FX!132 EMULATION AND TRANSLATION

D. . t I VISUAL FORTRAN
= Igl a_ MEMORY CHANNEL 2 INTERCONNECT
Z TeCh n |Ca| OBJECTBROKER SECURITY
= _l Oou rnal STRONGARM MICROPROCESSOR
| e
T '
< '?:’
. oo o
P }'-?
2 o
P

‘.

Z =

() |
E @
- =

b3 rw :
b— . r————
2 3

1
Co ff e
08630

"—
I_.I
(73]
23
Saud
®
=3
23
'
10

'_.I
(F3]
'[.—
—
w
|
- )
2\
s

I=
10
73
I.__I
(#3)
73

-
U

£

Routinesr

Volume 9 Number 1
1997




Editorial

Jane C. Blake, Managing Editor
Kathleen M. Stetson, Editor
Helen L. Patterson, Editor

Circulation
Catherine M. Phillips, Administrator

Production

Christa W. Jessico, Production Editor
Elizabeth McGrail, Typographer
Peter R. Woodbury, Illustrator

Advisory Board

Samuel H. Fuller, Chairman
Donald Z. Harbert

Richard J. Hollingsworth
William A. Laing

Richard F. Lary

Alan G. Nemeth

Robert M. Supnik

Cover Design

The display of program code in the fore-
ground and the background of our cover
represents one of the unique aspects of the
DIGITAL FX!32 software, the opening
topic in this issue. By emulating an appli-
cation in the foreground and later translat-
ing the execution profile into native Alpha
code in the background, FX!32 enables
32-bit applications that run on Intel-based
machines to also run on Alpha-based
machines. The combination of emulation
and binary translation provides Alpha users
with additional applications and good per-
formance with transparent operation.

The cover design is by Lucinda O’ Neill
of the DIGITAL Industrial and Graphic
Design Group.

The Digital Technical Journalis a refereed
journal published quarterly by Digital
Equipment Corporation, 50 Nagog Park,
AKO2-3/B3, Acton, MA 01720-9843.

Hard-copy subscriptions can be ordered by
sending a check in U.S. funds (made payable
to Digital Equipment Corporation) to the
published-by address. General subscription
rates are $40.00 (non-U.S. $60) for four issues
and $75.00 (non-U.S. $115) for eight issues.
University and college professors and Ph.D.
students in the electrical engineering and com-
puter science fields receive complimentary sub-
scriptions upon request. DIGITAL customers
may qualify for gift subscriptions and are encour-
aged to contact their account representatives.

Electronic subscriptions are available at

no charge by accessing URL

http: //www.digital.com /info /subscription.
This service will send an electronic mail
notification when a new issue is available

on the Internet.

Single copies and back issues can be ordered
by sending the requested issue’s volume and
number and a check for $16.00 (non-U.S.
$18) cach to the published-by address. Recent
issues are also available on the Internet at

http: //www.digital.com/info /dtj.
DIGITAL employees may order subscrip-
tions through Readers Choice at URL
http: //webre.das.dec.com or by entering
VTX PROFILE at the OpenVMS system
prompt.

Inquiries, address changes, and compli-
mentary subscription orders can be sent
to the Digital Technical Journal at the
published-by address or the electronic
mail address, dtj@digital.com. Inquiries
can also be made by calling the Jouirnal
office at 508-264-7549.

Comments on the content of any paper and
requests to contact authors are welcomed
and may be sent to the managing editor at
the published-by or electronic mail address.

Copyright © 1997 Digital Equipment
Corporation. Copying without fee is per-
mitted provided that such copies are made
for use in educational institutions by faculty
members and are not distributed for com-
mercial advantage. Abstracting with credit
of Digital Equipment Corporation’s author-
ship is permitted.

The information in the Journalis subject
to change without notice and should not
be construed as a commitment by Digital
Equipment Corporation or by the compan-
ies herein represented. Digital Equipment
Corporation assumes no responsibility for
any errors that may appear in the Journal.

ISSN 0898-901X
Documentation Number EC-N7963-18

Book production was done by Quantic
Communications, Inc.

The following are trademarks of Digital
Equipment Corporation: AlphaServer, DEC,
DIGITAL, the DIGITAL logo, DIGITAL
UNIX, OpenVMS, and TruCluster.

ARM and StrongARM are registered trademarks
of Advanced RISC Machines Ltd.

BEA ObjectBroker is a registered trademark of
BEA Systems, Inc.

Bull is a registered trademark of Bull Worldwide
Information Systems.

Cray is a registered trademark of Cray Research,
Inc.

Encore is a registered trademark and MEMORY
CHANNEL is a trademark of Encore Computer
Corporation.

Gradient is a registered trademark of Gradient
Technologies, Inc.

HAL is a registered trademark of HAL Computer
Systems, Inc.

Hitachi is a registered trademark of Hitachi, Ltd.
HP is a registered trademark of Hewlett-Packard
Company.

IBM and SP2 are registered trademarks and
PowerPC and PowerPC 603 are trademarks of
International Business Machines Corporation.
Intel and Pentium are registered trademarks of
Intel Corporation.

Kerberos is a trademark of Massachusetts
Institute of Technology.

Lucent Technologies is a trademark of Lucent
Technologies.

Microsoft, Visual Basic, Visual C++, Win32,
Windows, and Windows NT are registered
trademarks and ActiveX and Visual J++ are
trademarks of Microsoft Corporation.
MOTIVE is a registered trademark of Quad
Design Technologies, Inc.

NCR is a registered trademark of NCR
Corporation.

NEC is a registered trademark of NEC
Corporation.

Object Management and OMG are registered
trademarks and CORBA is a trademark of the
Object Management Group.

Olivetti is a registered trademark of Ing. C.
Olivetti.

Oracle Parallel Server is a trademark of Oracle
Corporation.

PAL is a registered trademark of Advanced Micro
Devices, Inc.

Photoshop is a trademark of Adobe Systems,
Incorporated.

POSIX is a registered trademark of the Institute
of Electrical and Electronics Engineers.

SCO is a registered trademark of The Santa Cruz
Operation, Inc.

Siemens Pyramid is a registered trademark of
Siemens Pyramid Information Systems, Inc.
Stratus is a registered trademark of Stratus
Computer, Inc.

Synopsys is a registered trademark of Synopsys,
Inc.

Tandem is a registered trademark of Tandem
Computers Incorporated.

The Open Group is a trademark of the Open
Software Foundation, Inc. and X/Open
Company Ltd.

TPC-C is a registered trademark of the
Transaction Processing Performance Council.
Transarc is a registered trademark of Transarc
Corporation.

UNIX is a registered trademark in the United
States and other countries, licensed exclusively
through X/Open Company Ltd.

Verilog is a registered trademark of Cadence
Design Systems, Inc.

Viewlogic is a registered trademark and VCS

is a trademark of Viewlogic Systems, Inc.



Contents

DIGITAL FX!32: Combining Emulation and Ravmond J. Hookway and Mark A. Herdeg 3
Binary Translation

Development of the Fortran Module Wizard Leo P Treggiari 13
within DIGITAL Visual Fortran

Architecture and Implementation of MEMORY CHANNEL2  Marco Fillo and Richard B. Gillerr 27
Integrating ObjectBroker and DCE Security John H. Parodi and Fred W. Burgher 42
A 160-MHz, 32-b, 0.5-W CMOS RISC Microprocessor James Montanaro, Richard T. Witek, 49

Krishna Anne, Andrew J. Black, Elizaberh M. Cooper,
Danicl W. Dobberpuhl, Paul M. Donahue, Jim Eno,
Gregory W. Hoeppner, David Kruckemver,
Thomas H. Lec, Peter C. M. Lin, Liam Madden,
Daniel Murray, Mark H. Pearce, Sribalan Santhanam,
Kathryn J. Snvder, Rav Stephany, and

Stephen C. Thicraut

Digiral Technical Jouwrnal Vol.9 No. L 1997



Editor’s
Introduction

No matter how powerful the under-
Iving hardware, most important to
users 1s how that power rranslates to
greater application performance and
availability. Among the diverse topics
in this issuc of the jorernel are inno-
varive ways cngineers have devised
to meet application performance and
availability requirements, and new
tools for applications developers.

DIGITAL EX!32 is a unique soft-
ware product that makes available
hundreds of applications written
for Tntel machines to users of Alpha
machines. Described by Ray Hookwav
and Mark Herdeg, FX!32 combincs
software emulation and advanced
binary translation techniques to enable
32-bit applications that run on Intel-
based machines with Windows NT
to also run on 64-bit RISC Alpha-
bascd machines with Windows NT.
The design provides both the perfor-
mance benefits and the transparency
of operation that the project engi-
neering team sought for uscrs.

Also designed for the Windows
environment is DIGITAL Visual
Fortran, a tool for Fortran developers
that combinces technologics from
DIGITAL and Microsoft Corpora-
tion. Leo Treggiari reviews the tool’s
components, which include the
Component Object Model (COM),
Fortran 90, and Microsoft Developer
Studio. He addresses the question of
why devclopers need help accessing
dvnamic link libraries and scrvers
based on COM, and then focuses on
the newly created tool that provides
this functionality, the Fortran Module
Wizard.

Digital ‘Technical Journal

Vol. 9 No. |

DIGITAL’s shared-memory cluster
interconnect, MEMORY CHANNE].
2, delivers the high levels of compu-
rational performance necessary to
support the largest technical and
commercial applicanions. Marco Fillo
and Rick Gillett assess experiences
with the first implementation of
MEMORY CHANNEL that led to
such enhancements as the cross-bar
design in this larest implementation.
They conclude with performance
data that demonstrate unparalleled
performance in terms of latency and
bandwidth compared with traditional
interconnects. MEMORY CHANNET.L
2 provides latency of less than 2.2
microscconds and bandwidth of
1,000 megabytes per second inan
8-node dluster.

Data security has long been impor-
rant to svstem managers but not casily
achieved in distributed heterogencous
svstems. DIGITAL and BEA Svstems
have ntegrated ObjectBroker middle-
ware with the Distributed Computing
Environment’s Generic Security Service
Application Programming Interface
(GSS-API), as described here by John
Parodi and Fred Burgher. The authors
examine the choice of GSS-APT for
ObjectBroker and future directions
1 authentication software.

Design decisions made in the devel-
opment of DIGITAL’s StrongARM
microprocessor were driven by the
SOMELINES OPPOSING requirements
of high performance and low power
consumption. Targeted for use in
handheld appliances usuallv powered
by conventional batterices, StrongARM
offers significantly higher performance

1997

than comparable microprocessors: It
operates at 160 MHz, dissipating less
than 450 milliwates. James Montanaro,
Rich Witek et al. step through the
decisions designers made to imple-
ment the ARM V4 instruction set
from Advanced RISC Machines Ltd.
Upcoming in the next issue of
the journal are technical papers
about new AlraVista software and
ancew Windows NT personal work-
starion based on an Alpha 64-bit
RISC processor. To view the results
ofa recent survey sent to joutrncl
Web subscribers, see http://www.
digital.com/info /dtj.

M

Janc C. Blake
Meneaging Edilor



DIGITAL FX!32:
Combining Emulation
and Binary Translation

The DIGITAL FX!32 software product uniquely
combines emulation and binary translation

to enable any 32-bit application that executes
on an Intel x86 microprocessor running the
Windows NT 4.0 operating system to be installed
and to execute on an Alpha microprocessor run-
ning Windows NT 4.0. Benchmark tests indicate
that after translation, x86 applications run as
fast on a 500-MHz Alpha system with DIGITAL
FX!32 software installed as on a 200-MHz Pentium
Pro system. The emulator and its associated run-
time software provide transparent execution

of applications written for x86-based platforms.
The emulator produces profile data that is used
by the translator and takes advantage of trans-
lation results as they become available. The
translator provides native Alpha code for the
portions of an x86 application that have previ-
ously been executed. A server manages the
translation process for the user, making the
process completely transparent.

Raymond J. Hookway
Mark A. Herdeg

Three factors contribute to the success of a micro-
processor: price, performance, and software availability.

tor, softwarc availability, by making hundreds of new
applications available on Alpha-based platforms run-
ning the Windows NT operating system. DIGITAL
FX!32 software combines emulation and binary trans-
lation to provide fast, transparent cxecution of Intel
x86 applications on Alpha systems.

Since its introduction in 1992, the Alpha micro-
processor has been the fastest microprocessor
available. A large number of native applications are
available on Alpha systems, particularly those applica-
tions that require a high-performance processor. With
the introduction of DIGITAL FX!32 software, 32-bit
programs that can be installed and executed on x86
systems running the Windows NT 4.0 opcrating sys-
tem can also be installed and executed on Alpha sys-
tems running Window NT 4.0. Except for having to
specity that a program is an x86 application, installing
and running an application is the same on an Alpha
system as on an x86 system. The performance of an
x86 application running on a high-end Alpha system is
similar to the performance of the same application
running on a high-end x86 system.

A number of systems have successtully used emula-
tors to run applications on platforms for which the
applications were not initially targeted.'? The major
drawback has been poor performance.? Several emula-
tors have used dynamic translation, translating small
segments of a program as it is executed, to achieve better
performance than that obtained by an interpreter
alone.” Dynamic translation involves a basic trade-off
between the amount of time spent translating and the
resulting bencfit of the ranslation. Ifan emulator spends
too much time on the translation and related processing,
the executing program will be unresponsive. This limits
the optumizations that can be performed by the emula-
tor using dynamic translation.

FX!32 overcomes the performance problem by not
doing any translaton while the application is exccut-
ing. Rather, FX!32 captures an execution profile that is
later used by a binary translator® to translate into native
Alpha code those parts of the application that have
been executed. Since the translator runs in the back-

Digital Technical Journal Vol.9 No.1 1997




ground, it can use computationally intensive algo-
rithms to improve the quality of the generated code.
To our knowledge, FX!32 is the first system to explore
this combination of emulation and binary translation.

In this paper, we describe how FX!32 works. We begin
with an overview and discuss each of the major compo-

nents in more detail. We then present some benchmark
test results and briefly describe several limitations of the
current version of DIGITAL FX!32 software.

Overview

On Alpha systems, the Windows NT operating system
uses an emulator to run 16-bit x86 applications. Thesc
applications can be installed and run in the same way as
they are nstalled and run on x86 systems, but the exe-
cution is slower. The emulator built into FX!32 pro-
vides a similar capability for 32-bit x86 applications.

Unlike the emulation software in the 16-bit enwvi-
ronment, EX!32 provides a binary translator that
translates 32-bit x86 applications into narive Alpha
code. The translation is done in the background and
requires no user mteraction. Using background trans-
lation allows the translator to perform optimizations
that, in terms of computational resources, would be
too expensive to accomplish while an application is
running. An apphication translated by means of FX!32
runs up to 10 times faster than the same application
running under the emulator.

DIGITAL FX!32 software consists of the following

SEven Major components:

1. The transparency agent, which provides tor trans-
parent launching of 32-bit x86 applications.

2. The runtime, which loads x86 images and sets up
the run-time environment to cxecute them. As part

of loading an image, the runtime component jack-
cts imported application programming interface
(API) routines. Jackets are small code fragments
that allow the x86 code to call Alpha Windows NT
APl routines.

3. The emulator, which runs an x86 application mak-
ing usc of translated code when it is available.

4. The wanslator, which produces a translated image
using profile information received from the emulator.

5. The database, which stores execution profiles pro-

duced by the emulator and used by the wranslator.

Translated images are also stored in the database,

along with configuration information.

6. The server; which maintains the database and runs
the translator as appropriate.

7. The manager, which allows the user to control
resources used by the DIGITAL FX!32 software.

Figure 1 shows the relationships between these
major components, cach of which is discussed in more
detail in the sections that follow.

The Transparency Agent

The wransparency  agent provides for transparent
Jaunching of 32-bit x86 applications. Launching an
application on the Windows NT operating system
always results in a call to the CreateProcess API routine.
By hooking calls to this routine, the transparency agent
can examine every image as it is about to be exccuted.
Ifa call ro CreateProcess specifies that an x86 image is
to be executed, the transparency agent invokes the run-
time component to execute the image.

FX!32 inserts the transparency agent into the address
space of'each process. A process that contains the trans-

P AND

TRANSPARENCY
AGENT

BUNTIME

EMULATOR

DATABASE

TRANSLATED
IMAGES

X86 IMAGE

<REGISTRY>

EXECUTION
PROFILES

SERVER

BINARY
TRANSLATOR

Figure 1
DIGITAL EX!32 Svstem Components

Digiral Technical Journal Vol.9 No.1 1997



parency agent is said to be enabled. Once a process is
enabled, any attempt to execute an x86 image causcs
the runtime to be invoked to execute the process. The
agent is propagated through t
attempt to create a process to run an Alpha image
results in that created process being enabled.

By the time a user is logged on, FX!32 has enabled
all the top-level processes, and any attempt to execute
a 32-bit x86 application invokes the runtime compo-
nent. The initial processes that are enabled are the
Windows shell (explorer.exc), the service control man-
ager {services.exe), and the remote procedure call
server (rpess.exe). When FX!32 1s installed, the
fx32strr.exe file is registered as the Windows shell,
When a user logs on, fx32strt.exe runs and cnables the
real Windows shell, explorer.exe. The FX!32 server
enables the service control manager when it starts,
usually when the system is booted. Currently, any ser-
vice process that is started by the service controf man-
ager before the server is started is not cnabled. (The
only cxception is rpess.cxc, which is explicitly enabled
by the server). We hope to alleviate this limitation in a
future version of the DIGITAL FX!32 software.

Processes are enabled using a technique described
by Jetfrey Richrer in Chaprer 16 of his book
Advanced Windows NT® to inject a copy of the trans-
parency agent into the process’ address space.

he system because each

The Runtime

The transparency agent invokes the runtime whenever
an attempt is made to cxecute an x86 image. The
runtime loads the image into memory, sets up the run-
tume cnvironment required by the emulator, and then
calls the emulator to execute the image.

The runtime replaces the Windows NT loader,
which can only load Alpha images; the Windows NT
loader returns an crror reporting an image of the
wrong architecrure if it is invoked to load an x86
image. The runtime duplicates the functionality of the
Windows NT loader, which includes relocating images
that are not loaded at their preferred base address, set-
ting up shared sections, and processing static thread
local storage sections.

The runtime registers cach image it processes with
the Windows NT operating system by inscrting point-
ers to that image into various lists thar are used inter-
nally by the system. Maintaining these lists allows the
native Windows NT code to correctly implement API
routines, such as LoadResource and GetModuleHandle,
which require access to imagges that have been loaded.
The registration also ensures that the DIIMain func-
tions of the loaded dynamic link libraries {DLLs) are
called as appropriate. (The entry points of x86 DLLs
arc jacketed by the runtime.)

Fortunately, the image lists that FX!32 must modity
arc in the user’s address space, and no modification of

the Windows NT operating system was required to
register images with the system. Unfortunately, the
structure of these lists is not part of the documented
Win32 interface, and using them creates a dependency
on the Windows NT version that is being run. FX!32
has dependencies on a number ot undocumented fea-
turcs of the Windows NT operating system. Although
the DIGITAL FX!32 product is more dependent on a
particular version of the operating system than a typi-
cal layered application is, it is remarkable that the
implementation of EX!32 did not require any changes
to the Windows N'T operating system.

The runtime also registers the image n the FX!32
databasc. This database maintains information about
x86 images that have been loaded, including the appli-
cation that loaded the image, profile data that was pro-
duced by the interpreter, and any translation of the
image. The runtime accesses the database with a
unique image identifier (ID), which the runtime
obtains by hashing the image’s header. Theretfore, the
image 1D is determined by the content of the image,
not by its location in the file system, and the informa-
tion that FX!32 associates with the image can be
accessed independently of the image’s location on the
disk. For example, if an application is installed in one
directory and some of the images loaded by the appli-
cation arc subsequently translated by FX!32, the trans-
lated images will be Jocated by EX!32 even if the
application is later installed in a different directory.

When the runtime finds a translated image in the
databasc, it Joads this image along with the corre-
sponding x86 image. Translated images arc normal
DLLs, loaded by the native LoadLibrary API routine.
Translated images contain additional scctions that
store information required by the runtime to map x86
routines to the corresponding Alpha code.

The runtume duplicates the Windows NT loader
function of binding an image’s imports, using sym-
bolic information in the image to locate the address of
the imported routine or data. The runtime treats
imports that refer to entries in Alpha images specially,
however, by redirecting the imports to refer to the
correct jacker entry in the FX!32 DLL, jacket.dll.

The jacket routines in jacket.dll enable an x86 user
program to call the native Alpha implementation of
the Win32 APl These jacker routines are extremely
important because they allow x86 applications to use
high-performance code that has been tuned to the
Alpha platform. Some x86 applications run faster on
the Alpha plattorm than on the x86 platform, cven
without being translated, because of the large amount
of time the applications spend in native DLLs.

Each jacket contains an illegal x86 instruction that
serves as a signal to the interpreter that a change is to
be made to the Alpha environment. The interpreter
calls an Alpha jacket routine at a fixed offset from the
illegal x86 instruction. The basic operation of most

Digital "lechnical Journal Vol.9 No.1 1997




jacket routines is to move arguments from the x86
stack to the appropriate Alpha registers, as dictated by
the Alpha calling standard. Some jacket routines pro-
vide special semantics for the native routine being
called, as required by FX!32. For example, the jacket
for the GetSystemDirectory routine returns the path
to the FX!32 directory rather than the path to the true
system directory so that x86 applications do not over-
write native Alpha DLLs.

For an x86 application to run under FX!'32, cvery
image it loads must be either an x86 image or an Alpha
image for which jackets exist. Thercfore, FX!32 pro-
vides jackets for all the DLLs that implement the
Win32 interface and for many redistributable DLLs.
FX!32 currently provides jackets for more than 50
native Alpha DLLs, which has enabled the FX!32 devel-
opment team to run almost all the commercial applica-
tons tested. Each new release of DIGITAL FX!32
software provides additional jackers, and the developers
intend to jacket new interfaces as they are released.

The Emulator

The fundamental job of the emulator is to run x86
applications before they are translated. The first time
an x86 image cxccutes under FX!32, the image is exe-
cuted by the emulator.

The emulator also serves as a backup for translated
code. Because it is not possible to statically determine
all the code that can ever be executed by an application
(especially for applicatons that generate code on-the-
fly), the emulator is always present to exccute such
untranslated x86 application code. Previous binary
translators built by DIGITAL also depended on the
presence of an emulator in this role.* Emulator perfor-
mancc is more of an issuc for FX!32 because, unlike
those carlier binary translators, all application code is
interpreted when the x86 application is first run.

The emulator is an Alpha assembly language program
that interprets the subset of x86 instructions that can be
executed by a Win32 applicaton. While an x86 applica-
tion is running, the x86 processor state is kept partially
in Alpha registers and partally in a per-thread data
structure called the CONTEXT. The x86 integer regis-
ters are permancently mapped to Alpha registers, and
Alpha registers store the state of the x86 condition
codes. While the emulator is running, a dedicated Alpha
register points to the CONTEXT. The CONTEXT
stores the x86 per-thread processor context and any part
of the x86 processor state that must be maintained
across calls to other parts of the system, for example,
calls to Alpha AP routines.

Pipelined Dispatch

The structure of the emulator is a classic fetch-and-
evaluate loop. The emulator dispatches on the first
two bytes of each instruction, performing the lookup

Digiral Technical Journal Vol.9 No.1 1997

in a table of 64K entries. Each entry contains the
address of the routine to exccute to interpret an
instruction and the length of the instruction.

The structure of the dispatch loop has been care-
fully crafted to make efficient use of 64-bit Alpha reg-
isters and to efficiently schedule the execution of code
in the loop. Sofrware pipelining is used to overlap the
fetch and dispatch table lookup for the next instruc-
tion with the execution of the current instruction.
At the top of the loop, at least cight bytes, starting at
the address of the current instruction, are in Alpha
registers. Length information from the dispatch table
determines the first two bytes of the next instruction,
allowing the dispatch table lookup to be overlapped
with the excecution of the current instruction. A fetch
of'additional bytes from the instruction stream is also
initiated. Finally, the loop dispatches to the routine
whose address was obtained from the table on the pre-
vious itcration of the loop.

The individual routines have been tactored by using
subroutines and coroutines to perform operations like
operand fetching, making them as small as possible. As
a result, the emulator code required to execute the
most frequently cxecuted x86 instructions fits in the
first-level cache.

Condition Code Evaluation

Condition codes are generated by the execution of
many of the x86 instructions. We have observed that
condition codes are frequently set and relatively
infrequently examined. The emulator takes advan-
rage of this by evaluating the condition codes only
when they arc used, that is, by using a “lazy evalua-
tion” technique. The execution of a typical instruc-
tion saves only enough state to allow the evaluation
of condition codes, if required, at a later time. This
rakes much less cffort than initially cvaluating the
condition codes. The additional advanrage in defer-
ring the evaluation is that only the condition codes
that arc used need to be generated. For example, the
overflow condition code may never be computed if
only the zero flag is used.

Floating-point Instruction Emulation

The 80-bit x86 floating-point registers are modeled
by a stack of 64-bit memory locations that contain
floating-point values. The decision to use 64-bit inter-
mediate values, rather than to faithfully replicate the
80-bit model, was based on the need to achieve good
performance when executing x86 floating-point code
on the Alpha processor. This decision was supported
by the fact that the Windows NT operating system also
uses a 64-bit floating-point model. Although this is an
approximation, our expericnce to date has shown that
this was a good compromise. Very few applications
rely on the full precision provided by the x86 floating-
point unit’s (FPU’s) 80-bit registers.



The emulator also implements a somewhat simpli-
fied model of the x86 FPU’s register file. Most instruc-
tions use the x86 FPU register file as a traditional
operand stack; however, several instructions can create
a register file state that is not strictly a stack by freeing
registers in the middle of the stack, by moving the
stack pointer without pushing or popping, or by ini-
tializing the register file in a way that breaks the stack
model. Modeling the full complexity of the x86 FPU
register file would be extremely expensive, and experi-
ence has shown that almost all programs use the regis-
ter file strictly as a stack. The current version of the
emulator takes advantage of this. We are investigating
ways to model the floating-point registers in a way that
maintains good performance but docs not depend on
their being treated as a stack.

Generation of Profiles

While it is interpreting an x86 program, the emulator
generates profile data for use by the translator. The
profile data includes the following information:

= Addresses that are the targets of call instructions

= (Source address, target address) pairs for indirect
control transfers

»  Addresses of instructions that make unaligned ref-
erences to memory

The translator uses this information to generate
routines, that is, units of translation that approximate
a source code routine. The emulator generates protile
data by inserting values in a hash table whenever a rel-
evant instruction is interpreted. For example, as part of
interpreting the call instruction, the emulator makes
an entry in a hash table that records the target of the
call. When an image is unloaded (cither as a result of'a
call on the FreeLibrary routine or when the applica-
tion exits), the runtime processes the hash table to
produce a profile file for that image. This profile is
processed by the server and can result in the server
invoking the translator to create a new translation of
the image.

To detect available translated code, the emulator
uses the same hash rable that it cmploys to gather the
profile data. The x86 addresses for which there are
translated routines and the address of the correspond-
ing translated code are entered into the hash table by
the runtime when it loads an x86 image that has been
translated. When a call instruction is interpreted, the
emulator looks up the target address. If a correspond-
ing translated address exists, the emulator transfers
control to that address.

The Translator

The server invokes the translator to translate x86
images for which a profile exists in the database. The
translator uscs the profile to produce a translated

image. On subsequent exccutions of the image, the
translated code is used, substantially speeding up the
application.

Structure and Order of Operations

The translator has eight major components {or phases):
the regionizer, build, the register mangler, the condi-
tion code mangler, improve, the code selector, the
scheduler, and the assembler. (An additional phasce
that performs various peephole optimizations is dis-
abled in the DIGITAL FX!32 V1.0 translator.) The
major components function as follows:

1. The Regionizer—The regionizer uses data in the
profile to divide the source image code into rou-
tines, which are described in the section Generation
of Profiles. Each call target in the profile is used to
generate an entry to a routine. The regionizer rep-
resents routines as a collection of regions. Each
region is a range of contiguous addresses, which
contains instructions that can be reached from the
entry address of the routine. Unlike basic blocks,
regions can have multiple entry points. The small-
est collection of regions that contain all the instruc-
tions that can be reached from the routine entry is
used to represent the routine. Many routines have a
single region. This representation was chosen to
efficiently describe the division of the source image
into units of translation.

The regionizer builds routines by following the
control flow of the source image. When an indirect
jump instruction is encountered while following
the control flow, the possible targets of the instruc-
tion are obtained from the profile. Without this
profile information, it would be very difficult to
reliably identify these targets, and indirect jumps
would have to be treated as returns from the rou-
tinc. The profile information makes it possible to
rehably generate a more complete representation of
routines with correct control flow.

After the regionizer runs, cach of the other major
components is run in scquence for each routine.

2. Build—Build reparses the x86 instructions in the
routine to create an internal representation (IR) of
the routine for use by the subsequent components.
The IR is a graph of basic blocks and is similar to the
IR used by many optimizing compilers.

3. The Register Mangler—The initial IR is a straight-
forward representation of the source x86 code.
This representation ignores the overlap of the x86
registers; the IR treats cach occurrence of EAX,
AX, AH, and AL as a separate register. The register
mangler adds insert and extract operations as nec-
essary to represent the actual semantics of the x86
registers.

