system components.

Mesaaee

SG41

-· - -- ---

Condition

Loader code error in
library processor

Loaded program contains
no entry name

Action

Current load
module
process1ng
terminated,
system con
tinues

Current load
module
process1ng
terminated.
system con
tinues

Current load
module
processmg
terminated,
system con
tinues

Current load
module
processing
terminated.
system con
tinues

Nucleus
.

process1ng
terminated

Task loaded
as non-VNO

Action.

Current load
module
processmg
terminated,
system con
tinues

Current load
module

.
process1ng
terminated.
system con
tinues

Possible
User
Action

P09,017

M03,P02,D17

M03,017

001.017

014,034

035

POS$ible
User
Action

P08,017

P08,017

Message

SG42

SG43

SG44

SG45

SG46

Condition

Unsatisfied external 1n
library processor

No execution address
found in root segment
or overlay

loader code error in
nucleus processor (i.e ..
indirect or li tera l
in foreground task)

Unsatisfied external in
nucleus processor

System peripheral
assigned to more than
one logical-un it class

A.l6 SYSTEM MAINTENANCE

Messaee

SMOl

SM02

SM03

SM04

SM05

Condition

Invalid SMAIN direc
tive

Record not recognized

Check-sum error in
object module

Incorrect size of
object-module record
(correct : 120 words
for RMO input, other·
wise 60 words)

Loader code error in
object module

Action

Current load
module
processmg
terminated,
system con
t inues

Processing
continues.
Address
defaults to
the first
location of
the program

Waits for
indicated
correct ive
action

Waits for
indicated
corrective
action

Waits for
indicated
corrective
action

Action

Ignore
d irective

Ignore
directive

Waits for
indicated
corrective
action

Waits for
indicated
corrective
action

Waits for
indicated
corrective
action

ERROR MESSAGES

Possible

User
Action

Pl 0,01 7

Pll

P08,012,

Pl0, 012

012

Possible
User
Action

001,002

P19,010

P08,010

P12,010

P08,010

A-21

--.--- - ~---·----~···----·--- · ... - ---- - - ----- ----· --. .. _. ... ·- ... -

ERROR MESSAGES

SM06

SM07

SM08

SM09

SMlO

SMll

Sequence error in

object module

Object module contains
non-object-module text
record

Error or end of device
received after reading
operation

Error or end of device
received after writing
operation

Stack area full

Invalid control record

A.17 OPERATOR COMMUNICATION

Message

OCOl

OC02

OC03

OC04

OC05

OC06

OC07

A-22

Condition

Request type error

Parameter limits
exceeded

Missing parameter

Unknown or undefined
parameter

Attempt to schedule
or time schedule
OPCOM task

Attempt to declare OC
device or system
resident unit down

Task specified in TST AT
key-in has no es·
tablished TIOB, task
currently not active

Waits for

indicated
corrective
action

Waits for
indicated
corrective
action

Waits for
indicated
corrective
action

Waits for
indicated
corrective
action

.
Waits for
indicated
corrective
action

Waits for
indicated
corrective
action

Action

Ignore
directive

Ignore
directive

Ignore
directive

lanore
directive

Ignore
directive

Ignore
directive

Ignore
directive

P08,010

Pl2,010

P07,010

P07,010

MOl

Pl9,010

Possible
User
Action

001.002

001,002

001,002

001.002

001,002

001,002

001,002

ERROR MESSAGES

RZOS Named device cannot be Ignore 0 01.011
replaced (system RMD or directive
device busy)

RZ06 Irrecoverable l / 0 error Ignore H06,011
on designated RMD directive

RZ07 First track of disc Ignore 024
pack bad (pack unusable) directive

RZ08 Directive incompatible Ignore 025,023
with specified RMD directive

RZ09 Irrecoverable I / 0 error Ignore H06,011

on system RMO (VORTEX directive
nucleus)

RZlO 1/ 0 euor on LO device Ignore Oll,H06
directive

RZll 110 error on Sl device Ignore Dll .H06
directive

RZ12 No memory available to RAZI aborted M02

allocate for new bad-
track table

RZ13 Total number of tracks Ignore 025,011

specified in PRT direc- directive
tive exceeds size of
the device or is in-
compatible with the FRM
directive

-

A.19 PROCESS INPUT / OUTPUT

There are no error messages unique to this section of the
manual.

UPDATE B

A.20 WRITABLE CONTROL STORE

A.20.1 Microprogram Assembler

During assembly the symbolic statements are checked for
syntactic errors. In addition, a condit ion may occur where
the assembler is unable to determine the correct meaning
of the symbolic source statements.

Either case is indicated as an error and up to eight error
codes will be output beneath the source statement
incorrectly constructed.

NR. LC and 10 errors terminate the assembly.

