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Editor's 
Introduction 

N o  matter lie\\, po\\rerfi~l tllc undcr- 
lyi11g IILISC~\\..I~C, 111ost impor t ; \~~t  to  
~lscrs is ho\\. rIi,~t po\\,cr trn~lslatcs to 
greater ;lpplication pel-hrnlnncc ,111ti 

a\~ailabilin. Among the di\.crsc topics 
in this issue o f  rIic./r,rl~-~zal are inno- 
\,ati\,c \\.ays engineers ha\.e devised 
to nlcet application pcrhr~nancc and 
ii\~nilnbility rccluircnlcnts, 2nd nc\\? 
tools for application? de\,elopers. 

DIGITAL FS!32 is a ullicluc sort- 
ware product that makcs n\,ail'll)lc 
11~111drcds of  app1ic;itions \\zrittcn 
tbr Intel machines to i~scrs ofAlpl~a 
milchincs. 1)cscl.ibcd by Iby  Hook\\,ay 
2nd h/lark Hcrdeg, FX!32 colnbincs 
soli\\,arc crn~rl.~tion and ad\ianccd 
bi11ary tra~islation tccll~liq~lcs to e11i11)Ie 
32-bit applications that run on  Intel- 
based ~ilachincs with Windo\\a N T  
to also run o n  64-bit RISC Alpha- 
bascd machines \\.it11 Wilido\\rs NT. 
'T'lic design pro\idcs both thc pcrfor- 
mance bcncfi ts ,ind tlic trnllsparcncy 
of operation that the project cngi- 
nccring tcdm so~~gl . i t  for ilscrs. 

Also ciesig~icct for t l ~ c  Willdo\\.s 
cnviro~lnlent is 1)IGITAL Visual 
Fortran, 3 tool for Fortran dc\-elopers 
tliilt conibincs tccl~nologics ti-om 
l)IC;ITAI, nnd Microsoft Corpol-a- 
tion. 1,eo Trcggiari ~.c\ric\\,s tllc tool's 
colnponcnts, \\,hicli incl~.ldc tlic 
(lomponent Object h~lodel ((:OiM), 
Fortran 90, and ~Microsofi Dc\,clopcr 
Studio. H c  addresses the question of  
u,hy iie\~clopers need help accessillg 
dyna~nic link libraries and servers 
based on COIM, dncl tlicrl k)cuscs on 
the ne\\,l!l cre,ltcd tool that providcs 
this f~nctionality, the Fortran A~Iodulc 
Wizard. 

1)IGITAL's shared-~iicmory cluster 
i~~tcrconncct,  MEMORY CHANNEI. 
2, dcli\icl.s the high Ic\,cls o fcompu-  
t;lrionill pcrfor~nnncc ncccss31-\, to  
su1qx)rt the Iilrgcst rcchnicr~l anci 
commercial applications. Marco I.:illo 
and IQck (;illett assess cspcricnces 
\\fit11 the first i m p l e m c ~ i r a t i o ~ ~  of 
MEhIORY CHANNF,l. that led t o  

S L I C I ~  C I ~ ~ ~ ; ~ I I ~ C I I I C I ~ ~ S  ns thc cross-b.lr 
design in this latest i lnple~ncntat io~~.  
7 7 I hey co~lclucic \\*it11 pcrforn7ancc 
data that cicmo~lst~-ate unp.~rallclcd 
perk)rmancc ill terms o f  latency and 
band\vidtli compnrcd \\.ith traditional 
intcrconnccts. M EIMORY <:HA;\'Nt;,I. 
2 pro\riiics 1:ltcncy of lcss than 2.2 
~uic~.osccollcis ~ ind  hand\\,icitli of  
1,000 ~llcgab),rcs per second in all 
8-node cluster. 

1)ata security has long hccn impor- 
rant to  system managers but 11ot easily 
acliic\,cd in distributed Iictcrogencous 
spstcnis. I)IGITAI, and KEA Systcms 
h;l\,c intcg~:atcti ObjectRrokcr middle- 
\\':ire \\sit11 tllc l>istrib~~tcci Colilpi~ting 
En\*ironlnc~lt's Gcnclic Security Scr\~icc 
Application Progrummi~~g I~~tcrkicc 
(GSS-API), as dcscribeci here by John 
I'arodi anci Fred Rurghcr. The authors 
csii~nine the choicc o f  GSS-API h r  
0 bjcctJ3rokcr nnd f ~ t u r c  directions 
in  a~~t l i c~~t icnr ion  soh\,nr.c. 

1)csign decisions 111ndc in the de\,cl- 
opmclit of  DIGITAL'S StronLgAlU4 
microprocessor \\.ere driven by the 
sometimes opposing I-cquircmcnts 
o f  high pcrhrmnnce and lo\\, po\lpcr 
consumption. T.irgcteJ for usc in 
h , ~ ~ ~ d l ~ c l d  applin~iccs usu;llly po\\,crcd 
by con\,cnrional battc~.ics, StrongAkM 
offers significantly higl~cr pcrk)r~nancc 
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than conlparablc microprocessors: It  
opcr;ites a t  160 MHz,  dissipating lcss 
than 450  milli\\.atrs. James ~Montanaro, 
kc11 CVitclc et  al. step through the 
dccisions designers made t o  ilnplc- 
nlent tlic ARIM V4 instruction set 
ti-om Ad\,anccd 1USC Machines Ltd. 

Upcoming in tlic nest issue o f  
t l i c , / o ~ ~ ~ * ~ / a l  nre technical papers 
a b o ~ ~ t  new AltaVistn sofn\,are and 
'1 ncw \Yindo\\rs N T  pcrsonal work- 
station based on an Alplin 64-bit 
IUSC processor. To  \lic\v the results 
o f a  rcccnt sur\,cy sent to , /o~, l~-~zul  
PVch subscribers, see http://\\wq\l. 
digital.com/info/dtj. 



I 
Raymond J. Hookway 
Mark A. Herdeg 

DIGITAL FX!32: 
Combining Emulation 
and Binary Translation 

The DIGITAL FX!32 software product uniquely 
combines emulation and binary translation 
to enable any 32-bit application that executes 
on an Intel x86 microprocessor running the 
Windows NT 4.0 operating system to be installed 
and to execute on an Alpha microprocessor run- 
ning Windows NT 4.0. Benchmark tests indicate 
that after translation, x86 applications run as 
fast on a 500-MHz Alpha system with DIGITAL 
FX!32 software installed as on a 200-MHz Pentium 
Pro system. The emulator and its associated run- 
time software provide transparent execution 
of applications written for x86-based platforms. 
The emulator produces profile data that is used 
by the translator and takes advantage of trans- 
lation results as they become available. The 
translator provides native Alpha code for the 
portions of an x86 application that have previ- 
ously been executed. A server manages the 
translation process for the user, making the 
process completely transparent. 

Three factors contribute to  the success of a niicro- 
processor: price, performance, and sohvare a\lailability. 
The DIGITAL FX!32 product addresses tlie third fac- 
tor, sohvarc availability, by making hundreds of  new 
applications available on  Alpha-based platforms run- 
ning the Windo\vs N T  operating system. 1)IGITAL 
FX!32 sohvare combines emulation and binary trans- 
lation to provide fast, transparent cxccution of Intel 
s 8 6  applications 011 Alpha systems. 

Since its introduction in 1992, the Alpha micro- 
processor has been the fiastest microprocessor 
available. A large number of native applications are 
available on Alpha systems, particularly those applica- 
tions that require a high-performance processor. With 
the i~itroductio~i of DIGII-AL. FX!32 softsvare, 32-bit 
progralus that can be i~istalled and executed o n  x86 
systems running the Wiodo\vs N T  4.0 operating sys- 
ten1 cau also be installed and esecutcd on Alpha s)s- 
terns running Windo\\! N7' 4.0. Except for ha\zing to 
spccitj, that a program is an xS6 application, installing 
and running an application is the same on an Alpha 
system as 011 an s86 s ) s t e ~ ~ i .  Thc pct-formance of an 
s 8 6  application running on a high-end Alplia system is 
similar to the perfornlance of the sarnc application 
running 011 a high-end x86 system. 

A nurnbcr of systems have successfully used cmi~la- 
tors to run applications on platforms for whicli the 
applications were not initially t'irgetecl.',' The major 
dra\\~back has bccn poor perfor~uance.~ Set'cral cmula- 
tors have used dynamic translation, transl'ating small 
segnlents ofa program as it is executed, to achie\~c bctter 
perfornlancc than that obtained by an intcrprctcr 
alo~ie.~-' Dynamic translation in\lolves a basic trade-off 
between the amount of time spent translating and the 
resulting bencfit of the u-uislation. If a11 emulator spends 
too much t i~ne on the translation a id  related processi~ig, 
the executing program will be unresponsive. This limits 
the optimizations that can bc performed by the emula- 
tor using d!rna~iiic translation. 

FX!32 overcomes the performance problem by not 
doing any translation wliile the application is csccut- 
ing. lbther, FX!32 captures an execution profile that is 
later used by a binary translator" to translate into nati\~c 
Alpha code those parts of the application that have 
been executed. Since tlie translator runs in the back- 



ground, it can use computationally intcnsi\.c algo- 
rithms to improve tlie quality of the generated code. 
To our lu~o\vledge, FX!32 is the first system to explore 
this combination of emulation and binary translation. 

In this paper, cvc describe hocv FS!32 \\!orlts. Wc begin 
with an overvie\v and disci~ss each of tlie 111ajor compo- 
nents in more detail. We then present some benchmark 
test results and briefly describe scvcral limitations of the 
current \lersion of 1)IGITAL FX!32 so%va~-e. 

Overview 

On Alpha systems, the Windocvs NT operating system 
uses an  c~n t~ la to r  to run 16-bit s86  applications. These 
applications can be installed and run in tlic samc \\pay as 
they are installed and run on s 8 6  systclns, but thc cxe- 
cution is slocvcr. Tlic cnlulator built into E'S!32 pro- 
vides a similar capability for 32-bit x86 applications. 

Unlikc the crnulatio11 sofnvarc in the 16- bit c~lvi- 
ronnlcnt, FX!32 provides a binary tra~lslator tlint 
translates 32-bit s 8 6  applications into native Alphn 
code. The translation is done in tlie background and 
req~~i res  no user interaction. Using background trans- 
lation allows the translator to perform opti~nizations 
that, in terms of  computational resources, \\,auld be 
too expcnsi\~c to accomplish \\~liilc an application is 
running. An application translated by means ofFS!32 
runs up to 10 tinles hster than the samc application 
r~uining 1111dcr the c ~ i i ~ ~ l a t o r .  

13TGITAL FX! 32 sofhvarc consists o f  the k~llo\\,ing 
seven major components: 

1. The transparency agent, \\lhich pro\idcs for trans- 
parent launcl7i1ig of 32-bit s86 applications. 

2. The  runtime, \vhich loads s 8 6  images and sets up 
the run-time environment to execute them. As part 

TRANSPARENCY 
AGENT 

X86 IMAGE a 

of loading an image, the runtime component jack- 
ets importcd application programming interface 
( U I )  routines. Jackets are small code fragments 
that allo\\f the xS6 code to cdll Alpha Windows NT 
Al'I routines. 

3. The emulator, \\lhicli runs an s86 application malc- 
ing use of translated code \\~licn it is a\~ailable. 

4. The uanslator, which produces a translatcd image 
usi~ig prof lc inti)rmation received fi-o~n the emulator. 

5. Thc database, \\-hich stores execution profiles pro- 
duced by the emulator and used by the translator. . . 
lranslatcd imagcs arc also stored in the database, 
along with coilfiguration infor~nation. 

6.  'I'he server, \vhich maintains the database and runs 
the translator as appropriate. 

7. Thc manager, tvliicli allo\vs the user to control 
resources i~scd by the 1)IC;I'rAL FS!32 software. 

Fig~lre 1 slio\\~s thc relationships bct\\~cen these 
major co~iiponents, each of \\,l~ich is discussed in Ii.lorc 
detail in the sections that follo\\r. 

The Transparency Agent 

The transparency agent provides for transparent 
launching of 32-bit x86 applications. Launching an 
application 011 tlic Windows NT operating system 
al\vays results in a call to the CreatcProcess API routine. 
By hooking calls to this routine, the transparency agent 
can csaminc c\cry image as it is about to be cxccuted. 
If n call to Createprocess specifies that an s86 image is 
to be esecuted, the transparency agent invokes the run- 
time componcnt to execute the image. 

FS!32 inserts tlic transparency agent into the address 
spacc ofeach process. A process that co~ltains the trans- 

RUNTIME 

EMULATOR 
DATABASE 
<REGISTRY> 

SERVER 

Figure 1 
DIGITAL FS! 32 Systcln (:ompo~~ents 
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jacket routines is to move arguments from the s86  
stack to tlie appropriate Alpha registers, as dictated by 
the Alpha calling standard. Some jaclcet roiltines pro- 
vide special sen~antics f ( ~ -  the native rolltine being 
called, as recluired by FX!32. For example, the jaclcet 
for the GetSystcmDirectory routine rcturns the pat11 
to the FX!32 directory rather than the path to  the true 
system directory so that x86 applications do  not over- 
ci~ritc native Alpha DLLs. 

For an x86 application to run ~ ~ n d e r  FX!32, every 
image it loads must be either an x86 image or  an Alpha 
image for which jackets exist. Thcrcforc, FX!32 pro- 
vides jackets for all tlie DLLs that i~iiplenient the 
Win32 interface and for many rcdistributnble 1)LLs. 
FX!32 currently provides jackets for more tllan 50 
native Alpha DLLs, which has enabled tlie FX!32 devel- 
opment team to run al~nost all the co~nnlercial applica- 
tions tested. Each ncw release of 1)IGI'I'AI.. FX!32 
soh!:~re provides additional jackets, and the developers 
intend to jacket nc\v interfaces JS they are released. 

The Emulator 

The filndaniental job of  the emulator is t o  run x86 
applications before they are translated. The first time 
an x86 image cxccutcs under FX!32, the image is exe- 
cuted by tlic emulator. 

The emulator also serves as a backup for translated 
code. Because it is not  possible to statically determine 
all thc codc that can ever be exccutcd by an application 
(especially for applications that generate code on-tlic- 
fly), the emulator is always present to execute such 
untranslatcd x86 application codc. l're\rio~~s binary 
translators built by DIGITAL, also dcpcndcd on the 
prucnceofan emulator in this role.: Emulator perfor- 
mance is more of an issue for FX!32 because, unlike 
those earlier binary translators, all application code is 
interpreted .illhen the x86 application is first run. 

The emulator is an Alpha asscmblp language program 
that interprets the subset of x86 instructions that can be 
executed by a Win32 application. VVIlile an x86 applica- 
tion is running, the x86 processor state is kept partially 
in Alpha registers and partially in a per-thread data 
structure called the CONTEXT. The xS6 integer rcgis- 
tcrs arc pcr~nancntly niappcd to AJplia rcgistcrs, and 
Alpha registers store the statc of' the x86 condition 
codes. Wlde the e ~ n u l ~ t o r  is running, a dedicated Alpha 
register points to  thc CONl-F,XT. Tlic CON'I'"EX1' 
stores the x86 per-thrcad processor context and any part 
of tlie x86 processor statc that must be mai~ltained 
across calls to other parts of  the system, ti)r cxamplc, 
calls to Alpha AI'I routines. 

Pipelined Dispatch 
The structure of the emulator is a classic fctch-and- 
evaluate loop. 'The emulator dispatchcs on the first 
nvo bytes of each instruction, performing the lookup 

in a table of 64IC entries. Each entry contains the 
address of the routine to execute to interpret an 
instruction and the length of tlie instruction. 

The structure of the dispatch loop has been care- 
f i ~  I Iy cratted to make efficient use of 64- bit Alpha reg- 
isters and to efticicntly schedule the execution of code 
in the loop. Software pipelining is used to  overlap the 
fetch and dispatch table lookup for the next instruc- 
tion with the execution of  the current instruction. 
At the top of  the loop, at least eight bytes, starting at 
the address of the current instruction, are in Alpha 
registers. Length information from the dispatch table 
determines the first two bytes of the next instruction, 
allo\ving the dispatch table loolc~~p to be overlapped 
with the csccution of the current instruction. A fetch 
of additional bytes from the instruction stream is also 
initiated. Finally, the loop dispatches to the routine 
whose address \vas obtained from the table on the pre- 
~ ~ O L I S  iteration of tlie loop. 

The indi\lidual routi~ies lia\le been factored by using 
subro~~t ines  and coroutines to perform operations like 
operand fetching, making them as small as possible. As 
a result, the eniulator code required to execute the 
most frequently cxecutcd x86 instructions tits in the 
first-level cache. 

Condition Code Evaluation 
Condition codes are generated by the execution of 
Inany of  tlie xS6 ilistructions. Wc lia\le obser\!ed that 
condition codes arc fi-cqi~ently set and relatively 
infrequentl\~ examined. :l?I~e emulator talces advan- 
tnge of this by e\~aluating the condition codes only 
\vhen t11cy arc used, that is, by using a "lazy evalua- 
tion" technique. The  execution of  a typical instruc- 
tion saves only enough state to  allow the evaluation 
of  condition codes, if required, at  a later time. This 
talces much less effort than initially evaluating the 
condition codes. The  additiotial advantage in defer- 
ring the evaluation is that only the condition codes 
that are used need to  be generated. For example, tlie 
o\rerflow co~ldit ion code may ne\!er be computed if 
only tlie zero flag is used. 

Floating-point Instruction Emulation 
The SO-bit s 8 6  floating-point registers arc modeled 
by a stack of 64-bit mcniory locations that contain 
floating-point values. 'The decision to use 64-bit inter- 
nicdiatc values, I-ather than to faithfitlly replicate the 
80-bit model, was based on the need to  achieve good 
performance when executing x86 floatil~g-point code 
o n  the Alpha processor. Tliis decision was supported 
by the b c t  that the V\7indo\\ls NT operating system also 
uses a 64-bit floating-point model. Although t l~is is an 
approximation, out- experience to date has shown that 
this was a good conipromisc. Very fecv applications 
rely on tlie full precision provided by the x86 floating- 
point unit's ( FPU's) SO- bit registers. 

1)igital Tcclinic~~l Journal 



. l l ie  cn l~~ la to r  also implements a somewhat simpli- 
fied model of the  xS6 FPU's register file. Most instruc- 
tions use the xS6 FPU register file as a traditional 
operand stack; however, several instructions can crcate 
a register file state that is not strictly a stack by freeing 
registers in the middle of the stack, by moving the 
stack pointer without pushing o r  popping, or  by ini- 
tializing the register file in a way that breaks the stack 
model. Modeling the filll complexity of  the x86 FPU 
register file would bc extremely expensive, and experi- 
ence has shown that almost all programs use the regis- 
ter file strictly as a stack. The current version of the 
emulator takes advantage of this. We are investigating 
ways to rnodel the floating-point registers in a way that 
maintains good performance but docs not  depend on 
their being treated as a stack. 

Generation of Profiles 
While it is interpreting an xS6 program, the emulator 
generates profile data for use by the translator. The 
profile data includes the following information: 

Addresses that are the targets of call instructions 

( S O L L I Z ~  u ~ ~ ~ c ' s s ,  furget a~dre.s.s) pairs for indirect 
control transfers 

Addresses of instructions that make unaligned rcf- 
erences to memory 

Thc translator uses this information to  generate 
routines, that is, units of  translation that approximate 
a source code routinc. The emulator generates profile 
data by inserting values in a hash table whenever a rel- 
evant instruction is interprctcd. For example, as part of 
interpreting the call instruction, the en~ulator makes 
an entry in a hash table that records the target of  the 
call. When an image is unloaded (either as a result of  a 
call on the FreeLibrary routine o r  when thc applica- 
tion exits), the runtime processes the hash table to 
produce a profile file for that i~nage.  This profile is 
processed by thc server and can result in thc server 
invoking the translator to  create a new translation of  
the image. 

To detect available translated code, the emulator 
uses the same hash table that it cmploys to gather tlie 
profile data. T l ~ c  x86 addresses for which there are 
translated routines and the address of the corrcspond- 
ing translated code are entered illto the hash table by 
thc runtime when it loads an x86 image that has been 
translated. Wlien a call instruction is interpreted, the 
emulator looks up the target address. If a correspond- 
ing translated addrcss exists, the eniulator transfers 
control to that address. 

The Translator 
The server invokes the translator to translate x86 
images for which a profile exists in the database. The 
translator uses the profilc to  produce a translated 

image. On subsequent esccutions of thc irnage, the 
translated code is used, substantially speeding up the 

' t1011. applic? ' 

Structure and Order of Operations 
The translator has eight major co~nponents (or phases): 
the regionizer, build, the register mangler, the condi- 
tion code mangler, improve, the code selector, thc 
scheduler, and the assembler. (A11 additional phase 
that performs various peephole optimizations is dis- 
abled in the DIGITAL FX!32 V1.O translator.) Tlie 
major components fi~nction as follows: 

1. The Regionizer-The regionizer uses data in the 
profile to divide the source image code into rou- 
tines, which are described in the scction Generation 
of Profiles. Each call target in the profilc is used to 
generate an entry to a routine. The regionizer rep- 
resents routines as a collection of regions. Each 
region is a range of  contiguous addresses, which 
contains instructions that can be reached from the 
entry address of the routine. Unlike basic bloclcs, 
regions can have n~ultiple entry points. The small- 
cst collection of regions that contai~l all tlie instruc- 
tions that can be reached from the routine entry is 
used to represent the routine. Many routines have a 
single rcgion. This representation \\/as chosen to  
efficiently describe the division of the sourcc image 
into units of translation. 

The regionizer builds routines by following the 
control flow of  the source image. Wlicn an indirect 
jump instruction is encountered \vhilc following 
the control tloc\; the poss~ble targets of the instruc- 
tion are obtained from the profile. W ~ t l l o ~ ~ t  this 
profilc ~nfor~nntion,  ~t ivould be vcrjl difficult to 
reliably identi* these targets, and indirect ju~nps 
would have to be treated as returns from the rou- 
tine. The profile information makes it possible to 
reliably generate a rnorc complete reprcsent'ition of 
routlnes with correct control tlo\v. 

After the regionizer runs, cach of the other major 
components is rtui in sequence for each routine. 

2. B~~ild-Ruild rcparscs the x86 instructions in the 
routine to create an internal representation ( I R )  of 
the routine for use by the subsecluent colnponents. 
The IR is a graph of basic blocks and is similar to the 
IR used by many optiniizing compilers. 

3. The Register Manglcr-The initial IRis a straight- 
forcvard representation of the sourcc sS6 code. 
Tliis rcprcscntation ignores the otlcrlap of the x86 
registers; the I R  treats each occurrence of  FAX, 
AX, AH, and AL as a separate rcgistcr. The rcgistcr 
ma~lgler adds insert and estract operations as net- 

essary to represent the actual semantics of the s 8 6  
rcgisters. 
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4. The Condition Code Manglcr-The effect of  sS6  
instructions on condition codes is represented 
i~nplicitly in the initial IR. Thc condition codc nian- 
gler adds instructions to explicitly generate condi- 
tion codes. Since the condition code ~nangler 
~~nders tands  the co~itrol  flo~v of the entire routinc, 
it knows \\.hen condition codes are live and only 
adds code to gcnerate condition codes \\/hen they 
are used Iatcr In the r o ~ ~ t i n e .  

5. Inipro\~e-Improve performs scvcral transforma- 
tions tliat produce codc Inore suited to tlie Alpha 
architecture. In the initial IR, each push and pop 
instruction is csplicitly represented as a decrement/ 
incrcrnent of the sS6  stack pointcr, accompanied by 
a store/load. Improve collects all the rnanipl~lation 
of  the sS6 stack pointer into a singlc dccrc~ncnt at 
the beginning of  a basic block and a singlc incrc- 
nient at the end of that block. Improve also uses 
simple value numbering and analysis of  memory 
refercnccs to try to  eliminate loads and stores to 
both the xS6 stack and the floating-point stack and 
to perform constant folding. Although Improve 
performs only relatively simple optimizations o n  a 
single basic block, \ale have fo~lnd it to bc quitc 
effecti\!e in improving the quality of the codc that is 
generated. 

6 .  'The Code Selector-The cocie sclcctor transforms 
the I R  fro11i a representation that contains mostly 
x86 instructions to one that contains only Alpha 
instructions. This transformation is done instruction 
by instruction, \vith each x86 instruction being 
replaced by a sequence of Alpha instructions tliat 
produce thc same effect. The iniplementation of thc  
code selector is based on the TWIG code generator.' 
Although the code selector is capablc of dcaling 
with mucll morc complicated patterns oE instruc- 
tions, this capability is not currently used. 

7. The Scheduler-After tlie code selector is run, all 
the instructions in the IR are Alpha i~istructions. 
The scheciulc~- reorders the instructions \\lithi11 a 
basic block to minimize t l ~ e  cycle cou~ i t  for the tar- 
get processor. 

S. The Assembler-Tlie asserlzblcr builds the output 
translated image. 

Use of Profile Data 
The regionizer is the only component of thc current 
translator that uses the control flour infi)rniation i11 tlie 
protilc. Thc rcgionizcr uscs the protilc to determine 
\vhich parts of tlie source imagc are translated. Future 
versions oftlie translater will use the profile to perform 
path-directed opti~nizations and to place code so  as to 
reduce cache misses. Those changes will improve the 
pcrforniance of translated codc. 

Retr~inslation of  an image is triggered bv growth in 
the size of the  profile. Because profile data is generated 
only \vhen the enlulator esecutes previously untrans- 
lated parts of  the source image, an i~lcrcase In tlie size 

of the profile i~idicates tliat new parts of thc program 
have been esecuted. Retranslating with the new pro 
file \v~l l  cause these additional parts of thc Image to be 
translated. 

Alignment Issues 
On an Alpha system, references to niemory locations 
that are not naturally aligned r e s ~ ~ l t  in exceptions that 
are handled by the Windows NT kernel. Alignment 
exceptions call be avoided by using unaligned code 
sequences that use the LDQ-U and STQ-U instruc- 
tions. Unaligned code scquences are slower than 
aligned sequences for accessing locations that are nat- 
urally aligned but much faster for accessing locations 
that are not naturally aligned. Native Alpha colnpilers 
al\\;ays try to generate unaligned code sequences \\then 
referencing unaligned data to avoid die expense o f  
dealing with alignnient exceptions. 

When generating tlie code for an instruction that 
refcrc~lccs memory, the code selector must determine 
\\~hctlicr to L I S ~  an aligned sequence or  an unaligned 
scquencc To  make the determination, the code selec- 
tor nccds to know the alignment of  the address being 
rcfcrenced. In general, this cannot be determined by 
static analysis of the st36 code. To  solve the problem, 
the codc selcctor uscs information in the profile about 
tlie alignment of menlory addresses. The prof le con- 
tains the address of  every instruction that made an 
unaligned reference to memory. The codc sclcctor 
generates u~ialigned sequences for those instructions 
and aligned sequences for all other melnory rcfcrences. 
Although this codc gcncration proccss is effective most 
of tlic time, some progralns exhibit different memory 
rcfercncc bcha\lior 0 1 1  successive runs. For those pro- 
grams, alignment csccptions can still occur. 

Shadow Stack 
Tra~islati~ig rct111.11 instr~lctions presented partici~lar 
problcms for the translator. The translation of  a call 
instruction saves the x86 return address on  the xS6 
stack and tlicn calls the translated codc for the routine. 
After the translated call, the sS6 return address is on 
tlie s 8 6  stack and the corresponding native return 
addrcss is in an Alpha rcgistcr. This maintains the xS6 
stack in the expected x86 state. One  way to translate a 
return instruction \vould be to use the xS6 return 
addrcss to loolc up a corresponding Alpha address; 
however, it is desirable to avoid the cxpense of a hash 
table lookup on every return. In  tlie usual case, the 
return address is not changed by the routine and the 
translated code can pop tlie x86 stack and perform a 
native ret~lrn by 11sing the native return address. T\vo 



problems must be solved, though. First, some mecha- 
nisrn is needed to determine if the xS6 return address 
has been modified. Sccond, a location is needed to 
save the native return address. Both problems are 
solved by using the shadow stack. 

The shadow stack resides at the top of the native 
Alpha stack and is maintained by tlie translated code 
(with help fi-om the ernulator). A shadow stack frame is 
crcatcd for each call of a translated routine. When onc 
translated routine calls another, the calling routine saves 
the x86 return address and the current xS6 stack pointer 
in its shadow stack frame. The called routine then savcs 
the native return address in the calling routine's shadow 
stack frame. O n  return, the called routine expects to 
find the x86 return address and the current x86 stack 
pointer in the calling routine's shadow stack frame. In 
this case, tlie called routine is returning to the enviro~l- 
mcnt that the calling routine expected and performs a 
native return. If the value of either the return address 
or  the stack pointer has changed from the value 
expcctcd by the calling routine, the called routinc 
returns to the cmulator. 

In a similar manner, the emulator uses thc informa- 
tion in the shadow stack to determine u ~ h e ~ i  it can 
return to translated code. A number of conditions 
can causc translated code to  reenter the emulator. For 
cxarnple, the cmulator is entered if the target of a 
translated indircct jump instruction is not known at 
translation time. Having the emulator return to trans- 
lated codc on a return instruction mininiizes the 
aniount of time tliat is spent in the emulator; however, 
tlie elnulator can only rcturn to the translated code ifit 
Icno\vs that it has a valid retilrn address. The shadow 
stack provides a mechanism to perform that validation. 

The Database 

Thc database consists of  two parts. As described for 
the runtime, thc first part of thc  database is a directory 
tree that contains prof le files, translator log f les, and 
translated images. 'The second part of the database is 
kcpt in the registry and consists of information about 
s86 applications and iniages that the DIGITAL FX!32 
sofnvare has run on the system, together ~ t i t l i  config- 
 ration inforniation. 7y11e conf guration information 
includes the maximum anlount of disk space that can 
be used by t;S!32, the maximum number of images 
that can bc stored in tlic database, the default transla- 
tion options, tlie work list that the server uses to 

schcdulc translations, and the DatabaseDirectoryList. 
The DatabascDircctoryList is a list of  paths to  addi- 
tional databases that arc to be searched for image pro- 
files and translation results when the image is first 
executed. Directories on this list can bc uscd to access 
information about the image from other machines on 
a nenvork, making available to  a user translations per- 
formed on another, perhaps more powerful, machine. 

The Server 

The server is a Windows NT ser\iicc tliat normally 
starts whenever the systern is rebooted. Tlie server 
,~utomatically runs the translator when appropriate, 

thus making the translation process completely trans- 
parent to  the user. Tlie server also maintains the data- 
base t o  control DIGITAL FX!32 resource usage. 

The Manager 

Usually the operation of DIGITAL FX!32 sofhvare is 
completely transparent to thc uscr. L i e  any other pro- 
gram, though, FX!32 consumes systcm resources and a 
user must be able to control that resource usage. One 
of the roles of the manager is to provide a user interbce 
to the configuration information kept in the database. 

Figure 2 shows the manager \vi~ido\v. The upper 
pane contains information about the various applica- 
tions that have been run on the systern: the total 
amount of disk space being i~sed for prof les and trans- 
lations of images loaded by the application, the num- 
ber of t i~nes  the application lias been run, the date 
when it was last run, and the optinlizer (translator) 
status. The lower pane contains information about 
the images that have been loaded by tlie highlighted 
application in tlie upper pane: the total amount ofdisk 
space used to store tlie profile and translation of tlie 
image, tlie number of  times the iniagc has been 
loaded, the date o n  which it cvas last loaded, and thc 
status of  the last translation of  the image. 

By interacting with tlie manager, the user can con- 
trol various aspects of  FX!32 operation, such as the 
maximum amount of  disk space to use, which informa- 
tion to retain in the database, and when the translator 
should run. 

Results 

Tlic DIGITAL t;X!32 developme~lt team had t ~ v o  pri- 
mary goals for the sohvare: (1  ) to acliic\/c transparent 
execution of 32-bit x86 applications J J I ~  ( 2 )  t o  yield 
approximately the same performance as a liigh-end 
xS6 platform whcn running applications on  a higli- 
performance Alpha system. The 1)IGITAL FX!32 
product meets both goals. 

Transparency is provided by tlie transparency agent 
and a run-time environment that can load and execute 
an x86 application cvithout a rranslation srcp. Appli- 
cations can be launched and executed on an Alpha 
systcm that is running FX!32 just as they can on  an 
x86 system. We have performed extensive testing 
of  more than 7 5  applications that run using FS!32, 
i~~c lud ing  major conlmercial applications such as 
Microsoft Officc 95,  Visual Rasic 4.0, Photoshop 4.0, 
and Core1l)lWW 6.0. 
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$ FX! 32 Manager I 
- - 

1 4 1 2/1 6/96 03.1 7: 02 PM Success 
1 4 1 2/16/96 0 3 1  7:01 PM Success 
14 12/1 6/96 0 3 1  7:01 PM Success 
19 12/16/96 0 3 1  7:02 PM Success 
14 1211 6/96 03:17:02 PM Success 

Figure 2 
-1-hc 13IC;lTAl. FX!32 M'in3gc1. 

l)IC;ITAI, FX!32 sotiware also mct  its performance 
goal.  Figurc 3 sl io\ \~s  the  relative performance o n  
BYTE il/lqi,c~zir~e's BYTElnark benchmark o f  a 2 0 0 -  
megahertz  ( M H z )  l ' c n t i ~ ~ m  P r o  s)/stern and a 5 0 0 -  
M H z  Alplia system running  FX!32. F o r  this 
bcnchniark, thc  Alpha system provides a b o u t  t h e  
same performance as t h e  200-i\/lHz P e n t i ~ ~ r n  Pro  
system. Figurc 3 also shows that  the  Alpha native 

version o f  the  benchmark runs  t\\iicc ns f ~ s t  as tlic 
Pentiuni P r o  version. 

Of course, n o  s i~igle  bcnchmark characterizes the 
performance o f  a system. Even so,  when running 
translated s86 applications, \\,e lia\~c consistcntly men- 
sured performance o n  a 5 0 0 - M H z  Alpha system t o  be 
in the range ben\~een that o f  a 200-iVHa l 'cnti~~ln sys- 
tem and that o f  a 2 0 0 - M H z  Pcntium Pro system. For 

200-MHz PENTIUM PRO 500-MHz ALPHA 21 164A 500-MHZ ALPHA 21 164A 
RUNNING DIGITAL FX132 (NATIVE ONLY) 

KEY 

INTEGER 

FLOATING POINT 

Figure 3 
DIGITAL F5!32 Pcrti)rmnncc o n  rhc IIY 1'E Bcnchrn'irk) 



some applic;ltions, pcrfornlancc can exceed that  o f  a 
Pen t iu~n  Pro system. 