Digital Technical Journal Vol.9 No.1 1997



4. The Condition Code Mangler—The eftect ot x86
instructions on condition codes is represented
implicitly in the iniual IR. The condition code man-
gler adds instructions to explicitly generate condi-
tdon codes. Since the condition code mangler
understands the control flow of the entire routinc,
it knows when condition codes are live and only
adds code to generate condition codes when they
are used later in the routine.

5. Improve—Improve performs scveral transtorma-
tions that produce code more suited to the Alpha
architecture. In the inital IR, each push and pop
mstruction is explicitly represented as a decrement/
increment of the x86 stack pointer, accompanied by
a store /load. Improve collects all the manipulation
of the x86 stack pointer into a single decrement at
the beginning of a basic block and a single incre-
ment at the end of that block. Improve also uses
simple value numbering and analysis of memory
references to try to eliminate loads and stores to
both the x86 stack and the floating-point stack and
ro perform constant folding. Although Improve
performs only relatively simple optimizations on a
single basic block, we have found it to be quite
effective in improving the quality of the code that is
gencrated.

6. The Code Selector—The code sclector transtorms
the IR from a representation that contains mostly
x86 instructions to one that contains only Alpha
instructions. This transformation is donc instruction
by instruction, with each x86 instructon being
replaced by a sequence of Alpha instructions that
producce the same effect. The implementation of the
code selector is based on the TWIG code generator.”
Although the code selector is capable of dealing
with much more complicated patterns of instruc-
tions, this capability is not currenty used.

7. The Scheduler—After the code selector is run, all
the instructions in the IR are Alpha mstructions.
The scheduler reorders the instructions within a
basic block to minimize the cycle count for the tar-
get Processor.

8. The Assembler—The assembler builds the output
translated image.

Use of Profile Data

The regionizer is the only component of the current
translator that uses the control flow information n the
protile. The regionizer uses the protile to determine
which parts of the source image are wanslated. Future
versions of the translater will usc the profile to perform
path-directed optimizations and to place code so as to
reduce cache misses. Those changes will improve the
performance of translated code.

Digiral Technical Journal Vol.9 No.1 1997

Retranslation of an image is triggered by growth in
the size of the profile. Because profile data is generated
only when the emulator executes previously untrans-
lated parts of the source image, an increase in the size
of the profile indicates that new parts of the program
have been executed. Retranslating with the new pro-
file will cause these additional parts of the image to be
translated.

Alignment Issues

On an Alpha system, references to memory locations
that are not naturally aligned result in exceptions that
are handled by the Windows NT kernel. Alignment
exceptions can be avoided by using unaligned code
sequences that use the LDQ _U and STQ _U instruc-
rions. Unaligned code scquences are slower than
aligned sequences for accessing locations that are nat-
urally aligned but much faster for accessing locations
that are not naturally aligned. Native Alpha compilers
always try to generate unaligned code sequences when
referencing unaligned data to avoid the expense of
dealing with alignment exceptions.

When generating the code for an instruction that
references memory, the code selector must determine
whether to use an aligned sequence or an unaligned
scquence. To make the determination, the code selec-
tor needs to know the alignment of the address being
referenced. In general, this cannot be determined by
static analysis of the x86 code. To solve the problem,
the code selector uses information in the profile about
the alignment of memory addresses. The profile con-
tains the address of every instruction that made an
unaligned reference to memory. The code sclector
generates unaligned sequences for those instructions
and aligned sequences for all other memory references.
Although this code gencration process is cttective most
of the time, some programs exhibit different memory
reference behavior on successive runs. For those pro-
grams, alignment exceptions can still occur.

Shadow Stack

Translating return instructions presented particular
problems for the translator. The translaton of a call
mstruction saves the x86 return address on the x86
stack and then calls the translated code for the routine.
After the translated call, the x86 return address is on
the x86 stack and the corresponding native return
address is in an Alpha register. This maintains the x86
stack in the expected x86 state. One way to translate a
return instruction would be to use the x86 return
address to look up a corresponding Alpha address;
however, it is desirable to avoid the expense of a hash
table lookup on every return. In the usual case, the
return address is not changed by the routine and the
translated code can pop the x86 stack and perform a
native return by using the native return address. Two



problems must be solved, though. First, some mecha-
nism is needed to determine if the x86 return address
has been modified. Sccond, a location is needed to
save the native return address. Both problems are
solved by using the shadow stack.

The shadow stack resides at the top of the native
Alpha stack and is maintained by the translated code
(with help from the emulator). A shadow stack frame is
created for each call of a translated routine. When one
translated routine calls another, the calling routine saves
the x86 return address and the current x86 stack pointer
in its shadow stack frame. The called routine then saves
the native return address in the calling routine’s shadow
stack frame. On return, the called routine expects to
find the x86 return address and the current x86 stack
pointer in the calling routine’s shadow stack frame. In
this case, the called routine is returning to the environ-
ment that the calling routine expected and performs a
native return. If the value of either the return address
or the stack pointer has changed from the value
expected by the calling routine, the called routine
returns to the emulator.

In a similar manner, the emulator uses the informa-
tion in the shadow stack to derermine when it can
return to translated code. A number of conditions
can cause translated code to reenter the emulator. For
example, the emulator is entered if the target of a
translated indirect jump instruction is not known at
translation time. Having the emulator return to trans-
lated code on a return instruction minimizes the
amount of time that is spent in the emulator; however,
the emulator can only return to the translated code ifit
knows that it has a valid return address. The shadow
stack provides a mechanism to perform that validation.

The Database

The database consists of two parts. As described for
the runtime, the first part of the database is a directory
tree that contains profile files, translator log files, and
translated 1mages. The second part of the database is
kept in the registry and consists of information about
x86 applications and images that the DIGITAL FX!32
software has run on the system, together with config-
uration information. The configuration information
includes the maximum amount of disk space that can
be used by FX!32, the maximum number of images
that can be stored in the database, the default transla-
tion options, the work list that the server uses to
schedule translations, and the Database DirectoryList.
The DatabascDirectoryList is a list of paths to addi-
tional databascs that arc to be searched for image pro-
files and translation results when the image is first
executed. Directories on this list can be used to access
information about the image from other machines on
a nerwork, making available to a user translations per-
formed on another, perhaps more powertul, machine.

The Server

The server is a Windows NT service that normally
starts whenever the system is rebooted. The server
automatically runs the translator when appropriate,
thus making the translation process completely trans-
parent to the user. The server also maintains the darta-
base to control DIGITAL FX!32 resource usage.

The Manager

Usually the operation of DIGITAL FX!32 software is
completely transparent to the user. Like any other pro-
gram, though, FX!32 consumes system resources and a
user must be able to control that resource usage. One
of the roles of the manager is to provide a user interface
to the configuration information kept in the darabase.

Figure 2 shows the manager window. The upper
pane contains information about the various applica-
tions that have been run on the system: the total
amount of disk space being used for profiles and trans-
lations of images loaded by the application, the num-
ber of times the application has been run, the date
when it was last run, and the optimizer (translator)
status. The lower pane contains information about
the images that have been loaded by the highlighted
application in the upper pane: the total amount of disk
space used to store the profile and translation of the
image, the number of times the image has been
loaded, the date on which it was last loaded, and the
status of the last translation of the image.

By interacting with the manager, the user can con-
trol various aspects of FX!32 operation, such as the
maximum amount of disk space to use, which informa-
tion to retain in the database, and when the translator
should run.

Results

The DIGITAL FX!32 development team had two pri-
mary goals for the software: (1) to achicve transparent
execution of 32-bit x86 applications and (2) to yield
approximately the same performance as a high-end
x86 platform when running applications on a high-
performance Alpha system. The DIGITAL FX!32
product meets both goals.

Transparency is provided by the transparency agent
and a run-time environment that can load and execute
an x86 application without a translation step. Appli-
cations can be launched and exccuted on an Alpha
system that is running FX!32 just as they can on an
x86 system. We have performed extensive testing
of more than 75 applications that run using FX!'32,
including major commercial applications such as
Microsoft Ottice 95, Visual Basic 4.0, Photoshop 4.0,
and Corel DRAW 6.0.

Digital Technical Journal Vol.9 No.1 1997



FX132 Manager - | O] x|

File Edit ¥Yiew Options Help

Application Name I Size | Run Count ' Last Run | Optirizer 5_.]

Microsoft® Schedule+ for Windows 95(TM. .. 3600624 B 12/17/36 08:42:29 AM

Microsoft® Word for Windows® 95 7.0 10476556 27 12/16/9610:54:14 &AM

NETSCAPE 3.0 5470580 14 12A16/96 0317:02PM  Working

Paradox for Windows 7.00 34672 3 12/16/96 05:35:15 PM v

4] | >

Image Name I Size I Run Count I Last Run I Optimizer Status I

awt3230.dll 160872 1 11/18/96 09:31:22 AM  Success

it3230.dlI 180208 1 11/18/96 09:31:22AM  Success

it3230.dl 297220 14 12/16/96 0317:02PM  Success

MFC40.DLL 933416 14 12/16/96 031701 PM  Success

msveirt. dll 22380 14 12/16/9603:17:.01 PM  Success

msvert dll 216860 19 12/116/960317:02PM  Success |

msvert40. dil 4664 14 121696 03:17:.02PM  Success

netscape. exe 3491616 14 12/716/96 03:17:02 PM  40% [0B:16 remaining]

pr3230.dll 92532 14 12116/96 03:17:02PM  Success

uni3200 dll 15812 28 12216/960317:02PM  Success

For Help, press F1 ﬁﬂ MB |Apps
Figure 2

The DIGITAL FX!32 Manager

DIGITAL FX!32 software also met its performance
goal. Figure 3 shows the relative performance on
BYTE Magazine's BYTEmark benchmark of a 200-
megahertz (MHz) Pentium Pro system and a 500-
MHz Alpha system running FX!32. For this
benchmark, the Alpha system provides about the
same performance as the 200-MHz Pentium Pro
system. Figure 3 also shows thar the Alpha native

version of the benchmark runs rwice as fast as the
Pentium Pro version.

Of course, no single benchmark characterizes the
performance of a system. kEven so, when running
rranslated x86 applications, we have consistently mea-
sured performance on a 500-MHz Alpha system to be
in the range berween that ofa 200-MHz Pentium sys-
tem and that of a 200-MHz Pentum Pro system. For

200-MHZ PENTIUM PRO

KEY:
[] INTEGER
O] FLOATING POINT

500-MHZ ALPHA 21164A
RUNNING DIGITAL FX!32

500-MHZ ALPHA 21164A
(NATIVE ONLY)

Figure 3
DIGITAL FX!'32 Performance on the BYTE Benchmark)

10 Digital Technical Journal Vol.9 No. 1 1997



some applications, performance can exceed that of a
Pentium Pro system.

The initial version of the DIGITAL FX!32 software
has some limitations. FX!32 executes only application
code; it does not execute drivers. Consequently, native
drivers arc required tor any peripheral that is installed
on an Alpha system. Also, as described in the
Transparency Agent section, FX!32 does not provide
complete support for x86 services. Further, FX!32
does not support the Windows NT Debug API.
Supporting that interface would require the capability
to rematerialize the x86 state after every x86 instruc-
tion, thus severcly limiting optimizations that the
translator could perform. Optinnzing compilers make
a similar trade-off by restricting optimization when
debugging information is required. Since FX!'32 does
not support the Debug interface, applications that
require it do not run under FX!32. Those applications
are mostly x86 development cnvironments, and it
probably makes more sense to run them on an x86
system. The limitations described are not serious, and
most x86 applications that execute on an x86 proces-
sor that s running the Windows NT operating system
also execute on an Alpha system running Windows NT
and DIGITAL EX!32 software.

Summary

DIGITAL FX!'32 software provides fast, transparent
exccution of 32-bit x86 applications on Alpha systems
running the Windows NT operating system. This is
accomplished using a unique combination of emula-
tion and binary translation. The emulator runs an
application, interprets the code, and generates profile
information. For subscquent executions, the translator
uses the protfile data to produce translated images that
contain optimized native Alpha code. An application
translated by means of DIGITAL FX!32 software runs
up to 10 times faster than the same application run-
ning undcr the emulator alone. Morcover, the transla-
ton takes place in the background and is therefore
transparent to the user.

Acknowledgments

Building the DIGITAL FX!32 product required some
extremely talented people to perform a lot of difficult
work. The members of the DIGITAL FX!32 develop-
ment team include Jim Campbell; Anton Chernott,
George Darcy, Tom Evans, Jim Givler, Charhe
Greenman, Pippa Jollie, Mark Herdeg, Ray Hookway,
Maurice Marks, Srmivasan Murar, Brian Nelson,
Scotr Robinson, Norm Rubin, Sherry Seskavich, Joyce
Spencer, Tony Tye, and John Yates. Many of these
individuals contributed the ideas described i this
paper.

References

1. B. Case, “Rehosting Binary Code for Software Porta-
bility,” Microprocessor  Report  (Sebastopol, Calif.:
MicroDesign Resources, January 1989).

2. T. Halthill, “Emulation: RISC’s Secret Weapon,”
BYTE Magazine (April 1994).
3. R. Bedichek, “Some Efficient Architecture Simulation

Techniques,” USENIX (Winter 1990).

4. L. Deutsch and A. Schiffiman, “Efficient Implementa-
tion of the Smalltalk-80 System,” Record of the

Eleventh Annual ACM Symposium on Principles of

Programming Langicges (1983).

5. R.Sites, A. Chernott, M. Kirk, M. Marks, and S. Robin-
son, “Binary Translation,” Digital Technical Journal,
vol. 4, no. 4 (Maynard, Mass.: Digital Equipment
Corporation, 1992).

6. J. Richter, Advanced Windows NT. chap. 16 (Red-
mond, Wash.: Microsoft Press, 1994 ).

7. A. Aho, M. Ganapathi, and S. Tjiang, “Code Generation
Using Tree Matching and Dynamic Programming,”
ACM Transactions on Programming Languages and
Systems, vol. 11, no. 4 (October 1989).

Biographies

Raymond J. Hookway

Ray Hookway led the DIGITAL FX!32 development team
and was a key contriburor to the binary translation compo-
nent of the DIGITAT, FX!32 software product. He has been
a member of the AMT group of DIGITAL Semiconductor
since 1993, Ray joined DIGITAL in 1989 and has worked
in the CAD and AD groups of DIGITAL Semiconductor,
where he conrtributed to the first Alpha PC project. Prior
to joining DIGITAL , he was Director of Engineering for
Endot, Inc., where he developed one of the first VHDL.
simulation environments. He was also an Assistant Professor
ar Case Western Reserve University, where he did research
on program verification, and he was a Visiting Professor at
the University of Upsalla, Sweden. Ray received M.S. and
Ph.D. degrees in computer science from Case Western
Reserve University and a B.S. in enginecering from Case
Institute of Technology. He has applied for several patents
related to his DIGITAL FX!32 work.

Digital Technical Journal Vol.9 No. 1 1997




12

Mark A. Herdeg

Mark Herdeg has been with DIGITAL since 1985. He is
currently a principal software engincer in the AMT group
of DIGITAL Semiconductor. Previously, he worked on con-
sole software tor the Nautilus (VAX 8500) and Argonaut
projects. The Alpha simulator developed for the Argonaut
project, MANNEQUIN, became the first Alpha system on
which the OpenVMS operating system successtully booted.
Mark contribured to a related project that used the Alpha
simulator and a dual-architecturc-aware debugger to allow
development and execution of applications with a mix of
VAX and Alpha code. A founding member of the Alpha
Migration Tools group, Mark worked on its first product,
VEST, the OpenVMS VAX-to—Alpha binary translator. He
then helped design and develop the DIGITAL FX!32 soft-
ware product, with particular focus on the runtime compo-
nent. Currently, he is the project leader tor the next release
of DIGITAL FX!32 software. Mark has submitted several
patent applications for work on the multiple-architecture
execution environment and for the DIGITAL FX!32 design.

Digital Technical Journal Vol.9 No.1 1997



Development of the
Fortran Module Wizard

within DIGITAL Visual
Fortran

The Fortran Module Wizard is one of the tools

in DIGITAL Visual Fortran, a DIGITAL product for
the Fortran development environment. Visual
Fortran consists of the DIGITAL Fortran 90 compiler
and run-time libraries and the Microsoft Developer
Studio. Together, these technologies provide a
rich set of tools for the Fortran developer who

is using the Windows NT and Windows 95 sys-
tems. The Fortran Module Wizard generates
complete Fortran source code, allowing Fortran
applications to invoke routines in a dynamic link
library, methods of an Automation object, and
member functions of a Component Object
Model (COM) object.

Leo P. Treggiari

DIGITAL Visual Fortran is an integrated development
environment tor Fortran applications.' Itis supported on
the Windows NT version 4.0 opcrating system on both
Alpha and Intel hardware and on the Windows 95 sys-
tem. DIGITAL Visual Fortran is a combination of tech-
nologics from DIGITAL and Microsoft Corporation.
The DIGITAL-supplied compiler and run-ume libraries
support the DIGITAL Fortran 90 language.” DIGITAL
Fortran 90 conforms to American National Standard
Fortran 90 (ANSI X3.198-1992) and provides many
extensions to the Fortran 90 standard. The Microsoft-
supplied integrated development environment is the
Microsoft Developer Studio, which is also used by
Microsoft Visual C++, Microsoft Visual J++ (tor Java),
other Microsoft tools, and other companies’ develop-
ment tools. Developer Studio includes a text editor,
resource cditors, project build facilities, an incremental
linker, a source code browser, an integrated debugger,
and a profiler. The operation of all these tools is con-
trolled from a single applicadon. Figurc 1 shows an
example of Microsoft Developer Studio from which two
Fortran source files are being edited. DIGITAL adds a
number of Fortran-specific tools to the environment,
one of which is the Fortran Module Wizard.

Design of the Fortran Module Wizard

DIGITAL designed the Fortran Module Wizard to
help Fortran developers working in the application-rich
Windows environment. The Fortran Module Wizard
supports access to dynamic link libraries (DLLs) and
servers based upon Microsoft’s Component Object
Model (COM). This support allows Fortran developers
to use the popular mechanisms that make functionality
(services) available to other software (clients).

Traditionally, Microsoft and others have provided
system interfaces and reusable libraries of code as
DLLs. A DLL is a file containing functions that can be
called by programs and other DLLs. The role of DLLs
on a Windows system is very similar to that of share-
able images on the OpenVMS operating system and
shared libraries on the UNIX system. Today, DLLs are
still the primary mechanism for accessing system inter-
faces on Windows.

Digiral Technical Journal Vol.9 No.1 1997




14

* ppopen - Microsofl Developer Studio

“Eile Edit Yiew Insert Project Build Jools Window Help

Ll_ﬂ | @ E, _" RR |- RS %lpresanmlions_open

I IR A e A

IR

|J|-"< 1+ &.-[;IEmjreCome vl_ n it mrs == ";‘.A.l
—alx

_@ Workspece 'ppopen’: 1 project(s’
= Ef ppopen files
- ‘_y Source Filas
|£] POWERPOINT {90
Y ppopena0]
_J) Header Files
_J Resource Files
- ‘4 External Dependencies
(| POWERPOINT MOD

™ ppopen 90

status = SApplication_GetAppWindow (ppApplication, ppAppWindow)
status = SApplicationWindow_SetVisible (ppAppWindow, 1)

! Open the specified presentati

status = Sapplication_GetPresentations(ppApplication, ppPresentations)

vIrue”ZVT = VT_BOOL

vIrueXVU%XBOOL_VAL = VARIANT_BOOL_TRUE

vFalse’VT = VT_BOOL

vFalseZVU%BOOL_VAL = VARIANT_ BOOL_FALSE

status = SPresentations_Open(ppPresentations, filename, vIrue, vFalse, &
vFalse, ppPresentation)

! Hun the
status = SPresentation_GetSlideShow(ppPresentation, ppSlideShow)
status = $SlideShow_Run (ppSlideShow, 1, ppRun) v

!l Presentations_Open (SOBJECT, fileNams, ReadOnly, U

ENT(IN)  :: SOBJECT | 0bjoct Fointer
ITE fileName
1 TRIBUTE 1 lellame
I (VARIANT), 1! (IN) :: ReadOnly
| & ATTRIBUTES 2 B 11
1 (VARIAN'I'_), (IN) A Untitled
TUPE (VARIANT), 1i7 ©: WithWindow
(=41}
4] | 2] %
'I!File\ﬁewlﬂlnfo\’lewl i | 4
Ready Ln 5922 Col 60
Figure 1

Microsoft Developer Studio, Two Fortran Source Files Being Edited

When Microsoft introduced OLE version 1, the
name OLE was an acronym for object linking and
embedding. OLE version 1 enabled compound docu-
ments by allowing a document to link to, or embed
data from, another document. In 1993, Microsoft
inroduced COM as the base architecture of OLE
version 2.7 COM is an extensible architecture that pro-
vides mechanisms for creating and using software com-
ponents. A software component consists of reusable
picces of code and data in binary form that can be
plugged into other software components from other
vendors with relatively little ¢ffort.* Like DLLs, COM
allows a software developer to provide a set of services
to multiple clients. In addition, COM has the advan-
tage of allowing the services to reside in another
process and on another machine. (Distributed COM
[DCOM] allows objects to be created and used on
remote machines.) COM also contains features that aid
in the deployment and evolution of the services.”
Microsoft has extended its languages and tools to aid
software developers in the creation of clients and
servers based upon COM (hereafter referred to as
clients and servers in this paper).

1997

Digital Technical Journal Vol.9 No. ]

Why does a Fortran developer need help accessing
scrvices in DLLs and servers? Calling code that is writ-
ten in another programming language is, in general,
difficult. There are complex issues around calling stan-
dards and data type representations. If a mistake is
made in manually translating a function signature
from one language into another, today’s program-
ming cnvironments are of little help. The application
can fail at a point in the code, for example in the rou-
tine prolog, which does little to suggest the cause of
the problem. Often, solving these problems requires
understanding the intricacies of calling standards and
single stepping through assembly code. Calling the
components in a server also requires understanding
and properly using a number ot COM programming
interfaces.

The Fortran Module Wizard deals with the difficul-
ties. It reads a description of a service, which the ser-
vice provider created, and gencrates Fortran source
code. This automatically generated code makes calling
these scrvices as easy as calling another Fortran func-
tion or subroutine.



Enabling Technologies

Components of COM, Fortran 90, and the Microsoft
Developer Studio enable the functionality of the Fortran
Module Wizard. This section gives an overview of these
technologics.

COM Technologies

As mentioned carlier, COM provides mechanisms for
creating reusable software components. This paper
attempts to explain only those parts of COM, and some
technologies based on COM, neceessary for the reader
to understand the use of server functionality trom
code generated by the Fortran Module Wizard. COM,
OLE, and ActiveX, of course, contain many more
mechanisms.® A number of the references listed at the
end of this paper are good sources of further read-
ing.* ~ Much of the description of COM in the follow-
ing scction is taken from the Component Object
Model Specification.®

COM Objects COM is an object-bascd programming
modcl designed to promote software interoperability.
In other words, COM allows two or more applications
or components to casily cooperate with onc another,
even if they were written by difterent vendors at difter-
ent tmes, in different programming languages, or if
they are running on different machines running differ-
ent operating systems. COM defines a complerely stan-
dardized mechanism for creating objects and for clients
and objects to communicate. Unlike traditional object-
oriented programming environments, these mecha-
nisms arc independent of the applications that use object
scrvices and of the programming languages used to
create the objects. COM therefore defines a binary
teroperability standard rather than a language-based
intcroperability standard on any given opcrating sys-
rem and hardware platform.

To support its interoperability features, COM defines
and implements mechanisms that allow components to
connect to cach other as objects. The definition of an
object is a piece of software that contains the functions
that represent what the object can do (its intelligence)
and associated state information for those functions
(dara). In other words, an object is some data structure
and some functions to manipulate that data. In this
paper, we usce the term object to mean an object
instance, as opposed to an object class. An object class is
similar to a derived-type in Fortran 90 or a structure in
C. It specifies a blueprint for object instances that a
server will create upon a client’s request. An important
principle of object-oriented programming is encapsula-
tion, in which the exact implementation of those func-
tions and the exact format and lavout of the data is only
of concern to the object itself. This information is hid-
den from the clients of an object and can therefore be
changed without aftecting the client.

With COM, components interact with each other
and with the system through collections of function
calls, also known as methods or member functions or
requests, called interfaces. An interface is a semanti-
cally related set of member functions. The interface as
a whole represents a feature of an object. The member
functions of an interface represent the operations that
make up the feature.

For a quick look at a simple example of a COM
object, imagine a Calculator object that is willing to
provide arithmetic services to any client. It could sup-
port an interface named ICalculate. By convention,
the letter [ always prefixes the name of an interface.
The ICalculate interface could contain member func-
tions named Add, Subtract, Multply, Divide, ete. 1ta
client wanted to usc the services of the Calculator
object, it would request COM to create an object of
class Calculator and request the ICalculate interface. It
could then call the member functions of the ICalculate
interfaces (Add, Subtract, ctc.).

With COM, a pointer to an object is actually a
pointer to a particular interface that the object sup-
ports. All COM objects support the interface named
Tunknown, which contains the member functions
named AddRef, Release, and Querylnterface. All COM
objects must implement these member functions.
AddRef and Release implement object reference
counting. Chents use them to tell an object when they
are using it and when they are done. Objects delete
themselves when thev are no longer being used by any
client. QueryInterface is the basis for a process called
interface negotiation, whereby a client asks an object
what services it is capable of providing. For example,
if a client had a pointer to the Calculator object’s
IUnknown interface, it could get a pointer to its
[Calculate interface by calling the IUnknown Query-
Interface member function. In general, an object can
support multiple intertaces and a client can use Query-
Interface to get a pointer to any of them. Examples in
which Fortran code calls member functions in inter-
faces are given in the section Fortran Module Wizard
Functionality. Microsoft defines a number of usctul
interfaces. Object class creators are free to use existing
interfaces and define their own.

Automation Objects One Microsoft-defined interface,
IDispatch, is the basis for Automation.” Any object
that supports this interface, also known as a dispinter-
face, 1s an Automation object, and can be accessed by
any Automation clicnt. An Automation object exposcs
methods and propertics. Methods are functions that
perform an action on an object and are similar to the
member functions of COM objects. Propertes hold
information about the state of an object. A property
can be represented by a pair of methods; one for get-
ting the property’s current value, and one for sctting
the property’s valuc.

Digiral Technical Journal Vol.9 No.1 1997




16

The capabilitics of an Automation object are similar
to those ot'a COM object. An Automation object is, in
fact, a COM object; that is, it supports the TUnknown
interface as well as the IDispatch interface. However,
the mechanisms for using the services of the nwo are
very different. Microsoft designed Automation based
on the needs of scripting or macro languages (i.c.,
Visual Basic). It does not require understanding the
mtricacies of calling conventions as does COM. It sup-
ports mechanisms more suitable to the dynamic query-
ing of an object’s capabilities. This makes Automation
more suited to late binding of objects, that is, invoking
methods of a previously unknown object at run time.

An Automation client accesses all the methods and
properties of an Automation object through a single
member function of the IDispatch intertace named
Invoke. The client passes Invoke a number of argu-
ments thatidentfy

= The method, its arguments, and a place to receive
the return value, or

= The property and its new value, or
= The property and a place to receive its current value

In fact, Invoke could be described as the Swiss army
knife of Automation programming,.

Most of the difterences benween Automation objects
and COM objects are hidden by the Fortran interfaces
that the Wizard generates.

Object Identification To enable the use of COM objects
created by disparate groups of developers, there must
be a method of uniquely identifying an object class
regardless of its origin. COM uses globally unique
identifiers (GUIDs) to do this. A GUID is a 16-byte
integer value that is guaranteed (for all practical pur-
poses) to be unique across space and time. COM uses
GUIDs to identify object classes, interfaces, and other
things that require unique identification. COM pro-
vides a routine named CoCreateGUID, and Microsoft
provides a utility named GUIDGEN, that a developer
uses to generate a GUID. Assigning a GUID to an
object class or interface is the job of the creator of the
class or interface. To create an instance of an object,
the developer needs to tell COM the GUID of the
object. Using 16-byte integers for identification is fine
for computers, but it poses a challenge for the typical
developer. COM supports the use of a less precise, tex-
tual name called a programmatic identificr (ProglD).
A ProglID takes the torm:

application_name.object_name.object_version

For example, the name of the Basic object of the
Microsoft Word application is Word.Basic. 1. Similarly,
interfaces are usually discussed using their Inxx name
(for example, [Unknown), but their GUID uniquely
identifies them. ProgIDs are not supplied for all objects.

Digital Technical Journal Vol.9 No. 1 1997

They are normally supplicd only for Application
objects. An Application object is a top-level object that
becomes active when the application starts. It provides
a starting point for clients to access all of an applica-
rion’s subordinate objects.

Type Information Type information contains descrip-
tions of object classes, interfaces, DLLs, data structures,
and so forth that are independent of any program-
ming language. A developer accesses type information
through an interface named ITypelnfo.” A client can
get a pointer to type information from

= A running Automation object

= A running COM object that
IProvideClassInto interface

supports  the

= Atvpe library

A type library is a collection of type information for
any number of object classes, interfaces, cte. A devel-
oper can store a type library in a separate file (using a
"TLB extension by convention), or as part of another
file. For example, the type library that describes the
rype information for a DLL can be stored in the .DLL
file 1tself. Since the type information is stored in a file, it
is available regardless of whether or not the client has a
pointer to the object(s) that the informartion describes.

