
M!32 EMULATION AND TRANSLATION

Digi
MEMORY CHANNEL 2 INTERCONNECT

Technical OBJECTBROKER SECURITY

VISUAL FORTRAN

1371 ADD - Q R 3 (,, ,,, ,,,,

STRONGARM MICROPROCESSOR

9 , * + - 1

UB - LSXQ R13, #4, R13
ln[4136] ST64 - Q R20, #

[4134] ST64 - L R12, #

,? .L

VOIU& 9 Number 1
197

Editorial
Jane C. Blake, Managing Editor
Kathleen M. Stetson, Editor
Helen L. Patterson, Editor

Circulation
Catherine M. Phillips, Administrator

Production
Christa W. Jessico, Production Editor
Elizabeth McGrail, Typographer
Peter R. Woodbury, Illustrator

Advisory Board
Samuel H. Fuller, Chairman
Donald Z . Harbert
Richard J . Hollingsworth
William A. Laing
Richard F. Lary
Alan G. Nemeth
Robert M. Supnik

Cover Design
The display o f program code in the fore-
ground and the background o f our cover
represents one o f the unique aspects o f the
DIGITAL FX!32 software, the opening
topic in this issue. By emulating an appli-
cation in the foreground and later translat-
ing the execution profile into native Alpha
code in the background, FX!32 enables
32-bit applications that run on Intel-based
machines to also run on Alpha-based
machines. The combination o f emulation
and binary translation provides Alpha users
with additional applications and good per-
formance with transparent operation.

The cover design is by Lucinda O'Neill
o f the DIGITAL Industrial and Graphic
Design Group.

The Digital TechnicalJournalis a refereed
journal published quarterly by Digital
Equipment Corporation, 50 Nagog Park,
AK02-3/B3, Acton, M A 01720-9843.

Hard-copy subscriptions can be ordered by
sending a check in U.S. funds (made payable
to Digital Equipment Corporation) to the
published-by address. General subscription
rates are $40.00 (non-U.S. $60) for four issues
and $75.00 (non-U.S. $1 15) for eight issues.
University and college professors and Ph.D.
students in the electrical engineering and com-
puter science fields receive complimentary sub-
scriptions upon request. DIGITAL customers
may qu* for gift subscriptions and are encour-
aged to contact their account representatives.

Electronic subscriptions are available at
no charge by accessing URL
http://www.dipital.~~m/info/subscription.
This service will send an electronic mail
notification when a new issue is available
on the Internet.

Single copies and back issues can be ordered
by sending the requested issue's volume and
number and a check for $16.00 (non-U.S.
$18) each to the published-by address. Recent
issues are also available on the Internet at
http://www.&pital.com/info/dtj.

DIGITAL employees may order subscrip-
tions through Readers Choice at URL
http://webrc.das.dec.com or by entering
VTX PROFILE at the OpenVMS system
prompt.

Inquiries, address changes, and compli-
mentary subscription orders can be sent
to the Digital Technical Journal at the
published-by address or the electronic
mail address, dtj@digital.com. Inquiries
can also be made by calling the Journal
office at 508-264-7549.

Comments on the content o f any paper and
requests to contact authors are welcomed
and may be sent to the managing editor at
the published-by or electronic mail address.

Copyright O 1997 Digital Equipment
Corporation. Copying without fee is per-
mitted provided that such copies are made
for use in educational institutions by faculty
members and are not distributed for com-
mercial advantage. Abstracting with credit
o f Digital Equipment Corporation's author-
ship is permitted.

The information in the Journalis subject
to change without notice and should not
be construed as a commitment by Digital
Equipment Corporation or by the compan-
ies herein represented. Digital Equipment
Corporation assumes no responsibility for
any errors that may appear in the Journal.

ISSN 0898-901X

Documentation Number EC-N7963-18

Book production was done by Quantic
Communications, Inc.

The following are trademarks o f Digital
Equipment Corporation: Alphaserver, DEC,
DIGITAL, the DIGITAL logo, DIGITAL
UNIX, OpenVMS, and TruCluster.
ARM and StrongARM are registered trademarks
ofAdvanced RISC Machines Ltd.
BEA ObjectBroker is a registered trademark o f
BEA Systems, Inc.
Bull is a registered trademark o f Bull Worldwide
Information Systems.
Cray is a registered trademark o f Cray Research,
Inc.
Encore is a registered trademark and EMORY
CHANNEL is a trademark o f Encore Computer
Corporation.
Gradient is a registered trademark o f Gradient
Technologies, Inc.
HAL is a registered trademark of HAL Computer
Systems, Inc.
Hitachi is a registered trademark o f Hitachi, Ltd.
HP is a registered trademark o f Hewlett-Packard
Company.
IBM and SP2 are registered trademarks and
PowerPC and PowerPC 603 are trademarks o f
International Business Machines Corporation.
Intel and Pentium are registered trademarks o f
Intel Corporation.
Kerberos is a trademark o f Massachusetts
Institute o f Technology.
Lucent Technologies is a trademark o f Lucent
Technologies.
Microsoft, Visual Basic, Visual C++, Win32,
Windows, and Windows NT are registered
trademarks and ActiveX and Visual J++ are
trademarks o f Microsoft Corporation.
MOTIVE is a registered trademark o f Quad
Design Technologies, Inc.
NCRis a registered trademark ofNCR
Corporation.
NEC is a registered trademark o f NEC
Corporation.
Object Management and OMG are registered
trademarks and CORBA is a trademark o f the
Object Management Group.
Olivetti is a registered trademark o f Ing. C .
Olivetti.
Oracle Parallel Sewer is a trademark o f Oracle
Corporation.
PAL is a registered trademark ofAdvanced Micro
Devices, Inc.
Photoshop is a trademark ofAdobe Systems,
Incorporated.
POSIX is a registered trademark o f the Institute
o f Electrical and Electronics Engineers.
SCO is a registered trademark o f The Santa Cruz
Operation, Inc.
Siemens Pyramid is a registered trademark o f
Siemens Pyramid Information Systems, Inc.
Strams is a registered trademark o f Stratus
Computer, Inc.
Synopsys is a registered trademark o f Synopsys,
Inc.
Tandem is a registered trademark o f Tandem
Computers Incorporated.
The Open Group is a trademark o f the Open
Software Foundation, Inc. and X/Open
Company Ltd.
TPC-C is a registered trademark o f the
Transaction Processing Performance Council.
Transarc is a registered trademark o f Transarc
Corporation.
UNIX is a registered trademark in the United
States and other countries, Licensed exclusively
through X/Open Company Ltd.
Verilog is a registered trademark o f Cadence
Design Systems, Inc.
Viewlogic is a registered trademark and VCS
is a trademark ofviewlogic Systems, Inc.

Contents

DIGITAL FX!32: Combining Emulation and
Binary Translation

Development of the Fortran Module Wizard
within DIGITAL Visual Fortran

Architecture and Implementation of MEMORY CHANNEL 2 I\/l,lrco Fillo ~ n d 1Gch;lrd R . Gillcrr 27

Integrating ObjectBroker and DCE Security John H . I',l~,odi a11ci Fred W. ISLI~~I ICI . 42

A 160-MHz, 32-b, 0.5-W CMOS RlSC Microprocessor Jntncs hilonta~lnro, 1Gchn1.d 'T. Wirck, 49
Icrishna Anne, Andre\\. J . 131;1ck, Elizabeth M. <:oopcr.
I>anicl W. l>obbc~puhl, I'nul 1\11, I)on~~liuc, Jim Ello,
Gregory \V. Hoepplier, 13avid 10uckcmycr,
'I'homns H . Lcc, Peter C. M. Lin, Liam Maddcn,
Ilaniel Murra!), &lark H. l'carce, S~.ibalan S n ~ i t l i . ~ ~ l ~ ~ l l ,
Kn t l~ ryn J . Snyder, Rny Stepliany, and
Stcphcn C. Thicvat~t'

Editor's
Introduction

N o matter lie\\, po\\rerfi~l tllc undcr-
lyi11g IILISC~\\..I~C, 111ost impor t ; \~~t to
~lscrs is ho\\. rIi,~t po\\,cr trn~lslatcs to
greater ;lpplication pel-hrnlnncc ,111ti

a\~ailabilin. Among the di\.crsc topics
in this issue o f rIic./r,rl~-~zal are inno-
\,ati\,c \\.ays engineers ha\.e devised
to nlcet application pcrhr~nancc and
ii\~nilnbility rccluircnlcnts, 2nd nc\\?
tools for application? de\,elopers.

DIGITAL FS!32 is a ullicluc sort-
ware product that makcs n\,ail'll)lc
11~111drcds of app1ic;itions \\zrittcn
tbr Intel machines to i~scrs ofAlpl~a
milchincs. 1)cscl.ibcd by Iby Hook\\,ay
2nd h/lark Hcrdeg, FX!32 colnbincs
soli\\,arc crn~rl.~tion and ad\ianccd
bi11ary tra~islation tccll~liq~lcs to e11i11)Ie
32-bit applications that run on Intel-
based ~ilachincs with Windo\\a N T
to also run o n 64-bit RISC Alpha-
bascd machines \\.it11 Wilido\\rs NT.
'T'lic design pro\idcs both thc pcrfor-
mance bcncfi ts ,ind tlic trnllsparcncy
of operation that the project cngi-
nccring tcdm so~~gl . i t for ilscrs.

Also ciesig~icct for t l ~ c Willdo\\.s
cnviro~lnlent is 1)IGITAL Visual
Fortran, 3 tool for Fortran dc\-elopers
tliilt conibincs tccl~nologics ti-om
l)IC;ITAI, nnd Microsoft Corpol-a-
tion. 1,eo Trcggiari ~.c\ric\\,s tllc tool's
colnponcnts, \\,hicli incl~.ldc tlic
(lomponent Object h~lodel ((:OiM),
Fortran 90, and ~Microsofi Dc\,clopcr
Studio. H c addresses the question of
u,hy iie\~clopers need help accessillg
dyna~nic link libraries and servers
based on COIM, dncl tlicrl k)cuscs on
the ne\\,l!l cre,ltcd tool that providcs
this f~nctionality, the Fortran A~Iodulc
Wizard.

1)IGITAL's shared-~iicmory cluster
i~~tcrconncct, MEMORY CHANNEI.
2, dcli\icl.s the high Ic\,cls o fcompu-
t;lrionill pcrfor~nnncc ncccss31-\, to
su1qx)rt the Iilrgcst rcchnicr~l anci
commercial applications. Marco I.:illo
and IQck (;illett assess cspcricnces
\\fit11 the first i m p l e m c ~ i r a t i o ~ ~ of
MEhIORY CHANNF,l. that led t o

S L I C I ~ C I ~ ~ ~ ; ~ I I ~ C I I I C I ~ ~ S ns thc cross-b.lr
design in this latest i lnple~ncntat io~~.
7 7 I hey co~lclucic *it11 pcrforn7ancc
data that cicmo~lst~-ate unp.~rallclcd
perk)rmancc ill terms o f latency and
band\vidtli compnrcd \\.ith traditional
intcrconnccts. M EIMORY <:HA;\'Nt;,I.
2 pro\riiics 1:ltcncy of lcss than 2.2
~uic~.osccollcis ~ ind hand\\,icitli of
1,000 ~llcgab),rcs per second in all
8-node cluster.

1)ata security has long hccn impor-
rant to system managers but 11ot easily
acliic\,cd in distributed Iictcrogencous
spstcnis. I)IGITAI, and KEA Systcms
h;l\,c intcg~:atcti ObjectRrokcr middle-
\\':ire \\sit11 tllc l>istrib~~tcci Colilpi~ting
En*ironlnc~lt's Gcnclic Security Scr\~icc
Application Progrummi~~g I~~tcrkicc
(GSS-API), as dcscribeci here by John
I'arodi anci Fred Rurghcr. The authors
csii~nine the choicc o f GSS-API h r
0 bjcctJ3rokcr nnd f ~ t u r c directions
in a~~t l i c~~t icnr ion soh\,nr.c.

1)csign decisions 111ndc in the de\,cl-
opmclit of DIGITAL'S StronLgAlU4
microprocessor \\.ere driven by the
sometimes opposing I-cquircmcnts
o f high pcrhrmnnce and lo\\, po\lpcr
consumption. T.irgcteJ for usc in
h , ~ ~ ~ d l ~ c l d applin~iccs usu;llly po\\,crcd
by con\,cnrional battc~.ics, StrongAkM
offers significantly higl~cr pcrk)r~nancc

Vol. 9 S o . I 1997

than conlparablc microprocessors: It
opcr;ites a t 160 MHz, dissipating lcss
than 450 milli\\.atrs. James ~Montanaro,
kc11 CVitclc et al. step through the
dccisions designers made t o ilnplc-
nlent tlic ARIM V4 instruction set
ti-om Ad\,anccd 1USC Machines Ltd.

Upcoming in tlic nest issue o f
t l i c , / o ~ ~ ~ * ~ / a l nre technical papers
a b o ~ ~ t new AltaVistn sofn\,are and
'1 ncw \Yindo\\rs N T pcrsonal work-
station based on an Alplin 64-bit
IUSC processor. To \lic\v the results
o f a rcccnt sur\,cy sent to , /o~, l~-~zul
PVch subscribers, see http://\\wq\l.
digital.com/info/dtj.

I
Raymond J. Hookway
Mark A. Herdeg

DIGITAL FX!32:
Combining Emulation
and Binary Translation

The DIGITAL FX!32 software product uniquely
combines emulation and binary translation
to enable any 32-bit application that executes
on an Intel x86 microprocessor running the
Windows NT 4.0 operating system to be installed
and to execute on an Alpha microprocessor run-
ning Windows NT 4.0. Benchmark tests indicate
that after translation, x86 applications run as
fast on a 500-MHz Alpha system with DIGITAL
FX!32 software installed as on a 200-MHz Pentium
Pro system. The emulator and its associated run-
time software provide transparent execution
of applications written for x86-based platforms.
The emulator produces profile data that is used
by the translator and takes advantage of trans-
lation results as they become available. The
translator provides native Alpha code for the
portions of an x86 application that have previ-
ously been executed. A server manages the
translation process for the user, making the
process completely transparent.

Three factors contribute to the success of a niicro-
processor: price, performance, and sohvare a\lailability.
The DIGITAL FX!32 product addresses tlie third fac-
tor, sohvarc availability, by making hundreds of new
applications available on Alpha-based platforms run-
ning the Windo\vs N T operating system. 1)IGITAL
FX!32 sohvare combines emulation and binary trans-
lation to provide fast, transparent cxccution of Intel
s 8 6 applications 011 Alpha systems.

Since its introduction in 1992, the Alpha micro-
processor has been the fiastest microprocessor
available. A large number of native applications are
available on Alpha systems, particularly those applica-
tions that require a high-performance processor. With
the i~itroductio~i of DIGII-AL. FX!32 softsvare, 32-bit
progralus that can be i~istalled and executed o n x86
systems running the Wiodo\vs N T 4.0 operating sys-
ten1 cau also be installed and esecutcd on Alpha s)s-
terns running Windo\\! N7' 4.0. Except for ha\zing to
spccitj, that a program is an xS6 application, installing
and running an application is the same on an Alpha
system as 011 an s86 s) s t e ~ ~ i . Thc pct-formance of an
s 8 6 application running on a high-end Alplia system is
similar to the perfornlance of the sarnc application
running 011 a high-end x86 system.

A nurnbcr of systems have successfully used cmi~la-
tors to run applications on platforms for whicli the
applications were not initially t'irgetecl.',' The major
dra\\~back has bccn poor perfor~uance.~ Set'cral cmula-
tors have used dynamic translation, transl'ating small
segnlents ofa program as it is executed, to achie\~c bctter
perfornlancc than that obtained by an intcrprctcr
alo~ie.~-' Dynamic translation in\lolves a basic trade-off
between the amount of time spent translating and the
resulting bencfit of the u-uislation. If a11 emulator spends
too much t i~ne on the translation a id related processi~ig,
the executing program will be unresponsive. This limits
the optimizations that can bc performed by the emula-
tor using d!rna~iiic translation.

FX!32 overcomes the performance problem by not
doing any translation wliile the application is csccut-
ing. lbther, FX!32 captures an execution profile that is
later used by a binary translator" to translate into nati\~c
Alpha code those parts of the application that have
been executed. Since tlie translator runs in the back-

ground, it can use computationally intcnsi\.c algo-
rithms to improve tlie quality of the generated code.
To our lu~o\vledge, FX!32 is the first system to explore
this combination of emulation and binary translation.

In this paper, cvc describe hocv FS!32 \\!orlts. Wc begin
with an overvie\v and disci~ss each of tlie 111ajor compo-
nents in more detail. We then present some benchmark
test results and briefly describe scvcral limitations of the
current \lersion of 1)IGITAL FX!32 so%va~-e.