T h c  initial \lcrsion of  the  DIGITAL FS!32 sofnvare 
has some limitations. FX!32 esecutes only application 
code; it does not  execute dri\rers. Consequently, native 
drivers arc required for any peripheral that is installed 
o n  an  Alplia system. Also, as described in the 
Transparency Agent  section, FX!32 does no t  provide 
c o ~ n p l e t e  support  for s86 ser\~ices. Further, FX!32 
ciors not  support  the  Windows NT D e b u g  AI'I. 
Support ing that  interface \voilld require the  capability 
to rematerialize the  s86 state after every s S 6  instruc- 
tion, thus  se\,ercly limiting optimizations that  the  
translator could perform. O p t i ~ u i z i ~ l g  compilers make 
a similar trade-off by restricting o p t i n ~ i z a t i o ~ i  when  
debugging information is required. Since FX!32 does 
n o t  support  the  D e b u g  interface, applications that  
require it d o  n o t  run  under  FX!32. Those applications 
are mostly s86 development environments, and it 
probably makes more  sense t o  run  them o n  an s86 
s!lstem. T h e  limitations described are n o t  serious, a n d  
most xS6 appl ica t io~~s  that  esecute on  an x86  proces- 
sor  that  is running the  Windows NT operating system 
also execute o n  an Alpha s )~s tc~ i i  running Windows N'T 
and DIGITAL FS!32 sofi\\~are. 

Summary 

DIGITAL FX!32 sofnvare pro\~ides h s t ,  transparent 
execution o f  32-bi t  s 8 6  applications on Alpha slatems 
running thc Windows NT operating system. This  is 
nccornplishcd ~ ~ s i ~ i g  a unic1~1e combination o f  emula- 
tion and binary translation. T h e  emulator  runs a n  
application, interprets the  code, and generates profile 
information. For  suhscquent executions, t h e  translator 
uses the p rof  le data t o  produce translated images tllat 
c o n t : ~ i ~ ~  optimized native Alpha codc. An application 
translated by means o f  1)IGITAL FX!32 s o f w a r e  runs 
u p  to 10 times h s t e r  than the  same application run-  
ning under  the cmulator alone. Morco\ler, the  transla- 
tion takes place in the  background and is therefore 
transparent t o  the user. 
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Leo P. Treggiari 

Development of the 
Fortran Module Wizard 
within DIGITAL Visual 
Fortran 

The Fortran Module Wizard is one of the tools 
in DlGlTAL Visual Fortran, a DIGITAL product for 
the Fortran development environment. Visual 
Fortran consists of the DIGITAL Fortran 90 compiler 
and run-time libraries and the Microsoft Developer 
Studio. Together, these technologies provide a 
rich set of tools for the Fortran developer who 
is using the Windows NT and Windows 95 sys- 
tems. The Fortran Module Wizard generates 
complete Fortran source code, allowing Fortran 
applications to invoke routines in a dynamic link 
library, methods of an Automation object, and 
member functions of a Component Object 
Model (COM) object. 

DIGITAL Visual Fortran is an integratcd de\~eloprnent 
environment for E'ortrai applications.' It is supported on 
the Wjndo\vs NT version 4.0 operating s!istem on both 
Alpha and Intel liard\ilare and on tlie Windo\\ls 95 sla- 
tem. DIGITAL Visual Fortran is a combination of tcch- 
nologics from DIGITAL and Microsoti Corporation. 
The DIGITAL-supplied compiler and run-time libraries 
support the DIGITAL Fortran 90 l a l igua~c .~  DIGITAL 
Fortran 90 conforms to Punerican National Standard 
Fortran 90 (ANSI S3.198- 1992) and provides many 
extensions to the Fortran 90 standard. The Microsoft- 
supplied integrated dcvclopment environment is tlie 
Microsoh Developer Studio, which is also used by 
Microsoti Visual C++, Microsoti Visual J++ (for Java), 
other MicrosoFr tools, and other companies' develop- 
ment tools. Developer Stud10 i~icludes a text editor, 
resourcc cditors, project build facilities, an incremental 
linker, a source code browser, an integrated debugger, 
and a profiler. Tlie operation of all tliese tools is con- 
trolled tioni a single application. Figurc 1 shows an  
example of Microsof? Developer S tudo  fiom n~liich two 
Fortran source files are being edited. DIGITAL adds a 
nc~rnber of Fortran-specific tools to  the e~i\f iro~irne~it ,  
one of\vlich is the Fortran  module Wizard. 

Design of the Fortran Module Wizard 

DIGITAL designed thc Fortran Module Wizard to 
hclp Fortran developers working in the application-rich 
Windows en\lironmcnt. The Fortran  module Wizard 
si~pports acccss to dy1ian1ic link libraries (DLLs) and 
servers based up011 Microsoft's Co~iiponcnt Object 
Modcl (COM). This support allo\vs Fortran developers 
to usc the popular mechanisms that make functionality 
(services) available to other so%\lare (clients). 

Traditionally, Microsoh and others have provided 
system interfaces and reusable libraries of  code as 
DLLs. A DLL is a file containing hnctions that can be 
called by programs and other DLLs. The role of DLLs 
on a Windows system is very similar to that of sliare- 
able images 011 the OpenVMS operating system and 
shared libraries on the UNIX system. Today, IILLs are 
still the primary mechanism fix accessing system inter- 
faces on Windows. 
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mpposten - Microsdl Developer Sludio I 

1 Open t b r  8pmc1timd prnrntatlon 
Status - SAppllcation-GetPmsentations(ppApp1ication. ppPresentations) 
v T r u e W  - VT-BOOL 

.I Resource Rles vTrueW4BOOL-VAL - VARIANT-BOOL-TRUE 
B Exlernal Dependenaes v F a l s e W  - VT-BOOL 

POVvERWlNT MOD vFalse%W%BOOL-VAL - VARIANTJOOL-FALSE 
status - SPmsentations-Open(ppPresentat~ons, filename, vTrue, vFalse, & 

vFalse. ppPresentat~on) 

I Ron the slxde show 
status - $Prassntatien~OetS1ideShow(ppPresentation. ppSlideShow) 
atatus - SSlideShow-Run(ppSlideShow, 1, ppRun) 

Figure 1 
Microsoft Developer Studio, Two Fortran Sourcc Files Being Edited 

When Microsoft introduced OLE version 1, the 
name OLE was an acronym for object linking and 
ernbeddng. OLE version 1 enabled compound docu- 
ments by allowing a document to link to, or  embed 
data from, another document. In 1993, Microsoft 
introduced COM as the base architccture of O I L  
version 2.3 COM is an estensible architecture that pro- 
vides mechanisms for creating and using sohparc com- 
ponents. A sofcware component consists of reusable 
pieces of code and data in binary h r m  that can be 
plugged into other sofnvarc components %om other 
vendors with relatively little effort .Tike DLLs, COM 
allocvs a sofhvare developer to provide a set of scrvices 
to multiple clients. In  addition, COM has the advan- 
tage of allowing the services to reside in another 
process and on  another machine. (Distributed COM 
[DCOM] allows objects to be creatcd and used on 
remote maclli~ies.) COM also contains features that aid 
in the deploymelit and c\lolution of the services." 
Microsoft has extended its languages and tools to aid 
sohvare developers in the creation of clients and 
servers based upon COM (hereafter referred to as 
clients and servers in this paper). 

Why does a Fortran developer need help accessing 
scrvices in 13Lls and scrvers? Calling code that is writ- 
ten in another programming language is, in general, 
difficult. There are complex issues around calli~ig stan- 
dards and data type representations. If a mistake is 
made in n~anually translating a fi~nction signature 
from one la~lgi~age into another, today's program- 
ming cnviron~nents are of little help. The application 
can fail at a point in the code, for example in thc rou- 
tine prolog, which does little to  suggest the cause of 
the problem. Oftcn, solvil~g these proble~ns requires 
~~ndcrstanding the intricacies of  callilig standards and 
single stepping through assembly code. Calling the 
colnponcnts in a server also requires understanding 
and properly using a number of  COM programming 
interfaces. 

Thc Fortran Module Wizard deals with the difficul- 
ties. I t  reads a dcscription of a service, \vhich the ser- 
vice provider created, and generates Fortran source 
code. This automatically generated code makes calling 
these scrvices as easy as calling another Fortran func- 
tion or  subroutine. 
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Enabling Technologies 

Componcntsof COM, Fortran 90, and the Microsoft 
I)c\,clopcr Stutiio enable the hnctionalin of the Fortran 
 module Wizard. This section gi\,es an o\.cr\,icw of these 
technologies. 

COM Technologies 
As nlcntioncd earlier, COM provides mccl~,~nisms for 
crcati~ig reusable sohvare components. 'I'his paper 
attempts to cx~lxin o ~ d y  those parts of<:OR/I, and some 
tcch~lologics bascd on (:OM, ncccssary for the reader 
to undcrs ta~~d the use of server fi~nctionality from 
codc generated by the Fortran MotJulc CViz'1rd. <:OM, 
OI.E, , ~ n d  Acti\leX, of course, contain man!! more 
mechanisms." A nuniber of the references listed at the 
end of this paper are good sources of further read- 
ing.' - Much of the description of COIM in the fi)llow- 
ing scction is taken from the Component Object 
Model Specificatio~l.~ 

COM Objects (:01M is an objcct-bascd prograni~ning 
model designed to promote sofnvarc intcropcrability. 
In otlicr \\fords, C:OM allows nvo or 1iio1-e applications 
or components to easily cooperate u~ith one another, 
cvcn ifthcy cs7ere writtell by different \rcndors at differ- 
ent times, in different programming I '~ng~~agcs ,  or if 
they arc running on  different ~nachincs running differ- 
ent oper,lting systems. COIM defines a co~iiplctcly stan- 
dardized nicclianism for creating ot>jccts and k)r c l i e~~ t s  
and objects to communicate. Unlike traditional object- 
oriented progra~iiming environniwits, thcsc mccha- 
nisnls arc independent of the applications that L I S ~  objcct 
scrviccs and of the prograniniing languages used to 
crcatc the objects. COM therefore ticfincs a binary 
interoperability standard rather than a language-based 
intcrol)crability sta~tdard on any given operating sys- 
tem and hardware platform. 

'li) support its interoperability features, <:OiM defines 
and implements mechanisms that allon, co~nponents to 
connect to each other as objects. The definition of an 
objcct is a piece ofsohvare that contains the fi~nctions 
that represent \\,hat the object can d o  (its intelligence) 
and ;issociatcd state information tbr those h~nctions 
(data). In  otlicr words, an object is some data structurc 
and some ti~nctions to nianipulate that data. In this 
paper, we use tlie term ol7ject to mean an  objcct 
instance, as opposed to an objcct class. Ai objcct class is 
similar to a dcrivcd-type in Fortran 90 or a structure in 
C.  It specifies a 13lueprint for object instances tlmt a 
S C I - \ ~ C ~   ill crcatc upon a client's rcclucst. An importalit 
principle ofobject-oriented programniing is encapsula- 
tion, in \\,liich the exact implementation of those func- 
tions and the exact format and layout of the  data is only 
of concern to thc object itself. This inhrmation is hid- 
den horn the clients of a11 object and can therefore be 
changed \vitI~oi~t affecting tlie clicnt. 

With COM, colnponcllrs interact with each other 
and \vith thc system through collections of f ~ ~ n c t i o n  
calls, also known as methods or  member hnctions or 
requests, called interfaces. An interface is a semanti- 
cally related set of member fi~nctions. The intcrface as 
a whole represents a feature ofan object. The member 
hrnctions of a n  interface represent tlie operations that 
make up the feature. 

For a ~ 1 ~ 1 i c k  Iool< at a simple example of a COM 
object, i~iiagi~ic a (;aIc~~lator object that is willing to 
provide aritlimctic scrviccs to any clicnt. I t  could SLIP- 

port an intcrface ~ ~ a ~ n c d  I<~alculate. Ry convention, 
tlie letter I al.i\lays prcfiscs the name of an interface. 
The ICalculatc interface could contain member h n c -  
tions named Add, Subtract, Multiply, Divide, etc. If a 
client \vanred to use the ser\.ices of  the Calculator 
object, it ~vould request (:01M to creatc an object of 
class Calculator and request the ICalculate interface. It 
could then call the mcmbcr functions of tlie ICalculate 
interfaces (Add, Subtract, etc.). 

With <:OR/l, n pointcr to an object is actually a 
pointcr to a p'1rticula1- interface that the object sup- 
ports. All COi\/l objects support tlie interface named 
Iunkno\\m, which contains tlie member filnctions 
named AddRef, Rclcasc, and QucryInterface. All COM 
objects must implement thcsc member functions. 
AddRef and Release implement object reference 
counting. Clients use then1 to tell an object when they 
are using it and \\.hen they are done. Objects delete 
tliemsel\~es \\.hen they are no longer being used by any 
client. QueryInterhcc is tlie basis for a process called 
interface negotiation, \\,hereby a client asks an objcct 
what sertrices it is capable of providing. For example, 
if a client had a pointer to the Calculator object's 
IUnk.no\vn intcrf~cc,  it could get a pointer to its 
ICalculate interface by calling tlie IUnknown Quer)l- 
Interface member function. In general, an object can 
support multiple interfaces and a client can use Qucry- 
Interface to get a pointer to any of then]. Examples in 
which Fortran codc calls member functions in intcr- 
faces are gi\;cn in the scction Fortran Module Wizard 
Functionality. Microsoh defines a number of usch~l 
interfaces. Object class creators are Free to use existing 
interbces and dcfi nc tlicir o \ \ ,n .  

Automation Objects One Microsoh-defined intcrface, 
IDispatch, is the basis for A u t o m a t i ~ n . ~  Any objcct 
that supports this intcrface, also lt~louln as a dispinter- 
face, is an Automation object, and can be accessed by 
any Automation clicnt. An Automation object csposcs 
methods and properties. Methods are functions that 
perform an action on an object and are similar to the 
member hnctions of  (:OM objects. Properties hold 
information about tlie state of  an object. A property 
can be represented by a pair of methods; one for gct- 
ting the property's current value, and one for setting 
the property's \,aluc. 
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The capabilities of an Automation object arc similar 
to those of a CUM objcct. An Automation object is, in 
fact, a COM object; that is, it supports the JUnknown 
intcrfilcc as well as the IDispatch intcrf~cc. Ho\\~cvcr, 
tlie mecl~anisms for using the scrviccs of the two arc 
\rerji different. Microsoft designed Automation based 
on tlze needs of scripting or macro Ia~igl~agcs (i.e., 
Visual Basic). It does not require ilndcrstanding the 
intric;icies of cnlling co~n~entions 3s does COM. It ~1117- 
ports mcclianis~us more suitable to the d!lna~iiic qucr!l- 
ing of an object's capabilitics. This ~nnltes Automation 
more suited to  late binding of objects, that is, invoking 
nietliods of a prc\~iously i~nkno\\,~z object at run time. 

An Automation client accesses all tlze metl~ods and 
properties of an Automation object t l i r o ~ ~ g h  a single 
rncnibcr f~nc t ion  of the Illispatch intcrfi~cc named 
Involte. The client passes Invoke a numher of argu- 
ments that identi% 

The mcthod, its 'irgumcnts, and '1 place to receive 
tlie r c t i ~ r ~ i  \laluc, or 
The property mcd its ne\v \'due, or  

The propunr and a place to receive its current \falue 

Tn hct ,  Invoke could be described as tllc Snriss army 
knife of Automation program~iiing. 

Most of thc  diffcrcnccs benvecn Automation ol7jects 
nnd COM objects arc hidden by the Fortran intcrhccs 
that the Wizard generates. 

Object Identification 'li, enable the use of (:OM objects 
created by disparate groups of dc\~elopcrs, tlicrc rlzust 
be a method of uniquely identi@irzg an objcct class 
regardless of  its origin. COM uses globally unique 
identifiers (GUTDs) to d o  this. A GUID is a 16-byte 
integer value that is guaranteed (for all practical pur- 
poses) to  be unique across space and time. COM uses 
GUIDs to  identif\, objcct classes, interfaces, and other 
things that requjre unique identification. COM pro- 
\,ides a routine named CoCrcatcGUIl), and Microsofi 
pro\iidcs a ~~ t i l i t y  nanicd GUIDGEN, tliut a developer 
uses to generate a GUID.  Assigning a C;UIll to an 
ohject class or interfacc is tlie job oftlic creator oftlic 
class o r  interhce. To create an instance of an objcct, 
the de\relopcr necds to tell COM thc GUIL) of  thc 
object. Using 16-byte integers fix identification is fine 
for computers, but it poses a cliallcnge for the typical 
developer. COM supports the use of a less precise, tcs- 
t i~al  name called a programmatic identifier (Progll)). 
A ProgID takes the form: 

For esamplc, the nnnie of the Basic object of thc 
Microsofi PVord application is CVord.1Fasic. 1 . Similarly, 
interfaces are ilsually discussed ~lsing their Issx nnme 
(for esamplc, IUnkno\\,n), but their Gu l l )  uniqucly 
identifies them. ProgILls are not supplied for all objects. 

They are nor111a11y supplied only f i ~ -  Applicatio~i 
oL7jects. An Applicatio~z object is a top-level objcct that 
beconies activc wlzcn thc application starts. I t  provides 
a starting point for clicnts to access a11 of  an applica- 
tion's su bordinatc objects. 

Type Information Type ilifi)rnzation contains descrip- 
tions ofobjcct classes, interhces, llLLs, data swuctures, 
2nd so forth that arc independent of any program- 
ming lang-i~agc. A dc\lclopcr accesses type infol.111ation 
tlirougli :in intcrF.icc named ITypcInfo.'A client can 
gct a pointcr to q p c  informnrio~i fiom 

A running Automation objcct 

A running COM object tliut s ~ ~ p p o r t s  the 
I Pro\,idcClassInfo intcrhcc 

A type librnry is a collection o f ~ l 7 e  information for 
number of objcct classcs, intcrf~ces, etc. A devcl- 

oper can store a type libra~.!~ in 3 separate tile (using ;i 
.'rL,11 estensio~z by con\lention), or as part of nnothcr 
file. For example, tlie type library that dcscriL>es tlie 
type inhrmation fbr a l)l.,I, can be storcri in the .DLL 
file itself. Since the type infi)rmation is stol-ed in a file, it 
is a\,ailablc regardless ofwliethcr or  not the client has :I 
pointcr to the ol>jcct(s) tliat the infixmation describes. 

The easiest \vay to crcatc a type library is to \vritc a 
script in tlze Microsofi Intcrbcc llefnition Lnguagc 
( I 1 ) L . ) .  The Microsoft Il)L, co~~ipilcr (MIDL) reads an 
[I>[. script and creates a .T1.13 tile.'"An Ill1,script issimilar 
to J C++ header file \\lit11 ndditionnl syntax for informa- 
tion requi~.ed by COM. An example of such infom~ation 
is \\rhcther an argunient to a rncmbcr f ~nctio~z is an input, 
an output, or an i~lput/output argument. 

To L I S ~  the Fortran Module Wizal-cl, tlze de\leloper 
must kno\\r\\!Izere to find type i~iformation fix the hnc -  
tionalin to be used. Some examples of this are given in 
the section Fortran Module Wizard Functionality. 

Fortran 90 
This section describes features of the DIGITAL Fortran 
90 language that the Fortran Module Wizard uses in 
tlle code that it gener'ltes. 

Modules Fortran 90 docs not s~lppor t  objects, but it 
does pro\fide a nc\\' fixm of  prograln unit called a 
module. A Fortran  nodule is a set of  declarations that 
arc g r o ~ ~ p e d  togctlicr under a global name and are 
made a\,ailable to other program illzits by means of  the 
Fortran USE statelizcnt. These rnodulcs havc similari- 
ties to  C include files but are more powerfi~l. 

'The Fortran Module Wizard generates a source file 
contni~iing one or  I ~ O J - C  Fortlan modi~les and places 
the follo\\ling types ofinfo~.mation in the niodulcs: 

l)eri\~cd-type definitions-Fortr~11i cq~~i\lalents of 
d;ita structures tliat arc found in t l ~ e  type information. 



Procedure interface detinitio~is-Fortran interface 
blocl<s that describe the procedures foilnd in tlic 
type information. 

PI-occdurc dcfinitions-Fortran fi~nctions and sub- 
routines that are wrappers for the procedures foillid 
in the type information. The wrappers make the 
exter~lal procedures casicr to call h~ii Fortran by 
handling data conversion and low-level invocation 
details. 

The nsc of modules allo\vs the Fortran Module Wizard 
to encapsulate the data structures and procedures 
esposcd by an object or DLL. in a single place. These 
definitions can be sliarcd in multiple Fortran programs. 

Attributes The DIGITAL Fortran 90 language sup- 
ports a number of calling coxi\~ention attributes that 
allo\i, Fortran programs to call programs written in 
otllcr progra~n~iiing languages. Some attributes select 
the calling con\leation (STL)CAL,L, C ,  VARYING). 
Others detcr~ninc whether a n  argument is passed by 
value or l,)r refcrcncc (VALUE, KEFERENCE). Another 
attribute defines the external name of  tlie procedure 
(ALIAS). 

Pointer To Procedure The address of a COM rnember 
filnction is never hio\vn at program linl< timc. The 
developer must gct a pointer to an ol~ject's interface at 
r i ~ n  time, and the addrcss ofa pnrtici~lar member f i~nc- 
tion is c o ~ i ~ p i ~ t c d  fi-olu that. We have extended the 
DIGITAL Fortran 90 language to support a Pointer 
To procedure. 

Microsoft Developer Studio 
Microsoft Dc\feloper St i~dio  provides a number of 
methods that allo\v software dcvelopcrs to  extend its 
cnvironmcnt." This section describcs these methods. 

Tools Menu Dcvelopcr Studio contai~is a Customize 
dialog bos through which the dc\~clopcr c,In add i~tili- 
ties to the Tools menu and then run tliosc utilities 
froni within De\lcloper Studio. 

Gallery The Developer Studio Gallery provides a 
central repository for all rcusablc parts of projects. The 
reusable parts can range froni something as simple as a 
bitmap to something as complex as a DLL.. 

Developer Studio Object Model De\ielopcr Studio 
provides a sct of COM objects that give developers 
programmatic control of its fi~nctionality. Users can 
crcate commands that perform specific taslcs and add 
them to a toolbar. The Developer Studio Object 
Model is programmed in three ways: (1) by creating 
macros in the Visual Basic Scripting Edition Language 

(VfiScript); ( 2 )  by creating a De\feloper Studio 1)LL 
Add-in, \vhicli is a server iniple~iientcd as a 131,L; and 
(3)  by creating a separate Automation client tliat con- 
nects to the Developer Studio objccts. 

Wizards A \vizard is code that creates the starter 
files for a nc\v application or  adds a feature to  an 
existing application. Wizards tliat add features arc 
stored in tlie Developer Studio Gallery. Wizarcis that 
create starter tiles for a ne\v application are called 
AppWizards. When the dc\,cloper rcclilcsts the cre- 
ation o f  a new project, Developer Studio presents a 
list of the types of project that can be created (for 
example, a console application or a 1)LL). In addi- 
tion, it lists the installed AppWizards that can Sen- 
erate complete applications. O f t e ~ l  they contail1 
options that al lou the dcvelopcr to choose thc fed- 
tures o f a  generated application. 

Microsoft Visual C++ provides a number of  
AppIYizards; most of them can crcate typical C++ 
applications. In addition, to aid drvelopcrs in estend- 
ing Developer Studio, one AppWizard CI-e,~tes the 
starter files for a custom AppWizard, and another 
creatcs the starter files for a DI.,L Add-in. The Fortran 
Module Wizard is currcntl!r implemented as an appli- 
cation that runs from the Dc\clopcr Studio Tools 
nicnu. In the future, it may be a De\reloper Studio 
AppWizard. 

Fortran Module Wizard Functionality 

This section describcs tlie user interface of tlic Fortran 
Module Wizard and presents some samples of tlie code 
generated b y  the Wizard. I t  also sho\vs esan~ples of 
calling tlic ge~ieratcd code from Fortran. 

User Interface 
Upon opening the Fortran Module Wizard horn the 
Tools menu, t l ~ c  user is presented \\it11 a series of 
didlog boxes. From these, the user sclects the type 
information for thc functionality nccdcd. 

Figure 2 sho\ia the first dialog box. It requests the 
i~scr to choose the source of the typc infor~nation that 
describcs the required filnctionality. The developer 
must co~isult the documentation to determine \\'hat 
type of object (or  DL,L) the fi~nctionalit\l is implc- 
mcnted as, and \vIiere to find its associated type infor- 
mation. The choices are tlie hllo\ving: 

Auto~nation object 

Type library containing automation information 

Type library containing COM intcrhce inforrnation 

Type library containing 1)LL information 

DLL containing typc information 
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Fortran Module Wizard 5 

Select source of OLE type information -- -- - r 
Automation Object I / 1 B. Type tibray containing Automation information I 

I I Type Libraly containing COM interface informati~n ! 
I I " ................................. . ........ 

6 V p e  Libray containing DLL information' _... ........................ _._. .... ....... .-.... _ ! 

I I a DLLmntaining type information 1 

I I2 Generate procedures to convert between F o l t m  and C shngs 

pq Exit 1 

Figure 2 
Fortran Module Wizard Dialog Box 

Automation Object Microsoli recommends that servers 
provide a type library. Some applications, for example 
Microsofi Word version 7.0, d o  not, but they d o  
provide type information dynamically \\,hen running. 
When this option is selected, Developer Studio dis- 
plays tlie dialog box shown in Figure 3. The Luer then 
enters the name of the application, the name of the 
object, and optionally the \lersion nunibcr. Note thdt 
this method works o1i1y for objects tliat pro\lide a 
ProgID. ProgIDs are entered into the system registry 
and identif), among other things, the executable pro- 
gram that is the object's server. 

Atier the user enters tlie information and presses tlie 
"Generate button," the Fortran Module Wizard asks 
COM to create an instance of the object identified by 
thc ProgID tliat the Wizard constructs fl-om the user- 
supplied information. COM starts the object's server if 
it 11ccJs to d o  so. The Wizard then asks the objcct for 
its type information and gencratcs a f lc  containing 
Fortran modules. 

Other Options If the ~ ~ s e r  chooses one of  tlic remain- 
ing options, that is, any ofthc type librancs or the 1)LL 
(see Figure 2), Dc\~eloper Studio displa\ls the dialog 
box slionrn in Figure 4. From this dialog bos, the uscr 
chooses the type library (or  file containing the type 
librarv) and, o p t i o ~ l a l l ~  tlie specific components of thc 
type library. 

At the top of thc dialog box, a "con~bo bos" lists all 
the typc libraries that ha\le been registered with the 
system. Their file names ha\rc a number ofdifferent file 
cstensions, for example, . 0 1 , R  (object libraries) and 
.OCX (ActiveX controls). The user either selects a type 
library from thc list o r  presses the "13ro\vse button" to 
find the file using tlic standard "Open dialog box." 
After selecting a type library, tlie user presses the 
‘‘She\\, buttoll" to list the interfaces described in the 
type library. By default, the Fortran Modulc Wizard 
uses all tlie interfaces; however, tlie developer can select 
the ones desired from thc list. 

After thc user enters the information and presses the 
"Gcneratc button," the Fortran Module Wizard asks 
COh4 t o  open the type library and generates a file con- 
taining Fortran modules. 

Generated Code 
Tllc Fortran Module Wizard generates different code, 
depending upon the type of object or  DLL described by 
the typc i~~format io~i .  Note that the generated code is a 
static representation of an object's type information. If 
the type information should change in a future release 
of the object, thc Wizard woi~ld need to be run again. 

Fortran Run-time Support DIGITAL Visual Fortran 
provides a set of run-tin~e routines that present to the 
Fortran programnier a higher-level abstraction of the 
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Illispatch membcr htnctions and other (:Oh4 fil~~ctions. 
The routines are used in tlic code that the Wizard gcn- 
crates. 'They allo\\l the programmer to perforni the fol- 
lo\v~ng tasks: 

Initialize the COM library. 
- COh/lInitialize initializes tlie COiVl librar!~. 
- COMUninitialize uninitializcs tlie <;OM library. 

Get an interface pointcr of an objcct. 
- C0MC:rcatcObjcct passcs a progra~nmatic idcnti- 

fier or  class identificr, and it creates all instal~cc of 
xi object a id  retirrns a pointcr to one of the objcct's 
intcrfaccs. 

- COMGetActi\~eObject passcs a programmatic 
identificr or  class identifier, and it returns a 
pointer to an interface ofa  currently active objcct. 

- <:OMGctFileObjcct passcs a filc name, and it 
retitrlls a pointcr to  the 1l)ispatch intcrhce of an 
Automation object that can manipulate tlie file. 

- C O M ( ; L S I I > F ~ ~ I ~ ~ P R O C ; I ~ ~  passcs a progr.am- 
matic identifier, and it returns thc corresponding 
class identifier. 

- COM(:LSIl>FromString p'isses a class identifier 
string, 2nd it returns thc corresponding class 
identificr. 

Get or set the \.aluc of a property of an  Automation 
object. 
- AUTOSetProperty passes the nalile or identifier 

ofthc property and a \ialuc, and it sets tllc \laluc of 
the Automation object's property. 

- AUTOGetProperty passes the name o r  identifier 
of tlie propcry, and  it gets thc \,slue of the 
Automation objcct's property. 

In\folte a method of an Autoniarion object. 
- AUTOAllocateIn\~olceArgs allocates an argument 

list data structure that Iiolds the arguments that 
tlic user \ \ f i l l  pass to AUTO1 n\roltc. 

- AU'I'OAddArg passes an argument nanie and 
\.ali~c, and it adds the argument to  the argument 
list data structure. 

- AUT0In\~olte passcs the name or idcntificr of an  
object's method and an argumcllt list data strut- 

turc, and it involtes the method with the passcd 
arguments. 

- AUTODcallocateI~ivol~ehgs deallocates all argu- 
ment list data structure. 

- AUTOGetEsceptionInfo retrieves tlic esccption 
infor~nation when a method has rcturncd an 
exception status. 

Pcrfor~n IUnluio\\m interhce nicmber fi~nctions. 
- COMAddObjectReference adds a reference to a n  

objcct's interface. 
- COMliclcaseObjcct indicates that the program is 

done \\lit11 a referc~lce to an objcct's interface. 
- CQMQucryInterface passcs an interface idcntiticr, 

and it retut-ns a pointer to an objcct's interface. 

13IGITAL Visu,al Fortran pro\lidcs three Fol-tra~i 
modulcs that define basic COM information: 

DF(:OIMTY defines basic COM types. 

IIFCOM dctines the interfaces to the DIGITAL 
\rist~al Fortran COM routines and to some COM 
s!~steni ~ O L I  tines. 

1)FAUTO defines the i~ltcrfaces to the DIGITAL, 
Vis~lal Fortran Automation routines. 

Automation Objects Figure 5 contains code gcncr- 
atcd by the Fortran Module Wizard for the Word .Basic 
object of i\/Iicrosoti Word version 7.0.1Vord.Basic is an 
Automation objcct with almost 1,000 methods. These 
methods represent the functionality of the Word Basic 
Iangiiagc, \\~liich is tlie programming interface to 
Microsoft Word. The n/licrosott Word, Word Basic 
docutnentation contains information on  the methods 
and their ' i ~ - g i ~ ~ i ~ e n t s . ' ~  We discuss some of tlic mcth- 
ods licre i n  a si~iiple example of Fortran code automat- 
ing Word Basic to perform the task of replacing all the 
occurrenccs of a \\lord in a document with anotlier 
\\rorci. The Word.Basic mcthods of interest for this 
example arc tlie follo\\ing: 

AppSIio\\, maltcs tlic Microsoft Word application 
\.isiblc. 

FileOpcn opens a document. 

EciirRcplace rcplaccs a string with another string. 

FileSa\lcAs saves a document. 

Figure 5 contains code from the Fortran subroutine 
gcncratcd for tlie Word Basic FileOpc~i 1^11ethod. It 
is reprcsc~itative of  the codc gencrated for all 
Automation ~nethods .  'The lines are annotated on tlie 
left side nrith rli~mbcrs that arc not part of the source 
codc but corrcspond to  the list belo\v. Note that the 
na~iijtig con\.ention i~scd for the generated wrappers is 
~ ~ ~ ~ ~ ~ ~ ~ ~ I I u ~ ~ ~ ~ ~ ~ I ~ I c J ~ ~ o L I F ' I L I I I ~ ~ c J ~  Any ~ C I - ~ O ~ S  in thc name 
arc rcplaccd by undcrscorcs. 

1 .  If the type information pro\iides a comment that 
describes the method, the comment is placed 
bcti)rc the beginning of the procedure. 

2. The first argument to the proccdurc is al\vqls 
$OBJECT. It is a pointer to all Autoniatio~i object's 
1l)ispatch interface. The last argument to thc proce- 
dure is always $STATUS. This optional argument can 
be specified if the Fortran programmer  isli lies to 
examine the rcturli status of the method. The 
Il'>ispatch In\lolte member fiinction returns a status of 
type HRESULT, ufhicli is a 32-bit \ d u e .  HRESULT 
has thc same structure as a I441132 error codc. In 
bct\\.ecn the $ORJECT 2nd $STATUS arguments 
arc tlie method 'irg~iments' names determined from 
the tvkx inhnnation.  When the type information 
docs not pro\,ide a nanie for an argument, the 
Fortran iblodulc Wjzard creates a $AIIGI~ name. 
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1 -  ! O p e n s  a n  e x i s t i n g  d o c u m e n t  o r  t e m p l a t e  
2 -  SUBROUTINE W o r d - B a s i c - F i l e O p e n ( $ O B J E C T ,  Name, C o n f i r m C o n v e r s i o n s ,  

R e a d O n l y ,  L i n k T o S o u r c e ,  A d d T o M r u ,  P a s s w o r d D o c ,  P a s s w o r d D o t ,  
R e v e r t ,  W r i t e P a s s w o r d D o c ,  W r i t e P a s s w o r d D o t ,  C o n n e c t i o n ,  
S Q L S t a t e m e n t ,  S Q L S t a t e m e n t l ,  $STATUS)  

!DEC$ ATTRIBUTES DLLEXPORT : :  W o r d - B a s i c - F i L e O p e n  
I M P L I C I T  NONE 
INTEGER*4,  I N T E N T C I N )  : :  $OBJECT ! O b j e c t  P o i n t e r  

3 -  !DEC$  ATTRIBUTES VALUE : :  $OBJECT 
4 -  CHARACTERX(* ) ,  I N T E N T C I N ) ,  OPTIONAL : :  Name ! BSTR 

!DEC$  ATTRIBUTES REFERENCE : :  Name 

. . . 
INTEGER*4,  I N T E N T ( O U T ) ,  OPTIONAL : :  $STATUS ! M e t h o d  s t a t u s  
!DEC$ ATTRIBUTES REFERENCE : :  $STATUS 
I N T E G E R X 4  $$STATUS 
INTEGER*4  i n v o k e a r g s  

5 -  i n v o k e a r g s  = AUTOALLOCATEINVOKEARGSO 
6 -  I F  ( P R E S E N T ( N a m e ) )  CALL A U T O A D D A R G ( i n v o k e a r g s ,  ' N a m e ' ,  Name, 

.FALSE. ,  VT-BSTR) 

. . . 
7 -  $$STATUS = AUTOINVOKE($OBJECT,  ' F i l e o p e n ' ,  i n v o k e a r g s )  
8 -  I F  ( P R E S E N T ( $ S T A T U S ) )  $STATUS = $$STATUS 
9 -  CALL A U T O D E A L L O C A T E I N V O K E A R G S  ( i n v o k e a r g s )  

END SUBROUTINE W o r d - B a s i c - F i  L e O p e n  

Figure 5 
Rcpr.esent~tl\~c (:ode (;cnerntcd for. ,\urolnation hlcthods 

3. This is an csamplc o f a n  attribute st.ltcment ~ ~ s c d  t o  
specit'\, the c.llling con\,ention of,ln argument .  

4. Methods cnn t ~ l t c  optional atglll-ncnts that  nus st til- 
lo\\. all tllc required arguments. In  this mctliod, 
thcrc arc 110 I-ccluired al.gumcnts. T h e  Fortl.a11 
~Vociulc W i ~ n r d  generates soi~l.cc lines for each 
argumcnt  11sing the data t\,pc s ~ ~ n t i  c.~lling con\.cli- 
tions found in the nrpe inform.lrion. 