The casiest way to create a type library 1 to write a
script in the Microsoft Interface Definition Language
(IDL). The Microsoft IDL compiler (MIDL) reads an
[DL scriptand creates a TLB file.'" An IDL script is similar
to a C++ header file with additonal syntax for informa-
tion required by COM. An example of such information
is whether an argument to a member function is an input,
an output, or an input/output argument.

To use the Fortran Module Wizard, the developer
must know where to find type information for the func-
tionality to be used. Some examples of this are given in
the section Fortran Module Wizard Functionality.

Fortran 90

This section deseribes features of the DIGITAL Fortran
90 language that the Fortran Module Wizard uses in
the code that it generates.

Modules Fortran 90 docs not support objects, but it
does provide a new form ol program unit called a
module. A Fortran module is a set of declarations that
are grouped together under a global name and are
made available to other program units by means of the
Fortran USE statement. These modules have similari-
ties to C include files but are more powerful.

The Fortran Module Wizard generates a source file
containing onc or more Fortran modules and places
the following tvpes of information in the modules:

s Derived-type definitions—Fortran equivalents of
data structures that are found in the type information.



»  Procedure interface definitions—Fortran interface
blocks that describe the procedures found in the
type information.

» Procedure definitions—Fortran functions and sub-
routines that are wrappers for the procedures found
in the type information. The wrappers make the
external procedures casicr to call from Fortran by
handling dara conversion and low-level invocation
details.

The use of modules allows the Fortran Module Wizard
to encapsulate the data structures and procedures
exposed by an object or DLIL in a single place. These
definitions can be shared in multiple Fortran programs.

Attributes The DIGITAL Fortran 90 language sup-
ports a number of calling convention attributes that
allow Fortran programs to call programs written in
other programming languages. Some attributes select
the calling convention (STDCALL, C, VARYING).
Others determine whether an argument is passed by
value or by reference (VALUE, REFERENCE). Another
attribute defines the external name of the procedure
(ALIAS).

Pointer To Procedure The address of a COM member
function is never known at program link time. The
developer must get a pointer to an object’s interface at
run time, and the address of a particular member tunc-
tion is computed from that. We have cextended the
DIGITAL Fortran 90 language to support a Pointer
To procedure.

Microsoft Developer Studio

Microsoft Developer Studio provides a number of
mcthods that allow software developers to extend its
cnvironment.' This scction describes these methods.

Tools Menu Decveloper Studio contains a Customize
dialog box through which the developer can add utili-
ties to the Tools menu and then run those utilities
from within Developer Studio.

Gallery The Developer Studio Gallery provides a
central repository for all reusable parts of projects. The
reusable parts can range from something as simple as a
bitmap to something as complex asa DLL.

Developer Studio Object Model Developer  Studio
provides a set of COM objects that give developers
programmatic control of its tunctionality. Users can
create commands that perform specific tasks and add
them to a toolbar. The Developer Studio Object
Model is programmed in three ways: (1) by creating
macros in the Visual Basic Scripting Edition Language

(VBScript); (2) by creating a Developer Studio DLL
Add-in, which is a server implemented as a DLL; and
(3) by creating a separate Automation client that con-
nects to the Developer Studio objects.

Wizards A wizard is code that creates the starter
files for a new application or adds a feature to an
existing application. Wizards that add features are
stored in the Developer Studio Gallery. Wizards that
create starter files for a new application are called
AppWizards. When the developer requests the cre-
ation of a new project, Developer Studio presents a
list of the types of project that can be created (for
example, a console application or a DLL). In addi-
tion, it lists the installed AppWizards that can gen-
crate complete applications. Often they contain
options that allow the developer to choose the fea-
tures of a generated application.

Microsoft Visual C++ provides a number of
AppWizards; most of them can create typical C++
applications. In addition, to aid developers in extend-
ing Developer Studio, onc AppWizard creates the
starter files for a custom AppWizard, and another
creates the starter files for a DLL Add-in. The Fortran
Module Wizard is currently implemented as an appli-
cation that runs from the Developer Studio Tools
menu. In the future, it may be a Developer Studio
AppWizard.

Fortran Module Wizard Functionality

This section describes the user interface of the Fortran
Module Wizard and presents some samples of the code
generated by the Wizard. It also shows examples of
calling the generated codce from Fortran.

User Interface

Upon opening the Fortran Module Wizard from the
Tools menu, the user is presented with a series of
dialog boxes. From these, the user sclects the type
information for the functionality needed.

Figure 2 shows the first dialog box. 1t requests the
user to choose the source of the type information that
describes the required functionality. The developer
must consult the documentation to determine what
type of object (or DLL) the functionality is imple-
mented as, and where to find its associated type infor-
mation. The choices are the following:

= Automation object

= Type library containing automation information

= Type library containing COM interface information
= Type library containing DLL information

= DLL containing type information

Digiral Technical Journal Vol.9 No.1 1997




L3 Fortran Module Wizard | ]

—Select source of OLE type information ———

C Automation Object

€ Type Library containing Automation information

C Type Library containing COM interface information

= Type Library containing DLL information;

C DLL containing type information

V¥ Generate procedures ta convert between Fortran and C strings

Module Name:

Exit ‘

Figure 2
Fortran Module Wizard Dialog Box

Automation Object Microsoft recommends that servers
provide a type library. Some applications, for example
Microsoft Word version 7.0, do not, but they do
provide type information dynamically when running,.
When this option is sclected, Developer Studio dis-
plays the dialog box shown in Figurce 3. The user then
enters the name of the application, the name of the
object, and optionally the version number. Note that
this method works only for objects that provide a
ProglID. ProglDs are entered into the system registry
and identify, among other things, the executable pro-
gram that is the object’s server.

After the user enters the information and presses the
“Generate button,” the Fortran Module Wizard asks
COM to create an instance of the object identified by
the ProglD that the Wizard constructs from the user-
supplied information. COM starts the object’s server if
it nceds to do so. The Wizard then asks the object for
its type information and generates a file containing
Fortran modules.

Other Options If the user chooses onc of the remain-
ing options, that is, any of the type librarics or the DLL
(see Figure 2), Developer Studio displays the dialog
box shown in Figure 4. From this dialog box, the user
chooses the type library (or file containing the type
library) and, optionally, the specitic components of the
type library.

Digiral Technical Journal Vol.9 No. 1 1997

At the top of the dialog box, a “combo box” lists all
the type libraries that have been registered with the
system. Their file names have a number of different file
extensions, for example, .OLB (object libraries) and
LOCX (ActiveX controls). The user either selects a type
library from the list or presses the “Browse button” to
find the file using the standard “Open dialog box.”
After sclecting a type library, the user presses the
“Show button” to list the interfaces described in the
type library. By default, the Fortran Module Wizard
uses all the interfaces; however, the developer can select
the ones desired from the list.

After the user enters the information and presses the
“Generate button,” the Fortran Module Wizard asks
COM to open the type library and generates a file con-
taining Fortran modules.

Generated Code

The Fortran Module Wizard generates different code,
depending upon the type of object or DLL described by
the type information. Note that the generated code is a
static representation of an object’s type information. If
the type information should change in a furure release
of the object, the Wizard would need to be run again.

Fortran Run-time Support DIGITAL Visual Fortran
provides a set of run-time routines that present to the
Fortran programmer a higher-level abstraction of the



Application Object | ¥]

Application Name:

Object Name:

Object Version:

Generate I

Cancel

Figure 3

Microsott Developer Studio Dialog Box for Application Object Selection

Type Library m

— Type Information File Name —-——

~Interdface(s)

|CAMBOFFICE\POWERPNT  pawerpnttib (PowerPoint 7.0 Obje v | Browse... |

Application

| |Applicationvindow
| [Bitmap
BitmapButton
BuildEffects
BulletFormat
CharFormat
CheckBox

[l ~

pem b

Generate

Cancel

Figure 4

Microsoft Developer Studio Dialog Box for Type Library Selection

Digital Technical Jouenal

Vol.9 No. L

1997

19



IDispatch member functions and other COM functions.
The routines arc used in the code that the Wizard gen-
erates. They allow the programmer to perform the fol-
lowing tasks:

= Initialize the COM library.

- COMIniualize inidalizes the COM library.

— COMUninitialize uninitializes the COM library.

= Getan interface pointer of an object.

— COMCreatcObject passes a programmatic identi-
fier or class identificr, and it creates an instance of
an object and returns a pointer to one of the object’s
interfaces.

- COMGetActiveObject passes a programmatic
identificr or class identifier, and it returns a
pointer to an interface of a currently active object.

— COMGctFileObject passes a file name, and it
returns a pointer to the IDispatch interface of an
Automation object that can manipulate the file.

- COMCLSIDFromPROGID passcs a program-
matic identificr, and it returns the corresponding
class identificr.

- COMCLSIDFromSuing passes a class identifier
string, and it returns the corresponding class
identfier.

= Getor set the value of a property of an Automation
object.

— AUTOSetProperty passes the name or identifier
of the property and a valuc, and it sets the value of
the Automation object’s property.

— AUTOGetProperty passes the name or identifier
of the property, and it gets the value of the
Automarion object’s property.

= Invoke a method of an Automation object.

- AUTOAllocateInvokeArgs allocates an argument
list data strucrure that holds the arguments that
the user will pass to AUTOInvoke,

- AUTOAddArg passes an argument name and
valuc, and it adds the argument to the argument
list dara structure.

— AUTOlnvoke passes the name or identifier of an
object’s method and an argument list data struc-
turce, and it invokes the method with the passed
arguments.

— AUTODcallocateInvokeArgs deallocates an argu-
ment list data structure.

- AUTOGetExceptionInfo retrieves the exception
information when a method has returned an
cxXcepton status.

= DPertorm IUnknown interface member functions.

- COMAddODbjectReference adds a reference to an
object’s interface.

— COMReleaseObiject indicates that the program is
done with a reference to an object’s interface.

- COMQueryInterface passes an intertace identifier,
and it returns a pointer to an object’s interface.

Digital Technical Journal Vol.9 No.1 1997

DIGITAL Visual Fortran provides three Fortran
modulcs that define basic COM information:

= DFCOMTY defines basic COM types.

®= DECOM detines the interfaces to the DIGITAL
Visual Fortran COM routines and to some COM
System routings.

s DFAUTO defines the interfaces to the DIGITAL
Visual Fortran Automation routines.

Automation Objects Figurc 5 contains code gener-
ated by the Fortran Module Wizard for the Word. Basic
object of Microsoft Word version 7.0. Word. Basic is an
Automation object with almost 1,000 methods. These
miethods represent the tunctionality of the Word Basic
language, which is the programming interface to
Microsoft Word. The Microsoft Word, Word Basic
documentation contains information on the methods
and their arguments.”” We discuss some of the meth-
ods here ina simple example of Fortran code automat-
ing Word Basic to perform the task of replacing all the
occurrences of a word in a document with another
word. The Word.Basic methods of interest for this
example are the following:

= AppShow makes the Microsoft Word application
visible.

= FileOpen opens a document.

= EdirReplace replaces a string with another string.

»  FileSaveAs saves a document.

Figure 5 contains code from the Fortran subroutine
generated for the Word Basic FileOpen method. It
is representative of the code gencrated for all
Automation methods. The lines are annotated on the
left side with numbers that are not part of the source
code but correspond to the list below. Note that the
naming convention used for the generated wrappers is
objectiame_methodname. Any periods in the name
are replaced by underscorcs.

1. If the type information provides a comment that
describes the method, the comment is placed
betore the beginning ot the procedure.

2. The first argument to the procedure is always
SOBJECT. Itis a pointer to an Automation object’s
[Dispatch interface. The last argument to the proce-
dure is always $STATUS. This optional argument can
be specified if the Fortran programmer wishes to
examine the return status of the method. The
[Dispatch Invoke member function returns a status of
type HRESULT, which is a 32-bit value. HRESULT
has the same structure as a Win32 error code. In
between the $OBJECT and $STATUS arguments
are the method arguments’ names determined from
the type intormation. When the type information
does not provide a name for an argument, the
Fortran Module Wizard creates a SARGn name.



1= '0pens an existing document or template

2- SUBROUTINE Word_Basic_FileOpen($0BJECT, Name, ConfirmConversions,
ReadOnly, LinkToSource, AddToMru, PasswordDoc, PasswordDot,
Revert, WritePasswordDoc, WritePasswordDot, Connection,
SQLStatement, SQGLStatementi, $STATUS)

'!DEC$ ATTRIBUTES DLLEXPORT
IMPLICIT NONE

INTEGER*4, INTENTCIN)D $O0BJECT ! Object Pointer
3- 'DEC$ ATTRIBUTES VALUE : $0BJECT
4- CHARACTER*(*), INTENTCIN), OPTIONAL :: Name ! BSTR

'DEC$ ATTRIBUTES REFERENCE Name

INTEGER*4, INTENT(OUT), OPTIONAL
'DEC$ ATTRIBUTES REFERENCE
INTEGER*4 $$STATUS

INTEGER*4 invokeargs

5- dinvokeargs = AUTOALLOCATEINVOKEARGS()
6- IF (PRESENT(Name)) CALL AUTOADDARG(invokeargs, 'Name', Name,

7- $$STATUS = AUTOINVOKE(SOBJECT, 'FileOpen', invokeargs)
$$STATUS
9- CALL AUTODEALLOCATEINVOKEARGS (invokeargs)

END SUBROUTINE Word_Basic_FileOpen

8- IF (PRESENT($STATUS)) $STATUS =

Word_Basic_FileOpen

$STATUS ! Method status
$STATUS

.FALSE., VT_BSTR)

Figure 5
Representative Code Generated for Automation Methods

3. This is an example of an attribute statement used to
specify the calling convention of an argument.

4. Methods can rake oprional arguments that must fol-
low all the required arguments. In this method,
there are no required arguments. The Fortran
Module Wizard generates source lines for cach
argument using the data tvpe and calling conven-
nions found i the tvpe information.

5. AUTOAlNocatcInvokeArgs allocates a data strucrure
that is used to collect the arguments that the pro-
grammer passcs to the method. AUTOAddArg adds
an argument to this data structure.

6. For cach optional argument, the Fortran PRESENT
functon is used to determine if the caller supplied
the argument. If so, the argument is added to the
argument list.

7. AUTOInvoke invokes the named method passing
the argument list. This returns a status result.

8. If the caller supplied a status argument, the code
copies the status result toit.

9. AUTODcallocateInvokeArgs deallocates the mem-
ory used by the argument list data structure.

Figure 6 shows code from a user-written Fortran
program that invokes Microsoft Word to replace all
the occurrences of a word in a document with another
word. The example code is annotated with numbers
that correspond to the following list.

1. COMCreatcObject requests COM 1o create an
object with the ProgID Word.Basic. A pointer
to the Word.Basic object’s TDispatch interface is
rerurned in “wordapp.” The IDispatch interface
1s rerurned with a reference countof 1.

2. The code checks to ensure that an [Dispatch pointer
was returned. If not, it displavs an crror message and
exits. The programmer can examine the status vari-
able for the specific status return code.

3. The code calls Word.Basic imethods to show the
Microsoft Word window, open the document,
replace the string, and save the moditied document.

4. COMRcleaseODbject releases the single reference to
the object’s IDisparch interface so that Microsoft
Word can terminate.

COM Objects The Microsoft PowerPoint version 7.0
tvpe library contains a description of'a number of COM
objects and intertaces that make up the programmable
interface to the Microsott PowerPoint application.
Figures 7 and 8 contain code generated by the Fortran
Module Wizard from the Microsoft PowerPoint version
7.0 type library. Unlike Microsoft Word, which provides
a single object that presents all of Word’s programmablce

functionality, PowerPoint provides a hicrarchy of

objects. The top-fevel object, Application, is identified by
the ProglD PowerPoint. Applicaton.7. The Application
object contains member functions that return a pointer
to subordinare objects, inctuding the Presentations

Digital Technical Jowmnal Vol.9 No. 1 1997

21



! Create a Word object and make it visible
17— CALL COMCREATEOBJECT ('"Word.Basic," wordapp, status)
2- IF (wordapp == 0) THEN
WRITE (*,
'(" Unable to create Microsoft Word object; Aborting")')
CALL EXIT(-1)
END IF
3- CALL Word_Basic_AppShow(wordapp, "," $STATUS=status)
! Open the document
CALL Word_Basic_FileOpen(wordapp, filename, $STATUS=status)
! Replace all occurrences of the string
CALL Word_Basic_EditReplace(wordapp, findstring, replacestring,
ReplaceAll=.TRUE., $STATUS=status)
' Save the file
CALL Word_Basic_FileSaveAs(wordapp, filename, $STATUS=status)
! Release the Word.Basic object since we are done
4- status = COMRELEASEOBJECT(wordapp)

Figure 6
Code from a User-written Fortran Program That Invokes Microsoft Word

1. The first argument to the procedure is always
SOBJECT. It is a pointer to the object’s interfacc.
The remaining argument names are determined
from the tvpe informartion.

object. The Presentations object consists of a collection
of Presentation objects. A Presentation contains a mem-
ber function that returns a pointer to its ShideShow
object, and so on. By navigating this hicrarchy, the devel-
oper can sclect a pointer to a particular object’s interface.
A code example inwhich we use some of the PowerPoint
objects and interfaces to run a slide presentation from
PowerPoint is given later in this section.

Figure 7 contains the interface description of the
Presentations object’s member function named Open. It
is representative of the interfaces generated for all COM
member functions. The procedure naming convention
is objectieime_mentberfunctionname. The Open func-
tion opens an existing PowerPoint presentation.

2. ABSTR s a lengrh-prefixed string data tvpe primar-
ilv for use by Automartion objects. The wrappers
generated for COM member functions convert
tfrom Fortran strings to BSTRs and vice versa.

3. A VARTANT is a data structure that can contain any
tvpe of Automation data. It contains a ficld rhat
identfics the type of dara and a union that holds the
data value. The use of a VARIANT argument allows
the caller to usc any data type that can be converted
into the data type expected by the member function.

INTERFACE
1- INTEGER*4 FUNCTION Presentations_Open($0BJECT, fileName,
ReadOnly, Untitled, WithWindow, Open)
USE DFCOMTY
INTEGER*4, INTENTC(IN) t: $0BJECT ! Object Pointer
'DECS$ ATTRIBUTES VALUE $OBJECT
2- INTEGER*4, INTENTC(IN) fileName ! BSTR
'DEC$ ATTRIBUTES VALUE : fileName
3- TYPE (VARIANT), INTENTC(IN), ReadOnly ! (Optional Arg)
'DECS ATTRIBUTES VALUE ReadOnly
TYPE (VARIANT), INTENTCIN)D, Untitled ! (Optional Arg)
'DECS$ ATTRIBUTES VALUE H Untitled
TYPE (VARIANT), INTENTC(IND, WithWindow ! (Optional Arg)
'DEC$ ATTRIBUTES VALUE WithWindow
4 - INTEGER*4, INTENT(OUT) H Open
'DEC$ ATTRIBUTES REFERENCE Open
'DEC$ ATTRIBUTES STDCALL Presentations_Open
END FUNCTION Presentations_Open
END INTERFACE
5- POINTER(Presentations_Open_PTR, Presentations_Open)

Figure 7
Code Generated by Fortran Module Wizard trom Microsoft PowerlPoint, Interface Description of Open Function

22 Digital Technical Journal Vol.9 No.1 1997



4. Nearly every COM member function returns a status of
type HRESULT. Therefore it a COM member func-
tion produces output, it uses output arguments to
return the values, [n this example, the Open argument
returns a pointer to a PowerPoint Presentation object.

5. The interface of a COM member functon looks
similar to the interface for a DLL function with onc
major excepton. Unlike a DLL function, the address
of a COM member function is never known at pro-
gram link time. To compute the address of a partcular
member function, the developer must get a pointer to
an object’s interface at run ime. We have extended the
DIGITAL Fortran 90 language to support a Pointer
To procedure. Figure 8 shows an example of its use.

Figure 8 contains the wrapper generated by the
Fortran Module Wizard for the Open function. The
name of a wrapper is the same as the name of the cor-
responding member tunction, prefixed with a $. The
numbers inserted at the left margin of the code exam-
ple correspond to the following list.

1. The wrapper takes the same argument names as the
member function interface.

2. Member function arguments of type BSTR arc of

type CHARACTER*(*} in the wrapper.

3. The wrapper computes the address of the member
function from the interface pointer and an oflset
found in the interface’s type information. In imple-
mentation terms, the sequence is the following: an
interface pointer to a pointer to an array of function
pointers called an Interface Function Table (see
Figure 9).

4. The wrapper declares a local variable to hold the
BSTR to be passed to the member function. The next
line docs the conversion.

5. Optional VARIANT arguments of a COM member
function are represented by a VARIANT with distin-
guished values. OPTIONAL_VARIANT is defined
in the DFECOMTY module with the distinguished
values.

6. The oftset of the Open member function is 60. The
code assigns the compured address to the function
pointer  Presentations_Open_PTR, which
declared in Figure 7, and then calls the function.

was

ReadOnly,

'DEC$ ATTRIBUTES DLLEXPORT
IMPLICIT NONE
INTEGER*4, INTENTC(IN)
'DEC$ ATTRIBUTES VALUE

2- CHARACTER*(*), INTENTC(IN)
'DECS$ ATTRIBUTES REFERENCE
TYPE (VARIANT), INTENTC(IN),
'DEC$ ATTRIBUTES REFERENCE
TYPE (VARIANT), INTENTCIN),
'DEC$ ATTRIBUTES REFERENCE
TYPE (VARIANT), INTENTC(IN),
'DEC$ ATTRIBUTES REFERENCE
INTEGER*4, INTENT(OUT)
'DEC$ ATTRIBUTES REFERENCE
INTEGER*4 $SRETURN

3- INTEGER*4 $VTBL
POINTER(SVPTR,
TYPE (VARIANT),
TYPE (VARIANT),
TYPE (VARIANT),

4 - INTEGER*4 3$BSTR_fileName
$BSTR_fileName =

$VTBL)

$VAR_ReadOnly =
ELSE
$VAR_ReadOnly =

ReadOnly

17— INTEGER*4 FUNCTION $Presentations_Open($0BJECT,
Untitled,

$ VAR_ReadOnly
$ VAR_Untitled
$ VAR_WithWindow

ConvertStringToBSTR(fileName)
5- IF (PRESENT (ReadOnly)) THEN

OPTIONAL_VARIANT

Presentations_Open_PTR = $VTBL
END IF

6- $VPTR = $OBJUECT ' Interface Function Table
$VPTR = $VTBL + 60 ! Add routine table offset
Presentations_Open_PTR = $VTBL
$RETURN = Presentations_Open($0BJECT, $BSTR_fileName,

ReadOnly, Untitled, WithWindow, Open)

$Presentations_Open = $RETURN

END FUNCTION $Presentations_Open

fileName,
WithWindow, Open)
$Presentations_Open

$OBJECT ! Object Pointer
$0BJECT
fileName ' BSTR
fileName

OPTIONAL ReadOnly
ReadOnly

OPTIONAL Untitled

1 Untitled

OPTIONAL WithWindow
WithWindow
Open ' IDispatch
Open

' Interface Function Table

! BSTR

Figure 8

Code Generared by Fortran Module Wizard from Microsoft PowerPoint, Wrapper for Open Function

Digital Technical Journal Vol.9 No. 1 1997

23



24

INTERFACE INTERFACE
POINTER > POINTER FUNCTION
TABLE
FUNCTION 1
FUNCTION 2
FUNCTION 3
Figure 9

[ntertace Pointer to an Array of Function Pointers

In fact, PowerPoint provides dual interfaces. A dual
interface is a combination of an IDispatch interface
and COM member functions. The IDispatch inter-
face ot the dual interface can be used by Automation
clients, and the COM member functions can be used
by COM clients. This means that tor PowerPoint, and
any scrver thar provides dual interfaces, the Fortran
developer can choose to generate a Fortran module
for the Automation interfaces or the COM interfaces.
The Fortran interfaces generated by the Wizard likely
will not be much different. COM interfaces typically
provide better performance since there is less over-
head in invoking COM member functions than
dispintertace methods through the 1Dispatch Invoke
member function.

Figurc 10 shows code from a uscr-written Fortran
program that invokes PowerPoint to run a slide pre-
sentation. The code example is annotated with num-
bers that correspond to the following list,

17- CALL COMCLSIDFROMPROGID

CALL COMCREATEOBJECT (clsid,

IF (ppApplication == 0) THEN

3- status =

vTirueZVT = VT_BOOL
virueZVU%BOOL_VAL =
vfalseZVT = VT_BOOL
vFalseZVU%ZBOOL_ VAL =
status =
virue, vFalse,
! Run the slide show
4— status =
status =

Figure 10

ppApplication,

Unable to create PowerPoint object;

$Application_GetAppWindow(ppApplication,

$Presentation_GetSlideShow(ppPresentation,
$SlideShow_Run{(ppSlideShow, 1,

1. COMCLSIDFromPROGID and COMCreateObject
request COM to create an object with the ProglD
PowerPoint.Application.7, and to return a pointer
ro the object’s [Application interface.

2. The code gets the AppWindow object from the
Application object and calls its Visible member
function to make PowerPoint visible.

3. The code gets the Presentations object from the
Application object and calls its Open member
function to open a Presentation. Note that three
of the arguments to Open are of the VARIANT
dara type. The code sets them to the values truc
and false.

4. The code gets the SlideShow object tfrom the
Presentation object and calls its Run member func-
tion to run the slide show.

DLLs When the Fortran Module Wizard reads the
tvpe information describing a DLL, it generates an
mterface description for cach function in the DLL. It
also generares Formran-derived types tor data struc-
rures defined m the DLL tvpe information. This
relieves the Fortran developer from manually translat-
myg header file descriptions to Fortran descriptions.
The Wizard also provides the option of generating
wrappers that convert from the Fortran represenration
of strings to the C representation of strings and vice
versa. This option can be selected trom the Wizard’s
mttial dialog box (sce Figure 2).

! Create a PowerPoint Application object

! and make the AppWindow visible
("PowerPoint.Application.7,"

clsid,

status)
CLSCTX_SERVER, IID Application,
status)

Aborting'") ")

ppAppWindow)

$ApplicationWindow_SetVisible(ppAppWindow, 1)

WRITE (*, '("
CALL EXIT(-=-1)
END IF
2- status
status =
' Open the specified presentation

$Application_GetPresentations(ppApplication,

ppPresentations)

VARIANT_BOOL_TRUE

VARIANT_BOOL_FALSE
$Presentations_Open{(ppPresentations,

filename,

virue, ppPresentation)

ppSlideShow)
ppRun)

Fortran Program to Invoke Powerloint to Run Shide Presentarion

Digiral Technical Journal Vol.9 No. 1 1997



Comparison of the Wizard to the Capabilities of
Other Languages

Visual C++ version 5.0, Visual J++ version 1.1, and
Visual Basic version 5.0 all have wizards that can read a
rvpe library and allow applications to use COM
and /or Automation objects.

The Visual C++ ClassWizard can rcad a type library
and create a class with all the functions of the
[Dispatch interface described in the library. Visual C++
version 5.0 also adds a preprocessor  directive,
#import. The #import directive reads a type library
and generates two header files that contain the defini-
tions of the COM objects defined in the type library.”?

The Java Type Library Wizard within Visual J++
invokes the JavaTLB utility to convert the information
inatvpe library into Java .class files. A Java .class file is
the binary form of a Java class or intertace. "

To use an object defined in a tvpe hbrary from
Visual Basic, the developer must add a reference to the
object using the Project menu, References command.
The Reterences dialog box allows the user to select
from the list of registered type librarics in a manner
similar to the Fortran Module Wizard.'"

The Fortran Module Wizard is unique in the tol-
lowing ways. The Fortran 90 programming language
docs not inherently support objects. The Fortran
Module Wizard employs a combination of language
and run-time support to provide this capability. The
supporting language features arc modules and proce-
dure pointers. The supporting run-time modules are
DFCOMTY, DFCOM, and DFAUTO. The Fortran
Module Wizard provides support for tvpe libraries
containing the descriptions of DLIL routines.

Fortran Module Wizard Architecture

The architecrure of the Fortran Module Wizard is tairly
simple. The shell of the Wizard was generated by the
Custom AppWizard within Visual C++. The inner
workings of the Wizard consist of three major picces:
= Tvpe information reader
= Typesvmbol table
= Fortran code generator

Figure 11 shows a high-level data flow of the
Forrran Module Wizard. The type information reader

traverses the data structures in the type information
and creates the tvpe symbol table. The Win32 SDK
provides a sample application named BROWSE OLE
sample that is an example of raversing the information
in a tvpe library. The tvpe symbol table is a svmbol
table similar to those used by compilers. It maps type
names to the descriptions ot tvpes. For simplicity, the
information is stored using the same data structures
used by the type information. The Fortran code gen-
erator traverses the symbol table and generates a
Fortran module.

The use of a symbol table allows for a complete
separation of the functionality of the type information
reader from the Fortran code generator. A code gener-
ator for another programming language could be
casily substituted, as could another source of tvpe
information (for example, a C header file).

Future Directions

There are a number of possibilities for future work that
would add to the capabilities provided by the Fortran
Module Wizard.

= Fortran support for ActiveX controls. An ActiveX
control is an Automation object. It is a reusable
component that normally provides a user interface
and is used in dialog boxes and other windows. The
Fortran Module Wizard can generate a module
that would allow a Fortran developer to use the
methods and propertics of an ActiveX control.
However, additional functionality would be needed
in the Fortran run-time libraries to make controls
usable from a Fortran application. A control has
to be placed in a special type of window called a
Control Container. The Fortran run-time librarics
do not currently contain support for a Control
Container. In addition to methods and propertics,
a control can define events. An event allows a con-
trol to notifv its container when something of inter-
est happens to the control. For example, a “Butron
control” could define a “Clicked event.”