Overview

On Alpha systems, the Windocvs NT operating system
uses an c~n t~ la to r to run 16-bit s86 applications. These
applications can be installed and run in tlic samc \\pay as
they are installed and run on s 8 6 systclns, but thc cxe-
cution is slocvcr. Tlic cnlulator built into E'S!32 pro-
vides a similar capability for 32-bit x86 applications.

Unlikc the crnulatio11 sofnvarc in the 16- bit c~lvi-
ronnlcnt, FX!32 provides a binary tra~lslator tlint
translates 32-bit s 8 6 applications into native Alphn
code. The translation is done in tlie background and
req~~i res no user interaction. Using background trans-
lation allows the translator to perform opti~nizations
that, in terms of computational resources, \\,auld be
too expcnsi\~c to accomplish \\~liilc an application is
running. An application translated by means ofFS!32
runs up to 10 tinles hster than the samc application
r~uining 1111dcr the c ~ i i ~ ~ l a t o r .

13TGITAL FX! 32 sofhvarc consists o f the k~llo\\,ing
seven major components:

1. The transparency agent, \\lhich pro\idcs for trans-
parent launcl7i1ig of 32-bit s86 applications.

2. The runtime, \vhich loads s 8 6 images and sets up
the run-time environment to execute them. As part

TRANSPARENCY
AGENT

X86 IMAGE a

of loading an image, the runtime component jack-
ets importcd application programming interface
(U I) routines. Jackets are small code fragments
that allo\\f the xS6 code to cdll Alpha Windows NT
Al'I routines.

3. The emulator, \\lhicli runs an s86 application malc-
ing use of translated code \\~licn it is a\~ailable.

4. The uanslator, which produces a translatcd image
usi~ig prof lc inti)rmation received fi-o~n the emulator.

5. Thc database, \\-hich stores execution profiles pro-
duced by the emulator and used by the translator. . .
lranslatcd imagcs arc also stored in the database,
along with coilfiguration infor~nation.

6. 'I'he server, \vhich maintains the database and runs
the translator as appropriate.

7. Thc manager, tvliicli allo\vs the user to control
resources i~scd by the 1)IC;I'rAL FS!32 software.

Fig~lre 1 slio\\~s thc relationships bct\\~cen these
major co~iiponents, each of \\,l~ich is discussed in Ii.lorc
detail in the sections that follo\\r.

The Transparency Agent

The transparency agent provides for transparent
launching of 32-bit x86 applications. Launching an
application 011 tlic Windows NT operating system
al\vays results in a call to the CreatcProcess API routine.
By hooking calls to this routine, the transparency agent
can csaminc c\cry image as it is about to be cxccuted.
If n call to Createprocess specifies that an s86 image is
to be esecuted, the transparency agent invokes the run-
time componcnt to execute the image.

FS!32 inserts tlic transparency agent into the address
spacc ofeach process. A process that co~ltains the trans-

RUNTIME

EMULATOR
DATABASE
<REGISTRY>

SERVER

Figure 1
DIGITAL FS! 32 Systcln (:ompo~~ents

\;oI. 9 No. 1 1997

jacket routines is to move arguments from the s86
stack to tlie appropriate Alpha registers, as dictated by
the Alpha calling standard. Some jaclcet roiltines pro-
vide special sen~antics f (~ - the native rolltine being
called, as recluired by FX!32. For example, the jaclcet
for the GetSystcmDirectory routine rcturns the pat11
to the FX!32 directory rather than the path to the true
system directory so that x86 applications do not over-
ci~ritc native Alpha DLLs.

For an x86 application to run ~ ~ n d e r FX!32, every
image it loads must be either an x86 image or an Alpha
image for which jackets exist. Thcrcforc, FX!32 pro-
vides jackets for all tlie DLLs that i~iiplenient the
Win32 interface and for many rcdistributnble 1)LLs.
FX!32 currently provides jackets for more tllan 50
native Alpha DLLs, which has enabled tlie FX!32 devel-
opment team to run al~nost all the co~nnlercial applica-
tions tested. Each ncw release of 1)IGI'I'AI.. FX!32
soh!:~re provides additional jackets, and the developers
intend to jacket nc\v interfaces JS they are released.

The Emulator

The filndaniental job of the emulator is t o run x86
applications before they are translated. The first time
an x86 image cxccutcs under FX!32, the image is exe-
cuted by tlic emulator.

The emulator also serves as a backup for translated
code. Because it is not possible to statically determine
all thc codc that can ever be exccutcd by an application
(especially for applications that generate code on-tlic-
fly), the emulator is always present to execute such
untranslatcd x86 application codc. l're\rio~~s binary
translators built by DIGITAL, also dcpcndcd on the
prucnceofan emulator in this role.: Emulator perfor-
mance is more of an issue for FX!32 because, unlike
those earlier binary translators, all application code is
interpreted .illhen the x86 application is first run.

The emulator is an Alpha asscmblp language program
that interprets the subset of x86 instructions that can be
executed by a Win32 application. VVIlile an x86 applica-
tion is running, the x86 processor state is kept partially
in Alpha registers and partially in a per-thread data
structure called the CONTEXT. The xS6 integer rcgis-
tcrs arc pcr~nancntly niappcd to AJplia rcgistcrs, and
Alpha registers store the statc of' the x86 condition
codes. Wlde the e ~ n u l ~ t o r is running, a dedicated Alpha
register points to thc CONl-F,XT. Tlic CON'I'"EX1'
stores the x86 per-thrcad processor context and any part
of tlie x86 processor statc that must be mai~ltained
across calls to other parts of the system, ti)r cxamplc,
calls to Alpha AI'I routines.

Pipelined Dispatch
The structure of the emulator is a classic fctch-and-
evaluate loop. 'The emulator dispatchcs on the first
nvo bytes of each instruction, performing the lookup

in a table of 64IC entries. Each entry contains the
address of the routine to execute to interpret an
instruction and the length of tlie instruction.

The structure of the dispatch loop has been care-
f i ~ I Iy cratted to make efficient use of 64- bit Alpha reg-
isters and to efticicntly schedule the execution of code
in the loop. Software pipelining is used to overlap the
fetch and dispatch table lookup for the next instruc-
tion with the execution of the current instruction.
At the top of the loop, at least eight bytes, starting at
the address of the current instruction, are in Alpha
registers. Length information from the dispatch table
determines the first two bytes of the next instruction,
allo\ving the dispatch table loolc~~p to be overlapped
with the csccution of the current instruction. A fetch
of additional bytes from the instruction stream is also
initiated. Finally, the loop dispatches to the routine
whose address \vas obtained from the table on the pre-
~ ~ O L I S iteration of tlie loop.

The indi\lidual routi~ies lia\le been factored by using
subro~~t ines and coroutines to perform operations like
operand fetching, making them as small as possible. As
a result, the eniulator code required to execute the
most frequently cxecutcd x86 instructions tits in the
first-level cache.

Condition Code Evaluation
Condition codes are generated by the execution of
Inany of tlie xS6 ilistructions. Wc lia\le obser\!ed that
condition codes arc fi-cqi~ently set and relatively
infrequentl\~ examined. :l?I~e emulator talces advan-
tnge of this by e\~aluating the condition codes only
\vhen t11cy arc used, that is, by using a "lazy evalua-
tion" technique. The execution of a typical instruc-
tion saves only enough state to allow the evaluation
of condition codes, if required, at a later time. This
talces much less effort than initially evaluating the
condition codes. The additiotial advantage in defer-
ring the evaluation is that only the condition codes
that are used need to be generated. For example, tlie
o\rerflow co~ldit ion code may ne\!er be computed if
only tlie zero flag is used.

Floating-point Instruction Emulation
The SO-bit s 8 6 floating-point registers arc modeled
by a stack of 64-bit mcniory locations that contain
floating-point values. 'The decision to use 64-bit inter-
nicdiatc values, I-ather than to faithfitlly replicate the
80-bit model, was based on the need to achieve good
performance when executing x86 floatil~g-point code
o n the Alpha processor. Tliis decision was supported
by the b c t that the V\7indo\\ls NT operating system also
uses a 64-bit floating-point model. Although t l~is is an
approximation, out- experience to date has shown that
this was a good conipromisc. Very fecv applications
rely on tlie full precision provided by the x86 floating-
point unit's (FPU's) SO- bit registers.

1)igital Tcclinic~~l Journal

. l l ie cn l~~ la to r also implements a somewhat simpli-
fied model of the xS6 FPU's register file. Most instruc-
tions use the xS6 FPU register file as a traditional
operand stack; however, several instructions can crcate
a register file state that is not strictly a stack by freeing
registers in the middle of the stack, by moving the
stack pointer without pushing o r popping, or by ini-
tializing the register file in a way that breaks the stack
model. Modeling the filll complexity of the x86 FPU
register file would bc extremely expensive, and experi-
ence has shown that almost all programs use the regis-
ter file strictly as a stack. The current version of the
emulator takes advantage of this. We are investigating
ways to rnodel the floating-point registers in a way that
maintains good performance but docs not depend on
their being treated as a stack.

Generation of Profiles
While it is interpreting an xS6 program, the emulator
generates profile data for use by the translator. The
profile data includes the following information:

Addresses that are the targets of call instructions

(S O L L I Z ~ u ~ ~ ~ c ' s s , furget a~dre.s.s) pairs for indirect
control transfers

Addresses of instructions that make unaligned rcf-
erences to memory

Thc translator uses this information to generate
routines, that is, units of translation that approximate
a source code routinc. The emulator generates profile
data by inserting values in a hash table whenever a rel-
evant instruction is interprctcd. For example, as part of
interpreting the call instruction, the en~ulator makes
an entry in a hash table that records the target of the
call. When an image is unloaded (either as a result of a
call on the FreeLibrary routine o r when thc applica-
tion exits), the runtime processes the hash table to
produce a profile file for that i~nage. This profile is
processed by thc server and can result in thc server
invoking the translator to create a new translation of
the image.

To detect available translated code, the emulator
uses the same hash table that it cmploys to gather tlie
profile data. T l ~ c x86 addresses for which there are
translated routines and the address of the corrcspond-
ing translated code are entered illto the hash table by
thc runtime when it loads an x86 image that has been
translated. Wlien a call instruction is interpreted, the
emulator looks up the target address. If a correspond-
ing translated addrcss exists, the eniulator transfers
control to that address.

The Translator
The server invokes the translator to translate x86
images for which a profile exists in the database. The
translator uses the profilc to produce a translated

image. On subsequent esccutions of thc irnage, the
translated code is used, substantially speeding up the

' t1011. applic? '

Structure and Order of Operations
The translator has eight major co~nponents (or phases):
the regionizer, build, the register mangler, the condi-
tion code mangler, improve, the code selector, thc
scheduler, and the assembler. (A11 additional phase
that performs various peephole optimizations is dis-
abled in the DIGITAL FX!32 V1.O translator.) Tlie
major components fi~nction as follows:

1. The Regionizer-The regionizer uses data in the
profile to divide the source image code into rou-
tines, which are described in the scction Generation
of Profiles. Each call target in the profilc is used to
generate an entry to a routine. The regionizer rep-
resents routines as a collection of regions. Each
region is a range of contiguous addresses, which
contains instructions that can be reached from the
entry address of the routine. Unlike basic bloclcs,
regions can have n~ultiple entry points. The small-
cst collection of regions that contai~l all tlie instruc-
tions that can be reached from the routine entry is
used to represent the routine. Many routines have a
single rcgion. This representation \\/as chosen to
efficiently describe the division of the sourcc image
into units of translation.

The regionizer builds routines by following the
control flow of the source image. Wlicn an indirect
jump instruction is encountered \vhilc following
the control tloc\; the poss~ble targets of the instruc-
tion are obtained from the profile. W ~ t l l o ~ ~ t this
profilc ~nfor~nntion, ~t ivould be vcrjl difficult to
reliably identi* these targets, and indirect ju~nps
would have to be treated as returns from the rou-
tine. The profile information makes it possible to
reliably generate a rnorc complete reprcsent'ition of
routlnes with correct control tlo\v.

After the regionizer runs, cach of the other major
components is rtui in sequence for each routine.

2. B~~ild-Ruild rcparscs the x86 instructions in the
routine to create an internal representation (I R) of
the routine for use by the subsecluent colnponents.
The IR is a graph of basic blocks and is similar to the
IR used by many optiniizing compilers.

3. The Register Manglcr-The initial IRis a straight-
forcvard representation of the sourcc sS6 code.
Tliis rcprcscntation ignores the otlcrlap of the x86
registers; the I R treats each occurrence of FAX,
AX, AH, and AL as a separate rcgistcr. The rcgistcr
ma~lgler adds insert and estract operations as net-

essary to represent the actual semantics of the s 8 6
rcgisters.

Digiral Technical Journal Vol. 9 No. 1 1997 7

4. The Condition Code Manglcr-The effect of sS6
instructions on condition codes is represented
i~nplicitly in the initial IR. Thc condition codc nian-
gler adds instructions to explicitly generate condi-
tion codes. Since the condition code ~nangler
~~nders tands the co~itrol flo~v of the entire routinc,
it knows \\.hen condition codes are live and only
adds code to gcnerate condition codes \\/hen they
are used Iatcr In the r o ~ ~ t i n e .

5. Inipro\~e-Improve performs scvcral transforma-
tions tliat produce codc Inore suited to tlie Alpha
architecture. In the initial IR, each push and pop
instruction is csplicitly represented as a decrement/
incrcrnent of the sS6 stack pointcr, accompanied by
a store/load. Improve collects all the rnanipl~lation
of the sS6 stack pointer into a singlc dccrc~ncnt at
the beginning of a basic block and a singlc incrc-
nient at the end of that block. Improve also uses
simple value numbering and analysis of memory
refercnccs to try to eliminate loads and stores to
both the xS6 stack and the floating-point stack and
to perform constant folding. Although Improve
performs only relatively simple optimizations o n a
single basic block, \ale have fo~lnd it to bc quitc
effecti\!e in improving the quality of the codc that is
generated.

6 . 'The Code Selector-The cocie sclcctor transforms
the I R fro11i a representation that contains mostly
x86 instructions to one that contains only Alpha
instructions. This transformation is done instruction
by instruction, \vith each x86 instruction being
replaced by a sequence of Alpha instructions tliat
produce thc same effect. The iniplementation of thc
code selector is based on the TWIG code generator.'
Although the code selector is capablc of dcaling
with mucll morc complicated patterns oE instruc-
tions, this capability is not currently used.

7. The Scheduler-After tlie code selector is run, all
the instructions in the IR are Alpha i~istructions.
The scheciulc~- reorders the instructions \\lithi11 a
basic block to minimize t l ~ e cycle cou~ i t for the tar-
get processor.

S. The Assembler-Tlie asserlzblcr builds the output
translated image.

Use of Profile Data
The regionizer is the only component of thc current
translator that uses the control flour infi)rniation i11 tlie
protilc. Thc rcgionizcr uscs the protilc to determine
\vhich parts of tlie source imagc are translated. Future
versions oftlie translater will use the profile to perform
path-directed opti~nizations and to place code so as to
reduce cache misses. Those changes will improve the
pcrforniance of translated codc.

Retr~inslation of an image is triggered bv growth in
the size of the profile. Because profile data is generated
only \vhen the enlulator esecutes previously untrans-
lated parts of the source image, an i~lcrcase In tlie size

of the profile i~idicates tliat new parts of thc program
have been esecuted. Retranslating with the new pro
file \v~l l cause these additional parts of thc Image to be
translated.

Alignment Issues
On an Alpha system, references to niemory locations
that are not naturally aligned r e s ~ ~ l t in exceptions that
are handled by the Windows NT kernel. Alignment
exceptions call be avoided by using unaligned code
sequences that use the LDQ-U and STQ-U instruc-
tions. Unaligned code scquences are slower than
aligned sequences for accessing locations that are nat-
urally aligned but much faster for accessing locations
that are not naturally aligned. Native Alpha colnpilers
al\\;ays try to generate unaligned code sequences \\then
referencing unaligned data to avoid die expense o f
dealing with alignnient exceptions.

When generating tlie code for an instruction that
refcrc~lccs memory, the code selector must determine
\\~hctlicr to L I S ~ an aligned sequence or an unaligned
scquencc To make the determination, the code selec-
tor nccds to know the alignment of the address being
rcfcrenced. In general, this cannot be determined by
static analysis of the st36 code. To solve the problem,
the codc selcctor uscs information in the profile about
tlie alignment of menlory addresses. The prof le con-
tains the address of every instruction that made an
unaligned reference to memory. The codc sclcctor
generates u~ialigned sequences for those instructions
and aligned sequences for all other melnory rcfcrences.
Although this codc gcncration proccss is effective most
of tlic time, some progralns exhibit different memory
rcfercncc bcha\lior 0 1 1 successive runs. For those pro-
grams, alignment csccptions can still occur.