5. AUTOAllocatcI~~\~oI<eArgs 'lllocatcs '1 data s t r ~ ~ c t ~ ~ r c  
that is tlscci t o  collect the arSu1ncnts that the pro-  
grxn111cr ~ J S S C S  t o  the method.  A U T O A d d k g  acleis 
'111 argumcnt t o  this data s t r u c t ~ ~ r c .  

6. For  eacll optiollal ,lrgumcnt, t l ~ c  F o r t r m  PRESEST 
fitnetion is uscci t o  determine if the cdller supplied 
the argLlmcnt. If so,  the argulncnt is added t o  the 
' l ryn ic l l t  list. 

7. i i l " l 'Oln \okc  in\rokcs the na l~ icd  method p.lssing 
tlic argumcnt  list. ':l-l~is rcturlis a status result. 

8. If the c,lllcr supplied a s t . t t ~ ~ s  ar.gtlment, the codc 
copies the S ~ . I ~ L I S  rcs~llt  t o  it. 

9 .  A U T O l ~ c n l l o c a t c I n \ ~ o I ~ e i 4 ~ - 9  dc.~llocates the mcm-  
ory used by the . l r ~ u l n c n t  list dnta structure. 

F i g ~ ~ r e  6 slio\\~s code from ,I user-\\.ritten F o r t r m  
program tllat in\.ol<cs  microso oft \jVord t o  replace ,111 

the occun-cnccs o f  '1 \\.ord in a docu111cnt \\.ith another  
\\rord. T h e  c\amplc cocle is annot'ltcd \\,it11 numbers 
that correspond t o  the follo\\ring list. 

1. COM(:rcatcObjcct requests (:Oh!I t o  c r c ~ t c  ,In 
object \\,it11 the Progll) b\lorci.Rasic. A pointer 
t o  the \Vord.lSasic object's 1l)ispatch intcrfilcc is 
rcturncci i l l  "\\,ordapp." 'l'hc Il)ispatcli intcrf,~cc 
is rct~1r11cd \\.it11 J reference count  o f  1 .  

2 .  T h e  codc checks t o  ensure tllat ,In 1l)ispntch pointcr 
\\,as r c r ~ ~ r n c d .  If not ,  it displ,l\.s ,111 error message ,111~1 

elits.  T11c PI-ogrammcr C , I I ~  cz,lrninc the status \.,lri- 
able for the specific status rctu1.11 codc. 

3. T h e  code c,tlls \Vord.K~sic ~ncrl lods t o  sl~o\\r the 
iVlicrosoft LVord \\,incio\\,, open the d o c ~ ~ ~ n c l l t ,  
replace t l ~ c  s t r i n ~ ,  2nd sCl\-c tllc mociifed d o c u m c ~ l r .  

4.  COh/lI<clc,lseObject relcascs tllc singlc rcfcl-cncc t o  
the object's 1l)ispatch i n t c ~ . ~ l c c  s o  that blicrosoft 
WcxJ can tcl-minate. 

COM Objects T h e  ~Microsofi l'o\\.crPoint \.crsion 7.0 
type library cont,lins a description o f  3 11~1mber of  (:Oi\tl 
objects and intcrfclccs t h ~ t  11inltc up the programm,lblc 
interface t o  the Microsoti Po\\,crl'oint applic.ltion. 
Figures 7 .lnd 8 contain codc gcncr,ltcd b\r the Fol.tr,ln 
Module Wizard horn the iMicl.osoti l'o\\,crPoint \,crsion 
7.0 type 1ihral.y. Unlike Microsoft b\lorci, \\.11icIl p~.o\,icics 
a singlc objcct rh.lr presents ,dl ofLVol.d's program~nablc 
f~~nct ional inr ,  l'o\\~crl'oint p~.o\.itics ,I hicrarcli\, ot 
objects. TIic top-lc\,cl object, i \pplic~tion, is identitied by 
the Progll) I'o\\~crl'oi11t.Applic,1tio1~.7. 'I'l1c Application 
object cont,lins mcmber tilnctions that return a pointcr 
t o  subordinate objects, includillg the Presentations 



! C r e a t e  a  W o r d  o b j e c t  a n d  m a k e  i t  v i s i b l e  
1- C A L L  C O M C R E A T E O B J E C T  ( " W o r d . B a s i c , "  w o r d a p p ,  s t a t u s )  
2 -  I F  ( w o r d a p p  ==  0) T H E N  

W R I T E  (*,  
I ( U  U n a b l e  t o  c r e a t e  M i c r o s o f t  W o r d  o b j e c t ;  A b o r t i n g " ) ' )  

C A L L  E X I T ( - 1 )  
END I F  

3 -  C A L L  W o r d - B a s i c - A p p S h o w ( w o r d a p p ,  "," $ S T A T U S = s t a t u s )  

! O p e n  t h e  d o c u m e n t  
C A L L  W o r d - B a s i c - F i l e O p e n ( w o r d a p p ,  f i l e n a m e ,  $ S T A T U S = s t a t u s )  

! R e p l a c e  a l l  o c c u r r e n c e s  o f  t h e  s t r i n g  
C A L L  W o r d - B a s i c - E d i t R e p l a c e ( w o r d a p p ,  f i n d s t r i n g ,  r e p l a c e s t r i n g ,  

R e p l a c e A L L = . T R U E . ,  $ S T A T U S = s t a t u s )  

! S a v e  t h e  f i l e  
C A L L  W o r d ~ B a s i c ~ F i l e S a v e A s ( w o r d a p p ,  f i l e n a m e ,  % S T A T U S = s t a t u s )  

! R e l e a s e  t h e  W o r d . B a s i c  o b j e c t  s i n c e  we a r e  d o n e  
4 -  s t a t u s  = C O M R E L E A S E O B J E C T ( w o r d a p p )  

Figure 6 
(;ocic from a User-=\vrittcn Fortran I'rogr;un -l'llnt Il~vokcs I1Iicrosoft Word 

objcct. Prcscntations objcct consists o F a  collection 
of Presentation objects. A Presentatio~l contains a nlem- 
bcr f ~ ~ n c t i o n  that returns a pointel- t o  its SlidcSho\v 
object, and so on. By navigating this hierarchy, the dc\~el- 
olxr can select a pointer to a particular  object'^ i~lterfacc. 
A code cs~i~nple in \vhich nre use some ofthc Po\\ferPoint 
objects ~ind intcrhces to run a slidc prcscntntion %om 
Po\\,crPoint is given latcr in this scction. 

1. The first urgumcnt to the procedure is always 
$013JE(:'I'. It is '1 pointer to the object's interfacc. 
The re~i~aining argument names are determined 
from the typc information. 

2. A BSTR is a length-prcfi xed string data type prirnar- 
ily for usc by Automation objects. The \vrappers 
g c n o ~ t e d  for COM member functions convert 
from Fortran srrinus to BSTRs and \,ice versa. " 

Figure 7 contains thc intcl-bcc tiescription of the 3.  A VAKIANT is n dnta structure that can contain an!, 
Prcscntations object's member fi~nction namcd Open. It 

type of A~~tomnrion data. It contains a ficld that 
is rcprescntative of the interhccs gcncratcd fix all COlM 

identifies the type ofdata and a u ~ i o n  that holds tlic 
member fi~nctions. The procedure naming convcntion 

data valuc. The use of a V A W Y T  argument allows 
js o/?jod~7~11nc~n?en?he~fi~,?ctiotrrra1nc. '17hc Oycn filnc- 

the caller to use any data type that call be convertcd 
tion opcn~111 existing Po\vcrl'oint presentation. 

into the data type cspected by the member fi~nction. 

I N T E R F A C E  
1 - I N T E G E R * 4  F U N C T I O N  P r e s e n t a t i o n s - O p e n ( $ O B J E C T ,  f i l e N a m e ,  

R e a d O n l y ,  U n t i t l e d ,  W i t h W i n d o w ,  O p e n )  
U S E  DFCOMTY 
I N T E G E R * 4 ,  I N T E N T C I N )  :: $ O B J E C T  ! O b j e c t  P o i n t e r  
! D E C $  A T T R I B U T E S  V A L U E  :: $ O B J E C T  
I N T E G E R * 4 ,  I N T E N T ( 1 N )  : :  f i l e N a m e  ! B S T R  
! D E C $  A T T R I B U T E S  V A L U E  : :  f i l e N a m e  
T Y P E  ( V A R I A N T ) ,  I N T E N T ( I N ) ,  : :  R e a d O n l y  ! ( O p t i o n a l  A r g )  
! D E C $  A T T R I B U T E S  V A L U E  : :  R e a d O n l y  
T Y P E  ( V A R I A N T ) ,  I N T E N T ( I N ) ,  :: U n t i t l e d  ! ( O p t i o n a l  A r g )  
! D E C $  A T T R I B U T E S  V A L U E  : :  U n t i t l e d  
T Y P E  ( V A R I A N T ) ,  I N T E N T ( I N ) ,  :: W i t h W i n d o w  ! ( O p t i o n a l  A r g )  
! D E C $  A T T R I B U T E S  V A L U E  : :  W i t h W i n d o w  
I N T E G E R * 4 ,  I N T E N T ( 0 U T )  : :  O p e n  
! D E C $  A T T R I B U T E S  R E F E R E N C E  :: O p e n  

! D E C $  A T T R I B U T E S  S T D C A L L  : :  P r e s e n t a t i o n s - O p e n  
END F U N C T I O N  P r e s e n t a t i o n s - O p e n  

END I N T E R F A C E  
5 -  POINTER(Presentations-Open-PTR, P r e s e n t a t i o n s - O p e n )  

Figure 7 
(:ode (;cncr.:ltcd by Fortran i\lod~rlc \Vizard fronl klicrosoft Po\\,erPoint, 11itc.1-hcc 1)cscriprion of Open Function 



4. Ne,~rly every <:OM nicml?cr f i~nc t ion  returns a status o f  
type H IESUUT. Tliereforc i f  ;I COiM member f i ~ n c -  

t i on  produccs output, it uses output arguments t o  
return the \falues. In this example, the O p e n  argilmellt 
returns a pointer t o  a Po\verPoint Present.~tion object. 

5. T h e  interface o f  a (:ON1 ~ i i c m b c r  funct ion looks 
similar t o  the intcrfdcc for a DLL function \vitli one 

major exception. Un l i ke  a DLL hnct ion,  the address 
o f  a C;OM member f rncdon  is never kno\vn at p ro -  

grani l ink time. T o  conlplitc the address o f 3  p;uticular 

member filnction, the developer must gc t  a pointer to 
an object's interface at r u n  time. W e  have extended the 
D I G I T A L  Fortran 90 language to support a Pointer 

T o  procedure. Figure 8 sho\vs an esa~nplc o f  its use. 

F igure 8 contains the \\)rapper generated by the 
For t ran  M o d u l e  Wizard  for the  O p c n  funct ion. T h c  

name of a wrapper is the same as the  name of t h e  cor -  

responding lnenibcr  h n c t i o n ,  pref ixed w i t h  a $.  T l i e  
numbers inserted at the left marg in  o f  the code exam- 
p le correspond to thc fol lo\ving list. 

1. T l i e  wrapper takes the same argument  names as the 

~ i i e ~ n b e r  funct ion interface. 

2. M e m b e r  f i ~ n c t i o n  arguments of type BSTll are of 
type C H A l U C T E R * (  * )  in the wrapper. 

3. T h e  wrapper computes the  address of the  member  
funct ion tiom the interface pointer  and an offset 

found  i n  the interface's typc in format ion.  In  imple-  
mentat ion terms, t h e  sequence is the fo l lo~v ing :  an 

interface pointer  t o  a pointer  to a n  array of f l ~ i c t i o n  
pointers called an  Interface Func t ion  Table (see 

Figure 9). 

4. T h e  wrapper dcclares a local variable t o  hold the 

BSTR to be passed t o  the member function. T l ~ c  next 

l i ne  docs thc  conversion. 

5. Op t iona l  VARIANT arguments o f  a C:OM ~ n e n ~ b c r  

function arc represent.ed by a V A l U h i T  w i t h  distin- 
guished values. O P T I O N A L _ V A N A N T  is defined 

in the D F C O M T Y  m o d u l e  urith the d is t i l l g i~ ishcd  

values. 

6. T h e  offset o f  thc O p e n  mcn iber  f i lnc t ion is 60. T h e  
code assigns t l ie  computed  address t o  t l ie  f i i nc t ion  

po i l i t e r  Presentations-Ope~l-PTR, w h i c h  \\!as 

declared in Figure 7, and then  calls the f i inct ion.  

1- INTEGER*4 FUNCTION $ P r e s e n t a t i o n s - O p e n ( $ O B J E C T ,  f i l e N a m e ,  
ReadOn ly ,  U n t i t l e d ,  W i t h W i n d o w ,  Open)  

!DEC$ ATTRIBUTES DLLEXPORT :: $ P r e s e n t a t i o n s - O p e n  
I M P L I C I T  NONE 
INTEGER*4, I N T E N T ( 1 N )  :: $OBJECT ! O b j e c t  P o i n t e r  
!DEC$ ATTRIBUTES VALUE :: $OBJECT 
CHARACTER*(*), I N T E N T ( I N 1  :: f i l e N a m e  ! BSTR 
!DEC$ ATTRIBUTES REFERENCE : :  f i l e N a m e  
TYPE (VARIANT),  I N T E N T ( I N ) ,  OPTIONAL : :  R e a d O n l y  
!DEC$ ATTRIBUTES R E F E R E N C E  : :  ReadOnLy 
TYPE (VARIANT) ,  INTENTCIN) ,  OPTIONAL :: U n t i t l e d  
!DEC$ ATTRIBUTES REFERENCE :: U n t i t l e d  
TYPE (VARIANT),  I N T E N T ( I N ) ,  OPTIONAL :: W i t h W i n d o w  
!DEC$ ATTRIBUTES REFERENCE :: W i t h W i n d o w  
INTEGERX4, INTENT(OUT1 : :  Open ! I D i s p a t c h  
!DEC$ ATTRIBUTES REFERENCE : :  Open 
INTEGER*4 $RETURN 
INTEGER*4 SVTBL ! I n t e r f a c e  F u n c t i o n  T a b l e  
POINTER($VPTR, $VTBL) 
TYPE (VARIANT),  : :  $ VAR-ReadOnly 
TYPE (VARIANT),  :: $ V A R - U n t i t l e d  
TYPE (VARIANT),  : :  $ VAR-Withwindow 
INTEGER*4 SBSTR- f i l eName ! BSTR 
$ B S T R - f i l e N a m e  = C o n v e r t S t r i n g T o B S T R ( f i 1 e N a m e )  
I F  (PRESENT ( R e a d O n l y ) )  THEN 

$VAR-ReadOnly = R e a d O n l y  
ELSE 

$VAR-Readon ly  = OPTIONAL-VARIANT 
P r e s e n t a t i o n s - O p e n - P T R  = SVTBL 
END I F  
. . .  
$VPTR = $OBJECT ! I n t e r f a c e  F u n c t i o n  T a b l e  
$VPTR = $VTBL + 6 0  ! Add r o u t i n e  t a b l e  o f f s e t  
P r e s e n t a t i o n s - O p e n - P T R  = $VTBL 
$RETURN = P r e s e n t a t i o n s - O p e n ( $ O B J E C T ,  $BSTR- f i l eName,  

ReadOn ly ,  U n t i t l e d ,  Wi thWindow,  Open)  
$ P r e s e n t a t i o n s - O p e n  = $RETURN 

END FUNCTION $ P r e s e n t a t i o n s - O p e n  

Figure 8 
Code Gencsated b!, Fortran 1Module Wiz;lrd fi-om  microso oft Po\\,cl-Point, Wrapper for Open Function 
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INTERFACE 
POINTER INTERFACE 

POINTER FUNCTION - I TABLE I 
FUNCTION 1 

FUNCTION 2 

FUNCTION 3 

Figure 9 
Intcrbcc Pointcr r o  an Arr.1~ o f  Function Pointcrs 

In hct ,  Po\vcrPoint pro\.ides dual interfaces. A dual 
intcrbcc is a combination of an I1)ispatcli intcrfiicc 
and (:OM m c ~ ~ i b c r  f~~nc t ions .  TIic IDispatcli inter- 
face o f rhc  dual interfacc can be ~ ~ s c d  by Automation 
clients, and the <:OI\I member functions can bc used 
by <:Oh1 clients. This ~iic:l~is that h r  Po\\.crl'oint, and 
any server that provides dual i n t c r ~ ~ c e s ,  the Fortra11 
devclopcr can choose to generate a Fortran ~nodu lc  
for the Automntion intcrfilccs or  the COM interfaces. 
Thc Fortran interfaces gcncratcd by the Wizard liltel!. 
will not bc much different. C 0 M  intcrfGlccs typically 
providc bctter ~>crfornln~icc since there is less o\,cr- 
head in invoking (:Oh,I ~ncmbcr  functions than 
dispinrcrhcc mctllods through the 1L)ispntcli In\goltc 
rncmbcr filnctioll. 

Figi~rc 10 sJio\\.s codc tioln a user-\\rrittcn Forrra~i 
progr,lln t h ~ t  in\,oltcs l'o\\rcrPoint to run n slidc prc- 
sentation. The code example is ali~iotateci \\lit11 n u m -  
bers that corrcspo~~d to tlic follo\\,ing list. 

1. (~Oi\~l(:1SII)t'rornl'l<OGIl~ and COM<:rcateObjcct 
rccI~leSt (:01\/1 to crcatc an objcct \vith the Progll) 
I'o\\.crl'oint.Applicatim.7, and to return a pointer 
to the object's IApplication interface. 

2. The codc gets the AppWindo\\. objcct from tlie 
Application object and calls its Visible member 
filnction to ~nakc  Po\\,erPoitit visible. 

3. The codc gets tlic Prcscntations objcct fT01i1 the 
Application objcct and calls its Open member 
function to open a Presentation. Note that thl-ec 
or the arguments to  Open are of  thc \'ARIAKT 
data type. The  codc scts them to  tlic \.slues true 
and falsc. 

4. l'he codc gets the SlideSlio\v object fi-on tlie 
l'rcsentation object and calls its Run member f i~nc- 
tion to run the slidc she\\: 

DLLs When the Fortran 1Module Wizard reads thc 
tylx information dcscribirlg a DLL, it generates an 
intcrhcc description ti)r each fi~nction in the L>L,I,. It 
also generates Fortran-derivcti types for data struc- 
tu~.cs defined in the 1)LL typc information. 71'liis 
relic\,cs the Fortran de\,cJoper horn mani~.lll!. trnnsl,it- 
ing IIC;IJCI. file descriptions to Fortran descriptions. 
'I'hc L\lizarii also pro\~idcs t17c option of generating 
\\.rnp}xrs that con\.ert from thc Fortran rcprescntarion 
o f  strings to t l ~ c  C 1.cprcscntario11 of strings and \.ice 
\cl.sa. 'l'llis option can bc sclcctcd from the Wizard's 
initial dialog bos (see Figure 2 ) .  

! C r e a t e  a  P o w e r P o i n t  A p p l i c a t i o n  o b j e c t  
! a n d  m a k e  t h e  A p p W i n d o w  v i s i b l e  

1 -  CALL COMCLSIDFROMPROGID ( " P o w e r P o i n t . A p p l i c a t i o n . 7 , "  
c l s i d ,  s t a t u s )  

CALL COMCREATEOBJECT ( c l s i d ,  CLSCTX-SERVER, I I D - A p p l i c a t i o n ,  
p p A p p l i c a t i o n ,  s t a t u s )  

I F  ( p p A p p l i c a t i o n  == 0) THEN 
W R I T E  (*,  I ( "  U n a b l e  t o  c r e a t e  P o w e r p o i n t  o b j e c t ;  A b o r t i n g " ) ' )  
CALL E X I T ( - 1 )  

END I F  
2- s t a t u s  = $ A p p l i c a t i o n ~ G e t A p p W i n d o w ( p p A p p l i c a t i o n ,  p p A p p W i n d o w )  

s t a t u s  = $ A p p l i c a t i o n W i n d o w ~ S e t V i s i b l e ( p p A p p W i n d o w ,  1 )  

! O p e n  t h e  s p e c i f i e d  p r e s e n t a t i o n  
3- s t a t u s  = $ A p p l i c a t i o n ~ G e t P r e s e n t a t i o n s ( p p A p p l i c a t i o n ,  

p p p r e s e n t a t i o n s )  
v T r u e % V T  = VT-BOOL 
v T r u e % V U % B O O L - V A L  = VARIANT-BOOL-TRUE 
v F a l s e % V T  = VT-BOOL 
v F a l s e % V U % B O O L - V A L  = VARIANT-BOOL-FALSE 
s t a t u s  = $ P r e s e n t a t i o n s - O p e n ( p p P r e s e n t a t i o n s ,  f i l e n a m e ,  

v T r u e ,  v F a l s e ,  v T r u e ,  p p P r e s e n t a t i o n )  

! R u n  t h e  s l i d e  show 
4- s t a t u s  = $ P r e s e n t a t i o n - G e t S L i d e S h o w ( p p P r e s e n t a t i o n ,  p p S l i d e S h o w )  

s t a t u s  = S S L i d e S h o w - R u n ( p p S L i d e S h o w ,  1 ,  p p R u n )  

Figure 10 
Fortran Program to In\.okc Po\\.crl'oinr to Run Slidc Prcscnrntion 



Comparison of the Wizard to the Capabilities of 
Other Languages 

\ / J S L I J ~  C++ \us ion  5.0, Visual J + +  \u s ion  1.1, nnd 
Visual l$L~sic \,crsion 5.0 all ha\~e \\rizards that can rcad a 
n p c  libmry and allon, applications to use COIM 
and/or Automation objects. 

The Visual C++ ClassWizard can rcad a nlpc library 
and crcatc a class with all the fi~nctions of the 
1l)ispatch interface described in the library. Visual C++ 
version 5.0 also adds a preprocessor directive, 
#import. Tlie #import directive reads a type library 
and generates nvo hcader files that contain tlie defi ni- 
tions of the (:OM objects defined in the type l i b r a r ~ . ' ~  

Thc Ja\.a T!,pe Library Wizard \\itliin Visual J++ 
in\zoltcs the JavaTLB utility to cowerr the information 
in a type library into Java .class files. A Java .clnss file is 
thc binar!, fi)r~ii of a Ja\'a class or intcrL~ce.'" 

To i ~ s c  an object detined in a t!,pc library fi.0111 
Visual Rasic, the developer must add a reference to the 
objcct using the Project menu, Rcfcrc~lccs com~nand.  
Tlic I<cfcrcnccs dialog bos allo\\s the usel- to select 
horn the list of  registered type libraries in a manner 
similar to the Fortran Module Wizard." 

The Fortran Modulc Wizard is unicluc in the h l -  
lo\\*ing \\ra\s. The Fortran 90 programming language 
docs nor inhcrcntl!l support objects. Tlic Fortran 
~Modulc Wizard employs ;7 combination of language 
. I I I ~  run-time sllpport to pro\,ide this cap'lhilin,. The 
supporting language features arc modulcs .lnd procc- 
durc 1mintc1.s. The supporting run-time ~nociulcs arc 
l)F<:OiMTY, IIFCObI, and DFAUT'O. T11c Fortran 
~Modulc Wizard pro\lides support fix n'pc libraries 
containing tlic descriptions of DL[. routines. 

Fortran Module Wizard Architecture 

7'hc architecture of the Fortran Modulc Wizard is fairly 
simple. The shell of  the Wizard \\.as generated by the 
Cr~stom AppWizard \vithin Visual C++. Tlie inner 
\\,oslti~lgs of thc Wizard consist of thrcc major pieces: 

T!,pe information reader 

T\,pc s!,mbol tablc 

Fortran code generator 

Figure 11 sho\\.s a high-lcvcl data t l o \ \  of the 
Fortran 1Modulc Wizard. The typc information rcader 

traverses the data structures in the type information 
and creates the type symbol table. The Win32 SL)I< 
pro\.idcs a sample application named BROWSE OLE 
sample that is 'In csamplc of traversing the infor~nation 
in a type lihrar!,. 'The type s\-mbol table is a s!lmbol 
table similar to those used b!, compilers. I t  maps tylx 
names to the descriptions of types. For sin~plicity, tlic 
infor~iiation is stored using the salne data structures 
uscd by thc typc inhrmation. Tlie Fortran code gcn- 
erator tra\,crses the symbol tablc and generates 3 

Fortran module. 
The use of  a symbol tablc allo\vs for a co~nplctc 

separation of the functionality of tlie type information 
reader from the Fortran code generator. A code gener- 
ator for another programming language could be 
easily substituted, as could another source of typc 
information (for  csamplc, a C header file). 

Future Directions 

Thcrc arc a numbc~. of possi bilities for fi~ture work that 
would add to the c.~pnbilitics provided bji the Fortran 
Module Wizard. 

Fortran support for ActivcX controls. ,411 Acti\rcX 
control is an Automation object. It is a reusable 
component that nor~nally provides a user interface 
and is i~scd in dialog boxes and other \vindo\\s. The 
Fortran Modulc Wizard can generate a module 
that \\~ould allo\\. a Fortran developer to use the 
nicthods anti properties of an Acti\.eX control. 
Ho\\,e\,er, additional funcrionalinr\\.ould be neccicd 
in t11c Fosts,ln ru~i-tirnc libraries to maltc co~itrols 
usable from a Fortran application. A control h ~ s  
to be placcd in a special type of \vindow called a 
Control Container. The Fortran run-timc libraries 
d o  not currently contain support for a Control 
Container. In  addition to  methods and properties, 
a control can ticf nc events. An event allo\\,s a con- 
trol to notifi its container \\,hen somcthing ofintcr- 
est liappuis to the control. For example, a "13~1tton 
control" could dcfinc a "Clicked event." 

Fortran \IJindo\\rs Application Wizard. This Wizard 
could gcncratc stnrtcr files for a Fortran Wincio\\,s 
;ipplication. This \vould be especially i~sef i~l  if \\.c 
were to implcnicnt tlic Fortran support for Acti\scS 
coll tr~ls.  

Figure 11 
l h r d  Flo\\. o f  thc Fostsa17 blodulc \Virdsd 
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Fortran I I I ~ ~ ~ L I I C S  from <: headel- files. Ry replacing 

the  type information reader described in the  previ- 
o u s  section with ;I C parscr, \ve could generatc 
Fortran modules directly tiom .I1 files. This  \\*auld 
espand the  set ofservices that arc easily nvnilnble t o  
Fortran developcrs. 

Fortran Scr\,cr Wizard. This  Wizard \vould take a 
Fortran module proviclcd by a Fortran developer 
and package it ns a COIM object. I t  \\.auld also gen-  
erate a type library that  describes the  object.  This  
object could then be used by any COlM cl ie~l t ,  for 
example, Visual Basic, Visual C++, and Visual J++ 
applications. 
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Marco Fillo 
Richard B. Gillett 

Architecture and 
Implementation of 
MEMORY CHANNEL 2 

The MEMORY CHANNEL network is a dedicated 
cluster interconnect that provides virtual shared 
memory among nodes by means of internodal 
address space mapping. The interconnect imple- 
ments direct user-level messaging and guaran- 
tees strict message ordering under all conditions, 
including transmission errors. These character- 
istics allow industry-standard communication 
interfaces and parallel programming paradigms 
to achieve much higher efficiency than on con- 
ventional networks. This paper presents an 
overview of the MEMORY CHANNEL network 
architecture and describes DIGITAL'S crossbar- 
based implementation of the second-generation 
MEMORY CHANNEL network, MEMORY CHANNEL 2. 
This network provides bisection bandwidths 
of 1,000 to 2,000 megabytes per second and a 
sustained process-to-process bandwidth of 
88 megabytes per second. One-way, process- 
to-process message latency is less than 2.2 
microseconds. 

In computing, a cluster is loosely defined as a parallel 
system colnprising a collection ofstand-alone colnput- 
ers (cach called a node) connected by a network. Each 
node runs its onin copy of the o ~ e r a t i n g  system, and 
cluster software coordinating the entire parallel system 
attempts to provide users with a iunified system view. 
Since each node in the cluster is an off-the-shelf 
computer system, clusters offer several advantages 
over traditional massi\lely parallel processors (MPPs) 
and large-scale symmetric niultiprocessors (SMPs). 
Specifically, clusters provide' 

Much better price/performance ratios, opening a 
wide range of computing possibilities for ilsers who 
could not otherwise afford a single large system. 

Much better availability. With appropriate software 
support, clusters can survive node failures, whereas 
SMP and LMPP systems generally d o  not. 

Impressive scaling (hundreds of processors), when 
the indi\idual nodes are medium-scale SMP systems. 

Easy and economical upgrading and technology 
migration. Users can simply attach the latest- 
generation node to the existing cluster network. 

Despite their advantages and their impressive peak 
computational po\ver, clusters have been unable to 
displace traditional parallel systems in the marltetplace 
because their effective performance on many real- 
world parallel applications has oficn been disappoint- 
ing. Clusters' lack of conlputational efficiency can be 
attributed to their traditionally poor communication, 
which is a result of the usc of standard nenvorliing 
technology as a cluster interconnect. The develop- 
ment of the IMEIMO~<Y CHANNEL nenvorlt as a cluster 
interconnect was motivated by the realization that the 
gap in effective performance benveen clusters and 
SMPs can be bridged by designing a communication 
networlt to deliver low latency and high band\vidth all 
the way to the user applications. 

Over the years, many researchers have recognized 
that the performance of the majority of real-world par- 
allel applications is affected by the late~icy and band- 
width available for communication.*-111 particular, 
it has been shown2."' that the efficiency of parallel 
scientific applications is strongly influenced by the 
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system's architecti~ral balance as cluantitied by its 
co~i~munica t ion- to-co~~~k>uta t ion  ratio, ivhich is sornc- 
times callcd the q-ratio.' The q-ratio is defined as 
the ratio benveen the time it takes to  send an 8-byte 
floating-point result from one process to another 
(communication) and tlic time it taltes to perform ;I 

floating-point operation (computation). In a systcm 
with a cl-ratio equal to 1, it takes the same time for n 
nodc to compiltc a rcsult as it docs for the nodc to 
communicate the result to another node in the system. 
Thus, the higher the q-ratio, the more difficult it is to 
program a parallel system to achicvc a given level o f  
performance. Q-ratios close to ~ ~ n i t y  have been 
obtained on[y in experimental ri~achines, such as 
iWarpQand the ~M-R/Iachine,~ by employing dircct 
register-based communication. 

Table 1 shows actual cl-ratios for several corn~~~ercia l  
systems."'." Tliesc q-ratios vary fro111 about 100 fbr a 
DIGITAI, AlphaSer\lcr 4100 SMP systcm using sh3rcd 
memory to 30,000 for a cli~ster of thcsc SMP sJrstelns 
interconnected a fiber distributcd data interface 
(FDlII)  ~iemlorlt using the tr,lnsmission control 
protocol/internet protocol ('I'<:1'/1 P). An M 1'1' 
system, such as the IRM SP2, using the ~Messagc 
Passing Interface (IMI'I) lias a q-ratio of  5,714. Tlic 
IMEMORY CHANNEL nenvorlc clc\~cloped b!, Digital 
Equipment Corporation reduces the cl-ratio of an 
AlpliaServer-based cluster by a factor of 38 to 82 to bc 
~vithili the range of 367 to 1,067. Q-ratios in tliis 
range permit clusters to efficiently tackle a large class 
ofparallel technical and commercial problems. 

Thc benefits of  low-latency, high-band\\.idth 
ncnvorlts arc well i ~ n d e r s t o o d . ' ~ , ' ~  As shoc\~n by many 
s t~~dies , ' . ' , '~  Iligli co~nrnunication latency over trncii- 
tional networks is the rcsult of t17e opcrating systcm 
o\,crlicad involved i l l  tr.~nsrnittiiig and receiving n ~ c s -  
sages. The MEMORY CHANNEL, network eliminates 
this latency by supporting dircct process-to-process 
co~nmunication that bypasses the operating system. 

The MEI\IIORY CHANNEL network supports this type 
of communication by ir~lpleriienting a natural estcn- 
sion of  the virtual Inenlory space, which pro\.idcs 
dircct, but protected, access to the mcmor!, residing in 
other nodes. 

R ~ s c d  on this approach, DIGITAI, de\lelopcd 
its first-generation LMEMORY CHANNEL network 
(IMEIMORY C m V N E I ,  l),'Qvhich has been shipping 
in production since April 1996. Thc ncnvork does not 
require any fi~nctionalin beyond the peripheral com- 
ponent interconnect (P<;I) bus and therefore can be 
used o n  any sjatem nrith a PC1 I/O slot. DIGITAL 
currently supports production MEMORY CHANNEL 
clusters as large as 8 nodes by 12 processors per nocic 
( a  total of 9 6  processors). One of these clustcrs \vas 
presented at Supercomp~~t ing '95 and ran cluster\~kie 
applications ilsi~ig High Performance Fortran (HPF),' 
Parallcl Virtual M,~cliinc (PVM),]- 'ind MPIIVin 
DIGITA1,'s Parallel Sohvare Eni'ironmcnt (PSE).  'This 
96-processor system lias a q-ratio of 500 to 1,000, 
depending on  the communication interface. A 4-node 
ILIEI\/lOI<Y CHANNEL cluster running DIG17'rlL 
Tru<:luster softu~arc'" and the Oraclc Parallel Server 
has held the cluster performance \vorld record on tlic 
Tl'C-(: [)cnchmark:"-the i~idustr!~ stantiard in on-line 
transactio~l processing-since April 1996. 

We 11cxt prcscnt nn o\ler\fie\\r of the generic 
I\IEI\/IORY CHANNEL network to  justi@ the design 
goals of t l ~ c  second-gcncmtion MEMOlIY CKANNEI, 
nenvork (MEIMOIIY CHANNEL 2).  Follo\ving tliis 
o\~crvic\\s, \Ire describe in detail the ,~rcliitectl~rc of 
the n\,o components t h ~ t  nialte LIP the IUEMORY 
CHANNEL 2 ncnvork: the hub and the adapter. Last, 
\\,c prcscnt liard\\rarc-mcasurcd pcrfor~nance data. 

MEMORY CHANNEL Overview 

The MEIMORY CHANNEL networlt is a dedicated 
clustc~. interconnection ncnvork, bascd on Encore's 

Table 1 
Comparison of Communication and Computation Performance (q-ratio) for Various Parallel Systems 

Communication Computation Communication- 
Performance Performance Based on to-computation 
Latency LINPACK 100 X 100 Ratio 

System (Microseconds) (Microseconds/FLOP) (q-ratio) 

Alphaserver 4100 Model 300 configurations 
SMP using shared memory messaging 0.6 0.006 100 
SMP using MPI 3.4 0.006 567 
FDDl cluster using TCPIIP 180.0 0.006 30,000 
MEMORY CHANNEL cluster using 

native messaging 2.2 0.006 367 
MEMORY CHANNELcluster using MPI 6.4 0.006 1,067 

IBM SP2 using MPI 40.0 0.006 5,714 
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MEMORY <:HANNF,L technology, that supports  
virtual shared memory space by means o f  intcrnodal 
memory  address space mapping, similar t o  that used 
in the SHRllMP system." T h e  MEMORY CHANNEI,  
substrate is a flat, fi~lly interconnected nenvork 
that pro\iidcs ptish-only message-based communica-  
t i o ~ ~ . ' " . ~ '  Unlilzc traditional nenvorlzs, the MEMORY 
C H A N N E L  network provides lo\\,-latency cornmuni- 
cation by support ing direct user access t o  the nenvork. 
As in Scalable Coherent  Interface (SCI)23 and Myrinct2' 
~nct~\,orks, connections benveen nodes are established 
by mapping part o f  the nodes' virtual address space t o  
the MEMORY C H A N N E L  in te r f~ce .  