= Fortran Windows Application Wizard. This Wizard
could generate starter files tor a Fortran Windows
application. This would be especially useful if we
were to implement the Fortran support for ActiveX
controls.

TYPE
TYPE

INFORMATION —>
INFORMATION READER

TYPE SYMBOL
TABLE

FORTRAN FORTRAN
CODE MODULE
GENERATOR

Figure 11
Dara Flow of the Forrran Module Wizard

Digital Technical Journal Vol.9 No. 1 1997

25



= Fortran modules from C header tiles. By replacing
the type information reader described in the previ-
ous section with a C parser, we could generate
Fortran modutes directly from .h files. This would
expand the set of services thar are eastly available to
Fortran developers.

= Fortran Server Wizard. This Wizard would take a
Fortran module provided by a Fortran developer
and package it as a COM object. [t would also gen-
erate a type library that describes the object. This
object could then be used by anv COM client, for
example, Visual Basic, Visual C++, and Visual J++
applications.

References and Notes

L. Digital Fortran Books Online (Mavnard, Mass.: Digiral
Equipment Corporation, 1997).

2. Digital Fortran 90 Language Refercence Manial
(Mavnard, Mass.: Digiral Equipment Corporation, 1997).

3. Foraperiod of time, Microsoft used the name OLE to
encompass all of its component integration technology,
including COM. Now OLE is applied onlv to com-
pound document technology.

4. K Brockschmidt, /iside OLE, Second Edition (Redmond,
Wash.: Microsoft Press, 1995).

5. K. Brockschmide, “How OLE and COM Solve the
Problems of Component Software Design,” Microsof
Systems Jouirnal, vol. 11, no. 5 (May 1996): 63-80.

6. D. Chappell, Understanding ActiveX and OLE (Red-
mond, Waslh.: Microsoft Press, 1996).

7. OLE 2 Programmer’s Reference, Volume Tuwo (Red-
mond, Wash.: Microsoft Press, 1994 ).

8. The Component Object Mocdel Specification (0.9
(Redmond, Wash.: Microsoft Corporation, 1995).

9. Automation was otiginally called OLE Auromation.

10. Betore IDL and MIDL, Microsoft provided the Object
Description Language (ODL) and a compiler named
MKTYPLIB.

L1, Deceloper Stiudio Environment User’s Guide (Red-
mond, Wash.: Microsoft Corporation, 1997).

12. Microsoft Office 97 includes a new Oftice object model
that offers another set of interfaces to Word services.

13. G. Shepherd, “Visual C++ Simplifies the Process for
Developing and Using COM Objects,” Microsofi
Systems Journal, vol. 12, no. 5 (May 1997): 37-48.

14. G. Eddon and H. Eddon, “Undcrstanding the Java/
COM Integration Model,” Microsoft hilcractive
Developer, vol. 2, no. 4 (April 1997): 56-68.

15. Microsoft Visual Basic 5.0 Books Online (Redmond,
Wash.: Microsoft Corporation, 1997).

Digital Technical Journal Vol.9 No. 1 1997

Biography

Leo P. Treggiari

Leo Treggian is a consulting software engineer in the Core
Technology Group. He was responsible tor developing the
Module Wizard in the DIGITALIL Visual Fortran product
for the Fortran programmer working in a Microsoft
Windows environment. Previous to this work, he was
project leader for the development of several programming
tools, including the Mortif toolkit. Leo came to DIGITAL
in 1979 from Wang Laboratories. He holds a B.S. (1975,
summa cum laade) in chemistry from Boston College and
is a member of ACM,



Architecture and
Implementation of
MEMORY CHANNEL 2

The MEMORY CHANNEL network is a dedicated
cluster interconnect that provides virtual shared
memory among nodes by means of internodal
address space mapping. The interconnect imple-
ments direct user-level messaging and guaran-
tees strict message ordering under all conditions,
including transmission errors. These character-
istics allow industry-standard communication
interfaces and parallel programming paradigms
to achieve much higher efficiency than on con-
ventional networks. This paper presents an
overview of the MEMORY CHANNEL network
architecture and describes DIGITAL’s crossbar-
based implementation of the second-generation
MEMORY CHANNEL network, MEMORY CHANNEL 2.
This network provides bisection bandwidths

of 1,000 to 2,000 megabytes per second and a
sustained process-to-process bandwidth of

88 megabytes per second. One-way, process-
to-process message latency is less than 2.2
microseconds.

Marco Fillo
Richard B. Gillett

In computing, a cluster is loosely defined as a parallel
system comprising a collection of stand-alone comput-
ers (each called a node) connected by a network. Each
node runs its own copy of the operating system, and
cluster software coordinating the entire parallel system
attempts to provide users with a unified system view.
Since each node in the cluster is an off-the-shelf
computer system, clusters offer several advantages
over traditional massively parallel processors (MPPs)
and large-scale symmetric multiprocessors (SMPs).
Specifically, clusters provide!

= Much better price/performance ratios, opening a
wide range of computing possibilities for users who
could not otherwise afford a single large system.

= Much better availability. With appropriate software
support, clusters can survive node failures, whereas
SMP and MPP systems generally do not.

= Impressive scaling (hundreds of processors), when
the individual nodes are medium-scale SMP systems.

= Easy and economical upgrading and technology
migration. Users can simply attach the latest-
generation node to the existing cluster nerwork.

Despite their advantages and their impressive peak
computational power, clusters have been unable to
displace traditional parallel systems in the marketplace
because their effective performance on many real-
world parallel applications has often been disappoint-
ing. Clusters’ lack of computational efficiency can be
attributed to their traditionally poor communication,
which is a result of the usc of standard networking
technology as a cluster interconnect. The develop-
ment of the MEMORY CHANNEL network as a cluster
interconnect was motivated by the realization that the
gap in effective performance between clusters and
SMPs can be bridged by designing a communication
network to deliver low latency and high bandwidth all
the way to the user applications.

Over the years, many researchers have recognized
that the performance of the majority of real-world par-
allel applications is affected by the latency and band-
width available for communication.”® In particular,
it has been shown®®” that the efficiency of parallel
scientific applications is strongly influenced by the

Digital Technical Journal Vol.9 No.1 1997

27



28

system’s architectural balance as quantified by its
communicaton-to-computation ratio, which is some-
times called the q-ratio.? The g-ratio is defined as
the ratio between the time it takes to send an 8-bvre
floating-point result from one process to another
{(communication) and the time it takes to perform a
floating-point operation (computation). In a systcm
with a g-ratio equal to 1, it takes the same time for a
node to compute a result as it does for the node to
communicate the result to another node in the system.
Thus, the higher the g-ratio, the more ditficult it is to
program a parallel system to achicve a given level of
performance. Q-ratios close to unity have been
obtained only in experimental machines, such as
iWarp® and the M-Machine,” by emploving direct
register-based communication.

Table 1 shows actual q-ratios tor several commercial
systems. ™" These q-ratios vary from about 100 for a
DIGITAL AlphaServer 4100 SMP system using shared
memory to 30,000 for a cluster of these SMP svstems
interconnected over a fiber distributed data interface
(FDDI) network using the transmission control
protocol /internet  protocol (TCP/IP). An MPP
system, such as the IBM SP2, using the Message
Passing Interface (MP1) has a g-ratio of 5,714, The
MEMORY CHANNEL network developed by Digiral
Equipment Corporation reduces the g-ratio of an
AlphaServer-based cluster by a factor ot 38 to 82 to be
within the range of 367 to 1,067. Q-ratios in this
range permit clusters to ethciently rackle a large class
of paralle] technical and commercial problems.

The benefits of  low-latency, high-bandwidth
networks are well understood.™'® As shown by many
studies,”™"* high communication latency over tradi-
tional nerworks 1s the result of the operating svstem
overhead involved in transmitting and receiving mies-
sages. The MEMORY CHANNEL network eliminates
this latency by supporting direct process-to-process
communication that bypasses the operating system.

The MEMORY CHANNEL network supports this type
of communication by implementing a natural exten-
sion of the virtual memory space, which provides
direct, but protected, access to the memory residing in
other nodes.

Based on this approach, DIGITAL developed
its first-generation MEMORY CHANNEL network
(MEMORY CHANNEL 1), which has been shipping
in production since April 1996. The neowork does not
require anv functionality beyond the peripheral com-
ponent interconnect (PCI) bus and therefore can be
used on any system with a PCI 1/0 slot. DIGITAL
currently supports production MEMORY CHANNEL
clusters as large as 8 nodes by 12 processors per node
(a rotal of 96 processors). One of these clusters was
presented at Supercomputing *95 and ran clusterwide
applications using High Performance Fortran (HPF),!
Parallel Virtual Machine (PVM),)” and MPI™ in
DIGITAL’s Parallel Sofnware Environment (PSE). This
96-processor svstem has a g-rato of 500 to 1,000,
depending on the communication interface. A 4-nodc
MEMORY CHANNEL cluster running DIGITAL
TruCluster software" and the Oracle Parallel Server
has held the cluster performance world record on the
TPC-C benehmark™—the industry standard in on-line
transaction processing—since April 1996.

We next present an overview of the gencric
MEMORY CHANNEL network to justfy the design
goals of the second-generaton MEMORY CHANNEL
network (MEMORY CHANNEL 2). Following this
overview, we describe in dertail the architecture of
the owo components that make up the MEMORY
CHANNEL 2 nerwork: the hub and the adapter. Last,
we present hardware-measured performance data.

MEMORY CHANNEL Overview

The MEMORY CHANNEL network is a dedicated
cluster interconnection network, based on Encore’s

Table 1
Comparison of Communication and Computation Performance (g-ratio) for Various Parallel Systems
Communication Computation Communication-
Performance Performance Based on to-computation
Latency LINPACK 100 X< 100 Ratio
System (Microseconds) (Microseconds/FLOP) (g-ratio)
AlphaServer 4100 Model 300 configurations
SMP using shared memory messaging 0.6 0.006 100
SMP using MPI 34 0.006 567
FDDI cluster using TCP/IP 180.0 0.006 30,000
MEMORY CHANNEL cluster using
native messaging 2.2 0.006 367
MEMORY CHANNEL cluster using MPI 6.4 0.006 1,067
IBM SP2 using MPI 40.0 0.006 5714

Digiral Technical Journal Vol.9 No.1 1997



MEMORY CHANNEL technology, that supports
virtual shared memory space by means of internodal
memory address space mapping, similar to that used
in the SHRIMP system.* The MEMORY CHANNEL
substrate is a flat, fully interconnected network
that provides push-only message-based communica-
tion.'** Unlike traditional networks, the MEMORY
CHANNEL network provides Jow-latency communi-
cation by supporting dircct user access to the network.
As in Scalable Coherent Interface (SCI)* and Myrinet™
nctworks, connections between nodes are established
by mapping part of the nodes’ virtual address space to
the MEMORY CHANNEL interface.

A MEMORY CHANNEL connection can be opened
as either an outgoing connection (in which case an
address—to—destination node mapping must be pro-
vided) or an incoming conncction. Before a pair of
nodes can communicate by means of the MEMORY
CHANNEL network, they must consent to share part
of their address spacc—one side as outgoing and the
other as incoming. The MEMORY CHANNEL net-
work has no storage of its own. The granularity of the
mapping is the same as the operating system page size.

MEMORY CHANNEL Address Space Mapping

Mapping is accomplished through manipulation of
page tables. Each node that maps a page as incoming
allocates a single page of physical memory and makes
it available to be shared by the cluster. The page is
always resident and is shared by all processes in the
node that map the page. The first map of the page
causcs the memory allocation, and subsequent

GLOBAL

reads/maps point to the same page. No memory is
allocated for pages mapped as outgoing. The mapper
simply assigns the page table entry to a portion of the
MEMORY CHANNEL hardware transmit window and
defines the destination node for that transmit sub-
space. Thus, the amount of physical memory con-
sumed for the clusterwide network is the product of
the operating system page size and the total number
of pages mapped as incoming on cach node.

After mapping, MEMORY CHANNEL accesses are
accomplished by simple load and store instructions, as
for any other portion of virtual memory, without any
operating system or run-time lJibrary calls. A store
instruction to a MEMORY CHANNEL outgoing
address results in data being transterred across the
MEMORY CHANNEL network to the memory allo-
cated on the destination node. A load instruction from
a MEMORY CHANNEL incoming channel address
space results in a read from the local physical memory
initialized asa MEMORY CHANNEL incoming chan-
nel. The overhead (in CPU cycles) in establishing a
MEMORY CHANNEL connection is much higher than
that of using the connection. Because of the memory-
mapped nature of the interface, the transmit or receive
overhead is similar to an access to local main memory.
This mechanism is the fundamental reason for the low
MEMORY CHANNEL latency. Figure 1 illustrates an
example of MEMORY CHANNEL address mapping.

The figure shows two sets of independent connec-
tions. Node 1 has established an outgoing channel to
node 3 and node 4 and also an incoming channel
to itself. Node 4 has an outgoing channel to node 2.

MEMORY CHANNEL
ADDRESS SPACE

NODE 1

NODE 3

NODE 2

NODE 1 TO
NODES 3 AND 4

NODE 4 TO
NODE 2

Figure 1

MEMORY CHANNEL Mapping of a Portion of the Clusterwide Address Space

Digital Technical Journal Vol.9 No.1 1997

29



30

All connections are unidirectional, either outgoing
or incoming. To map a channel as both outgoing and
incoming to the same shared address space, node 1
maps the channel two times into a single process’ vir-
tual address space. The mapping example in Figure 1
requires a total of four pages of physical memory, one
for each of the four arrows pointed toward the nodes’
virtual address spaces.

MEMORY CHANNEL mappings reside in two page
control tables (PCTs) located on the MEMORY
CHANNEL interface, one on the sender side and one
on the receiver side. As shown in Figure 2, cach page
entry in the PCT has a set of attributes that specify
the MEMORY CHANNEL behavior for that page.

The page attributes on the sender side are

® Transmit enabled, which must be set to allow trans-
mission from store instructions to a specific page

= Local copy on transmit, which directs an ordered
copy of the transmitted packet to the local memory

»  Acknowledge request, which is used to request
acknowledgments from the receiver node

® Transmit enabled under error, which is used in
error recovery communication

= Broadcast or point-to-point, which defines the
type of packet to all nodes or to a single node
in the cluster

= Request acknowledge, which requests a reception
acknowledgment from the receiver

The page attributes on the receiver side are
= Receive enabled, which must be set to allow recep-
tion of messages addressed to a specific virtual page
= Jnterrupt on receive, which generates an interrupt
on reception of a packet

»  Receive enabled under error, which is asserted for
error recovery communication pages

= Remote read, which identifies all packets that arrive
at a page as requests for a remote read operation

= Conditional write, which identifies all packets that
arrive at a page as conditional write packets

MEMORY CHANNEL Ordering Rules
The MEMORY CHANNEL communication paradigm
is based on three fundamental ordering rules:

1.

Single-sender Rule: All destination nodes will
receive packets in the order in which they were gen-
erated by the sender.

. Multisender Rule: Packets from multple sender

nodes will be received in the same order at all desti-
nation nodes.

. Ordering-under-cerrors Rule: Rules 1 and 2 must

apply even when an error occurs in the network.

Let Pjy.x be the jth point-to-point packet from

a sender node M to a destination node X, and let By,
be the jth broadcast packet from node M to all other
nodes. If node M sends the following sequence of
packets,

PZMHX) PIA‘,,\', B]n\l) P]n\l-ﬂ,\y
(last) (first)

Rule 1 dictates that nodes X and Y will reccive the
packets in the following order:

atnode X, T2, ., Bly, Pl

(last) (first)

atnode Y, Pl ., Bl,.

(last) (first)

It a node N is also sending a sequence of packets, in

the following order,

P31, P24y, B2x, P24y, Bl Pl s, Pl

(last)

(first)

there is a finite set of valid reception orders at destina-
ton nodes X and Y, depending on the actual arrival
time of the requests to the point of global ordering.
Rule 1 dictates that all packets from node M (or N) to
node X (or Y) must arrive at node X (or Y) in the order
in which they were transmitted. Rule 2 dictates that,
regardless of the relative order among the senders,
messages destined to both receivers must be received
in the same order. For example, if X receives B2, Bl,,
and Bly, then Y should receive these packets in the

SENDER RECEIVER
TRANSMIT PCT MEMORY RECEIVE PCT
SENDER TRANSMIT ENABLED CHANNEL RECEIVE ENABLED RECEIVER
STORE LOCAL COPY ON TRANSMIT PACKET INTERRUPT ON RECEIVE LOAE\)A
TO /O ACKNOWLEDGE REQUEST [~ ~ "7~~~ >| RECEIVE ENABLED UNDERERROR [ = FRO .
SPACE TRANSMIT ENABLED UNDER ERROR REMOTE READ ME"é
BROADCAST OR POINT-TO-POINT CONDITIONAL WRITE SPACE
REQUEST ACKNOWLEDGE
Figure 2
MEMORY CHANNEL Page Control Attributes
Digital Technical Journal Vol.9 No.1 1997



same order. Onc arrival order congruent with both of
these rules is the following:

at node X,
P3.\' Xy P2\' <Xy P2.\i X Bz.\" BIM) B1N> I,l\ Xy 1)1;\1 N
(last) (first)

at node Y,
BZN) P2.\'-~\'7 Pl.\l—ﬂ) BlMs B1N> Pl\ BN

These rules are independent of a particular intercon-
nection topology or implementation and must be
obeved in all generations of the MEMORY CHANNEL
network.

On the MEMORY CHANNEL network, error han-
dling is a shared responsibility of the hardware and the
cluster management software. The hardware provides
real-time precise error handling and strict packet
ordering by discarding all packets in a particular path
that follow an erroneous one. The software is respon-
sible for recovering the neowork from the faulty state
back to its normal state and for retransmitting the lost
packets.

Additional MEMORY CHANNEL Network Features
Three additional features of the MEMORY CHANNEL
network make it ideal for cluster interconnection:

1. A hardware-based barrier acknowledge that sweeps
the network and all its bufters

o

. A fast, hardware-supported lock primitive

. Node failure detection and isolation

[o8)

Because of the three ordering rales, the MEMORY
CHANNEL nctwork acknowledge packets are imple-
mented with little variation over ordinary packets. To
request acknowledgment of packet reception, a node
sends an ordinary packet marked with the request-
acknowledge attribute. The packet is used to sweep
clean the network queues in the sender destination
path and to ensure that all previously transmirted pack-
ets have reached the destination. In response to the
reception of a MEMORY CHANNEL acknowledge
request, the destination node transmits a MEMORY
CHANNEL acknowledgment back to the originator.
The arrival of the acknowledgment at the originatng
node signals that all preceding packets on that path
have been successfully received.

MEMORY CHANNEL locks are implemented using
a lock-acquire software data structure mapped as both
incoming and outgoing by all nodes in the cluster.
That is, each node will have a local copy of the page
kept coherent by the mapping. To acquire a lock, a
node writes to the shared data structure at an offset
corresponding  to its node identifier. MEMORY
CHANNEL ordering rules guarantee that the write
order to the data structurec—including the update of

the copy local to the node that is setting the lock—
is the same for all nodes. The node can then determine
if it was the only bidder for the lock, in which case
the node has won the lock. If the node sees multiple
bidders for the same lock, it resorts to an operating
system—specific back-oft-and-retry algorithm. Thanks
to the MEMORY CHANNEL guaranteed packet order-
ing, even under error the above mechanism ensures
that at most one node in the cluster perceives that
it was the first to write the lock data structure. To
guarantee that data structures are never locked indefi-
nitely by a node that is removed from a cluster, the
cluster manager software also monitors lock acquisi-
tion and release.

The MEMORY CHANNEL network supports a
strong-consistency shared-memory model due to its
strict packet ordering. In addition, the 1/0 operations
used to access the MEMORY CHANNEL are fully
integrated within the node’s cache coherency scheme.
Besides greatly simplifying the programming model,
such consistency allows for an implementation of
spinlocks that does not saturate the memory system.
For instance, while a recciver is polling for a flag
that signals the arrival of data from the MEMORY
CHANNEL network, the node processor accesses only
the locally cached copy of the flag, which will be
updated whenever the corresponding main memory
location is written by a MEMORY CHANNEL packet.

Unlike other networks, the MEMORY CHANNEL
hardware maintains information on which nodes are
currently part of the cluster. Through a collection of
timeouts, the MEMORY CHANNEL hardware con-
tinuously monitors all nodes in the cluster for illegal
behavior. When a failure is detected, the node is iso-
lated from the cluster and recovery software is
invoked. A MEMORY CHANNEL cluster is equipped
with software capable of reconfiguration when a node
is added or removed from the cluster. The node is
simply brought on-line or off-line, the event is broad-
cast to all other nodes, and operation continues. To
provide tolerance to network failures, the cluster can
be equipped with a pair of topologically identical
MEMORY CHANNEL networks, one for normal oper-
ation and the other for failover. That is, when
a nonrecoverable error is detected on the active
MEMORY CHANNEL network, the software switches
over to the standby network, in a manner transparent
to the application."

The First-generation MEMORY CHANNEL Network

The first generaton of the MEMORY CHANNEL
network consists of a node interface card and a con-
centrator or hub. The interface card, called an adapter,
plugs into the 1/0 PCL. To send a packet, the CPU

Digiral Technical Journal Vol.9 No.1 1997

31




writes to the portion of /0 space mapped to the PCI
bus. The store-to-memory is handled by the node’s
PCI interface device, which initiates a PCI transfer tar-
geting the MEMORY CHANNEL adapter transmit
window. When a message is received, the MEMORY
CHANNEL adapter initiates a PCI transfer to write to
the node’s CPU memory, targeting the node’s PCI
interface, which then accesses the node’s main memory.

Besides writing to the node’s CPU, an I/0 device
on the PCI bus can transmit directly to a MEMORY
CHANNEL adapter. This allows, for example, a disk
controller to transfer data directly from the disk to a
remote node’s memory. The data transfer does not
affect the host system’s memory bus. The design
choice of interfacing MEMORY CHANNEL to the
PCI bus instead of directly to the node CPU bus is
not an architectural one, but rather one of practical-
ity and universality. The PCI is available on most of
today’s systems of varying performance and size and
is, therefore, an ideal interface point that allows
hybrid clusters to be built. The obvious disadvan-
tages of a peripheral interface bus are the additional
latency incurred because of the extra CPU-to-PCI
hop and a possible limitation on the available bus
bandwidth.

The MEMORY CHANNEL 1 hub is a broadcast-
only shared bus capable of interconnecting up to
cight nodes. The MEMORY Channel 1 adapters and
the hub are interconnected in a star topology via
37-bit-wide (32 bits of data plus sideband signals)
half-duplex channels. The cables can be up to 4 meters
long, and the signaling level is 5-volt TTL. A two-
node cluster can be formed without employing a hub,
by direct node-to-node interconnection. This config-
uration is also known as virtual hub configuration.

The current release of the MEMORY CHANNEL 1
hardwarc achieves a sustained point-to-point band-
width of 66 megabytes per second (MB/s) (from user
process to user process). Maximum sustained broad-
cast bandwidth is also 66 MB/s (from a user process
to many user processes). The cross-section MEMORY
CHANNEL 1 hub bandwidth is 77 MB/s. Small
message latency is 2.9 microseconds (us) (from a
sender process STORE instruction to a message
LOAD by a receiver process). The processor overhead
is less than 150 nanoseconds (ns) for a 32-byte packet
(which is also the largest packet size).

As demonstrated in the literature, standard message-
passing application programming interfaces (APIs)
benefit greatly from these MEMORY CHANNEL
communication capabilities.'>""* MPI, PVM, and HPF
on MEMORY CHANNEL 1 all have one-way message
latencies of less than 10 ps. These latency numbers
are more than a factor of five lower than those for
traditional MPP architectures (52 to 190 us).M

Digital Technical Journal Vol.9 No.1 1997

Communication performance improvements of this
magnitude translate into cluster performance gains
of 25 to 500 percent."”

MEMORY CHANNEL 2 Architecture

Based on the experience with the first-generaton
product, the design goals for MEMORY CHANNEL 2
were twofold: (1) vield a significant performance
improvement over MEMORY CHANNEL 1, and (2)
provide functional enhancements to extend hardware
support to new operating systems and programming
paradigms.

The MEMORY CHANNEL 2 performance/hard-
ware enhancement goals were

= Nerwork biscction bandwidth scalable with the
number of nodes: 1,000 MB /s tor an 8-node clus-
ter and 2,000 MB /s for a 16-node cluster

s Improved point-to-point bandwidth, exploiting
the maximum capability of the 32-bit PCI bus:
97 MB/s for 32-byte packets and 127 MB/s
for 256-byte packets

= Full-duplex channels to allow simultaneous bidirec-
tional transfers

= Maximum copper cable length of 10 meters
(increased from 4 meters on MEMORY CHANNEL
1) and fiber support up to 3 kilometers

= A link layer communication protocol compatible
with future generations of MEMORY CHANNEL
hardware and optical fiber interconnections

» Enhanced degree of error detection

The MEMORY CHANNEL 2 functional /software
enhancement goals were

= Softwarec compatible with the first-gencration
MEMORY CHANNEL hardware

= Receive-side address remapping and variable page
size to berter support new operating systems, such
as Windows NT, and non-Alpha microprocessors

= Remote read capabilitics

= Global time synchronization mechanism

»  Conditional write access to support a faster recover-
able messaging

These two sets of requirements translate into archi-
tectural and technological constraints that define the
MEMORY CHANNEL 2 design space. To increase the
biscction bandwidth, the hub had to implement an
architecture that supported concurrent transfers. On
MEMORY CHANNEL 1, all senders must arbitrate
for the same hub resource (the bus) on every data
transfer. Every data transmission occupies the entire
MEMORY CHANNEL 1 hub for the duration of its



transter, and all message filtering is performed by the
receivers. Substantial network trafhic causes conges-
ton because all sender nodes fight for the same
resource. This congestion results in a decrease in the
communication speed and thus an increase in the
eftective q-ratio as seen by the applications.

On MEMORY CHANNEL 2, the hub has been
designed as an M-by-~Nnonblocking tull-duplex cross-
bar with broadcast capabilitics, with N =8 or N = 16.
Such an architecture provides a bisection bandwidth
that scales with the number of nodes and thus remains
matched to the point-to-point bandwidth of the indi-
vidual channels while avoiding congestion among
independent communication paths. Therefore, an
increase in nenwork waffic will have lictle effect on the
eftective g-ratio.

The MEMORY CHANNEL ordering rules are casily
met on a crossbar of this type, as tollows:

1. The single-sender ordering rule is naturally obeyed
by the fact that the architecture provides a single
path from any source to any destination.

2. The multisender ordering rule is enforced by taking
over all the crossbar routing resources during
broadcast. Although less cfficient than broadcast
by packet replication, this technique ensures a strict
common ordering for all destinations.

Finally, crossbar switches are practical to implement
tor a modest number of nodes (8 to 32), but given
the availability of medium-size SMPs, they provide a
satisfactory degree ot scaling for the great majority of
practical clustering applications. For instance, cluster
technology can casily provide a 1,000-processor
systen simply by connecting 32 nodcs, cach one a
32-way SMP.

The requirement for a higher point-to-point band-
width called for a shift from half-duplex to full-duplex
links. A longer cable length imposed the choice of a
signaling technique other than the TTL employed in
the MEMORY CHANNEL 1 network. The design
adopted  low-voltage  differental  signaling
(LVDS)* as the signaling technique for the sccond and
furure generations of the MEMORY CHANNEL
network on copper. One of the major decisions that
faced the team was whether to maintain the parallel
channel of MEMORY CHANNEL 1 or to adopt a ser-
ial channel to minimize skew transmission problems
for large communication distances. The bandwidth
demands of future cluster nodes indicated that serial
links would not provide sufticient bandwidth cxpan-
sion capabilities at reasonable cost. Thus, the channel
dara parh width was chosen to be 16 bits, a suitable
compromisc that would offer a manageable channel-
to-channcl skew while providing the required band-
wideh. Figure 3 illustrates the distinctions berween the
first- and second-generation MEMORY CHANNEL
architectures.

rcam

MEMORY CHANNEL 2 Link Protocol

The MEMORY CHANNEL 2 conumunication proto-
col was engincered with the goal of ensuring compati-
bility with optical tiber’s unidirectional medium. The
Interconnection substrare consists of a pair of unidirec-
rional channels, one mcoming and onc outgoing,.
Each channel consists ot a 16-bit dara path, a framing
signal, and a clock. The channel carrics two tvpes of
packets: data and control. Data packets varv in size and
carry application data. Control packets are used to
exchange flow control, port state, and global clock
imformation. Control packets take priority over dara
packers. Thev are inserted immediately when flow
control state change is needed and, otherwise, arc
generated on a regular interval (millisecond) to update
ess time-critical state. The MEMORY CHANNEL 2
data packet formart is shown in Figure 4a. The header
of the dara packet conrains a packet tvpe (TP), a
destination identifier (DNID), a remote command
(CMD), and a sender identifier (SID). The dara pav-
load starts with the destination address and can vary
in lengeh from 4 to 256 bytes (two to one hundred
twentv-cight 16-bit cvcles). It is followed by two
16-bit cycles of Reed-Solomon error detection code.

The control packet tormat is shown in Figurc 4b.
The packet is identitied by a distinet TP and carrics
network and flow control information such as port
status (PSTAT), configuration (CFG), DNID, hub
status, and global status.