Shadow Stack
Tra~islati~ig rct111.11 instr~lctions presented partici~lar
problcms for the translator. The translation of a call
instruction saves the x86 return address on the xS6
stack and tlicn calls the translated codc for the routine.
After the translated call, the sS6 return address is on
tlie s 8 6 stack and the corresponding native return
addrcss is in an Alpha rcgistcr. This maintains the xS6
stack in the expected x86 state. One way to translate a
return instruction \vould be to use the xS6 return
addrcss to loolc up a corresponding Alpha address;
however, it is desirable to avoid the cxpense of a hash
table lookup on every return. In tlie usual case, the
return address is not changed by the routine and the
translated code can pop tlie x86 stack and perform a
native ret~lrn by 11sing the native return address. T\vo

problems must be solved, though. First, some mecha-
nisrn is needed to determine if the xS6 return address
has been modified. Sccond, a location is needed to
save the native return address. Both problems are
solved by using the shadow stack.

The shadow stack resides at the top of the native
Alpha stack and is maintained by tlie translated code
(with help fi-om the ernulator). A shadow stack frame is
crcatcd for each call of a translated routine. When onc
translated routine calls another, the calling routine saves
the x86 return address and the current xS6 stack pointer
in its shadow stack frame. The called routine then savcs
the native return address in the calling routine's shadow
stack frame. O n return, the called routine expects to
find the x86 return address and the current x86 stack
pointer in the calling routine's shadow stack frame. In
this case, tlie called routine is returning to the enviro~l-
mcnt that the calling routine expected and performs a
native return. If the value of either the return address
or the stack pointer has changed from the value
expcctcd by the calling routine, the called routinc
returns to the cmulator.

In a similar manner, the emulator uses thc informa-
tion in the shadow stack to determine u ~ h e ~ i it can
return to translated code. A number of conditions
can causc translated code to reenter the emulator. For
cxarnple, the cmulator is entered if the target of a
translated indircct jump instruction is not known at
translation time. Having the emulator return to trans-
lated codc on a return instruction mininiizes the
aniount of time tliat is spent in the emulator; however,
tlie elnulator can only rcturn to the translated code ifit
Icno\vs that it has a valid retilrn address. The shadow
stack provides a mechanism to perform that validation.

The Database

Thc database consists of two parts. As described for
the runtime, thc first part of thc database is a directory
tree that contains prof le files, translator log f les, and
translated images. 'The second part of the database is
kcpt in the registry and consists of information about
s86 applications and iniages that the DIGITAL FX!32
sofnvare has run on the system, together ~ t i t l i config-
 ration inforniation. 7y11e conf guration information
includes the maximum anlount of disk space that can
be used by t;S!32, the maximum number of images
that can bc stored in tlic database, the default transla-
tion options, tlie work list that the server uses to

schcdulc translations, and the DatabaseDirectoryList.
The DatabascDircctoryList is a list of paths to addi-
tional databases that arc to be searched for image pro-
files and translation results when the image is first
executed. Directories on this list can bc uscd to access
information about the image from other machines on
a nenvork, making available to a user translations per-
formed on another, perhaps more powerful, machine.

The Server

The server is a Windows NT ser\iicc tliat normally
starts whenever the systern is rebooted. Tlie server
,~utomatically runs the translator when appropriate,

thus making the translation process completely trans-
parent to the user. Tlie server also maintains the data-
base t o control DIGITAL FX!32 resource usage.

The Manager

Usually the operation of DIGITAL FX!32 sofhvare is
completely transparent to thc uscr. L i e any other pro-
gram, though, FX!32 consumes systcm resources and a
user must be able to control that resource usage. One
of the roles of the manager is to provide a user interbce
to the configuration information kept in the database.

Figure 2 shows the manager \vi~ido\v. The upper
pane contains information about the various applica-
tions that have been run on the systern: the total
amount of disk space being i~sed for prof les and trans-
lations of images loaded by the application, the num-
ber of t i~nes the application lias been run, the date
when it was last run, and the optinlizer (translator)
status. The lower pane contains information about
the images that have been loaded by tlie highlighted
application in tlie upper pane: the total amount ofdisk
space used to store tlie profile and translation of tlie
image, tlie number of times the iniagc has been
loaded, the date o n which it cvas last loaded, and thc
status of the last translation of the image.

By interacting with tlie manager, the user can con-
trol various aspects of FX!32 operation, such as the
maximum amount of disk space to use, which informa-
tion to retain in the database, and when the translator
should run.

Results

Tlic DIGITAL t;X!32 developme~lt team had t ~ v o pri-
mary goals for the sohvare: (1) to acliic\/c transparent
execution of 32-bit x86 applications J J I ~ (2) t o yield
approximately the same performance as a liigh-end
xS6 platform whcn running applications on a higli-
performance Alpha system. The 1)IGITAL FX!32
product meets both goals.

Transparency is provided by tlie transparency agent
and a run-time environment that can load and execute
an x86 application cvithout a rranslation srcp. Appli-
cations can be launched and executed on an Alpha
systcm that is running FX!32 just as they can on an
x86 system. We have performed extensive testing
of more than 7 5 applications that run using FS!32,
i~~c lud ing major conlmercial applications such as
Microsoft Officc 95, Visual Rasic 4.0, Photoshop 4.0,
and Core1l)lWW 6.0.

Digital Tcchnical Jour~inl Vol. 9 No . 1 1997 9

$ FX! 32 Manager I
- -

1 4 1 2/1 6/96 03.1 7: 02 PM Success
1 4 1 2/16/96 0 3 1 7:01 PM Success
14 12/1 6/96 0 3 1 7:01 PM Success
19 12/16/96 0 3 1 7:02 PM Success
14 1211 6/96 03:17:02 PM Success

Figure 2
-1-hc 13IC;lTAl. FX!32 M'in3gc1.

l)IC;ITAI, FX!32 sotiware also mct its performance
goal. Figurc 3 sl io\ \~s the relative performance o n
BYTE il/lqi,c~zir~e's BYTElnark benchmark o f a 2 0 0 -
megahertz (M H z) l ' c n t i ~ ~ m P r o s)/stern and a 5 0 0 -
M H z Alplia system running FX!32. F o r this
bcnchniark, thc Alpha system provides a b o u t t h e
same performance as t h e 200-i\/lHz P e n t i ~ ~ r n Pro
system. Figurc 3 also shows that the Alpha native

version o f the benchmark runs t\\iicc ns f ~ s t as tlic
Pentiuni P r o version.

Of course, n o s i~igle bcnchmark characterizes the
performance o f a system. Even so, when running
translated s86 applications, \\,e lia\~c consistcntly men-
sured performance o n a 5 0 0 - M H z Alpha system t o be
in the range ben\~een that o f a 200-iVHa l 'cnti~~ln sys-
tem and that o f a 2 0 0 - M H z Pcntium Pro system. For

200-MHz PENTIUM PRO 500-MHz ALPHA 21 164A 500-MHZ ALPHA 21 164A
RUNNING DIGITAL FX132 (NATIVE ONLY)

KEY

INTEGER

FLOATING POINT

Figure 3
DIGITAL F5!32 Pcrti)rmnncc o n rhc IIY 1'E Bcnchrn'irk)

some applic;ltions, pcrfornlancc can exceed that o f a
Pen t iu~n Pro system.

T h c initial \lcrsion of the DIGITAL FS!32 sofnvare
has some limitations. FX!32 esecutes only application
code; it does not execute dri\rers. Consequently, native
drivers arc required for any peripheral that is installed
o n an Alplia system. Also, as described in the
Transparency Agent section, FX!32 does no t provide
c o ~ n p l e t e support for s86 ser\~ices. Further, FX!32
ciors not support the Windows NT D e b u g AI'I.
Support ing that interface \voilld require the capability
to rematerialize the s86 state after every s S 6 instruc-
tion, thus se\,ercly limiting optimizations that the
translator could perform. O p t i ~ u i z i ~ l g compilers make
a similar trade-off by restricting o p t i n ~ i z a t i o ~ i when
debugging information is required. Since FX!32 does
n o t support the D e b u g interface, applications that
require it d o n o t run under FX!32. Those applications
are mostly s86 development environments, and it
probably makes more sense t o run them o n an s86
s!lstem. T h e limitations described are n o t serious, a n d
most xS6 appl ica t io~~s that esecute on an x86 proces-
sor that is running the Windows NT operating system
also execute o n an Alpha s)~s tc~ i i running Windows N'T
and DIGITAL FS!32 sofi\\~are.

Summary

DIGITAL FX!32 sofnvare pro\~ides h s t , transparent
execution o f 32-bi t s 8 6 applications on Alpha slatems
running thc Windows NT operating system. This is
nccornplishcd ~ ~ s i ~ i g a unic1~1e combination o f emula-
tion and binary translation. T h e emulator runs a n
application, interprets the code, and generates profile
information. For suhscquent executions, t h e translator
uses the p rof le data t o produce translated images tllat
c o n t : ~ i ~ ~ optimized native Alpha codc. An application
translated by means o f 1)IGITAL FX!32 s o f w a r e runs
u p to 10 times h s t e r than the same application run-
ning under the cmulator alone. Morco\ler, the transla-
tion takes place in the background and is therefore
transparent t o the user.

Acknowledgments

Building the 1)IC;lTAl. FX!32 product required some
extremely talented peoplc to perform a lot of difficult
work. T h c members o f the DIGITAL FS!32 de\leJol'-
lncnt team include Jim <:ampbell, Anton (kernof f ,
Gcorgc Darcy, Tom Evans, J i n ~ C;i\!lcr, Cliarlic
GI-eenninn, Pippa Jollie, Mark Herdeg, Ra)/ Hookway,
Mc~ur icc Marlcs, Srini\tasan Murari, Brian Nelson,
Scott l<obinson, Norm llubin, Shcrry Seslca\~ich, Joyce
Spencer, Tony Tye, and J o h n Yatcs. Many o f these
individuals contributed the idcas described in this
paper.

References

1. 6. Case, "Rchosting Binary Code for Sohvare Portn-
bilit),," l\/licroprocessor l<eport (Sebasropol, Calif.:
Microl>esign Resources, January 1989).

2 . T. H~lthill , "Em~~lat ion: IUSC's Sccrct VVeapon,"
R)TEil/Ing6lzi11e (April 1994).

3. R. Redichek, "Some Efticient Architect~~re S i n l ~ ~ l a t i o ~ ~
Techniques," lLYE,\'IX'(Winter 1990).

4. L. Deutsch and A. Scliiffinvn, "Eficient Implcmcnta-
tion of the Smalltalk-80 Systcnl," Record oJ' lhe
E/e~'t'nth An 17ual ACM Syrnpo.siun~ on h.itzcg/e.s q/'
Progr-~/nzt91ir7g Lurzgrt~~ges (1983).

5. R. Sites,A. Chcrnoff, M. Krk, IM. &larks, and S. lcobin-
son, "Binary Translation," Digitul Trchrrical~Jorn~~~?c~l.
\.ol. 4, no. 4 mayna nard, Mass.: Digital Equipment
Corporation, 1992).

6. J. Richter, A ~ L J U I Z C C > ~ \Vi~zdoi/;.~ IVT, chap. 16 (l k d -
~ n o n d , Wash.: Microsoft Press, 1994).

7. A. Aho, &I. Canapathi, and S. Tjiang, "(:ode Generation
Using Trcc Matching and D!lnamic Programming,"
ACVl Tr~~~lr?.sactio~z.s 0 1 7 P~ (J~ ,MII? IW iyq L L I I . I ~ L I L ~ ~ ~ . S c117d
.S):stet~i.s, \,ol. 1 1 , no. 4 (October 1989).

Biographies

Raymond J. Hookway
Rly Hook\vay Icd the DTGTTAI. FX!32 developmellt team
and was a key contributor to the binary translation compo-
nent oftllc 1)IGITAI. FX!32 software product. He has been
a mcmbcr of the AlMT group of 1)IGlTAL Semiconductor
since 1993. Ray joined l>IGITAl.in 1989 and has \\!orkcd
in the CAD and An groups of DIGITALScmiconductor,
\\?here he contributed to the first Alpha PC project. Prior
to joining DIGITAL, he was 1)ircctor of Engineering k,r
Endot, Inc., \vhere lit: de\leloped one ofthc first VHI)L.
simulation cn\ironn~cnts. He \\)as also an Assisrant I'rofcssor
d t <:fi~c \'VCstcr~i Kcscrve U~~i\~crsity, \vherc he did ~.esearcli
on program verification, and he \\/as a Visiting Professor 3t
thc Uni\,ersity of Upsalln, S\\leden. Ray reccivcd M.S. nnd
Ph.1). degrees in conlputer science from Case Wcstcrn
l<cser\,c Uni\,crsity and a B.S. in cnginccring kom Case
Inst i t~~te ofTechnolog!~. He has applied for se\,eral patents
scl~lted to his 13IGITAL FS!32 \\iork.

1)igiral Tccl~nicdl J ~ L I I . I I A I I . 9 No. 1 9 I I

Mark A. Herdeg
Mark Herdeg has been with LlIGI'TA12sincc 1985. H c is
currently a principal soti\\rC1rc cnginccr in the Pu l l ' group
o f DIGITAI, Scmicond~~ctor . Pre\,iously, he \vorkcd on con-
sole sohvare for the Nautilus (\/AS 8500) , ~ n d Argonaut
projects. The A1pl-1~ simulator dcvclopcd for the Argonaut
project, MANNEQUIN, became rhc first Alpha sysrcrn o n
whicli rhc OpenVbIS operating system succcssfi~lly booted.
i\/larkcontribured t o a related project that used the Alplla
sill~ulator and 3 dual-architecture-a\\rarc dcb~lgger t o 31lo\\,
dcve lopme~~t and execution of applications \\,ith '1 mix of
\)AX and Alpha code. A founding rneliibcr of thc iUp11.1
Migration Tools group, &lark \ \~orked 011 its first product,
VEST, the OpenVMS VAS-to-Alpha binary tra~lslator. H e
then helpcd design and dc\~clop the DIGITAL FS!32 soh-
\v'ire product, \\~itIi particular f o c ~ ~ s on the runtime compo-
nent. CUI-relirly, lie is tile project leader for the next rclcase
of 1)IGITAL FX!32 s o h \ ~ a r c . &lark 11'1s s~~bn i i t t cd sc\'cral
patent applic.~tions for \\fork on the multiple-arcliitect~~re
execution environlncnt and for the DIGII'AI. FX!32 design.

'iJol. 9 So . 1 1997

Leo P. Treggiari

Development of the
Fortran Module Wizard
within DIGITAL Visual
Fortran

The Fortran Module Wizard is one of the tools
in DlGlTAL Visual Fortran, a DIGITAL product for
the Fortran development environment. Visual
Fortran consists of the DIGITAL Fortran 90 compiler
and run-time libraries and the Microsoft Developer
Studio. Together, these technologies provide a
rich set of tools for the Fortran developer who
is using the Windows NT and Windows 95 sys-
tems. The Fortran Module Wizard generates
complete Fortran source code, allowing Fortran
applications to invoke routines in a dynamic link
library, methods of an Automation object, and
member functions of a Component Object
Model (COM) object.

DIGITAL Visual Fortran is an integratcd de\~eloprnent
environment for E'ortrai applications.' It is supported on
the Wjndo\vs NT version 4.0 operating s!istem on both
Alpha and Intel liard\ilare and on tlie Windo\\ls 95 sla-
tem. DIGITAL Visual Fortran is a combination of tcch-
nologics from DIGITAL and Microsoti Corporation.
The DIGITAL-supplied compiler and run-time libraries
support the DIGITAL Fortran 90 l a l igua~c .~ DIGITAL
Fortran 90 conforms to Punerican National Standard
Fortran 90 (ANSI S3.198- 1992) and provides many
extensions to the Fortran 90 standard. The Microsoft-
supplied integrated dcvclopment environment is tlie
Microsoh Developer Studio, which is also used by
Microsoti Visual C++, Microsoti Visual J++ (for Java),
other MicrosoFr tools, and other companies' develop-
ment tools. Developer Stud10 i~icludes a text editor,
resourcc cditors, project build facilities, an incremental
linker, a source code browser, an integrated debugger,
and a profiler. Tlie operation of all tliese tools is con-
trolled tioni a single application. Figurc 1 shows an
example of Microsof? Developer S tudo fiom n~liich two
Fortran source files are being edited. DIGITAL adds a
nc~rnber of Fortran-specific tools to the e~i\f iro~irne~it ,
one of\vlich is the Fortran module Wizard.