A-23

~~~--------·---------- _________ .. ___ -·--------------·---·· ~-------.. - ·- - -~ ·- ~ - .. ~~--···---~-··-·----.. -.. - ,...,_, ___ ... ~· . _______ .. _..._. ______ -----·· . ~··· .... -··~. .. . ~.... ~-·· 



ERROR MESSAGES 

Each error code with the exception of 10 is followed by a 
space and two decimal digits indicating the character 
position the assembler was scanning when the error was 
detected. 

The error codes and their meanings are listed below: 

Error 
Code 

AD 

cc 

CE 

DD 

ER 

EX 

FN 

10 

Meaning 

Address expression or associated 
fields in error 

Continuation not expected 

Numeric conversion error 

Illegal redefinition of a symbol 

Syntax error 

An expression contained an 
illegal construction 

Field number inconsistent with 
format 

l / 0 error 

A.20.2 Microprogram Simulator 

Message 

MSOl 

Condition 

Input could not be interpreted 
as a va lid command 

LC 

MF 

NR 

NS 

OP 

SE 

Sy 

sz 

MS02 A non-hex character was 
encountered when hex expected 

MS03 

MS04 

MSOS 

A-24 

Insufficient common 
area to contain spec
ified number of pages 

The selected page 
number was not valid 

An attempt was made 
to jump to an unavail· 
able WCS page 

Action 

Program location counter setting 
exceeds the maximum WCS page size 
(512 words) 

Duplicate field reference 

No memory available for addition of 
an entry to assembler's tables 

No symbol in the label field where 
required 

Operation field undefined 

Symbol in label field has a value 
during pass 2 that is different from 
the value determined in pass 1 

Undefined symbol. A value of zero 
is assumed 

A value too large for the size of a 
field, or the fields defined in a 
format statement do not equal 64 bits 

Possible 
User 
Action 

Directive ignored; 
input recovery* 

D01 ,D02 

Directive ignored; 
input recovery* 

Request for 
highest page 
repeated 

Directive 
ignored; 
input 
recovery* 

Simulation 
halted 

002,002 

M01,D26 

D26 

P13 

- ·- - - - ----- . ·--·---



OClO 

OCll 

Attempt to assign unit 
declared down or assign 
an unassignable logical 
unit / device 

Attempt to allocate 
Tl DB unsuccessful for 
TSCHED request 

A.18 RMD ANALYSIS AND INITIALIZATION 

Message 

RZOl 

RZ02 

RZ03 

RZ04 

RZ05 

RZ06 

RZ07 

RZ08 

RZ09 

RZlO 

RZll 

RZ12 

RZ13 

Condition 

Invalid RAZI direc
tive or illegal sepa
rator or terminator 

Invalid parameter in 
a RAZI directive 

Insufficient or con
flicting directive 
information 

New PST incompatible 
with the system 

Named devtce cannot be 
replaced (system RMO or 
device busy) 

Irrecoverable 1/ 0 error 
on designated RMO 

First track of disc 
pack bad (pack unusable) 

Directive incompatible 
with specified RMO 

Irrecoverable l/0 error 
on system RMO (VORTEX 
nucleus) 

l/0 error on LO device 

110 error on 51 device 

No memory available to 
allocate for new bad
track table 

Total ~umber of tracks 
specified in PRT direc
tive exceeds size of 
the device or is in
compatible with the FRM 
directive 

Ignore 
directive 

Ignore 
directive 

Action 

Ignore 
directive 

Ignore 
directive 

Ignore 
directive 

Ignore 
directive 

Ignore 
directive 

Ignore 
directive 

Ignore 
directive 

Ignore 
directive 

Ignore 
directive 

Ignore 
directive 

Ignore 
directive 

RAZI aborted 

Ignore 
directive 

ERROR MESSAGES 

D19,H04 

M02 

Possible 
User 
Action 

001 ,011 

001,011 

001,011 

020,021 .022. 
011 

001,011 

H06,D11 

024 

025,023 

H06,011 

Oll,H06 

D11,H06 

M02 

025.011 

A-23 

. -··- ----· --------------------------- ----------- -· - ---------- -------- ------- - ---·---



ERROR MESSAGES 

A.19 PROCESS rNPUT /OUTPUT 

There are no error messages unique to this section of the 
manual. 

A.20 WRITABLE CONTROL STORE 

A.20.1 Microprogram Assembler 

During assembly the symbolic statements are checked for 
syntactic errors. In addition, a condition may occur where 
the assembler is unable to determine the correct meaning 
of the symbolic source statements. 

Either case is indicated as an error and up to eight error 
codes will be output beneath the source statement 
incorrectly constructed. 

NR, LC and 10 errors terminate the assembly. 

Each error code with the exception of 10 is followed by a 
space and two decimal digits indicating the character 
position the assembler was scanning when the error was 
detected. 

The error codes and their meanings are listed below: 

Error 
Code 

AD 

cc 

Meanine 

Address expression or associated 
fields in error 

Continuation not expected 

A.20.2 

Messaee 

MSOl 

Microprogram Simulator 

Condition 

Input could not be interpreted 
as a valid command 

CE 

DO 

ER 

EX 

FN 

10 

LC 

MF 

NR 

NS 

OP 

SE 

Sy 

sz 

MS02 A non-hex character was 
encountered when hex expected 

MS03 

MS04 

A-24 

InsuffiCient common 
area to contain spec· 
ified number of pages 

The selected page 
number was not valid 

Action 

Numeric conversion error 

Illegal redefinition of a symbol 

Syntax error 

An expression contained an 
illegal construction 

Field number inconsistent with 
format 

110 error 

Program location counter setting 
exceeds the maximum WCS page size 
(512 words) 

Duplicate f ield reference 

No memory available for addition of 
an entry to assembler's tables 

No symbol in the labef field where 
required 

Operation field undefined 

Symbol in label field has a value 
during pass 2 that is different from 
the value determined in pass 1 

Undefined symbol. A value of zero 
is assumed 

A value too large for the size of a 
fiefd. or the fields defined in a 
format statement do not equal 64 bits 

Possible 
User 
Action 

Directive ignored; 
input recovery• 

001 ,002 

Directive ignored; 
input recovery• 

Request for 
highest page 
repeated 

Directive 
ignored; 
input 
recovery• 

002.002 

M01.D26 

026 

-· ·- --- ·-- - - - -- --- -



__ ,.___ - o-v•.,.·-----• ·-... - •-••.,, .. ., _____ _ 

MS05 

MS06 

MS07 

MS08 

MS09 

MSlO 

MSll 

MS12 

MS13 

MS14 

MS15 

MS16 

MS17 

An attempt was made 
to jump to an unavail· 
able WCS page 

A 8CS instruction was 
encountered when WCS 
page 1 is unavailable 

Read error on 81 
device 

EOF encountered before 
load complete 

EOD/ 8EOD encountered 
before load complete 

Sequence error on 8 1 

Invalid loader code 

Checksum error 

Undefined macro opcode 

Attempted to write to 
memory outside defined 

. 
ma.n memory 

Attempted to load out -
side main memory 

Invalid field name 

Invalid field value 

• Input recovery message or corrected directive from SO 
device. 

A.20.3 Microprogram Utility 

MUOl 

Condition 

Input could not be 
interpreted as a va lid 
command 

Simulation 
halted 

Simulat ion 
halted 

Loading 
aborted 

Loading 
aborted 

Loading 
aborted 

Loading 
aborted 

Loading 
aborted 

Loading 
aborted 

Simulation 
continues 

Simulation 
continues 

Loading 
aborted 

Remainder of 
di rect ive 
ignored 

Remainder of 
directive 
ignored 

Action 

Directive 
ignored: 
input 
recovery* 

ERROR MESSAGES 

Pl3 

D26.Pl3 

H06 

P07 

P08 

P08 

P08 

P08 

Pl5 

Pl6 

P23 

DOl 

001 

Possible 
User 
Action 

D01.002 

A-25 

- --- ------·---·----- - - -----·-·-·-----··-- ----- - - --.. -..... -- -·-----·-···--------· 



ERROR MESSAGES 

A-26 

MU02 

MU03 

MU04 

MUOS 

MU06 

MU07 

MU08 

MU09 

MUlO 

MUll 

MU12 

A non-hex character 
was encountered when 
hex expected 

EOF detected on Sl 

The selected page 
number was not valid 

Unable to access WCS: 
WCS is busy 

Unable to access WCS: 
81C load in progress 

Read error on BID 
device 

EOF encountered before 
load complete 

EODI 80D encountered 
before load complete 

Sequence error on 81 

Invalid loader code 

Checksum error 

• Input recovery message or corrected directive from SO 
device. 

A.21 VTAM NETWORK CONTROL MODULE 

The VTAM network control module (NCM) generates the 
followine error messages: 

Messaee 

NCOt 

NC02 

NC03 

NC04 

Condition 

Syntax error 

Undefined line 

Undefined TUID 

l/0 error on file 
VT$DFL 

Directive 
ignored: 
input 
recovery• 

Microprogram 
utility 
aborted 

Directive 
ignored; 
input 
recovery• 

Directive 
ignored 

Direct ive 
ignored 

Loading 
aborted 

Loading 
aborted 

Loading 
aborted 

Loading 
aborted 

Loading 
aborted 

Loading 
aborted 

Action 

Ignore 
directive 

Ignore 
directive 

Ignore 
directive 

Ignore 
directive 

D01.D02 

P07 

D01 ,D02 

H05 

H05 

H06 

P07 

P08 

P08 

P08 

P08 

Possible 
User 
Action 

D01,D02 

D27,D02 

D27,D02 

H06,D02 

----- --- - --- - - . ·--· 



NC05 

NC06 

I 10 error on file 
VT$DFT 

Undefined CCM number 

Ignore 
directive 

Ignore 
directive 

A.22 FILE MAINTENANCE UTILITY (FMUTIL) ERRORS 

Message 

END-OF-FILE 

A DIRECTORY 
STRUCTURE 
ERROR-LUN lun 
SECTOR-sector 
num 

Condition 

This is an ERROR MSG 
mean ing an EN D-OF-FILE 
was encoun tered before 
the specified request 
cou ld be completed. 

A = blanks 
lun = 4 digits giving 
logical unit number 
sector num = 7 digits 
giving the sector number 
in error. Th is is an 
ERROR MSG. Meaning there 
is a structure error in 
the object module. 

FILENAME ERROR INVALID filename or 
filen ame not found 

· DIRECTORY 
ERROR 
ERROR · · · 
Beg. · · end 
· · eof · · 
curren t · · 
end · · eof. 

TAPE INPUT 
ERROR 

PARTITION 
OVERFLOW 

Directory error shows 
writing over the direc
tory by direct address· 
ing of an RMD partition. 
· = blan ks 
Beg = 2 digits showing 
beginning sector addr. 
end = 2 d igits showing 
the ending sector addr. 
eof = 2 d igits showing 
end-of-f ile addr. 
current = 7 digits 
showing current beg. 
addr. 
end = 7 d igits showing 
ending addr. of current 
sector. 
eof = 7 d igits showing 
current eof .• 

READ ERROR (file Header 
not found) 

Insufficient space for 
entry into partition. 

Action 

FMUTIL 
Process 
Terminated 

FMUTIL 
Process 
Terminated 

No act ion 
taken error 
output and 
ignored goes 
to next entry. 

FMUTI L 
Process 
Term inated 

Outputs error 
tries again. 

Module not 
added, ou tputs 
last d irectory 
sector. 

H06,D02 

027,002 

Possible User 
Action 

D01,P07 

H06 

D01 ,D02, 
D03 

P17 

D01,D07, 
Dl l 

D07,D09, 
D01,D03 

ERROR MESSAGES 

A -27 

. --- _________ ......_ _______ .. -~ ... , ....... -... ---.-- -- - ·---------·--·-· ---- --- -----· · ··..--·-·--·----~--.. __ , __ .,..,. _____ ...... - .. ·-·--·- --· ----~--------· -·--- .. ·~--_..~ .. 



ERROR MESSAGES 

1 

T 

Message 

INSUFFICIENT 
SPACE IN 
PARTITION 

FMAIN ERROR-

CAPACITY 
EXCEEDED 

PARTITION 
SIZE sze 
SECTORS 
· · · · · num 
ARE UNASSIGNED 

ROOT FILE xxxxxx 
NOT FOUND. NAME 
yyyyyy NOT ENTERED 

FILE EXTENT ERROR. 
FILE xxxxxx SKIPPED 

INSUFFICIENT SPACE 
IN LUN yyy FOR FILE 
xxxxxx 

Condition 

Insufficient space for 
entry 

4 blanks and 1 digit 
reference to FMAIN 
ERROR indicated re
quired l / 0 error. 

Insufficient space for 
entry to Directory. 

Partition size and 
sectors as stated in 
error message have not 
been assigned. 
· - blanks 
size • 7 digits showing 
size of partition. 
num - 5 digits show
ing number of sectors 
unassigned. 

Entry name yyyyyy 
cannot be entered 
because root name 
xxxxxx was not 
found 

File xxxxxx had 
invalid extents 

Fife xxxxxx too 
large to fit in 
logica l unit yyy 

A.23 COMSY ERROR MESSAGES 

The following are the COMSY error numbers and assoc t· 
a ted types of errors detected: 

Error Definition 

1 Directive not understood. 

2 Missing directive. 

3 Input was not .COMSY or .FILE when 

searching for a named COMSY deck on Pl. 
• 

4 Record sequence error on binary COMSY 
input. 

5 Record checksum error on binary COMSY input. 

6 Parameter list in error. 

7 Missing .COMSY directive on Pl. 

8 

9 

10 

11 

12 

14 

15 

16 

17 

18 

19 

A -28 Update B 

Action 

~ile not added. 
FMUTIL process 
terminated 

Outputs msg. 
FMUTIL process 
terminated, 
depending upon 
error mentioned. 

Sorts entries 
in alphabetical 
order. and out
puts listing. 

Returns to try 
a gam. 

Processing 
continues 
next f ile. 

Processing 
continues with 
next fi le. 

Processing 
continues with 
next file. 

Possible User Action 

H06,M01 

H06 

MOl 

Pl7,H06 

... 

Updates were not terminated by a .COMSY dtrecttve. 

Sequence number greater than 99999 on 
an update direct ive. 

Update sequence numbers not ascending. 

.COMSY deck specified, not on COMSY file on Pl. 

Incorrect unit. 

Common decks lim ited to 19. 

Common deck not found. 

Update directive not understood. 

110 error. 

Erroneous end-of-file condit ion . 

Directory error on a random file. 

- - - --:--- - ---- . -- - . - - - - - - - ---- ·· ---· . 



A.24 PARITY ERROR MESSAGES 

M essage 

DOUBLE BIT PARITY 

ERROR IN TASK XXXXXX 

BOARD NUMBER = XX. 

MODULE = XX, 

SYNDROME = XX 

A. 25 ERROR CODES 

Description 

Start routine DUMPPR to print parity 

error log . If double bit error occurs in 

nucleus or is repeated, place the 

system in "HALT" mode and run 

hardware tests." 

A. 25. 1 Errors Related to Directives 

DOl Check spell ing, delimiters, and parameters. 

002 Enter corrected request from OC or SO. 

003 Check specified library for module name (FMAI N list). 

004 Correct task priority. 

005 Check PIM directives used at system generation. 

006 Use a globa l logical unit in directive. 

007 Use an alternate library or unit. 

008 Increase library size with RAZI or during SGEN. 

009 Delete unused modules from library. 

0 10 Reposition record if PT or CR (for MT or RMD 
positioning is automatic and enter on SO: 

R@ to reread the record or where @ is a 
P@ to reread the program or carriage return 

/ SMAIN@ to restart SMAIN 

011 Correct input record by entering it on SO or 
indicate that it is positioned for rereading 
by entering C on SO. 

012 Restart component by entering C on SO. 
(Repositioning is automatic for MT and RMD, 
for cards reload the entire deck and SGEN 
will find component. ) 

013 SGEN request ing bad track analysis for unformatted 

RM Ds or reformat formatted RMDs. 

014 Restart SGEN from beginning. 

015 Check spelling, delimiters, etc. of 10 

018 

019 

020 

ERROR MESSAGES 

Check that all RMDs are included in the SYS 
directive that are indicated by the EQU IP 
directives. 

Use OPCOM IOLIST for unit to check unit status 
(up or down) and unit's logical group. 

Check PRT directive. 

021 Check if maximum number of partitions specified 
in EDR directive has been exceeded. 

022 Check for conflicts in controller /unit relations. 

023 Check logical unit in directive, must be assigned 