Similar to MEMORY CHANNEL 1, MEMORY
CHANNEL 2 uscs a clock-forwarding technique in
which the transmit clock is sent along with the data
and is usced at the receiver to recover the data. Dara is
transmitted on both edges of the forwarded clock, and
a novel dynamic retiming technique is used to svn-
chronize the incoming packets to the nodce’s local
clock. The retiming circuit locks onto a good sample
of the incoming dara at the start of every packer and
ensures accurate synchronization for the packet dura-
rion, as long as predetined conditions on maximum
packet size and clock drifts are maintained.

The MEMORY CHANNEL 2 link protocol has
an embedded autoconfiguration mechanism that is
invoked whenever a node goes on-line. The hub port
and the adapter use this autoconfiguration mechanism
to negotiate the mode of operation (link frequency,
data path width, etc.). The same mechanism allows a
rwo-node hubless system (a virrual hub configuration)
to consistently assign node identitiers withoutr any
operator intervention or module jumpers.

MEMORY CHANNEL 2 Enhanced Software Support
MEMORY CHANNEL 2 provides four major addi-
tions to application and opcrating svstem support:
(1) receive-side address remapping, (2) remote reads,
(3) a global clock svnchronization mechanism, and
(4) conditional writes.

Digital Technical Journal Vol.9 No. 1 1997

(o8]

(8]



</ \>

(a) MEMORY CHANNEL 1 Nerwork

HUB

>

8-BY-8 CROSSBAR

Il

il
!

(b) MEMORY CHANNEL 2 Network

Il

L

il

Characteristics MEMORY CHANNEL 1 MEMORY CHANNEL 2
Channel data path width 37 bits 16 bits

Channel communication Half duplex Full duplex

Electrical signaling TTL LVDS

Optical fiber compatible No Yes

Link operating frequency 33 MHz 66 MHz

Peak raw data transfer rate 133 MB/s 133 + 133 MB/s
Sustained point-to-point bandwidth 66 MB/s 100 MB/s

Maximum packet size 32 bytes 256 bytes

Remote read support No Yes

Packet error detection Horizontal and vertical parity 32-bit Reed-Solomon
Address space remapping None Receive

Supported page sizes 8 KB 4 KB and 8 KB

Hub architecture Shared bus Crossbar

Network bisection bandwidth 77 MB/s 800 to 1,600 MB/s

Figure 3

Comparison of First- and Second-generation MEMORY CHANNEL Architectures

DND | TP
cmp | sip
ADDRESS
ADDRESS
PSTAT | TP
_ HEADER
PAYLOAD CFG | DNID
HUB
DATA STATUS CONTROL
RMATION
(4 TO 256 BYTES) | __GLoBAL __ f| INFORMATIO
STATUS
ERROR ERROR ERROR ERROR
———————————— DETECTION - -\ DETECTION
DETECTION CODE DETECTION CODE

(a) Data Packet (b) Control Packet

Figure 4
MEMORY CHANNEL 2 Packet Format

34 Digital Technical Journal Vol.9 No.l 1997



On MEMORY CHANNEL 1 clusters, the network
address is mapped to a local page of physical memory
using remapping resources contained in the system’s
PCI-to-host memory bridge. All AlphaScrver systems
implement these remapping resources. Other sys-
rems, particularly those with 32-bit addresses, do not
implement this PCI-to-host memory remapping
resource. On MEMORY CHANNEL 2, software has
the option to enable remapping in the recetver side
of the MEMORY CHANNEL 2 adapter on a per-
nctwork-page basis. When configured for remapping,
asection of the PCT is used to store the upper address
bits needed to map any network page to any 32-bit
address on the PCI bus. Such enhanced mapping
capability will also be used to support remote access
to PCI peripherals across the MEMORY CHANNEL
network.

A simple remote read primitive was added to
MEMORY CHANNEL 2 to support research into
software-assisted  shared memory. The primitive
allows a node to complete a read request to another
node without software intervention. It is imple-
mented by a new remote read—on=write attribute in
the receive page control table. The requesting node
generates a write with the appropriate remote address
(a rcad-request write). When the packet arrives at the
receiver, its address maps in the PCT to a page marked
as remote rcad. After remapping (if enabled), the
address is converted to a PCT read command. The
read datais rerurned asa MEMORY CHANNEL write
to the same address as the original read-request write.
Since read access to a page of memory in a remote
node is provided by a unique network address, privi-
leges to write or read cluster memory remain com-
pletely independent.

A global cdJock mechanism has been introduced to
provide support ftor clusterwide synchronization.
Global clocks, which are highly accurate, are extremely
uscful in many distributed applications, such as parallel
databascs or distributed debugging. The MEMORY
CHANNEL 2 hub implements this global clock by
periodically sending synchronization packets to all
nodes in the cluster. The reception of such a pulsc
can be made to trigger an interrupt or, on furure
MEMORY CHANNEL-to—CPU direct-interface sys-
rems, may be used to update a local counter. The
interrupt service software updates the offset between
the local time and the global tme. This synchroniza-
tion mechanism allows a unique clusterwide time to
be maintained with an accuracy cqual to twice the
range (max — min) of the MEMORY CHANNEL net-
work latency, plus the interrupt service routine time.

Conditional write transactions have been intro-
duced in MEMORY CHANNEL 2 to improve the speed
of a recoverable messaging system. On MEMORY

CHANNEL 1, the simplest implementation of general-
purpose recoverable messaging requires a round-trip
acknowledge delay to validate the message transter,
which adds to the communication latency. The
MEMORY CHANNEL 2’s newly introduced condi-
tional write transaction provides a more efficient
implementation that requires a single acknowledge
packet, thus practically reducing the associated latency
by more than a factor of two.

Memory Channel 2 Hardware

As suggested in the previous architectural description,
MEMORY CHANNEL 2 hardware components arc
similar to those in MEMORY CHANNEL 1, namely
a PCI adapter card (onc per node), a cable, and a
central hub.

The MEMORY CHANNEL 2 PCl Adapter Card  The PCI
adapter card is the hardware interface of a node to the
MEMORY CHANNEL network. A block diagram of
the adapter is shown in Figure 5. The adaprer card is
functionally partitioned into two subsystems: the PCI
interface and the link interface. First in, first out (FIFO)
queues are placed berween the two subsystems. The
PCI interface communicates with the host system,
feeds the link interface with data packets to be sent, and
forwards received packets on to the PCI bus. The link
interface manages the link protocol and data flow: It
formats data packets, gencerates control packets, and
handles error code generation and detection. It also
multiplexes the data path from the PCI format (32 bits
at 33 megahertz [MHz]) to the link protocol (16 bits
at 66 MHz). In addition, the link interface implements
the conversion to and from LVDS signaling.

The transmit (TX) and receive (RX) data paths,
both heavily pipelined, are kept completely separate
from cach other, and there is no resource conflict
other than the PCI bus access. A special case occurs
when a packet is received with the acknowledge
request bit or the loopback bit set: the paths in both
dircctions are coordinated to transmit back the
response packet while still receiving the original one
(employing the gray path in Figure 5). During a nor-
mal MEMORY CHANNEL 2 transaction, the transmit
pipeline processes a transmit request from the PCI
bus. The transmit PCT is addressed with a subset of
the PCL address bits and is used to determine the
intended destination of the packet and its attribuecs.
The transmit pipeline feeds the link interface with data
packets and appropriate commands through the trans-
mit FIFO queue. The link intertace formats the pack-
ets and sends them on the link cable. Ar the receiver,
the link interface disassembles the packet in an inter-
mediate format and stores it into the receive FIFO
queue. The PCI interface performs a lookup in the

Digital Technical Journal Vol.9 No.1 1997

[95)

wu



T PCI T AL
-] H- -
| conTROL conTroL | X PCTH
A
MEMORY } | | o ___
CHANNEL 2 | LINK INTERFACE
REGISTERS TX FIFO
PC! r . 3| PACKET 32,
BUS } F o
i ! @ ™| FORMATTER
<«————»| TRANSCEIVER | :
32 | PackET 32 |
‘_ “ 77| EXTRACTOR I
J‘ I RX FIFO : |
[ ] | CLOCK '
A Sim— | RECOVERY |
\l CONTROL | Hy e 4

Figure 5
Block Diagram of a MEMORY CHANNEL 2 Adaprer

receiver PCT to ensure that the page has been enabled
for reception and to determine the local destinaton
address.

I the simplest implementation, packets are subject
to two store-and-forward delavs—onc on the ransmit
path and once on the reccive path. Because of the
atomicity of packets, the transmir path must wait for
the last data word to be correctly taken in from the
PCI bus before torwarding the packer to the link inter-
face. The receive path experiences a delav because the
crror detection protocol requires the checking ot rhe
last cvele betore the packer can be declared error-free.
A scrof control /status MEMORY CHANNEL 2 regis-
ters, addressable through the PCL, is used to ser vari-
ous modes of operation and to read local starus of the
link and global cluster status.
The MEMORY CHANNEL 2 Hub ~ The hub is the cen-
rral resource that interconnects all nodes to - form
a custer. Figure 6 15 a block diagram of an 8-by-8
MEMORY CHANNEL 2 hub. The hub implements
a nonblocking 8-by-8 crossbar and aterfaces o cight
16-bit-wide tull-duplex links by means ot a link inter-
face similar to that used in rhe adaprer, The actual
crossbar has eight input ports and cight output ports,
all 16 bits wide. Each output port has an 8-to-1 multi-
plexer, which is able to choose from one of cight input
ports. Each multiplexer is controlled by a local arbiter,
which is fed decoded destination requests from the
cight input ports. The port arbitration is based on a
fixed-priority, request-sampling algorithm. All requests
that arive within a sampling interval are considered of
cqual age and are serviced before any nesw requests.
This algorithm, while not enforcing absolute arrival-
time ordering among packers sent from difterent

Digital ‘Techniea) Journal Vol.9 No. 1 1997

nodes, assures no starvation and a fair age-driven priog-
1ty across sampling mtervals.

When a broadcast request arrives at the hub, the
otherwise independent arbiters synchronize them-
selves to transter the broadcast packer. The arbirers
walt for the completion of the packer currently being
rransterred, disable point-to-point arbitration, signal
that they are ready for broadeast, and then wait for all
other ports to arrive at the same synchronization
point. Once all output ports are ready for broadcast,
port 0 proceeds to read from the appropriate input
port, and all other ports (including port 0) sclect the
same inpur source. The maximum synchronization
wait tme, assuming no output queue blocking, is equal
ro the me it rakes ro transfer the largest size packets
(256 bvtes), abour 4 ps, and 1s independent of the
number of ports. As in anv crossbar architecture with
a single point of coherency, such broadcast operation
is more costlv than a point-to-point transfer. Our
experience has been that some critical but refatively
low-frequency operations (primarily fast locks) exploit
the broadcast circuir.

MEMORY CHANNEL 2 Design Process and Physical
Implementation
Figure 7 illustrates the main MEMORY CHANNEL
physical components. As shown in Figure 7a, two-nodce
clusters can be construcred by directly connecting two
MEMORY CHANNEIL PCI adapters and a cable. This
configuration is called the virtual hub configuration.
Figurc 7b shows clusters interconnected by means of
a hub.

The MEMORY CHANNEL adapter is implemented
as a single PCI card. The hub consists of a mother-



ARBITER O

< IN/OUT LINK |
PORT 0
__»| INTERFACE O ,\\
INO 18 —J-———| ] outo
- -—
[ ———
- 16
e —
“
< IN/OUT LINK
PORT 1 —»| INTERFACE 1 \
IN 1 16 B B ouT 1
-—
- 16
—d——
1
ARBITER 1
—
—————>| | out7
—_—
16
NP I——
| INOUT LINK
PORT 7
«—| INTERFACE 7 |«
ARBITER 7

Figure 6

Block Diagram of an 8-bv-8 MEMORY CHANNEL 2 Hub

board that holds the switch and a sct of linccards, onc
per port, that provides the interface to the link cable.

The adapter and hub implementations use a com-
bination of progranumable logic devices and off-the-
shelt components. This design was preferred to an
application-specitic integrared circuir (ASIC) imple-

requirements. In addition, some of the new function-
alitv will evolve as sofnware 1s modified to rake advan-
tage of the new features. The MEMORY CHANNEL 2
design was developed entirelv in Verilog at the regis-
ter transfer Tevel (RTL). Tr was simulated using the
Viewlogic VCS cvent-driven simulator and svnthe-

mentation  because  of the short  time-to-market sized with the Svnopsvs rool. The resulting netlist
PCI - MEMORY MEMORY
PCI - MEMORY ADAPTER 2 HUB
CHANNEL
PCI - MEMORY ADAPTER 1
CHANNEL
ADAPTER 1

PCI - MEMORY
CHANNEL
ADAPTER 2

(a) Virtual hub mode: dircer node-to-node
interconnection of two PCT adaprer cards

PCI - MEMORY
CHANNEL
ADAPTER 8

(b) Using the MEMORY CHANNEL hub

to create clusters of up to 16 nodes

Figure 7
MEMORY CHANNEL Hardware Components

Digital Technical Journal Vol 9 Noo 1l 1997

(o83

~J



was ted through the appropriate vendor tools for
placing and routing to the specitic deviees. Oncee the
device was routed, the vendor tools provided a gate-
level Verllog netlist with tming information, which
was then simulated to verify the correctness of the
svithesized design. Boardwide static timing analysis
was run using the Viewlogic MOTIVE tool. The link
interface was fitted to a single Lucent Technologies
Optimized Reconfigurable Cell Array (ORCA) Series
ficld-programmable gare array (FPGA) device. The
PCI interface was implemented with one ORCA
FPGA device and several high-speed AMD program-
mable array logic devices (PALs). Thanks to the in-
svstem programmability of PALs and FPGAs, the
MEMORY CHANNEL 2 adaprer board is designed
to be completely reprogrammable iy the fiedd from
the svstem console through the PCHinterface.

MEMORY CHANNEL 2 Performance

This scction presents MEMORY CHANNEL 2 perfor-
mance dara configured in virtual hub mode (direct
node-to-node connection). Wherever possible actual
measured  results  are  presented. A two-node
AlphaServer 4100 5,/300 cluster was used for all hard-

WAre Mecasurcments.

Network Throughput

The MEMORY CHANNEL 2 nenwork has a raw dara
ratc of 2 bytes every 15 ns or 133.3 MB /s, Messages are
packerized by the interface into one or more MEMORY
CHANNEL packets. Packers with data pavloads of 4 to
256 bytes arce supported. Figure 8 compares, for various

140}
MEMORY CHANNEL 2 NETWORK
5 120} SUSTAINABLE BANDWIDTH
g \
E3 100}
24
2
o sof
za
o8 60
s
< 2 0 ALPHASERVER 4100
3 MEMORY CHANNEL 2 CLUSTER
2= PROCESS-TO-PROCESS BANDWIDTH
= 20
O 1L 1 1 1 1
4 8 16 32 64 128 256
MESSAGE SIZE (BYTES)
Figure 8

MEMORY CHANNEL 2 Point-ro-point Bandwidth
as a Function of Packet Size, Comparing Nenwork
Theoretical Limit and Sustained Process-to-process
Measured Performance

Digital Technical Journal Vol.9 No. 1o 1997

packet sizes, the maximum bandwidth the MEMORY
CHANNEL 2 neowork is capable of sustaining with the
effective process-to-process bandwidth achieved using a
pair of AlphaScryver 4100 svstems. With 256-bvte pack-
cts, MEMORY CHANNEIL 2 achieves 127 MB/s or
aboutr 96 pereent of the raw wire bandwideh.

For PClwrites of Jess than or equal to 256 bytes, the
MEMORY CHANNEL 2 interface simply converts the
PCI write to a similar-sizec MEMORY CHANNEL
packet. The current design does not aggregate multi-
ple PCI write transactions mto a single MEMORY
CHANNEL packerand auromatically breaks PCI writes
larger than 256 byvtes into a sequence of 256-bvte
packets.

As Figure 8 shows, the bandwidth capabiline of the
MEMORY CHANNEL 2 network exceeds the sustain-
able data rate of the AlphaServer 4100 svstem. The
AlphaServer system is capable of generating 32-bvre
packets to the MEMORY CHANNEL 2 interface at
88 MB /s or about 10 percent less than the maximum
network bandwideh at a 32-byte packet size. This rep-
resents a 33 percent bandwidth improvement over the
previous-generation MEMORY CHANNEL, whose
ceffective bandwidth was 66 MB/s. An ideal PCI host
interface would achieve the tull 97 MB/s, but the
current AlphaServer 4100 design inserts an extra PCI
stall cvele on sustained 32-byvre writes to the PCIL The
32-byvte packet size is a limitation of the Alpha 21164
microprocessor; future versions of the Alpha micro-
processor will be able to gencerate larger writes to the
PCI bus.

Latency
Figure 9 shows the lateney contributions along a
point-to-point path from a sending process on node
1 to a recciving process on node 2. Using a simple
8-bvte ping-pong test, we determined that the one-
way latency of this path is 2.17 ws. In the test, a user
process on node 1 sends an 8-byte message to node 2.
Node 2 is polling its memory waiting for the message.
After node 2 sees the message, it sends a similar mes
sage back to node 1. (Node 1 started polling its mem-
orv after it sent the previous message.) One-way
Jateney is caleulared by dividing by nwo the time it takes
to complete a ping-pong exchange. Approximately
330 ns clapse from the time a sending processor issucs
a store instruction until the store propagates to the
sender’s PCL bus. The latency from the sender’s PCI to
the receiver’s PCI over the MEMORY CHANNEL 2
network is abour 1.1 ps. Writing the main memory on
the receiver node takes an additional 330 ns. Finally,
the poll loop takes an average of about 400 ns to read
the flag value from memory.

Table 2 shows the process-to-process onc-way
message latency for different tpes of communications



r
NODE 1 (SENDER)

| |
| |
| | Processor |
| MAIN |
WRITE MEMORY
| BUFFER |
[ : |
| i |
< 5 > |
| || cpusus |
|Gy |
| | HOST |
| | BRIDGE ]
| - TOPCI :
| ' i |
| PCIBUS ¥ .|
| ——— [ .
| |
| S [
MEMORY
| CHANNEL
| ADAPTER 1,100 ns
|

r
NODE 2 (RECEIVER)

| |
| |
l |
MAIN
: PROCESSOR MEMORY :
| g |
f : |
| : |
' ............................ |
| : CPUBUS f : |
' &)
| HOST | |
I BRIDGE : |
I TO PCI |
| T |
[ . PCIBUS |
e
[T : |
MEMORY |
| CHANNEL
| ADAPTER
| |

Figure 9

Latency Contributions along the Path from a Sender to a Receiver

at a fixed 8-byre message size. The first row contains
the result of the ping-pong experiment previously
described. For comparison, the previous generation
of MEMORY CHANNEL had a ping-pong latency of
2.60 ps. The second row represents the latency for the
simplest implementation of variable-length messaging.
The latencies of standard communication interfaces are
shown in the last two rows, namely, High Performance
Fortran and Message Passing Interface. The results
shown in this table are only berween two and three
times slower than the latencies measured for the same
communication interfaces over the SMP bus of the
AlphaScrver 4100 svstem.

Table 2

MEMORY CHANNEL 2 One-way Message Latency
in Virtual Hub Mode for Different Communication
Interfaces

One-way Message Latency

Communication Type (Microseconds)
Ping-pong 8-byte message 2.17
8-byte message plus 8-byte flag 2.60
HPF 8-byte message 5.10
MPI 8-byte message 6.40

The latency of the MEMORY CHANNEL 2 network
increases with the size of the message because of the
presence of storc-and-forward delays in the path. As
discussed in the previous hardware description, all
packets are subject to two store-and-torward delavs,
one on the outgoing buffer and one on the incoming
buffer (required for crror checking). These delavs also
play a role in the cffective bandwidth of a stream of
packets. On the once hand, smaller packets are less effi-
cient than larger ones in term of overhead. On the
other hand, smaller packets incur a shorter store-and-
forward delay per packet, which can then be over-
lapped with the transfer of previous packets on the
link, making the overall ranster more cetficient. The
hub performs cut-through packet routing with an
additional delay ofabout 0.5 ws.

Summary and Future Work

This paper presents an overview of the second-
generaton MEMORY CHANNEL nctwork, MEMORY
CHANNEL 2. The rationale behind the major design
decisions are discussed in light of the experience
gained from MEMORY CHANNEI 1. A description
of the MEMORY CHANNEL 2 hardwarce components
led to the presentation of measured performance results.

Digiral Technical Journal Vol.9 No.1 1997



Compared to other more traditional interconnection
nerworks, MEMORY CHANNEL 1 provides unparal-
leled performance in terms of laceney and bandwidth,
MEMORY CHANNLEL 2 further enhances perfor-
mance by providing point-to-point bandwideh of 97
M3B /s per second for 32-byvte packets, an application-
to-application latency of less than 2.2 microscconds,
and a cross-section bandwidth of [,000 MB /s for 8
nodes and 2,000 MB/s for 16 nodes. It also provides
enhanced software support to improve the performance
of the most common operations in a cluster environ-
ment, ¢.g., global synchronization, and reduces the
complexity of the software laver by providing a more
flexible address mapping. In addition, the MEMORY
CHANNEL 2 nerwvork has been designed to be both
hardware and software compatible with tuture genera-
tions on cither copper or Aber-optic communication up
toa distance of 3 kilometers. Future generations of the
MEMORY CHANNEL architecture will benefit from the
MEMORY CHANNEL 2 experience and will continue
to provide enhancements to communicarion perfor-
mance and to further refine those mechanisms mntro-
duced to support parallel cluster sofnware.

Acknowledgments

Manyv thanks to Ed Benson tor providing the derailed
message-passing performance data contained in this
paper. DIGITAL’s MEMORY CHANNEL 2 tcam
designed and implemented the second-generation
MEMORY CHANNLEL Wavne
Borrman, Robert Dickson, Marco Fillo, Richard
Gillerr, John Grooms, Michacl McNamara, Jonathan
Mooty, and Dave Pimm  were the MEMORY
CHANNEL 2 designers. Dale Keck, Edward Tulloch,
and Ron Carn were responsible for the design verifica-
tion. Brian McQuain was responsible tor the printed
cireuit board lavourts. Steve Campbell was the mechan-

svstem described.

wal engineer on the hub enclosure. Special thanks go
to John Grooms and Michacl McNamara for their
constructive comments and tor proofreading the
manuscript. The authors also thank the anonymous
referces for their comments and suggestions, which
considerably improved this paper.

References and Notes
Lo G Phister, [ Seareh of Clusters: The Conting Bellle

in Lowly Parallel Compuiting (Lnglewood  Clifts,
N.J.: Prendice Hall, 1995).

2. ML Fillo, “Architectural Support for Scientitic Applica-
tions on Multcomputers,™ Series in Microclectron-
ics. vol. 27 (Konstanz, Germanmv: Hartung-Gorre
Verlag, 1993,

3. D, Deresekas and . Tsicsiklis, Pevicillel cnied 1istrib-

ied Comiprtation: Numerical Methods (Englewood
ClIifts, N Prentice Hall, 1989).

Digital Technical Journal Vol.9 No. 1 1997

4.

10.

12.

13.

14.

J. Harris cral., “Compiling High Performance Fortran
for Distributed-memory Svstems,™ Digital Techiical

Journal vol. 7 no. 3(19935): 5-23.

R. Kauvfimann and 1. Reddin, “Digital’s Clusters and
Scientific Parallel Applications,”  Proceedings  of
COMPCON 90, San Josce, Calif. (February 1996).

M. Amnararone, C. Pommerell, and R. Ruchl, “Inter-
processor Communication Speed and Performance in
Distribured-Memory Parallel Processors,” 72roceed-
ings of the 10th International Symposiiim on Coin-
puiter Architectiore, Jerusalem, Isracl (Mav 1989).

C. Pommerell, M. Annaratone, and W. Fichtner, “A Ser
of New Mapping and Coloring Heuristics tor Distrib-
uted Memory Parallel Processors,” SLAM Jowrnal on
Scientific aid Statistical Compiiting ( January 19927,

S. Borkar ¢t al,, “Supporting Svstolic and Mcemory
Communication in iWarp,™ Proceedings of the 17th
Inierncational Svimpositan on Compitter Architec-
frre. Seattle, Wash, (Mav 1990).

M. Fillo ¢t al., “The M-Machine Multicompurer,”
Proceedings of the XNVIT Symposion on Micro-
architectitre, Ann Arbor, Mich. (1995,

J. Dongarra, “Performance of Various Compurters Using
Standard Lincar Equation Software,” Technical Report
CS-89-85 (Knoxville, Tenn.: University of Tennessee,
Computer Science Department, December 19, 1996).

H. Cassanova, ], Dongarra, and W. Jiang, “The Per-
formance of PV on MPP Systems,” Technical Report
U1-CS-95-301 (Knoxville, Tenn: University of Ten-
nessee, Compurer Science Department, 1993).

R. Gillerr and R. Kaufimann, “Experience Using the
First Generation Memory Channel for PCI Newwork,”
Proceedings of the 4th Hot Interconnects Conference
(1996): 205-214.

R. Martin cral., “Effeets of Communication Latency,
Overbhead, and Bandwideh in a Cluster Architecture,”
Proceedings of the 250 Dnternational Symposini
on Compuiter Architectiire (Mav 19971 85-97.

T.von Eicken, D. Culler, S, Goldstem, and X. Schauser,
“Active Muessages: A Mechanism for Integrated Com-
munication and Computation,” Proceedings of the
1Oth Taternationel Symposiiin on Compulter Archi-
fectiere. Gold Coast, Australia (Mav 1992): 256-266.

K. Keerton, T, Anderson, and D, Patterson, “LogP
Quantificd: The Case for Low-Overhead Local Arca
Neoworks,™ Proceedings of Hot Interconnects 1l 4
Symposivne an Hieh Pevformcance Interconiects.,
Stanford, Calif. {August 1995). Also available at
hrep://heep.cs.berkelev.edu /~kkeeron /Papers /paper.
hom!.

R. Gillerr, *Nemory Channel Neowork for PCL™ 7EEL
Micro(February 19963 12-18.

J. Brosnan, J. Lawton, and T. Reddin, “A High
Pertormance PV for Alpha Clusters,™ Secondd Liro-
peconn PUVM Conference (1995).



18. W. Gropp and E. Lusk, “The MPL Communication
Library: Its Design and a Portable Implemenration,”
htep://www.mes.anl.gov /Papers /Lusk /mississippi,/
paper.hrm! {Argonne, 1l1.: Mathematics and Computer
Science Division, Argonne National Laboratory).

19. W. Cardoza, F. Glover, and W. Snaman, Jr., “Design of
the TruCluster Multicomputer System for the Digiral
UNIX Environment,” Digital Technical Journal, vol.
8,1n0.1(1996): 5-17.

20. Information about the Transaction Processing Pertor-
mance Coundi) (I'PC) is available at herp://www,
pe.org.

21. M. Blumrich et al., “Virrual Memory Mapped Net-
work Interface for the SHRIMP Multicomputer,”
Proceedings of the 21sl nternational Symposium
on Computer Architectitre (April 1994): 142-153.

22, R Gilletr, M. Collins, and D. Pumm, “Overview of
Network Memory Channel tor PCIL? Proceediings of
COMPCON 96, San Jose, Calif. (1996).

23. Information abourt the Scalable Coherent Interface is
available at htrp: //www.SClzzL.com.

24, N. Boden et al,, “Myrinct—A Gigabit-per-Second
Local Area Nerwork.” TEEL Micro, vol. 15, no. 1
(February 1995): 29-36.

[S]
ul

- J Lawron eral,| “Building a High Performance Message
Passing Svstem tor Memory Channel Clusters,” Digital!
Technical Journeal vol. 8§, no. 2 (1996): 96-116.

26. 1EEE Draft Standard for Low Voltage Differential Sig-
nals (LVDS) for Scalable Coherent Interface (SC1).
Draft IEEE P1596.3-1995.

Biographies

Marco Fillo

Marco Fillo is a principal engineer on the MEMORY
CHANNEL 2 tcam in the AlphaServer Engineering
Group. He is responsible for the design of the MEMORY
CHANNEL 2 link protocol and hub. Before joining
DIGITAL in Seprember 1995, Marco held a position as
research assoctare at M.1UT. in the Artificial Intelligence
Laboratory, where he was one of the architects of the
M-Machine, an experimental mualtthreaded parallel com-
puter. Marco obrained a Ph.DD. in clectrical engincering
from the Swiss Institute of Technology, Zurich, in 1993,
He is a member of the IEEE and ACM, and his research
interests are parallel computer architecrures and inter-
Processor communication networks.

Richard B. Gillett

Rick Gillett is a corporate consulting engineer in Digiral
Equipment Corporation’s AlphaServer Engineering
Group, where he designs and develops custom VLST chips,
1/O systems, and SMP systems. As DIGITAL’s parallel
cluster architect, he defined and led the MEMORY
CHANNEL project. He holds 17 patents on inventions in
SMP architectures and high-performance communication
and has patents pending on the MEMORY CHANNEL
for PCI nenwork. His primary interests are high-speed local
and distributed shared-memory architectures. Rick has a
B.S. in electrical engineering from the University of New
Hampshire. He is a member of the IEEE and the [EEE
Computer Society.

Digital Technical Journal Vol.9 No.1 1997

41



42

Integrating ObjectBroker
and DCE Security

The integration of the ObjectBroker software
product with the Distributed Computing
Environment (DCE) Security Service makes
ObjectBroker the most secure object request
broker (ORB) in the industry. ObjectBroker and
DCE Security together allow client-to-server,
server-to-client, and mutual authentication.