Design of the Fortran Module Wizard

DIGITAL designed thc Fortran Module Wizard to
hclp Fortran developers working in the application-rich
Windows en\lironmcnt. The Fortran module Wizard
si~pports acccss to dy1ian1ic link libraries (DLLs) and
servers based up011 Microsoft's Co~iiponcnt Object
Modcl (COM). This support allo\vs Fortran developers
to usc the popular mechanisms that make functionality
(services) available to other so%\lare (clients).

Traditionally, Microsoh and others have provided
system interfaces and reusable libraries of code as
DLLs. A DLL is a file containing hnctions that can be
called by programs and other DLLs. The role of DLLs
on a Windows system is very similar to that of sliare-
able images 011 the OpenVMS operating system and
shared libraries on the UNIX system. Today, IILLs are
still the primary mechanism fix accessing system inter-
faces on Windows.

Digital 'Technical Journal Vol. 9 No. 1 1997 13

mpposten - Microsdl Developer Sludio I

1 Open t b r 8pmc1timd prnrntatlon
Status - SAppllcation-GetPmsentations(ppApp1ication. ppPresentations)
v T r u e W - VT-BOOL

.I Resource Rles vTrueW4BOOL-VAL - VARIANT-BOOL-TRUE
B Exlernal Dependenaes v F a l s e W - VT-BOOL

POVvERWlNT MOD vFalse%W%BOOL-VAL - VARIANTJOOL-FALSE
status - SPmsentations-Open(ppPresentat~ons, filename, vTrue, vFalse, &

vFalse. ppPresentat~on)

I Ron the slxde show
status - $Prassntatien~OetS1ideShow(ppPresentation. ppSlideShow)
atatus - SSlideShow-Run(ppSlideShow, 1, ppRun)

Figure 1
Microsoft Developer Studio, Two Fortran Sourcc Files Being Edited

When Microsoft introduced OLE version 1, the
name OLE was an acronym for object linking and
ernbeddng. OLE version 1 enabled compound docu-
ments by allowing a document to link to, or embed
data from, another document. In 1993, Microsoft
introduced COM as the base architccture of O I L
version 2.3 COM is an estensible architecture that pro-
vides mechanisms for creating and using sohparc com-
ponents. A sofcware component consists of reusable
pieces of code and data in binary h r m that can be
plugged into other sofnvarc components %om other
vendors with relatively little effort .Tike DLLs, COM
allocvs a sofhvare developer to provide a set of scrvices
to multiple clients. In addition, COM has the advan-
tage of allowing the services to reside in another
process and on another machine. (Distributed COM
[DCOM] allows objects to be creatcd and used on
remote maclli~ies.) COM also contains features that aid
in the deploymelit and c\lolution of the services."
Microsoft has extended its languages and tools to aid
sohvare developers in the creation of clients and
servers based upon COM (hereafter referred to as
clients and servers in this paper).

Why does a Fortran developer need help accessing
scrvices in 13Lls and scrvers? Calling code that is writ-
ten in another programming language is, in general,
difficult. There are complex issues around calli~ig stan-
dards and data type representations. If a mistake is
made in n~anually translating a fi~nction signature
from one la~lgi~age into another, today's program-
ming cnviron~nents are of little help. The application
can fail at a point in the code, for example in thc rou-
tine prolog, which does little to suggest the cause of
the problem. Oftcn, solvil~g these proble~ns requires
~~ndcrstanding the intricacies of callilig standards and
single stepping through assembly code. Calling the
colnponcnts in a server also requires understanding
and properly using a number of COM programming
interfaces.

Thc Fortran Module Wizard deals with the difficul-
ties. I t reads a dcscription of a service, \vhich the ser-
vice provider created, and generates Fortran source
code. This automatically generated code makes calling
these scrvices as easy as calling another Fortran func-
tion or subroutine.

14 Digital Technical Journal Vol. 9 No. 1 1997

Enabling Technologies

Componcntsof COM, Fortran 90, and the Microsoft
I)c\,clopcr Stutiio enable the hnctionalin of the Fortran
 module Wizard. This section gi\,es an o\.cr\,icw of these
technologies.

COM Technologies
As nlcntioncd earlier, COM provides mccl~,~nisms for
crcati~ig reusable sohvare components. 'I'his paper
attempts to cx~lxin o ~ d y those parts of<:OR/I, and some
tcch~lologics bascd on (:OM, ncccssary for the reader
to undcrs ta~~d the use of server fi~nctionality from
codc generated by the Fortran MotJulc CViz'1rd. <:OM,
OI.E, , ~ n d Acti\leX, of course, contain man!! more
mechanisms." A nuniber of the references listed at the
end of this paper are good sources of further read-
ing.' - Much of the description of COIM in the fi)llow-
ing scction is taken from the Component Object
Model Specificatio~l.~

COM Objects (:01M is an objcct-bascd prograni~ning
model designed to promote sofnvarc intcropcrability.
In otlicr \\fords, C:OM allows nvo or 1iio1-e applications
or components to easily cooperate u~ith one another,
cvcn ifthcy cs7ere writtell by different \rcndors at differ-
ent times, in different programming I '~ng~~agcs , or if
they arc running on different ~nachincs running differ-
ent oper,lting systems. COIM defines a co~iiplctcly stan-
dardized nicclianism for creating ot>jccts and k)r c l i e~~ t s
and objects to communicate. Unlike traditional object-
oriented progra~iiming environniwits, thcsc mccha-
nisnls arc independent of the applications that L I S ~ objcct
scrviccs and of the prograniniing languages used to
crcatc the objects. COM therefore ticfincs a binary
interoperability standard rather than a language-based
intcrol)crability sta~tdard on any given operating sys-
tem and hardware platform.

'li) support its interoperability features, <:OiM defines
and implements mechanisms that allon, co~nponents to
connect to each other as objects. The definition of an
objcct is a piece ofsohvare that contains the fi~nctions
that represent \\,hat the object can d o (its intelligence)
and ;issociatcd state information tbr those h~nctions
(data). In otlicr words, an object is some data structurc
and some ti~nctions to nianipulate that data. In this
paper, we use tlie term ol7ject to mean an objcct
instance, as opposed to an objcct class. Ai objcct class is
similar to a dcrivcd-type in Fortran 90 or a structure in
C. It specifies a 13lueprint for object instances tlmt a
S C I - \ ~ C ~ ill crcatc upon a client's rcclucst. An importalit
principle ofobject-oriented programniing is encapsula-
tion, in \\,liich the exact implementation of those func-
tions and the exact format and layout of the data is only
of concern to thc object itself. This inhrmation is hid-
den horn the clients of a11 object and can therefore be
changed \vitI~oi~t affecting tlie clicnt.

With COM, colnponcllrs interact with each other
and \vith thc system through collections of f ~ ~ n c t i o n
calls, also known as methods or member hnctions or
requests, called interfaces. An interface is a semanti-
cally related set of member fi~nctions. The intcrface as
a whole represents a feature ofan object. The member
hrnctions of a n interface represent tlie operations that
make up the feature.

For a ~ 1 ~ 1 i c k Iool< at a simple example of a COM
object, i~iiagi~ic a (;aIc~~lator object that is willing to
provide aritlimctic scrviccs to any clicnt. I t could SLIP-

port an intcrface ~ ~ a ~ n c d I<~alculate. Ry convention,
tlie letter I al.i\lays prcfiscs the name of an interface.
The ICalculatc interface could contain member h n c -
tions named Add, Subtract, Multiply, Divide, etc. If a
client \vanred to use the ser\.ices of the Calculator
object, it ~vould request (:01M to creatc an object of
class Calculator and request the ICalculate interface. It
could then call the mcmbcr functions of tlie ICalculate
interfaces (Add, Subtract, etc.).

With <:OR/l, n pointcr to an object is actually a
pointcr to a p'1rticula1- interface that the object sup-
ports. All COi\/l objects support tlie interface named
Iunkno\\m, which contains tlie member filnctions
named AddRef, Rclcasc, and QucryInterface. All COM
objects must implement thcsc member functions.
AddRef and Release implement object reference
counting. Clients use then1 to tell an object when they
are using it and \\.hen they are done. Objects delete
tliemsel\~es \\.hen they are no longer being used by any
client. QueryInterhcc is tlie basis for a process called
interface negotiation, \\,hereby a client asks an objcct
what sertrices it is capable of providing. For example,
if a client had a pointer to the Calculator object's
IUnk.no\vn intcrf~cc, it could get a pointer to its
ICalculate interface by calling tlie IUnknown Quer)l-
Interface member function. In general, an object can
support multiple interfaces and a client can use Qucry-
Interface to get a pointer to any of then]. Examples in
which Fortran codc calls member functions in intcr-
faces are gi\;cn in the scction Fortran Module Wizard
Functionality. Microsoh defines a number of usch~l
interfaces. Object class creators are Free to use existing
interbces and dcfi nc tlicir o \ \ ,n .

Automation Objects One Microsoh-defined intcrface,
IDispatch, is the basis for A u t o m a t i ~ n . ~ Any objcct
that supports this intcrface, also lt~louln as a dispinter-
face, is an Automation object, and can be accessed by
any Automation clicnt. An Automation object csposcs
methods and properties. Methods are functions that
perform an action on an object and are similar to the
member hnctions of (:OM objects. Properties hold
information about tlie state of an object. A property
can be represented by a pair of methods; one for gct-
ting the property's current value, and one for setting
the property's \,aluc.

Digital Tcchllical J o ~ ~ r n ; l ~ \.ol 9 No. I 9 1 5

The capabilities of an Automation object arc similar
to those of a CUM objcct. An Automation object is, in
fact, a COM object; that is, it supports the JUnknown
intcrfilcc as well as the IDispatch intcrf~cc. Ho\\~cvcr,
tlie mecl~anisms for using the scrviccs of the two arc
\rerji different. Microsoft designed Automation based
on tlze needs of scripting or macro Ia~igl~agcs (i.e.,
Visual Basic). It does not require ilndcrstanding the
intric;icies of cnlling co~n~entions 3s does COM. It ~1117-
ports mcclianis~us more suitable to the d!lna~iiic qucr!l-
ing of an object's capabilitics. This ~nnltes Automation
more suited to late binding of objects, that is, invoking
nietliods of a prc\~iously i~nkno\\,~z object at run time.

An Automation client accesses all tlze metl~ods and
properties of an Automation object t l i r o ~ ~ g h a single
rncnibcr f~nc t ion of the Illispatch intcrfi~cc named
Involte. The client passes Invoke a numher of argu-
ments that identi%

The mcthod, its 'irgumcnts, and '1 place to receive
tlie r c t i ~ r ~ i \laluc, or
The property mcd its ne\v \'due, or

The propunr and a place to receive its current \falue

Tn hct , Invoke could be described as tllc Snriss army
knife of Automation program~iiing.

Most of thc diffcrcnccs benvecn Automation ol7jects
nnd COM objects arc hidden by the Fortran intcrhccs
that the Wizard generates.

Object Identification 'li, enable the use of (:OM objects
created by disparate groups of dc\~elopcrs, tlicrc rlzust
be a method of uniquely identi@irzg an objcct class
regardless of its origin. COM uses globally unique
identifiers (GUTDs) to d o this. A GUID is a 16-byte
integer value that is guaranteed (for all practical pur-
poses) to be unique across space and time. COM uses
GUIDs to identif\, objcct classes, interfaces, and other
things that requjre unique identification. COM pro-
\,ides a routine named CoCrcatcGUIl), and Microsofi
pro\iidcs a ~~ t i l i t y nanicd GUIDGEN, tliut a developer
uses to generate a GUID. Assigning a C;UIll to an
ohject class or interfacc is tlie job oftlic creator oftlic
class o r interhce. To create an instance of an objcct,
the de\relopcr necds to tell COM thc GUIL) of thc
object. Using 16-byte integers fix identification is fine
for computers, but it poses a cliallcnge for the typical
developer. COM supports the use of a less precise, tcs-
t i~al name called a programmatic identifier (Progll)).
A ProgID takes the form:

For esamplc, the nnnie of the Basic object of thc
Microsofi PVord application is CVord.1Fasic. 1 . Similarly,
interfaces are ilsually discussed ~lsing their Issx nnme
(for esamplc, IUnkno\\,n), but their Gu l l) uniqucly
identifies them. ProgILls are not supplied for all objects.

They are nor111a11y supplied only f i ~ - Applicatio~i
oL7jects. An Applicatio~z object is a top-level objcct that
beconies activc wlzcn thc application starts. I t provides
a starting point for clicnts to access a11 of an applica-
tion's su bordinatc objects.

Type Information Type ilifi)rnzation contains descrip-
tions ofobjcct classes, interhces, llLLs, data swuctures,
2nd so forth that arc independent of any program-
ming lang-i~agc. A dc\lclopcr accesses type infol.111ation
tlirougli :in intcrF.icc named ITypcInfo.'A client can
gct a pointcr to q p c informnrio~i fiom

A running Automation objcct

A running COM object tliut s ~ ~ p p o r t s the
I Pro\,idcClassInfo intcrhcc

A type librnry is a collection o f ~ l 7 e information for
number of objcct classcs, intcrf~ces, etc. A devcl-

oper can store a type libra~.!~ in 3 separate tile (using ;i
.'rL,11 estensio~z by con\lention), or as part of nnothcr
file. For example, tlie type library that dcscriL>es tlie
type inhrmation fbr a l)l.,I, can be storcri in the .DLL
file itself. Since the type infi)rmation is stol-ed in a file, it
is a\,ailablc regardless ofwliethcr or not the client has :I
pointcr to the ol>jcct(s) tliat the infixmation describes.

The easiest \vay to crcatc a type library is to \vritc a
script in tlze Microsofi Intcrbcc llefnition Lnguagc
(I 1) L .) . The Microsoft Il)L, co~~ipilcr (MIDL) reads an
[I>[. script and creates a .T1.13 tile.'"An Ill1,script issimilar
to J C++ header file \\lit11 ndditionnl syntax for informa-
tion requi~.ed by COM. An example of such infom~ation
is \\rhcther an argunient to a rncmbcr f ~nctio~z is an input,
an output, or an i~lput/output argument.

To L I S ~ the Fortran Module Wizal-cl, tlze de\leloper
must kno\\r\\!Izere to find type i~iformation fix the hnc -
tionalin to be used. Some examples of this are given in
the section Fortran Module Wizard Functionality.

Fortran 90
This section describes features of the DIGITAL Fortran
90 language that the Fortran Module Wizard uses in
tlle code that it gener'ltes.

Modules Fortran 90 docs not s~lppor t objects, but it
does pro\fide a nc\\' fixm of prograln unit called a
module. A Fortran nodule is a set of declarations that
arc g r o ~ ~ p e d togctlicr under a global name and are
made a\,ailable to other program illzits by means of the
Fortran USE statelizcnt. These rnodulcs havc similari-
ties to C include files but are more powerfi~l.

'The Fortran Module Wizard generates a source file
contni~iing one or I ~ O J - C Fortlan modi~les and places
the follo\\ling types ofinfo~.mation in the niodulcs:

l)eri\~cd-type definitions-Fortr~11i cq~~i\lalents of
d;ita structures tliat arc found in t l ~ e type information.

Procedure interface detinitio~is-Fortran interface
blocl<s that describe the procedures foilnd in tlic
type information.

PI-occdurc dcfinitions-Fortran fi~nctions and sub-
routines that are wrappers for the procedures foillid
in the type information. The wrappers make the
exter~lal procedures casicr to call h~ii Fortran by
handling data conversion and low-level invocation
details.

The nsc of modules allo\vs the Fortran Module Wizard
to encapsulate the data structures and procedures
esposcd by an object or DLL. in a single place. These
definitions can be sliarcd in multiple Fortran programs.

Attributes The DIGITAL Fortran 90 language sup-
ports a number of calling coxi\~ention attributes that
allo\i, Fortran programs to call programs written in
otllcr progra~n~iiing languages. Some attributes select
the calling con\leation (STL)CAL,L, C , VARYING).
Others detcr~ninc whether a n argument is passed by
value or l,)r refcrcncc (VALUE, KEFERENCE). Another
attribute defines the external name of tlie procedure
(ALIAS).

Pointer To Procedure The address of a COM rnember
filnction is never hio\vn at program linl< timc. The
developer must gct a pointer to an ol~ject's interface at
r i ~ n time, and the addrcss ofa pnrtici~lar member f i~nc-
tion is c o ~ i ~ p i ~ t c d fi-olu that. We have extended the
DIGITAL Fortran 90 language to support a Pointer
To procedure.

Microsoft Developer Studio
Microsoft Dc\feloper St i~dio provides a number of
methods that allo\v software dcvelopcrs to extend its
cnvironmcnt." This section describcs these methods.

Tools Menu Dcvelopcr Studio contai~is a Customize
dialog bos through which the dc\~clopcr c,In add i~tili-
ties to the Tools menu and then run tliosc utilities
froni within De\lcloper Studio.