to first part it ion of the subject RMD unit. 

024 The specified RM D pack cannot contain a bad track 
table due to the f irst t rack being bad, use another 
pack. 

025 Check FRM directive and total number of tracks 
specified in PRT directive. The following 
table gives the track capacity for the standard 
RMDs: 

70-75XX 
70-76XO 
70-76X3 
70-7701 
70-7702 
70-7703 

4060 tracks 
203 tracks 
406 tracks 
128 tracks 
256 tracks 
512 tracks 

026 Check respon se to the highest page number 
requested . 

027 Check NOM definition or use LIST directive 
of NCM. 

028 Use NCM module to check line/ terminal status. 

029 Check that all subject logical units assigned 
to RMD have been positioned with a PFILE. 

030 Use a larger file for the plot file. 

031 Check for proper logical unit (i.e., IOLIST). 

032 Increase work file xxxxxx size. 

033 Check type parameter on TI DB _d irect ive 

034 Increase track allocation for the two largest RMD 
part itions in PRT directives 

035 (1) Specify task using VOL directive 

INTEROGATION. (2) Remove taskname from TDF directive 

016 Correct appropriate SGEN d irect ives as indicated. 

017 Correct indicated module for next SGEN or add 
corrected module with LMGEN after SGEN completes. 

(3) Ignore warnmg message and leave as 
non-VNO task 

036 Ignore or delete empty file from partition . 

A -29 

·- ·---·-·----···--·--- - -------·------------------ ·-- -- - --·-- - --- -- - -- · - -·--- - .. - ··-- · ·- . . 



ERROR MESSAGES 

037 Continue to process of adding object modules by 
entering "AOO,Iun.key .. from SO 

A .25.2 Errors Related to Programs 

POl Correct request in requesting task and re-execute. 

P02 Recede task using overlays. 

P03 Check for privileged or illegal instruction 
at specified location. Check listings or check 
memory by requesting a dump. 

P04 Check FCB or DCB entries. 

P05 Check for proper read mode, packed or 
unpacked. 

P06 Check for needed global files such as PO, 
SS, GO, SW. Note: the diagnostic gives 
the task name and not necessarily the missing 
file name. 

P07 Check source for an erraneous EOF. END directive, 
etc. 

P08 Check module for the indicated error: 
sequence number--word 1, bits 0-7 
checksum value--word 2 

Note: binary records can be listed using the DUMP 
directive of IOUTIL. 

P09 Check $LIT and $lAP values from the load module 
map. 

PlO Examine map for missing externals and make 
necessary program changes. 

Pll Check for an execution label on the END statement 
of the source. Note: this is a normal diagnostic 
for FORTRAN overlays. 

Pl2 Check for a non-binary record or a short or long 
record in the module. The record length can be 
found in word 5 of the request block upon completion 
of l/0. 

Pl3 Check code and continue after making corrections 
as indicated. 

Pl4 Check requested page number. 

PIS Check opcode for valid instruction. 

Pl6 

P17 

Check memory address. store request is ignored. 

Check for specified instruction or operation at 
location indicated in error message. Note: the address 
indicated refers to the instruction causing the 
error and not the violated address. 

PIS Check the page status: read / write. read only, 
fetch operand only. or unassigned. 

J. 

T 

P19 Check for illegal data under current mode. i.e., binary 
in ASCII record, non-binary in binary record. 

P20 Sort the plot file. 

P21 This may be an intentional message. Plot continues. 

P22 Call PLOTS. 

P23 Check memory address, check ORG value and load 
range 

P24 Recede into multi tasks or use fewer overlays 

P25 Modify PAT directive(s) so bad track is not first 
one in partition. 

A.25.3 Errors Related to Memory Size 

MOl If background, adjust MEM directive as needed. 

M02 Wait for foreground tasks to release 
memory or TIDB space. 

M03 If MEM request OK or cannot be increased then cut 
back on foreground common, empty TIDBs. reentry 
stack size. penpheral drivers. etc. by re-SGEN. 

M04 If sharing blank common and VTAM LCB area. 
check that a program has not used part of the 
LCB area. 

M05 Increase buffer area with BSS or dimension commands. 

M06 Increase reentry stack size in SGEN EDR directive. 

A.25.4 Errors Related to Hardware 

HOl Make indicated unit ready. 

H02 Clear the protection of the unit. (Disc 
write protection or write ring in MT). 

H03 ABORT task. reassign Sl if necessary, and then 
declare device down through OPCOM. do not 
forget to declare it back up again. 

H04 ABORT task and assign alternate device or 
declare device back up. 

• 

H05 

H06 

H07 

Check hardware for indicated problem. 

Check the OC device for an 10 error message. 
i.e.. IOxx. 

Periphera l -related Error . Refer to hardware 
documentation for the affected device. 

HOB Use back-up media. if available. to recreate f ile. 

A-30 Update 6 

- - · -- -·--- - - -· -- - . - .. . - ·- -·--------·- - -- ·- -·-



APPENDIX B 
1/0 DEVICE RELATIONSHIPS 

Allowable Functions by 
Function 

Read binary record 

Read alphanumeric record 

Read BCD record 

Read unformatted record 

Write binary record 

Write alphanumeric 
record 

Write BCD record 

Write unformatted record 

Write end of file 

Rewind unit 

Skip one record forward 

Skip one record backward 

Perform function zero 

Perform function one 

Perf9rm function two 

Open a file with rewind 
option 

Open a file with leave 
option 

Close a file with leave 
option 

Close a file with update 
option 

RMO MT 

X X 

x' X 

x' X 

x' x' 

X X 

x' X 

x' X 

xl XI 

X 

X X 

X X 

X X 

X X 

X X 

X X 

X X 

( 1) All modes are read / written in binary 
mode. 
(2) BCD mode is handled like unformatted 
mode. 
(3) Punch 256 frames of leader on paper tape 
or eject one blank card on card punch. 
(4 ) All modes are written 1n alphanumeric 
mode. 
(5) Advances paper to top of form on line 

PT 

X 

X 

x2 

X 

X 

X 

x2 

X 

X 

NOTES 

l / 0 Device Type 
CR CP LP TY or CRT 

X x4 

X X 

x2 x4 

X x4 

X x9 x" 

XJ X X 

x2 x9 x" 

X x9.Jo x4 

X 

X 

x' x' 

printer, or causes carriage return and feeds 
three lines on Teletype or CRT. 
(6) Advances paper one line. 
(7) Advances paper two lines. 
(8) Rings bell on Teletype or beeps on CRT. 
(9) 620-77 line printer .. All modes are treated 
as alphanumeric. 
(10) 62Q-76 printer / plotter ·· Unformatted rec
ords are transmitted without interpretation as 
plot data. 

8-1 

. "·~ . . -·--·-----· ... ---- ....... - ---·----- --------·-------·-----·----------·--- --------·- -- -·--- -- ------ - -- .... ____ _ 



l/0 DEVICE RELATIONSHIPS 

110 Errors by l / 0 Device Type 

l / 0 Device 
Code Description RMD MT PT CR CP 

B-2 

000 Unit not ready 

001 Device. down 

002 Illegal LUN speca· 
fied 

003 FCB/ DCB parameter 
error 

004 Level 0 program 
references a pro· 
tected partition 

005 Level 0 program 
references pro· 
tected memory 

006 110 request error 

007 Read request to 
write-only device, 
or vase versa 

X 

0 

0 

0 

0 

0 

0 

010 File name not found X 

011 File extent error X 

012 RMO directory error X 

013 Level 0 program 
read a JCP (I) 
directive on Sl 

014 Interrupt time out 

0 

X 

015 RMO cylinder-search X 
or malfunction error 

016 RMO read / write X 
timing error 

017 RMD address error X 

02n BICn error 

030 Parity error 

031 Reading error by 
card reader or 
paper tape device 

032 Odd-length record 
error 

X 

X 

X • Error reported by 110 drivers. 

X 

0 

0 

0 

0 

0 

0 

0 

X 

X 

X 

X 

0 - Error reported by l/0 control processor. 

X 

0 

0 

0 

0 

0 

0 

0 

X 

X 

- ·-- - -- & 

X X 

0 0 

0 0 

0 0 

0 0 

0 0 

0 

0 0 

0 

X X 

X 

LP TY or CRT 

X X 

0 X 

0 0 

0 0 

0 0 

0 0 

0 0 

0 

X 



. . 

APPENDIX C 
DATA FORMATS 

Th1s appendix explains the formats and symbols used by 
VORTEX for stor ing informat ion on paper tape. cards. and 
magnetic tape. 

C.l PAPER TAPE 
Information stored on paper tape is binary. alphanumeric. 
or unformatted . It is separated into records (blocks of 
words) by three blank frames. The last frame of each 
record contains an end-of-record mark ( 1·3-4-8 punch). 

C.l.l Binary Mode 
Binary information is stored with three frames per 
compu ter word (figur e C-1 ). Note that channels 6 and 7 are 
always punched. 

CHANNEL. 

8 axxaxxax X 
7 * * • * .. * * * * . 

* * 
,. 

* • * " * • 0 

5 QXXQXXQXX 
4 X XXX X XXX X 

TIMING • • • • • • • • • 

3 xxxxxxxxx 
2 xxxxxxxxx 
1 xxxxxxxxx 

WORD l _j LwoRD 2 

• • 

C.l.2 Alphanumeric Mode 

Alphanumeric informat1on is stored w1th one frame per 
character (figure C-2). Standard ASCII-8 punch levels are 
used. 

C.1.3 Unformatted Mode 

The tape is handled as for alphanumeric mode, but without 
va I idi ty-checking. 

C.l.4 Special Characters 

An end of fi le is represented by the ASCII-8 BELL character 
(1·2·3·8 punch). 

Q X X* B B 8 Q XX 
.. '" * a B 8 B • * * .. * * 8 B B 8 • • • 

oxx a B B SQXX 
X X X * B B B X X X 

• • • • • • • • • • • 

X X X* B B B X X X 

X X X B B B B X X X 
X X X * B B B X XX 

- -
WORD N_j J 

EOR 

\.._"""'---- BINARY KECORD ___ _,/ 

L LwoRD 1 

RECORD 
GAP 

VTfJ.IJU 

* = HOLE 
B =BLANK 
X= DATA BIT 

EOR = END - OF - RECORD 
Q =BLANK 

Figure C· l. Paper Tape Binary Record Format 

C· l 



OAT A FORMATS 

When paper tape is punched on a Teletype, the ASCII-8 
ERROR character flags erroneous _frames punched by the 
Teletype when it IS turned on or off. This not1fies the 
Teletype and paper-tape reader drivers to ignore the next 
frame. 

When alphanumeric input tapes are punched off-line on a 
Teletype, there is no means of spacing the three blank 
frames after every record. The following procedure gives a 
tape that can be read by the paper-tape reader driver: 

a. Punch the alphanumeric statement. 

b. Punch an end of record (RETURN on the Teletype 
keyboard). 

c. Punch three or more frames containmg any of the 
followtng characters: 

Press CONTROL and: 

@ 
LINE FEED 
WRU 
EOT 
RU 
VT 
TAB 
HERE IS (33 ASR only) 

CHANNEL: 

8 
7 
6 
5 
4 

TIMING 
3 
2 
1 

ASCII ·8 Equivalent 

DCO 
LINE FEED 
WRU 
EOT 
RU 
VTAB 
HTAB 
NULL 

X X X X X 
X X X X X 
X X X X X 
X X X X X 
X X X X X 
• • • • • 

XXX XX 
X X X X X 
* * * • ., 

• • 

NOTE 

Any of these characters can also be used for leader 
and tra iler. 

d . Punch the next alphanumenc statement. Return to step 
b . 

C.2 CARDS 

Information stored on cards in binary. alphanumeric, or 
unformatted. Each card holds one record of Information. 
Hence, there is no end·of-record character for cards. 

C.2.1 Binary Mode 

Binary information is stored with sixty 16-bit words per 
card. The information is serial with bit 15 of the first word 
in row 12 of column 1. bit 14 in row 11 , etc. ( figure C-3). 
Any ll·O punch in column 1 is treated as binary. 

C.2.2 Alphanumeric Mode 

Alphanumeric Information IS stored one character per card 
column (figure C-4) using the standard punch patterns. 

X X * 8 8 8 X X 
X X 8 B 8 B X X 
x ·x B 8 8 8 X X 
X X 8 8 8 s X X 
X X • B B B X X 

• • • • • • • • • 

X X • B B B XX 
X X 8 8 B 8 X X .. * * 8 8 8 • • 

--------
LAsCH CHARACTERS_j J L LAscu CHARACTERs OR 

cOR RECORD BINARY \VORD 

C-2 

- ------

' ALPHANUMERIC RECORD GAP 

.. = HOLE FOR ASCII CHARACTER OR OAT A BIT FOR 
BINARY INFORMATION 

B = BLANK 
X= DATA BIT 

EOR = END-OF-RECORD 

Figure C·2. Paper Tape Alphanumeric Record Format 

- - - - --- ----



YT/1-1176 

VTII-0'9~7 

DATA FORMATS 

2 3 4 s 6 

* * * 
** * * I 

0 0 0 0 ~ ;j c 0 ~ 0 D 0 o o ~ ~ o n o o o o a o o o o 3 ~ 
I 1 J • I I : . ' lJ I : 1)14 1") !·,11 ' ' .. ~:t:::t1C .·.:.; .·, , 

I 1 I I I I I I 1 1 I I I I I I I 1 1 ! I I 1 I l I I I - - -
2 2 2 2 ~ 2 2 2 2 2 2 A 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ' 
3 J 3 3 J j 3 • 3 3 3 3 3 3 3 3 3 3 J J J j 3 j 3 3 3 3 J 

4 4 ~ 4 4 4 4 4 4 4 ·l 4 4 ~ 4 4 4 4 4 4 ~ ~ ~ ' 4 4 ~ 4 4 

5 5 5 s 5 5 s 5 ~ ~ 5 5 555555555555555~ 
,- ,- -

6 6 6 5 6 6 s 6 6 6 6 6 6 6 6 6 ~ 6 E 6 S 6 6 6 &-6 6 6 

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 1 7 1 7 7 7 1 ] 7 7 7 7 7 

9 8 8 8 8 ! 8 ~ 8 s 8 ; s 3 a 3 s a s ! a e s s s s a a 

9 n 9 s 9 9 n g 9 9 j 999999~9S~~399999 > 
' 

I . ) . I I ' ' ' " 
. . ' JJ ,. r ., n 1• 1=- · ~ · · · .. '• · '\ ·1 ·s ' ' \ . .. .. . J ........ .. ... . ~ . f ~ ' ~ ·.;. .... : ~ .) -: ..... ~.;~ · 

NORD . I ~ 3 4 ~ 0 7 8 9 

Figure C-3. Card Binary Record Format 

A B C D E F G H . J K l ~ H 0 P Q R S T U Y ~ X Y 
I I I I I I I I I 

I I I I I I I I I 
I 

I 
I o o 3 o a 1 o o o ~ o 3 J o ~ a o o o o 9 u ~ ~ o a o o a o o a o o o o a o o o ~ o o o o o o a Q o o o o o o I o I o I o I n I o I a I ~ I o o Q I o o o o o 
1 1 J • 1 • ' • ' ' !'I • • ' • ~ . , . , ' ! • :? r, : · : 1 ! • : \ :1 1' :"' ; -, ,o ! ' r: J; :• ; , 11 nlt · ' •o u H ,, ... ,,. ., •t -. ,., •o :: .. : ~ l ~ · ~~· ~ s H B : t ~o ' ' Jl , , k n w •' ., ,, ' 'l ;, ~ 'l ·• :~ ·• t ·• Jt to 

11 1 11 11111 i 11111111 l l 111111111111 11111 l 11!1111111111111111 i 11 11 1 111111 1111 1 1 1111 

2 z z 2 I 2 z z 2 2 z ' 2 2 2 z z 2 2 ~ 2 z I 2 2 2 2 2 2 z z 2 z z z 2 2 z 2 2 I 2 z 2 2 2 z 2 2 2 2 2 2 2 z 2 I 2 2 2 2 2 2 2 2 2 2 2 2 2 2 z 2 2 2 2 2 2 2 2 

l l 3 1 3 J I 1 1 1 1 J 3 1 ~ j 1 1 1 J > J 3 1 I 3 1 3 J 1 J J 3 J 3 l 3 1 J J 3 1 I 3 3 3 1 3 3 3 3 1 J 1 J 1 1 3 I j J J 1 3 J 1 1 l 1 1 1 j I 1 I 1 I 1 I J 

4 4 4 4 4 4 4 4 1 c 4 4 4 4 ~ 4 • J • 4 i 4 4 • 4 4 1 c 4 4 4 4 4 4 4 c 4 c 4 • t 4 4 4 I c c 4 4 c c 4 , 4 c c • • 4 ~ I 4 4 4 c 4 c 4 4 c 4 t • c t 4 i ~ t c 

s 5 s 5 s s s 5 s 5 I 5 5 s s 5 5 ~ s s 5 5 s 5 s s 5 5 I 5 5 s s 5 5 ~ s s s 5 s ~ 5 s 5 s I 5 5 s s 5 5 s s s s 5 ~ s 5 5 I s 5 5 5 s 5 5 s s 5 ~ s s s s s s 

6 6 6 s s & 6 6 6 6 6 s I s s 6 s s s & 6 5 6 5 6 6 6 6 s b I 6 6 6 6 o o 6 6 6 6 6 6 6 6 6 6 s I s s 6 s 6 o 6 6 s s s s 6 6 s I 6 6 s s 6 s s s s s s s s 6 o 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 

a s a as 1 8 8 s aa s n s s 13 a 8 8 s s H sa 8 a 8 a a u l aa 3 sa sa a a H s 3 n as 133 n s a a s 3 as s sa a I ~ sa I s I s I s I s 

g 9 g 9 g s ~ 9 9 9 9 ~ 9 s 9 9 3 9 I 9 9 9 9 9 9 g 9 9 9 9 q 9 9 9 9 9 I 9 9 9 9 9 9 s 9 9 9 9 9 9 9 9 s 9 I 3 9 9 9 s 9 9 9 9 9 9 9 3 9 9 I 9 9 9 9 9 s 3 9 9 
1! l ,:.' ' • '' '= l , ,; :J tt '~ '' " lf :t ~:l:·n ·,·~ ~· :s : • :-: : -t ·; :: •: .; ,.. a !t'lla : f :o •· •: •J ... •> .:r.u ••'" ::~· ~~ :: : 1 : ~ :.. !: ~, "~'t ~lU W f).;. · ; ( : , i 't . : 1 11 • .., , ,, ;4 ' l tJ 

Figure C-4. Card Alphanumeric Record Format ( IBM 026) 

C·3 

.... - .... ~.~- ·-··---- . . ·--- . .. ~~-- ------- - --.... - -~ _ .. __ - ----------.----- ---- .. ·---------~---·----· ~-- ·--- ·· --··- .... -.... ----~- - -·- ·--~--- ... - · 