The integrated software provides these security
functions, as well as message integrity protec-
tion, transparently to the applications. Integra-
tion has been accomplished in a way that allows
plug-in replacement of the ObjectBroker security
subsystem by DCE Security, Kerberos, or any third-
party software security product that supports
the DCE’s Generic Security Service Application
Programming Interface (GSS-AP!). This approach
supports future GSS-API-compliant third-party
security products based on Kerberos and also prod-
ucts that may address other security technologies
such as biometrics and smart cards. In addition,
the approach places responsibility for compliance
with International Traffic in Arms Regulations in
the hands of the purveyors and owners of GSS
libraries rather than with the ORB vendor. Note
that the ObjectBroker product is middleware
jointly developed and distributed by DIGITAL and
BEA Systems, who have formed a worldwide tech-
nology and distribution partnership.

Vol.9 No.1 1997

Digital Technical Journal

John H. Parodi
Fred W. Burgher

An object request broker (ORB) is a distributed soft-
ware laver that translates abstract service requests
from a client application into requests for specific
servers, regardless of where those servers actually
reside on the network.' In this way, ORBs provide
a middle tier in multitiered client-server systems. The
ObjcctBroker software, developed and distributed
by strategic partners DIGITAL and BEA Svstems, is
an implementation of the Common Object Request
Broker Architecture (CORBA) specitied by the Object
Management Group (OMG).”

Sccurity is a growing concern for those who manage
distribured computing svstems, and the sccurity options
available to the CORBA community have been quite
lmited undl recently. In the past year, OMG has
adopred a specification for a CORBA Security Service,
although few commercially available implementations
exist at the time of this writing.

Outside the CORBA community, one widely accepred
standard for securitv in distributed, heterogeneous
svstems 1s the Generic Sccuriry Service Application
Programming Interface (GSS-AP1), as specified by
The Open Group (which was formed by the merger
of the Open Software Foundation and X/Open
Company Ltd.).” The GSS-API provides the ability for
software entities in a distributed application to authen-
ticate onc another and to protect ongoing communi-
cation between them. The Distributed Computing
Environment (DCE) Security Scrvice provides an
implementation of the GSS-API as one wav to access
1LS SCCUTILY SCIVICES.

Plans arc under wayv to implement the CORBA
Sccurity Service in the ObjectBroker software, but
the implementation specifications were not complete
when ObjectBroker version 2.6 was designed. At
present, by integrating support for GSS-APT imple-
mentations, the ObjectBroker software provides its
customers state-of-the-art distribured system security
with rhe widest choice of sceurity technologies and
products. The first commercially available GSS-API
iuplementation was the Kerberos-based DCE Security
Service itself, but other implementations, which use
avariery of sccuriry rechnologies and are produced by
various independent sottware vendors, are expected to
tollow soon.



Security

Ensuring sccure communication among entities in a
distributed comiputer svstem 1s a challenging task. The
rerm sccurity normally includes three broad classes
of svstem requirements:®

1. Scercey/privacv—the ability to protect information
from unauthorized access

2. Integrity—the ability to protect information from
unauthorized alteration or destruction

3. Availabilicv—the ability to ensure thatr valid access to
information can be accomplished in a timelv manner

Enforcement of a seeurity policy 1s accomplished by
wav of the tollowing sceurity tunctions:

= Authentication—rthe verification ot the identity of a
sceurity principal

= Authorization—the determination of which princi-
pals can perform which actions

s Access control—the entorcement of the sccurity
policy, based on aurhennication and authorization
information, to detcrmine wherher to allow or dis-
allow a particular action

The Distributed Computing Environment

The Open Group’s Distributed Computing Environ-
ment is an integrared, standard sct of technologies,
tools, and services that enables the development and
deploviment of distributed applications in a heteroge-
ncous, multivendor computing environment.” Tvpic-
ally, svstem vendors implement the DCE on their own
plattorms. The DCE has been endorsed by virtually all
svstem vendors; including IBM) HP, DIGITAL, NCR,
Stratus, Crav, HAL, Hirachi, Sicmens Nixdort, NEC,
Dara General, Bull, Tandem, Transarce, SCO, Gradient,
Siemens Pyvramid, and Olivert.

The DCE provides the following six technology

COMPONCNts:

1. Remote Procedure Call (RPC)Y, which facilitates
distributed commumication

2. Direcrory Service, which provides a single naming
model throughout the distributed environment

3. Sccurity Service, which provides reliable authenti-
cation, authorization, and data protection

4. Distributed Time Scervice, which synchronizes the
neowork system clocks

[oal

. Distributed File Service, which provides access to
nerworkwide files

6. Thrcads Service (The DCE usces POSIX threads

where available; on operaring svstems where POSTX

is not available, the DCE supplics a threads package

that provides the same interface as POSIX threads.)

DCE users can be characterized by their need ro
deploy and/or integrate large-scale applications on
multple heterogencous platforms. The most common
reasons given for choosing the DCE arc its security
features, its scalability, and its robustness.

DCE Security provides the following services:

s The DCE Authentication Service allows users and
resources to prove their identity to cach other. This
service is currently based on Kerberos, which requires
that all users and resources possess a secret key.

= The DCE Authorization Service verifies operations
that users may perform on resources. A DCE Registry
contains a list of valid users. An access control list asso-
clated with cach resource determines valid users and
the types of operations a user may perform.

= The DCE Darta Integrity Service protects nerwork
data from tampering. Automatically  generated
cryptographic checksums are appended to network
transmissions, allowing the DCE to determine if
data has been corrupted in transit. The encrypred
checksum is a message authentication code (MAC)
based on the Darta Encryption Standard (DES).

ObjectBroker uses the DCE Authentication and Data
Integrity services.

ObjectBroker Security

Although DCE Security provides three basic levels
of protection (None, Dara Integrity, and Privacy),
ObjectBroker uses only the Data Integrity level.
This level provides a mechanism thar computes an
encrypted, time-stamped checksum and attaches it
to the message so that anv attempt to change or

replav the information can be detected. In addition,
ObjectBroker uses explicit calls to the DCE Securiey
librarv’s GSS-API to accomplish authentication but
maingains its own access control lists and authorization
database and mediates access control itself

Note that within a DCE ccll, it 1s possible to usc the
DCE RPC with the DCE Sccurity Service to protect
communication at the wire protocol level. However,
because ObjectBroker does not use the DCE RPC
wire protocol, its use of the DCE Sccurity Scrvice
is accomplished by means of cexplicit calls by
ObjectBroker to the GSS-API implementation.

ObjectBroker’s use of the DCE Sceurity Service
provides data integrity protection, authentication of
clients to servers and servers to clicnts, and protection
against replay and scquencing artacks. Although
encryption is used to create the digital signatures
that provide these protections at the network Dara
Integrity level, ObjectBroker does not directly sup-
port the capability to encrvpr data, cven on nodes that
have Privacy-level DCE Sccurity Service support.
ObjcctBroker provides no protection from denial of
service attacks cither.

Digiral Technical Journal Vol.9 No. 1 1997

43



44

Of course, a customer’s use of DCE Sceurity is
entirely optional, and the security mechanisin used in
previous versions of the ObjectBroker software is still
supported. With this mechanisim, called trusted secu-
rity, the node/username associated with a request
from a remote node is accepted to be as claimed. For
trusted sccurity, ObjectBroker uses a proxy approach
in which the node /username associated with a remote
request is mapped to a proxy identity on the server’s
system. An access control decision is thus based on
the authorization information for the proxy identity.
The proxy approach to the trusted security mechanism
was necessary because there was no concept of global
identity for a user, that is, an identity known to all
computer nodes in a distributed svstem.

To implement DCE Security on a particular plat-
torm, a Security Integration Architecture accomplishes
the mapping ofa globally understood username (¢.g., a
user or a sccurity principal defined within a DCE cell or
a Kerberos realm) to alogin of a local user on a particu-
lar system. Some implementations of DCE Sccurity and
some systems (for example, the OpenVMS operating
system) use the notion of integrated or global login, in
which a local user login also causes a global uscr login
to be pertormed. For the OpenVMS svstem, the global
realm is the cluster. For the implementation of DCE
Sccurity on the DIGITAL UNIX svstem, the global
realim is the DCE cell.

Because an ObjectBroker contiguration can include
platforms that have no implementation of the DCE,
and because the Security Integration Architecture is
different on every DCE platform, there was no com-
mon mechanism for ObjectBroker to use to imple-
ment an integrated global login across all supported
plattorms. Thus, ObjectBroker is limited by the inte-
grated login capabilities available on other platforms’
implementations of the DCE.

For this rcason, ObjectBroker retains a proxy mech-
anism, even for use by nodes that support the DCE.
For authentication between such nodes, a generic
remote host definition (called SecGlobalName) is
mapped to a local user on the local svstem. Should a

server receive a request that requires authentication
from a clicnt node, the server uses SceGlobalName to
attempt to match the corresponding global principal
name to a local user name.

[n other words, because therc is no common global
identity mechanism, ObjectBroker’s proxy implemen-
tation maps cither a trusted remote uscr or a global
uscr identity to a Jocal system identity to accomplish
a generic mapping between global and local users.
Rather than map multiple host/username pairs to the
local proxy, the ObjectBroker sottware maps a single
SecGlobalName, known to all nodes i the DCE cell,
to that proxv whenever possible.

Digiral Technical Journal Vol.9 No.1 1997

Mechanism for Global Authentication

The DCE Sccurity Service provides the mechanism
tor global identity. The mechanism is based on
Kerberos encryption, which is a private or svmmetric
key scheme (as opposed to a public or asymmetric key
scheme). A private key scheme requires some trusted
third-party node to act as a distribution center for
encryption kevs or credentials. Each node or user has a
key that is known only to the user and the distribution
center. In DCE Sccurity, the distribution center is
known as a privilege server.”

The following is a simplified description of the
encryption key protocol benween the privilege server
and a client. The actual key exchange protocol, which
uses rhree exchanges and conversion kevs, results in a
Privileged Access Certificate (PAC) in the possession
ot a client. The PAC, which is appended to cach request,
contains the authorization information to be com-
pared with the access control information stored with
the application server.

When a client wishes to communicate with a server,
cach must acquire a time-stamped session key for
secure communication. The session kev is protected in
several wavs. The time stamp means that the kev is
only valid for a limited time (the amount of time is
configurable), which protects against brute-force
attempts to break the kevand reuse it. Also, each kevis
host-specific and can onlv be used from the node tor
which it is issued. Finally, the session kev is never sent
over the network in unencrypted form.

For a user to inttiate a DCE_login, the client must
enter its DCE_login password. To register as an initia-
ror and accepror of security contexts, a server uses a
SERVTAB kev file. This file conrains an encrypred key
that permits the server to obrain a set of credentials
similar to those given to a user. These credentials allow
the server to accept sccurity contexts from clients or to
mitiate requests (that is; become a client) to other
servers. The reason for having servers acquire creden-
tials through the SERVTAB mechanisim is that servers
mav be started on demand by the ObjectBroker Agent
(the component that Jocates the appropriate server
to satisfhr a chent request) or by system administrators
who do nor want to be burdened by having to know
a server password.

In cither case, the chient or the server specifies the
principal name to be authenticated. The node sends
the specified principal’s name to the privilege server.
The privilege server rerurns a session key that is
enervpted using the principal’s password or SERVTAB
kev. The DCE run-time software running on the local
svstem decrvpts the session key using the password or
SERVTAB kev. Once rhe client and the server have
decrypred session kevs, they can use the kevs to initiate
sceure communication with each other.



Thus, if a scrver is configured to require authentica-
tion, then before invoking a method on that server,
a client must successfully perform a DCE_login and
obrain the credentials needed to cstablish a security
context with that server. A client may also require
authentication from the server to ensure that some
malicious softwarc is not masquerading as a real server.

Note that the operations for acquiring credentials
are accomplished outside the server executable. The
operations arce performed by the ObjectBroker run-
time software, based on configuration settings in the
ObjectBroker Sceurity Registry. The goal is to avoid
burdening applications with the knowledge of security
mechanisms.

Authentication requirements ¢an apply to the
ObjectBroker Agent as well as to clicnts and servers.
The Agent is in fact a separate security principal,
and one can require client-to-Agent, Agent-to-client,
Agent-to-scrver, and server-to-Agent authentication
in an ObjectBroker configuration—in addition to
authentication between the client and the server. The
client or the server can independently set these modes,
or the ObjectBroker system can require that modes
be set nodewide.

Security Design Issues for ObjectBroker

The security issues associated with the design of
ObjectBroker versions 2.6, 2.7, and 3.0 were primar-
ily those of increasing the sccurity capabilitics and
preserving  upward  compatibility  with  previous
ObjectBroker versions. While compatibility is always
a concern when upgrading software, ObjectBroker’s
requirements in this arca arc particularly stringent
because customers have mission-critical applications
running in very large configurations. In some cases, it
is ditficult or impossible to upgrade all ObjectBroker
nodes at once time, so it must be possible to do a
rolling upgrade that minimizes the disturbance to the
configuration and allows uninterrupred operation
of applications.

The need for dynamic, plug-in replaceability of
the security subsystem was an important issue for two
reasons. First, to provide standards-based solutions to
computing problems, the ObjectBroker design had to
allow the integration of any security product that
implements the GSS-API. The second reason has o do
with export controls.

United States government export regulations specify
that hardware, software, and documentation for cryp-
rographic products may be exported by license only.
Specifically, the Department of State’s International
Traffic in Arms Regulations (22 Code of Federal
Regulations Subchapter M) require that an export
license be obtained from the department before any
cryptographic hardware, software, or documentation is

exported from the United States. An ObjectBroker
design goal was not to encumber the product with
export restrictions. Therefore, ObjectBroker itself docs
not include any cryptographic security mechanism. An
ObjectBroker customer must provide an appropriate
GSS library; whatever package is available on the system
is the one ObjectBroker will use.

ObjectBroker Security Features
The sccurity features that have been successtully imple-
mented in the ObjectBroker software include

= (Client-to-server, mutual

authentication

server-ro-client, and

= Protection from replay and sequencing attacks and
integrity protection

s Fine-grain control over the authentication mecha-
nism (per-host, per-server, or per-method)

s Ability to demand a new security context for an
invocation

s Ability to apply new security features to applica-
tions without rebuilding them

= Dvnamically Joadable security libraries

Usage

One of the most important characteristics of a secure
ORB is that applications (clients and servers) need not
be aware of security operations undertaken on their
behalf. For ORBs, as well as for other support soft-
ware, the goal is to avoid burdening applications with
the need to deal with the complexities of a distributed
system so that they can concentrate on the application
problem at hand.

Thercfore, most of ObjectBroker’s sccurity-relevant
operations are invisible to applications. ObjectBroker’s
management utilities are used to specify the rules for
authenticaung clients and servers. These rules are
stored in the ObjectBroker Security Registry, and the
required authentications are performed automatically.

There are two exceptions to the general rule of
keeping security operations invisible to the applica-
tion. The firstis that a client or a server (when acting as
a client) can explicitly make a call to an ObjectBroker
API to toggle mutual authentication on or off. This
operation is allowed as long as it docs not diminish the
security level specified for the ObjectBroker node as a
whole. In other words, a clicnt can demand mutual
authentication on a node that does not require such
authentication but cannot disable mutual authentica-
don 1f the node does require it. This feature was imple-
mented to make it possible for clients to enable mutual
authentication for specific operations that have sccu-
rity relevance.

Digiral Technical Journal Vol.9 No. 1 1997

45




46

The second exception is that a server can demand
the creation of a new security context for an invoca-
tion, which immediately tests the authentication of
the principal making the request. This is important
because the GSS-APT allows the initiation of a sccurity
context that has no expiration. Clearly, if a sccurity
context exists for a long enough period, there may be
a concern that it is no longer valid. For example, when
a uscer’s account is revoked from the DCE Sccurity
Registry, it1s possible that the user’s credentials are stili
valid in some existing security context. Establishing a
new security context forces the DCE run-time software
to go back to the security server and verify the validity
of the principal.

Figure 1 illustrates the interaction of ObjectBroker
and the DCE Security Service components in the
establishment of a security context. Once the security
context is established, it is used in the verification of
MAC-secaled messages between the server and the
client. In this illustration, access to the DCE sccurity
subsystem is depicted as a local call, though accessing
these services could also be done remotcly.

The sequence of operations in Figure 1 is as follows:

1. A method invocation (a client request for a remote
operation) results in a call to ObjectBroker’s secu-
rity subsystem.

2. The ObjectBroker security subsystem in turn
invokes a GSS routine in the DCE Sccuriry hbrary.
This call determines whether a new sccurity con-
text needs to be established, which can happen for
one of two reasons: either it is the first invocation
of this server from this client or the context refresh
rate has been specified as per-invocation.

3. The DCE Security library exccutes the call, which
sets up the security context. (Note that the process
of deleting an existing securty context is not
shown.,)

(2}

10.

11.

12.

- so, the token is passed to the transport

4. The data1s unmars

. The security subsystem checks the return status of

the GSS routine to determine whether the resule-
ing to

ken is to be passed ro the invocation laver.

aver for
marshaling.

. The client communicates with the server node

through the normal ObjectBroker channel.

. The transport layer in the receiving node unmar-

shals the message, examines the transporr message
header, and passes conrrol to a dispatcher 1 the
mvocation laver.,

. Depending on the message tvpe, the message mav

then be passed to aspecial disparcher, in this case
the sccuriry dispatcher in the securnny subsvstem.

. The securiny subsvstenm determines that the mies-

sage should be handled by the GSS implementa-
trion and passes the message there.

The DCE Sceurity laver checks the received token
and 1t it 1s valid, accepts the security context. The
routine generates a context establishiment token
to be passed ro rhe chient. The call also returns the
scrver’s context handle for the security context the

scrver shares with the client.

The security laver passes the token to the invoca-
nion laver for marshaling.

The invocartion laver marshals the information and
sends it as an argument to the low-level transport
routine call.

. This message 1s sent to the client.

wled.

. The message is sent to the security subsystem.

. The roken is passed to the GSS implementation

to mitialize the sceurity context, with the server-
supplied token as an argument. The routine
returns the client’s context handle, which is used
to sign subsequent messages.

SERVER
DISPATCHER INVOCATION
T ) (8)  LAYER

l SECURITY
() SUBSYSTEM
12
@ DISPATCHER

- 9

TRANSPORT DCE SECURITY

CLIENT
INVOCATION
LAYER r—
5
e OOO] [0
SUBSYSTEM ~
4| &)
©| @ U=
DCE
SECURITY TRANSPORT
Figure 1
Establishment ot a Security Context
Digiral ‘Technical Journal Vol.9 No. 1 1997



Performance Considerations

The benetits ofa secure ORB are not free. If authenti-
cation is required when a clicnt and server establish a
connection through a binding, part of that binding
involves the establishment of a sccurity context.
Establishment of a security context requires a round-
trip on the nerwork, during which a token from the
client is passed to the server, and a token is rerurned
from the server to the client in the mutual authentica-
tion casc.

Once cstablished, the securiny context is used in
subsequent requests (provided that the configuration
does not require sceurity context deletion after every
method invocation). If the same sccurity context is
reused, the only addinional overhead considerations
arc (1) the signing and veritication of requests and
responses in the cient and server, and (2) the sccurity
context handle (32 additional bytes of information)
appended to cach message passed berween the client
and the server.

The signing and verification of a signature on a
request or response is different from the verification
of the privileges used when the security context is first
set up, i that vertfication of a signature does not
require a nerwork round-trip. In contrast, when you
first set up a sccurity context, a nerwork round-trip to
the privilege server is required, and its overhead is
significantly more costly than that of the verification
and signature operations.

Note that when a client has multple object references
to a single method implementation in a server, a single
security context can still be used. For example, a denved
object reterence does not require a new security con-
text. This 1s both an optimizaton and a funcuonal
requirement, since only one sceurity context is allowed
berween a client process and a server implementation,

Future Work

The OMG specifies a number of object services in addi-
tion to the CORBA specification itself. One of the most
important specifications is for the CORBA Security
Service. ObjectBroker’s integration with DCE Sccurtty
was designed and implemented before the OMG’s
CORBA Sccurity Service specification was complete.
Thus, cven though ObjectBroker is the most sccure
ORB available today, it is reasonable to ask when and
how irs sceurity features will be made compliant with
the latest specifications from the OMG.

Given sufficient resources, ObjectBroker engineer-
ing could invesngare supporting CORBA2 inter-
opcrability by implementing the OMG’s General
Inter-ORB Protocol (GIOP). The GIOP architecture
supports both the Internet Inter-ORB Protocol (ITOP)
and the DCL-based Common Inter-ORB Protocol

(DCE-CIOP). Today, ObjectBroker uses a wire proto-
col based on the CORBA version 1.2 specification.

Security for the IIOP is governed by the Secure Inter-
ORB Protocol (SECIOP) specification™, although few
commercially available implementations of the SECIOP
are available at the time of this writing. Also, as men-
tioned previously, security for the DCE-CIOD is accom-
plished by protecting the RPC connections at the wire
protocol level. For the DCE RPC, the DCE docs its
own authentication for RPC sessions; here the RPC
connection between the client and the server, rather
than the client and the server themselves, is authenti-
cated. This approach provides the same potennal for
security management in the ORB configuranon; it
simply accomplishes the security functions at a level in
the protocol stack that doces not require the use of the
GSS-API. By building in support for the GLOP,
ObjectBroker gains the capability to provide the sccu-
rity features for both the HOP and the DCE-CIOP
protocols in future releasces.

The SECIOP and the DCE-CIOP both foliow the
usage model of minimizing the need for applications
to be aware of sceurity. In the SECIOP, the OMG
has specified APIs for sccurity functions, and these
functions are entirely separate from any mechanism
that implements them. ORB vendors will be free to
provide security features in much the same way that
ObjectBroker provides sccurity today, 1.c., by working
from security-related information kept by the ORB.
The SECIOP also provides for administrative objects
and operations thar perform sccurity management
functions by means of APls.

Conclusion

ObjectBroker provides statc-of-the-art distributed
system security today. Its sccurity features provide
upward compatibility, as well as the least possible dis-
turbance to existing ObjectBroker applications and
configurations. In addition, ObjectBroker’s imple-
mentation of sccurity by mcans of the DCE’s Generic
Security Service Application Programming Interface
provides the greatest possible choice among sccurity
mechanisms and security implementation providers.

References and Notes

1. R. Otte, P Parnck, and M. Rov, Understanding
CORBA (Upper Saddle River, N.J.: Prentice Hall,
1996).

2. Information about the Object Management Group is
available at http://www.omg.org.

3. ). Linn, Generic Security Service Application Pro-
gram Interface, Internet RFC 1508, 1993,

Digirtal Technical Journal Volb9 No. I 1997



48

4. 1. Wrav, Generic Secirity Service APL Ocerview and
CRbindings. Internet REC 1509, 1993,

Information about The Open Group is available at
hrtp:/ /www.opengroup.org,.

318

6. M. Gasser, Butilding « Secrre Compuler Systen
(New York, N.Y.: Van Nostrand Reinhold,| 1988 ).

7. NOpen DCE: Authentication and Security Services.
X/Open  Preliminary  Specification P315,  ISBN
1-85912-013-X, clectronic version (Reading, UK.
X/Open Company Limited, 1993).

8. ObjectBroker—Desiguing and Biilding Applica-
fions. Part No. AA-QXILA-TK (Mavnard, Mass.:
Digiral Equipment Corporation, 1996).

9. S. Miller, B. Neuman, J. Schiller, and ]. Salrtzer, Ker-
beros Authenticalion «and Authorization System
(Cambridge, Mass.: Massachuscrrs Institute of Tech-
nology, Project Athena, 1987).

10, CORBA Security. Document Number 95-12-01 (Fram-
ingham, Mass.: Object Management Group, 1995).
The OMG members who contributed to the document
were AT&T Global Information Solutions Co., Digital
Equipment  Corporation,  Expersoft  Corporation,
Groupe Bull, Hewlere-Packard Company, International
Jusiness  Machines  Corporation (in collaboration
with Taligent Inc.), [nternanonal Computers Limited,
Novell Inc., Siemens Nixdorf Informationssvsteme AG,
Sunsoft Inc.; Tandem Computer Incorporated (in col-
laborarion with Odvssey Rescarch Associates Inc. ), and
Tivoli Svstems Inc.

Biographies

John H. Parodi

John Parodi is a consulting technical writer in the
Multiplatform Engineering group. His primary work
involves customer communications and evangelism

tor object technology. In carlier work, John provided
technical writing support for the Compound Document
Architecture group and Architectural Engineering of
Systems and Software Technical Oftice. John joined
DIGITAL in 1979 after working in computer operations

at Hendrix Electronics and ar the Universiny of New
Hampshire. He has received two awards from the Society
for Technical Communication and has morce than 30 publi-
Carions o various computer scicnce topics, including com-
pound documents, object technology, compurter security,
and BASIC.

Fred W. Burgher

Principal engineer Fred Burgheris emploved by BEA
Svstems as a member of the ObjectBroker Engincering
team. He is currently involved in ObjectBroker 11OP
development. Previously, Fred worked at DIGITAL on
integrating DCE Security and Naming for the Openvas
operating svstem. Earlier in his carcer, he was emploved
as a principal engineer at Wang Laboratorices, where he
worked in the Imaging Engincering Group. Fred studied
compurer science at Boston University,

Digital Technical Journal Vol.9 No.1 1997



A 160-MHz, 32-b,
0.5-W CMOS RISC
Microprocessor

This paper describes a 160 MHz 500 mwW
StrongARM microprocessor designed for low-
power, low-cost applications. The chip imple-
ments the ARM V4 instruction set' and is bus
compatible with earlier implementations.

The pin interface runs at 3.3 V but the internal
power supplies can vary from 1.5 to 2.2 V, pro-
viding various options to balance performance
and power dissipation. At 160 MHz internal clock
speed with a nominal Vdd of 1.65 V, it delivers
185 Dhrystone 2.1 MIPS while dissipating less
than 450 mW. The range of operating points
runs from 100 MHz at 1.65 V dissipating less
than 300 mW to 200 MHz at 2.0 V for less than
900 mW. An on-chip PLL provides the internal
clock based on a 3.68 MHz clock input. The chip
contains 2.5 million transistors, 90% of which
are in the two 16 kB caches. It is fabricated

in a 0.35-um three-metal CMOS process with
0.35 V thresholds and 0.25 um effective channel
lengths. The chip measures 7.8 mm X 6.4 mm
and is packaged in a 144-pin plastic thin quad
flat pack (TQFP) package.

© 1996 [EEE. Reprinted, with pernuission, rom TEEL jorrnal of
Solid-State Circirits, volume 31, number 11, November 1996,
pages 1703-1714.

James Montanaro Thomas H. Lee

Richard T. Witek Peter C. M. Lin
Krishna Anne Liam Madden
Andrew J. Black Daniel Murray
Elizabeth M. Cooper Mark H. Pearce

Daniel W. Dobberpuhl
Paul M. Donahue

Sribalan Santhanam
Kathryn J. Snyder

Jim Eno Ray Stephany
Gregory W. Hoeppner Stephen C. Thierauf
David Kruckemyer

Introduction

As personal digital assistants (PDA’s) move into the
next generation, there is an obvious need for addi-
rional processing power to enable new applications
and improve existing ones. While enhanced function-
ality such as improved handwriting recognition, voice
recognition, and spcech synthesis are desirable, the
size and weight limitations of PDA’s require that
microprocessors deliver this performance without
consuming additional power. The microprocessor
described in this paper—the Digital Equipment
Corporation SA-110, the first microprocessor in the
StrongARM family—directly addresses this need by
delivering 185 Dhrystone 2.1 MIPS while dissipating
less than 450 mW. This represents a significantly
higher performance than is currently available at this
power level,

CMOS Process Technology

The chip is fabricated ina 0.35 pm three-metal CMOS
process with 0.35 V thresholds and 0.25 um ettective
channel lengths. Process characteristics are shown
in Table 1. The process is the result of several genera-
rions of development efforts directed toward high-
performance microprocessors. Itis identical to the one
used in Digital Equipment Corporation’s current
generation of Alpha chips® except tor the removal of
the fourth layer of meral and the addition of a final
nitride passivation required tor plastic packaging.

The factors which drive process development for
low-power design are similar to those which drive the
process for purce high-pertformance although the moti-
vation sometimes differs. For example, while both
rypes of designs benefir from maximizing Idsat of the
transistors at the lowest aceeptable Vdd, the motiva-
tion for a purc high-performance design is reducing
power distribution and thermal problems rather than
extending battery life. Similar arguments apply to
minimizing transistor Jeakage and on-chip variation of
transistor parameters. This convergence of goals has
been essential to our ability to develop one process
to satisfy the requirements ot both low-power and
high-pertormance familics.

Digital Teehnical Journal Vol.9 No. 1 1997

49




Table 1
Process Features

Feature size 0.35um

Channellength  0.25um

Gate oxide 6.0 nm

Vin/Vip 0.35Vv/-0.35V

Power supply 2.0V (nominal)

Substrate P-epi with n-well

Salicide Cobalt-disilicide in diffusions and gates
Metal 1 0.7 um AICu, 1.225 um pitch (contacted)
Metal 2 0.7 um AlCu, 1.225 um pitch (contacted)
Metal 3 1.4 um AlCuy, 2.8 pm pitch (contacted)
RAM cell 6 transistor, 25.5 um?