Gallery The Developer Studio Gallery provides a
central repository for all rcusablc parts of projects. The
reusable parts can range froni something as simple as a
bitmap to something as complex as a DLL..

Developer Studio Object Model De\ielopcr Studio
provides a sct of COM objects that give developers
programmatic control of its fi~nctionality. Users can
crcate commands that perform specific taslcs and add
them to a toolbar. The Developer Studio Object
Model is programmed in three ways: (1) by creating
macros in the Visual Basic Scripting Edition Language

(VfiScript); (2) by creating a De\feloper Studio 1)LL
Add-in, \vhicli is a server iniple~iientcd as a 131,L; and
(3) by creating a separate Automation client tliat con-
nects to the Developer Studio objccts.

Wizards A \vizard is code that creates the starter
files for a nc\v application or adds a feature to an
existing application. Wizards tliat add features arc
stored in tlie Developer Studio Gallery. Wizarcis that
create starter tiles for a ne\v application are called
AppWizards. When the dc\,cloper rcclilcsts the cre-
ation o f a new project, Developer Studio presents a
list of the types of project that can be created (for
example, a console application or a 1)LL). In addi-
tion, it lists the installed AppWizards that can Sen-
erate complete applications. O f t e ~ l they contail1
options that al lou the dcvelopcr to choose thc fed-
tures o f a generated application.

Microsoft Visual C++ provides a number of
AppIYizards; most of them can crcate typical C++
applications. In addition, to aid drvelopcrs in estend-
ing Developer Studio, one AppWizard CI-e,~tes the
starter files for a custom AppWizard, and another
creatcs the starter files for a DI.,L Add-in. The Fortran
Module Wizard is currcntl!r implemented as an appli-
cation that runs from the Dc\clopcr Studio Tools
nicnu. In the future, it may be a De\reloper Studio
AppWizard.

Fortran Module Wizard Functionality

This section describcs tlie user interface of tlic Fortran
Module Wizard and presents some samples of tlie code
generated b y the Wizard. I t also sho\vs esan~ples of
calling tlic ge~ieratcd code from Fortran.

User Interface
Upon opening the Fortran Module Wizard horn the
Tools menu, t l ~ c user is presented \\it11 a series of
didlog boxes. From these, the user sclects the type
information for thc functionality nccdcd.

Figure 2 sho\ia the first dialog box. It requests the
i~scr to choose the source of the typc infor~nation that
describcs the required filnctionality. The developer
must co~isult the documentation to determine \\'hat
type of object (or DL,L) the fi~nctionalit\l is implc-
mcnted as, and \vIiere to find its associated type infor-
mation. The choices are tlie hllo\ving:

Auto~nation object

Type library containing automation information

Type library containing COM intcrhce inforrnation

Type library containing 1)LL information

DLL containing typc information

Dig~rnl Tcclun~cal Journa l Vol. 9 No. 1 1997 17

Fortran Module Wizard 5

Select source of OLE type information -- -- - r
Automation Object I / 1 B. Type tibray containing Automation information I

I I Type Libraly containing COM interface informati~n !
I I "

6 V p e Libray containing DLL information' _... _._.-.... _ !

I I a DLLmntaining type information 1

I I2 Generate procedures to convert between F o l t m and C shngs

pq Exit 1

Figure 2
Fortran Module Wizard Dialog Box

Automation Object Microsoli recommends that servers
provide a type library. Some applications, for example
Microsofi Word version 7.0, d o not, but they d o
provide type information dynamically \\,hen running.
When this option is selected, Developer Studio dis-
plays tlie dialog box shown in Figure 3. The Luer then
enters the name of the application, the name of the
object, and optionally the \lersion nunibcr. Note thdt
this method works o1i1y for objects tliat pro\lide a
ProgID. ProgIDs are entered into the system registry
and identif), among other things, the executable pro-
gram that is the object's server.

Atier the user enters tlie information and presses tlie
"Generate button," the Fortran Module Wizard asks
COM to create an instance of the object identified by
thc ProgID tliat the Wizard constructs fl-om the user-
supplied information. COM starts the object's server if
it 11ccJs to d o so. The Wizard then asks the objcct for
its type information and gencratcs a f lc containing
Fortran modules.

Other Options If the ~ ~ s e r chooses one of tlic remain-
ing options, that is, any ofthc type librancs or the 1)LL
(see Figure 2), Dc\~eloper Studio displa\ls the dialog
box slionrn in Figure 4. From this dialog bos, the uscr
chooses the type library (or file containing the type
librarv) and, o p t i o ~ l a l l ~ tlie specific components of thc
type library.

At the top of thc dialog box, a "con~bo bos" lists all
the typc libraries that ha\le been registered with the
system. Their file names ha\rc a number ofdifferent file
cstensions, for example, . 0 1 , R (object libraries) and
.OCX (ActiveX controls). The user either selects a type
library from thc list o r presses the "13ro\vse button" to
find the file using tlic standard "Open dialog box."
After selecting a type library, tlie user presses the
‘‘She\\, buttoll" to list the interfaces described in the
type library. By default, the Fortran Modulc Wizard
uses all tlie interfaces; however, tlie developer can select
the ones desired from thc list.

After thc user enters the information and presses the
"Gcneratc button," the Fortran Module Wizard asks
COh4 t o open the type library and generates a file con-
taining Fortran modules.

Generated Code
Tllc Fortran Module Wizard generates different code,
depending upon the type of object or DLL described by
the typc i~~format io~i . Note that the generated code is a
static representation of an object's type information. If
the type information should change in a future release
of the object, thc Wizard woi~ld need to be run again.

Fortran Run-time Support DIGITAL Visual Fortran
provides a set of run-tin~e routines that present to the
Fortran programnier a higher-level abstraction of the

I8 Digital Tcchllic~l Journal I 9 No. 1 1997

l~pplication Object E

-

Application Name
-

Objed Name:

,pplication
,pplicationWindow
litmap
IitmapButton
IuildEffects
IulletFormat

CharFormat
CheckBox

- -

Figure 4
iMicrosoft 1I)cvclopcr Sr~~dio D~alog Box for Typc Library Sclectlon

Illispatch membcr htnctions and other (:Oh4 fil~~ctions.
The routines are used in tlic code that the Wizard gcn-
crates. 'They allo\\l the programmer to perforni the fol-
lo\v~ng tasks:

Initialize the COM library.
- COh/lInitialize initializes tlie COiVl librar!~.
- COMUninitialize uninitializcs tlie <;OM library.

Get an interface pointcr of an objcct.
- C0MC:rcatcObjcct passcs a progra~nmatic idcnti-

fier or class identificr, and it creates all instal~cc of
xi object a id retirrns a pointcr to one of the objcct's
intcrfaccs.

- COMGetActi\~eObject passcs a programmatic
identificr or class identifier, and it returns a
pointer to an interface ofa currently active objcct.

- <:OMGctFileObjcct passcs a filc name, and it
retitrlls a pointcr to the 1l)ispatch intcrhce of an
Automation object that can manipulate tlie file.

- C O M (; L S I I > F ~ ~ I ~ ~ P R O C ; I ~ ~ passcs a progr.am-
matic identifier, and it returns thc corresponding
class identifier.

- COM(:LSIl>FromString p'isses a class identifier
string, 2nd it returns thc corresponding class
identificr.

Get or set the \.aluc of a property of an Automation
object.
- AUTOSetProperty passes the nalile or identifier

ofthc property and a \ialuc, and it sets tllc \laluc of
the Automation object's property.

- AUTOGetProperty passes the name o r identifier
of tlie propcry, and it gets thc \,slue of the
Automation objcct's property.

In\folte a method of an Autoniarion object.
- AUTOAllocateIn\~olceArgs allocates an argument

list data structure that Iiolds the arguments that
tlic user \ \ f i l l pass to AUTO1 n\roltc.

- AU'I'OAddArg passes an argument nanie and
\.ali~c, and it adds the argument to the argument
list data structure.

- AUT0In\~olte passcs the name or idcntificr of an
object's method and an argumcllt list data strut-

turc, and it involtes the method with the passcd
arguments.

- AUTODcallocateI~ivol~ehgs deallocates all argu-
ment list data structure.

- AUTOGetEsceptionInfo retrieves tlic esccption
infor~nation when a method has rcturncd an
exception status.

Pcrfor~n IUnluio\\m interhce nicmber fi~nctions.
- COMAddObjectReference adds a reference to a n

objcct's interface.
- COMliclcaseObjcct indicates that the program is

done \\lit11 a referc~lce to an objcct's interface.
- CQMQucryInterface passcs an interface idcntiticr,

and it retut-ns a pointer to an objcct's interface.

13IGITAL Visu,al Fortran pro\lidcs three Fol-tra~i
modulcs that define basic COM information:

DF(:OIMTY defines basic COM types.

IIFCOM dctines the interfaces to the DIGITAL
\rist~al Fortran COM routines and to some COM
s!~steni ~ O L I tines.

1)FAUTO defines the i~ltcrfaces to the DIGITAL,
Vis~lal Fortran Automation routines.

Automation Objects Figure 5 contains code gcncr-
atcd by the Fortran Module Wizard for the Word .Basic
object of i\/Iicrosoti Word version 7.0.1Vord.Basic is an
Automation objcct with almost 1,000 methods. These
methods represent the functionality of the Word Basic
Iangiiagc, \\~liich is tlie programming interface to
Microsoft Word. The n/licrosott Word, Word Basic
docutnentation contains information on the methods
and their ' i ~ - g i ~ ~ i ~ e n t s . ' ~ We discuss some of tlic mcth-
ods licre i n a si~iiple example of Fortran code automat-
ing Word Basic to perform the task of replacing all the
occurrenccs of a \\lord in a document with anotlier
\\rorci. The Word.Basic mcthods of interest for this
example arc tlie follo\\ing:

AppSIio\\, maltcs tlic Microsoft Word application
\.isiblc.

FileOpcn opens a document.

EciirRcplace rcplaccs a string with another string.

FileSa\lcAs saves a document.

Figure 5 contains code from the Fortran subroutine
gcncratcd for tlie Word Basic FileOpc~i 1^11ethod. It
is reprcsc~itative of the codc gencrated for all
Automation ~nethods . 'The lines are annotated on tlie
left side nrith rli~mbcrs that arc not part of the source
codc but corrcspond to the list belo\v. Note that the
na~iijtig con\.ention i~scd for the generated wrappers is
~ ~ ~ ~ ~ ~ ~ ~ ~ I I u ~ ~ ~ ~ ~ ~ I ~ I c J ~ ~ o L I F ' I L I I I ~ ~ c J ~ Any ~ C I - ~ O ~ S in thc name
arc rcplaccd by undcrscorcs.

1 . If the type information pro\iides a comment that
describes the method, the comment is placed
bcti)rc the beginning of the procedure.

2. The first argument to the proccdurc is al\vqls
$OBJECT. It is a pointer to all Autoniatio~i object's
1l)ispatch interface. The last argument to thc proce-
dure is always $STATUS. This optional argument can
be specified if the Fortran programmer isli lies to
examine the rcturli status of the method. The
Il'>ispatch In\lolte member fiinction returns a status of
type HRESULT, ufhicli is a 32-bit \ d u e . HRESULT
has thc same structure as a I441132 error codc. In
bct\\.ecn the $ORJECT 2nd $STATUS arguments
arc tlie method 'irg~iments' names determined from
the tvkx inhnnation. When the type information
docs not pro\,ide a nanie for an argument, the
Fortran iblodulc Wjzard creates a $AIIGI~ name.

20 Digirnl Tcch~lical Jotlrnnl \'oI. 9 No. 1 1997

1 - ! O p e n s a n e x i s t i n g d o c u m e n t o r t e m p l a t e
2 - SUBROUTINE W o r d - B a s i c - F i l e O p e n ($ O B J E C T , Name, C o n f i r m C o n v e r s i o n s ,

R e a d O n l y , L i n k T o S o u r c e , A d d T o M r u , P a s s w o r d D o c , P a s s w o r d D o t ,
R e v e r t , W r i t e P a s s w o r d D o c , W r i t e P a s s w o r d D o t , C o n n e c t i o n ,
S Q L S t a t e m e n t , S Q L S t a t e m e n t l , $STATUS)

!DEC$ ATTRIBUTES DLLEXPORT : : W o r d - B a s i c - F i L e O p e n
I M P L I C I T NONE
INTEGER*4, I N T E N T C I N) : : $OBJECT ! O b j e c t P o i n t e r

3 - !DEC$ ATTRIBUTES VALUE : : $OBJECT
4 - CHARACTERX(*) , I N T E N T C I N) , OPTIONAL : : Name ! BSTR

!DEC$ ATTRIBUTES REFERENCE : : Name

. . .
INTEGER*4, I N T E N T (O U T) , OPTIONAL : : $STATUS ! M e t h o d s t a t u s
!DEC$ ATTRIBUTES REFERENCE : : $STATUS
I N T E G E R X 4 $$STATUS
INTEGER*4 i n v o k e a r g s

5 - i n v o k e a r g s = AUTOALLOCATEINVOKEARGSO
6 - I F (P R E S E N T (N a m e)) CALL A U T O A D D A R G (i n v o k e a r g s , ' N a m e ' , Name,

.FALSE. , VT-BSTR)

. . .
7 - $$STATUS = AUTOINVOKE($OBJECT, ' F i l e o p e n ' , i n v o k e a r g s)
8 - I F (P R E S E N T ($ S T A T U S)) $STATUS = $$STATUS
9 - CALL A U T O D E A L L O C A T E I N V O K E A R G S (i n v o k e a r g s)

END SUBROUTINE W o r d - B a s i c - F i L e O p e n

Figure 5
Rcpr.esent~tl\~c (:ode (;cnerntcd for. ,\urolnation hlcthods

3. This is an csamplc o f a n attribute st.ltcment ~ ~ s c d t o
specit'\, the c.llling con\,ention of,ln argument .

4. Methods cnn t ~ l t c optional atglll-ncnts that nus st til-
lo\\. all tllc required arguments. In this mctliod,
thcrc arc 110 I-ccluired al.gumcnts. T h e Fortl.a11
~Vociulc W i ~ n r d generates soi~l.cc lines for each
argumcnt 11sing the data t\,pc s ~ ~ n t i c.~lling con\.cli-
tions found in the nrpe inform.lrion.

5. AUTOAllocatcI~~\~oI<eArgs 'lllocatcs '1 data s t r ~ ~ c t ~ ~ r c
that is tlscci t o collect the arSu1ncnts that the pro-
grxn111cr ~ J S S C S t o the method. A U T O A d d k g acleis
'111 argumcnt t o this data s t r u c t ~ ~ r c .

6. For eacll optiollal ,lrgumcnt, t l ~ c F o r t r m PRESEST
fitnetion is uscci t o determine if the cdller supplied
the argLlmcnt. If so, the argulncnt is added t o the
' l ryn ic l l t list.

7. i i l " l 'Oln \okc in\rokcs the na l~ icd method p.lssing
tlic argumcnt list. ':l-l~is rcturlis a status result.

8. If the c,lllcr supplied a s t . t t ~ ~ s ar.gtlment, the codc
copies the S ~ . I ~ L I S rcs~llt t o it.

9 . A U T O l ~ c n l l o c a t c I n \ ~ o I ~ e i 4 ~ - 9 dc.~llocates the mcm-
ory used by the . l r ~ u l n c n t list dnta structure.

F i g ~ ~ r e 6 slio\\~s code from ,I user-\\.ritten F o r t r m
program tllat in\.ol<cs microso oft \jVord t o replace ,111

the occun-cnccs o f '1 \\.ord in a docu111cnt \\.ith another
\\rord. T h e c\amplc cocle is annot'ltcd \\,it11 numbers
that correspond t o the follo\\ring list.

1. COM(:rcatcObjcct requests (:Oh!I t o c r c ~ t c ,In
object \\,it11 the Progll) b\lorci.Rasic. A pointer
t o the \Vord.lSasic object's 1l)ispatch intcrfilcc is
rcturncci i l l "\\,ordapp." 'l'hc Il)ispatcli intcrf,~cc
is rct~1r11cd \\.it11 J reference count o f 1 .

2 . T h e codc checks t o ensure tllat ,In 1l)ispntch pointcr
\\,as r c r ~ ~ r n c d . If not , it displ,l\.s ,111 error message ,111~1

elits. T11c PI-ogrammcr C , I I ~ cz,lrninc the status \.,lri-
able for the specific status rctu1.11 codc.

3. T h e code c,tlls \Vord.K~sic ~ncrl lods t o sl~o\\r the
iVlicrosoft LVord \\,incio\\,, open the d o c ~ ~ ~ n c l l t ,
replace t l ~ c s t r i n ~ , 2nd sCl\-c tllc mociifed d o c u m c ~ l r .

4. COh/lI<clc,lseObject relcascs tllc singlc rcfcl-cncc t o
the object's 1l)ispatch i n t c ~ . ~ l c c s o that blicrosoft
WcxJ can tcl-minate.