DATA FORMATS 

C.2.3 Unformatted Mode 

The data are handled, one column per computer word, 
right-justified, and without validity-checking. 

C.2.4 Special Character 

An end of file is represented on cards by a 2·7·8·9 punch in 
column 1 of an otherwise blank card. 

C.3 MAGNETIC TAPE 

Information stored on seven·track magnetic tape is either 
binary or BCD. On nine-track tape, information is always 
binary. 

C.3.1 Seven-Track 

For system-binary, ASCII, and unformatted modes, the first 
frame is read into bits 15-12 of the word, the second frame 
into bits 11·6, and the third into bits 5·0. For BCD mode, 
the first frame is read into bits 11-6 and the second into 
bits 5·0. 

C.3.2 Nine-Track 

In aU modes, the first frame is read into bits 15·8 of the 
word, and the second frame into bits 7 ·0. 

C-4 

C.4 STATOS PRINTER/PLOTTER 

Information may be output to the States printer ! plotter in 
alphanumeric and unformatted modes. 

C.4.1 Alphanumeric Mode 

Information output in alphanumeric mode is assumed to be 
ASCII characters packed two to a word. Each character is 
converted to a dot matrix and the print line is transmitted 
to the device. Characters may be printed in two sizes. The 
normal print size consists of a 7 by 11 dot matrix and 
allows 140 characters per line. The large size print consists 
of a 14 by 22 dot matrix and allows 70 characters per line. 
Excess characters will be truncated. 

C.4.2 Unformatted Mode 

Information output in unformatted mode is assumed to be 
plot data. The information is truncated after n words and 
transmitted to the device without conversion. Each 1 bit 
transmitted will cause a dot to be printed on the output 
line. The most significant bit of the first word is transmit· 
ted to represent the left-hand dot position on the line. 

"n" depends on the bed width of the plotter. See section 
20.3.3 for specific value. 

--· · · ·- ·· . --- -----·-- .. 



APPENDIX D 
STANDARD CHARACTER CODES 

IBM 026 Punch IBM 029 Punch 
Symbol ASCII Hollerith ASCII Symbol 

I 375 11·0 242 " 
:> 276 6-8 275 -
• 272 5·8 247 ' • 

' 247 4-8 300 @ 
::a 275 3-8 243 -~ 
- 337 2-8 272 • 

• 

9 271 9 271 9 
8 270 8 270 8 
7 267 7 267 7 
6 266 6 266 6 
5 265 5 265. 5 
4 264 4 264 4 
3 263 3 263 3 
2 262 2 262 2 
1 261 1 261 1 
(blank) 240 (blank) 240 (blank) 
& 246 11·0 375 I 

< 274 12-6·8 253 + 
[ 333 12·5-8 250 ( 

) 251 12-4-8 274 < 
• 256 12-3-8 256 • 

277 12-2-8 333 [ 
I 311 12-9 311 I 
H 310 12-8 310 H 
G 307 12-7 307 G 
F 306 12·6 306 F 
E 305 12·5 305 E 
D 304 12-4 304 0 
c 303 12·3 303 c 
B 302 12-2 302 8 
A 301 12·1 301 A 
+ 253 12 246 & 

245 11-7-8 334 \ 
• 273 11 ·6·8 273 • 

' ' 
] 335 11 ·5·8 251 ) 
• 252 11-4-8 252 • 
$ 244 11 -3-8 244 $ 

241 11-2·8 241 I 

R 322 11 -9 322 R 
Q 321 11 -8 321 Q 
p 320 11-7 320 p 

0 317 11 -6 317 0 
N 316 11 -5 316 N 
M 315 11 -4 315 M 
L 314 11-3 314 L 
K 313 11·2 313 K 
J 312 11-1 312 J 
- 255 11 255 --- 243 0-7-8 277 7 
\ 334 0-6-8 276 :> 
" 242 0-5·8 337 
( 250 0-4-8 245 

D· l 

- --------··---· __ ..._ _____ _ - - ·- -- ·- ---·-·--·--·-····--------.. ., .. ~p·- · , .. -·----·-·-·- -.. --....._ ... , ___ ._... ... _ ... _,. ___ .. ·- - -·-· ·- -- - -· 



STANDARD CHARACTER CODES 

IBM 026 Punch IBM 029 Punch 
Symbol ASCII Hollerith ASCII Symbol 

• 254 0·3·8 254 • 
@ 300 0·2·8 335 ] 
z 332 0·9 332 z 
y 331 0·8 331 y 
X 330 0-7 330 X 
w 327 0·6 327 w 
v 326 0·5 326 v 
u 325 0·4 325 u 
T 324 0·3 324 T 
s 323 0-2 323 s 
I 257 0-1 257 I 

0 260 0 260 0 

0-2 

- .. - -------....-- . . . .. . 



APPENDIX E 
ASCII CHARACTER CODES 

Ch aracter Internal ASCII Character Internal ASCII 

0 260 R 322 
1 261 s 323 
2 262 T 324 
3 263 u 325 
4 264 v 326 
5 265 w 327 
6 266 X 330 
7 267 y 331 
8 270 z 332 
9 271 (blank) 240 
A 301 241 
B 302 II 242 
c 303 - 243 -
D 3C4 $ 244 
E 305 245 
F 306 & 246 
G 307 • 247 
H 310 ( 250 
I 311 ) 251 
j 312 • 252 
K 313 + 253 
L 314 

' 254 
M 315 - 255 
N 316 • 256 
0 317 I 257 
p 320 • 272 • 

Q 321 273 
< 274 FORM 214 - 275 RETURN 215 
> 276 so 216 

277 Sl 217 
@ 300 DCO 220 

333 X-ON 221 
334 TAPE AUX 
335 ON 222 

I 375 X-OFF 223 
- 337 TAPE OFF 
RUBOUT 377 AUX 224 
NUL 200 ERROR 225 
SOM 201 SYNC 226 
EOA 202 LEM 227 
EOM 203 so 230 
EOT 204 Sl 231 
WRU 205 S2 232 
RU 206 S3 233 
BEL 207 S4 234 
FE 210 S5 235 
H TAB 211 S6 236 
LINE FEED 212 S7 237 
V TAB 213 

-----------··-------·------------···· . - .. - -·- ·-·-·· .. _ ------.. - ·-

E-1 

·--·"' ----·· -·--... -· 





APPENDIX F 
VORTEX HARDWARE CONFIGURATIONS 

Device 

73-3300 
Memory 
Map 

Power 
Failure/ 
Restart 

Real-Time 
Clock 

Priority 
Interrupt 
Module 
(PIM) 

Special 
PIM 
Instruction 

Buffer 
Interlace 
Controller 
(BIC) or 

Device 
Address 

046 

047 

040-043 

044 

020-027 
070-073 

Block Transfer 
Controller (BTC) 

Interrupt 

MP halt error 
MP l/0 error 
MP write error 
MP jump error 
MP unassigned 

error 
MP instruction 

fetch error 
MP write and 

overflow error 
MP jump and 

overflow error 

Power failure 
Power restart 

RTC variable 
interval 

RTC overflow 

BIC complete 

Interrupt 
Address 

020 
022 
024 
026 
030 

032 

034 

036 

040 
042 

044 

046 

BIC Comments 

n/a Wired as system 
n/a priority 1 
n/a 
n / a 
n/a 

n/a 

n/a 

n / a 

n/a Wired as system 
n/a priority 2 

n/a Wired as system 
priority 4 

n / a 
Base timer inter· 
val rate is 100 
microseconds; 
free-running clock 
rate is 100 micro
seconds 

0100-0277 n/a Wired as system 
prior i ty 5; assign
ments should be 
from fastest to 
slowest 

n / a 

Addresses 064-
067 available for 
special use 

n / a PIMs modified to 
enable/ disable 
with EXC 044 

0100-0277 n/a All wired as sys
tem pr ior ity 3 

Addresses 070-
073 ava ilable 
for BIC5 and 
BIC6 others 
created tor spe
cial use 

F-1 

-------- ______ ,._ .• _ ......... ~ ... ··----.. --~----· ~-" ~·-· ·-··--·--~ ...... ._ _____ . ..,._ .. _ __ . ___ , ___ ~--·------- --------··-- .... - ·--- --·· .... _ .... ___ .. .._-. -~ ·--·---. -- -·---· ·--·-·--·~-~-- -~--.. --.. ... .._...._ 



• 

VORTEX HARDWARE CONFIGURATIONS 

F·2 

Device 

Disc 
Memory 

Disc 
Memory 

Magnetic 
Tape 

Card 
Reader 

Printer/ 
P1otter 

Line Printer 

70-7702 
70-7703 

70-7600 
70-7610 

70·7603 
70-7613 

70-7500 

70-7510 

70-7100 

70-6200 

70·6602 

- - ---- --

Device 
Address 

620-47 014 
-48,·49 
Drum ·43C. 
D Disc 
Memory 

620·37, 
·36 Disc 
Memory 

Model F 
Disc 
Memory 

620-35 
Disc 
Memory 

620-34 
Disc 
Memory 

620·30 
·31A, 
·318. or 
·31C, ·32 
Magnetic 
Tape Unit 

620·25 
Card 
Reader 

620-75 
Statos 
Printer/ 
plotter 

70-7702 
70-660x 
Statos 
Printer/ 
Ptotter 

620-77 
Line 
Printer 

016·017 

015-017 

015 

015·017 

030 

035-036 

035-036 

035·036 

Interrupt 

SIC complete 

SIC complete 
Cylinder· 

search com· 
plete 

SIC complete 
Cylinder· 
search com· 
plete 

SIC complete 
Cylinder· 

search com· 
plete 

SIC complete 
Cylinder· 

search com· 
plete 

Tape motion 
complete 

SIC complete 

SIC complete 
PC not busy 

BIC complete 
PC not busy 
States not 
busy 

SIC complete 

Interrupt 
Address SIC Comments 

0100·0277 Yes RMD ass1gned to 
Highest system 
SIC (no other 
devices can be 
so assigned) 

0100·0277 Yes 
0100·0277 

0100·0277 Yes 
0100·0277 

0100-0277 Yes 
0100-0277 

0100·0277 Yes 
0100·0277 

0100·0277 Yes 
0100·0277 

0100·0277 Yes 

0100·0277 Yes 

0100-1077 Yes 
0100·0277 
0100·0277 

0100·0277 Yes 

RMD assigned to 
highest system 
SIC (no other 
devices can be 
so assigned) 

RMD assigned to 
highest system SIC 
(no other devices 
can be so assigned) 

RMD assigned to 
h ighest system 
STC (no other 
devices can be 
so assigned) 

RMO assigned to 
highest system 
STC (no other 
devices can be 
so assigned) 

Interrupt event 
words should be 
01 for BIC, 02 
for Statos, and 
04 for PC 

• 



Device 

Card 
Punch 

Paper
tape 
System 

Teletype 

WCS 

70-6201 

70-6320 

70-6100 
70-6104 

70-6400 

73-4000, 
-4001 t 

-4002 

620-27 
Card 
Punch 

620-55, 
·SSA 
Paper 
Tape 
System 

620-6 , 
. 7' ·8 
Teletype 

CRT with 
E-2184 
Controller 

Front 
Panel 

070-074 

Device 
Address 

031 

037,034 

. 001 ·007 

... 

n / a 

Interrupt 

BIC complete 

Character 
ready 

Read buffer 
ready 

Wr ite buffer 
ready 

Read buffer 
ready 

Write buffer 
ready 

n / a 

NOTES 

VORTEX HARDWARE CONFIGURATIONS 

Interrupt 
Address BIC Comments 

0100-0277 Yes 

0100·0277 No 

0100·0277 

0100-0277 

0 100-0277 

0100-0277 

00-0 1 

No 

No 

No 

Event 1 - READ 
Event 2 - WRITE 

Compat ible with 
Teletype (Event 1 

READ, Event 2 
WRITE) 

Wired as system 
priority 6; not 
used by VORTEX 

--

No Only one device is used 
in a given system. 
Multiple (512 word) WCS 
pages use the same 
device address. 

(1) The priority look-ahead option is required if 
there are more than eight priority devices in the 
system. 

(2) PIM assignments are arranged from the 
fastest devices to the slowest. 

F-3 

·-- --- ------ --- ---- - -- - --- -----·-------·-------- ---------- --- ··· --·- -. . . . ·--· _ ........ -----~ ··-



' 

---·--- - - - ·--- .. ·· 



APPENDIX G 
OBJECT MODULE FORMAT 

Object modules generated by the VORTEX language 
processors result from assembly or compilat ion . The 
modules are input by the load-module generator and are 
bound together into a load module. 

The first record of the module contains the size of the 
program, an eight-<:haracter identification. and an eight· 
character date. Entry name addresses. if any, appear as 
the first data field items of the object module. 

entries consist of a control word and a data word; three· 
word entries consist ot a control word and two data words; 
and four-word entries consist of a control word, two name 
words. and a data word. Data words can contain instruc
t ions. constants. chain addresses. entry addresses. and 
address offset values. 

G.l RECORD STRUCTURE 

Ob1ect-module records have a fixed length of s1xty 16-bit 
words. Word 1 is the record control word . Word 2 contains 
the exclusive-OR check-sum of word 1 and words 3 to 60. 
Words 3 to 11 can contain a program ident ification block 
(optional). Words 12 to 60 (or 3 to 60 if there is no program 
tdentification block) contain data fields. 

Table G-1 illustrates record control word formats. 

G.2 PROGRAM IDENTIFICATION BLOCK 

Bit 

15 

13-14 

12 

11 

TabJe G-1. Record Control Word Format 

Binary Value 

0 
1 
11 
00-10 
0 
1 
0 
1 
0 
0 

Meaning 

Venty check -sum 
Suppress check-sum 
Binary record 
Nonbinary record 
First record of module 
Not the first record 
last record of module 
Not the last record 

The program identification ( I D) block appears in words 3 to 
11 of the starting record of each module. Word 3 contains 
the program size. words 4 to 7 con tatn an ASCII eight· 
character program identification. from the TITLE state· 
ment. and words 8 to 11 contain an ASCII eight-character 
date. 

10 
9 
8 0 

1 
Not a relocatable module (absolute) 
Relocatable module 

0-7 Sequence number (modulo 256) 

G.3 DATA FIELD FORMATS 
G.4 LOADER CODES 

Data fields contain one· , two·, three-. or four -word en tries. 
One-word entries consist of a control word; two-word 

loader codes, which have the following format. are among 
the data in an ob ject module. 

, 5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

---------- ----------- ------------- -----------
Code subcode Pointer Name 

Code Values Meaning 

00 

01 

02 

03 

Refer to subcode for specific action. 

Undefined. 

Add the value of the selected pointer to the 
data word before loading. 

Add the va lue of the selected pointer to the 
first data word (literal value) and enter the 
sum in the direct literal pool if bit 11 of 
the second data word is zero. Otherwise, 
enter it in the indirect literal pool. Add 
the address of the literal to the second data 
word before loading. 

G-1 

--- ------------·- - ----- - -- ----- --------------~~--··--·· ._ ..... - -- - ____ ... __ ...,_ .... .. 



OBJECT MODULE FORMAT 

H•me Format 

Code Values 

04 

05-07 

SubcC»CM Values 

00 

01 

02 

03 

04·06 

07 

010 

011 

012 

013 

014-017 

Pointer Values 

00 

01 

02 

03-036 

037 

Meaning 

Load the data word(s) absolute. Bits 12 through 
0 indicate the number of words minus one (n-1) to 
load. 

Undefined. 

Meaning 

Ignore this entry (one word only). 

Set the loading address counter to the sum of the 
spectfied pointer plus the data word. 

Chain the current loading address counter value 
to the chain whose last address is given by the 
sum of the selected pointer plus the data word. 
Stop chaining when an absolute zero address is 
encountered. 

Camplete the postprogram references by adding to 
each address the sum of the selected poin ter plus 
the data word. 

Undefined. 

Set the program execution address to the sum of the 
values of the selected pointer plus the data word. 

Define the entry name with entry location as equal 
to the value of the selected pointer plus thf1 data 
word. 

Define a region for the pointer whose size is given 
in the data word. If the entry name is not blank, 
define the entry point as the base of the region. 

Enter a load request for the external name. The 
chain address is given by the sum of the selected 
pointer plus the data word. 

Enter the loading address of the external name rn 
the indirect literal pool. Add the address of the 
literal plus the value of the selected pointer to 
the data word (command) before loading. 

Undefined. 

Meaning 

Program region. 

Postprogram region. 

Blank common region. 

Labelled COMMON regions. 

Absolute (no relocation). 

Names are one to six (six-bit) characters, starting in bit 3 
of the control word and ending with bit 0 of the second 

name word. Only the right 16 bits of the two name words 
are used. 

G-2 

- - --- ------ ---- -·- - ---'-------. 



OBJECT MODULE FORMAT 

G.S EXAMPLE 

The followin g is a sample background program with the 
description of the object module· format after the assembly 
and the core image after load ing. 

G.S.l Source Module 

NAME SUBR 
EXT BBEN 

SUBR ENTR 
LOA• SUBR 
CALL BBEN 
STA TIME 
JAN DONG 
LDA •2 
CALL BBEN 

DONG INR SUBR 
JMP* SUBR 

TIME BSS 1 
END 

G.5.2 Object Module 

060400 

157631 

000016 

142730 
140715 
150314 
142640 

131263 
126661 
130255 
133271 

010000 
000647 
054262 
000000 

100000 
000000 

060000 
100000 
017000 

100000 
002000 

Record control word (first and last record , verify check-sum 
sequence number 0) 

Check-sum word. 