A MEMORY C H A N N E L  connection can be opened 
as either an ou tgo ing  connection (in which case an 
address-to-destination node  mapping must  be  pro- 
vided) o r  an incorning connection. Before a pair o f  
nodes can communic '~te  by means o f  the MEMORY 
C H A N N E L  network, they nlust consent t o  share part 
o f  their address space-one side as ou tgo ing  and the  
other  as inco~ning .  'I'he MEMORY CHANNEL net- 
cvorlz has n o  storage o f  its onin. T h e  granularity o f  the  
mapping is thc sanle as the operating systen~ page size. 

MEMORY CHANNEL Address Space Mapping 
Mapping is accomplished through manipulation o f  
page tables. Each node that  maps a page as i n c o n ~ i n g  
allocates a single page o f  physical mcn1ory and rnalces 
it available t o  be shared by the  cluster. T h e  page is 
alwa\~s resident and is shared by all processes in the 
node  that map the page. T h e  first map o f  the page 
causes the memory  allocation, and subsequent  

reads/maps point to the same page. N o  memory  is 
allocated for pages mapped as outgoing.  T h e  mapper 
simply assigns the page table entry t o  a port ion o f  the  
MF,MOKY CHANNEL hardware transmit window and 
defines the  destination node  for that transmit sub-  
space. T l ~ i ~ s ,  the  a m o u n t  o f  physical memory  con-  
sumed for the  cluster\vide ncnvork is the  product  o f  
the operating system page size and the  total number  
o f  pages mapped as incoming o n  each node.  

After mapping, MEMORY CHANNEL accesses are 
accomplished by simple load and store instructions, as 
for any o ther  portion o f  virtual niernory, \ \ i thour  any 
operating system o r  run-t ime library calls. A store 
instruction t o  a MEMORY C H A N N E L  outgoing 
address results in data being transferred across thc  
MEMORY C H A N N E L  nenvorlc t o  the  menlory allo- 
cated o n  the destination node.  A load instruction from 
a MEiMORY C H A N N E L  incoming channel address 
space results in a read from the  local physical memory  
initialized as a MEMORY C H A N N E L  incoming chan- 
nel. T h e  overhead (in C P U  cycles) in establishing a 
MEMORY CHANNEL, connection is much  higher than 
that o f  using the connection. Bccause o f  the memory-  
mapped nature o f  the interface, the  transmit o r  receive 
overhead is sin~ilar t o  an access t o  local main memory. 
This  mechanism is the  f i~ndamental  reason for the low 
MEMOKY CHANNEL latency. Figure 1 illustrates a n  
esanlple o f  MEMOKY CHANNEL address mapping. 

T h e  figure shows two sets o f  independent  connec- 
tions. N o d e  1 has established an ou tgo ing  channel t o  
node  3 and node  4 and  also an incoming channel 
t o  itself. N o d e  4 has an ou tgo ing  channel t o  node 2. 

NODE 1 

GLOBAL 
MEMORY CHANNEL 
ADDRESS SPACE 

NODE 3 

NODE 1 TO 
NODES 3 AND 4 

NODE 2 \ NODE 4 

NODE 4 TO 
NODE 2 u 

Figure 1 
AllEMORY CHANNEL Mapping of a Portion of the Clustcr\vide Address Space 
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All connections are unidirectional, either outgoing MEMORY CHANNEL Ordering Rules 
or  incoming. To  map a channel as both outgoing and The MEMORY CHANNEL communication paradigm 
incoming to tlie same shared address space, node 1 is based on three hndamental ordering rulcs: 
maps the channel two times into a singlc process' vir- 

1 .  Single-sender Rule: All destination ~iodes  will 
tual address space. The mapping esample in Figure 1 

reccive pacltets in the order in which they were gen- 
requires a total of four pages of physical memory, one  

erated by the sender. 
for each of the four arrows pointed toward the nodes' 
virtual address spaces. 2. 1Multisender Rille: Packets from multiple sender 

iMEMOl<Y CHANNEL mappings reside in nvo page nodes will be recei\fed in the same order at all desti- 

control tables (PCTs) located on the MEMOKY nation nodes. 

CHANNEL interface, one o n  the sender side and one 3. Ordering-ul~der-errors Rule: Rules 1 and 2 ni~lst  
on the receiver side. As shown in Figure 2,  each page apply even when an error occurs ia the network. 
entry in the PCT has a set of  attributes that speciQ 

Let PA,  ., be the j th  point-to-point packet from 
the MEMORY CHANNEL behavior for that page. 

a sender node M to  a destination node X, and let Bj\, 
The page attributes on the sender side are 

be the j th  broadcast packet from node M to all other 
Transmit enabled, which ni~lst  be set to allot\! trans- nodes. If node M sends the follo\ving sequence of 
mission from store instructio~ls to a specific page pacltets, 

Local copy on transmit, which directs an ordered 
copy of  the transmitted packet to the local memory 

P2,t4x, Pl,,-.,-, Rl.v, Plw-x, 
(last) (first) 

Acluiowledge request, wlicli is used to request 
Rule 1 dictates that nodes X and Y \ \ r i l l  reccive the 

acl<nowledgments from the receiver node uacltets in tlie follo\\!ina order: 
u 

Transmit enabled under error, which is used in 
error recovery conimunication a t n o d e x ,  P2,\,.,,131,,,,Pl,,,,, 

(last) 
Broadcast o r  point-to-point, which defines thc 

(first) 

type of  packet to  all nodes o r  to  a single node at node Y, Pl,, .Y, Bl,,,. 
in the cluster (last) (first) 

Req~lest acknowledge, ~ v h ~ c h  requests a reception If a node N is also sending a s e q ~ ~ c n c c  of packets, in 
aclu~owlcdgment fiom the receiver the following ordcr, 

The page attributes on  the receiver side are P3x-x, P2,-s, B2,, P2s .,-, Bl,, Ply .y, Ply-,, 

Receive enabled, which must be set t o  allow reccp- 
tion of messages addressed to a specific virtual page 

Interrupt on  receive, \vIiich generates an interrupt 
on reception ofa  packet 

Receive enabled under error, which is asserted for 
error recovery communication pages 

Remote read, which identifies all pacltets that arrive 
at a page as requests for a remote read operation 

Conditional write, which identifies all pacl<ets that 
arrive at a page as conditional write pacltets 

SENDER 

TRANSMIT PCT 

SENDER 
STORE 
TO I10 
SPACE i 

MEMORY 
CHANNEL 
PACKET - -P 

(last) (first) 

therc is a finite set of valid reception orders at destina- 
tion nodes X and Y, depending on  the actual arrival 
time of the requcsts to tlie point of global ordering. 
Rule 1 dictates that all packets fro111 node M (or N)  to 
node X (or  Y) must arrive at node X (or  Y )  in the order 
in which they were transmitted. Rule 2 dictates that, 
regardless of the relative order among tlie senders, 
messages destined to both receivers must be received 
in the snmc order. For example, if X rccei\!es R2,, Bl, , ,  
and Bl,, then Y should rcceive these pacltets in thc 

RECEIVER 

RECEIVE PCT 

RECEIVE ENABLED 
INTERRUPT ON RECEIVE 
RECEIVE ENABLED UNDER ERROR 
REMOTE READ 
CONDITIONAL WRITE 

RECEIVER 
LOAD - FROM 
MEMORY 
SPACE 

Figure 2 
MEMORY CHANNEL Page Control Attributes 
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same order. One  arri\pal order congruent \vith both of  
these rules is the following: 

at node X, 
P3h ,,, P2v .s, P2hi .x, B2s, ELI, Bls ,  f'l\ ,Y, 1'1~1 -1 
(last) (first) 

at node Y, 
B2,, P2,..y, P1 ,\Id,, Bl,\i, B1 x, Ply .r 

These rules are indcpcndent of a particular intercon- 
nection topology or  implementation and must be 
obe!led in all generations of the MEMORY CHANNEL 
netc\~ork. 

O n  the MEMOliY CHANNEL nenvorlc, error han- 
dling is a shared responsibility of thc  hard\vare and the 
cluster management sofn\pare. The hardware provides 
real-timc precise crror handling and strict packet 
ordering by discarding all packets in a particular path 
that follo~v an erroneous one. The sofnvare is respon- 
sible for rcco\~cring the ncnvork fi-on1 the faulty state 
back to its normal state and for retransmitting the lost 
packets. 

Additional MEMORY CHANNEL Network Features 
Three additional fca t~~res  of the MEMORY CI-WNNEL 
network makc it idcal for cluster interconnection: 

1. A hardware-based barrier ackno\vledge that s\J1ceps 
the nen\lorlt and all its but'fers 

2. A fast, hard\\~a~-e-su~>ported lock primitive 

3. Node Gilure detection and isolatio~i 

Because of the three ordering rulcs, the lMEMORY 
CHANNEL ncnvol-k acknowledge packets are imple- 
mcntcd with little variation o\~cr  ordinary paclcets. To 
request aclu~o\\~ledgnie~it of packet reception, a node 
sends an ordinary packet marked with the request- 
ackno\\,ledge attribute. Thc packet is used to sweep 
clean the network q ~ ~ e u e s  in the sender destination 
path and to ensure that all previously transmitted paclc 
ets have reached the destination. In response to the 
reception of a MEMORY CHANNEL ackno\\lledge 
recli~est, the destination node transmits a MEMORY 
CHANNEL aclcno~\~ledgn~ent back to the originator. 
The arri~ial of the acl<nonlledgmcnt at the originating 
node signals that all preceding packets on  that path 
haw been successflll!~ received. 

MEMORY CHANNEL locks are irnplcriicnted using 
a lock-acqiiire sohvare data structure mapped as both 
incoming and outgoing by all nodes in the cluster. 
That is, each nodc \\,ill lla\ie a local copy of the page 
kept cohcrcnt by the mapping. To acquire a lock, a 
node writes to  the shared data structure at an offset 
corresponding to  its noclc identifier. MEMORY 
CHANNEL, ordering rules guarantee t l~a t  the write 
order to the data structi~rc-inclucli~ig the update of 

the copy local to the node that is setting the lock- 
is the same for all nodes. The node can thcn dctcrniinc 
if it was the only bidder for tlie lock, in \vhicli case 
the node has \\Ion the lock. If the nodc secs multiple 
bidders for the same lock, it resorts to an operating 
system-specific back-off-and-retry algorithm. Thanks 
to the MEMORY CHANNEL buaranteed paclcet order- 
ing, even under error tlie above mechanism ensures 
that at most one node in the cluster perceives that 
it was the first t o  write the lock data structure. To  
guarantee that data structures are never locked inde6- 
nitely by a node that is removed from a cluster, the 
cluster lnanager sofn\iare also monitors lock acquisi- 
tion and release. 

The MEMORY CHANNEL net\vork supports a 
strong-consistency shared-memory   nod el due to its 
strict packet ordering. In addition, the 1 / 0  operations 
used to access the lMEiClORY CHANNEL are hlly 
integrated \\/ithill the node's cache coherency scheme. 
Besides greatly simplifjling the programming model, 
such consistency allows for an implementation of 
spinlocks that does not saturate the menlory s)~ste117. 
For instance, while a rccci\ler is polling for a tlag 
that signals the arri\,nl of data from the MEMORY 
CHANNEL network, the node processor accesses only 
the locally cached copy of  the flag, \vhich \ \ r i l l  be 
ilpdated nthene\~cr the corresponding main memory 
location is \vritten by a MEMORY CHANNEL packet. 

Unlilce other netu~orlts, the MEMORY CHANNEL 
Iiardware maintains information on  \vhich nodes are 
currently part of the clustcr. Through a collection of 
timeouts, the MEMORY CHANNEL hard\\rare con- 
tinuously m o ~ ~ i t o r s  all nodes in the cluster for illegal 
behavior. When a failure is detected, the node is iso- 
lated fro111 the cluster and recovery software is 
invoked. A MEMOICY CHANNEL cluster is equipped 
with sohvare capable of reconfiguration when a node 
is added or re~no\/ed fi-om the clustcr. The nodc is 
simply brought on-line or off-line, the event is broad- 
cast to all other nodes, and operation continues. To 
provide tolerance to network failures, the cluster can 
be equipped with a pair of topologically identical 
MEMORY CHANNEL ncnr~orlcs, one for normal opcr- 
ation and thc other for failover. That is, \\.hen 
a nonrecoverable error is detected on the active 
MEMORY CHANNEL nenvorlc, the sofnvare switches 
over to the standby nenvork, in a manner transparent 
to the application.'" 

The First-generation MEMORY CHANNEL Network 

The  first generation of the MEMORY CHANNEL 
network consists of a node intcl-face card and a con- 
centrator or  hub. 'The interface card, called an adapter, 
plugs into tlie 1 /0  PC1. T o  send a packet, tlie CPU 
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\\rrites t o  the portion o f  1 / 0  space 11iapped t o  the  PC1 
bus. T h e  s tore- to-memory is handled by the node's 
PC1 interface device, which initiates a PC1 transfer tar- 
geting the  MEMORY C H A N N E L  adapter transmit 
windour. When  a message is received, tlie MEMOliY 
CHANNEL adapter initiates a PC1 transfer t o  \\/rite to 
the node's Cl'U memory, targeting the node's PC1 
interfilce, \\lllicli then accesses the node's main mcmol-)I. 

Besides \\,riting to the  node's C P U ,  an 1 / 0  device 
o n  the  PC1 bus can transmit directly t o  a MEMOlCY 
C H A N N E L  adapter.  Th is  allo\\s,  for example, a disk 
controller t o  transfer data dircctl!~ f rom the  disk t o  a 
remote node's memor!I. T h e  ddta transfcr docs  no t  
~ f f e c t  the  host  system's memory  bus. Tlie design 
choice o f  interfacing MEIMORY CHANNEL. t o  the  
P<:I bus instead o f  directly to the  node  <:PU bus is 
n o t  an a r c h i t e c t ~ ~ r a l  one ,  b u t  ratllci- orlc o f  practical- 
ity and universality. T h e  PC1 is a\.ailable o n  most  o f  
today's systems o f  \iarying performance and size and 
is, therefore, an ideal interface point that  allo\\,s 
hybrid clusters t o  be built. T h e  o b \ ~ i o u s  disadva~x- 
tagcs o f a  peripherdl interface bus are the  addi t io~ial  
latency incurred because o f  the  extra CPU-to-1'CI 
h o p  and a possible limitation on t h e  available b i ~ s  
bandw,idth. 

T h e  MEMOKY C H A N N E L  1 h u b  is a broadcast- 
only shared bus capable o f  interconnecting up  t o  
eight nodes. T h e  MEMORY Channel 1 adapters and 
tlie h u b  are interconnected in a star topology \ria 
37-bit-wide ( 3 2  bits o f  data plus sideband signals) 
half-duplex cha~lnels.  Tlie cables can be up  t o  4 meters 
1o11g, and the signaling Ici~el is 5-\loit TTL.  A nvo- 
node cluster can be formed \\/ithout ernployi17g a hub ,  
by direct node-to-node i~ l te rcon~icc t ion .  This  config- 
uration is also !aio\\,n as virtual hub  configuration. 

T h e  current release o f  the MF.MORY C H A N N E L  1 
hard\\/arc achie\tes a sustained point- to-point  ba~ici- 
\\)idtb o f  66 megabytes per second (Mll/s) (ti-orn user 
process t o  user process). ~Vlaxirn~im sustained broad-  
cast band\ \~idth is also 6 6  MB/s (fi-om a user process 
t o  many user processes). T h e  cross-section MEAllOKY 
C H A N N E L  1 h u b  bandwidth is 77 MB/s. S~iiall  
message latenc!~ is 2 . 9  microseconds ( ~ s )  (froni a 
sender process STORE instruction t o  a mcssage 
LOAD by a receiver process). T h e  processor o\~erhead 
is less than 1 5 0  nanoseconds (ns)  for a 32-byte pacI<ct 
(\vliich is also the largest packet size). 

As demonstrated in the literature, standard rnessage- 
passing application programming interfaces (APls) 
benefit greatly from these MEMORY C H A N N E L  
com~nunicat ion capabilitie~. '~."" I\IPI, PVM, and H P F  
o n  MEMORY CHANNEL 1 dl lia\~e one-\\>ay mcssage 
latencies o f  less than 1 0  ~ s .  These latency numbers 
are Inore than a factor o f  fi1.e lo\\,cr tllan those for 
traditional MPP architectures ( 5 2  t o  1 9 0  FS)." 

Communicat ion pcrforrnance Improvements o f  this 
magnitude translate into cluster performance gains 
o f  2 5  t o  5 0 0  perce~it ."  

MEMORY CHANNEL 2 Architecture 

Eased o n  the experience \\,ith the  first-generation 
product,  tlie design goals for IMEMORY CHANNEL 2 
\\rere r\\,ofold: (1) yield a significant performance 
impro \~cmcnt  o \ c r  I\/IEMORY C H A N N E L  1, and ( 2 )  
pro\lide f ~ ~ n c t i o n a l  cnhanccmcnts t o  cstcnd h a r d \ \ ~ ~ r c  
support  t o  ne\v operating systems and  programming 
paradigms. 

T h e  IMEIMORY C H A N N E L  2 performance/hard- 
\\*are enhancement goals \\,ere 

N c n \ ~ o r k  bisection band\vidtli scalable \\r~th the  
number  o f  nodes: 1 ,000  lMB/s for an 8 - n o d e  clus- 
ter and 2 ,000  MB/s for a 16-node cluster 

Impro\rcd point- to-point  band\\,idth, exploiting 
the maximum capability o f  the  32-bi t  PC1 bus: 
77 i\/IB/s for 32-byte paclccts and 1 2 7  MB/s 
for 256-byte packets 

Full-duplex chan~lels  t o  allon, simultaneous bidirec- 
tional transfers 

Maximum copper cable length o f  1 0  meters 
(i~icreasecl from 4 meters o n  MEMORY CHANNEL 
1 )  and ti bcr support  u p  t o  3 I<ilometcrs 

A link layer c o ~ n m l ~ n i c a t i o n  protocol co~npa t ib le  
with future generations o f  MkMORY C H A N N E L  
liard\\rare dnd optical fiber interco~inect io~is  

Enhanced degrcc o f  error detection 

The R!Il-,MORY C H A N N k L  2 fiinctional/soft\\'are 
enhancement goals \\!ere 

S o h \ , a r c  cornpatiblc \\81th the  f i rs t -gencr~t ion 
I M E ~ I O R Y  CHANNEL h'i~-d\\nare 

liccei\lc-side address remapping and \,ariablc page 
size t o  better support  new operating syste~iis,  SLICI I  
as Windo\\s  NT, and non-Alpha microprocessors 

R c ~ n o t c  read capabilities 

Global time synchronization mechanisnl 

Conditional \\,rite access t o  support  a faster recoITcr- 
able rnessaglng 

These n1.o sets o f  requirements translate into archi- 
tectural 2nd technological constraints that  define the 
MEMORY CHANNEL 2 design space. To increase the  
bisection ba~ldul idth,  the  h u b  had t o  irnplenient an 
architecture that  supported concurrent  transfers. O n  
MEMOlXY C H A N N E L  1, all senders must arbitrate 
for tlie same h u b  resource ( t h e  bus) o n  every data 
transfer. Every data transmission occupies the  entire 
MEbIORY C H A N N E L  1 h u b  for t11c duration o f  its 
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transfer, ~ ~ n c i  311 message filtering is pcrformcd by tllc 
rccci\rcl.s. Substantial nct\\rorlt traffic causes congcs- 
tion bcc,lusc 'ill scndcr nodcs fight for the same - 
resource. This congestion r e s ~ ~ l t s  in '1 clecrease in the 
c o r n ~ i i ~ ~ n i c a t i o n  spccd ancl t l i ~ ~ s  ,In incrcasc in the 
effecti\.c cl-ratio as seen by the applications. 

O n  MF,I\/IORY <:HANNEL 2 ,  the  hub  h ~ s  bccn 
designed ,IS an IV-by-l\:nonbloclti~ig f ~ ~ l l - d u p l e x  cross- 
bar \ \~ i th  bro,ldcast capabilities, \\.ith N = S o r  N = 16. 
Such an a r c h i t c c t ~ ~ r c  pro\,ides 'I bisection band\\,idth 
that scales with tllc number  o f  nocles and t h ~ l s  remains 
matched t o  the point-to-point band\\idtli  of  tlie jndi- 
\.idual channels \\~hilc a \ , o i d i ~ ~ g  congestion a m o n g  
indepcndc~l t  co~l lmi~nica t ion  paths. Therefore, an 
incrcasc in ncn\rorlt traffic \ \ r i l l  ha\,e little effect on  the 
effective cl-r,ltio. 

'l 'hr i\llF.h/l0l<lr CHANNEL orclcl-ing I - L I I ~ S  arc easily 
met o n  a crossb'lr o f  this q rpc ,  as follo\\rs: 

1. T h e  single-sender ordering rule is naturally obc~gcd 
by tlie E ~ c t  that the ~ I - C ~ ~ ~ ~ C C ~ L I I - C  pl-o\,idcs a single 
path  horn any source t o  an!! destinatioll. 

2. 'Phc multisc~idcr ordering rule is enforced by tdlti11g 
o \ , c ~ .  ~ l l  the  crossbar routillg rcso~lrccs  cii~ring 
bro,~dcast.  Although less efficient than broadcast 
by packet replication, this tcclinique cllsures a strict 
common ordering for all dcstinntions. 

Fin~lly,  cl.ossbar s\\,itchcs are practical t o  ilnplcmcnt 
for a lnodcst number  o f  nodcs (8  t o  32) ,  bu t  given 
tlic ~\.ail~iL>ility o f  n l c d i ~ ~ ~ i i - s i z e  SI\/Il's, tllcy pro\,icle a 
~ ~ ~ t i s f ~ l c t o ~ ~ ~ ~  degree o f  scaling for the gl.cat mc1jorit\, o f  
practical clustcl-ing applications. For  instance, cluster 
tccllnology can casil\, pro\ridc a 1,000-processor 
system simp]!, by connecting 3 2  nodcs, each one  a 
32-\\,ay Si\/ll'. 

'l'hc rcq~~i l . ement  for a highcr point- to-point  band-  
\\.idth called for sliift from ha l f -d~~plex  t o  full-duplex 
linlts. A longel. cable length imposed tlie choice o f a  
s ignding t c c l i ~ l i q ~ ~ c  o ther  thnn the T T L  employed in 
tlic MEh/lORY <:HANNEL 1 ucn\.orl<. T h e  design 
tc'lm acloptcd lo\\,-\,oltage cliffcl-enrid signaling 
(LV1)S)'" as tlic signaling tcc l i~ l ic l~~c  for the second and 
f ~ ~ t u r c  generations o f  the i\/lEA4Olil' C H A S N k l ,  
nct\\rorl< o n  c o ~ p e r .  O n e  o f  tlic major decisions tliat 
faced tllc team \\r,ls \\,liether t o  m ~ i n t a i ~ l  the pal-allcl 
channel o f  ~\llEiVIOlil' CHANNEL 1 o r  t o  adopt  ,I ser- 
ial channel t o  minimize s l t r \ \  transmission problems 
fw- large commllnication dista~lces. ba~ld \ \~ id th  
dcm'lnds o f  ti~tul-e cluster liodcs indicated tliat serial 
links \\rould not  pro\,ide s ~ ~ f f i c i e n t  band\vidth cspan-  
sion c'lpabilitics ~ l t  ~-c'lsonable cost.  Tllus, tlic channel 
data px'h \\.idth \\,as clloscn t o  hc 1 6  bits, a suitable 
compromise t h ~ t  \\,auld offer a manage,tblc c h a n ~ ~ e l -  
to-clianncl site\\, while providing tlic rcclllired band- 
\\.idth. Figilrc 3 ill~lstratcs the distinctions bcn\,ecn the 
first- dnd second-generatio11 I\IIEIUORY CHhVNEC 
arch i tcc t~~res .  

MEMORY CHANNEL 2 Link Protocol 
T h e  MEMOIlY CIWNNEL 2 c o m m u n i c ~ t i o n  proto-  
col \\,as engineered \\.it11 tllc goal o f e n s ~ l r i n g  comp,~t i-  
bility \\,it11 optical fiber's uniciirectional mcdiu111. T h e  
interconnectiol1 substrr~tc consists o f  p; l~r  o f  ~~nici i rcc-  
tional channels, ollc illcoming nncl one  outgoing.  
E ~ c l l  ch'lnncl consists o f  a 16-bit dnta p ~ t l ~ ,  '1 fi..i~ning 
signal, and a cloclt. Thc channel carries n \o  types o f  
pacltets: data and cont1.01. DL1ta pclcltcts \.ar!, in size ,lnd 
c ~ r r y  applicatioll d ~ t a .  C:ontrol pacltcts are used t o  
exchange flo\\. control,  por t  state, anci glob'll clock 
information. Control  pdckets t,ll<c priorin? o\,cr dnta 
pacltcts. They  are inserted i m m c d i ~ t c l ! ~  \\.he11 tlo\\. 
control st,ltc c h ~ n g c  is llccclccl and ,  other\\ . isc, ~ r c  
gcncratcd o n  a regular intcr\.al (millisecond) t o  update 
less time-critical state. hlEi\/IOl<L' (:Flr\SNEL 2 
data packet form'lt is s l l o \ \ ~ ~  in Figure 4a.  ?'he h c ~ d c r  
o f  thc  data pacltct contains n pacltct type (TI'), a 
clestination identifier (I)NIl)),  '1 rclnotc corn~i iand  
(CIML)), and a sender i d c ~ l t i f c r  (SJ1)). Tlic data pay- 
load starts \\,ith t h c  c l~s t in~l t ion  ,~ciclrcss a n d  cdn \ , ,~ r !~  
in Icngtll f rom 4 t o  2 5 6  b\,tcs ( t \ \ , o  t o  o n c  Iluncired 
t\\,cnty-eight 16-b i t  c!,clcs). I t  is follo\\,cd b!, t \ \ ~ o  
16-b i t  cycles o f  l lccd-Solomon cl.ror detection cocic. 

T h e  control  pacltet fo rm.~t  is sho\\,11 in Figure 4 b .  
7 7 

l he pacltct is identified by a distinct 7'1' and c ~ ~ r r i e s  
nctn,orlc and f lo\ \  control inform'ltion s~1c11 ,IS por t  
statils (l'STAT), corlfigllr:1tion (<:PC;), IINll),  h u b  
status, and global status. 

Similar t o  i\//IEh/IOl<Y (:HANKEL 1, h4t;hllORY 
C H A N N E L  2 uses a clocli-for\\~arcIi~~g rcclinicl~lc in 
\\dlich the transmit clock is sent along \\.it11 thc d ~ t a  
and is used at  tlic rccci\,cr t o  rcco\.cr the d'lta. l ) ,~ ta  is 
transmitted o n  both edges of t l le  for\\.arclccl clock, and 

no\-el ti!,n'~mic retiming tcchniqilc is ~lsccl t o  svn- 
chronizc tllc incoming paclccts t o  tlie node's local 
clock. T h e  retiming circuit loclis o n t o  a good  sample 
o f  the incoming ddta dt the  s t ~ r t  ofc\.c~.\r p,lcltet anci 
ensures accurate ~ \ ~ n c I i r o n i z a t i o ~ ~  for the p,lcl<ct dura-  
tion, as long '1s prcdcfi ned coniiitions o n  m a s i m ~ l l n  
pacltct size and clock drifis at-e maint.lincd. 

T h e  I\/lF.MORY (:HANNEL. 2 li~llt protocol has 
an cmbccidcd autoconfig~rration mechanisln that is 
inf.okcd \\,liene\,cr a node goes on-line. T h e  h u b  port  
and the ad'iptcr use tliis a u t o c o l ~ f i ~ u ~ . . ~ t i o n  ~ncc l~anisn i  
t o  n e g o t i ~ t c  the mode  o f  operation (link frcclucnc!,, 
data p ~ t h  \\idtli ,  e tc . ) .  ?'he s'11mc mech,lnisln allo\\,s a 
nvo-node h~rblcss system ('1 \,irtc~al h ~ ~ b  contig~11-ation) 
t o  consistently m i g n  node identifiers \ \ . i t l i o ~ ~ t  an!, 
operator intrr\ .cntion o r  m o d l ~ l c  jumpers. 

MEMORY CHANNEL 2 Enhanced Software Support 
MEMORY C H A N N E L  2 pro\.ides foul- m,~ jor  rlddi- 
tions t o  application anel operating systcnl support :  
( 1 )  recci\,c-side address remapping, ( 2 )  rcmotc reads, 
( 3 )  a global clock s!znchl-oniz'ltion ~ncclianism, and 
( 4 )  conditional \\,rites. 
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(a )  MEMORY CHANNEL 1 Network 

Characteristics 

(b)  MEMORY CHANNEL 2 Netu~ork 

MEMORY CHANNEL 1 MEMORY CHANNEL 2 

Channel data path width 

Channel communication 

Electrical signaling 

Optical fiber compatible 

Link operating frequency 
Peak raw data transfer rate 
Sustained point-to-point bandwidth 

Maximum packet size 

Remote read support 

Packet error detection 

Address space remapping 

Supported page sizes 
Hub architecture 

Network bisection bandwidth 

37 bits 

Half duplex 
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O n  MEMOIIY CHANNEL 1 clusters, tlie nen\rork 
address is mapped to  a local pagc of  physical melnory 
i ~ s i ~ i g  remapping resources contained in the sjlstem's 
PCT-to-host niernory bridge. All AlphaScr\~cr systcnls 
iniplcrnc~it tliesc remapping resources. Other sys- 
tems, particularly tliosc \\,ith 32-bit addrcsscs, d o  ]lot 
i~nplement this I'CI-to-host memory remapping 
resource. O n  MEMORY CHANNEL 2,  sokware has 
the option to  cnablc rc~iiapping in the receiver side 
of thc MEIVORY CHANNEL 2 adapter o n  a per- 
ncn\,ork-page basis. When configured for remapping, 
a section of the  I'CT is used to store the upper address 
bits needed to map any network page to any 32-bit 
addrcss on  the 1'C:I bus. Such enhanced mapping 
capability \vill also be used to  support remote access 
to I'CI pel-ipherals across tlie MEMOlKY CHANNEL 
nemorl<. 

A simplc rcniote I-cad primitive \\,as added to  
A4EMOKY CHANNEL 2 to  support research into 
sofn\:at-e-assisted shnrcd menlory. The primitive 
allo\\fs a node to  co~uplete a read request t o  another 
nodc \\,itliout soft\\.arc intervention. I t  is imple- 
mcntcd by a 11c\\l rcrnotc red-on-write attribute in 
the receive pagc control table. The requesting node 
generates a \\'rite with the appropriatc remote address 
(a read-I-cclucst write). When thc packet arrives at the 
rccci\rcr, its acldrcss maps in the PCT to a page ~narked 
as remotc rcad. Afc r  rcmapping (if enabled), the 
address is convcrtcd to a PC1 rcad comlnand. Tlic 
read data is re t i~r~lcd as a MEIMORY <;HANNF.L\vrite 
to the same address as the original read-request write. 
Since read acccss to  a page of mcmory in a remote 
node is provided by a ~uiique ~let\vork address, privi- 
leges to \\.rite or  read cluster menlory remain com- 
pletely independent. 

A global cloclc mechanism has been introduced to 
provide support fix cluster\vide synchrorlization. 
Global cloclts, \vhicJi arc highly accurate, are estrcmcly 
useful in many distributed applications, sucli as p;uallel 
databases or  distributed debugging. The J\/IEMOI<Y 
CHANNEL 2 hub implements this global clock by 
periodically sending synchronization packets to all 
llodcs in the cluster. 'l'lie reception of sucli a pulse 
can be m,lde to trigger an i n t c r r ~ ~ p t  or, 011 future 
MEIVORY CHANNE1.-to-CPU direct-intel-face sys- 
tems, may be i~sed to update a local counter. 'The 
interrupt service sohra rc  updates thc offset benvcen 
tlie local tilnc and tlie global time. This synchroniza- 
tion mechanism allo\\,s a uniclue cluster\\~idc time to 
be maintained \\:it11 an accuracy cqiial to t\vicc the 
range (mas - 1i1in) o f the  MEMORY CHANNEL net- 
\vorlt I'itcncy, plus tlic interrupt ser\.icc routine tirne. 

Conditional \\,rite transactio~~s have bccn intro- 
duced in MEIMOR\' CHANNEL 2 to improve the speed 
of a recovcrablc messaging systeni. On MEbIORY 

CHANNEL 1, the simplest irnplanentation of  general- 
purpose reco\~erable ~ucssaging requires a round-trip 
acknowledge delay to validate the message transfer, 
\vhicli adds to tlie cornmi~nication Intcnc!!. l111c 
R/IEblOl<Y (ZMNNEL 2's nc\\,ly introduced condi- 
tional \\rite transaction provides a more efficient 
iniplcrncntation that recluil-es a single acknowledge 
packet, thus practically reducilig tlic associated latc~icy 
by more than a factor of nvo. 

Memory Channel 2 Hardware 
As suggested in the previous architectural description, 
MEMORY CHANNEL 2 hardware components arc 
siniilar t o  those in MElVOl<Y CHANNEL 1,  namely 
a 1'CI adaptcr card (one  per nodc),  a cable, and a 
ccntral l i ~ ~ b .  

The MEMORY CHANNEL 2 PC1 Adapter Card The PC1 
adapter card is the hardware interface of a node to the 
MEMORY CHANNEL ncn\,ork. A block diagram of 
the adaptcr is sho\\~n in Figure 5. The adapter card is 
functionally p<lrtitioned into t\\'o subs!lstems: the PC1 
interficc and the link intcrk~cc. First in, first out  (FIFO) 
queues arc placed benveen the n\,o subsytenis. The 
PC1 interface communicates \\.it11 the host system, 
feeds the link intcrf:lce \\it11 data packets to be sent, dnd 
for\\lards rccei\rcd packets on to tlic PC[ bus. 'h link 
interface manages the link protocol and data tlou,: It 
formats data packets, generates control paclcets, and 
handles error codc generation and detection. I t  also 
multiplexes the data path fiom the 1'CI format (32 bits 
at 3 3  megahertz [MHz]) to the link protocol (16 bits 
at 66 MHz).  In  addition, tlic link interface i~nplemcnts 
the conversion to dnd fi.on1 L\IDS signaling. 