COM Objects T h e ~Microsofi l'o\\.crPoint \.crsion 7.0
type library cont,lins a description o f 3 11~1mber of (:Oi\tl
objects and intcrfclccs t h ~ t 11inltc up the programm,lblc
interface t o the Microsoti Po\\,crl'oint applic.ltion.
Figures 7 .lnd 8 contain codc gcncr,ltcd b\r the Fol.tr,ln
Module Wizard horn the iMicl.osoti l'o\\,crPoint \,crsion
7.0 type 1ihral.y. Unlike Microsoft b\lorci, \\.11icIl p~.o\,icics
a singlc objcct rh.lr presents ,dl ofLVol.d's program~nablc
f~~nct ional inr , l'o\\~crl'oint p~.o\.itics ,I hicrarcli\, ot
objects. TIic top-lc\,cl object, i \pplic~tion, is identitied by
the Progll) I'o\\~crl'oi11t.Applic,1tio1~.7. 'I'l1c Application
object cont,lins mcmber tilnctions that return a pointcr
t o subordinate objects, includillg the Presentations

! C r e a t e a W o r d o b j e c t a n d m a k e i t v i s i b l e
1- C A L L C O M C R E A T E O B J E C T (" W o r d . B a s i c , " w o r d a p p , s t a t u s)
2 - I F (w o r d a p p == 0) T H E N

W R I T E (*,
I (U U n a b l e t o c r e a t e M i c r o s o f t W o r d o b j e c t ; A b o r t i n g ") ')

C A L L E X I T (- 1)
END I F

3 - C A L L W o r d - B a s i c - A p p S h o w (w o r d a p p , "," $ S T A T U S = s t a t u s)

! O p e n t h e d o c u m e n t
C A L L W o r d - B a s i c - F i l e O p e n (w o r d a p p , f i l e n a m e , $ S T A T U S = s t a t u s)

! R e p l a c e a l l o c c u r r e n c e s o f t h e s t r i n g
C A L L W o r d - B a s i c - E d i t R e p l a c e (w o r d a p p , f i n d s t r i n g , r e p l a c e s t r i n g ,

R e p l a c e A L L = . T R U E . , $ S T A T U S = s t a t u s)

! S a v e t h e f i l e
C A L L W o r d ~ B a s i c ~ F i l e S a v e A s (w o r d a p p , f i l e n a m e , % S T A T U S = s t a t u s)

! R e l e a s e t h e W o r d . B a s i c o b j e c t s i n c e we a r e d o n e
4 - s t a t u s = C O M R E L E A S E O B J E C T (w o r d a p p)

Figure 6
(;ocic from a User-=\vrittcn Fortran I'rogr;un -l'llnt Il~vokcs I1Iicrosoft Word

objcct. Prcscntations objcct consists o F a collection
of Presentation objects. A Presentatio~l contains a nlem-
bcr f ~ ~ n c t i o n that returns a pointel- t o its SlidcSho\v
object, and so on. By navigating this hierarchy, the dc\~el-
olxr can select a pointer to a particular object'^ i~lterfacc.
A code cs~i~nple in \vhich nre use some ofthc Po\\ferPoint
objects ~ind intcrhces to run a slidc prcscntntion %om
Po\\,crPoint is given latcr in this scction.

1. The first urgumcnt to the procedure is always
$013JE(:'I'. It is '1 pointer to the object's interfacc.
The re~i~aining argument names are determined
from the typc information.

2. A BSTR is a length-prcfi xed string data type prirnar-
ily for usc by Automation objects. The \vrappers
g c n o ~ t e d for COM member functions convert
from Fortran srrinus to BSTRs and \,ice versa. "

Figure 7 contains thc intcl-bcc tiescription of the 3. A VAKIANT is n dnta structure that can contain an!,
Prcscntations object's member fi~nction namcd Open. It

type of A~~tomnrion data. It contains a ficld that
is rcprescntative of the interhccs gcncratcd fix all COlM

identifies the type ofdata and a u ~ i o n that holds tlic
member fi~nctions. The procedure naming convcntion

data valuc. The use of a V A W Y T argument allows
js o/?jod~7~11nc~n?en?he~fi~,?ctiotrrra1nc. '17hc Oycn filnc-

the caller to use any data type that call be convertcd
tion opcn~111 existing Po\vcrl'oint presentation.

into the data type cspected by the member fi~nction.

I N T E R F A C E
1 - I N T E G E R * 4 F U N C T I O N P r e s e n t a t i o n s - O p e n ($ O B J E C T , f i l e N a m e ,

R e a d O n l y , U n t i t l e d , W i t h W i n d o w , O p e n)
U S E DFCOMTY
I N T E G E R * 4 , I N T E N T C I N) :: $ O B J E C T ! O b j e c t P o i n t e r
! D E C $ A T T R I B U T E S V A L U E :: $ O B J E C T
I N T E G E R * 4 , I N T E N T (1 N) : : f i l e N a m e ! B S T R
! D E C $ A T T R I B U T E S V A L U E : : f i l e N a m e
T Y P E (V A R I A N T) , I N T E N T (I N) , : : R e a d O n l y ! (O p t i o n a l A r g)
! D E C $ A T T R I B U T E S V A L U E : : R e a d O n l y
T Y P E (V A R I A N T) , I N T E N T (I N) , :: U n t i t l e d ! (O p t i o n a l A r g)
! D E C $ A T T R I B U T E S V A L U E : : U n t i t l e d
T Y P E (V A R I A N T) , I N T E N T (I N) , :: W i t h W i n d o w ! (O p t i o n a l A r g)
! D E C $ A T T R I B U T E S V A L U E : : W i t h W i n d o w
I N T E G E R * 4 , I N T E N T (0 U T) : : O p e n
! D E C $ A T T R I B U T E S R E F E R E N C E :: O p e n

! D E C $ A T T R I B U T E S S T D C A L L : : P r e s e n t a t i o n s - O p e n
END F U N C T I O N P r e s e n t a t i o n s - O p e n

END I N T E R F A C E
5 - POINTER(Presentations-Open-PTR, P r e s e n t a t i o n s - O p e n)

Figure 7
(:ode (;cncr.:ltcd by Fortran i\lod~rlc \Vizard fronl klicrosoft Po\\,erPoint, 11itc.1-hcc 1)cscriprion of Open Function

4. Ne,~rly every <:OM nicml?cr f i~nc t ion returns a status o f
type H IESUUT. Tliereforc i f ;I COiM member f i ~ n c -

t i on produccs output, it uses output arguments t o
return the \falues. In this example, the O p e n argilmellt
returns a pointer t o a Po\verPoint Present.~tion object.

5. T h e interface o f a (:ON1 ~ i i c m b c r funct ion looks
similar t o the intcrfdcc for a DLL function \vitli one

major exception. Un l i ke a DLL hnct ion, the address
o f a C;OM member f rncdon is never kno\vn at p ro -

grani l ink time. T o conlplitc the address o f 3 p;uticular

member filnction, the developer must gc t a pointer to
an object's interface at r u n time. W e have extended the
D I G I T A L Fortran 90 language to support a Pointer

T o procedure. Figure 8 sho\vs an esa~nplc o f its use.

F igure 8 contains the \\)rapper generated by the
For t ran M o d u l e Wizard for the O p c n funct ion. T h c

name of a wrapper is the same as the name of t h e cor -

responding lnenibcr h n c t i o n , pref ixed w i t h a $. T l i e
numbers inserted at the left marg in o f the code exam-
p le correspond to thc fol lo\ving list.

1. T l i e wrapper takes the same argument names as the

~ i i e ~ n b e r funct ion interface.

2. M e m b e r f i ~ n c t i o n arguments of type BSTll are of
type C H A l U C T E R * (*) in the wrapper.

3. T h e wrapper computes the address of the member
funct ion tiom the interface pointer and an offset

found i n the interface's typc in format ion. In imple-
mentat ion terms, t h e sequence is the fo l lo~v ing : an

interface pointer t o a pointer to a n array of f l ~ i c t i o n
pointers called an Interface Func t ion Table (see

Figure 9).

4. T h e wrapper dcclares a local variable t o hold the

BSTR to be passed t o the member function. T l ~ c next

l i ne docs thc conversion.

5. Op t iona l VARIANT arguments o f a C:OM ~ n e n ~ b c r

function arc represent.ed by a V A l U h i T w i t h distin-
guished values. O P T I O N A L _ V A N A N T is defined

in the D F C O M T Y m o d u l e urith the d is t i l l g i~ ishcd

values.

6. T h e offset o f thc O p e n mcn iber f i lnc t ion is 60. T h e
code assigns t l ie computed address t o t l ie f i i nc t ion

po i l i t e r Presentations-Ope~l-PTR, w h i c h \\!as

declared in Figure 7, and then calls the f i inct ion.

1- INTEGER*4 FUNCTION $ P r e s e n t a t i o n s - O p e n ($ O B J E C T , f i l e N a m e ,
ReadOn ly , U n t i t l e d , W i t h W i n d o w , Open)

!DEC$ ATTRIBUTES DLLEXPORT :: $ P r e s e n t a t i o n s - O p e n
I M P L I C I T NONE
INTEGER*4, I N T E N T (1 N) :: $OBJECT ! O b j e c t P o i n t e r
!DEC$ ATTRIBUTES VALUE :: $OBJECT
CHARACTER*(*), I N T E N T (I N 1 :: f i l e N a m e ! BSTR
!DEC$ ATTRIBUTES REFERENCE : : f i l e N a m e
TYPE (VARIANT), I N T E N T (I N) , OPTIONAL : : R e a d O n l y
!DEC$ ATTRIBUTES R E F E R E N C E : : ReadOnLy
TYPE (VARIANT) , INTENTCIN) , OPTIONAL :: U n t i t l e d
!DEC$ ATTRIBUTES REFERENCE :: U n t i t l e d
TYPE (VARIANT), I N T E N T (I N) , OPTIONAL :: W i t h W i n d o w
!DEC$ ATTRIBUTES REFERENCE :: W i t h W i n d o w
INTEGERX4, INTENT(OUT1 : : Open ! I D i s p a t c h
!DEC$ ATTRIBUTES REFERENCE : : Open
INTEGER*4 $RETURN
INTEGER*4 SVTBL ! I n t e r f a c e F u n c t i o n T a b l e
POINTER($VPTR, $VTBL)
TYPE (VARIANT), : : $ VAR-ReadOnly
TYPE (VARIANT), :: $ V A R - U n t i t l e d
TYPE (VARIANT), : : $ VAR-Withwindow
INTEGER*4 SBSTR- f i l eName ! BSTR
$ B S T R - f i l e N a m e = C o n v e r t S t r i n g T o B S T R (f i 1 e N a m e)
I F (PRESENT (R e a d O n l y)) THEN

$VAR-ReadOnly = R e a d O n l y
ELSE

$VAR-Readon ly = OPTIONAL-VARIANT
P r e s e n t a t i o n s - O p e n - P T R = SVTBL
END I F
. . .
$VPTR = $OBJECT ! I n t e r f a c e F u n c t i o n T a b l e
$VPTR = $VTBL + 6 0 ! Add r o u t i n e t a b l e o f f s e t
P r e s e n t a t i o n s - O p e n - P T R = $VTBL
$RETURN = P r e s e n t a t i o n s - O p e n ($ O B J E C T , $BSTR- f i l eName,

ReadOn ly , U n t i t l e d , Wi thWindow, Open)
$ P r e s e n t a t i o n s - O p e n = $RETURN

END FUNCTION $ P r e s e n t a t i o n s - O p e n

Figure 8
Code Gencsated b!, Fortran 1Module Wiz;lrd fi-om microso oft Po\\,cl-Point, Wrapper for Open Function

1)igit.d 'Technical Journa l Vol. 9 No. 1 1997 23

INTERFACE
POINTER INTERFACE

POINTER FUNCTION - I TABLE I
FUNCTION 1

FUNCTION 2

FUNCTION 3

Figure 9
Intcrbcc Pointcr r o an Arr.1~ o f Function Pointcrs

In hct , Po\vcrPoint pro\.ides dual interfaces. A dual
intcrbcc is a combination of an I1)ispatcli intcrfiicc
and (:OM m c ~ ~ i b c r f~~nc t ions . TIic IDispatcli inter-
face o f rhc dual interfacc can be ~ ~ s c d by Automation
clients, and the <:OI\I member functions can bc used
by <:Oh1 clients. This ~iic:l~is that h r Po\\.crl'oint, and
any server that provides dual i n t c r ~ ~ c e s , the Fortra11
devclopcr can choose to generate a Fortran ~nodu lc
for the Automntion intcrfilccs or the COM interfaces.
Thc Fortran interfaces gcncratcd by the Wizard liltel!.
will not bc much different. C 0 M intcrfGlccs typically
providc bctter ~>crfornln~icc since there is less o\,cr-
head in invoking (:Oh,I ~ncmbcr functions than
dispinrcrhcc mctllods through the 1L)ispntcli In\goltc
rncmbcr filnctioll.

Figi~rc 10 sJio\\.s codc tioln a user-\\rrittcn Forrra~i
progr,lln t h ~ t in\,oltcs l'o\\rcrPoint to run n slidc prc-
sentation. The code example is ali~iotateci \\lit11 n u m -
bers that corrcspo~~d to tlic follo\\,ing list.

1. (~Oi\~l(:1SII)t'rornl'l<OGIl~ and COM<:rcateObjcct
rccI~leSt (:01\/1 to crcatc an objcct \vith the Progll)
I'o\\.crl'oint.Applicatim.7, and to return a pointer
to the object's IApplication interface.

2. The codc gets the AppWindo\\. objcct from tlie
Application object and calls its Visible member
filnction to ~nakc Po\\,erPoitit visible.

3. The codc gets tlic Prcscntations objcct fT01i1 the
Application objcct and calls its Open member
function to open a Presentation. Note that thl-ec
or the arguments to Open are of thc \'ARIAKT
data type. The codc scts them to tlic \.slues true
and falsc.

4. l'he codc gets the SlideSlio\v object fi-on tlie
l'rcsentation object and calls its Run member f i~nc-
tion to run the slidc she\\:

DLLs When the Fortran 1Module Wizard reads thc
tylx information dcscribirlg a DLL, it generates an
intcrhcc description ti)r each fi~nction in the L>L,I,. It
also generates Fortran-derivcti types for data struc-
tu~.cs defined in the 1)LL typc information. 71'liis
relic\,cs the Fortran de\,cJoper horn mani~.lll!. trnnsl,it-
ing IIC;IJCI. file descriptions to Fortran descriptions.
'I'hc L\lizarii also pro\~idcs t17c option of generating
\\.rnp}xrs that con\.ert from thc Fortran rcprescntarion
o f strings to t l ~ c C 1.cprcscntario11 of strings and \.ice
\cl.sa. 'l'llis option can bc sclcctcd from the Wizard's
initial dialog bos (see Figure 2) .

! C r e a t e a P o w e r P o i n t A p p l i c a t i o n o b j e c t
! a n d m a k e t h e A p p W i n d o w v i s i b l e

1 - CALL COMCLSIDFROMPROGID (" P o w e r P o i n t . A p p l i c a t i o n . 7 , "
c l s i d , s t a t u s)

CALL COMCREATEOBJECT (c l s i d , CLSCTX-SERVER, I I D - A p p l i c a t i o n ,
p p A p p l i c a t i o n , s t a t u s)

I F (p p A p p l i c a t i o n == 0) THEN
W R I T E (*, I (" U n a b l e t o c r e a t e P o w e r p o i n t o b j e c t ; A b o r t i n g ") ')
CALL E X I T (- 1)

END I F
2- s t a t u s = $ A p p l i c a t i o n ~ G e t A p p W i n d o w (p p A p p l i c a t i o n , p p A p p W i n d o w)

s t a t u s = $ A p p l i c a t i o n W i n d o w ~ S e t V i s i b l e (p p A p p W i n d o w , 1)

! O p e n t h e s p e c i f i e d p r e s e n t a t i o n
3- s t a t u s = $ A p p l i c a t i o n ~ G e t P r e s e n t a t i o n s (p p A p p l i c a t i o n ,

p p p r e s e n t a t i o n s)
v T r u e % V T = VT-BOOL
v T r u e % V U % B O O L - V A L = VARIANT-BOOL-TRUE
v F a l s e % V T = VT-BOOL
v F a l s e % V U % B O O L - V A L = VARIANT-BOOL-FALSE
s t a t u s = $ P r e s e n t a t i o n s - O p e n (p p P r e s e n t a t i o n s , f i l e n a m e ,

v T r u e , v F a l s e , v T r u e , p p P r e s e n t a t i o n)

! R u n t h e s l i d e show
4- s t a t u s = $ P r e s e n t a t i o n - G e t S L i d e S h o w (p p P r e s e n t a t i o n , p p S l i d e S h o w)

s t a t u s = S S L i d e S h o w - R u n (p p S L i d e S h o w , 1 , p p R u n)

Figure 10
Fortran Program to In\.okc Po\\.crl'oinr to Run Slidc Prcscnrntion

Comparison of the Wizard to the Capabilities of
Other Languages

\ / J S L I J ~ C++ \us ion 5.0, Visual J + + \u s ion 1.1, nnd
Visual l$L~sic \,crsion 5.0 all ha\~e \\rizards that can rcad a
n p c libmry and allon, applications to use COIM
and/or Automation objects.