(Begin program ID block) 

Program size (exclusive of FORTRAN COMMON, literals, and in 
direct address pointers). 

Identificat ion in ASCII (assume this program was labeled 
EXAMPLE). 

Date of creation in ASCII (assume assembled 03-10-69) 

(End program ID block) 

Define entry name SUBR at relative 0 (code 0, subcode 010. 
pointer 0, name SUBR, and data word 0). 

Enter absolute data word 0 in memory at relative 0. 

Enter literal (indirectly addressed relative 0) in indirect 
pointer pool, add address of pointer to load 017000 and en
ter memory at relative 1. 

Enter absolute data word 02000 in memory at relative 2. 

G-3 

- ••••-• •r- ••---~··--·--...•-'-• .. •• o .. _ ,.,, • ._.. __ • _ _ , ________ .,_._, __ , .,. • - · - - ·------ ---------,.-- . .. ...._,,.,, ____ .,. .. - --- - -----··--------• - - - -•--•- • '"'"'"' ' ' 



OBJECT MODULE FORMAT 

100000 
000000 

100000 
054010 

100000 
001004 

040000 
000012 

060760 
000002 
010000 

100000 
002000 

040000 
000003 

060000 
000000 
047000 

100000 
001000 

040000 
100000 

001000 

012003 
000212 
024556 
000011 

• 
• 
• 
• 
• 

Enter absolute data word 000000 in memory at relative 3. 

Enter absolute data word 054010 in memory at relattve 4. 

Enter absolute data word 01004 tn memory at relative 5. 

Enter relative data word 012 in memory at relative 6. 

Enter literal (absolute 2) into literal pool, add address of 
literal to load command 010000. and enter in memory at relative 
7. 

Enter absolute data word 02000 in memory at relative 010. 

Enter relative data word 03 in memory at relative 011. 

Enter literal (relative 0) into indirect pointer pool, add 
address of literal to increment command 047000, and enter in 
memory at relative 012. 

Enter absolute data word 01000 in memory at relative 013. 

Enter relative data word 0100000 in memory at relative 014. 

Set loading location for next command, if any, to relative 
016. 

Enter load request for external name BBEN and chain entry 
address to relative 011. 

(The remaining words of this record contain zero) . 

. - - -- - -- -·- --- · · ~-- - - -



• 

• 

G.5.3 Core Image 

Assume the program or iginates at 01000, the literal pool 
limits are 0500-0777, and BBEN is loaded at 01016. 

0500 101000 DATA •01000 
0501 001000 DATA 10 00 

• 
• 
• 

0777 000002 DATA 2 
• 
• 
• 

01000 000000 ENTR 0 
01001 017500 LDA* 0500 
01002 002000 JMPM 
01003 001016 0, 0, 6 
01004 054010 STA 0, 0 1 5 
01005 001004 JAN 
01006 001012 01012 
01007 010777 LDA 0777 
01010 002000 JMPM 
0 1 0 1 1 001016 0 1 0, 6 
01012 047501 INR* 0501 
010 13 001000 JMP 
01014 10 1000 • 01000 
0 1 0, 5 BSS 1 
01016 BSS 1 

The follow1ng six-bit codes are used by the load-module 
generator in bu ild ing load modules. The codes define 
names created by NAME, TITLE, and EXT direct ives . 

OBJECT MODULE FORMAT 

Character Octal Character Octal Character Octal 

@ 40 v 66 + 13 
A 41 w 67 • 14 
8 42 X 70 - 15 
c 43 y 71 • 16 
0 44 z 72 I 17 
E 45 [ 73 0 20 
F 46 \ 74 1 21 
G 47 ) 75 2 22 
H 50 I 76 3 23 
I 51 - 77 4 24 
J 52 (blank) 00 5 25 
K 53 I 01 6 26 . 
L 54 " 02 7 27 
M 55 # 03 8 30 
N 56 s 04 9 31 
0 57 % 05 • 32 • 

p 60 &. 06 • 33 • 
Q 61 • 07 < 34 
R 62 ( 10 - 35 
s 63 ) 1 1 :> 36 
T 64 • 12 ' 37 
u 65 

G-5 

~ ·---·-- ---~~---· ·- _______________________ _., - __ .._ ____ ..... __ .. - -------- -- ···-



OBJECT MODULE FORMAT 

G.6 EN 0 LOAD RECORD 

An end-load-module record is used to terminate one or 
more object modules which comprise a root or sequent of a 
load module. This record is processed simularly to an end· 
of-file indication by LMGEN. however. more than one end· 
load·module record may be present on an RMO file. 

' 

G··6 

·- - ----

The form of an end-load-module record is a benary record 
in which the first word has the value 077000 and all other 
words are zero. 



.. 

H.5.2 Secondary Status 

Word 

0 

1 

1 

2 

2 

Bit Field 

15-0 c 

15-8 T 

7-0 s 

15-10 ZERO 

9-0 SF 

9 = Correctable ECC error detected 
8 = Write protect error 
7 = Sector f lagged bad 
6 = Data synchronization fa il 
5 = Header synchronization fa il 
4 = Sector search 
3 = Track select error 
2 = Cylinder seek error 
1 = Data check er ror 
0 = Header CRC error 

RMD STATUS WORDS 

Definition 

Cylinder address of the 

last operation 

Track address of the last 

operation 

Sector address of the last 

operation 

A ll zeros 

Secondary status field 

H-5 

···--------------- - ------- ------- --- - - --·-_, _________ ... __ ,. -- .... ___ ---'----- ------·------~ ·- ·--- --- . 



AMD STATUS WORDS 

f 

H-6 

H.& F3064 FLEXIBLE DISKETTE 

Bit Meaning 

15-14 Undefined 

13 Track analysis recommended 

12 Selected unit not ready 

11 Write protect violation 

10 Track overflow 

9 Data CRC error 

8 Header CRC error 

7 Transfer timing error 

6 Seek error 

5 Bad sector indicator 

4 Illegal disk address 

3 Record search error 

2-1 Undefined 

0 Context error 

Description 

Following a format operation. indicates that at least one track 
required re\Vriting. Otherwise. indicates that more than one retry 
was required to complete the last operation. 

Selected drive is not ready. 

WRITE operation anempted on protected diskette. 

BIC buffer length exceeded number of sectors remaining on 
the track. 

Data field CRC error occurred. 

Header field CRC error occurred. 

Data lost or data overwrite detected during transfer operation. 

Desired track cannot be found (verified). 

Bad sector flag detected during READ operation. 

Range error for sector or track address was detected by 
firmware. 

Header for desired record cannot be found . 

Firmware command is not preceded or followed by necessary 
supportive commands . 

• 

H.7 VZLPC LINE PRINTER DRIVER (SUL/ ACORN PRINTER) 

A bit value 1 indicates an error condition as described below. 

Bit Meaning 

0 Stacker Full Indicates Forms Pullout Stacker is full 

1 Band Error Indicates an error in the Band Drive mechanism 

2 Parity Errvr Indicates a parity error in the Printer Controller 

3 Actuator Error Indicates an error in the hammer drive system 

4 Temperature Error Indicates an error in the Printer Overtemp Circuitry 

5 Forms Runaway Indicates paper movement for more than 1.25 seconds 

Update 8 

- - ·- ·- ·---- - -- -- - --- ---- ·- - -



Bit Meaning 

6 Paper Feed Motion Error 

7 Forms Jam 

8 Paper Check 

9 Not used 

10 VFU Error 

, , Power 

12 lnva l1d Transfer 

13 BIC Error 

14 Data Panty Error 

15 Not used 

RMD STATUS WORDS 

Description 

Indicates an error in the Paper Drive System 

Indicates no paper motion due to jam 

Indicates a forms low condition 

lnd•cates one of the follow •ng: 

An attempt to fill vr:u memory beyond 1ts limit 

An attempt to stew on an undefined VFU channel 

VFU definitions count of zero in VFU in1t1al izat10r'1 ; equest 

Ind ica te s a toss of power to the pnmer 

lnd1cates an attem pt to transfer a character that was not '" a 
pri nter code butte~ 

Indicates an abnorma l stop or BIC not ready cond it1on . set by 
driver only 

Indicates that the da ta on the Pflnter Data Bus does no t have 
even panty 

Update 8 

1 

T 

H7 

. ...... . . _. . ~ ...... -. ·-·-- ---------· .. _ .. .. _ ...... -.. - .. - --·--·-- - - ··- -· ______ ... _____ ... _ --- -----·- .,----- -· --·--- --- - - ----



• 

·- - - -



APPENDIX I 
VORTEX II 8-BIT ASCII 

SUPPORT 

1.1 GENERAL 

Some VORTEX modules support the use of standard 8-bit 
ASCII code consisting of eight variable bits in the binary words. 
Characters in the 8 -bit ASCII code and their corresponding 
octal representations are presemed in Table 1-1 . 

The 8-bit ASCII code is different from VORTEX internal ASCII 
code (Appendix E) VORTEX internal ASCII code is called 7-bit 

T 

ASCII code because the most significant (eighth) bit is always 
set to one. Thus the number of bits which can be changed to 
signify different characters is seven. The 8-bit ASCII code 
includes the same characters as the VORTEX internal ASCII 
code and provides the capacity to include additional special 
characters. For example, Table 1-2 indicates Japanese 
language Katakana characters and their corresponding octal 
values. 

Table 1-1 . 8-Bit ASCII Character Set 

Octal Char Octal Char Octal Char Octal Char 

000 NUL 040 SP 100 @ 140 \ 

001 SOH 041 ! 101 A 141 a 
002 STX 042 .. 102 B 142 b 
003 ETX 043 # 103 c 143 c 
004 EOT 044 $ 104 0 144 d 
005 ENQ 045 % 105 E 145 e 
006 ACK 046 & 106 F 146 f 
007 BEL 047 ' 107 G 147 g 
010 BS 050 ( 110 H 150 h 
011 HT 051 ) 111 I 151 I 

012 LF 052 • 112 J 152 
. 
J 

013 VT 053 + 113 K 153 k 
014 FF 054 

' 
1 14 L 154 

015 CR 055 1 15 M 155 m 
016 so 056 116 N 156 n 
017 Sl 057 I 117 0 157 0 

020 OLE 060 0 120 p 160 p 
02 1 OCt 061 1 121 0 161 q 
022 OC2 062 2 122 R 162 r 
023 DC3 063 3 123 s 163 s 
024 OC4 064 4 124 T 164 t 
025 NAK 065 5 125 u 165 u 
026 SYN 066 6 126 v 166 v 
027 ETB 067 7 127 w 167 w 

030 CAN 070 8 130 X 170 X 

031 EM 071 9 131 y 171 y 
032 SUB 072 132 z 172 z 
033 ESC 073 . 133 [ 173 ( 

' 
034 FS 074 < 134 \ 174 I 
035 GS 075 - 135 ) 175 } -
036 RS 076 > 136 1\ 176 '\, 

037 us 077 ? 137 177 DEL 

Note: Octal values 200 through 377 can be used to represent special characters. 

Update B 1-1 

l 

T 

----·- ------ - __ , __________ .. - - ---- ... --... ·--- ------ ---· ----------- ·- -....... -.- ____ .. _____ .. _ . --·-- --- , ____ - ·- ---- .. --



i 

. 
VORTEX II. 8-BIT ASCII SUPPORT 

' 

Cluar 

240 (not used} 260 -
241 0 261 , 
242 r 262 -( 

243 J 263 ., 
244 , 264 % 

245 • 265 t 
246 =J 266 tJ 
247 .,_ 267 • 250 <( 270 ' 251 ., 271 ~ 
252 % 272 :J 
253 .. 273 ' 254 ~ 274 ~ 
255 ~ 275 ~ 
256 • 276 t 
257 '!I 277 '-) 

Modifications to certain VORTEX software modules permit the 
use of the supplementary 8-bit ASCII code for input/ output 
functions. in text strings. or in comments. The affected 
modules include: 

• Input/ Output Control (IOC) 

• Input/ Output Utility (10UT1U 

• Source Editor (SEDtn 

• DASMR assembler 

The sections of this appendix provide detailed descriptions of 
the enhancements to individual directives which permit the 
use of 8-bit ASCII code. Existing documentation in this manual 
is not superseded by the information presented here. Each 
enhancement description includes a reference to the 
appropriate section of this manual for complete information on 
the directive. 

1.2 IOC MODIFICATIONS 

To use the 8-bit ASCII Character Set with the Input/Output 
Control module. the user specifies mode= 6 in the IOC macros 
READ or WRITE (Section 3) as follows: 

READ/ WRITE cb.lun.wllit.6 

Eight-bit ASCII data can be input from a card reader or output 
to a card punch. When the JCP KPMOOE (Section 4) is set to 1 • 
8-bit ASCII data including specjal characters is input. When 
the KPMOOE is 0 , 8-bit ASCII data excluding special 
characters is input. Regardless of the KPMOOE setting. 2-7-8-
9 code punched in the first column of a card indicates an end
of-file. This is indicated in the user's buffer area by bits 15 

1-2 

Char Chllr 

300 ' 320 ---301 f 321 ' 302 r:J 322 j. 

303 ' 323 ! 
304 t- 324 , 
305 1 325 l 
306 - 326 3 -
307 ;t 327 ' 310 ) 330 IJ 
311 I 331 ., 
312 1\ 332 1.1 
313 t 333 0 
314 J 334 ') 
315 "\ 335 :J 
316 * 336 Ill 

317 '? 337 0 

! through 8 of the first word. which are set to the value 0207. 

i 

The rest of the first word and the remainder of the user's buffer 
area contain the 8-bit ASCII data. An 11-0 punch (w ith or 
without another punch) in the first column of a card does not 
change the 1/ 0 mode frorr. 6 to 0 . and this card image is 
written to the user's buffer area as 8 -bit ASCII code. 

Eight-bit ASCII data can be written to line printer type 0786 or 
F3361 . The control character specified in the f irst byte of the 
first word must be in 8-bit ASCII code. 

If the READ or WRITE macro specifies a lun assigned to a 
· magnetic tape or RMO device. 8-bit ASCII code is input or 

output by the code-transparent driver. 

1.3 IOUTIL MODIFICATIONS 

Mode 6 for input and/ or output can be specified in the IOUTIL 
directives COPY F. COPYR. PRINTF. and DUMP (Section 1 0) to 
permit the manipulation of 8 -bit ASCII coded data and 
directives. The option S can be included in the JCP directive 
/ IOUTIL (Section 4) to provide conversion functions from/ to 7-
bit ASCII code. 

1.3.1 OPTION S 

The form of the enhanced JCP directive is: 

/ IOUTIL.S 

If any parameter other than S is used in this directive. the JC02 
error message is output and VORTEX continues processing as 
if no parameter had been used. 

Update 9 

- ---·----- ·---·· -- - - - - -·-·- - .. - -



VORTEX II 8-BIT ASCII SUPPORT 

For the COPYF and COPYR directives, mode 6 can be specified ! 
for im (input model and/ or om (output mode). Conversions 
performed by the enhanced IOUTIL are shown in Table 1-3. 

Mode 6 can be specified in the DUMP directive. Eight-bit ASCII l 
characters are output and JCP directives in mixed files are 
converted from 7 -bit code to 8-bit code before the ASCII 
characters are printed. However, the accompanying octal 
listing presents those records exactly as they are stored on the 
file; i.e .. JCP directives are listed in octal 7 -bit ASCII form . 

When the PRJNTF directive is used after option S has been 
specified. both input and output are performed for 8-bit ASCII 

code. T 

-
Teble 1-3. IOUTIL COPY Directive Conversions, Option S 

ut 
ode 1 

lnp 
M 

put In 
M ode& 

CR 

RMO/ MT 

CR 

RMO/ MT 

Output 
Mode 1 

PRT 

No 
Conversion 

No 
Conversion 

Conversion 
to 

7 -Bit ASCII 

Conversion 
to 

7-Bit ASCII 

RMO/ MT PRT 

No Conversion 
Conversion to 

8 -Bit ASCII 

No Conversion 
Conversion to 

8-Bit ASCII 

Conversion No 
to Conversion 

7 -Bit ASCII 

Conversion No 
to Conversion 

7 -Bit ASCII (See Note) 

Output 
Mode 6 

RMD/ MT 

Conversion 
to 

8 -Bit ASCII 

Conversion 
to 

8 -Bit ASCII 

. 
No 

Conversaon 
(See Note) 

No 
Conversion 
(See Note) 

NOTE: For f iles copied to RMO/ MT using output mode 6. input records containing 057 (8 -bit ASCII "/") as the value for the 
first character are converted to 7-bit ASCII code. These records are JCP directives; VORTEX correctly interprets JCP 
directives only if they are in 7-bi' ASCII code. When such mixed files are printed (mode 6). the 7-bit ASCII records are 
converted to 8-bit ASCII code. j 

Update B 1-3 

··- -~- -·------~---*-•'> .... ---· ---··------- --- -.-- ····--·-·--- - -·- _... -- . -· ·-- - .. ----· .. ·- - --····-.. -- --· .,. _____ .,. __ ,.._ - • 



• 

i 

VORTEX 118-B1T'ASC11 SUPPORT 