The transmit (TS) and rccci\~c (RY) data patlis, 
both heavily pipelined, are kept completely separate 
from each other, and there is n o  I-esourcc conflict 
other tha11 the 1'CI bus access. A special case occurs 
\\,lien a packet is received \vith the ack~io\\lledge 
reqi~cst bit or  the loopback bit set: the paths in both 
directions arc coordinated to t ra~ls~ni t  back the 
response packet urhile still recei~ing the original one 
(e111plo)ring the gray path in Figure 5 ) .  During a nol-- 
ma1 IMEMO~~Y CHANNEL 2 transaction, the transmit 
pipeline processes a transmit request from the 1'CI 
bus. The transmit PCT is addressed u~ith a si~bset  of 
the PC1 addrcss bits and is used to dctcrminc the 
intended destination of the packet ancl its attributes. 
The t ra~is~ni t  pipeline feeds tlie link interface with ddta 
packets and appropriate co~nmands through tlie trans- 
mit F1l2O queue. T l ~ e  linlc interhcc formats thc pc~clc- 
ets and sends them on the link cable. At the receiver, 
the link i~itcrface disnssembles thc packet in an intcl-- 
mediate format and stores it into the receive FIFO 
queue. The PC1 interfacc performs a looltup in the 
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I<loc.k l ) i ,~ ig im o f a  MEALORY (:HANNt;I. 2 ;\d;~ptcr 

r.ccci\,c~. I)(:T to ensure that the page has bccn cnablccl 
fbr rcccptio~i and to  determine tlic loc;il dcstinatio~l 
atldrcss. 

In the simplest imple~ i~cn ta t io~~ ,  ~>.lcltcts ~1.c  subjcct 
to t\\.o store-and-for\vard dcI;~ys-o~~c o11 tllc tra~ls~iiit 
132th a n d  one o n  the reccij-c pxli. I<ccnusc. of the 
;~tomicin. of packets, the transmit path must \\.nit k)r 
the Inst clat.1 tvord to be con-cctl!. t.lkcn in tiom tlic 
1'(:1 17115 bcfo~c fos\\.arding the packct to tlic link inter- 
E~cc. The rccci\.c path cspcricnccs n dcla! hccausc the 
error detection protocol rccl~rircs the clicclting of rhc 
last c!,clc before the packct cnn be dccla~,cd c~-~.o~. -hcc .  
A set ofcontrol/status MF,MORY <:HANNEI. 2 rcgis- 
tcss, addressable throng11 tlic I'(:l, is ~ ~ s c d  t o  set \ , ~ r i -  
011s motics of operation and to rc;id Ioc;11 status of the 
link 2nd globnl cluster status. 

The MEMORY CHANNEL2 Hub l'hc l i i~b  is rhc cen- 
trill I Y \ ~ L I I . C ~  that intcrco~inccts ~ 1 1 1  ~ iodcs  t o  fimn 
a clustcr. Figurc 6 is a block dingl.;lm of ;in 8-b!,-S 
h8lEhlORY (:HAYSEL 2 huh. The hub implcmcnrs 
a no11l)lockillg S-b!,-S crossb.~r iuiti intc~.ficcs to ciglit 
16-l>it-\\-idc hll-duplex li~ilts b!, mc,lns of;l link inter- 
ficc sinlilnr to that used in the nd.~ptcr. .l'lic nc t~~a l  
crossb'~r I ~ ; I s  eight illp~lt ports ;l~id ciglit o ~ ~ t p ~ ~ t  ports, 
,111 16 bits \\,icic. Each output port [ins ;In 8-to- 1 multi- 
p l e s ~ ~ . ,  \\~l~icli is able to choose horn one of ciglit input 
ports. Each multiplexer is controlled hy a local arbiter, 
\\~liicli is fed dccodcd cicstinntion rcclLlcsts horn tlic 
eight input ports. The port arbitr~tion is bnscd o n  a 
tiscci-priorit?; recluest-sampli~~g nlgoritlim. All rcclucsts 
tliat al.ri\,c \\,itliin ;I snmpliug i~itc~.\',d .11.c co~isidc~,cci of 
cquul ngc 311d are scr\.iced before any nc\\. rcqucsts. 
'l'liis n[gorjtllm, \\.hilt not enforcing . ibsol~~tc ,~rt-i\.~l- 
t i~nc  ordering ;lrnong paclicts scnt horn different 

~lodes, L ~ S S L I ~ C S  n o  stnr\,ntion a~ ld  n hir  age-driven prior- 
ity across sampling i~ltc~.\,als. 

When a broadcast recluest arri\fes at the hub, thc 
otllcr\\.~sc intic1,cncicnt nr0itcrs synchronize rlicm- 
scl\fes to transfer the broadcast packet. The . J I  .I 71tcrs ' 

uxit for the completion of the pacltct currently being 
transfcl-red, ciis,thlc poilit-to-point arbitration, signal 
that the!. arc  cad!* for broacicast, and then \\-ait for all 
other ports t o  a~.~.i\.c nt tlic samc s!~nclirollization 
point. O11cc 311 output ports are ready for broadcast, 
port 0 p rocwds to  read f r o n ~  the appropriate input 
port, ~ n c i  all other ports (including port 0) sclcct tlic 
samc input source. The maximum sy~ichronizatio~i 
\\,air timc, assuming n o  o ~ ~ t p ~ ~ t  c lue~~e  blocking, is cclual 
to the timc it takes to tra~isfcr the largest size packets 
(256 bytes), ~ h o u t  4 ps, and is independent of the 
number of ports. As in an!? crossbar architecture: \\,it11 
a single point of cohcrcnc!-, such broadcast operation 
is ~iiol-c costly rlian ,I point-to-point transfer. Our  
cslxric~lcc has bccn that some critical but relativcl!, 
Ion.-hcqucnc!. operations (primarily fasc locks) exploit 
the bro;~ricilst circuit. 

MEMORY CHANNEL 2 Design Process and Physical 
lmplemen ta tion 
Figurc 7 illustrnrcs the main MEMORY CHANNEI. 
physicdl components. As sIio\\111 in Figure 7'1, n\fo-node 
c l~~stcrs  can he constructed by directly co~lnecting two 
MElMORY <:HANNEI, P<:l adapters and a cable. This 
configuration is cnllctl the \,irtual hub configuration. 
Figure 713 sho\vs clustcrs i~iterconnccted by means of 
a .I~ub. 

The hl EhlORY (:HANNEl. adapter is implementcd 
as a sirlglc l'<:I card. 'l'hc hub consists of  a motlier- 
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Block Dingrnln ofnn 8-by-8 IMEMOKY CHANNEL 2 Hub 

board that  Ilolds tlic s\\.itcli and  a sct of liocc:irds, o n e  
pcr port ,  thiit ~ x o \ ' i d c s  the illtcr61cc t o  tlic link cable. 

'1'lic ;id.iptcr. a11J 111117 i r l i p I c ~ i ~ ~ ~ l t , ~ t i o ~ l s  IISC a c o m -  
binntion o f  progrnm~nablc logic dc\.iccs   rid off-the- 
cliclf cornponcnts. ?'his design \\,IS prcfcrrcd t o  an  
~pplicntion-spccitic ilitcyrarcd circuit (ASIC:) imple- 
rnentarior~ bcc,lc~sc OF the shor-t tinlc-to-rmlrkct 

rcquircmcnts. I n  .~ddi t ion,  some o f  tlic lie\\, f ~ ~ l i c t i o n -  
ality \ \ r i l l  c\.ol\.c .IS soft\\.,~rc is modified t o  t ~ l i c  ~d\. . lri-  
tagc o f t h c  nc\\. fc.~tnrcs. 'l.'hc h~lLiVIOI1Y (:HANSEI. 2 
design \\.:IS de\rclopod cnrircl\' in Vcrilop , ~ t  tlic rcsis- 
tcr transfer Icvcl (11-1.1.). I t  \\,ns s i n ~ ~ ~ l n t c t i  ~ l s i n g  the  
Vien.logic \'<:S c \~cn t -~ i r i \ . cn  simulator kind s!.nthc- 
sizctl \\.ith thc S!mops!.s tool .  'I'llc ~ . c s u l r i l ~ ~  rlctlist 

PC1 - MEMORY 
CHANNEL 

CHANNEL 
/ / ADAPTER 2 

( 3 )  Virtual 11~11, molic: direct nodc-to-node 
in tc rco~l~ lcc t io~~ o f  t\\.o I'<:I ncinptcr car-ds 

ADAPTER 8 

( b )  Using the IUEMORY <;HAS\'NEI, huh 
to crcatc clusters of up to I 0  nodes 

Figure 7 
MEMOIIY <:HANNEJ. tl;u-d\\,nrc <:omponc~~rs 
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\\.as fcci tlirougli tlie .~pprop~.i;ltc \ ,cncio~' tools for 
placing 2nd rout ing t o  thc specific cic\.iccs. 01ic.c the 
dc\.icc \\.as ~ . o u t c d ,  tlie \ . C I ~ C ~ O L .  too .1~  pro\,icictI a gate-  
Ic\,cl Vel-ilog nctlist \i.ith tilning i l~f i)r~rinr ion,  \ \ , l ~ i c l ~  
\\,as then simulated t o  \.critj, the  cor1.cct11css o f  tlic 
s \vthcsizcd design. Bonrd\ \ idc static tillling nnal!~sis 
\\,as run using rlie Vieu.logic lLIOvl'l\iF, tool .  r171ic linlc 
intcrf,lcc \vas fitted t o  a single Lucent  ' k c l i ~ ~ o l o g i c s  
O p t i ~ n i z c d  R e c o n f i g ~ ~ r a b l e  Cell Array (OR(:A) Scrics 
field-programmable ga te  array (FI'GA) de\fice. *l'he 
1'CI intcrFacc \\.as i ~ n p l c ~ n c n t c d  \\-it11 o n e  ORCA 
FI'GA dcvicc and several high-speed AMl) p o g r a ~ i i -  
mablc array logic de\.ices (PAl,s). ?'lianlts t o  tlic in- 
s!.stcm programmability o f  PA1.s a n d  FI'GAs, tlic 
I\II.EMOKY C H A N S E L  2 adapter  board is designed 
t o  be  complctcly rcprogrammnblc in the field from 
the  s\.strm console th rough  the  I'(:I intcrfacc. 

MEMORY CHANNEL 2 Performance 

?'his section presents IMFMORY <:NANNFL, 2 perfor- 
mance data configured in v i r t ~ ~ a l  I i ~ b  mo(ic (direct 
node-to-node connection). Whcrc \~cr  possible ~lctual 
~ncasurcd  results are presented. A t \ \ fo-node 
AlpheScrvcr 4 1 0 0  5/300 cluster \\.ns used for 311 hard- 
\\'.Ire measurements. 

Network Throughput 
Tlic iVIk.i\/lOl<Y CCHXSSEL, 2 ncn\.o~.l< hns 3 ra\\, clnta 

T C ~  arc rntc o f 2  h\,tcs c \  cr!. 13 ns o r  133.3 h,IIS/s. hllcssnb .: 
packcti~ccl I>!, the interf'icc into one or  more hfll..hiIOl<Y 
(:HXNNF,L packrts. Paclzets \\.itl.i tintn pa!'loacis o f 4  t o  
2 5 6  bytes arc s~rpported.  Figure 8 coliipnrcs, f? )~ .  \ , n r i o ~ ~ s  

ALPHASERVER 4100 
MEMORY CHANNEL 2 CLUSTER 
PROCESS-TO-PROCESS BANDWIDTH 

O: 8 16 32 64 128 256 
MESSAGE SIZE (BYTES) 

Figure 8 
iVIEl\.IOl<Y (<:HANSEL 2 Point-ro-poinr H;l~id\\.iiirh 
.IS .I ~ u n c - r ~ o ~ ~  of  P.liIict S i x ,  Coliiparinp NU\\ o r k  
'l'licorctic.al limit , ~ n d  Si~staiiicci I ' roccss- lo-~~'o~"\> 
I\lcnsu~-cci I'csforn~.i~~cc. 

paclcct sizes, tlic ~ i ~ a s i r n u m  band\vidth the I\/IF.I\IOI<Y 
CHANNEI.  2 ~ict\\'ork is capable ofsustaining \\.it11 the 
effecti\.c process-to-PI-occss band\\.idth achieved  sing a 
pair oFAlpliaSc~.\,cr- 4 100 s\.stcms. With 256-b)~ tc  pack- 
ets, ~blEI\~101<Y (:tlANNEI, 2 n c h i ~ \ ~ e s  1 2 7  lMR/s o r  
about  96 ~ x r c c ~ i t  o f  rlic !-a\\, \\,ire band\\.idtli. 

For  l'C1 \\.rites oflcss than 01. equal t o  2 5 6  bytes, the 
MEMORY (:HANNEI, 2 intcrfacc simply c o n \ r r t s  the 
PC1 write t o  a sirnila1.-size I\/IER/IO~XY CHANNEI .  
packet. T h e  current clcsign docs no t  aggregl tc  r n ~ ~ l t i -  
plc PC1 \\,rite transactions illto a s i~iglc  MEMORY 
CHANNELpackct  ~ n d  autom~tical ly  breaks PC1 \\,rites 
larger than 2 5 6  bytes into a sequence o f  256-b!,tc 
packets. 

As Figure 8 shon-s, tlic bandlvidth capabilin, of  tllc 
MEA4ORY (:HASSEI, 2 nct\\.ork esceeds the sustain- 
able data rate o f  the  Alp1iaSc1-\.er 4 1 0 0  s!.stcm. T h e  
AlpliaScrvcr ~!~stc111 is capnblc o f  generating 32-b!~c 
pa~l ie t s  t o  the  MF.J\/IOI<Y k'(:HiEiSNEL 2 interfncc a t  
88 MB/s or about  1 0  pcrccnt less than the rnasinium 
nenvork band\\,idth at  a 32-byte paclzet size. This  rep- 
resents a 3 3  percent band\vidth improvement over thc  
previoi ls-gcncmtio~~ MEMORY CHANNEI, ,  \ ~ ~ I i o s c  
eff'rcti\sc band\\.idth \\.as 66 MlS/s. hi ideal PC1 host  
intcr6icc \\.auld nchic\,c tlic f ~ ~ l l  97 iMB/s, b u t  the  
current  AlpliaScrvcr 4 1 0 0  design inserts an extra 1'CI 
stall c!,clc o n  sustained .32-b!.tc \\-rites t o  tlic I'CI. T'lic 
32-b!~c packet size is .I limitation o f  the  Alpha 2 1 1 6 4  
microprocessor; l i ~ t u r c  \.el-sions o f  the  Alpha micro- 
~>roccssor \ \ . i l l  1~ ~ 1 7 1 ~  to  sencrate  larger \\.rites t o  the 
1 x 1  bus.  

Latency 
F i g ~ ~ r e  9 slio\\,s tlic Intcncy c o n t r i b ~ ~ t i o n s  along a 
point-to-point path from .I scnding proccss OI I  nodc  
1 t o  n I-ccci\.ing p~.ocess o n  node 2 .  Using 3 si~iiplc 
8-b!rrc p i ~ i g - l > o ~ q  tcst, \\,c deterniined that  the one-  
\\xy latcnc!, o f  this p ~ t l i  is 2.17 ~ s .  In tlic tcst, a ~ ~ s c r  
process o ~ i  ~iocic 1 scnds an 8-byte messagc t o  node 2 .  
N o d e  2 is polling its mcmol-y \\.siting for the Incssagc. 
Aficr nodc 2 sccs the mcssclgc, it sends a si~liilal- mcs 
sage b ~ c k  t o  11ocic 1 .  ( S o d c  1 started polling its Incm- 
ol-!. .~ficr it scnt the PI-cvious message.) 011c-\\..1!. 
latcncy is calculclrcd b!. diviciing b!.n\.o the time it tnlics 
to co~nplc rc  ,I ping-pong csc l~angc .  Approsilnntel!- 
3 3 0  ns clapsc from the tirnc n scnding processor issues 
a stol-c jnstr~lcrion i~rltil the storc propagates to the 
sender's ('(:I bus. 'l'lic Intcncy fi-om thc sender's I'(.:I to 
the  rccci\,cr's l'<;I over tlic MEMORY CHANNEL 2 
net\\,o~-k is about  1.1 ps .  PVriting tlic main memory 011 

the rcccivcr ~iocic  tnkcs an  additional 3 3 0  ns. Finall!., 
the poll loop tnlzcs nn average of a b o u t  4 0 0  ns t o  rend 
thc Hag \-nluc horn n1cnlor!.. 

Tnblc 2 she\\-s tllc process-to-process onc-\\.a!, 
mcssngc I.~tcnc!: for diffcrcnt n p c s  o f  con~niunicat ions 
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a t  a fixed 8-byte mcss.lge size. T h e  first row contains 
the result o f  the ping-pong experiment p~-c\riously 
cicscribcd. For  comp'u-ison, tlie pre~zious gcncration 
o f  IMEMORY CHANNEL, had a ping-pong latcnc), o f  
2.60 ks. T h e  seconcl rou. represents the latency h)r the 
simplest implc~ncntat ion o f  \sariable-length messaging. 
'.l'lic latelicies ofstandal.d conimunicatio~i intel-hccs arc 
sho\\,n in the last n\.o ro\\.s, na~nel!., High Pcrfo~.mancc 
Fortran and Mcssagc Passing Interface. T h e  rcsults 
shown i l l  this table arc only benveen nlro and tlircc 
times s l o ~ r e r  than t11c latencies measured for the same 
communication intcrfiiccs over tlie SM1' bus of the 
Alpht~Scr\rer 4100 system. 

Table 2 
IMEMORY CHANNEL 2 One-way Message Latency 
in Virtual Hub Mode for Different Communication 
Interfaces 

T h e  latency o f  tlic lMEMORY CHANNEL, 2 rlcnvork 
increases with tlie size o f  the  message bec,~usc of the 
presence o f  store-and-fbr\\,ard delays in the path. As 
discusscd in tlic preirious hardware description, all 
packets are s ~ ~ b j e c t  to two store-and-fi)r\\ ,mt delays, 
o n e  o n  the  ou tgo ing  buffer and o n e  on tlic incoming 
buffer (required for crror checking). These ciclays also 
play a role in the cffecti\,e bandn'idth o f  n stream o f  
packets. On the  o n e  hand, smaller packets arc less effi- 
cient than larger ones in term o f  o\,crhcad. O n  the  
o ther  hand,  sm,~llcr packets i n c ~ ~ r  a slio~.tcr store-and- 
for\\gard dcla!~ per packet, \vliich can then bc over- 
lapped ii~itli the  transfer o f  pre\.ious packets o n  t h e  
Ii~ik, making the o\-er'~ll transfer more  cficicnt. T h e  
hub p c r f o r ~ n s  cut- through paclcct r o t ~ t i n g  \\,ith an 
additional delay o f a b o u t  0.5 ~ s .  

Summary and Future W o r k  

One-way Message Latency 
Communication Type (Microseconds) 

- 

Ping-pong 8-byte message 2.17 
8-byte message plus 8-byte flag 2.60 
H P F  8-byte message 5.10 
MPI 8-byte message 6.40 

This  paper presents a n  over\,ie\\j o f  the second- 
generation MEIMORY C W U X E L  ncn\,ork, MEMORY 
C H A N N E L  2. T h e  rationale behind the niajor design 
decisions arc discussed in light of  the cspcrience 
gained fiom A/IF,IMORY CHANNEI. 1 .  A description 
o f  the kl EMORY CHANNEL 2 hard\\~arc components  
led to  the prcscntation of  measured pcrforrn'~ncc results. 
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Integrating ObjectBroker 
and DCE Security 

The integration of the ObjectBroker software 
product with the Distributed Computing 
Environment (DCE) Security Service makes 
ObjectBroker the most secure object request 
broker (ORB) in the industry. ObjectBroker and 
DCE Security together allow client-to-server, 
server-to-client, and mutual authentication. 
The integrated software provides these security 
functions, as well as message integrity protec- 
tion, transparently to the applications. Integra- 
tion has been accomplished in a way that allows 
plug-in replacement of the ObjectBroker security 
subsystem by DCE Security, Kerberos, or any third- 

party software security product that supports 
the DCE's Generic Security Service Application 
Programming Interface (GSS-API). This approach 
supports future GSS-API-compliant third-party 
security products based on Kerberos and also prod- 
ucts that may address other security technologies 
such as biometrics and smart cards. In addition, 
the approach places responsibility for compliance 
with International Traffic in Arms Regulations in 
the hands of the purveyors and owners of GSS 

libraries rather than with the ORB vendor. Note 
that the ObjectBroker product is middleware 
jointly developed and distributed by DIGITAL and 
BEA Systems, who have formed a worldwide tech- 
nology and distribution partnership. 

An object request brolter (01<1%) is a clistributed soft- 
\\.arc Id!.er that transl,ltes abstract ser\,ice requests 
from 3 client application into rcclilcsts for specific 
scr\.crs, regardless o f  whcrc those serIrers actuall!, 
1.csidc o n  tlie net\\jork.' I n  this \\'a)', ORBS provide 
n middle tier in m~tltitiercti client-scr\lcr systems. l ' h c  
Objcctl3roker soft\\,arc, de\,clopcd 'lntl distributed 
by str:~tcgic pdrtners l)IC;ITAL, a~ici 13F.A Systems, is 
nn i~nplc~l ien ta t ion  o f  the C o m m o n  Object  R e q ~ l e s t  
Ht.okcr Arcliitecturc (C:OlU3r\) specified by the Object 
l \~ l ,~nagement  G r o u p  (OblC;).' 

Sccuriry is ,I gro\\.ing concern for those \\.ho manage 
iiistributed computing systems, anti the security options 
,~\~ai lablc  t o  the CORl3A comm~~nit!r  lia\~e been quite 
limited until recently. I n  the past year, OIMG has 
atloptcd a spccifcation for n <:OlillA Security Ser\jicc, 
, i l t l i o ~ ~ g h  f c ~ v  comlnercially a\nailablc implementations 
csist ,lt t l ~ c  time o f  tlus \\,riting. 

Outside the (:ORBA c o m ~ n u n i ~ , ,  one \\idel!, acccptcd 
st,lndnrci for security in clist1.i ~ L I  t cd,  Ihcterogeneous 
s!,srcms is the Generic Sccul.in8 Scr\.icc Application 
l'rogramming Interface (GSS-AI'I),; ' as specified by 
71'lic 0 p c 1 i  G r o u p  (\\'hicli \\,as formed b\* tlie met-gcr 
o f  the 0pc11 Sohtznrc Found:~t ion and S/Open 
(:o~iipxiy Ltd . ) .  l ' l ic  GSS-A1'1 pro\ridcs the abilit). for 
s o h \ ~ a r c  entities in a d i s t r i b ~ ~ t c d  npplication t o  authen- 
ticlltc o n c  anotlicl- atid t o  protect ongoing  communi -  
cation l>ct\\,ecn them. T h e  1)istributed Comput ing  
En\.ironlnent (DCE) Sccurit!' Scr\.ice pro\,ides an 
i lnplclncnt~t ion o f  the GSS-AI'I '1s o n e  \\.a!, t o  access 
its sc.cu~-it\~ services. 

l'lans .11.c under \\.a!, t o  itnplcmcnr the CORn;Z 
Sccurir!, Scr\-ice in thc 0hjcctllt.okc1- soti\\~arc, bu t  
the implc~nentat ion specificatio~is \\,ere no t  complctc 
\\)hen ObjcstRrolter \zersion 2.6 \\,as designed. At  
p ' c x n t ,  by integrating support  fix GSS-API implc- 
~nentat ions,  the  Objectllroltcr soft\\i~r.r pro\~icies its 
customc1.s state-of-the-art distl-ibutcd system security 
\ \ . i  tli tlic \\ridest choice o f  sccul-it\, tcclinologies 'uld 
p rod i~c ts .  T h e  first commcrci,~ll!~ a\.ailablc GSS-API 
i~nl>lc~i~cnt , l t ion \\.as tlie I<crbc1-os-b,lse11t 1)CE S e c ~ ~ r i ? ~  
Scr\,icc itself, bu t  o thcr  implcmcnt3tio11s, n.hich use 
n \.<~l.ict!, o f  sccurin, tcchnologics anti arc produced b\. 
\.nrious indcpe l~dent  soh\rare \,cnciors, arc expected t o  
ti)l lo\\, soon .  



Security 

Ensilri~ig S C ~ I I I . ~  co~i l~n l l~ i ic . i t io~ i  ' i~nol lg  entities in a 
distl-ihutcd c o r n ~ > i ~ t c r  y(stc1i7 in c11,illcnging task. Tlic 
term s c c ~ ~ r i t \ ,  nor.m,illy inclucics thrcc 1>road classrs 
ofsvstcm rcq11i1-cmcnts:" 

1 . Scc1~cc\~/pri\~~1c!~-tIic c~bilit!z t o  pl-otcct information 
ti-om u n , i ~ ~ t l i o ~ - i ~ c c t  ,icccss 

2 .  Inregrit\,--the nbilit!, t o  protcct information fi-om 
~ ~ n n u t h o r i z c d  .lItcr,ition o r  dcstrnction 

3. A\,ailabilin,-thc ubilinp t o  cnsurc tliat d i d  access t o  
infornlation can be ,iccomplishcd in n tilnel!, manner 

F,nfo~.ccmt.~it o f  ,I security policy is ,lccornplished by 
\\.,I\. o f  the follo\\,i~lg scci~~.it\ ,  functions: 

Ai~tlic~iticatio~i-tlic \>crifc,ition o f  tlic identity o f  a 
security pri~lcip.iI 

Autlio~.iz~tion-tlic clctcrminatioli o f  \\,hich princi- 
pals c , i~i  perfor111 \\,liicli actions 

Access cont~.ol-tllc cnforccmcl~ t  o f  the security 
policy, b,iscd on autliclitication and nuthorization 
int?)l.rn~tion, t o  i l e t c r m i ~ ~ c  \\,hcthcr t o  allo\\~ o r  dis- 
a l l i ) ~ ~  a p c ~ r t i c ~ ~ l ~ l r  Lictio~l 

The Distributed Computing Environment 

T h e  01x11 G r o t ~ p ' s  1)istributcit <:o~nputing Environ- 
ment  is Jn intcgl.nrcci, stnndnrii set of  tccliliologies, 
tools, ,lnd scl-\.ices tIi,lt enables tlic dc \~c lopment  and 
iicplo!,mcnt o f d ~ s t r i b i ~ t c d  ,~pplic.itions in J. lictcroge- 
ncous, ~ i i~~l t i \ , cnc ior  c o l n p ~ ~ t i n g  cn\.ironmcnt.- Typic- 
rill!., system \.c~iciors implcmclit t l ~ c  l)<X on thcjr o\\.n 
plntforms. 'l'hc l)(:F. lins bccli endorsed h!, \.irtuall!~ all 
s!.stcm \ cnilol.s, i n c l ~ ~ i i i ~ i g  I I{iU, M l', I ~ I G I T A L ,  N<;R, 
S r r ~ t u s ,  <:r,i\., HAl.,  Hit.lchi, S ic~ncns  Nixdorf, S E C ,  
1 ) a t ~  Gcncl-nl, 13~111, T,incicm, Trans.lrc, S<:O, Gradient, 
S ic~ncns  P!wlnid, ~ i n d  Oli\.crti. 

I-lie I)<:E pro\ idcs the follo\\,ing s i ~  teclinology 
col1l~>o11clits: 

1 .  I<c~notc P ~ - o c c d ~ l ~ - c  <;.ill ( I<I '< : ) ,  \\,hicli f:icilitatcs 
i i i s t r ib~~tcd  c o n ~ m ~ ~ n i c , i t i o ~ i  

2. I>irccrol.y Scr\.icc, \\,liicl~ pro\.idcs 2 single naming 
model t l i r o ~ ~ g l i o ~ ~ r  the ~ i i s t r ib~ l tcd  cn\rironmcnt 

3.  Scct~riry Scr\,icc, \\,hich l>ro\,idcs rcliablc authcnti- 
cation, , ~ ~ ~ t l i o r i / n t i o ~ i ,  ,lnd d'1t.i protection 

4. l)ist~.ih~~tcci 'I'imc Scr\,icc, \\,liicli synchronizes the 
nct\\,orIt systcnl clocl<s 

5. l ) is t r i l>~~tcd File Scr\.icc, \\,liich pro\ridcs access t o  
ncr\\,o~.l<\\,itic ti lcs 

6. Tl ircxis  Scr\,icc ('l'hc I)<:E ~ lscs  POSIX threads 
\ \ . l~crc ,i\.,iil'ihlc; 0 1 1  o p c r ~ t i ~ l g  systems \\.llcrc POSIX 
is [ lot  a \ -ai l~blc ,  the I ) ( ' t .  supplies a tlircnds package 
t l i ~ t  p~.o\.iclc tlic s,lmc inrcrfilcc '1s 1'OSIS threads.) 

DCE uscrs can be ch.11-actcrizcd by tlici~. nccd t o  
deploy and/or integrate large-scale c~pplic,ltions o n  
multiple Iieterogencous p1,ltfornls. T h e  most common 
reasoils given t?>r choosing the 1)C;E arc its security 
feati~res, its scalability, and its robustness. 

DCE Security pro\yides the follo\\,ing services: 

The  LICE Authentication Scr\ricc ,~l lo\ \~s  users and 
resources t o  prove their identin, t o  cacli other. This 
ser\.ice is currently based on  Kcrbcros, \\,liicli requires 
that all users and resources possess a sccrcr kc!,. 

The 13CE Authorization Ser\.icc \,crifcs oper'ltions 
that users ma!. perform on resoill-ces. A l)(:E Rcgstr!. 
contains A list of \ ,did uscrs. An ~cccss  control list asso- 
ciated \\rith each resource dctcrmines \.did users c ~ ~ n d  
the types ofoperations n user ma!. perform. 

T h e  1)CE Data Integrity Scr\ricc protects ncn\,orlt 
data from tampering. Automatic;llly generated 
cryptographic checltsu~ns arc appcndcd t o  ~lct\\,orlt 
transmissions, allo\ving the l)CE t o  cietcrminc if 
datd has been corrupted in transit. 'T'l~e cncr\iptecl 
checl<sum is a rncssagc nuthenticution code (MAC:) 
based 011 the Data Encryption Standard (1)ES). 

ObjectBrokcr uses the 1X:E Authentication and Llata 
Integrity ser\lices. 

ObjectBroker Security 

Although DCE Security pro\7idcs thrcc b'lsic le\rcls 
o f  protcction ( N o n c ,  L)ata Integrity, ancl P~-i\,acy), 
ObjectBroker uses onl!. the l l ~ t a  Intcgrinr le\.el. 
This  l e \ d  pro\.ides a mcch,lnism t h ~ t  computes  ,In 
encrypted, time-stalnpcd chccl<sum , ~ n d  ~tt,iclics it 
t o  the message so  that an!, a t tempt t o  change o r  
rep]+, the infor~nat ion c,ln bc detected. 111 addition, 
ObjectBrokcr ~ l s c s  csplicit c ~ l l s  t o  the 1)CE Sccurinr 
librar!.'~ GSS-API t o  accomplish ,~~~tl ienric , i t iol i  bur  
mnintdins its o\ \ .~i  access colitl-ol lists , ~ n d  a ~ ~ t h o r i z ~ i t i o n  
databasc and ~nedi,ltcs access control itself." 

N o t e  thnt \\.ithin a 1)CE cell, it is possiblc t o  L I S ~  the 
D C E  Rl'C \\.it11 the l)<:E Sccurit!. Scr\,icc t o  protcct 
comm~lnic,ition . ~ t  the \\,ire p~.otocol Ic\,cl. Ho\\,c\rcr, 
because ObjcctBroltcr does not  use the I)CE 1W<: 
\\,ire protocol, its usc o f  tlic 1)C:t.; S c c ~ ~ r i t y  Scl-\icc 
is ,~ccornplishcd by means of  csplicit calls by 
ObjectRroker t o  the GSS-AI'I implc~ncntnt io~i .  

ObjectBroltcr's use o f  the I)<:E Sccul-ity Scr\ricc 
provides data integrity protcction, ,luthcnticutioli o f  
clients t o  ser\/el-s and servers t o  clients, and protcctioo 
against replay and scclucncing ,~ttaclts. Al tho l~gh  
encryption is used t o  create the digital signatures 
tlidt pro\jiclc these protections at the nct\\forlc l h t a  
Integrity level, ObjcctRrokcr docs not  directly sup-  
port  the capability t o  cncr!ipt data, c\,cn on  nodes tliat 
h ~ v e  I'ri\racy-lc\zel 1)CE Scct~ri t \ f  Scr\~icc support .  
ObjcctBroker pro\riiles n o  PI-otcction from ticniul o f  
ser\,icc attacks either. 



O f  co~i~.sc,  ;I c ~ ~ s t o ~ n e r ' s  use o f  l)(:E Sccu~.it\r is 
c~iti~.cl!. o p t i o ~ ~ d ,  and the sec~~r i ty  mccl~anis~n used in 
p re \ f io~~s  \~ersio~is of the ObjectRroltcr soft\\.,lrc is still 
supported. With this niecha~lism, culled trusted sccu- 
rity, thc node/username associatcci \\pith n request 
fi-on1 a rcmotc node is accepted to bc as claimed. For 
trustcd security, ObjectBroker uses a prosy approach 
in \\rllich the node/userna~nc associated \\it11 a I-cnlotc 
rcclucst is mapped to a proxy idc~~t i ty  o n  the scr\,cr's 
system. An access co~itrol decision is thus b.lsed o n  
the nuthorization information for the pros!, idcntity. 
Tllc prosy approach to the trusted sccurity mccli,~nis~n 
\\.:is necessary because there \\,ns IIO concept o f  glohnl 
identie for a LIser, that is, nn identi? kno\vn to all 
co~nputcr nodcs in a distributed systcni. 

To implement 1)CE Security on a p;irticul,lr plat- 
h r m ,  a Security Integration Architecturc nccomplishes 
the mapping of a globally understood uscr~~nmc (c.g., a 
~ ~ s c r  or a sccurity principal defined \\~ithin a l>(:F. cell or 
;I I<crbcros rcalni) to a login of n locnl user on :I p,lrticu- 
lnr s!lstcm. Some implcmcntations of IX;E Scct~rity a n d  
some systems (for example, the OpcnViMS operating 
system) ilsc the notion of integrated or  global login, in 
\\,hich a loc;il user login also causes a global user login 
to be ~ x r h r m e d .  For the OpenVMS system, the global 
realm is the cluster. For the implcmcntatio~~ of 1)C:E 
Security o n  the DIGITAL UNlN s!.stc~n, the global 
I-calrn is tlie I)CE cell. 

l2ccnusc an ObjcctKroker configuration c.ln inclutic 
platforms that ha\e no implcmentatio~i of the I K E ,  
;~nci because the Security Integration A~.cliitect~~re is 
difkrcnt o n  e\7e~-!r 1)CE platform, thcrc \\,as no com- 
mon mcchiiuis~n for ObjectBroltcr to use to implc- 
m c ~ i t  an intcgl-atcd global login across all supported 
platf)rms. Thus, ObjectBrolzer is lin~itcd by the inte- 
grated login capabilities a\~ailablc o n  other platforms' 
irnplcmcntations of the 1 X E .  

For this reason, ObjectBrokcr retains ;I proxy rncch- 
i~n i s~n ,  c\,cn for use b!~ nodes tliat s ~ ~ p p o r t  tlic D(:F,. 
For authcntic3tion benvecn such nocics, ,I gcneric 
remote ]lost definition (called SecGlobnlS,lmtt) is 
mnppccl to a local user on  the local s\,stem. Should a 
scr\.cr rcccivc a request that rcqi~ircs nuthcnticatio~~ 
fi-om n client node, the server uses SccGlobalNamc to 
iittcmpt to match thc col-responding global princip.11 
I I ~ I I I ~  to ;i local user name. 