The Visual C++ ClassWizard can rcad a nlpc library
and crcatc a class with all the fi~nctions of the
1l)ispatch interface described in the library. Visual C++
version 5.0 also adds a preprocessor directive,
#import. Tlie #import directive reads a type library
and generates nvo hcader files that contain tlie defi ni-
tions of the (:OM objects defined in the type l i b r a r ~ . ' ~

Thc Ja\.a T!,pe Library Wizard \\itliin Visual J++
in\zoltcs the JavaTLB utility to cowerr the information
in a type library into Java .class files. A Java .clnss file is
thc binar!, fi)r~ii of a Ja\'a class or intcrL~ce.'"

To i ~ s c an object detined in a t!,pc library fi.0111
Visual Rasic, the developer must add a reference to the
objcct using the Project menu, Rcfcrc~lccs com~nand.
Tlic I<cfcrcnccs dialog bos allo\\s the usel- to select
horn the list of registered type libraries in a manner
similar to the Fortran Module Wizard."

The Fortran Modulc Wizard is unicluc in the h l -
lo*ing \\ra\s. The Fortran 90 programming language
docs nor inhcrcntl!l support objects. Tlic Fortran
~Modulc Wizard employs ;7 combination of language
. I I I ~ run-time sllpport to pro\,ide this cap'lhilin,. The
supporting language features arc modulcs .lnd procc-
durc 1mintc1.s. The supporting run-time ~nociulcs arc
l)F<:OiMTY, IIFCObI, and DFAUT'O. T11c Fortran
~Modulc Wizard pro\lides support fix n'pc libraries
containing tlic descriptions of DL[. routines.

Fortran Module Wizard Architecture

7'hc architecture of the Fortran Modulc Wizard is fairly
simple. The shell of the Wizard \\.as generated by the
Cr~stom AppWizard \vithin Visual C++. Tlie inner
\\,oslti~lgs of thc Wizard consist of thrcc major pieces:

T!,pe information reader

T\,pc s!,mbol tablc

Fortran code generator

Figure 11 sho\\.s a high-lcvcl data t l o \ \ of the
Fortran 1Modulc Wizard. The typc information rcader

traverses the data structures in the type information
and creates the type symbol table. The Win32 SL)I<
pro\.idcs a sample application named BROWSE OLE
sample that is 'In csamplc of traversing the infor~nation
in a type lihrar!,. 'The type s\-mbol table is a s!lmbol
table similar to those used b!, compilers. I t maps tylx
names to the descriptions of types. For sin~plicity, tlic
infor~iiation is stored using the salne data structures
uscd by thc typc inhrmation. Tlie Fortran code gcn-
erator tra\,crses the symbol tablc and generates 3

Fortran module.
The use of a symbol tablc allo\vs for a co~nplctc

separation of the functionality of tlie type information
reader from the Fortran code generator. A code gener-
ator for another programming language could be
easily substituted, as could another source of typc
information (for csamplc, a C header file).

Future Directions

Thcrc arc a numbc~. of possi bilities for fi~ture work that
would add to the c.~pnbilitics provided bji the Fortran
Module Wizard.

Fortran support for ActivcX controls. ,411 Acti\rcX
control is an Automation object. It is a reusable
component that nor~nally provides a user interface
and is i~scd in dialog boxes and other \vindo\\s. The
Fortran Modulc Wizard can generate a module
that \\~ould allo\\. a Fortran developer to use the
nicthods anti properties of an Acti\.eX control.
Ho\\,e\,er, additional funcrionalinr\\.ould be neccicd
in t11c Fosts,ln ru~i-tirnc libraries to maltc co~itrols
usable from a Fortran application. A control h ~ s
to be placcd in a special type of \vindow called a
Control Container. The Fortran run-timc libraries
d o not currently contain support for a Control
Container. In addition to methods and properties,
a control can ticf nc events. An event allo\\,s a con-
trol to notifi its container \\,hen somcthing ofintcr-
est liappuis to the control. For example, a "13~1tton
control" could dcfinc a "Clicked event."

Fortran \IJindo\\rs Application Wizard. This Wizard
could gcncratc stnrtcr files for a Fortran Wincio\\,s
;ipplication. This \vould be especially i~sef i~l if \\.c
were to implcnicnt tlic Fortran support for Acti\scS
coll tr~ls.

Figure 11
l h r d Flo\\. o f thc Fostsa17 blodulc \Virdsd

TYPE
INFORMATION
' TYPE

INFORMATION
READER

- TYPE SYMBOL
TABLE

- FORTRAN
CODE
GENERATOR

- FORTRAN
MODULE

Fortran I I I ~ ~ ~ L I I C S from <: headel- files. Ry replacing

the type information reader described in the previ-
o u s section with ;I C parscr, \ve could generatc
Fortran modules directly tiom .I1 files. This *auld
espand the set ofservices that arc easily nvnilnble t o
Fortran developcrs.

Fortran Scr\,cr Wizard. This Wizard \vould take a
Fortran module proviclcd by a Fortran developer
and package it ns a COIM object. I t \\.auld also gen-
erate a type library that describes the object. This
object could then be used by any COlM cl ie~l t , for
example, Visual Basic, Visual C++, and Visual J++
applications.

References and Notes

3. For a period of time, hlicrosoft used the I ~ J I ~ C OLE to
cncomp3ss '111 of its componcnr integl-:)tion technolog!:
including (:OM. No\\, 0 I . E is dpplieti only to com-
pound documc~lt tccll~lolop.

4. I<, Brocl<schrnidr, 117sitic~ OLE, Second Edirion (liecin~o~id,
PVash.: Microsoft Prcss, 1995).

5. I<. Brockschmidt, "Ho\v 0L.E .lnd C:OIM Sol\,c rhc
Prohlelns of <;omponent Soft \ r~rc Design," .l.liclrac!/i
Sy.z te~~~s~/or~r~zr/ l , vol. 1 I , no. 5 (Wa! 1996): 63-80.

6. 1). Chappell, C '~~dc>r.,sta~~dir~,n Actil.c.,\' cirrcl OLI:' (Red-
rnond, Wash.: microso oft Prcss, 1996).

7. OL/i 2 14.o,qmli1~~rer-s /<(~iir-olce. I'olrirr~o Tirr) (Red-
~ n o ~ l d , Wash.: Microsoft Press, 1994).

8. The Cbn7poncrrt Object ;1~loc/c~l S/~(>ciJi'c'nliorr 0.9
(l<cdmond, Wash.: Microsoft Corporation, 199.5).

9 . Automatio~l \\.as originall!. callcd O L E Auromario~l.

10. Before I1)L ;und I\.11l>I., microso oft 1,rovidcd the Objccr
1)cscription L;~ng~lagc (Olll ,) ;lnci .I compiler n.llncd
MKTYPJ.IR.

12. Microsoti Ot5cc 9 7 includcs a ne\v Office object model
r11;lt ofti.rs another scr of intcrklccs to Word services.

14. C;. Edclon and H . Fcldoll, "Undcl.st.~~ldillaii~~s tllc J.I\,LJ/

(:OAll I ~ ~ t c g r ~ ~ t i o ~ ~ ~Uotlcl," .111~-1-o~.f?/i I I I / c ~ ~ L I C - / I ~ . ~ ~ ~
/)er~cloj~or~, vol. 2 , no. 4 (April 1997): 56-63.

15, ~ I ~ I I ~ I ~ o A ~ ~ ! / / \ , > A I I C I / Lk.ii~. 7.0 IjooLl.< 011/i17c, (I < C C ~ I T I ~ I K ~ ,
Wabh.: Micro5oft Corporation, 1997).

Biography

Leo P. Treggiari
1x0 Trcggkid is a consulting soforarc cnginccr in the Core
Technology Group. He \\.as rcspo~lsiblc for cicvcloping rhc
Module Wizard in the L>I(;TTAI. Visual Fortran product
for the Fortran programmer \vol-king in a ~Microsofr
Wi~ldo\\.s cnviron~ncnt. l're\.ioi~s to this \\.ark, he was
project Icadcr fix the de\,clopmcnt of several progrt~lmming
tools, illcli~ding the 1Motif toolkit. Leo came to 1)IC;ITAL
il l 1979 fi.o~n P v ~ ~ i g Lilhoratories. He Iioltis a E.S. (1975,
summa cllm laudc) in che111istl.y ti.orn I5oston Collrgc and
is '1 nlcnlber oft\CiM.

I
Marco Fillo
Richard B. Gillett

Architecture and
Implementation of
MEMORY CHANNEL 2

The MEMORY CHANNEL network is a dedicated
cluster interconnect that provides virtual shared
memory among nodes by means of internodal
address space mapping. The interconnect imple-
ments direct user-level messaging and guaran-
tees strict message ordering under all conditions,
including transmission errors. These character-
istics allow industry-standard communication
interfaces and parallel programming paradigms
to achieve much higher efficiency than on con-
ventional networks. This paper presents an
overview of the MEMORY CHANNEL network
architecture and describes DIGITAL'S crossbar-
based implementation of the second-generation
MEMORY CHANNEL network, MEMORY CHANNEL 2.
This network provides bisection bandwidths
of 1,000 to 2,000 megabytes per second and a
sustained process-to-process bandwidth of
88 megabytes per second. One-way, process-
to-process message latency is less than 2.2
microseconds.

In computing, a cluster is loosely defined as a parallel
system colnprising a collection ofstand-alone colnput-
ers (cach called a node) connected by a network. Each
node runs its onin copy of the o ~ e r a t i n g system, and
cluster software coordinating the entire parallel system
attempts to provide users with a iunified system view.
Since each node in the cluster is an off-the-shelf
computer system, clusters offer several advantages
over traditional massi\lely parallel processors (MPPs)
and large-scale symmetric niultiprocessors (SMPs).
Specifically, clusters provide'

Much better price/performance ratios, opening a
wide range of computing possibilities for ilsers who
could not otherwise afford a single large system.

Much better availability. With appropriate software
support, clusters can survive node failures, whereas
SMP and LMPP systems generally d o not.

Impressive scaling (hundreds of processors), when
the indi\idual nodes are medium-scale SMP systems.

Easy and economical upgrading and technology
migration. Users can simply attach the latest-
generation node to the existing cluster network.

Despite their advantages and their impressive peak
computational po\ver, clusters have been unable to
displace traditional parallel systems in the marltetplace
because their effective performance on many real-
world parallel applications has oficn been disappoint-
ing. Clusters' lack of conlputational efficiency can be
attributed to their traditionally poor communication,
which is a result of the usc of standard nenvorliing
technology as a cluster interconnect. The develop-
ment of the IMEIMO~<Y CHANNEL nenvorlt as a cluster
interconnect was motivated by the realization that the
gap in effective performance benveen clusters and
SMPs can be bridged by designing a communication
networlt to deliver low latency and high band\vidth all
the way to the user applications.

Over the years, many researchers have recognized
that the performance of the majority of real-world par-
allel applications is affected by the late~icy and band-
width available for communication.*-111 particular,
it has been shown2."' that the efficiency of parallel
scientific applications is strongly influenced by the

Digital Technical Jot~t.n.~l Vol. 9 N o 1 1997 2

system's architecti~ral balance as cluantitied by its
co~i~munica t ion- to-co~~~k>uta t ion ratio, ivhich is sornc-
times callcd the q-ratio.' The q-ratio is defined as
the ratio benveen the time it takes to send an 8-byte
floating-point result from one process to another
(communication) and tlic time it taltes to perform ;I

floating-point operation (computation). In a systcm
with a cl-ratio equal to 1, it takes the same time for n
nodc to compiltc a rcsult as it docs for the nodc to
communicate the result to another node in the system.
Thus, the higher the q-ratio, the more difficult it is to
program a parallel system to achicvc a given level o f
performance. Q-ratios close to ~ ~ n i t y have been
obtained on[y in experimental ri~achines, such as
iWarpQand the ~M-R/Iachine,~ by employing dircct
register-based communication.

Table 1 shows actual cl-ratios for several corn~~~ercia l
systems."'." Tliesc q-ratios vary fro111 about 100 fbr a
DIGITAI, AlphaSer\lcr 4100 SMP systcm using sh3rcd
memory to 30,000 for a cli~ster of thcsc SMP sJrstelns
interconnected a fiber distributcd data interface
(FDlII) ~iemlorlt using the tr,lnsmission control
protocol/internet protocol ('I'<:1'/1 P). An M 1'1'
system, such as the IRM SP2, using the ~Messagc
Passing Interface (IMI'I) lias a q-ratio of 5,714. Tlic
IMEMORY CHANNEL nenvorlc clc\~cloped b!, Digital
Equipment Corporation reduces the cl-ratio of an
AlpliaServer-based cluster by a factor of 38 to 82 to bc
~vithili the range of 367 to 1,067. Q-ratios in tliis
range permit clusters to efficiently tackle a large class
ofparallel technical and commercial problems.

Thc benefits of low-latency, high-band\\.idth
ncnvorlts arc well i ~ n d e r s t o o d . ' ~ , ' ~ As shoc\~n by many
s t~~dies , ' . ' , '~ Iligli co~nrnunication latency over trncii-
tional networks is the rcsult of t17e opcrating systcm
o\,crlicad involved i l l tr.~nsrnittiiig and receiving n ~ c s -
sages. The MEMORY CHANNEL, network eliminates
this latency by supporting dircct process-to-process
co~nmunication that bypasses the operating system.

The MEI\IIORY CHANNEL network supports this type
of communication by ir~lpleriienting a natural estcn-
sion of the virtual Inenlory space, which pro\.idcs
dircct, but protected, access to the mcmor!, residing in
other nodes.

R ~ s c d on this approach, DIGITAI, de\lelopcd
its first-generation LMEMORY CHANNEL network
(IMEIMORY C m V N E I , l),'Qvhich has been shipping
in production since April 1996. Thc ncnvork does not
require any fi~nctionalin beyond the peripheral com-
ponent interconnect (P<;I) bus and therefore can be
used o n any sjatem nrith a PC1 I/O slot. DIGITAL
currently supports production MEMORY CHANNEL
clusters as large as 8 nodes by 12 processors per nocic
(a total of 9 6 processors). One of these clustcrs \vas
presented at Supercomp~~t ing '95 and ran cluster\~kie
applications ilsi~ig High Performance Fortran (HPF),'
Parallcl Virtual M,~cliinc (PVM),]- 'ind MPIIVin
DIGITA1,'s Parallel Sohvare Eni'ironmcnt (PSE). 'This
96-processor system lias a q-ratio of 500 to 1,000,
depending on the communication interface. A 4-node
ILIEI\/lOI<Y CHANNEL cluster running DIG17'rlL
Tru<:luster softu~arc'" and the Oraclc Parallel Server
has held the cluster performance \vorld record on tlic
Tl'C-(: [)cnchmark:"-the i~idustr!~ stantiard in on-line
transactio~l processing-since April 1996.

We 11cxt prcscnt nn o\ler\fie\\r of the generic
I\IEI\/IORY CHANNEL network to justi@ the design
goals of t l ~ c second-gcncmtion MEMOlIY CKANNEI,
nenvork (MEIMOIIY CHANNEL 2). Follo\ving tliis
o\~crvic\\s, \Ire describe in detail the ,~rcliitectl~rc of
the n\,o components t h ~ t nialte LIP the IUEMORY
CHANNEL 2 ncnvork: the hub and the adapter. Last,
\\,c prcscnt liard\\rarc-mcasurcd pcrfor~nance data.