Table 1-4. IOU'nl COPY Directive Output, Without Option S 

Output 
Mode1 

PRT 

CR 7-Bit ASCII 

lnpu 
M 

t 

ode 1 7-Bit ASCII 
RMO/ MT 

CR Unpredictable 
ut Output lnp 

M ode 6 
RMD/ MT 8 -Bit ASCII 

1.3.2 NO OPliON 

If the option S is not specified in the / IOUTIL directive. 
specifying mode 6 for input/ output results in the output form 
indicated by Table 1-4 

1.3.3 NOTES AND GUIDELINES FOR THE USER 

t . If the option S is specified and the IOUTlL directive 
COPYF or COPYR with input mode 6 is used, records 
whose first character is 057 are converted to 7 -bit 
ASCII form. The "/" character. octal 057. indicates a 
JCP directive. 

2. When the option S is specified and the DUMP 
directive (mode 6) is used to process an 8-bit ASCII 
coded fi le. records whose first character is 0257 are 
JCP directives and characters are output in 7 -bit 
ASCII form. The octal record value printed is 0257. 

3 . A JCP jobstream file to be stored on MT or RMO 
cannot include mixed 7 -bit and 8 -bit data. For 
example, the following jobstream cannot be 
constructed by IOUTIL: 

/ FMAIN 
7-bit data 

/ SEDIT.S 
8-bit data 

/ FINI 

4 . IOUTIL directives to be stored on MT / RMD 
must be recorded in 7 -bit ASCII form. 

Mode& 

RMO/MT PRT RMO/ MT 

7 -Bit ASCII Unpredictable 7-Bit ASCit 
Output 

7-Bit ASCII Output as No 
8-Bit ASCII Conversion 

8 -Bit ASCII 8-8it ASCII 8 -Bit ASCII 

No 8-Bit ASCII 8 -Bi t ASCII 
Conversion 

l 

T 

5. When the option S and mode 6 for 
input/ output are specified, only one output 
device can be specified (COPYR and COPYF 
directives). 

1.4 SEDIT MODIFICATIONS 

Enhancements to SEOIT (Section 8) to accommodate 8-bit 
ASCII code can be utilized by specifying the options V or S in 
the JCP / SEOIT directive (Section 4). When either of these 
options is specified, the SEOIT output (OUT and print f ile) is 
prepared in 8-bit ASCII code form. 

The format of the enhanced JCP directive is 

/ SEOIT 
s 
v 

The V option directs SEOIT to test the IN and ALT fi les to 
determine whether each is composed of 7-bit ASCII records or 
8-bit ASCII words . Each assignment (via the AS directive) 1s 

followed by a checking procedure in which the f irst record is 
read: a value of Ot 77 or less in the first record indicates a file in 
8-bit ASCII format; a value of 0200 or more in the f irst record 
indicates a file in 7 -bit ASCII format. Conversion to 8-bit ASCII 
code is performed if necessary. This option is useful for 
merging files coded differently so that the merged source 
program can be assembled by the enhanced OASMR (see 1.5). 

. 

The S option directs SEOIT to handle the IN and ALT fi les as 8 -
bit ASCII code. No conversion is performed. Output is also in 8-
bit ASCII code format. 

1-4 Update B 

-· - · 



Notes: 

1. An optton other than S or Von the / SEDIT directive 
generates a JC02 error message. The directive is 
then processed as if no option was specified. 

2. If files containing JCP directive records are edited, 
these records must be reconverted (using IOUTIL) to 
7 -b1t ASCII coded form because VORTEX does not 
correctly interpret JCP directives in 8-bit ASCII 
coded form. 

3. Eight-bit ASCII coded SEDIT directives and data that 
are input 

(a) from the OC device cannot include special 
characters (octal value 200 or greater) in strings; 

(b) from the card reader device can include the 
special characters if KPMODE is set to 1; 

(c) from RMD or MT must have been stored on the 
device in 8-bit ASCII form (using IOUTIL). 

1.5 OASMR ASSEMBLER MODIFICATIONS 

Enhancements to the DASMR Assembler permit the assembly 
of programs wntten usmg 8-bit ASCII code and the use of 
character strings written in 8-bit ASCII code. The parameterS 
can be included in the JCP directive / OASMR (Section 4). Also. 
particular strings within a DASMR language program (Section 
5) can be generated in 8-bit ASCII code. 

The enhanced JCP directive has the form: 

/ OASMR.S 

l 

T 

VORTEX II 8-BIT ASCII SUPPORT 

When the option S is specif ied. the DASMR assembler l 
assumes that input from RMD. magnetic tape. or the card 
reader is in 8-bit ASCII code. Printed output is produced in 8-bit 
ASCII code . 

W ithin a DASMR source program. individual character strings 
can be generated in 8-bit ASCII code by specifying the 
character S immediately before the first apostrophe that 
delimits the string. 

Examples: 

DATA S'AB'. 'CD', s·xyz· 
ADD = S'3 ' 
LOA = S'A' 
LDI = S'TJ' 

In the OAT A statement only the first and third strings are 
specified to be generated m 8-bit ASCII code . 

NOTES: 

1 . If the opt ion S is not specified. the assembler 
assumes that input and output consist of 7 -bit ASCII 
code. 

2. Special characters (8-bit octal value 200 or greater ) 
can be specified only in character strings or 
comments. 

3. The output of pass-1 of the OASMR assembler to 
the SS logical unit cannot be used as input for any 
job. other than for pass-2 of the assembler. 

4 . If the option S is specified. PI and SS should not be 
assigned to the same logica l unit. If this is done. 
output from the Concordance program can be 
incorrect. 

i 

Update 8 1-5 

-- ---------- ··-·- · ···~--·--------------· --·- - ------·---·---- ----.. --~--.·------ ·------ ··--··--- ·- ------- . ----·-- -.. 



- - -- -



INDEX 

A 

ABL Automatic Bootstrap Loader, 18-2 
ABORT (OPCOM), 17-4 
ABORT (RTE), 2-8 
ABORT procedure, 2-16 
accelerator (FORTRAN firmware), 20-2, 13-1 
access method (I / 0). 3-1 0 
access modes. 1-5, 2-13 
AD (SEOIT), 8-3 
ADO (FMAIN), 9-6 
ADD (SMAIN), 16-4 
add records (SEOITl. 8-3 
add string (SEOIT). 8 -3 
adding an 1/0 driver, 14-31 
addmg controller tables. 14-31 
AFAULT (RTE), 2-12 
allocate memory pages. 2-9 
allocate. stack. 2-6 
ALOC (ATE). 2-6 
ALOCPG. 2 -9 
ALOCPG (RTE), 2-9 
alphanumeric mode, Statos. C-4 
alphanumeric mode. cards. C-2 
alphanumeric mode. paper tape. C-1 
ALT (SMAIN). 16-4 
alternate logical unit (SMAIN), 16-4 
alternate sector partition, 3-17, 3-18 
alternate sector processing, 3-18 
ALTIN (VSORT). 11 -2 
AL TUB (JCP), 4-8 
analog input system. 19-3 
APND (PATCH), 15-2 
arithmetic fault setup, 2-1 2 
AS (SEDIT). 8-2 
ASCII character codes. E-1 
ASR Teletype, 18-1 
assembler. DAS MR. 5-1 
assembly I istrng format. 5-1 0 
ASSIGN (JCP). 4-3 
ASSIGN (OPCOM), 17-5 
assign logical units (SEOIT). 8 -2 
ATIACH (OPCOM), 17-3 
automatic bootstrap loader. 18-2 
auxiliary group directives. 8-2 

8 

background processing 1-2 
background tasks. 2-14. 1 -5 
bad- track table. 3-4 
bad sector table. 3-4 
BASE (PATCH). 15-2 

Update B 

bibliography. 1-6 
BCB macro (1/0 control). 3-21 . 3 -23 
81 : Binary input. 3-2 
BIC flag table, 14-32 
SIC (Buffer Interlace Controller). 14-34 
binary mode, cards, C-2 
binary mode. paper tape. C-1 
binary records (COMSY). 22-1 

blank common, 6-3 
bootstrap loader. 18-2 
BTC (Block Transfer Controller}. 14-34 
BTPTCH program (PATCH). 15-2. 15-7 
byte manipulation firmware, 20-5 

c 

C (JCP), 4-2 
ca lling sequence. 11 -6 
card data modes. C-2 
card punch (initializing). 18-1 
card reader (initializing). 18- 1 
CFILE (IOUTIU, 10-5 
CFILE (JCP). 4-9 
change directives, 15-1, 15-3. 15-5 
change directive parameter. reference to address. 15 -5 
change directive parameter, reference to rnstruct1on, 15-5 
character codes. standard. D- 1 
checkpoint file, 1-4 
checkpointing, 2-1 4 
CLD directive. 6-6 
CLOSE (IOC), 3-11 
close file (IOUTIL). 1 0-5 
CNTL (PATCH). 15-5 
CO (SEDIT). 8-7 

codes. ASCII character. E-1 
codes. standard character. D-1 
COMDECK. 22-6 
COMSY, 22-1. 22-10 
COMSY binary records. 22-1 
COMSY directives. 22-2 
COMSY error messages. A -28 
COMSY error processing. 22-11 
COMSY execution. 22-11 
COMSY load module generation. 22-1 1 
comment (JCP). 4-2 

common. 6-3 
common files (COMSY), 22-2 
common interrupt handler, 14-1 
common module. foreground blank. 1-4 
compare 1nputs (SEDIT). 8 -7 

Index 1 

,, , __ .... --- --·--·---.-~-...... ---..-·...-··~· .. - -......... -.--.-... - _ ... ..__ .. _. _______ ..... .,_ ---·----- _____ .._, ....... ----- .. --......... _., .. _.... .......... _,_ .. ,.._._._ ... _ ___ ,_...,_ .... _._ ····~---,...._. ---~·------- ·- - · ~· -----·-- .. -· ~·· 



INDEX 

compatability-micro-VORTEX and VORTEX II. 14-36 
compatability-VORTEX II and VORTEX I, 14-35 
Compression/ Edit System (COMSY). 22-1 
compilers: language processors. 5-1 
CONC (JCP), 4-6 
concordance program, 5-11 
configurations. hardware, F-1 
console logging, 25-1 
control directives (PATCH). 15-1 
control records (SMAIN). 16-2 
controller device address, 14-32 
copy file (IOUTIL), 10-1 
copy file (SEOIT). 8-5 
copy record (IOUTIL), 10-2 
COPYF (IOUTIL). 10-1 
copying group. 8-1 
COPYR (IOUTIL). 10-2 
core resident symbol table, 6-7 
CREATE (FMAIN). 9-4 
CTADNC. 14-31 
CTBICB. 14-30 
CTDST. 14-30 
CTDVAD. 14-30 
CTFCB. 1 4-30 
CTFRCT. 14-30 
CTIDB. 14-31 
CTIOA. 14-30 
CTOPM. 14-31 
CTPSTO. 14-30 
CTPSTI. 14-30 
CTPST2. 1 4-30 
CTPST3. 14-30 
CTRQBK. 1 4-30 
CTRTRY. 14-30 
CTSTAT. 14-30 
CTSTSZ. 14-30 
CTIKSZ. 14-30 
CTWDS. 14-30 

0 

DASMR (JCP). 4-5 
DASMA assembler. 5-1 . 4-5 
DASMR assembler. error messages, A-9 
data control block (IOC). 3 -14 

data formats. C-1 
DATAPLOT II. 12- 1 
data record blocking and deblocking, 3-18 
data sets. 24-2. 24-7 
data set label. 24- 1 
data transfer firmware. 20-3 
DATE IOPCOMl. 17-3 
DBGEN. 4 -9 
DCB (10Cl. 3-14 

DE (SEDtn. 8-4 
deallocate pages of memory. 2-10 
deallocate reentrant stack, 2-7 
DEALOC (ATE ). 2-7 
DEALPG (ATE), 2-1 0 
DEBUG. 7-1 
debugging aids. error messages. A- 1 5 
DECK SETUPS (JCP). 4-1 1 
DEL (SMAIN). 16-6 
DELAY (ATE). 2-3 
DELETE (FMAIN). 9 -3 
delete (SMAIN). 16-5 
delete records (SEOIT). 8-4 
delete string (SEDIT), 8-5 
DEMAND macro (1/ 0 control). 3-20, 3-21 . 3 -24 
DEVON (OPCQM). 17-5 
device down (OPCOM). 17-5 
device initialization. 18-1 
device specification table lOST). 3-4 
OEVUP (OPCOM). 17-5 

digital -to-analog convener. 26-2 
direct access. 3 -10 
directive (COMSY). 22-10 
directive input unit (SGEN). 1 5-7 
directives. DASMR assembler. 5-1 
directives. FMUTIL. 21 -1 
directly connected interrupt handler, 14-34 
disk. 18-1 
disk access methods. 3 -1 9 
disk device 1/ 0, 3-17 

Update 8 

disk. key-in loader programs. 18-2 
disk pack handling. 18-3 
dispatcher interrupt processor. 14-28 
DMEMRY. 7-12 
driver interface. 14-33 
drum. key-in loader programs for. 18-2 
OSPMEN directive. 7-5 
DSPMEN program. 7 -5 
DUMMY logical unit. 3 -1 
OUMP IFMUTIL). 21 -2 
DUMP (IOUTIL). 10-3 
OUMP (JCP}. 4-8 
DUMP (PATCH). 15-1 
dump directory (FMUTIL). 21 -3 
dump partition (FMUTIL), 21 -3 

E 

edition numbers (COMSY}. 22-2 
eight-bit ASCII suppon. 1-1 

END (COMSY). 22-10 
END (DEBUG). 7-8 
END (L.MGEN). 6-5 
ENOSORT. 11 ·6 



END JOB (JCP), 4-2 
ENTER (FMAIN}, 9-5 

ERROR task, 14-4 
error retry count (CTRTRY), 14-30 
error processing (COMSY), 22-11 
error messages (COMSY), A-28 
error messages (PATCH), 15-9 , A-20 
event word. 2-9 
EXEC (JCP), 4-7 
execute {COMSY), 22-11 
execute (JCP}, 4 -7 

executive mode, 1-5, 2-13, 14-4 
execution-time 1/ 0 unit (FORTRAN). 5-18 
EXIT (FMUTIL). 21-8 
EXIT (PATCH). 15-3 
EXIT (RAZI), 18-5 
EXIT (ATE), 2-7 
exists (VSORT), 11 -6 
extension number. 9-2 
external interrupts, 14-1 

F 

F2963 Data Acquisition and Control System, 19-1 
FC (SEDIT), 8-5 
FCB (IOC). 3-15 
FCB macro (1 / 0 control). 3-21 , 3-23 
FCB module, global, 1 -4 
FIL (image file), 7-5 
file-control block. 3-5 
file-control block (IOC). 3-15 
file extension, 3 -5 
file maintenance (JCP), 4-6 
file maintenance utility (FMUTIL). 21 -1 
file maintenance utility (FMUTIL) error messages. A-27 
file maintenance. error messages. A-16 
f ile-name directory. 3-4. 9-2 
FINI (JCP), 4-2 
FIMPY (fixed-point multiply}, 20-3 
f irmware. 20-2 
firmware. F option. 4-6 
firmware macros, 20-9 
fixed-point arithmetic firmware. 20-2 
floating-point arithmetic firmware. 13-1. 20-3 
flow, system, 1 -2 
FMAIN (JCP). 4 -6 
FMAIN: file maintenance. 9-1 
FMUTIL 21 - 1. 6-7 
FMUTIL directives. 21-1 
FMUTIL directory. 21-5. 21 -6 
FMUTIL dump file. 21-3 
FMUTIL. dump panition. 21-3 
FMUTIL error messages. A-27 
FMUTIL load file, 21 -3 
FMUTIL load panition. 21-4 
foreground blank common module, 1 -4 
foreground tasks. 2-1 4 

Update B 

FORM (JCP). 4-4 
format and dump (IOUTIL}, 10-3 
format rotating memory (RAZI), 18-4 

FORT (JCP). 4-5 
FORTRAN IV compiler. 5-13 
FORTRAN IV compiler. error messages. A- 1 0 
FORTRAN IV levei-G enhancements. 5-13 
FORTRAN IV functions. 13-1 
FORTRAN compiler (JCP). 4-5 

FORTRAN-oriented firmware. 20-3 
FORTRAN program input/output operation. 1-5 

FORTRAN subprogram calls for process 110 . 19-9 
FRM (RAZI). 18-4 
FUNC (IOC). 3-14 
function (IOC). 3-4 

G 

GA (SEDID. 8-6 
gang-load all records (SEDID. 8 -6 
generate communication network. 12-16 
global file control blocks. 4-9 
global FCB module. 1-4 
GO file. 1-4 

H 

handlers. 14- 1 
hardware configurations. F- 1 
hardware. minimum. 1 -1 
HIST (PATCH), 15-3 
hooks. 14-3 

I 

identificat ion buffer. 3-18 
IEEE STD 488-1975 Driver. 19-8 
INCLC directive (VSORT), 11 -4 
INCLF directive (VSORn, 11 -3 
INEXIT directive (VSORT). 11 -5 
initialize (FMAIN), 9-5 
initialize (RAZI). 18-4 
initialize background pointers, 4 -2 
initialize memory (DEBUG ). 7-1 
initialize peripheral devices. 18- 1 
IN (SMAIN). 16-3 
INIT (FMAIN), 9-5 
INL (RAZI). 18-4 
INPUT !FMAIN). 9-6 
input log1cal unit (SMAIN), 16-3 
instruction mnemonics included in PATCH. 15-6 
integer math (32 bit), 20-16 
integers. storing. 13-1 
interface (PATCH). 16-1 , 15-7 

INDEX 

Index 3 

1·--··~~--- - - ··-- -·· - -·-·--------·----------·-·.._ __ ___ _______ _ ... __ ,_____ ___ __._ _________ ___ ··- --·-·- - --- ---- --- --·--



INDEX 

lntermap DEBUG Program. 7-9 
Internal matlbox element description. 14-45 
interrupt handler. driectly connected, 14-34 
interrupt -processing task, exit, 14-2 
interrupt -processing tasks. 14-1 
lntenask Communication Module, 14-42 
invoking a dump, 7 -9. 7-1 1 
IOC: input / output control, 3-1 
IOLINK (ATE). 2-8 
I OUST (OPCOM), 1 7-5 
IOUTIL: input/output utility program, 10-1 , 6-7 
IOUTIL, scheduling (JCP), 4 -7 
1/ 0 algorithm. 14-28 
l/ 0 control. error messages. A-4 
1/ 0 devices. physical, 17-1 . B- 1 
1/ 0 driver. 14-30. 14-31 
l / 0 errors by 1/0 device type, B-2 
1/0 interrupts, 3-5 
l / 0 linkage 2-8 
11 0 tables. 14-31 
l/ 0 utiltty (JCP), 4 -7 
l/ 0 uti lity. error messages. A-18 
ISA FORTRAN process control, 19-9 
ITE. 14-42 
ITE system generation requirement 14-54 

J 

JCP: job-control processor. 4-1 