I n  other \vords, because there is n o  comnion global 
idcntity mcchallism, Objcct13roltc1.'~ prosy implcmcn- 
tntion maps either a trusted remote L I S ~ I  or n glohnl 
user identity to 3 local system idcntity to accomplish 
a gcncric mapping benvccn global and l o c ~ l  ~ ~ s c r s .  
R;lthcr than map multiple host/uscrname pairs to the 
local prosy, the ObjcctBroltcr soh\\.arc maps :I single 
SccGlobalNamc, known to all nodcs in the 1)CF. cell, 
to that prosy \\.hcnc\.cr possible. 

Mechanism for Global Authentication 
The 1>Ck Sec~~l - i t \~  Scr\,icc pro\.ides the mec[i,u~ism 
for global idcntit!~. T'hc ~ncclianis~n is h ~ s e d  OII 

IGrbcros cncr!rption, \\,tlicll is a pritratr o r  s!~mmetric 
key schcnic (as opposed to a public or  asymmetric Itcy 
schemc). A prirntc Itc!. SCIICIIIC requires some trusted 
third-party nodc to ;let as a distr ib~~tion ccnter for 
encryption keys or  crcdcntials. Each node or  uscr 11;is n 
key that is kno\\ln only to the uscr and the distribution 
center. 111 l>(:F, Security, the distr ib~~tion ccntcr is 
lulo\\~n as a pri\.ilcgc. scr\.cr." 

The fi)llo\\,ing is n simplified description of  t l ~ c  
encryption ltc!, protocol bcn\~ccn thc pri\.ilcgc scr\.cr 
and a clicnt. The nctunl Itcy cschangc protocol, \\~Iiich 
uses three ezch~ingcs n ~ ~ d  con.i.ersion keys, results in a 
Pd\.ilegcd Access <:crtificntc (PAC:) in the possession 
ofa clicnt. The I'AC:, \\.hich is appended to cach request, 
contains the authorization information to be conl- 
pared \\,it11 the ;lcccss control information stored \virh 
thc applic.ltion scr\.cr. . . 

WIlell a client \\,ishcs to coll~rnunicate \\,it11 a ser\?cr, 
cach must nccluil-c n time-starnpcd scssion Itcy tbr 
sccilrc conirni~nicntio~~. The scssion Itcy is protcctcd in 
se\w-al \\lays. The time s t a n ~ p  means that tlie key is 
only valid h r  3 limitcd tinic ( the amount of time is 
configurablc), \\.Iiich protccts against brute-force 
attempts to brcnk the kc! and reuse it. Also, each kcy is 
host-specific and  c;ln only be iiscd from the nodc tbr 
\\.hicli it is iss~rcd. Finally, t l ~ c  scssion key is ncvcr sent 
over the nct\\.o~-k ill ~111c11cr!'ptcri form.  

For ii uscr to i~litiatc a l>(:E-login, the client must 
cntcr its LICE-login ~.r;lss\\~ord. 'l'h register as an initia- 
tor and acceptor of  security contests, a ser\.el ~lscs a 
SERVTAR kc? f lc. This file contains an encrypted key 
that permits the scr\.cr tc.) obtain a set of crcdcntials 
similar to those given to n uscr. Thcse credentials allo\\f 
the server to accept sccurinr contests from clicllts or  to 
initiate rcclucsts (that is, bcco~nc a client) to other 
servers. Tlic rc'lson for lia\,ing ser\>ers acquire crcdcn- 
tials through the SElW'l'AU ~ncchanis~n is that ~ c r \ ~ c r s  
ma!, be stnrtcd o n  dcmanri by tlic ObjectBroker Agent 
(the comporlcnr that locates tlic appropriate scr\.cr 
to satisfir a clicnt request) or  system adlninistrators 
who d o  not \van[ to bc burdened by ha\.ing to kno\\- 
a server pnss\vord. 

In cithcr case, the clic~lt or  the server specifics the 
principal nnmc to be authenticated. The nodc scl~ds 
the spccificd priricipal's name to  the privilege server. 
The pri\,ilcgc scr\.cr rcrLlrns a scssion Itc!~ tliat is 
cncryptcd using tllc pl.incipal's pass\\,ord or SER\'Till< 
kt!: 'Tlic l X E  1.~1n-timc sok\\rarc running on tlie local 
system tfccrypts the scssion ke!. using the pass\\.ord or 
SERVfiB kcv. Once the client and the scr\.cr have 
decr!.ptcct session Iicys, they can use the  kc!^ to illitintc 
secllrc co~nlli~11iic.ltio11 \\.it11 each other. 



Thus, if a server is configi~rcd to rccluirc authcntica- 
tion, then before invoking a method on that serlrer, 
a client must succcssfull!l perform a 11CElogin and 
obtain the credentials needed to  establish a security 
context \\lit11 that server. A client may also require 
authentication from the server to  ensure that some 
malicious soh\,arc is not ~nasquerading as a real server. 

Note that the operations for acquiring credentials 
are accomplished outside the server csccutable. The 
operations arc performed by the ObjectBroker run- 
time soft\\rare, based o n  configuration settings in the 
ObjcctBroltcr Security l<cgistr)~. 'l'lic goal is t o  avoid 
burdening applications \\lit11 the lulo\\lledge ofsecurity 
mechanisms. 

Authentication rcqi~ircme~lts can apply to the 
ObjcctBroker Agent as well as to  clients and servers. 
The Agent is in fact a separate security principal, 
and one can rccluirc client-to-Agent, Agent-to-client, 
Agent-to-scr\.cr, and server-to-Agent authentication 
in an Objectliroker config~~ration-in addition to 
autlientication bcn\/ccn tlic clicnt and the scrvcr. Thc 
clicnt 01- the server can inclepende~ltly set these modes, 
or the Objectl31.olter system can require that modes 
be set nodc\vidc. 

Security Design Issues for ObjedBroker 
The  security issi~es associated \vith the design of  
ObjecrBrokcr \:crsions 2.6, 2.7, and 3.0 were primar- 
ily those of increasing the security capabilities and 
preserving up\vard compatibility with previous 
ObjectRrolcer \frrsions. While compatibility is al\\!a)rs 
a concern \\,hen upgrading sofh\larc, ObjcctBroltcr's 
rcqi~ircmcnts in this area arc partic~~larly stringent 
because cLlstomcrs have mission-critical applications 
running in \,cry large configurations. I n  sonie cases, it 
is difficult or  impossible to  upgrade all ObjcctBroker 
nodes at onc  timc, so  it must be possible to d o  a 
rolling upgrade that mi~l in~izes  the disturbance to the 
configuration and allows unintcrruptcd opcration 
of applications. 

The need for dynamic, plug-in replaceability of 
the sccurity suhsyste~n npAs an important issue for nvo 
reasons. First, to pl-o\ide standards-based solutions to 
computing probletns, the ObjectBrolter design had to 
allo\\l tlic integration of any security product that 
iniplements the GSS-Al'I. The second reason has to d o  
\ilitli export controls. 

United States go\rcrnment esport regulations spccfi 
that harciw'ire, sohvare, and docume~ltation for cryp- 
tographic products may be exported by license only. 
Specifically, thc Department of State's International 
Traffic in Arms 1Xcgulations (22 Code of Federal 
Reg~~lations Subcliapter M )  require that an export 
licc~lsc 13c obtai~lcd fi-om the department before any 
cryptogapllic Iiard\varc, sotintare, or doculllentation is 

exportecl from the United Stares. An ObjectBroker 
desig~l goal uras not to encumber the product \\lit11 
export restrictions. Therefore, ObjectBrolcer itselfdocs 
not include any cryptographic security mechanism. hi 
ObjectRroker customer- must provide an appropriate 
GSS library; \\iliate\~er package is available on the system 
is the one ObjectBroker \ \ f i l l  use. 

ObjectBroker Security Features 
The sccurity featirres that have been succcssf~~ll!! imple- 
rrle~lted in the ObjectRroltcr sott\\!are i n c l ~ ~ d e  

Client-to-server, ser\ler-to-client, and mutual 
authcntication 

Protection fi-om replay and sequencing attacks and 
integrity protection 

Fine-grain control over the authe~iticatio~i n~echa- 
nism (per-host, per-server, or per-method) 

Ability to demand a netv security contest for an 
invocation 

Ability to apply ~ i c \ \ ~  securlv features to applic'i- 
tions \\~itliout rebuilding them 

D!lnamically loadable security librar~es 

Usage 
One of the most important characteristics of a secure 
ORB is that applications (clients and ser\lers) need not 
be aware of security operations undertalcen on their 
behalf. For ORISs, as u~ell as for other support soft- 
ware, the goal is to avoid burdening applications with 
the need to deal cijtli tlie co~nplesities of a distributed 
system so that they can concentrate on the application 
problcrn at hand. 

Therefore, most of ObjectBrolter's sccurity-rele\r'int 
operations are invisible to applications. Objectnroker's 
management utilities are used to specifi the rules for 
authenticating clients and scrvel-s. These rules are 
stored in the 0bjcctB1-olter Security Registry, and the 
recluircd authentications are performed auton~atically. 

There are two exceptions to tlie general rule of 
Itccping security operations in\isible to the ,~pplica- 
tion. The first is that a client or a server (\\,hen acting as 
a client) can explicitly make a call to an ObjectBroker 
API to toggle mutual authcntication on or off. This 
operation is allowed as long as it docs not diminish the 
security le\~el specified for the ObjectBrokcr node as a 
whole. In other cvords, a clicnt can demand n ~ i ~ t u a l  
authentication o n  a node that does nor require such 
authentication but cannot disable mutual authentica- 
tion ifthe node does require it. This feature \\.as implc- 
mented to make it possible for clients to cnal~le n ~ ~ ~ t i ~ a l  
a~~tlientication for specific operations that have sccu- 
rit\r rele\ra~lce. 
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T h e  second exception is that a scr\.cr c,ln cicm,lrld 
the creation o f  a ne\lr security c o ~ i t c s t  fos an in\~oca-  
tion, \\,hich immediately tests tllc nutl~cntication o f  
the principal ~nal i ing the recl~rcst. This is i ~ n p o r t a n t  
bccausc the GSS-API allo\\,s the initiation  of^ sccurit\r 
contcst  that has n o  expiration. Clc,i~-I\*, if ,I sccurin, 
colitest exists for a long  e n o i ~ g l l  period, tllcrc ma!r bc 
a concern that it is 110 I O I I ~ C I -  \ d i d .  For csnniplc, \\,hen 
,I ~ ~ s c r ' s  account is revolted from the l)<:E Scc~rrity 
Registry, it is possible that the user's crcdc~lti,lls arc still 
\lalid in sonic existing security contcst .  F,st~ll.>lislling a 
new secu~.ity contest  forces tlic 1X;E run-tirnc s o h \ , a r c  
t o  go back t o  the sccurin, ser\,cl- nnci \.csi5. r l ~ c  \,,qlidity 
o f  the principal. 

Figure 1 illustrates the intcl-c~crion o f  Objcctl3roltcr 
and  thc 1 X E  Securih. Scr\.icc components  in the 
establishment o f  a seci~sin,  context.  Once  the sccu~.in, 
contcst  is estnblished, it is used i l l  the \cr i f icat~on o f  
i\/lii<:-scaled messages ben \~een  t l ~ c  sewer  and the 
clicnt. In  this illustration, access t o  the D<:E scc~~rit!l 
subsystem is ticpictcd as a local call, though accessing 
thcsc scrvices c o i ~ l d  also be done  remotely. 

T h e  sccluence o f  operations in  Figure 1 is JS k)llo\\~s: 

1 .  A metliod in\~ocation (a clicnt rec l~~cs t  for a rcniorc 
opcrdtion) results in a call t o  Objcctl3roltrr's sccu- 
rity subsystem. 

2 .  Tllc ObjectKroker securit!. suhs\~stcm in turn 
in\rokes a GSS routine in the l)<:F. S c c ~ ~ r i n r  librar\,. 
This c'lll determines \ \ ,hct l~cr  a nc\\. scc~~r-it!, con-  
rcst needs t o  be established, \\.hie11 CCIII Ii,~ppcn for 
o n e  o f  n1.o reasons: either it is tlic first in\,oc<ltion 
of this  server from this client o r  the contcst  rcficsh 
rate has been specified as per - in \ ,oc~t io~i .  

3. T h e  1X:E Security library csccutcs tlic c ~ l l ,  \\,hich 
sets irp the security contcst .  ( N o t e  tli;lt tllc process 
o f  deleting an existing security contcst  is not  
sll0\4'11. ) 

I CLIENT 

4. 7-lie sccusln. s~~bs\ .s tcrn checks the return s t ~ t ~ ~ s  of 
the C;SS ~.olrtinc t o  d c t c r ~ n i n c  \\ .hether the rc\ult- 
ing token is t o  bc p,lsscd t o  the in\.ocation I,l\.cr. 

5. If so ,  the toltcn is p~ssccl t o  the transport I.l\.cr for 
~narshnling. 

6 .  T h e  clicnt comr~~irnicatcs  \\it11 thc scr\.c~- nodc 
through tlic noslll,~l ObjcctR~.olter channel. 

7. T h e  transport layer i l l  thc receiving nodc L1nrnar.- 
shals the mc<s,igc, cx,lnlincs the transport mcss'lgc 
I~cacics, 'lr~d pc~sscs contsol t o  a dispatchcr in the 
i11\.ocntio11 Ia\rcr-. 

8. Depending o n  the Incssagc t\,pe, the mess'lge may 
then hc p.lsscci t o  J slxxial dispatcher, in this c,l\c 
t l ~ c  sccu~-it! tiisp'~tcllcr. ill the sccurin' sul>s\,stc~n. 

9. T h e  scc~rrit\r s~rhs\,stcnl cictcrrnines that the incs- 
s ~ g c  s l~o~l lc i  hc h,~ncilcd b!. the GSS implemcnr,i- 
tion and p.lsscs the mcj\Jgc thcrc. 

10. T h e  1X:E S c c ~ ~ r i t \ ,  I a \ ~ r  chcclcs t11c rccci\,cci toltc~l 
and if it is \.,llici, ,~cccpts  the sccurit!' c o ~ l t c s t .  .l'l~c 
r o ~ ~ t i ~ i c  gcncr,ltcs a c o ~ l t c s t  establishmcnt token 
t o  hc p,~sscd t o  tllc clicnt. T h e  call also returns the 
scr\;cr's coritcst l i ~ n d l c  &)I. the security c o ~ i t c s t  the 
SCI-\.CI. sllnrcs \\.it11 the cl ie~l t .  

12. Tllc in\-ocarion I.i\.e~- nl,l~.sh'lls the infc)srnation ~ n d  
scncis it as a n  nl.g~rrl1~11t t o  tlic lo\\.-le\.cl tr.xnsport 
routinc call. 

1 5 .  Tlic mcss,lgc is sent t o  the scc~~s i t ) .  subs\~stcnl 

1 6 .  T h e  token is p,lsscd t o  t l ~ c  GSS i m p l c m c n t a t i o ~ ~  
t o  initialize thc scc~rrit!! context,  \vith the ~ c r \ ~ c r -  
supplied toltcn ns nn nssLuncnt. The routine 
r e t ~ ~ t - r ~ s  the clic~it's contcst  handlc, \\,hie11 is used 
t o  sign s ~ ~ h s c c l ~ ~ c n t  Inessngcs. 
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Performance Considerations 
T h e  b c ~ ~ c f i t s  o f  .I secure OR13 arc not  frcc. If authenti- 
cation is I-cquircd \\,hen s. clicnt anti scr\Icr establish a 
connection tl11.o~lgh a binding, p ~ l - t  o f  t h ~ t  binding 
in\.ol\.cs the cstablishmcnt o f  '1 security contest .  
Establishment o f  ,I sccl~rit!, contckt rccluires a ro111id- 
trip o n  tlic ncn\rorl<, dill-iny \\rl?icli u token k o m  the 
clicnt is passed t o  rhc scr\.cr, anti '1 tolicn is returned 
from the ~ c r \ ~ c l -  t o  tlic clicnt in the m ~ l t u a l  a~~t t l cn t ica -  
t1o1i case. 

Once  cstablislicd, tlic sccurin, con tes t  is i~scd  in 
s u b s c q ~ ~ c n t  rcclucsts (pro\.idcd tliat the configuration 
docs not  rcqilirc s c c ~ ~ r i ~ ,  contcst  deletion ahcr  c\.ery 
method in\.oc,ltion). If the same security contest  is 
rcuscd, tlic only ,ldciitional o\,crliead considerations 
,lrc ( 1 )  the signing and \,critication o f  requests and 
responses in tlic clicnt and scr\.cr, ,lnd ( 2 )  the sccurin, 
colitcst linndlc ( 3 2  ndditional bytes o f  information) 
appended t o  each message p ~ s s c d  bcn\,ccn the client 
and the SC~L'CI . .  

Tlic signing ,lnd verification o f  .I signature o n  a 
rcqucst o r  response is different from the \ ~ e r i f i c a t i o ~ ~  
of t l i c  pri\/ilcgcs used \vlicn the sccurity con tcs t  is first 
set up,  in rh'it verification o f  a signature docs no t  
require a licnvorli r o ~ l n d - t r i p .  In contrast,  \\/hen you 
first set up  a sccurity contcst ,  a network r o ~ ~ ~ i d - t r i p  t o  
the pri\rilcgc ~ c r \ ~ c r  is rcq~rircd,  a11ci its overhead is 
significantly 1norc costly than that  o f  the  verification 
and signarul-c opcr,ltions. 

Note tliat \ \hen a clicnt 113s ~i i l~l t iplc  object references 
t o  J si~iglc ~iictliod i~ l lp lc~ i ic~ i tn t io~i  in a scl-vcr, a single 
sccur i~r  contcst can still bc ~ l scd .  Fo~.csamplc, a derived 
o l jcc t  rcfcrcncc docs not rcquil-c a sccilrit\. c o ~ i -  
test.  This is hot11 all optimization '1nd a f i~nct io~ial  
r e q ~ ~ i r e l ~ i e n t ,  since only one  scc~lrit\, contest is allo\\.ed 
bcn\~ecn J clicnt process ,11id J S C I - \ . C ~  i ~ i i p l e ~ i i ~ ~ i t a t i ~ n .  

Future Work 

-Phc 01\1IG specifics a n~l lnbcr  ofobjcct  scr\%xs in addi- 
tlon t o  the C0III:A specifcation itself. One  of  the most 
important specifications is for the <:ORBA Securinr 
Scr\.icc. Objcctll~.okc~.'s intcgr.ltion with 1)CE Security 
\v,is desiglicci and implemented before tlie OMG's 
(:OR13A Security Ser\,icc spccif c'ltion \\,as complete. 
T h ~ l s ,  cvcn t l io i~gh  Objcctlirokcr is tlic most sccarc 
OlU3 a\,ailablc toda!~, it is reasonable t o  ask \\,hen and 
lio\v its s c c ~ ~ r i t y  Fe.lt~~res \\ ' i l l  be llladc compliant with 
the lutest spccificntio~ls fi-om the Oi\/IG. 

Given s~lfficicnt I-csourccs, ObjectRroker engineer- 
ing could in\~cstigitc support ing <:ORBA2 inter- 
opcc.lbility by implcrnc~iting tlic Oi\/lG's General 
Inter-OR1; l'rotocol (GIOI'). ?'lie G I O P  architecture 
supix)~'tstboth the Inrcrnct Intcr-OM3 Protocol ( I IOP)  
2nd the I)(:1\ bascci (:ommon Inter-ORB Protocol 

(D<:E-CIOP). Tod,~!: Objcctl31-oker uses ,I \\,ire proto- 
col based o n  the CORRA version 1.2 spccif c,ition. 

Security for the IIOP is go\cr~icci by the Scc~lrc  Ilitcr- 
ORB Protocol (SECIOP) spccific,~tion"', although fc\\, 
com~nercially a\'ailable implc~iicnt . l t io~~s of  the SE:,<:IOI' 
are a~~ai lable  at tlir time of  this \\,riting. Also, ~s Inen- 
tioned pre\riousl!; sccurin, fol- tlic l)(:E-(:IOI' is s ~ c c o ~ n -  
plished by protecting the RIY: colinections ~t the \\,ire 
protocol le\,el. For the 1 X E  lIJ'<:, the l)(:F, docs its 
o\\m authentication tix Rl'<: sessions; hcrc the Rl'C: 
connection bct\\zeen t l ~ c  clicnt dnii tlic scr\.c~-, rather 
than the client and tlie scr\.cr tlic~nscl\.cs, is authcnri- 
catcd. This  appro'lch pro\.idcs the s,lme potential for 
security management  in the OR13 configurat iol~;  it 
simply accomplishcs the s c c ~ ~ r i n ,  filnctions at ,I Ic\rcl in 
the p r o t o c ~ l  stack tliat docs no t  rcq~li1.c the LISC o f t h c  
GSS-M'I. By buildi~lg in su1,pol.t for the GIOP,  
ObjcctGroltcr gains the c,~pabilir\, t o  pro\ridc the S ~ C L I -  

rity features for both the 1101' and tlic l)<:E-<:JOI' 
protocols in fi~tllre rele'~scs. 

T h e  SECIOP 'ind tlic I)<:F.-(:IOl' hot11 ti)llo\\n the 
usage model o f  m i ~ i i ~ n i ~ i n g  the nccd for .1pplic,ltions 
t o  be a\\lare o f  security. In the SF,:.(:IOl', tlic OIMG 
has specified AI'Is for sccul-it)! ftlnctiolis, and thcsc 
f i~nct ions are entirely scparatc from an!! mcclinnism 
that implements them. OR13 \zcnciors \\,ill be frcc t o  
provide security fc~tul-cs  in much the s'lrnc \\,,I!~ tliat 
ObjectRroltcr pl-o\fidcs s c c u r i ~ ~ j  totin!!, i.c., b\j \\.orkilig 
fro111 securinr-relatecl inhrrnat ion ltcpt by tlic OlIR. 
T h e  SE<:IOP also provides for ,lciministruti\c ohjccts 
and operations that perform sccurin, 1iia1i,1gc1i~c1it 
functions b \ r  means o f  Al'ls. 

Conclusion 

ObjectHroker p~.o\,idcs state-of-the-,lrt distl-ihutcd 
slrstem security toddy. Its sccurit!. f c ~ t l ~ r c s  p~-o\.idc 
up\\,ard compatibilin., as \\.ell ,IS t11c l c ~ s t  possible tiis- 
turbancc t o  existing Objcctllroltcr applic:~tions and 
configurations. I n  addition, Objcctl3roltcr's implc- 
mentation o f  sccurity b!, rnc,llls o f  the I)(:E1s Generic 
Security Ser\,icc Applicatio~i Progrnlnming I ntcrfacc 
provides the gre'ltcst possible choice a m o n g  s c c ~ ~ r i t ! ~  
mechanisms and scc~ll-it!, ilnplc~ncnrnrioli pro\.iclcrs. 
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A 160-MHz, 32-b, 
0.5-W CMOS RlSC 
Microprocessor 

This paper describes a 160 MHz 500 mW 
StrongARM microprocessor designed for low- 
power, low-cost applications. The chip imple- 
ments the ARM V4 instruction set' and is bus 
compatible with earlier implementations. 
The pin interface runs at 3.3 V but the internal 
power supplies can vary from 1.5 to 2.2 V, pro- 
viding various options to balance performance 
and power dissipation. At 160 MHz internal clock 
speed with a nominal Vdd of 1.65 V, it delivers 
185 Dhrystone 2.1 MIPS while dissipating less 
than 450 mW. The range of operating points 
runs from 100 MHz at 1.65 V dissipating less 
than 300 mW to 200 MHz at 2.0 V for less than 
900 mW. An on-chip PLL provides the internal 
clock based on a 3.68 MHz clock input. The chip 
contains 2.5 million transistors, 90% of which 
are in the two 16 kB caches. It is fabricated 
in a 0.35-km three-metal CMOS process with 
0.35 V thresholds and 0.25 1J.m effective channel 
lengths. The chip measures 7.8 mm x 6.4 mm 
and is packaged in a 144-pin plastic thin quad 
flat pack (TQFP) package. 

0 1996 IEEE. Ilcp~.ii~tcd, \virh l)ct.mission, ti-om IliIiIi,/o~i~-l~al (!/' 
.G)lirl-.S/o/c, C;irci~it.~, \.olumc 3 1 , nu~nl>c~ .  I 1 , No\.etn hcr 1996, 
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Introduction 

As pcrso~i:il digital assistants (1'l)A's) move into the 
nest generation, there is an ob\rious need for 'iddi- 
tional processing po\\,cr to enable nc\\, applications 
and j~nl-71x)\rc c s i s t i n ~  ones. While cnhnnccd fi~nction- 
ality s ~ ~ c h  as in~pro\.cd hand\ \~i t ing  recognition, voicc 
recognition, and speech syntl~csis are desirable, the 
size and \\,eight limitations of 1'l)A's rccluirc that 
micropx)ccssors cleli\.cr this perti)rrna~~cc \\itIiout 
consuming additional po\\,er. Tlic microprocessor 
describcd in this paper-the Digital E q ~ ~ i p ~ n e l l t  
Corporation SA- 110, the first micropl-occssor in tllc 
StrongAKM family-directly addresses this nccd by 
deli\~ering 1 S5 Dhrystonc 2.1 MIPS \\,hilt dissipating 
less tli'in 450 mW. This represents 3 significantly 
higher petfor~nance than is currently ,lvailablc a t  this 
I'O\\'" Ic\,cl. 

CMOS Process Technology 

The chip is tabl.icatcti i l l  a 0.35 p.m thrcc-metal (;MOS 
process 114th 0.35 V thresholds and 0.25 11111 effccti\sc 
channel lengths. Process characteristics arc sho\\.n 
in Table 1. The process is the result o f  sc\rcral gcncra- 
tions of dc\~elopmcnt efforts directed to\\,ard h i ~ h -  
pcrfc)rmancc mjcroproccssors. It is identical t o  tlic one 
used in Digital Equipment Corporatio~i's current 
generation of Alpha chips' cxccpt for the rc~no\.al of 
the fourth layer of metal and the <iciditio~i ol-' a find 
nitride passi\vatiol~ rcqui~.cd ti)r plastic p'~cltnging. 

The hctors \vhich dri\>c process dcvclopment for 
lo\\,-po\ver dcsign ;ire similar to thosc \vhich dri1.c the 
proccss ti)r purc high-pcrfor~i~a~icc altliougli the moti- 
\ration sonietimcs diffcrs. For example, \\rliilc both 
types of designs benefit fro111 mnximizi~ig Itisat of thc 
transistors at the lo\\,cst acceptable Vdd,  the moti\r;~- 
tion for a pure high-pcrhrmancc desigi is rcd~lcing 
po\vcr distribution and therm:il problems rather than 
extending battery life. Similar ~i rgu~ncnts  apply to 
~~ i in i~n iz ing  transistor Ical<age ;uld 011-chip \,ariatior1 of 
tKlnsistor paralnctcrs. This con\,crgcncc of goals has 
bccn essc~ltial t o  our ability to develop one proccss 
to satis& the rcq~drcmcnts of both lo\\,-po\\~er and 
high-per6)rmflnc.c hnlilics. 
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Table 1 
Process Features 

Feature size 0.35 pm 

Channel length 0.25 pm 

Gate oxide 6.0 nm 
VtnlVtp 0.35 VI-0.35 V 

Power supply 2.0 V (nom~nal) 
Substrate P-epi with n-well 
Salicide Cobalt-disil~cide in diffusions and gates 
Metal 1 0.7 pm AICu, 1.225 pm pitch (contacted) 
Metal 2 0.7 prn AICu, 1.225 pm pitch (contacted) 
Metal 3 1.4 vm AICu, 2.8 pm pitch (contacted) 
RAM cell 6 transistor, 25.5 pm2 

Power Dissipation Tradeoffs 

I<IS(: microprocessors operating at  160 MHz arc hirly 
comlnon using current  (:bIOS proccss technolog!,. 
T h e  novel aspect o f th i s  dcsign is t l ~ c  abi l in~ t o  acIiic\.c 
this operating freclucnc!, , ~ t  po\\,cr Icvcls \vhich are l o ~ v  
c n o ~ i g l i  for handheld npplicntions. Sc\.crnl J c s i g ~ i  
tladcoffs \\,ere made t o  achic\.c the desired po\\.cr 
dissipation. In  o rder  t o  illustrate t l i c i ~  effect on the  
design, it is intercsting t o  imagine applying tlicsc 
traclcoffs to an earlier dcsign \vliosc power dissipation 
occupies the  opposite end o f  tlic po\\'cl- spectrum, 
tllc first reported Alphn micl-op~.occssor.' This Alphn 
chip \\.as fabricated in a 0.75-pm (:ILIOS proccss and 
opcrntcd at  200 h'lHz dissipnt in~ 26 W nt 3.45 V. T h c  
impact o f  these tradcot'ti is sirm~ilarizcd in Tablc 2 .  

Tlic first decision is t o  I-cducc tlic internal po\vcr 
suppl!~ t o  1 .5  V. "This c h n ~ ~ g c  c ~ ~ t s  the po\\.cr by a factor 
of 5.3. While this has tlic desired effect, it has implica- 
tions f ix  the  cycle time \vhicIi arc considered in the  
section Circiut I ~ ~ i p l c ~ i l c ~ i t d t i o ~ x  

T h c  ncs t  step is to reduce thc ti lnctionality. As c o m -  
pared t o  the early Alpha chip, the most ob \~ ious  scc- 
t i o ~ i s  missing in this dcsign arc t l ~ c  floating point unit 
and the branch history tnblc. F l o ~ t i n g  point is n o t  
rccluired in t h e  target applications n ~ i d  the  lo\\ branch 
I ,~tc~ic) ,  o f  this design cliliijnntcs t l ~ c  nccd for the 

Table 2 
Power Dissipation Tradeoffs 

Start with Alpha 21064: 200 MHz Q 3.45 V. 
Power dissipation = 26W 

Vdd reduction: Power reduction = 5 . 3 ~  *> 4.9 W 

Reduce functions: Power reduction = 3x *> 1.6 W 

Scale process: Power reduction = 2x 

Reduce clock load: Power reduction = 1 . 3 ~  * 00. W 

Reduce clock rate: Power reduction = 1 . 2 5 ~  + 0.5 w 

br.inch history tab.lc. I r s s  oh\ . io~ls ,  bu t  \ c r y  impor- 
r.lnt, is I-educed control complc\it!,. This is 11 simple 
m.~cliinc and \vc lia\.c \ ~ o r l i c d  hard t o  keep it so.  \Vc 
cstini,~tcd that  thc redtlced fi~nctionality \\,auld cu t  
po\\,cr I)!, '1 Klctor o f  tllrcc. 

Process scaling reduces ~ l o i i c  capacitances and thcrc- 
fore chip po\\rcr. Note  that  although tlic :1rca compo- 
nents o f  the capacita~icc will dccrcasc as the square 
o f  tlic scalc factor, the total cap. ici t~~ice cl la~igc \\.it11 
sc:~lins \ \ , i l l  be less ciram.~tic p~.i~ii.~~.il!~ d u c  to the ctfccr 
o f  periphcr!* capacitance. \,Vc estimate that  scaling 
fi-om 0.75 p m  o f  thc c:l~-l\ :!lpIia chip to o u r  current 
0.35 1J.m ~ v o c e s s  r e s ~ ~ l t s  in n po\\,er ~.cduct iou of  ahout  
.I filctol- of nvo, a linear reduction \\.ith scale hctor .  
Once  agrun, coupled \vith this positi\.c effect o f  proccss 
scnling ,Ire a host of  other  issues. S o ~ n c  o f  t l ~ o s e  issues 
arc co~isidered in the  scct io~i  l'o\\~cr l)o\vn Modes. 

Nes t ,  consider the clock po\\,cr. 'l'hc clock po\lrcr o f  
the Alpha cliips is fairl!, l ~ ~ . g c  rind \\,liilc that clocking 
stratcg! \vorl<s \\.ell For Alpha mnchincs, i t  is no t  appro- 
printc for a lo\\.-po\\.cr chip. O L I ~  c l o c k i ~ l g s t r a t c g ~  and 
o u r  latch circuits arc dcscribcd in solnc detail later. 
O n c  ~ n n j o r  change fi-om tlic A l p l i ~  ciesign \vas t o  reject 
t l ~ c  pair o f  trar~sp;irc~it Iatclicz per c!,clc ~ ~ s c d  o n  the 
Alldia dcsign. Instead, o n  this dcsign, 1i.c s\\ritcl~ed t o  a 
singlc cdgc-triggered latch per c!~clc t o  r e d i ~ c e  clock 
loaci ;uld latch delay. O u r  cstirn,itc is that the changes 
in tlic cloclting reduced the clock po\ver by a factol- of  
mro. Sincc the  clock po\\.cr \\,as nI>o~rt 65% o f  the tot;il 
po\\,u' on the first A l p h ~  cllip, this results in a rcduc- 
tion o f a b o u t  1.3. 

Finally, the reduction in clock ti-cquency from 
200 iClHz t o  160 iCl Hz drops tlic po\\,cr by 1 .25. 

(:lcarly, this analysis is no t  rigorous, b u t  i t  suggests 
that it is 1.caso11ablc t o  build a 160 M H z  processor chip 
tlint Jissipatcs around 11,llf a \\rilrt. A s j m i l ~ r  nnalysis 
puf i ) rmcd  a t  the b r g i n n i ~ l g  o f  the project to select thc 
power supply voltage and opcr.lting fi-cq~~cnc)! and t o  
determine \\rhether significant cliangcs in dcsign 
mctliod would be required to mcct  the perfo~-mancc 
,lncf po\\.cr goals. I t  is intc~.cst i~ig t o  note  that \\.it11 the 
csccl>tio~l o f  the clocking changcs, the dcsign methods 
nnri pllilosoph\. used o n  this dcsign \\.ere vcl-y similar 
t o  rl1.1t uscd o n  the Alplin chips. 

Instruction Set 

'l'llc microprocessor iniplcmcnrs thc ARiilI V4' 
instruction set. T h e  architecture defines thirty 32-b 
guic~'al  pur~x)sc  registu'sand ,I progra111 c o ~ i ~ l t c r  (PC.:). 
l<cgisrcrs are specified by u 4-h ficld \vhcrc registers 
0 t o  14 arc general p~rrposc 1-cgisrcrb (C;PI<) and  rcgis- 
tcr 15 is tlic 1'C. -1'lic current  pr.occssoi- stilt i~s register 
contains a currcrlt mode  ficld \\.hich sclccts eithcr an 
i~~ip~. i \ . i lcged user: mode o r  one ol'sis pl.i\,ilcged niodcs. 
'l 'hc currcsnt mode  selects \\*hich set of GI'R's is \isiblc. 



In addition to b ~ s i c  IIISC: fcaturcs of fiscd Icngth 
instructions and simple load/storc .lrchitccti~re, the 
arcliitcct~~rc implcmcntcd includes sc\,crul f ca t~~res  to 
i~ i ipro\~tcodc dc11sity. 'l'liese includc conditional esecu- 
tion of all instructions, load and stol-c n~ultiplc instruc- 
tions, auto-increment and auto-dccl-c~ncnt for loads 
and stores, 'incl a sliiti of one opcr,lncl in c\,cl.y AI,U 
operation. -1'Iie ~~.cliitccturc supportsloacis ancl stores o f  
8-, 16-, and 32-b d,itn \-alucs. In addition to the stan- 
dard 32-b computations, there is a 32-b X 32-b multi- 
ply accumulate \\lit11 a 64-b product and accu~nulator. 