Power Dissipation Tradeoffs

RISC microprocessors operating at 160 MHz are fairly
common using current CMOS process technology.
The novel aspect ot this design is the abiliny to achieve
this operating frequency at power levels which are low
cnough for handheld applications. Several design
rradeoffs were made to achieve the desired power
dissipation. In order to illustrate their effect on the
design, 1t 1s interesting to imagine applying these
tradeoffs to an earlier design whose power dissipation
occupics the opposite end of the power spectrum,
the first reported Alpha microprocessor.® This Alpha
chip was fabricated in a 0.75-pm CMOS process and
operated at 200 MHz dissipating 26 W ar 3.45 V. The
impact of these tradeotts is summarized in Table 2.

The first decision is to reduce the internal power
supply to 1.5 V. This change cuts the power by a factor
of 5.3. While this has the desired eftecr, it has implica-
rions for the cycle time which are considered in the
scerion Circuwit Implementation.

The next step is to reduce the functionality. As com-
parced to the early Alpha chip, the most obvious scc-
tions missing in this design are the floating point unit
and the branch history rable. Floating point 1s not
required in the target applications and the low branch
latency of this design climinates the need for the

Table 2
Power Dissipation Tradeoffs

Start with Alpha 21064: 200 MHz @ 3.45 V.
Power dissipation = 26W

Vdd reduction; Powerreduction= 53x =49W
Reduce functions:  Power reduction = 3x =1.6W
Scale process: Power reduction = 2X =208W
Reduce clock load:  Power reduction= 1.3x + 0.6 W

Power reduction= 1.25x >0.5W

Reduce clock rate:

Digital Technical Journal Vol.9 No. 1 1997

branch history table. Less obvious, but very impor-
rant, is reduced control complexity. This is a simple
machine and we have worked hard to keep it so. We
estimated that the reduced functionality would cut
power by a factor of three.

Process scaling reduces node capacitances and there-
fore chip power. Note that although the arca compo-
nents of the capacitance will decrease as the square
of the scale factor, the total capacitance change with
scaling will be Jess dramatic primarily due to the eftect
of periphery capacirance. We estumare thar scaling
from 0.75 um of the carlv Alpha chip to our current
(.35 jum process results iy a power reduction of about
a factor of rwo, a lincar reduction with scale factor.
Once again, coupled with this positive effect of process
scaling are a host of other issucs. Some of those issucs
arce considered in the section Power Down Modes.

Next, consider the clock power. The clock power of
the Alpha chips is tairly farge and while that clocking
strategy works well for Alpha machines, itis not appro-
priate tor a low-power chip. Our clocking strategy and
our latch circuits are described in some detail later.
One major change from the Alpha design was to reject
the pair of transparent latches per cvele used on the
Alpha design. Instead, on this design, we switched to a
single edge-triggered latch per cyele o reduce clock
Joad and latch delay. Our estimate is that the changes
in the clocking reduced the clock power by a factor of
two. Since the clock power was about 65% of the total
power on the first Alpha chip, this results in a reduc-
rion ot abour 1.3.

Finallv, the reduction in cock frequency from
200 MHz to 160 MHz drops the power by 1.25.

Clearly, this analvsis is not rigorous, but it suggests
that it is reasonable to build a 160 MHz processor chip
that dissipates around halfa wart. A similar analysis was
performed at the beginning ot the project to select the
power supply voltage and opcrating frequency and to
determine whether significant changes in - design
method would be required to meet the performance
and power goals. It is interesting to note that with the
exeeption of the clocking changes, the design methods
and philosophv used on this design were verv similar
to that used on the Alpha chips.

Instruction Set

The microprocessor implements the ARM V4!
instruction set. The architecture defines thirry 32-b
general purpose registers and a program counter (PC).
Registers are specified by a 4-b ficld where registers
0 to 14 are general purposce registers (GPR) and regis

rer 15 1s the PC. The current processor status register
contains a current mode ticld which sclects either an
unprivileged user mode or one of six privileged modes.
T'he current mode sclects which set of GPRs is visible.



In additton to basic RISC features of fixed length
instructions and simple load/store architecture, the
architecture implemented includes several features to
improve code density. These include conditional execu-
tion of all instructions, load and store multiple instruc-
rions, auto-increment and auto-decrement for loads
and stores, and a shift of one opcrand in every ALU
operation. The architecture supports loads and stores of
8-, 16-, and 32-b dara values. In addition to the stan-
dard 32-b compurations, there isa 32-b X 32-b mulu-
ply accumulate with a 64-b product and accumulator.

Chip Microarchitecture

As shown iu Figure 1, the chip is functionally parti-
rioned into the following major sections: the instruction
unit (IBOX), integer execution unit (EBOX), integer
multplier (MUL), memory management unit for dara
(DMMU), memory management unit for instructons
(IMMU), write butter (WB), bus interface unit (BIU),
phase locked loop (PLL), and caches for data (Dcache)
and mstructions {Icache). To minimize pin power and
support the high-speed internal core, one half of the
chip arca 1s devored to the nwo 16 K caches. The pad
ring occupics one-third ot the chip arca and the proces-
sor core fills the remaining one-sixth of the chip arca.

The processor is a single issuc design with a classic
five-stage pipeline—Fetch, Issue, Excecute, Butter, and
Register File Wrire (Figure 2). All arithmeric logic unit
{ALU) results can be forwarded to the ALU input and
there is a onc-cvele bubble for dependent loads.

For ¢xample, the pipeline diagram in Figure 2
shows a SUBTRACT followed by a dependent LOAD.
Note that at the end of cycle 3, we bypass the result
from the SUBTRACT back into the ALU to compute
the load address in cycle 4 withour stalling the pipe.

Figure 1
Chip Photo with Overlay

1 2 3 4 5 6

F | E B w

100: «<-100 Read W < IR-rm
SUBS R1 |ib < SUBS| Rm,Rn [cc c-alu.cc| W < wW Rl<cw

F | E B W
104: pc <104 Read w < d+R1|Lemem(la] R2 < L
LDR A2, [R1,d]' Ib<-LDR | Rm RN |la < d+R1|W < w RY <W'

F | | E

108: pc <-108 Read Read
ADD x,R2y | ib <-ADD | Rm, Rn Am, Rn | W <R2+y

Figure 2
Basic Pipeline Diagram

The third instruction is an ADD which uses the result
of the previous LOAD. The ADD is held in the Issue
stage for one additional cycle undl the LOAD dara is
available at the end of cvele 5.

The 1BOX can resolve conditional branches in the
Issue stage even when the condition codes are being
updated in the current Exceute evele. By providing
this optimized path, the IBOX incurs onlv a one-cvele
penalty for branches taken, so the chip does not
require branch prediction hardware. For example, in
the pair of instructions shown in Figure 3, the
BRANCH and LINK instruction at the (program
counter) PC of 104 depends on the condition codes
which are being generated by the SUBTRACT in the
previous nstruction. The condition codes from the
Execute stage of the SUBTRACT are available at the
end of cycle 3, in time to swing the PC multiplexer in
the IBOX to point at the branch target PC during the
next Ferch cycle.

The optimizaton of the branch path represents a
power versus performance tradeoff in which pertor-

1 2 3 4 5 6
F I E B w
100: pc <-100 Read W<- fn-rm
SUBS R1(Ib <- SUBS| Rm,Rn |cc<-alu.cc
1
104: F I E B w
BLNE Target
et arget pc
(__T;{)g) pe pc <-104 <-200 |we<-pc-4| wew | Rldcw
3
F I E B

108: | pc<-108
xxx | b <= xxx

200: | pec<- 200
Yyy | ib<-yyy

Figure 3
Pipcline Diagram ota Branch

Dignral Technical Journal Vol.9 No. 1 1997

51




()

mance won. In our ¢ffort to hold the one evele branch
penalny, we included a dedicated adder in the IBOX to
caleulate the branch target address and consumed
additional power in the EBOX adder to meet the criti-
a

speed path ro control the PC multiplexer. Due to
critical path constraints, the adder in the IBOX must
run every cycle, even if the instruction is not a branch.

In the carly stage of the design, one of our concerns
was whether the decision to pursue this optimized
branch path would increase our cvele nme. As the
design turned out, our best ctforts in this ALU path
and in the cache access path resulted in nearly identical
delavs for these nwo longest eritical speed paths.

Dara for integer operations comes from a 31-centry
register file with three read and two write ports.
Sixteen of the registers are visible at any time with
15 additional shadow registers specitied by the archi-
recture to minimize the overhead associated with initi-
ating exceptions. The EBOX contains an ALU with a
full 32-b bidirectional shifter on one of the input
operands. It includes bypassing circuitry to forward
the dara from the Deache or the ALU output to any
of the read ports. Figure 4 shows the circuit blocks
involved in the branch path. The path starts at a lacch
m the bvpassers and, 1 a single cvele, includes a
0-to 32-b shift, a 32-b ALU operation, and a condi-
non code computation to swing the PC multip
for the nexr evele. The registers to hold the condition
codes were implemented in the EBOX so that this
path could be locally oprimized. Analysis of code
races indicated that most ALL operations included a
shift of zcro, so for this case, the shifrer is disabled and
bypassed to reduce power.

The EBOX also conrains a 32-b multiply /accumu-
late unit. The multiplicr consists of a 12- bv 32-b
carry-save multiplier array which is used for one to
three eveles depending on the value of multiplicand
and a 32-b fina

CXCr

adder to reduce the carry-save result.

Register File
Rn Rm Rs W L
~ Buffer
5
bt Bypass [4—
° /shit -]
ALU —
cC 8
Logic 1 %
L Multiply/Accumulate ‘ 2’
Figure 4

EBON Block Diagram

Vol.9 No. 1 1997

Digital Technical Tournal

For multiply accumulare operations, the accumulate
value is inserred into the array so that an additional
cvele 18 not required for the Muldplies with
Accumulate. Muluplv Long  instructions  require
one additional cvcle. This results in a MULTIPLY or
MUILTIPLY /ACCUMULATE 1 two to four cycles
and MUL LONG or MUL LONG/ACCUMULATE
in three to five cvcles.

The Wallace tree implementation was chosen to
minimize the delay through the arrav, This implemen-
tation required carctul floor planning and custom lav-
out to keep the wiring under control, The decision to
perform 12 b ot multiply per cvele was based on wiring
rradeofts made during the physical planning phasce of
the design vather than eritical path concerns. When the
multiplicr is not in use, all clocks to the section stop
and the input opcerands do not toggle.

The chip features scparate 16 kByte, 32-way sct
assoctative virtual caches for instructions and data.
Fach caclie is implemented as 16 fully associative
blocks. Each cache is accessed inasingle evele tor both
reads and writes, providing a rwo-cvele latencey tor
return data to the register file. One cighth of each
cache is enabled for a cache access.

The Deache is writeback with no write allocation,
The block size is 32 bytes with dirty bits provided for
cach half block to minimize the data which needs to be
castout in the event of a dirty victim. The physical
address is stored with the data to avoid address transla-
tion during castouts.

Given the size of the caches and the low power
target tor the chip, it was important that we have fine
eranularity of bank sclection. In addition, we required
associativity of at least four-wav tor cache efficiency
and it was important ro performance that we maintain
a single evele access. We considered several solutions
to this problem, mncluding traditional four-way sct
associative  caches, and deaded that the simplest
approach which satisficd all the requirements was to
implement the caches as smaller, bank-addressed, fully
associative caches. This resulted in 32-way associativity
but this level of assoctativity was a side effect of the
implementation used, not the result of a goal to get
associativity significantly above four-wav.

The chip includes separate memory management
unirs (MMU) tor instructions and dara. Each MMU
contains a 32-enwry fully associative translation fook-
aside buffer (TLB) with entries which can map cither
4 kB, 64 kB, or I MB pages. TLRB fills are implemented
in hardware. In addition to the standard memory
management protection mechanisms, the ARM archi-
recture defines an orthogonal memory protection
scheme to allow the operating svstem easy access to
large sections of memory without manipulating the
page tables. This funcrionality requires a set of addi-



tional checks which must be performed ofter the TLR
lookup. The resulting crirical path was sufficiently
long that we sclt-timed the RAM access in the TLB to
allow us to pertorm the lookup and complex protec-
rion checks in a single evele.

A write bufter with cighr 16-bvte entries handles
stores and castouts from the Deache. The write butter
includes a single-entry merge latch to pack up sequen-
tial stores to the same entry.

During normal operations, an external load request
takes priority over stores on the pin bus. However, in
the event of a load which hits in the write bufter, the
chip exccutes a series of prionty stores which raises the

bus above
that of any loads. External stores occur and the write
buffer empries until the store which was pending at

priority of the Write Buffer on the externa

the load address completes. At this point, top priority
reverts back to loads.

Power Down Modes

There are two power down modes supported by the
chip—Idle and Sleep.

Idle mode is intended for short periods of inactivity
and 1s appropriate for situations i which rapid
resumption of processing s required. In Idle mode,
the on-chip PLI continues to run but the internal
clock grid and the bus clock stop toggling. This ¢hmi-
nates most activity in the chip and the power dissipa-
ton drops trom 450 mW to 20 mW. Return from Idle
ro normal mode s accomphshed with essentially no
delay by simply restarting the bus clock.,

Sleep mode is designed for extended periods of inac-

rivity which require the lowest power consumption.
The current in Sleep mode is S0 wA which is achieved
bv turning oftthe internal power to the chip. The 3.3V
1/0 circuitry remains powered and the chip is well
be s if
required by the drive enable inputs. Return from Sleep
v 140 ps.

As was noted carlicr, a low voltage process is kev

1aved on the bus, maintaining specified level

to normal operation takes approximate
to the design of a microprocessor which will run at
160 MH7 while dissipating Jess than 450 mW.
However, the same

ow device thresholds which allow
the reduction of Vdd also result in significant device
lcakage. While this leakage is not large cnough to
cause a problem for normal operation, it doces pose
problems for standby current, especially if the pro-
cess skews toward short channel devices, Qur initial
analysis indicated thar the chip would dissipate over
100 mW in Idle mode with the clocks stopped. To
reduce this leakage, we lengrhened devices in the
cache arrays, the pad drivers, and cerrain other areas.
This brought the leakage power to within the required
value of 20 mW 1 the fastest process corner. As a
backup, we re

¢a

axed our design rules to allow the

remaining gate regions, which are drawn with a sran-
dard 0.35 pm gare lengeh, to be biased up algorithmi-
cally withour violating design rules in case it was
necessary to meet the feakage requirements.

The requirement for standby power in Sleep is more
than owo orders of magnitude lower than the Idle
power. To mecet the power limit i Sleep, we consid-
ered a variety of options including integrated power
supply switches and substrate biasing schemes betore
choosing the simple approach of turning oft the mter-
supplv. This approach is reasonable for this genera-

na
tion ot parts since they have a dedicared low volrage
supply. As more parts of the svstem shift to the low
voltage supply, this may no longer be acceprable. The
contlicting requirements of high performance at low
voltage and low standby current promise to create
interesting challenges in future designs.

The power switch to turn oft the mrernal power
supply during Sleep is implemented off-chip as part
of the power supply circuit tor the low voltage supply.
No state is stored internally during Sleep since in
typical PDA svstems, the Sleep state corresponds to
the user turning rhe system oft. Thercetore the time
associated with refoading the cache upon return from
Sleep is aceeprable.

The requirements in 1dle and Sleep complicared the
design of the bus interface circuits. This section
includes the level-shifing interface between the inter-
nal low voltage (1.5 to 2.2 V) signals and the 3.3 V
external pin bus. The bus interface circunts must drive

and reccive signals which are higher voltage than those
nominally supported by the 0.35-pm process without
using circuits which would cause us to exceed the cur-
rent limit specitied by the Idle spec. Tnaddition, dur-
ing Sleep the pads must be able to sustain the value
on the outpur pins despite the loss of internal Vdd
(Vddi) from the low volrage supply which is powered
off by the svstem. The circuitry used to implement this
function is shown in Figure 5.

Since Vddi will be driven to zero by the svstem
during Sleep, it is used not onlv as a power supply
but also as a logic signal. All circuitry which must
be active in Sleep is driven from the external, 3.3 V
supply (Vddx) which has been dropped through diode-
connected PMOS devices to reduce the stress on the

oxide of these devices. Betore signaling the chip o
enter Sleep, the system asserts the nRESET pin (active
low) which drives all cnabled outputs to a specified
state—disabled for control signals and zero for
addresses and data. It then asserts nPWRSLLP (active
low) which is ANDed with the appropriate output
enable control to turn on small leaker devices which
will hold the output pin in the appropriate state during
Sleep. In the dreuir shown in Figure 5, the outpur is
an address. Theretore, the address bus enable (ABE)
pin is the control pin on the lower NMOS leaker and a

Digital Technical Journal VollY No. 1l 1997

B

22




nRESET  ABE VDDX  nPWRSLP Aln] VvDDI
PadDriver _ _ T2 _ . —~ =
I B
| Pad Driver|Transistors |
|f | L U L_J'_'I__I_‘I, |
i o T -
I T I
I ' I
=
l 88 |
2] m = %)
PWRSLP 2 8 2 8 |
2| = :
2] & |
l-d e = I = |
ENA _ADDR - 3 < <
e ol I R
H‘I | . I
L Level Shifter
| and Pre-driver |
Input Input Input | I
Receiver Receiver Receiver| @~ @ — — — — — —_ —_ — — - —
NOT RESET
Y Y
Internal Chip Circuitry ADDRESS[n]
——
Figure 5

Pad Circuitry

buffered version of nNPWRSLI controls the top device.
Finally, the Vddi pins are actively driven to zero by the
system. This action disables the outpur stage of the
pad driver circuit by turning oft the transistors closest
to the pad—the NMOS directly and the PMOS via the
bias nerwork whose output goes to Vddx when its
path to Vss is cur oft. Note that for anv input whose
value is required during Sleep (ABE and nPWRSLDP in
the example described), a separate parallel input
receiver must be implemented since the normal input
receiver requires Vddi,

Circuit Implementation

The circuit implementation is pseudostatic and allows
the internal clock to be stopped indetinitely in cither
state. Use of circuits which might limit low volrage
operation was strictly controlled and the design was

Digital Technical Journal Vol.9 No. 1 1997

simulated to ensure operation significanty  below
the nonunal 1.5 V level of the low voltage supply. The
values of the internal supply and opcerating trequency
were optimized to achieve maxtmum pertormance tor
less than halta watr.

The vast majority of the design s purely static,
composcd of cither complementary CMOS gates or
static ditterential logic. In certain situations, wide
NOR functions were required and these were imple-
mented in a pscudostatic fashion using cither static
weak feedback creuits or selt-timed circuits to lacch
the outpur data and rerurn the dvnamic node to its
precharged state.

The register file (RF) uses the selt-timed approach
to rerurn the bit lines to the precharged state after an
access (Figure 6). In this circuit, an extra self-timing
column of bir cells with a dvnamic bit fine was imple-
mented to mimic the timing of the dara bit lines.



Figure 6 shows one cell from a column of register tile
dara bit cells and one cell from the extra self-timing
column (onlv one read port is shown). The bie cells
in this exmra column are all tied oft so rthar the
SELF_BITLINE signal will alwavs discharge when
the READ_WORDLINE goes high. When  the
SELF_BITLINE falls, it will sct an RS larch causing the
SELF_ENABLE signal to fall. This will disable the
READ_WORDLINE and cause the bit lines to be
precharged high when the read access 1s complete.
Since the DATA_BITLINE’s are received by low sensi-
tive RS latches, the output data will be held when the
bit line 1s precharged high. The self-timing RS latch is
cleared when CLOCK_L goces low. This causes the
SELF_ENABLE signal to go high, cnabling the read
port for the access in the next clock evele. A separatce
SELF_BITLINE signal is implemented for cach of the
three register file ports so thar the clocks for the three
ports can be enabled independently.

The transistor leakage associated with the low
threshold voltages is problematic for these pscudo-
staric cirewnrs. If a weak feedback circuir is used in a

NOR structure which is precharged high, excessive
leakage in the parallel NMOS pulldowns would
require that the feedback be fairly strong, which in turn
would reduce the speed of the circuit. In the limir of
very wide NOR’s, it may not be possible to size a
PMOS leaker so that it can supply the leakage ot all the
oft NMOS pulldowns without making the leaker too
large to be overpowered by a single active pulldown.
In the case ofa self-timed approach, a similar problem
exists but it usually is manifested as a vanishingly small
timing margin for the self-nmed circuit to fire before
the data on the dvnamic node decavs awav. In cither
case, we addressed this issuce by requiring the length of
pulldowns on dynamic nodes to be shightly larger than
minimum. Transistor leakage current is a strong func-
tion of channel length so a 12% increase in device
length resulrs in a leakage reduction in the worst case
of about a factor of 20. The resulting leakage makes
implementation of cither weak feedback or a self-
timed approach very reasonable.

The operating frequency ar 1.5 V can be roughly
derived by starting with the frequency of the Alpha

x -
< < 2 Z
< < E )
[} [a] @ E
I | | [41]
w w < w!
& gl % o
z . = a %)
BitCell _ Dummy Bit Cell for Seif-timing
| T T l— """""""""""""""" 3 WRITE_WORDLINE
! VDD VDD i VDD vDD X
1
' S [y 0
S Aﬂ ¥ !
! M ! : VD! FI—LALDD 1
] ! [] !
' Pl—‘ — ' X
! 1 ' 1
! h X ADDRESS_DECODE
! ! READ_WORDLINE .
! I lE
]
H 1
! —C |i! L—C |
L g !
vDD vDD
Lu. PRECHARGE L o<} G——-
L
CLOCK_L
DATA_OUT
Figure 6

Sclf-timed RF Precharge

Digital ‘Technical Joural Vol.9 No. 1 1997

55



36

processor in the same process technology and scaling
for the use of a longer tick model and then Vdd. Since
the long tick design requires the chip to perform a full
SHIFT and a full ADD in a single cvele, this approxi-
matcly doubles the cye
Vdd scaling 1s roughly lincar for this range of Vdd.

¢ time required. The effect of

Combining these cffects results in an operating
frequency at 1.5V given by

433 MHz * 0.5 % (1.5V/2.0 V) = 162 MHz.

This pair of volrage and frequency values agrees well
with the power estimate outlined in the section Power
Dissipation Tradeofts. Note that for power supply
volrages much lower than 1.5 'V, the operating fre-

quency decreases with voltage in a manner which is
significantly stronger than linear, This fact sets a prac-
tical lower limit on rhe power supply voltage m most
applications.

Power estimates made carly in the design are prone to
errors in cither direction. In the case of this design, the
power dissipated at 1.5 Vwas lower than the 450 mW
rarget, so we shifted the nominal internal Vdd to 1.65 V

ro increasc the vield in the 160 MHz bin,

Clock Generation

An on-chip PLL* generates the internal clock at one of
16 frequencies ranging from 88 to 287 MHy based on
a fixed 3.68 MHz input clock. Duc to internal
resource constraints and our limited experience with
low-power analog circuits, we contracted with Centre
Suisse I’E
from Neucharel, Switzerland, to design the PLI and
engaged Professor 'L Tee from Stanford as a consul-
rant on the project. Our initial feasibility work resulred

cetronique ¢t de Microtechnique (CSEM)

in several design rradeotts,

First, while there was a svstem requirement that the
chip return quickly from the Idle state to normal oper-
ation, there was no such constraint on rerurning from
the Sleep state. Based on this determination and our
20 mW power budger in Idle, we concluded that it we
could keep the PLL power below 2 mWW, we could
Jeave the PLL running in Tdle and remove the require-
ments on the LI lock ime. Thus, the need foravery
low power PLL is dictated by the power budget in
Idle, not in normal operation.

Next, we had speaitied a large frequency mulriplica-
tion factor to allow the use ofa common and cheap Jow
frequency arvstal clock source for consumer products.

Larly investigations indicated that this would make
tght phase locking dithicult. However, when we
looked at rarget svstems, we tound no pressing need for
phase locking. Consequently, we removed phase Tock-
ing as a design ariteria and concentrated our cttores and
design tradeotts on minimizing phase compression.

Digital Technical Journal Vol.9 No. L 1997

Finally, while the PLL was designed to handle the
noisc expected on the chip power supplics, we discov-
cred toward the end of the design that the PLL was
under its arca budger and there was additional space
available in rhe vicinity. We took advantage of this
opportunity to provide cleaner power to the PLL by
RC filtering our internal supply and we dedicated 1 nF
of on-chip decoupling cap to this purposc.

CSEM performed the cireuir and lavour design
and we placed the completed block into the micro-
processor. Since we anticipated thar rhe characteriza-
tion of the PLL integrated in the chip would present
some difficultics, we rescrved onc of the six dic sites
on our first pass reticle set for a test chip which con-
rained several variants of the full PLL and interesting
sub-blocks. These circuirs allowed access to a variety of
nodes in the PLL without compromising the design of
the PLL instantiated i the chip. The results of the
PLI characrerization are reported in Reference 4.

Clock Distribution
The chip operates from nwo clocks as shown in Figure 7.
An internal clock, called DCLK, is usually gencerated
by the PLL. The second clock is a bus clock, known as
MCLK which operates up to 66 MHz, MCLK can be
supplied by an external asynchronous source or by the
chip based on a division of the PLL clock signal.
There are five clock regimes in the chip. The firse
nwo regimes are sourced by MCLK and consist of the
pad ring which receives MCLK direcrly and the bus
interface unit (BIU) and part of the write buffer which
recetve MCTLK through conditional clock butfers. The
last three regimes are sourced by the internal DCLK
clock trece and contain the Deache, the Icache, and the

Clock MCLK
Generation
DCLK
— IMMU
DCACHE L oox | T o
— EBOX
— MUt Pads
— DMMU
ICACHE — WB -

Figure 7

Clock Regimes



core. In this case, the core includes the IBOX, EBOX,
MUL, IMMU, DMMU,| and part of the write buttfer.

Both MCLK and DCIK are distributed by buftered
H-trees to conditional clock butters in the various scc-
tions of the chip. The bufters in the H-tree allow the
use of smaller lines for distribution and result in lower
clock power. Although the three internal clock
sourced by the same H-tree, the topol-
ogv of the chip did not allow corresponding scctions
of the H-tree to be routed in the same meral. This
resulted i1 an increase in the expected skew benween

regimes arc a

the caches and the core. In addition, we discovered
that we could squecze a bit more performance from
the chip if we intentionally offser the clock in the
caches relative to the clock in the core. Conscquently,
we used the cock butters in the H-tree to tune the
clock so that the Deache receives a clock which is one

gate delav carlicr than the core and the Teache receives
a clock which is one gate delav later than the core,
Figure 8 shows the physical routing of the internal
clock tree. The bufter stages are not shown but they
exist 1n the center of the chip and in four symmctric
focations—two in the center of the Tand D caches and
nwo 1 locations at the cache /core intertace. The final
leg of the H-tree 1s tied to conditional clock bufters in
the caches and the core. The problems associated with
clock skew within the caches are reduced by the fact
that only a single bank in cach cache is enabled. This
Imits the physical distance over which tnightly con-
trolled clocks need to be delivered in the cache regions.
The cocks in the core present a more interesting
problem. The final feg of the clock tree in the core
stretches the full height of the chip and tight control of
skew a

ong this node 1s required for speed and func-
tionality. Tt is implemented as a vertical, metal 2 line

Figure 8

Physical Routing ot Clock "I'ree

8000 T
g 6000 1
§ 4000 >
é 2000 ¢
o —»
£ 07
T —-»
§ -2000 ¢
O -.s0004”"
b
-6000 3 3 ! } {
0 10 20 30 40 50
Relative Skew (pS)
Figure 9

Clock Arrival Time in the Core

driven from four nominally cquidistant points. The
clock buffers are standard cells of varving drive
strength built directly under this M2 line to minimize
local varation in delay.

Circuit simulations of the H-tree were pertormed
using SPICE to determine the skew berween clock
regions and within cach of the clock regions. The
nodes in the grid were extracted from lavout and con-
tained more than 30,000 R and C clements. Figure 9
shows the relative clock arrival time versus the Y coor-
dinate for each conditional clock bufter on the vertical
leg of the clock tree in the core. The four arrows on
the graph indicate the points from which the final leg
1s driven. The data points are the relative arrival times
of the clock input to the conditional clock butters
sourced by the clock tree. The total simulated skew is
41 pS assuming maximum metal resistance.

Clock Switching

Onc additional complication related to the internal
clock tree is that it is not always driven by the clock
from the PLL, known as CCLK. During cache fills, the
clock source for the internal scctions of the chip
switches over to MCLK so that the whole chip is run-
ning synchronous to the bus (Figure 10). This simpli-
fics fills and it reduces power since the bus clock is
significantly slower than CCLK. Note that since this
machine has a blocking cache, not much happens
while waiting for a cache fill. Therctore, running on
the slower bus clock during fills has essentially no
performance impact.

Since MCLK and CCLK might be asvnchronous,
switching the driver of DCLK quickly berween the two
clock sources is difficult. Caretul attention must be
paid to the synchronization of the Mux control signals
to prevent glitch pulses on the clock during the transi-
gon berween the clock sources.