JCP (ASSIGN), 4-3 
JCP (COMSY). 22-1 
JOB (JCP). 4-2 
job-control processor. error messages. A-8 
JCP (FMUTIL). 21 -1 
JCP (JOB). 4-2 
JCP (LMGEN). 4-6 
JCP (LOAD). 4-8 
JCP (MEM). 4-3 
JCP (PFILE). 4-4 
JCP (posttion file). 4-4 
JCP (REW). 4-4 
JCP (rewind). 4-4 
JCP (SFILE). 4-3 
JCP (SMAIN). 4 -7 
JCP(SRECl. 4-3 

K 

key-in requests. 17-1 
keypunch mode (JCP), 4-4 
KPMOOE (JCP). 4-4 

L 

language processors. 5-1 
LD (LMGEN). 6-4 

Index 4 

Update B 

-- -- --- - - ---- -- .. ·---·-- · -- ---------

LOBA (PATCH). 15-3 
U (SEOIT), 8 -6 
UB (LMGEN). 6-5 
library (LMGEN). 6-5 
line printer. 18-1 
linkage, 1/0 with ATE. 2-8 
UST (FMAIN), 9-5 
UST (SMAIN). 16-6 
list l/0 (OPCOM). 17-5 
list records (SEOIT). 8-6 
listing format (OASMA). 5-10 
LMGEN (JCP). 4-6 
LMGEN: load-module generator, 6-1 
LMP: load module package, 16-3 
LOAD (JCP). 4-8 
load (LMGEN), 6-4 
load directory (FMUTIL). 21 -5 
load file (FMUTIL), 21-3 
load partition (FMUTIL), 21-4 
load-module generation (COMSY), 22-11 
load-module generator (JCP). 4-6 
load-module generator directives. 6-4 
load-module generator, error messages. A-12 
loader, bootstrap, 18-2 
lock bit. 9-3 
logical memory, 1 -4 
logical record. 3-10 
logical unit. 3-1. 8-2 
LOT directive (VSOAT). 1 -5 

M 

magnetic-drum. (see AMD). 18-1 
magnetic-tape modes. C-4 
magnetic-tape, 18-1 
mailbox entry description, 14-44 
mailbox list description, 14-43 

MANL (PATCH). 15-4 
map memory. 1-4, 14-5 
map 0 allocable memory, 1-4 
map 0 nucleus. 1 -3. 1 -4 
MAPIN. 14-5 
MAPIN (ATE), 2-10 
mask. 2-5 
memory, 1-2 
memory (JCP), 4-3 
memory dump (OMEMAY), 7-12 
memory map, 1-4. 1-5 
memory protection interrupt. 14-3. 1-5 
MEM (JCP). 4-3 
message control block. 14-46. 14-48 
microprogram assembler (MIDAS). error messages. A-23 
microprogram simulator (MICSIM). error messages. A-24 
microprogram utility (MIUTIL), error messages. A-25 
micro-VORTEX and VORTEX II compatability, 14-36 
MICSIM. 20-1 

----·- - -- ----



-

MIDAS. 20-1 

MIUTIL. 20-1 
MO (SEDIT). 8-5 
move records (SDEIT). 8-5 
MOVEC (VSORn. 11-5 
MOVEF (VSORn. 11 -5 
moving-head disk. (see RMD). 18-1, 18-2 
multitask spool system. 23-1 
multitask spool system command summuary, 23-1 
multi-volume tape having (VSRSW), 10-5 

N 

named common. 6-3 
nine-track magnetic tape. C-4 
nucleus image. effect of PATCH on, 15-2 
nucleus. map 0. 1 -3 
nucleus modules. 1-5 
nucleus pointers. 6-7 
nucleus programs module. 1-4 
nucleus table module. 1 -4 

0 

object module formats. G- 1 
OMITIC (VSORT). 11-4 
OMITF (VSORT). 11 -4 
(OPCOM) operator communication. 17-1 
OPEN (IOC). 3-1 0 
operator communication. error messages, A-22 
OUT (SMAIN). 1 6-4 

OUTEXIT !VSORT). 11-5 
output logical unit (SMAIN). 16-4 
OV (LMGEN). 6-5 
overlay (RTE). 2-5 
overlays. 6-3 
OVLAY (RTE ). 2-5 

p 

page 0 . 1 -4. 1-5 
pages. 1 -5 
PAGNUM (RTE). 2-11 
paper-tape modes. C-1 
paper-tape reader. 18-1 
parity errors (V70/ V77 -600). 14-54 
parity errors (V77 -200/ 400). 14-54 
parity errors (V77 -600). 14-5 5 
parity errors (V77 -800. 14-55 
partition. 3-4 
partit ion (FMUTIL). 21-3. 21-4 
partition (RAZI). 18-4 

Update B 

partition description listing, 18-3 
partition protection bit. 3-4 
partition specification table. 3-4 
partition specification table (PST). 3-4, 9-1 
partitions, 1 -4 
partitions, 9-1 
paritions (RMD). 3-4 
PASS (RTE), 2 -9 
pass buffer parameters, 2-8 
PATCH directive log gile, clearing of (PATCH), 15-4 
PATCH directive log file (PATCH), 15-4, 15-5. 15-7 
patch image file. 15-1 . 15-2. 15-7 
PATCH program, 15-1 
patching considerations. 15-8 
PFILE (IOUTIL). 1 0-4 
PFILE (JCP), 4-4 
physical II 0 devices. 17-1 
physical memory. 1 -5 
physical record, 3- 1 0 
PLOT (generate plot). 12-6 
PIM interrupts. 2-5. 14-26 
PMSK (RTE). 2-5 
posit ion file (IOUTIL). 10-4 
position file (JCP), 4-4 
post -interrupt processing, 14-31 
post SYSGEN requirementss. 7-8 
power failure / restart interrupt, 14-3 
power -down. 14-3 
power-up, 14-3 
pre-interrupt processing, 14-30 
print contents of dump tape FMUTIL. 21-6 
print file (IOUTIL). 10-4 
print file directive FMUTIL 21 -6 
printer. line. 18-1 
priorities. 14-5 
priority 1 tasks. 1-5 
priority interrupt module (PIM). 14-1 
priority levels. 2-1 
PRNTF (IOUTIL). 10-4. 
programs module. nucleus. 1 -4 
PRT (RAZI). 18-4 
pseudoregisters (DEBUG ). 7-1 

R 

Random files (COMSY). 22-2 
RAZI: rotating memory analysis and initialization. 18-3 
READ (IOC). 3-1 2 
READ (F2963 DACS). 26-1 
read-only pages, 2-14 
real numbers. 13-1 
real-time clock. 14-28 
real-time clock interrupt. 14-4 
real-t tme clock interrupt processor. 14-22 
real-time executive. error messages. A-1 

INDEX 

Index 5 



' 

.· 

A ' • ._ 
\ ' - • 'f .... 

.,... 
• 

• 

. • - - ---,..---.,- - · • ·-


	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0001
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0002
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0003
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0004
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0005
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0006
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0007
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0008
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0009
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0010
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0011
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0012
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0013
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0014
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0015
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0016
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0017
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0018
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0019
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0020
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0021
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0022
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0023
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0024
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0025
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0026
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0027
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0028
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0029
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0030
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0031
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0032
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0033
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0034
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0035
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0036
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0037
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0038
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0039
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0040
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0041
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0042
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0043
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0044
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0045
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0046
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0047
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0048
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0049
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0050
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0051
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0052
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0053
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0054
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0055
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0056
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0057
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0058
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0059
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0060
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0061
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0062
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0063
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0064
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0065
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0066
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0067
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0068
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0069
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0070
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0071
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0072
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0073
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0074
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0075
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0076
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0077
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0078
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0079
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0080
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0081
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0082
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0083
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0084
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0085
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0086
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0087
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0088
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0089
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0090
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0091
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0092
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0093
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0094
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0095
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0096
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0097
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0098
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0099
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0100
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0101
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0102
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0103
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0104
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0105
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0106
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0107
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0108
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0109
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0110
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0111
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0112
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0113
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0114
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0115
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0116
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0117
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0118
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0119
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0120
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0121
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0122
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0123
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0124
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0125
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0126
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0127
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0128
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0129
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0130
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0131
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0132
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0133
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0134
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0135
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0136
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0137
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0138
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0139
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0140
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0141
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0142
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0143
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0144
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0145
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0146
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0147
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0148
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0149
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0150
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0151
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0152
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0153
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0154
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0155
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0156
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0157
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0158
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0159
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0160
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0161
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0162
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0163
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0164
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0165
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0166
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0167
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0168
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0169