Chip Microarchitecture 

As sho\\.n in Figure 1, the chip is fi lnctionally parti- 
tioned into the tbllo\\ing majol sections: rlic instruction 
uuit (IBOS), integer csccution unit (i-.130S), integer 
multiplier (MUI,),  memory management unit for data 
(I)iMMU), memory management il lnit  ti)r i~lstructions 
(IMMU), \\,rite buffer (WE), b i ~ s  intcl.Licc unit (RIU),  
phase locl<cd loop (l'I,I>), and caches for data (Dcache) 
and instructio~is (Icachc). To minilnizc pin po\ver and 
support the 11igl1-spccd internal corc, one half of the 
chip area is dc\x)tcd to the n\'o 16 1< cncl~cs. The pad 
ring occupics c )nc-tliirti of the clup ;uca 2nd the proces- 
sor corc tills tllc remaining one-sisth of the chip area. 

Thc processor is a sin& issuc design with a classic 
five-stage pipeline-Fetch, Issue, Esccutc, 13uftkr, and 
Register Filc LVritc (Figure 2 ) .  All arithmetic logic unit 
(AJ,U) rcsults call be for\\.arded to the A1.U input and 
there is a one-cycle bitbblc for dcpcnclcnt losds. 

For csamplc, the pipeline diagram in Figure 2 
slio\vs a SUKT1WC:'f follo\ved b y  LI dcpcndcnt 1,OAD. 
Nott: that ~t the end of cycle 3, \vc 1)ypass the rcsult 
from the SUR?'M<:'T back illto the 41,U to compute 
the load address in cyclc 4 \\,ithout st;illing the pipe. 
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Figure 1 
(:hip l'hoto \ \ . ~ r l i  O\,crlay 

1 1 pc 1 R y d  1 w c d+Rl l ~ ~ r n ~ ( l . 9 1  ~ b ,  1 
LDR RZ, [Rl ,a!  lb c LDR Rm Rn la c drRl  w' c w 

100: 
SUBS R l  

Figure 2 
Bnsic Pipeline Diagmm 

p c c l 0 0  
lb c SUBS 

108: 
noox.R2.y 

Tlic third instruction is ;In ,\DL) \\,hich uses tlic result 
of  the previous LOAl). 'fhc AD13 is held jn the Issue 
stage for one additional cyclc iuitil tlic 1.0Al) data is 
a\i:lilablc at the cnd ofcycle 5. 

The I BOX can ~.csolvc conditional branches in the 
Issue stage e\.en \\.lien r11c condition codcs arc being 
updated in the current Esccutc cyclc. R y  pro\,iding 
this optimized path, thc I13OX incurs on ly  n olic-c!~clc 
l x ~ i d t y  for b~.dnclics ralccn, s o  t l ~ e  chip docs not 
rccli~irc branch prediction ha~-d\\.arc. For csamplc, in 
the pair of  instructions sIio\\ln in Figure 3, the 
BIWNC:H and LINI< instruction at tlic (program 
counter) PC of 104 ticpencis o n  the condition codcs 
\vIiicli are being gc~~c la t cd  by the SU13TIlAC:T in the 
prc\.ious i~~st ruct ion.  The condition coclcs fiom the 
Esccute stagc of the SUI3TMCT arc available at thc 
end of cycle 3, in t i ~ n c  to s\\,ing the PC: rn~~ltiplcscr in 
the I B O S  to point at the branch target 1'C; during the 
nest Fetch cycle. 

The optimization of the branch path represents a 
~xnva- \,ersus perfol-mancc tr<ldeoff in \\.liich pc rh r -  

F 
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pc <-I08 
I b c A D D  

Figure 3 
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1na11cc \\-on. In o u r  c f h r t  t o  I1olci rllc one  c\clc branch 
I X I ~ L I I ~ ~ ,  \\,r incli~dcci n clcdic.lccci ,lcidcr in the IBOS t o  
calculate the  b ra~ich  target addr.css and c o n s ~ l l ~ ~ c c i  
additional po\\,el- in thc EI$OX ;ldcicr t o  ~ i i c c t  the criti- 
cal spccd path to contl-01 the I'<: multipleser. I h c  to 

c1.iric.11 path constr,~ints,  tlic acidel ill the  I 1 3 0 X  niust 
run ever!. cycle, w e n  if tlic instruction is n o t  a h ranc l~ .  

In  tlic early stage o f  the ilcsign, o n c  of o u r  conccrns 
\\.as \\,hctlicr the decision t o  pul.suc this optinlizcd 
branch p'itli \ \ .oi~ld inc~.cnsc oLlr c!~clc time. As the 
design turned ou t ,  o u r  hcst efforts in this ALL' pat11 
and in the cache acccss path rcsultcd in nearly identical 
dcl.~!,s for thcsc n1.o lo~igcst  criric,ll spccd parlls. 

llatn tor intcgcr opc~.ations coliics fi.oln a 3 1 -cntr \ ,  
1,cgistcr file \\.it11 three  cad and t\tro \\.rite ports.  
Sistccn o f  tlie registers arc \,isil>lc a t  any time \\*it11 
15 .~ciditional sllrido\\, rcgistcrs spcciticd by the archi- 
t cc t i~~ .c  t o  rnini~nizc the o\~c~.I~c,lci ,~ssociatcd \\,it11 initi- 
ating esccptions. ?'he EHOS contains an AI,U \\,ith a 
f i l l 1  32-b  bidirectional sliiftcr o n  o n e  o f  the input  
o p c r ~ ~ ~ d s .  I t  incl~~cics  h!~pnssing circ~~itr!. to for\\xrii 
the iiat.1 from tlie 1)cnchc or  thc AL.U on tpn t  t o  an!. 
o f  the read ports.  Figure 4 sho\\.s the circuit hlocks 
in\.ol\.cd in tllc branch p;lrh. '1-l~c path starts a t  a I;ltcli 
111 tllc b!,passcrs nnd, ill a sinslc c!~clc, includes a 
0 - to  32-b  shift, n 3 2 - b  AI,U opcr.ltion, and J coniii- 
tioil codc  cornpittation t o  swing the 1'C: multiplcscr 
tbr rhc ncst  cyclc. Tllc rcgistcrs t o  hold tlic condition 
coilcs \\,ere i~nplcnlcnteci i l l  the EI3OX s o  tliat this 
pat11 could be locall!, optir.nizccl. A~~al!~sis o f  codc 
traces indicated that  most  r\l.L1 opcrlltions inclucled a 
shift o f  zero, s o  ti)r tllis case, the sliihel. is disabled and 
l>!,p"sccl t o  r c d ~ e e  po\\.c~.. 

.l'lle F,ROX also conta i~ l s  ,I 32-L> ~ni~l t ipl! . / '~ccu~ni~-  
Iatc unit. T h e  multiplicr co~lsists o f  a 12-  b!. 3 2 - b  
carry-save multiplicr array \\'llich is I I S C ~  for o n e  t o  
tlircc c\vlcs depc17cting o n  tlic \,,ili~c o f  ~n~~lt ipl ic ;uici  
and a 32-b  final adder  t o  reduce the carrg-sd\rr result. 

-- 

Figure 4 
EBOS l i lock l)i3g~.am 

For multiyl!' a c c ~ u n l ~ l a t c  operations, the accumulate 
\ ,nl i~c is inscrtcd into the arl.J!' s o  that  .1n additional 
c!,clc is no t  rccli~ircd for the ~Multiplics \\!it11 
Accumulate.   multiply I m n g  instructions rcquirc 
o n e  aciditional cyclc. This  rcsu!ts in a &IULTIPL,Y o r  
All U I .-PI ~'LY/AC(:UIMUI,KI~E in t\\'o t o  four cycles 
a i d  iblU1, I .ONG o r  iblUI. I ,ONG/ACCUMULATE 
in thrcc t o  five cycles. 

'I'lic M l l a c c  trcc imp1cmcnt;ltion \\.as c h o s c ~ i  t o  
m i n i n i i ~ c  the dcla!. t l lroi~gll rllc arm!!. 'This implemcn- 
t,ltion req i~ i red  carefill floor p1,lllning and custom la!,- 
o u t  t o  keep the  \\.iring under  control.  'The dccisioti t o  
pc.rti)rm 12 b o f m ~ ~ l t i p l y  per c!~clc \\*as based o n  wiring 
rrndcoffs made du~. ing  the  pli!,sic.ll planning phase o f  
tllc dcs ig i  rather than critical p ~ t h  concerns. \.147cli the 
multiplicr is n o t  jn use, all clocks t o  the  section s top  
and the input  operands d o  nor togglc. 

rl'llc cliip features scparJtc 16 ItKgtc, 22-\\71y set 
nssocinti\.e \.irtual cachcs h r  instructions a ~ l d  data. 
Each cache is implemented as 16 fi~lly associative 
hlocks. Each cache is acccsscd in a single cyclc fix both 
~.cnris .11id \\.rites, pro\,iciing .I t\\,o-c!'clc latent!, fol. 

return c l ~ t a  t o  the  register file. 0111.. ciglltli o f  each 
cache is cnablcd for a caclic acccss. 

'T'hc 1)cache is \vritcback \\it11 n o  \\*rite allocation. 
'I'llc hloclc size is 32  b!'tcs \\,it11 dirt), bits pro\,idcd for 
C;ICII 1)df block t o  minimizc the  data \\,hich lleeds to  be 
castout in tlic cvrn t  o f  a ciirty \,ictim. T h e  ph!lsical 
acidrcss is stored \\it11 the data t o  avoid address transla- 
tion ci~11.ing castouts. 

Gi\-cn tlic size o f  the  cachcs and the lo\\. polver 
rargct for the chip, it \\,as important  that  \vc halve fine 
g~ . r~n~r l~ l~- i t !  ofbanlc selection. I n  ncldition, \vc required 
associ.~ti\.it!, o f  a t  least four-\\ , .~y for cache efficjcnc\' 
and it \\.as inlportant t o  pcrfol-manee that  we  maintain 
a s i~iglc  cyclc acccss. PVc co~lsidcrcd sc\~cral solutions 
t o  thih p~.oblcm, i n c l ~ ~ d i n g  traditional fi)ur-\vay set 
nssoci,lti\~e cuclics, and decided tliat the simplest 
n p p ~ ) a c l ~  which satisfied all rlic requirements \itas t o  
ijnplcment the cachcs as smaller, hank-addressed, fully 
associ,lti\,c caches. This resulted in 32-\\.ny nssociati\.it_\, 
l>ilr this lc\.cl o f  associati\it!, \\.as n side effect o f  tlic 
irnplcmcntatio~l ~ ~ s e c l ,  n o t  thc  result of a goal t o  get  
associati\.in signiticandy abo\,c four-\\*a!*. 

'I ' l~c ellip includes scp3r;1tc mcliior!, management  
1111its (i\lli\ilU) for inst~.uctions nnd data. Each iMMU 
contains a 32-entry fi~lly associ,itivc translation look- 
nsidc buffcr (TIB) \\lit11 cntl-ics \vIlich can map either 
4 lil',, 64 k l l ,  o r  1 i\lR pages. -I?,]< f lls arc implemented 
in li;1rd\\.arc. In  addition t o  the standard memory 
ni;ln;lgcmcnt protection nlcchanisms, the  ARM archi- 
tecture dcf  nes a n  or thogonal  menlory protection 
schcmc to  al lo\ \  t l ~ c  opcmting s\'stcm easy acccss to 
I;lrgc ~ c c t i o ~ i s  of mcmor!, \ \ , i thout l n a ~ i i p ~ ~ l a t i n g  the 
page tnhles. .l 'l~is f~~nc t iona l i ty  requires a set o f  addi- 
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tio11.11 checks \\,liicli 1ii11st he I > C I ~ ~ ' ~ ~ I I I C ~  ;iftcr the Tl,R 
lookup. 'l'lic ~ . c s u l t i ~ ~ g  critical path \\$as si~fficicntl!~ 
long  tli.lt \\!c scltlti~ncd tlic 1Wi\/l access in the TL,R t o  
allo\\r us t o  perform the lool i~lp ,lnd co~i ip lcs  protec- 
tion cliccks ill ,I siliglc c!rclc. 
X \\'rite b ~ ~ t f c r  \\zit11 eight 1 6 - h ! ~ c  entries hanciles 

stores ,111j. castouts ti-om tlic l)cncl~c. T h e  \\!rite bi~ffcr  
inclucics n s i~ ig lc -c~ l t~- \ .  me]-gc I ~ t c h  t o  pack up scqucn- 
tial ~ t o r c s  t o  the salnc cntl.!,. 

11u1.ing norlt).iI opcl..itions, J I I  cstcrnal load rcqucst 
tdltcs priorit\' o \ , c ~ '  sto~.cs oil tlic pin bus. Ho\\,e\'cr, i l l  

the c\.cnt o f n  Ioati \\.liicIi hits in the \\.i.itc buffer, the 
chi[> csccurcs .I series ofpr- ior iy storcs \\.liich raises the 
priority o f  tlic Write 1<~1ffc1. o n  the cstcrlinl hus abo\.e 
that  o f  any lonrls. F,xrcr~ial storcs occur  2nd the \\.rite 
buffer cmprics until the  store \\.liicli \\.as pending a t  
the load ;~ddrcss  complcrcs. At  tliis ~ > o i ~ l t ,  t o p  priority 
reverts bnck t o  loacis. 

Power Down Modes 

' 1 .  . hcrc ;u-c t\\,o power rlo\\,n modes supported by the 
chi(>-Idle and Slccp. 

Idlc ~ n o d c  is in tc~)dcd  ti)r short  periods o f  inacti\rity 
2nd is y>l '~'olx-i~tc for situntions in \ \~hich rapid 
~.csuml>tio~i  o f  ~xoccssiing is rccluircd. In Idle ~ n o d c ,  
the o ~ i - c h i p  I'L,I, c o n t i n ~ ~ c s  t o  run but  the internal 
clock grid 2nd the bus clock t o p  toggling. This climi- 
nates most .lcti\-iry in the chip n ~ i d  the po\j1er dissipa- 
tion cl~.ol>sti.onl 4 5 0  III\,V t o  20 mW. lieturn fiwm Idlc 
t o  ~ioi.ni,il modc  is ,lccomplislicd \\.ith cssc~ltiall\, n o  
dcla!, b!, sinipl, rc.;t,l~-ti~ig tlic b ~ s  clock. 

Slccp modc is ricsignctl tix cs tc~ idcd  ~>criods of innc- 
ti\ . in \\ liicli rccluil-c tllc lo\\.cst po\\.cr consumption. 
l'hc cul-I-cnt in Sleep niodc is 50 FA \\~Iiich is achic\,cd 
b \  t ~ ~ r l l i n g  of f thc  intcl.lial po\\.cr t o  tlic chip. T h e  3 .3  V 
I/() circuitr!. rcrnnins ~>o\\.cr.cd and the chip is \\,ell 
bcha\.cd on the bus, m~i i i t a in ing  spcciticd Ic\,c.ls j.F 

rcqi~ircd b!* rlic ciri\.c cnahlc inputs. I<ctur~l from Sleep 
t o  1iorii1;11 o p c ~ ~ t i o ~ i  r'iltcs . lp~>ro~i~ii.i tcly 140 p.s. 

As \vns noted earlier, n lo\v \,oltagc process is key 
t o  the dcsign o f  n microprocessor ivliich \\ . i l l  r un  at  
160 i\/IHz \\,liilc dissipating less than 450 m\V. 
Ho\\,c\,c~-, tlic same lo\\. dc\.icc tl~rcslioltls \\~liicli allo\\, 
the rctiuctio~l o f  Vdd also result in significant device 
Icnltngc. While tliis Icnk;igc is no t  I ~ r g c  enough  t o  
c-.iusc n PI-oblcm ti)r norm,ll operation, it docs pose 
problcrns  ti^ st.indby current ,  cspcci;llly if the  pro-  
cess sJte\\,s to\\,al-d sh01.r chalincl dcvices. O L I ~  initial 
.~nalysis indicated tli:lt the chip \ \ f o ~ ~ l d  dissipate o\-cr  
100 nlW ili Itllc tnotic \\,it11 the clocks stopped. To 
rctlucc tliis I c a k ~ g c ,  \\.c Icngrllcncd dc\~iccs  in the 
c.lclic .ll.rajJs, the p ~ d  dri\,c~.s, 2nd ccl.tai11 otlicr areas. 
- 7 I his iv-ought tlic l c ~ l l ~ . ~ g c  po\\,cr t o  \ \ ~ i t l ~ i ~ i  tlic recl~~irc(l 
\ ,nlt~c o f  2 0  mLV in tlic histest p~'occss corner. As a 
b a c k ~ ~ p ,  \\.c rcl.i~cci 0111. dcsign rulcs t o  allo\\r tlie 

remaining gate regions, \\,liicli nrc drn\\.n \\,it11 ;I sr.ln- 
dard 0.35 pm g;itc length, t o  bc 1,iasccl 111' algorithmi- 
call!! \ \ . i thout \.iolnting dcsign rulcs in c,isc it \\..is 
ncccss.lr\r t o  mcct rlic Ic,lkagc ~ ' c t l ~ ~ i ~ . c ~ ~ i c n t s .  

T h e  rciluircmc~it for st.~ndb\r po\\.cr in Slccp is 1i101.c 
than n1.o ordcrs o f  m a g ~ i i t l ~ d c  lo\\.cr rlln~i the Idlc 
po\jrer. -To meet the po\\,cl- limit i l l  Slccp, \\.c consid- 
ered n \.ariet! o f  options inclutiing intcg~.ntcii ~ o \ \ ' c r  
suppl! s\\~itclics and s ~ b s t ~ - ~ t c  biasing cclicnics hcfi)rc 
choosing the simple ~pl>l-o,~ch o f t ~ i ~ . n i ~ i g  off tlic inter- 
nnl s~~ppl!'. 'IIhjs ~pp~.o . lc l i  is ~ .ca \o~l .~ l> lc  fix r l i i  genera- 
tion of parts si11cc the!. Ii,l\~c ,I dcdic,ltcci lo\\, \x)ltngc 
supply. As more p,ll.ts o f  t l ~ c  s\.stciii sliift t o  rlic lo\\, 
~ .o l tagc  suppl!., this rn.l!. 110 Io~igcr  I>c acccl>r;ihlc. 'l'lic 
contlicting rccluircmcnts o f  liigl~ pcl.fi)~.liiancc .I[ lo\\. 
voltage ~ n d  lo\\- ~ t a n d b ! ~  cul.r.cnt pl.o~nisc t o  create 
interesting cliallcngcs in f ~ ~ t u r c  designs. 

The po\r.cr s\vitch t o  turn off  tllc ilitcrllal po\\,ci. 
supply dur ing  Sleep is iml,lcmcntcd off-cliil> as 1>;11't 
o f  the  po\\,er supply circi~i t  fol- tlic lo\\ \,olt,igc supply. 
N o  state is stored intcrnnlly during Slccp since in 
typical 1'1)A systems, the Slccp scntc corrcspontls t o  
thc  user turning the system off. 'l'I1c1-chrc the time 
associated with reloading the c;iclic Llpon rctilrn lion) 
Sleep is acccptablc. 

T h c  rcquircmcnts in ldlc and Slccp complicated tlic 
dcsign of t l ~ c  bus in rc~-hcc  circuits. 'l'llis section 
i~icludcs the Ic\.cl-shitii~ig intcrhcc bct\\,ccn the inter- 
nal lo\\, \,olt.igc ( 1 . 5  t o  2 .2  \ / )  sigli,lls and  the 3.3 V 
cstcrnal pin bus. T h e  bus ilitc~.ticc ci~.ck~it$ m w t  tiri\,c 
and recci\,c sigli,ils \\~liicli JI -C I1igIic1- \ .olt ,~gc thnn those 
nominally suppo~.tcci b\, the 0 . 3 5 - p n  p~.occss \\ , i thout 
using circuits \\.llicli \ \ ,o~~lc i  c ~ ~ ~ s c  11s t o  cscccti the ~ L I I . -  
rent limit spcciticci L y  the Icllc spec. In niitiition, J L I Y -  
ing Slccp the pads must Oc ~ h l c  t o  s ~ ~ s r n i ~ l  the \ ,a l~lc  
o n  tlie o u t p ~ l t  pills dcsl~irc tllc loss of  i l ~ t c ~ . ~ i n l  \'(id 
( V d d i )  PI-om the lo\\. \,olt,igc \~ lpp l \ .  \\.liicli is ~>o\\,cl.cci 
ofFb\, tlic s!?stcm. 'l'llc circ~litr!, 11scd t o  i~iiplcliicnt tliis 
f i~nct ion is slio\\ n in F i g ~ ~ l - c  5. 

Since Vddi \ \ . i l l  bc ci~.i\-cn t o  ~ c 1 . 0  t l ~ c  s\'stclii 
during Sleep, it is used not o111\. .IS ,i po\ \ 'c~ '  S L I P I ' I \ ,  
bu t  also as a logic sign.11. All circi~itr!. \\.l~icli niust 
be 3ctii.e in Sleep is ciri\.cn from tlic cstcr.11.11, 3.3 \' 
si~pply (Vdds)  I\-hich I i ~ s  l>ccn dl.oj>pcrl t l l r o t ~ ~ l i  tliodc- 
connected I'kIOS dc\,iccs t o  rcdiicc tlic stress on the 
os idc  o f  thcsc ricviccs. I3cforc sign,lling tlic chip t o  
enter  Slccp, the system nsscrts the nRI'SE'I' pin (ncti\.c 
lo\\.,) n-hich drives all cnnhlcd ou t l> t~ ts  t o  a sl>cciticti 
state-disabled k)r control signals 2nd ~ c r o  for 
addrcsscs and data. It  then nsscrts nl'Wl1SI.I' (.~cti\*c 
lo\\!) \\,hie11 is Ah'1)cd \\.it11 the npprolwintc o u t p u t  
enable control t o  turn on  s r n ~ l l  Icnkcl. dc\.iccs \\~liicli 
\ \ , i l l  holcl the o ~ ~ t p ~ ~ t  pill in the apl>~.ol>~.i.lrc st;lrc ri~~l.illg 
Slccp. I n  the cjrcuit s l ~ o \ \ . l ~  in Figure 5, tlic o ~ ~ t p ~ ~ t  is 
an ~ d d r c s s .  Tllcrcti)~.c, tlic acicircss l>us cnnblc (Al',li,) 
pin is tlic control pin on tlic lo\\,cr XhlIOS Icnkcl. anti .I 
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bufkred \~ersion ot'r~I~\~VRSI,l' controls the top dc\licc. 
Fin'llly, tlic Vddi pills arc ;lctivcly driven to zcl-o by tlic 
system. This action disnblcs the o ~ i t p ~ ~ t  stngc of  tlic 
pnd dri\.cr circuit b!. turning offthc transistors closest 
to the pad-the NMOS directly and the 1'1UOS \.ia the 
bins nct\\,ol~l< \\.llosc o u t p ~ ~ t  gocs to \Jdci\ \\-he11 its 
px'h to VSS is C L I I  oft: Note that for ~II!,  i~ipllt \ \ . I I O S C  
value is required during Slccp (ARE :ind nl'\,\'l<Sl,I' in 
the csamplc clcscribcd), a scparatc parallel i ~ i l ~ u t  
rccei\lcr must bc implcmcntcd since the normal input 
rccci\cr rccluircs Vticii. 

Circuit Implementation 

.l'he circuit iniplcmcntation is pscudostntic nnd nllo\\,s 
thc internal clock to he stoppcd indcfinitcl!. in citlicl. 
s r ~ t e .  Usc of c i rc~~i ts  \4,llicl1 might limit lo\\, \~oltngc 
operation \vns stricrl!, controlled and the dcsign \\.as 

s im~~latcd  to cnsure operation sipnifcnntly bclo\\l 
tlic nomin;il 1 .5 V lcvcl of the Jo\\) \,oltagc supply. :I7lic 
\lalucs of tlic internal si~pply r111ci opcr.1ti11g t i re~l i~~nc!~ 
\\u-c optimizcci to achicvc mnsimum pel-ti)rmancc for 
less tl1;in lialfn \\.art. 

The \.ast mnjorit\. of the dcsign is pl~rcly static, 
composed ot'cithcr coniplcmcntnr!, (:iblOS gates or 
static diffcrcntial logic. In ccrtnin situations, \\.idc 
NOR fi~nctions \\.ere requircd and tlicsc \\.ere imple- 
mented in n pseudostatic hshion using citlicr static 
weak fccdhaclt c i r c~~ i t s  or  sclt-timed cil-cuits to ]>itch 
the o i ~ t p t ~ t  d ~ t d  and return the dynamic node to its 
prcch:~rgcd state. 

The register fi lc (1W) uses t l ~ c  self-ti~nccl approach 
to return the bit lines to the preclinrgcd state akcr an 
'icccss (Figure 6 ) .  In  this circl~it, nn csna  self-timing 
colum~i o f  hit cclls \\!it11 a d\,naniic bit lint \\,as implc- 
me~itccl to miniic tlic timing of tlic d.1t.1 hit lines. 



t'ig[r~.c 6 sho\\,s one  cell kon i  ,I column o f  register file 
iint.1 bit cclls a11ci one  cell fi.0111 tllc cYtr<l self-timing 
col~1rn11 (onl!, one  rcad port  js s l~o\ \ . l l ) .  l 'hc bit cclls 
in rliis cs tra  coltlmn arc all tied off so  t h ~ t  tlic 
SF.1.F-BI~I'1,INE signal \\-ill al\\,ays discharge \\.hell 
tlic REA1)-WOlWLINE goes high. \I\'llcn the 
SE1.F-RIT1,INE falls, it \\,ill set an RS latch causing the 
SEI.!--KNAI<I,E signal t o  fall. This  \ \ , i l l  disablc the 
I<EAI)-WORI)I,INE alid causc the bit lines to be 
p1-ccIi3rgcd high when  the  rcad acccss is complctc. 
Since the l)KI~AA_RI'TLINE's nre rccci\,cd by lo\\: scnsi- 
tivc 1<S I;~tclics, the o u t p u t  dntn \\ . i l l  bc Iiclci \vlicn tllc 
1)ir line ia p~~cchal.gcd high. T h e  sclf-timing 11s Intch is 
clcal-cd \ \ , l ~ c n  (:1.0(:1<-1, goes lo\\.. 71'l~is cnuscs the 
Sk,I.I-'-ENAR1.E signal t o  g o  high, c n ~ b l i n g  the read 
port   ti)^. t l ~ c  acccss in the nes t  cloclc c\rclc. A scparatc 
S t:I .t.-I31.1'1 .I NF, signal is implemented for cuch of the 
tlil.cc ~.cgistcr f lc ports so  that tllc cloclis for t l ~ c  tllrcc 
p ) ~ - t s  c.in bc cnabled incicpcndcntly. 

'l'lic ~ r ~ l n s i s t o r  lealtage associated \\.it11 tllc lo\\- 
threshold voltages is problematic ti>r tlicsc pscudo- 
st.ltic cir-cuits. If n wcalc feedback circuit is used in a 

NOR s t ruc t~~r .c  \\,hie11 is prcch,lrgcd high, csccssivc 
lealzagc in the pnr~llcl SiVlOS ~ L I I I ~ O \ \ - I ~ S  \\,0111ci 
require that the f c c d b ~ c k  be tiirl!. s t rons,  \\.hich in turn 
\ \ ~ ) u l d  rcclucc tlic spccii of  r l ~ c  circ~l i t .  In the limit O F  
\,cr!, \\ride NOI\'s, m.l\ n o t  be possible: to  size ,I 

PMOS Icnlzcr so that i t  <.In suppl!~ tllc lenkage oFnII tllc 
o f f  NIMOS pulldo\\.ns \\.itliout ~ n a k i n g  the Icalzcr t o o  
large t o  be o\;ct-po\vcrcd by a single acti\.c pulldo\\.n. 
In  thc  case o f 3  self-tinled approach, a similar problclii 
esists bu t  it usually is manifested ;IS a \~anishingly small 
timing n~arg in  fix- tlic self-timed c i r c ~ ~ i t  to fire before 
the  data o n  tlic dyn;imic ~ i o d c  decays a\ray. I n  citlicr 
case, addrcsscd this issue by rccluirillg the Icngth o f  
p~l l ldo\ \~ns o n  dynamic nodes t o  be slightly larger tlinn 
n i i n i n i ~ ~ l n .  Tr.11lsisto1. Ic.lli,lgc current is n strong firnc- 
tion o f  chai~ncl  lcngtll so .I 12% incrcnsc in dc\.icc 
lcngtli rcs~llts il l  n Icnk.lgc r c c i u c t i o ~ ~  in the \\.orst cusc 
o f  about  n fileror o f  20.  'l'l-~c resulting leakage mnltcs 
i rnplcmc~~rat ior i  of  c i thc~.  \ \ w k  fccdbncl< o r  n self- 
timed approach \*cr!, rcasonal.>lc. 

T h e  opw.lting frcclucncy ut 1.5 V call he roughly 
dcri \~cd b y  starting \\,it11 the  ficcli~cncy o f  the A l p h ~  

Figure 6 
S c l l ' r i l i ~ c ~ i  I<F L'l.ci.ll;?l.pc 
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processor in tlic same process technolog!*' .1nd scaling 
ti)r the  use o f  a l o n g c ~  tick moclel and then Vdd. Sincc 
the Ions  tick cicsign r c q ~ ~ i r e s  the chip t o  ~ c r t i ) ~ - ~ i i  a f~ill 
SHIFT and '1 fi~ll A1)I) in a single cycle, this , ipp~-osi- 
matcly doubles the c!~clc time recliiircd. T h e  effect of 
Vdd scaling is roughly lincar for this i-angc o f  Veld. 
Combining these effects I-csi~lts in 311 opcr,lting 
ticqucncy a t  1 .5 \' gi\.cn 1)). 

'I'liis pair of\,oltngc nnd h.ccl i~cnc\ , \ , i~l~~cs . i ~ r e e s  \\.ell 
\\,it11 the po\\.cr estimate out l i~icd in the section I'o\\,c~- 
1)issipation ?'~.nticof'ti. Note that for po\\,cr s~~ppl!,  
\ rol t~gcs mucli lo\\,cr tlinn 1 .5  V, the opcr.lting k c -  
quency decreases \\,it11 \,oltagc in a manncl- \\,liich is 
signifc;lntl!. s t ronger  than lincar. This hicr sets n p ~ a c -  
tical lo\vcr limit o n  the po\\.cr s ~ ~ p p l y  \.oltagc in most 
applications. 

Po\\.cr estimates mndc earl!. in tlic design ;i~-c p r o ~ i c  to 

el-I-01-s in either direction. 111 the case o f  this dcsign, the 
po\\.c~- diss ip~tcd at  1.5 V \\,as lo\vcr than the 450 mW 
tnrgct, s o  nrc sliiticd thc nominal inter~lal Vdri to 1.65 V 
to increase the yiclcl in the 1 6 0  MHz bin. 

Clock Genera tion 
XII on-chip 1'1 .I .' scncr;itcs rlic internal clocli .it olic o f  
16 fi.cqucncics r ~ n g i n g  froni 88 to 2 8 7  AIH/ h,i$cci o n  
.i fixed 3 . 6 8  M H z  i ~ i p ~ ~ t  clock, 1 ) ~ 1 c  t o  i~itcrn,il 
I . C S O L I ~ ~ C  c011str~i1lts i11ici O L I ~  li~iiiteci c \ p c ~ ~ i c ~ ~ c c  \\.it11 

lo\\,-po\\.cr anillof?; c j ~ . c ~ ~ i t s ,  \\'c contr.1ctcd \\zit11 (:clit~.c 
Suisse d ' E l c c t ~ . o ~ ~ i c l ~ ~ c  c t  cic hllicrotccl~nicl~~c (('SF,h/l) 
from Neucli,itcl, S\\,itzcrl,lnd, to dcsign tlic I'l . I ,  ,lnd 
engaged Profcsso~. '1'. I.cc horn Stanford as a c o n s ~ ~ l -  
t i n t  o n  the project. O u r  initial fcasibilit\. \\-01-li I-csultcd 
in sc\.cral dcsign tlndcoffs. 

First, \\-hilc tlicrc \\.as J ~ ! ~ s t c n i  rcquircmcnt t1i;lt the 
chip return cluicltl!, horn thc Idle stntc to nol-m;ll o ~ x r -  
ation, thcrc \\-as n o  such constraint on rc tur~ i ing  horn 
tlic Slccp state. I<ascd on this dcter~nin;ltion and ~ L I I -  

2 0  mW po\\,er budget in Iillc, \\*c concluded tli,lt if \\,c 
c o ~ t l d  kcep the I'I.,l, po\\.cr hclo\v 2 m\\', \\-c c o ~ ~ l d  
len\-c thc 1'1,1, r~1111iing ill ldlc .ind rcmo\.c the 1.cc1ui1-c- 
mcnts o n  tllc 1'1.1. lock t i~i ic .  T I ~ L I s ,  tlic need ti)r ;I \.el-!. 
lo\\ po \~ .c r  1'1,I. is ilict,~tcci b!. tllc po \ \ , c~-  h i~ i igc t  111 

Iiilc, not  in nolmnl opc1.ntio11. 
N c \ t ,  \\ 'c had spcciticrf ;I 1.11.gc ~ ? C I C ~ L I ~ I I C \ .  ~i i~~lt i l l l icn-  

t lon  tictor t o  allo\\  tlic use of.> conlmon and cl1c,il> lo\\ 
h-ci l~~cnc\ ,  crystal clock s o ~ ~ ~ . c c  for consLllncr j > r o d ~ ~ i t s .  
1;.11-l\, i~i\cstigations i ~ i i i i c ~ ~ t c d  that this \\,o~11i1 ~ii.llkc 
I islit p h ~ s c  locl t i~ls  c:iiftic~~lt. Ho\\ .c \  cl-, \\.lie11 \ \  c 
looked nt target s\.stc~lis, \\.c ti)und no prc~z ing  ~ i c c d  tbl- 
pliasc locking. <:onzccluc~itl!-, \\.e ren~o\-crl ~)llnsc lock- 
ing as 3 dcsip11 critcri;l 2nd co11ccntl.atcd our  cfti)~-ts ~lnrl 
dcsign tmdcofti  o n  minimizing phase compression. 

Finally, \\.hilt tllc PLL \\.as designed to I1;lndle the 
noise cspcctccl on  the chip p o u u  supplies, \\.c discov- 
crcd to\\,nrd the end of the dcsign that  the I'LL \\,as 
~111dcr its area budge t  and thcrc was additional space 
available in the vicinity. We took xivantage o f  this 
o p p o r t ~ ~ ~ ~ i t v  to provide cleaner po\lrcr t o  the  PLL by 
R<: filtering o u r  internal supply and \\.c dedicated 1 n F  
o f  on-chip dccoupling cap to this purpose. 