Digiral Technical Journal Vol.9 No. 1 1997



Enabie
MCLK
Divider

PLL - MCLK

CCLK

\
\ { Synchronizers/
Mux Mux Control

I

yDCLK

Figure 10
Clock Switching Circuit

Clock switching i1s only used during fills. Stores
which miss in the cache and castouts are written to
memory through the write bufter without switching
the internal clock over to MCLK. The write bufter
receives both DCLK and MCLK and passes the data
for external stores across the DCLK/MCILK inter-
face with proper atrention to synchronization issucs
berween the two clock regimes. One interesting char-
acteristic of clock switching is that it gives the svstem
designer another option to save power in situations for
which the full performance of the chip is not required.
By disabling clock switching on the flv, vou can config-
ure the chip to run off the bus clock. Therce is no limit
on asynunctry or maximum pulse widch of the bus
clock, so the chip can be operated at very low frequen-
cies if desired.

Conditional Clock Buffers

Conditional clock buffers are simple NAND /invert
structures with an integral latch on the condition
inpur. The butfers must be matched to their load
to minimize skew. Since adding dummy clock loads
is contrary to the low-power design philosophy, we
created scaled clock bufters which would produce
matched clocks for a wide range of loads and only
needed to add dummy clock loads for a small number
of very lightly loaded clock nodes. The task of match-
ing the clock bufters to the load was greatly simplified
by the ftact the clock load presented by our standard
latches is largely data-independent.

While the use of conditional clock butters 1s central
to the design method used on the chip, it should be
noted that the critical paths to generate the condirion
input to these bufters represent some of the most ditti-
cult design problems in the chip. In this case, we

Digital ‘Technical Journal Vol.9 No. 1 1997

decided that the power saving associated with the con-
ditional clocking was worth the additional design
effort and possible pertormance reduction.

Latch Circuits

The standard larches used in the design are ditterential
edge-triggered fatches (Figure 11). The circuit struc-
ture is a precharged difterential sense amp followed by
a pair of cross-coupled NAND gates. The sense amp
need not be particularly well balanced because the
inputs to the latch are full CMOS levels. The NMOS
shorting device between nodes L3 and L4 provides a
de path o ground for leakage currents on nodes L1
and L2 i case the inputs to the Jatch switch afrer the
latch evaluates. At normal operating frequencices, this
device is not particularly important but it is required
for the latch to be static. Note thar since the de current
flowing is due only to device leakage, the magnitude
of the current is insignificant to the power in normal
operation.

Testability

The chip supports IEEE 1149.1 boundary scan for
continuity testing. In addition, it has two hardware
features to aid in manufacturing testing. The first is a
bypass to allow CCLK to be driven from a pin svnchro-
nous to MCLK. This allows the tester to control the
timing between CCLK and MCLK to make the asvn-
chronous sections appear to be deterministic. The see-
ond test feature provides a lincar feedback shift register
(LFSR) that can be loaded with instruction data from
the Teache. Loading the LESR can be conditioned
bascd on the value of address bit 2 and the Icache hit
signal. The LESR is loaded after the Fetch stage to
allow the instruction following a branch to be read
from the Icache and loaded into the LESR. This tea-
rure allows any random pattern to be loaded inro the

IN_H| ey
R
LI
. T T u OUT L
L3
Vss
L Ve
H
L4 L2 our
1 e
=
—L L\Tﬁvad
IN L
CLK T
Figure 11

Latch Circuit



Icache and then read out by alternating branch
mstructions with data patterns words.

Power Dissipation Results

Measured Results

Power dissipation data was collected on an evaluation
board running Dhrystone 2.1 with the bus clock
running at onc-third of the PLL clock frequency.
Dhrystonc fits entirely in the internal caches so, after
the first pass through the loop, pin activity is limited.
This is the highest power case because cache misses
cause the internal clocks to run at the bus speed and
resultin a lower total power. For both scts of measure-
ments, external Vdd is fixed at 3.3 V. For an internal
Vdd of 1.5 V, the total power is 2.1 mW/MHz. If
the internal supply is set to 2.0 'V, the total power is
3.3 mW/MHz. Note that the ratio of the power at
1.5 and 2.0 V does not track Vdd?® because it contains
a component of external power and the external Vdd
is fixed.

Simulated Power Dissipation by Section

An analysis of node transitions based on simulation
was performed to estimate the power dissipation asso-
ciated with the various major sections of the chip
(Table 3). Toggle information was collected based on
160,000 cveles of Dhrvstone and combined with
extracted node capacitances to estimate power dissipa-
tion by node and this data was further grouped by sec-
nion. The clock power listed in Table 3 is due only to
the global clock circuits.

A few points are worth noting,.

= First, the power is dominated by the caches as
you might cxpect given their size. This is despite
our ctforts to reduce their power through bank
sclection and other means. The Icache burns
morc power than the Dcache because it runs
every eycle.

Table 3

Simulated Power Dissipation by Section
ICACHE 27%
IBOX 18%
DCACHE 16%
CLOCK 10%
IMMU 9%
EBOX 8%
DMMU 8%
Write buffer 2%
Bus interface unit 2%
PLL <1%

= Next, the PLI power is insignificant in normal oper-
ation. As was noted earlier, its low power character-
istics are only important in Idle.

» Finally, since reduction in clock power was one of
our explicit goals, it is interesting to consider the
total clock power. If vou extract the local clock
power from the nonclock sections and sum it, you
get a total clock power, including the global clock
trees, the local clock buffers and the Jocal clock
loads. This power is 25% of the total chip power,
significantly less than the 65% consumed by the
clocks in the Alpha microprocessor used in our ini-
tial feasibility studics.

Conditional clocking was an integral part of the
design method, so it is difficult to determine the
power saving associated with it. However, the power
associated with driving the conditional clocks is 15%
of the c¢hip power and it the conditions on all the
conditional clock butfers were always true, this power
would quadruple. This does not account for the
additional power savings that has been achieved by
blocking spurious data transitions.

CAD Tools

The CAD tools used on this chip were largely the same
as those used on our Alpha designs.® This is not sur-
prising since the performance target of the chip
roughly parallels that of the Alpha familv as noted
in the section Circuit Implementation. The most sig-
nificant departure was in the area of static timing
verification and race analysis where the adoption of
edge-triggered latching required significant modifica-
tions to the tools used in the Alpha designs.

Project Organization

One of the challenging aspects of this project was
geographical. The derailed design was performed at
four sites across a nine hour time zone range. The ini-
tial feasibility work and architectural definition was
done at Digiral Semiconductor’s design center in
Austin with on-site participation by personnel from
Advanced RISC Machines Limited (ARM). The
implementation was more widely distributed with the
caches, MMU’s, write bufter, and bus interface unit at
Digital Semiconductor’s design center in Palo Alto,
the instruction unit, exccution unit, and clocks in
Austin, the pad drniver and ESD protection circuits at
Digital Semiconductor’s main facility in Hudson,
MA, and the PLL at the CSEM design center in
Neuchatel, Switzerland. In addition, we consulted
with Hudson for CAD and process issucs, with ARM
in Cambridge, England, for all manner of architec-

Digital Technical Journal Vol.9 No.1 1997

59




tural issues and implementation tradeofts associated
with ARM designs and with T. Lee from Stanford on
the PLL. The implementation phase of the project
took Jess than nine months with about 20 design
engineers.

Conclusion

The microprocessor descrit-ed uses traditional high
performance custom circuit design, an intentionally
simple architectural design, and advanced CMOS
process technology to produce a 160 MHz micro-
processor which dissipates less than 450 mW. The
internal supplics can vary from 1.5 to 2.2 V while the
pin interface runs at 3.3 V. The chip implements the
ARM V4 instruction set and delivers 185 Dhrvstone
2.1 MIPS at 160 MHz. The chip contains 2.5 million
transistors and is fabricated in a 0.35-pum three-metal
CMOS process. It measures 7.8 mm X 6.4 mm and 1s
packaged in a 144-pin plastic thin quad flat pack
(TQFP) package.

Acknowledgments

The authors would like to acknowledge the contribu-
tions of the following people:

F. Aires, M. Bazor, G. Ch.ney, K. Chut, M. Culbert,
T. Daum, K. Fielding, J. Gee, ]J. Grodstein, L. Hall,
J. Hancock, H. Horovitz, C. Houghton, L. Howarth,
D. Jaggar, G. Joe, R. Kaye, J. Kapp, 1. Kim, Y. Lou,
S. Lum, D. Noorlag, L. O’Donnecll, K. Patton,
J. Reinschmidt, S. Roberts, A. Silveria, Do Skerry,
D. Souvadalay, E. Supnet, L. Tran, D. Zochrer, and
the PLL design team at CSEM.

The support which they received on many aspects of
the design from the people at Advanced RISC Machin:s,
Lrd. was very important and keenlv appreciated.

References

1. ARM Architectnre Reference (Cambridge, England:
Advanced RISC Machinces, Led., 1995).

[0S}

P. Gronowski ct al., “A 433 MHz 64b Quad-Issuc
RISC Microprocessor,”™ ISSCC Digest of Techiical
Lapers (February, 1996): 222-223.

3. D. Dobberpulil eral,, “A 200 MHz 64b Dual-Issue
CMOS Microprocessor,” IEEE Joirnal of Solid-Siale
Circuits,vol. 27, no. 11 (1992).

4. V.von Kaenel etal,, “A 3260 MHz, 1.5 mW CMOS PLL
for Microprocessor Clock Generation,” ISSCC Digest of
Techiical Papers (February, 1996): 132-133.

5. T. Fox, *The Design of High-Performance Microproces-
sors at Digital,™ /st ACMIEEE Desigin Avtomation
Conference, San Dicgo, Calif. (June 1994): 586-591.

Digital Technical Journal Vol.9 No. 1 1997

Biographies

James Montanaro

James Montanaro received the B.S.E.E. and M S E.E.
degree from the Massachusetts Institute of Technology,
Cambridge, MA, in 1980. He joined Digital Equipment
Corporation in 1982 and worked as a circuir designer on
several RISC microprocessor chips including the first wo
Alpha designs. In 1992, he joined Apple Computer as a
circuit designer on the PowerPC 603 chip. In 1993, he
returned o Digital, working in the Austin Research and
Design Center on the design of the first SrongARM micro-
processor chip.

Richard T. Witek

Rich Witcek received a B.S. in computer scicnce from Aurora
College, Aurora, I1,,in 1976. He is the lead architect on
the StrongARM microprocessors ar Digital’s Austin design
center. He was co-architect of the Digital Alpha archirec-
ture and lead architect on the first Alpha microprocessor.
Rich was one of the lead designers on the MicroVAX 11
microprocessor, the first single chip VAX. At Digiral, Rich
also worked on Phase 2 and Phase 3 DECnct architecture
and implementation along with other PDPT L and VAX
software projects. Rich was part of the Apple PowerPC
architecture team ar Somerset in Austin. His current pro-
fessional interests include processor architecture and imple-
mentations. Rich has numerous patents and technical
publications on microprocessors and caches.

Krishna Anne

Krishna Anne received the B.E. degree in clectronics engi-
neering in 1991 from Andhra University, Vizag, India,
and the M.S.E.E. degree from the Universiey of Texas at
Arlingron in 1993, After a brief stav at Tensleep Design,
Inc., Austin, TX, in 1994, he joined Austin Rescarch and
Design Cenrer ot Digital Equipment Corporation as a
design engincer responsible for the full-custom design and
development ot high-pertormance low-power processors.,
He worked on the design and implementation of the multi-
plier on the StrongARM project and is currently working
on another low-power chip.

Andrew }. Black

Andy Black received a B.S.E.E. from Pennsvlvania State
University and an M.S.E.E. from the University of
Southern California. He joined Digital in 1992 after
working for International Solar Electric Technology.

He was a senior hardware engineer in Digital’s Palo Alto
Design Center, where he led the bus interface unit design
for the StrongARM SA-110 microprocessor chip. During
his work on the Alpha 21164 CPU, he was a member of
the design team for the memory management unit and
contributed to the chip’s clock design. He is currently
with Silicon Graphies Inc. as a member of the technical
staff in the MIPS Technology Division where he is work-
ing on high-performance consumer-oriented products.
Andv is a member of LE.E.E., Tau Beta Piy and Era
Kappa Nu.



Elizabeth M. Cooper

Elizabeth Cooper received the B.S. degrees (summa cum
laude) in clectrical engineering and computer science from
Washingron University in St. Louis in 1985. She received
the M.S. degree in computer scienee from Stanford
University in 1995, She joined Digital Equipment
Corporation in 1985. Her previous responsibilities include
design contributions to several CMOS VAX and Alpha
CPUs. She was responsible for the design of the memory
management unit on the $A-110 StrongARM chip. She is
currently employed at Silicon Graphics MIPS Technology
Division.

Daniel W. Dobberpuhl

Daniel Dobberpuhl received the B.S.E.E. degree from
the University of linois in 1967, He joined Digiral
Equipment Corporation in 1976 and has been responsible
for five generations of microprocessor designs including
the initial Alpha CPUs. Most recently he has been the
Technical Director of the Low Power Microprocessor
Group with Digital’s Palo Alto Design Center. He is the
co-author of The Design and Anelysis of VIST Circiedls
{Addison-Wesley, 1985).

Paul M. Donahue

Paul Donahue received the B.S. degree in computer sci-
ence from Cornell University, Trhaca, NY, in 1994, Upon
zraduation he joined Digiral Semiconductor’s Palo Alto
Design Center and worked on the SA-110. He is currently
working on the microarchitecrure and verification of a
StrongARM variant.

Jim Eno

Jim Eno received the B.S.EE degree from North Carolina
State Universiry, Raleigh, in 1989. He is emploved as a
senior engineer at Digital Equipment Corporation’s Austin
Research and Design Center in Austin, TX, working most
recently on the microarchitecture of the SA-110 StrongARM
microprocessor. Betore his employment with Digirtal, he was
with the Somerset Design Center in Austin, working on the
microarchitecture and design of the PowerPC 603 micro-
processor. Previous to this, Jim was involved in ASIC design
support and tool development at Compaq Computer
Corporation. His research interests include low-power
microprocessor design and the propagation of acoustic
waves in various matertals, enhanced by interaction with
sclected organic compounds.

Gregory W, Hoeppner

Gregory Hoeppner graduated with distinction from Purdue
University, West Lafaverte, IN, in 1979 In 1980 he worked
at General Telephone and Elecrronics Research Laboratory,
Waltham, MA, performing basic propertics rescarch on
GaAs. From 1981 to 1992 he held a number of positions
with Digiral Equipment Corporation, Hudson, MA, includ-
ing CMOS process development, device characterization
and modcling, circuit design, chip implementation, and
finally co-led the 21064 Alpha chip implementation team.
In 1992 he joined 1BM’s Advanced Workstation Division
before returning to Digital Equipment Corporation in
1993 to co-found their Austin Research and Design Center,
Austin, TX. Here he contributed ro the microarchitecture,
implementation and verification of Digital’s first
StrongARM processor.

David Kruckemyer

David Kruckemver received the B.S. degree in computer
enginecring from the University of Hlinois at Urbana-
Champaign in 1993 and received the M.S. degree from
Stanford Universitv in 1995, After graduation, he joined
Digital Equipment Corporarion’s Palo Alto Design Center
to work on the imnlementation of the Instruction Memory
Management Unit for the SA-110, the first StrongARM
microprocessor. He is currently involved in the microarchi-
tecture and implementation of a next-generation
StrongARM variant.

Thomas H. Lee

Thomas Lee received the S.B., S.M., and Sc.D. degrees in
electrical engineering, all from rhe Massachusetts Institute
ot Technology, Cambridge, Ma, in 1983, 1985, and 1990,
respectively. He joined Analog Devices in Wilmington,
MA, in 1990 where he was primarily engaged in the design
of high-speed clock recovery devices. In 1992, he joined
Rambus, Inc. in Mountain View, CA, where he developed
high-speed analog circuitry for 500 megabyte /s DRAMs.
Since 1994 he has been an Assistant Professor of Elcctrical
Engincering at Stantord University where his research
interests arc in low-power, high-speed analog circuits and
systems, with a focus on gigahertz-speed wireless inte-
grated circuits built in conventional silicon technologics,
particularly CMOS. He has nwice received the “Outstanding
Paper™ award ar the International Solid-State Circuits
Conference.

Peter C. M. Lin

Peter Lin was born in Taichung, Taiwan, on March 17,
1960. He received the B.S.E E. degree from Feng Chia
University, Taichung, Tatwan, in 1982 and the M.E. and
E.E. degrees from University of Urah, Salt Lake Ciry,

in 1987 and 1989, respectively. From 1990 to 1993

he designed 2M VRAM and 8M WRAM for Samsung
Semiconductor, San Jose, CA. From 1994 to 1995 he
worked for Digital Equipment Corporation, Palo Alro, CA,
where he contributed to the design of low power Alpha
and StrongARM mucroprocessors. He is currently working
for C-Cube Microsystems, Milpitas, CA. He holds onc
patent in output buffer design.

Liam Madden

Liam Madden received the B.E. degree from University
College, Dublin, Ircland, in 1979 and the M.E. degree
from Cornell University, Ithaca, NY, in 1990. Over the
past 15 vears he has designed CMOS CISC and RISC micro-
processors, including the 21064 Alpha processor, He led
the design team in Palo Alro which delivered the caches,
write buffer, memory management, and bus interface nnits
for the SA-110 StrongARM microprocessor. He is currently
employed at Silicon Graphizs, Mountain View, CA, wherce
he is Dircctor of Circuit Design and Technology.

Daniel Murray

Daniel Murray received the B.S. degree in electrical
enginecring in 1994 from the University of California,
Berkelev. In 1994, he joined Digital Semiconductor’s low
power microprocessor group in Palo Alto, CA. He con-
tributed as a circuit designer on the first ScrongARM CPU
and is currentdy involved in the implementation of another
high-performance, low-power microprocessor.

Digital Technical Journal Vol.9 No. 1 1997

61



62

Mark H. Pearce

Mark Pearce was born in Geneva, Switzerland, on June 12,
1969. He received the B.S.E.E. degree from University

of Pennsylvania, Philadclphia, in 1992, and the M.S.E.E.
degree from Stanford University, Stanford, CA, in 1994,

In 1994 he joined Digital Equipment Corporation, ar their
Palo Alto Design Center, working initially on a low power
Alpha processor prototype. He designed the write butfer
on SA-110, the StrongARM processor. He is currently work-
ing on another high-performance, low-power processor.

Sribalan Santhanam

Sribalan Santhanam received the M.S.E. degree in computer
science and engineering from the University of Michigan,
Ann Arbor, 1in 1989. He joined Digital Equipment Corp-
oration, in Hudson, MA, where he worked on the design of
the floating-point unit of the 21064 CPU and subsequently
on the design of the cache control unit of the Alpha 21164
CPU. He then moved to Digital’s Palo Alto Design Center
where he was responsible for the design of the caches for the
SA-110 StrongARM microprocessor. He is currently a pringi-
pal hardware engineer working on the implementation ofa
follow-on StrongARM microprocessor.

Kathryn J. Snyder

Kathryn Snyder (formerly Hoover) received the B.S. and
M.S. degrees from the University of Michigan, Ann Arbor,
in 1990 and 1992, respectively. She is a circuit designer
with Digital Equipment Corporation working on low-
power microprocessor designs in Austin, TX. She designed
a variety of custom circuits for the SA-110 StrongARM
microprocessor. Prior to emplovment wich Digital, she
worked for IBM in Austin, doing custom array design for
PowerPC microprocessors.

Ray Stephany

Ray Stephany received the B.S.E.E. from Rensellaer
Polytechnic Institute, Troy, NY, and an M.B.A. from
Worcester Polytechnic Institute, Worcester, MA. He joined
Digital’s Austin Research and Design Center in July, 1993.
Since that time, he has been onc of the project leads on the
StrongARM line of microprocessors. He has contributed to
the development of low power circuit design techniques,
CAD tools, verification, and overall methodology. He is
currently leading the implementation of a next-generation
StrongARM CPU and looking at SOI as a potential lower
power process for future generations of microprocessors.

Stephen C. Thierauf

Stephen Thierauf'is a consulting hardware engineer at
Digital Equipment Corporation’s Digital Semiconductor
Group, located in Hudson, MA| and is responsible for 1,/0
circuit design, on- and oft-chip signal integrity, and 1/0
modeling for Alpha microprocessors, PCI peripherals, and
other ULSI/VLSI devices. His previous work includes svstem
level signal integrity analysis, micropackaging analysis and
micropackaging design for numerous high-performance
microprocessors and peripherals.

Digital Technical Journal Vol.9 No. I 1997



Referees, February 1995
to February 1997

The editors acknowledge and thank the referees
who have participated in a peer review of the papers
submitted for publication in the Digital Technical
Jorrneal. The referees’ detailed reports have helped
ensure that papers published in the fonrnel offer
relevant and informative discussions of computer
rechnologies and products. The referees are computer
science and engineering professionals from academia
and industry, including DIGITAL consulting engi-
neers. Affiliations reflect referee status at the time
of review. Note that independent consultants and
DIGITAL employees are listed without company
atfiliation.

Mark R. Abbortt, Orcgan Staie University

Charles N. Abernethy

Jackic Albreche, Monitor Compeainy

Brian R. Allison

Dimitrt A, Antoniadis, Masscchsetts istitile
of Technology

Williany Arkins, Semiconductor Rescaich Corporation

Klaus J. Bachmann, North Carofina Stale University

Edward E. Balkovich

Prichvira) Banerjee, University of HHlinois at Urbarnc-
Chamiperign

Patrick Baudelaire

Carl . Beckmann, Dartmouth College

Robert J. Bell

Walter Bender, MIT Media Laboratory

Anthony N. Berent

Kenneth . Birman, Cornell University

Verell DL Boacn

Viadimir Bolkhovsky

Jean C. Bonney

V. Michacl Bove, YT Media Laboratory

William J. Bowhill

Scott O. Bradner, Harvard Universily

Mark Bramhall

Colin E. Brench

Karen Brouillerte

Marc H. Brown

Stewart F. Brvant

David R. Butenhof

Fred C. Canter

Luca Cardelh

Wavne M. Cardoza

Donald R. Chand, Bentley College

1. Bradeley Chen, Harcard University

Peter M. Chen, Ciriversity of Michigan

Wai-Mee Ching, 7./, Watson Research Center

James E. Chung, Massachusetts nstititte of Technology

Martthew J. Conwav, {niversity of Virginia

W. Bruce Croft, Ciicersity of Massachiusetts Amberst

Christopher L. Cromer, N/ST

Mark E. Crovella, Boston University

Zarka Cyveranovic

David Cvganski, Worcester Polytechnic Instititte

Nathanicel J. Davis 1V, Virgiia Tech

John DeTreville

David J. DeWitt, University of Wisconsin

John C. Eck

John C. Egolf

Stephen G. Eick, ATET Bell Laboratories

John Ellenberger

David C. Ellis

Joel S. Emer

Nicholas Emery

William E. Farrell, Science Application International
Corporation

W. Burns Fisher

Jose A. B. Fortes, Purdue University

Tryggve Fossum

Michael J. Franklin, (/nicersity of Maryland

Ko Fujimura, NTT Information and Communications
Laboratories

Bruce Gitton, Monterey Bay Agitarium Resecrch
Institute

Michael Glantz, Renk Xerox Research Centre, Grenoble

William Goldenthat

Paul M. Goodwin

James F. Grochmal

GregJ. Grula

Dirk Grunwald, {nicersity of Colorado

Jonathan Harris

Jetfrev R. Harrow

Paul K. Hareer

Mark . Hayter

Denise Heagerty, CTRN

George T. Heineman, Coltrmbia University

Daniel Herr, Semiconductor Research Corporation

F.S. (Sandy) Hill, University of Massachisetis Amberst

Stephen R. Hoftiman

Timothv A. Howes, Unirersity of Michigan

Henry G. Jakicla

Allan L. Jennings

Chiristopher F. Joerg

Digital Technical Journal Vol.9 No.1 1997

63



64

Douglas W. Jones, Universily of lowa

Richard S, Kaufmann

James W. Keelev

Keith AL Kimball

James Jay Kistler

Wiltred .. Kling

Charles Koclbel, Rice Uniiversity:

Vijava K. Konangi, Cleveland State University

Thomas E. Kopece

Nancy P. Kronenberg, Avid Technology. Tic.

Charles . Kukla

Riva Ladkin

William A. Laing

Richard F. Lary

Mark E. Law, Cniversity of Floridea

Alvin R. Tebeck, Dicke Universtiy

Michacel Lee, Open Engineering lic.

Yann-Hang Lee, Cndversity of Florvide

Roberr D Fembree

William H. Lenharth, Cnicersity of New Hampshire

Norbert Leser, The Open Group

Donald M. Leskiw, Syracise Unicersity

Rov Levin

Michacl Levine, Pittsburgh Supercomputing Center,
Carnegie Mellon Uniiversily

Thomas D. Little, Boston Universily

David B. Lomet, Microsoft Corporalion

Paula Long

P. Geoftrev Lowney

Mark W. Maicr, Uniiversity of Alabeaime in Fhtseille

Francois Martzloft, NIST

Barry' A, Maskas

Alan .. Matthews, Trececca Nazarene College

Roberr N. Mavo

Paul R. McJones

William M. McKeeman

John Mcllor-Crummey, Rice University

Guiseppe Menga, Politecrico di Torino. Dipartiniento di
Antomalica e Informatica

Scotr F. Midkift, Virginia Tech

Tom Miller, Microsoft Corporation

Jettrey C. Mogel

Charles Robert Morgan

Ethan V. Munson, Uniiversity of Wisconsin

Andre I Nasr

Charles Gregory Nelson

Alan G. Nemieth

William G. Nichols

Nigel Norris

William B. Novee

David R. Oran

Ricky S. Palmer

Sharon E. Perl

Mark Pesce, Enterprise Integiation Technologies

Russell W. Quong, Purdue Universily

Mustafizur Rahman

1.V, Raman

Satish 1., Rege

Steven K. Reinharde, Coziversity of Wisconsin

Steven P Reiss, Brown Ciricersity

Llanda M. Richardson

Paul [. Rubinteld

Digital Technical Jownal Vol.9 No. 1 1997

Alexander I Rudnicky, Carnegio Mellon University

Jocl H. Satez, Cideersity of Myl

Daniel Scales

Christopher Schimande, WIT Vedia Laboretory

Michael D. Schroeder

Wavne Schroeder, San Dicgo Supercomputer Center

Robert W. Scidel, Cherrles Babbege Institite

Margo Seltzer, Herverd Universily

I. Michacel C. Shand

John Shen, Carnegic Mellon Unicersity

Adam Shepela

Will H. Sherwood

Jich-Hwa Shvu, Villipore Corporation

Robert J. Simcoe

Allen K Simons

Michael DL Smith, Hervenrd Uniiversity

Thomas R. Smich 1

Robert J. Souza

Amitabh Srivasrava

Simon C. Sreely

Brian M. Stevens

Richard E. Stockdale

Alan L. Sussman, University of Maryleid

Mark Swarrout

Thomas A. Sweeney

Mark W. Svlor

Danicl Tabak, George Mason Unicersity

Owen H. Talliman

Charles P Thacker

Kurt M. Thaller

Chandramohan A Thekkath

David W, Thiel

Carl V. Thompson, Massachusetts (nstitile
of Technology

Leo D Treggian

Jonathan S. Turner, Washington University

Reha M. Uzsov, Purdue Unicersity

Edward F. Vogel

Theodore V. Vorburger, NIST

Richard ¥. Walters, Uidieerisity of California. Deaeis

Keith Waters

William Weihl]

Thomas M. Wenners

Stanlev J. Whitlock

John C. S Whvtock, BAcSENA Lid.

Rebecca Will

Douglas D. Williams

David A. Wood, ( niversity of Wisconsin



Call for Papers
Programming Languages, Tools,
and Technologies

The Digital Technical Journal seeks technical papers in all areas of programming
languages and tools for an issue to be published in the fall of 1998. DIGITAL
engineers and industry partners interested in participating in the special issue
should send topics and brief abstracts (100 words) by December 12, 1997, to

Jane Blake, Managing Editor
Digital Technical Jouwrnal
Digital Equipment Corporation
50 Nagog Park, AKO2-3 /B3
Acton, MA 01720-9843

Email: jane.blake@digital.com
Tel: 508-264-7552

Notice of the topics accepted will be sent to all authors by January 9, 1997.
The manuscript-submission date for accepted topics is March 2, 1998.

For information on topics published in the journal, the audience, writing guide-
lines, and the peer-review process, see http://www.digital.com/info/dtj/
dtj-guide.htm or contact the managing editor at jane.blake@digital.com.




dijglitall

CO) Aasare

3100 g LA

¢ —

BEAY 01~% ,0Ed O_aas [TEILYEN

87

£l

A

c W L

1

L O mvoM [BEIgE S

\\:

U0 to 9S0L%Ed Yo EIf 0% ,EIA oxat aud
W to <UHAWU> (MEM ,0EH 0% 084 Q L3972 [DELL]0EIEE
L0b%Ed Yo JLSTTTOIS MEM ,EIA 0% SIS I 53T2 [LELL]08

TICEkontiduod To 9llOLly
Fio 9S0b%ed Fo 9ISTTTOlH =k

TIeExanituod
TICEkoniguosd

£ 038

0

il

H LS & VL

q

Yl

e

JElst o myoM |8
0 [SELL]L
1L ]TEDY




	Front cover
	Contents
	Editor's Introduction
	DIGITAL FX!32: Combining Emulation and Binary Translation
	Development of the Fortran Module Wizard within DIGITAL Visual Fortran
	Architecture and Implementation of Memory Channel 2
	Integrating Object Broker and DCE Security
	A 160-MHz, 32-b, 0.5-W CMOS RlSC Microprocessor
	Referees, February 1995 to February 1997
	Call for Papers Programming Languages, Tools, and Technologies
	Back cover