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0170
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0171
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0172
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0173
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0174
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0175
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0176
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0177
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0178
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0179
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0180
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0181
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0182
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0183
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0184
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0185
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0186
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0187
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0188
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0189
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0190
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0191
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0192
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0193
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0194
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0195
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0196
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0197
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0198
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0199
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0200
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0201
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0202
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0203
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0204
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0205
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0206
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0207
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0208
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0209
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0210
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0211
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0212
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0213
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0214
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0215
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0216
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0217
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0218
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0219
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0220
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0221
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0222
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0223
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0224
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0225
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0226
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0227
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0228
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0229
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0230
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0231
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0232
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0233
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0234
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0235
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0236
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0237
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0238
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0239
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0240
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0241
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0242
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0243
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0244
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0245
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0246
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0247
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0248
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0249
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0250
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0251
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0252
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0253
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0254
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0255
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0256
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0257
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0258
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0259
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0260
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0261
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0262
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0263
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0264
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0265
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0266
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0267
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0268
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0269
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0270
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0271
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0272
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0273
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0274
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0275
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0276
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0277
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0278
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0279
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0280
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0281
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0282
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0283
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0284
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0285
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0286
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0287
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0288
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0289
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0290
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0291
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0292
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0293
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0294
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0295
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0296
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0297
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0298
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0299
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0300
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0301
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0302
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0303
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0304
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0305
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0306
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0307
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0308
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0309
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0310
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0311
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0312
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0313
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0314
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0315
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0316
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0317
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0318
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0319
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0320
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0321
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0322
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0323
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0324
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0325
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0326
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0327
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0328
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0329
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0330
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0331
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0332
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0333
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0334
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0335
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0336
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0337
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0338
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0339
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0340
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0341
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0342
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0343
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0344
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0345
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0346
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0347
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0348
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0349
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0350
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0351
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0352
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0353
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0354
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0355
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0356
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0357
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0358
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0359
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0360
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0361
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0362
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0363
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0364
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0365
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0366
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0367
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0368
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0369
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0370
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0371
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0372
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0373
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0374
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0375
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0376
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0377
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0378
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0379
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0380
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0381
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0382
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0383
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0384
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0385
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0386
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0387
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0388
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0389
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0390
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0391
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0392
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0393
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0394
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0395
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0396
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0397
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0398
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0399
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0400
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0401
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0402
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0403
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0404
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0405
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0406
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0407
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0408
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0409
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0410
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0411
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0412
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0413
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0414
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0415
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0416
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0417
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0418
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0419
	98A9952246-UP8677rev2updateB-Sperry_UNIVAC-Vortex_II_Operating_System_Programmer_Reference-June_1980-page0420