(:SEi\/I performed the  circuit and l a y o ~ ~ t  dcsign 
and \\,c placed the completed block i ~ i t o  the  micro- 
processor. Sincc \\.c allticipatccl that  rlic clinmctcriza- 
tion o f t l i c  I'I.,I, ilircgratcd in thc clijp \ \ , o ~ ~ l d  prescnt 
some ciifticultics, \\'c rcsc~. \~cd o n e  o f  tlic six die sites 
o n  O L I ~  first p . 1 ~ ~  reticle set for a test cliip \ \~hich con-  
tained sc\.crnl \~ariants of the fill1 1'1,I, 2nd interesting 
sub-blocl<s. ~l'licsc circuits allo\\'cd ,~cccss t o  ,i \rarien o f  
nodes in the 1'1.1. \\,itliout compromisilig the dcsign o f  
the PLI, instnntiatcd in the chip. -l'lic I-csults of  the 
PI .I. chalacrcrizntion are reported in Rcfcrcnce 4. 

Clock Distribution 
T h e  chip operates fi-om n\,o clocks as sIio\\,11 in Figurc 7. 
An internal clock, called I)<:LI<, is usually generated 
by the PI,],. '1'11~ S C C O I ~ ~  clock is 3 bus clock, I<no\\m as 
MCl,I< \\.hich opcrates u p  t o  66 1~1Mz. 1I1<;1,1< can be 
supplied b!, 311 c x t e r ~ ~ a ~  a s ! ~ ~ ~ c ~ ~ r o n o i ~ s  source o r  by the 
chip basccl o n  n di\.ision of t l ic  1'1.1. clock s i ~ n n l .  

Tlicrc a1.c fi\.c clock rcgimcs in the chip. T h e  first 
nvo rcgimcs 21.c sourced b\s I\ZCI .I< anrl consist o f  thc 
pad ring \\'liic.li ~.ccci\,cs M<:LI< ciil.cctl!, . ~ n d  thc ~ L I S  

intcrhcc ~ ~ ~ i i t  ( I IIU) and part o f  tlic \\,rite huff'cr \\~llich 
rccci\zc iU(:I .I< t l ~ ~ . o ~ ~ g l i  conditional clock b ~ ~ f f c r s .  T h c  
last tlircc ~xgirncs ~11.c s o u r ~ c d  b\' tlic inrcl-n;ll D(:LI< 
clock tree anci colitnin the Dcaclic, the Icaclic, and  tlic 
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Figure 7 
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co~.c.  I n  tliis case, tlic corc includes tlic I I IOS,  EI3OS, 
hlL'lL, li\TiblLl, l ) ~ \ ' l ~ b l L ' ,  ,111ci part of  t l i ~  \\.~.itc h ~ ~ f f c r .  

13otli i\l(:LK .mi I)(:I  .I\: ,Ire distributeti b\, buffel-cd 
H-trccs t o  contiitiollnl clocli buffers in tlie \..lrious scc- 
tions o f  the cliip. 'I'lic buffers in the H- t rcc  allo\\  the 
use ofsmaller lines I-i)r J is t~. iht~t ion and result in l o \ \ ~ c ~ .  
clock po\\cr.  Although the tlircc intern,ll cloclc 
~.cgiliies arc . ~ l l  s o~~rccc i  I)\,  the s,imc H- t rcc ,  the topol- 
og!, o f  the chip did no t  LiIIo\\. corresponding sections 
of  the H- t ree  t o  be ~ . o ~ ~ t c d  in the same mct ,~l .  'l'liis 
r c s ~ ~ l t c d  in ,in i~icrc.isc in the c ~ p c c t c d  skc\\. bcr\\.ccn 
the c,iclics and tlic corc. 111 'lddition, \\.c disco\,cl.cci 
tli.lt \\,c could s c l ~ ~ c c z c  hit more performance fi.om 
tlic c l ~ i p  if \rrc intc~itionally offset the cloclc in the 
caclics rclati\rc t o  the cloclc in the corc. (:onscqucntl!: 
\\,c used tlic cloclc lx~ffcrs in the H- t ree  t o  ~ L I I ~ C  the 
clock so  tliat the 11c,1chc rccci\-cs a clock \\~Iiicli is one  
g ~ t r  cicl.a\r earlier tllan tlic corc and tlic Icaclic ~.ccci\.cs 
,I cloclc \\ liicli is o n r  gate dcl,~\r I,~ter than the core. 

F ig~~l -c  8 slio\\.s tlic ~>li\,sical routing o f  tlie i~itcrn.~l 
clock trcc. T h e  ~ L I R ~ I -  s t ~ g c s  ,Ire not  slio\\.n hut  the!, 
exist in the ccntcr o f  t l ~ c  cliip 2nd in four s y m ~ i ~ c t r i c  
locations-n\lo in the ccntcr o f  the I and 11 caches a ~ i d  
t\\,o in Iocatio~ls nt tlic cnclic/corc interface. The ti nal 
Icg of t l ic  H-tree is tied t o  conditional clock buft21.s in 
tllc c,iclics and tlic corc. 7'hc problems associ,itcci \\,it11 
cloclc skc\\. \\.itliin tlic c.lcIics arc reduced b\, the fict 
t l ~ i t  only ,I single 1>,1111< in c,lcli caclic is cn,lblcd. 'fliis 
I i ~ i ~ i t s  the pli!~sic.il tiist,lncc o \ r r  \\.Iiich tiglitl!, c o ~ i -  
trolled clocks ~ i c c d  t o  be clcli\.crcd in tlic caclic regions. 

T h e  clocks in tlic corc present a more  interesting 
~m)lhlcm. T h e  fin'll Icg o f  the clock trcc in tlic core 
strctclics tlic hciglit of t l ic  cliip and tight cont~.ol o f  
sltc\\z along this noiic is rcc l~~i rcd  for speed ,1nd func- 
tionalit!.. I t  is iniplc~iicntcd '1s a \.crtic,ll, mctul 2 linc 

Figure 8 
I'li!,sic~~l R o ~ ~ t i n g  ot'<:loc.k '1'1.c~ 
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Figure 9 
Clock XI.l.i\.~l 'I'lnlc in the Core 

driven f i w n  four nominally cquidist.lnt points. T h e  
clock buffers arc standard cells o f  \,,i~'\ling drive 
strength built directly under  this [\/I2 linc t o  minimize 
local variation in dclny. 

Circuit s i ~ n ~ ~ l a t i o n s  o f  the  H- t rcc  \\.ere performed 
using Sl'ICF, t o  dctel.luine the sl<c\\, bct\\.ccn clock 
regions 'lnd \\!itliili each o f  the cloclc regions. T h e  
nodes in the grid \\,ere extracted from I , i \ ,o~~r  ,lnd con-  
tained niorc than 30,000 R a n d  C c lc~ncnts .  Figure 9 
sho\vs the rclati\rc clock arrival time \.c~.sus t l ~ c  Y coor- 
dinate for each conciitional cloclc 11~1ffcr o ~ i  rlic \vertical 
leg o f  thc cloclc trcc in the corc. Tlic f i x ~ r  .lrro\\,s o n  
the gmpli indicate the points from \\,hicli the final leg 
is d r i \ , c~ i .  Tlic ii,lta points arc tlic I-clnti\zc ,lrri\.al times 
o f  the cloclc input t o  the condition.il cloclc buffers 
sourced b\$ the clock tree. Tlic total sirnul,ltcci skc\\. is 
41 pS a s s ~ ~ m i n g  maximum lnctal resisr,lncc 

Clock Switching 
O n e  additional complication related t o  the internal 
clock trcc is tliat it is no t  al\\r.avs driven by tlic cloclc 
from the PIrI,, I<no\\m as CCLI<. 11~11.ing caclic fills, tlic 
clock sourcc for the internal sections o f  the chip 
~ \ \~ i tc l i cs  o \ r r  t o  MCLI< s o  that the \\ hole chip is run-  
ning s!,nclironous t o  tlie bus (Figure 10). 'Tliis simpli- 
fies fills and it r c d ~ ~ c c s  po\\.cr sincc the 1x1s clock is 
signiticanrl!. slo\\,cr tliali CCLIC. N o t e  that sincc tliis 
machine Ii,is ,I bloclting caclic, no t  lnucli hal>pcns 
\\~hile \\,airing for a cache till. Thcrcforc, running o n  
the slo\vcr bus clock d ~ ~ r i n g  fills has essentially no 
performance impact. 

Since h:l<:L,I< and CCLI< ~nig l i t  be as\~~icl i ronous,  
s\\,itching tlic dri\.cl- of llCLI< cluickly bcr\\ ,cc~l the n1.o 
clocl< sourccs is ~Iiffici~It.  Cdrefi~l , ~ r t c ~ ~ r i o n  must be 
paid t o  tlic s!~~iclironization o f  the ~\/ILII control sisnals 
t o  prc\,ent glitch pi~lscs o n  the  cloclc during the trdnsi- 
tion bet\\rcen the clock sourccs. 
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Cloclc s\\;itching is only used dur ing  tills. Storcs 
\vhich 111iss in the  cache and castouts arc \\,ritten t o  
memory t l i roi~gl i  tlie write buffer \\tithout s\vitching 
tlic internal clock over to 1M(:l,I<. T h e  \\,rite buffcr 
rccci\~cs both DCLK and IM(:LI< and  passes the  data 
for cstcrnal  s tores  across thc  l)(:LI</bI(:I.I< intcr- 
f ~ c c  \\it l l  pl.opcr attention t o  s!,ncllro~~ization issues 
bet\\ cell thc t\\.o cloclc reginics. O n e  interesting cli.lr- 
,ictc~.istic o f  clock s\\.itchi~lg is tllnt i t  gi\.cs t l ~ c  s!,stcm 
iicsigncr another opt ion t o  sa\,c p o \ \ , c ~  in s i t ~ ~ a t i o n s  fix 
\\,Iiich the f~ill performance o f  tlic c l ~ i p  is not  r c q ~ ~ i ~ . c d .  
13y iiisabling clocl< s\\ritching o n  the tl!; \ ~ ) u  can cnnfig- 
L I ~ C  tlic chip t o  run o f f t h r  bus cloclc. 1'1ic1.c is n o  limit 
o n  asym~lictry o r  masimum pulse \vidtli o f  the bus 
clock, s o  the chip call be operated at  \,cry lo\\* k c q ~ ~ c n -  
cics ifdcsircd. 

Conditional Clock Buffers 
<:onditional clock buffers are simple NANl>/in\rc~-t 
s t r~lcturcs  \vitli a n  intcgral Intch o n  the condition 
i ~ l p u t .  ?'he buffcrs must  bc nlatclicd t o  their 1o.d 
t o  minimize site\\.. Since adding dumm! clock loads 
is contrar!. t o  tlic lo\\.-pon.cr dcsign philosophy, \\.c 
created scaled clock b ~ ~ f f c r s  \\,hicli \\.auld produce 
matclled cloclts for  a \i.idc range o f  loads and onl! 
nccdcd to add d u m m y  clock loads for :I small n ~ ~ m b c r  
o f  \,el-!, liglitly loaded cloclc nodcs. 7'ltc t ~ s k  oFmatch-  
ing the clock buffers t o  thc load \\,as grc.~rl!f sinlplifcd 
hy tlic h c t  tlic cloclc load prcscntcii by O L I ~  staniinrii 
Intchcs is largely data-independent. 

Wliilc the usc o f  conditional clock b11t'fcl.s is ce~it~-,lI 
t o  the d c s i p  rncthod iiscd o11 the chip, ~r shoulci bc 
notcti that the critical paths t o  generate tlic condition 
input to thcsc buffers reprcscnt some o f  the niosr diffi- 
cult dcsign problems in the chip. In this c3sc, \\-c 

dccidcd that  tlic po\\.cr saving associated \\.ith the con-  
ditional clocking \\.as \\ ,orth thc  additional dcsign 
effort and possible performance reduction. 

Latch Circuits 
T h e  standard Iatchcs used in tlic design are differential 
edge-triggered Iatchcs (Figure 11). T h e  circuit struc- 
ture is a prcchargcti tiiffc~.cntial scnsc a m p  follo\\,cd by 
a pair o f  cross-coupled NAN1) gates. The sense nmp 
need 11ot he partici~lal.ly \\lcll balanced becai~sc the 
inputs t o  the Intcli arc f~ll (;JMOS le\lels. 'l'hc NIMOS 
short ing clc\icc bct\\,ccn nocles L3 and L4 pro\~idcs n 
d c  path t o  g r o u ~ i d  for leakage currents o n  nodcs 1-1 
anti L2 in case tlic inp l~ ts  t o  tlic latch s\\itcli af?c~- t l ~ c  
latch culilntcs. At  normal opera t i~ lg  frequencies, this 
device is no t  particularly important  bu t  it is rccluircti 
for tlic latch t o  bc static. Note  that since the  d c  current 
flo\\.ing is d u c  only to dc\.icc leakage, the  ~nagni t~ lc ic  
o f  the  current  is insignificant t o  the po\vcr in normal 
operation. 

Testability 
T h c  chip supports  IEEF. 1149.1 boundary scan for 
continuitv testing. In  addition, it has two hard\\rarc 
features t o  aid i l l  I I ~ ~ I I L I ~ . > C ~ L I ~ ~ I I S  testing. T h e  first is a 
bypass to allo\\  (:(:I,F; t o  be cirjrcn from a pin synchro- 
I I ~ L I S  t o  I\/l(:I,I<. 'l'liis allo\\fs t h e  tester to control thc  
timing bct\\,ccn (:( : I  .I< and iW(:L1< t o  makc the asyli- 
chronous sections appcnr t o  be dctcnninistic. The scc- 
ond test fcature pro\,idcs n lineal fccdbacli shif? re,'. ' T I S ~ C ~  

(LFSlI) that can bc lonilcd \\,it11 i n s t r ~ ~ c t i o n  ciara fi .o~li  

thc Icachc, I.,oading t l ~ c  1,FSII can bc conditioncii 
basccl o n  tlic \ , ; I ~ L I ~  ofaciti~.css bit 2 and the Icachc hit 
signal. 7:hc L,FSI< is londcd aher  the Fetch s t a y  t o  
allo\\, tlic instruction follo\\~ing a branch to bc rcx i  
f rom the  Icaclic ; ~ n d  loaded into tlie 1,t;SK. This t'ca- 
tul-c allows any random pattern t o  be loaded into the  
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1c;icIic and then read oilt by alternating branch 
instructions \\.ith data patterns \\-ords. 

Power Dissipation Results 

Measured Results 
Po\\,cr dissipation data was collected o n  an evaluation 
bonrtj r u n ~ i i ~ l g  Dhrystone 2.1 with the ~ L I S  clock 
r u ~ i ~ i i n g  at one-third of the PLL cloclc frccluency. 
1)hrystonc fits entirely in the internal caches so, after 
tlic ti rsr pass tlirougl~ tlic loop, pin activity is li~iiited. 
'fliis is the highest pourer case b c c ~ ~ ~ s c  cache misses 
cause the i~itcrnal clocks to r ~ ~ n  at tlic bus spccd and 
result in ,I lo\\rcr total po\Ircr. For both sets ofmcnsurc- 
mclits, estcl.~ial Vdd is fixed at 3.3 V. For an internal 
Vdd of 1.5 V, the total po\\,cr is 2.1 mW/i\/1HZ. I f  
tlic intcrnnl suppl!. is set to 2 .0  V, tlic total po\\,er is 
3.3 mMJ/i\/IHz. Note that tlie mtio of tlie po\\,cr at 
1.5 and 2.0 V does not track Vdd' l~ccausc it contains 
n compo1ic1it of external power and tlic external Vdd 
is ti xcci. 

Simulated Power Dissipation by Section 
An analysis of node transitions based o n  simulation 
\\.as pcrk)l-rncd to estimate the po\vcr dissipation asso- 
ciated \\,it11 the \,arious major sections of the chip 
(Tablc 3). Toggle information \\.as collected based 011 

160,000 cycles of Dhrystone and co~iibincd with 
cstractcd ~ i o d c  capacitances to estimate po\\,cr dissipa- 
tion by node and this data \\.as ti~rthcr grouped by sec- 
tion. The clock po\\-cr listed in Tablc 3 is due only to 
the global clock circuits. 

A fcu, points are \vorth noting. 

First, the po\\lcr is dominated b y  rhc caches as 
!JOLI might cxpcct given tlicir size. 'This is despite 
our  efforts to reduce their po\\,cr through balilc 
sclcction  id other menns. The  Icachc burns 
Iiiorc po\\,cr than tlic Dcaclic bccdusc it runs 
c\Yr\r c\,c1c. 

Table 3 
Simulated Power Dissipation by Section 

ICACHE 27% 

IBOX 18% 

DCACH E 16% 

CLOCK 10% 
IMMU 9% 

EBOX 8% 

DMMU 8% 
Write buffer 2% 

Bus interface unit 2% 

PLL < I  % 

Nest, the PLI. po\\,cr is insigSfcant in normal oper- 
ation. As \\.;is noted earlier, its lo\\. po\\.er charactel-- 
istics are only important in Idle. 

Finally, since reduction in clock po\\.cr \\,as one uf 
our explicit goals, it is interesting to considcr the 
total clock po\\:cr. If ~ O L I  extract the local clock 
power from the nonclock sections and sum it, sou 
get a total clock po\jrcr, i~icludi~ig the global clocl< 
trees, thc local clock buffcrs and the local clock 
loads. This power is 25% of the total chip po\\icr, 
significantly less than the 65% consumed by tlic 
clocks in the Alpha microprocessor ~ ~ s e d  in our ini- 
tial feasibility s t ~ ~ d i c s .  

Conditional clocki~ig \\,as an integral part of the 
design nicthod, so it is difficult to determine tlic 
po\ver saving associated \vith it. Ho\\re\,er, the po\\.cr 
associated \vitli dri\,ing tlic conditional clocks is 15% 
of the chip po\\ler and if the conditions on all the 
conditional cloclc buffcrs \\.ere always true, this pourer 
would quadruple. This does not account for the 
additional powcr savings that has been achieved by 
blocking spurious data transitions. 

CAD Tools 

The CAI) tools used on this chip were largely the same 
as those usecl on our Alpha designs.' This is riot sur- 
prising since the pcrfor~nance target of the chip 
roughly parallels that of the Alpha family as noted 
in the section Circuit Implementation. The most sig- 
nificant departure was in the area of s t ~ t i c  timilis 
verification and race a~~alysis \\,here the adoption of 
edge-triggered I:itching required significant modific,i- 
tions to thc tools used in the Alpha designs. 

Project Organization 

01 ic  of  the cliilllcngi~~g aspects of this project \'ir;ls 
geographical. ?‘lit detailed design was performed at 
four sites across a nine l ioi~r time zone range. l'hc ini- 
tial feasibility \vork and architectural definition \\.as 
done at Digital Scrniconciuctor's design ccntcr- j11 

Austin 'tiit11 on-site participation by personnel from 
Ad\canced RISC Machines Limited ( A F W ) .  Thc 
imple~-nentation was more \videly distributed \\,it11 the 
caches, MMU's, \+,rite buffer, and bus interface unit at 
Digital Seniiconductor's design center in Palo Alto, 
the instruction unit, execution unit, and clocks in 
Austin, the pad driver and ESD protection circuits at 
Digital Semiconductor's main facility in Hudson, 
MA, and the PLL at tlie CSEM design center in 
Neucliitel, S\\fitzcrland. In addition, we consulted 
uritli Hudson for ( :A l l  and process issues, with A R I I  
in Cambridge, England, for all manner of  architec- 
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tural issues and implcrncntat io~i  tradeoffs associated 
\\;it11 ARM designs and \\.ith T. Lee from S u n f o r d  o n  
thc PLL. T h e  implementation phase o f  the  project 
took  less than nine m o n t h s  \\.it11 a b o u t  20 design 
engineers. 

Conclusion 

T h e  microproccssor dc~crit.~:d uses traditional Iiigli 
pcrfivmance custom circui.; dcsign, an intentionally 
simple architectural dcsign, and advanced (:MOS 
process technology t o  produce a 160 iMYz niicro- 
processor which dissipates less than 450 mW. 'The 
intcrnal supplics can vary ti-om 1.5 t o  2.2 V wliilc the 
pin interface runs a t  3.3 V. T h e  chip inlplcmcnts the  
A13M V4 instruction set ancl deli\lers 1 8 5  Dhrystone 
2.1 MIPS a t  1 6 0  1\4Hz. T h c  chip contains 2.5 ~nilljon 
transistors and is fabricated in a 0 . 3 5 - ~ n i  tlircc-metal 
CMOS process. I t  Iiicnsurcs 7.8 nim X 6 . 4  m m  and ib 

packaged in a 144-pin plastic thin quad flat pack 
(TQFP) package. 
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Inc., Austi~i,.I'S, in 1994, he joined Austin Kcscarcli and 
Design <:cntcr of Digiral Eq~ripnient <:orpor:lrion as a 
design engineer responsible for the fi~ll-cusro~il dcsign and 
developnient of high-pcrforniancc lo\\--po\\.cr processors. 
He \\,orkcd on tlic design and in~plcmcnmrion of tlie multi- 
plier on the Stro~~gr\I<iLI project and is currently \\.orki~ig 
on nnorlicr lo\\,-po\\,cr chip. 

Andrew J .  Black 
Andy l3lac.k rccci\cd a R.S.E.E. from Pc~insyl\.ania Stntc 
Uni\.ersity and ;111 X.1.S.E.E. from the Uni\.crsit! of 
Southcr~i Califor~lin. H e  joined Digirnl in 1992 ;lftcr 
\\.orking for International S013r Electric l'ccli~iology. 
Hc \\,as n senior hnrri\\.are engineer in 1)igital's l'alo Alto 
Design <:c~lrcr, \\.liere he led tlic bus intcrhlcc unit design 
for the StronpAllbl SA-1 10 niicroprocc~sor chip. 1)~lring 
his \\,ark o n  rlic Alpha 2 11 6 4  CPt:, lie \\,as a rncmbcr of 
the dcsign tcnrri for the memory man;lgcmcnt unit nnd 
contrib~~rcci to tlic cli~p's clock dcsign. Hc is currr~ltly 
\\,ith Silicon Grapllics I~ lc .  AS J menlbcr of tllc rcclinicnl 
staffill rlic 1 \ [ 1 1 ' $  '[ 'ccl~~iolog!~ lDi\.isio~l \\.licrc Ilc is n.ork- 
ing or1 I I ~ ~ ~ ~ - ~ ~ c ~ ~ o I . I ~ ~ . I I ~ c c  c~~11sunicr-oric1~tc~l products 
Andy is a ~ilcrnbc~. o f  I.E.E.E., Tau Rctn I'i, and Et:l 
Kappa Nu. 



Elizabeth M. Cooper  
Elizabeth <:oopcr received the R.S. cicgrees (sunlma cum 
laude) in clcc~ric;ll engineering and computer scicncc from 
Washi~lgton U~iivcrsity in St. Louis in 1985. She received 
tlie M.S. dcgrcc in computer scicncc fi.om Stanford 
Univcrsir!. in 1995.  She joined Oigital Equipment 
Corporation in 1985. Her p rev io~~s  responsibilities includc 
design co~lrri l) l l~io~ls to SC\.CI..II ChlOS \/AS and iUpl1'1 
C:l'Us. Slic \\,;IS roponsil,lc for rllc dcsig~l of the memory 
nianngclnclit u111r on the S T -  l 10 Stro~~gAlb\~I cliip. Slic is 
currc~ltl!. clilpli)ycci 'IT Silico~i Gr;lphics MIPS 'l'cchnology 
Di\'ision. 

Daniel W. Dobberpuh l  
1)anicl 1)obbcrpulil recei\.ed the R.S.E.E. dcgrcc fi.om 
tlie University o f  Illinois in 1967.  H c  joined Digirnl 
E q ~ ~ i l x l ~ u ~ t  <;orl)orarion in 1976 <lnd has been responsible 
for five generations of rnicrop~.occssor tiesig~ls including 
the initial Alplla (:I'Uj. Most rcccntly Iic has been tllc 
Technical I3i1.ccto1. of  the Lo\\, l'o\\,cr i\/licroproccsso~. 
Group \\,it11 1)igir.ll's Palo Alro I )cs ig~~ <:enter. H e  is thc 
co-autlior of '/%o /)O.YI,~I/ ~orcl il ~rol~:\.is (!/'I %S/ C'it.c~ii/s 
j.4ddison-\\/cslc!, 1985 ) .  

Paul M. D o n a h u e  
Paul Donalii~c received the R.S. dcgrcc in computer sci- 
ence from Cornell Universiy, Irhaca, SY, in 1994. U p o ~ i  
~ radua t ion  lie joincd Digiml Semico~lductor's I'nlo Alro 
Design <:enter .~nd \\-orked on rlir Sh-1 10. H e  is c.u~.l.cnrly 
\\.orking o n  tllc n i i c .~~o;~rc . I~ i t cc . t~~rc  and verification of ,I 
Srso~igr\lb\~l \,arinnt. 

Jim E n o  
Jim El10 I . c ~ c ~ \ . c c ~  rlic l3.S.E.E iicg~.cc from North C~~ro l ina  
Stare Ulli\,cr>iry, ILlcigh, in 1989. H e  is eruploycd as 3 

senior engineel- nt 1)igiral E q ~ ~ i p m c ~ l t  C:orporarion's Austin 
Research n~id  1)csign Center in Austin, TS, \\-orking most 
recently on  thc micro.~rcIiitecrur-c of  the SA- 1 10 Srron@Ib\d 
microprocessor. Rcfore his cmploynicnt \\it11 Digital, lie was 
\\.it11 the Somerset Design Center in Austin, \vorlting o n  the 
microarchitectt~rc and design of  rlic I'o\\.erPC: 6 0 3  micro- 
processor. l'rc\.io~~s to rl-is, Jinl \\.as i~l\,ol\,cd in r\SIC dcsign 
SLIPPOI.[ a ~ i d  tool dc\,clopmcnr at (:o~npnq C o ~ n p ~ r t c ~ .  
Corporatio~n. His re\c.~rch inrc~.csrs illcludc lo\\.-po\\.cr 
niicroprocchso~. dcsign and rlic pl.olxig3rion of acoustic 
\\,a\,es in \,arioas ~ninrc~.ials, cnli,lnccd b!' interaction \\tit11 
sclecrcd organic. c o ~ i n p o u ~ i d ~ .  

Gregory \V. Hoeppner  
Gregory Hocppncr g rad~~arcd  \\,it11 distinction from Purdue 
Univcrsin., \.Vest Lnf~!.erre, IN, in 1979. In 1980 he \\.orked 
a: General -lklcplione and Electronics l<csearcli hborarosy, 
\Vi~ltliani, MA, performing hasic ~>ropcrtics research o n  
G d s .  From 1981 to 1992 he liclti a number of positions 
\\,ith I)igir.ll Equipment (:orporatio~i, Hudson, iblA, includ- 
ing (:h,lOS ~>roccss dc\ cloplncnt, dc\,ice characterization 
;i11d moticling, circuit des~gn,  chip i~nplcnlentario~i, dnd 
finall! co-led rhc 21064 hlp11.1 cllip implc~nentarion team. 
I11 1992 Iic jor~lcd I RXl's i\d\.allccd kvorksration Division 
before returning to lligir.11 E q ~ ~ i p m c n r  <:orporarion in 
1993 to  c o - f i ) ~ ~ ~ l d  their Austin I<cscarch and Desig~l <:enter, 
Austin,'l'S. t lcrc lie contributed to  rllc microarcliitcctt~re, 
irnplc~ncnr.ltion and verification of  1)igial's tirst 
Strong.AlLVI processor. 

David Kruckenlyer 
David k ~ ~ c k e m y e r  received the 13,s. degree in c o ~ n p u t c ~ .  
engineering from the Universiy of  Illinois at Ur1~;in.i- 
Cl ia~npaig~l  in 1993 and I-ccci\,cd the M.S. degrec kern 
Stanford Uni\zcrsip in 1995.  Afrcr graduatio~i, he joincd 
Digital E q ~ ~ i p n l c n ~  Corporation's Palo Alto Design Center 
to \\.ark on the i~nplementnrion of  tlie lnstructio~i Mc~nol-y 
Ma~iagc~ i i c~ l t  Unit for rlic Sr\- 110, the first StrongAlt\,I 
microprocessor. H e  is currently involvcd in the niicroarclii- 
tecture and implementation of  a nest-generation 
StrongAlWI variant. 

T h o m a s  H. Lee 
Tllornas Lee rcceived the S.R., S.M., and Sc.1). dcprccs In 
electrical engineering, all from rhe h~lassachusetts f i isri t~~tc 
o f T c c h l i o l o ~ ,  Carnbricigc, XI(\, in 1983, 1985,  2nd 1990, 
respecti\~cly. H e  joined Andlog I)c\,ices in \Yilnlingto~i, 
JW, in 1990  li lie re lie \\,as prirnnrily engaged in tllc ticsigll 
o f  high-speed clock recovery cic\,iccs. In  1992, he joincd 
Rnrnbus, Inc. in hilountain \lie\\,, (:A, \\,here lie dc\~clopcd 
high-speed a~l;llog circuitry for 500  niegabyte/s 1)lU~Us. 
Since 1994,  lie has been an Assisrant I'rofessor of  Electrical 
Engineering at  Stanford Univcrsin \\here his research 
illtcrcsts arc in lo\\.-po\ver, higlispccd analog circuits ~ n d  
systclns, \\.it11 a focus on  gigalicrrz-speed wireless illtc- 
grated circuits built in conventional silicon tech~iologics, 
particul;irly CMOS. H e  has nvicc rccci\:rd the "Outsta~lding 
Paper" a\\jard at  tlie Inrernation~l Solid-State C i r c ~ ~ i t s  
Conference. 

Peter  C. M. Lin 
Peter L,in \\#as born in T a i c h ~ ~ n g ,  l'ai\\,an, on March 17, 
1960. H e  rccci\fed the I3.S.E E. degree from Feng <;liin 
U~ii\-ersiry, Taicliung, Tai\\,nn, in 1982 and the M.E. illid 
E.E. dcgrccs from Universin o f  Utah, Salt Lake City, 
in 1987 and 1989, respecri\.cl!,. From 1990 to  1993 
he designed 2M \?RC\.l and SM \\fRAiM for S a n i s ~ ~ n g  
Semicondt~ctor, Sdn Jose, Cr\. From 1994 to  19'95 he 
worked for Digital Equipnicnt <:orporarion, I'alo Alro, CA, 
whe~.c lie contributcd to  the dcsign oflo\v pojver Alpli;i 
and SrrongAlbbI mlcroproccssors. H c  is c~~rrenr ly  \\,orking 
for C-Cube Micros),stems, Milpitns, CA. H c  holds one 
patcnt in output buffer design. 

Liani Madden  
Li.m ~Maddcn recei\.ed rlic R.E. degree from University 
College, I)ublin, Ircland, in 1979 and the M.E. dcgrcc 
from Cor~lcll  University, lrhaca, NY, in 1990. Over the 
past 1 5  !/ears lie has designed CMOS CISC and NS<: micro- 
processors, including the 2 1064 Alpha processor. H e  Icd 
the design rcalii in Palo Alto \\,hicIi delivcrcd the caches, 
\\.rite buffcr, memory rnnnngcnicnr, J I I ~  bus inrerhcc  nits 
for the S A - 1  10 St~.ongAlllCI ~nicrop~.ocessor. H e  is currently 
cn~p lo )~cd  at Silicon Graplii r, ~\ / lou~~ra in  Vie\\,, (:A, \ \ , l~erc 
lie is Dirccto~. of Circuit Dcs~gn  and Technology. 

Daniel Murray 
Daniel ~Murl-a!, rcceived the R.S. degree in electrical 
enginewing in 1994 from the Ilniversin of  California, 
Berkeley. 111 1994, he joincd Digital Scniiconducror's lo\\. 
pon.er ~nicroprocessor group in Palo Alto, CA. H e  con- 
tributcd as a circuit designcr on rhc first StrongARM <:PU 
and is currently in\,ol\led in the implcmcntat io~~ o fano thc~ .  
high-pwfi)rma~icc, lo\\.-pourer microprocessor. 
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M a r k  H. Pearce 
Mark Pearce was born in C;eneva, Sivitzerland, o~ i  June 12, 
1969. H e  received tlic B.S.E.E. degree froni University 
o f  Pennsylvania, Philadelphia, in 1992, and the iM.S.E.E. 
degree from Stanford University, Stanford, CA, in 1994.  
In 1994 he joined Digital Equipmcnt Corporation, at  tlicir 
Palo Alto Design Centcr, working initially on  a lo\\ po\i7cl- 
Alpha processor prototype. H e  designed thc \\/rite buffer 
on  SA-110, the StrongARh4 processor. H e  is ct~rlrnrl!. \vork- 
ing on  another high-perfor~nancc, lo\\'-po\\.er processor. 

Sribalan Santhanam 
Sribalan Snnthana~~i  received the M.S.E. degree in computer 
science and engineering fro111 the University of  Michig.~n, 
Ann Arbor, in 1989. H e  joined Digital Equipmcnt Corp- 
oration, in Hudson, M A ,  \\<here he worked on thc dcsign of 
the tloating-point unit of the 2 1064 C1'U and subscqucntl)) 
on the design of the cacllc control unit of thc  Alpha 21 164 
Cl'U. H e  then moved to 1)igital's Palo Alto Design Ccntc~-  
u,here lie \\;as responsible for the design of thc cachcb ti)r the 
SA-110 Stron@k\I n~icroproccssor. H e  is currcntly .I princi- 
pal liard\vare engineer \vorking on the irnplenicntarion o fa  
follo\v-on StrongAlLM ~nicroproccssor. 

Kathryn J. Snyder  
Kathryn Snydcr (formerly Hoover) received the B.S. and 
M.S. degrees from the U~livcrsity o f  Michigan, Ann Arbor, 
in 1990  and 1992, rcspectivcly. She is a circuit designer 
with Digital Equipment Corporation working on  lo\\,- 
power ~nicroprocessor designs in Austin, TS. Slic designed 
a \.ariety o f  custom circuits for the SA-110 StrongAkV 
microprocessor. Prior to cmplo\ment \vith Digital, shc 
worked for IBbI in Austin, doing custom array dcsign for 
l'o\\,erPC microprocessors. 

Ray Stephany 
I<ay Stcphany received tlic B.S.E.E. from l<enscll,xr 
l'olytcchnic Institute, 'l'roy, NY, and an P1.B.A. firom 
Worcester Polytechnic Institute, Worcester, kW. H e  joined 
lligital's Austin liesearch 'ind Design Center in July, 1993. 
Since that time, lie has been one of the project leads o n  the 
SrrongXILLl line of  microprocessors. H e  has co~it~.ibuted to 
the development of  low po\\,er circuit design tctcliniqucs, 
CAD tools, verification, and o\ferall methodology. H e  is 
currently leading the iniplcmcntation of  a nestlgrncration 
S t r o n g k U  CPU and lookirlg at  SO1 as a potential lowcr 
power process for f11t~lt-e gcnerarions of  microproccssors. 

Stephen C.  Thierauf  
Stephen Tliierauf is a consulting hardware engineer a t  
Digital Equipment Corporation's Digital Seni icond~~cto~-  
Group, located in Hudson, I M ~ ,  and is responsible for 1 / 0  
circuit design, on- and off-chip signal integrin, and I/() 
modeling for Alpha microprocessors, PC1 peripherals, and 
other ULSIfl'LSI devices. His previous \vork includes sysccrn 
Icvcl signal intcgrin analysis, niicropackaging analysis .ind 
micropackaging design for nunierous high-pcrforrn,inzc 
microprocessors and periplierals. 
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