MEMORY CHANNEL Overview

The MEIMORY CHANNEL networlt is a dedicated
clustc~. interconnection ncnvork, bascd on Encore's

Table 1
Comparison of Communication and Computation Performance (q-ratio) for Various Parallel Systems

Communication Computation Communication-
Performance Performance Based on to-computation
Latency LINPACK 100 X 100 Ratio

System (Microseconds) (Microseconds/FLOP) (q-ratio)

Alphaserver 4100 Model 300 configurations
SMP using shared memory messaging 0.6 0.006 100
SMP using MPI 3.4 0.006 567
FDDl cluster using TCPIIP 180.0 0.006 30,000
MEMORY CHANNEL cluster using

native messaging 2.2 0.006 367
MEMORY CHANNELcluster using MPI 6.4 0.006 1,067

IBM SP2 using MPI 40.0 0.006 5,714

28 Digirnl l>clinical Journa l VoI. 9 No. 1 1097

MEMORY <:HANNF,L technology, that supports
virtual shared memory space by means o f intcrnodal
memory address space mapping, similar t o that used
in the SHRllMP system." T h e MEMORY CHANNEI,
substrate is a flat, fi~lly interconnected nenvork
that pro\iidcs ptish-only message-based communica-
t i o ~ ~ . ' " . ~ ' Unlilzc traditional nenvorlzs, the MEMORY
C H A N N E L network provides lo\\,-latency cornmuni-
cation by support ing direct user access t o the nenvork.
As in Scalable Coherent Interface (SCI)23 and Myrinct2'
~nct~\,orks, connections benveen nodes are established
by mapping part o f the nodes' virtual address space t o
the MEMORY C H A N N E L in te r f~ce .

A MEMORY C H A N N E L connection can be opened
as either an ou tgo ing connection (in which case an
address-to-destination node mapping must be pro-
vided) o r an incorning connection. Before a pair o f
nodes can communic '~te by means o f the MEMORY
C H A N N E L network, they nlust consent t o share part
o f their address space-one side as ou tgo ing and the
other as inco~ning . 'I'he MEMORY CHANNEL net-
cvorlz has n o storage o f its onin. T h e granularity o f the
mapping is thc sanle as the operating systen~ page size.

MEMORY CHANNEL Address Space Mapping
Mapping is accomplished through manipulation o f
page tables. Each node that maps a page as i n c o n ~ i n g
allocates a single page o f physical mcn1ory and rnalces
it available t o be shared by the cluster. T h e page is
alwa\~s resident and is shared by all processes in the
node that map the page. T h e first map o f the page
causes the memory allocation, and subsequent

reads/maps point to the same page. N o memory is
allocated for pages mapped as outgoing. T h e mapper
simply assigns the page table entry t o a port ion o f the
MF,MOKY CHANNEL hardware transmit window and
defines the destination node for that transmit sub-
space. T l ~ i ~ s , the a m o u n t o f physical memory con-
sumed for the cluster\vide ncnvork is the product o f
the operating system page size and the total number
o f pages mapped as incoming o n each node.

After mapping, MEMORY CHANNEL accesses are
accomplished by simple load and store instructions, as
for any o ther portion o f virtual niernory, \ \ i thour any
operating system o r run-t ime library calls. A store
instruction t o a MEMORY C H A N N E L outgoing
address results in data being transferred across thc
MEMORY C H A N N E L nenvorlc t o the menlory allo-
cated o n the destination node. A load instruction from
a MEiMORY C H A N N E L incoming channel address
space results in a read from the local physical memory
initialized as a MEMORY C H A N N E L incoming chan-
nel. T h e overhead (in C P U cycles) in establishing a
MEMORY CHANNEL, connection is much higher than
that o f using the connection. Bccause o f the memory-
mapped nature o f the interface, the transmit o r receive
overhead is sin~ilar t o an access t o local main memory.
This mechanism is the f i~ndamental reason for the low
MEMOKY CHANNEL latency. Figure 1 illustrates a n
esanlple o f MEMOKY CHANNEL address mapping.

T h e figure shows two sets o f independent connec-
tions. N o d e 1 has established an ou tgo ing channel t o
node 3 and node 4 and also an incoming channel
t o itself. N o d e 4 has an ou tgo ing channel t o node 2.

NODE 1

GLOBAL
MEMORY CHANNEL
ADDRESS SPACE

NODE 3

NODE 1 TO
NODES 3 AND 4

NODE 2 \ NODE 4

NODE 4 TO
NODE 2 u

Figure 1
AllEMORY CHANNEL Mapping of a Portion of the Clustcr\vide Address Space

Digital Technical Journal Vol. 9 No. 1 1997 29

All connections are unidirectional, either outgoing MEMORY CHANNEL Ordering Rules
or incoming. To map a channel as both outgoing and The MEMORY CHANNEL communication paradigm
incoming to tlie same shared address space, node 1 is based on three hndamental ordering rulcs:
maps the channel two times into a singlc process' vir-

1 . Single-sender Rule: All destination ~iodes will
tual address space. The mapping esample in Figure 1

reccive pacltets in the order in which they were gen-
requires a total of four pages of physical memory, one

erated by the sender.
for each of the four arrows pointed toward the nodes'
virtual address spaces. 2. 1Multisender Rille: Packets from multiple sender

iMEMOl<Y CHANNEL mappings reside in nvo page nodes will be recei\fed in the same order at all desti-

control tables (PCTs) located on the MEMOKY nation nodes.

CHANNEL interface, one o n the sender side and one 3. Ordering-ul~der-errors Rule: Rules 1 and 2 ni~lst
on the receiver side. As shown in Figure 2, each page apply even when an error occurs ia the network.
entry in the PCT has a set of attributes that speciQ

Let PA, ., be the j th point-to-point packet from
the MEMORY CHANNEL behavior for that page.

a sender node M to a destination node X, and let Bj\,
The page attributes on the sender side are

be the j th broadcast packet from node M to all other
Transmit enabled, which ni~lst be set to allot\! trans- nodes. If node M sends the follo\ving sequence of
mission from store instructio~ls to a specific page pacltets,

Local copy on transmit, which directs an ordered
copy of the transmitted packet to the local memory

P2,t4x, Pl,,-.,-, Rl.v, Plw-x,
(last) (first)

Acluiowledge request, wlicli is used to request
Rule 1 dictates that nodes X and Y \ \ r i l l reccive the

acl<nowledgments from the receiver node uacltets in tlie follo\\!ina order:
u

Transmit enabled under error, which is used in
error recovery conimunication a t n o d e x , P2,\,.,,131,,,,Pl,,,,,

(last)
Broadcast o r point-to-point, which defines thc

(first)

type of packet to all nodes o r to a single node at node Y, Pl,, .Y, Bl,,,.
in the cluster (last) (first)

Req~lest acknowledge, ~ v h ~ c h requests a reception If a node N is also sending a s e q ~ ~ c n c c of packets, in
aclu~owlcdgment fiom the receiver the following ordcr,

The page attributes on the receiver side are P3x-x, P2,-s, B2,, P2s .,-, Bl,, Ply .y, Ply-,,

Receive enabled, which must be set t o allow reccp-
tion of messages addressed to a specific virtual page

Interrupt on receive, \vIiich generates an interrupt
on reception ofa packet

Receive enabled under error, which is asserted for
error recovery communication pages

Remote read, which identifies all pacltets that arrive
at a page as requests for a remote read operation

Conditional write, which identifies all pacl<ets that
arrive at a page as conditional write pacltets

SENDER

TRANSMIT PCT

SENDER
STORE
TO I10
SPACE i

MEMORY
CHANNEL
PACKET - -P

(last) (first)

therc is a finite set of valid reception orders at destina-
tion nodes X and Y, depending on the actual arrival
time of the requcsts to tlie point of global ordering.
Rule 1 dictates that all packets fro111 node M (or N) to
node X (or Y) must arrive at node X (or Y) in the order
in which they were transmitted. Rule 2 dictates that,
regardless of the relative order among tlie senders,
messages destined to both receivers must be received
in the snmc order. For example, if X rccei\!es R2,, Bl, , ,
and Bl,, then Y should rcceive these pacltets in thc

RECEIVER

RECEIVE PCT

RECEIVE ENABLED
INTERRUPT ON RECEIVE
RECEIVE ENABLED UNDER ERROR
REMOTE READ
CONDITIONAL WRITE

RECEIVER
LOAD - FROM
MEMORY
SPACE

Figure 2
MEMORY CHANNEL Page Control Attributes

30 Digital Technical Journal Vol. 9 No. 1 1997

same order. One arri\pal order congruent \vith both of
these rules is the following:

at node X,
P3h ,,, P2v .s, P2hi .x, B2s, ELI, Bls , f'l\ ,Y, 1'1~1 -1
(last) (first)

at node Y,
B2,, P2,..y, P1 ,\Id,, Bl,\i, B1 x, Ply .r

These rules are indcpcndent of a particular intercon-
nection topology or implementation and must be
obe!led in all generations of the MEMORY CHANNEL
netc\~ork.

O n the MEMOliY CHANNEL nenvorlc, error han-
dling is a shared responsibility of thc hard\vare and the
cluster management sofn\pare. The hardware provides
real-timc precise crror handling and strict packet
ordering by discarding all packets in a particular path
that follo~v an erroneous one. The sofnvare is respon-
sible for rcco\~cring the ncnvork fi-on1 the faulty state
back to its normal state and for retransmitting the lost
packets.

Additional MEMORY CHANNEL Network Features
Three additional fca t~~res of the MEMORY CI-WNNEL
network makc it idcal for cluster interconnection:

1. A hardware-based barrier ackno\vledge that s\J1ceps
the nen\lorlt and all its but'fers

2. A fast, hard\\~a~-e-su~>ported lock primitive

3. Node Gilure detection and isolatio~i

Because of the three ordering rulcs, the lMEMORY
CHANNEL ncnvol-k acknowledge packets are imple-
mcntcd with little variation o\~cr ordinary paclcets. To
request aclu~o\\~ledgnie~it of packet reception, a node
sends an ordinary packet marked with the request-
ackno\\,ledge attribute. Thc packet is used to sweep
clean the network q ~ ~ e u e s in the sender destination
path and to ensure that all previously transmitted paclc
ets have reached the destination. In response to the
reception of a MEMORY CHANNEL ackno\\lledge
recli~est, the destination node transmits a MEMORY
CHANNEL aclcno~\~ledgn~ent back to the originator.
The arri~ial of the acl<nonlledgmcnt at the originating
node signals that all preceding packets on that path
haw been successflll!~ received.

MEMORY CHANNEL locks are irnplcriicnted using
a lock-acqiiire sohvare data structure mapped as both
incoming and outgoing by all nodes in the cluster.
That is, each nodc \\,ill lla\ie a local copy of the page
kept cohcrcnt by the mapping. To acquire a lock, a
node writes to the shared data structure at an offset
corresponding to its noclc identifier. MEMORY
CHANNEL, ordering rules guarantee t l~a t the write
order to the data structi~rc-inclucli~ig the update of

the copy local to the node that is setting the lock-
is the same for all nodes. The node can thcn dctcrniinc
if it was the only bidder for tlie lock, in \vhicli case
the node has \\Ion the lock. If the nodc secs multiple
bidders for the same lock, it resorts to an operating
system-specific back-off-and-retry algorithm. Thanks
to the MEMORY CHANNEL buaranteed paclcet order-
ing, even under error tlie above mechanism ensures
that at most one node in the cluster perceives that
it was the first t o write the lock data structure. To
guarantee that data structures are never locked inde6-
nitely by a node that is removed from a cluster, the
cluster lnanager sofn\iare also monitors lock acquisi-
tion and release.

The MEMORY CHANNEL net\vork supports a
strong-consistency shared-memory nod el due to its
strict packet ordering. In addition, the 1 / 0 operations
used to access the lMEiClORY CHANNEL are hlly
integrated \\/ithill the node's cache coherency scheme.
Besides greatly simplifjling the programming model,
such consistency allows for an implementation of
spinlocks that does not saturate the menlory s)~ste117.
For instance, while a rccci\ler is polling for a tlag
that signals the arri\,nl of data from the MEMORY
CHANNEL network, the node processor accesses only
the locally cached copy of the flag, \vhich \ \ r i l l be
ilpdated nthene\~cr the corresponding main memory
location is \vritten by a MEMORY CHANNEL packet.

Unlilce other netu~orlts, the MEMORY CHANNEL
Iiardware maintains information on \vhich nodes are
currently part of the clustcr. Through a collection of
timeouts, the MEMORY CHANNEL hard\\rare con-
tinuously m o ~ ~ i t o r s all nodes in the cluster for illegal
behavior. When a failure is detected, the node is iso-
lated fro111 the cluster and recovery software is
invoked. A MEMOICY CHANNEL cluster is equipped
with sohvare capable of reconfiguration when a node
is added or re~no\/ed fi-om the clustcr. The nodc is
simply brought on-line or off-line, the event is broad-
cast to all other nodes, and operation continues. To
provide tolerance to network failures, the cluster can
be equipped with a pair of topologically identical
MEMORY CHANNEL ncnr~orlcs, one for normal opcr-
ation and thc other for failover. That is, \\.hen
a nonrecoverable error is detected on the active
MEMORY CHANNEL nenvorlc, the sofnvare switches
over to the standby nenvork, in a manner transparent
to the application.'"

The First-generation MEMORY CHANNEL Network

The first generation of the MEMORY CHANNEL
network consists of a node intcl-face card and a con-
centrator or hub. 'The interface card, called an adapter,
plugs into tlie 1 /0 PC1. T o send a packet, tlie CPU

Vol 9 No. 1 1997 31

\\rrites t o the portion o f 1 / 0 space 11iapped t o the PC1
bus. T h e s tore- to-memory is handled by the node's
PC1 interface device, which initiates a PC1 transfer tar-
geting the MEMORY C H A N N E L adapter transmit
windour. When a message is received, tlie MEMOliY
CHANNEL adapter initiates a PC1 transfer t o \\/rite to
the node's Cl'U memory, targeting the node's PC1
interfilce, \\lllicli then accesses the node's main mcmol-)I.

Besides \\,riting to the node's C P U , an 1 / 0 device
o n the PC1 bus can transmit directly t o a MEMOlCY
C H A N N E L adapter. Th is allo\\s, for example, a disk
controller t o transfer data dircctl!~ f rom the disk t o a
remote node's memor!I. T h e ddta transfcr docs no t
~ f f e c t the host system's memory bus. Tlie design
choice o f interfacing MEIMORY CHANNEL. t o the
P<:I bus instead o f directly to the node <:PU bus is
n o t an a r c h i t e c t ~ ~ r a l one , b u t ratllci- orlc o f practical-
ity and universality. T h e PC1 is a\.ailable o n most o f
today's systems o f \iarying performance and size and
is, therefore, an ideal interface point that allo\\,s
hybrid clusters t o be built. T h e o b \ ~ i o u s disadva~x-
tagcs o f a peripherdl interface bus are the addi t io~ial
latency incurred because o f the extra CPU-to-1'CI
h o p and a possible limitation on t h e available b i ~ s
bandw,idth.

T h e MEMOKY C H A N N E L 1 h u b is a broadcast-
only shared bus capable o f interconnecting up t o
eight nodes. T h e MEMORY Channel 1 adapters and
tlie h u b are interconnected in a star topology \ria
37-bit-wide (3 2 bits o f data plus sideband signals)
half-duplex cha~lnels. Tlie cables can be up t o 4 meters
1o11g, and the signaling Ici~el is 5-\loit TTL. A nvo-
node cluster can be formed \\/ithout ernployi17g a hub ,
by direct node-to-node i~ l te rcon~icc t ion . This config-
uration is also !aio\\,n as virtual hub configuration.

T h e current release o f the MF.MORY C H A N N E L 1
hard\\/arc achie\tes a sustained point- to-point ba~ici-
\\)idtb o f 66 megabytes per second (Mll/s) (ti-orn user
process t o user process). ~Vlaxirn~im sustained broad-
cast band\ \~idth is also 6 6 MB/s (fi-om a user process
t o many user processes). T h e cross-section MEAllOKY
C H A N N E L 1 h u b bandwidth is 77 MB/s. S~iiall
message latenc!~ is 2 . 9 microseconds (~ s) (froni a
sender process STORE instruction t o a mcssage
LOAD by a receiver process). T h e processor o\~erhead
is less than 1 5 0 nanoseconds (ns) for a 32-byte pacI<ct
(\vliich is also the largest packet size).

As demonstrated in the literature, standard rnessage-
passing application programming interfaces (APls)
benefit greatly from these MEMORY C H A N N E L
com~nunicat ion capabilitie~. '~."" I\IPI, PVM, and H P F
o n MEMORY CHANNEL 1 dl lia\~e one-\\>ay mcssage
latencies o f less than 1 0 ~ s . These latency numbers
are Inore than a factor o f fi1.e lo\\,cr tllan those for
traditional MPP architectures (5 2 t o 1 9 0 FS)."

Communicat ion pcrforrnance Improvements o f this
magnitude translate into cluster performance gains
o f 2 5 t o 5 0 0 perce~it ."

MEMORY CHANNEL 2 Architecture

Eased o n the experience \\,ith the first-generation
product, tlie design goals for IMEMORY CHANNEL 2
\\rere r\\,ofold: (1) yield a significant performance
impro \~cmcnt o \ c r I\/IEMORY C H A N N E L 1, and (2)
pro\lide f ~ ~ n c t i o n a l cnhanccmcnts t o cstcnd h a r d \ \ ~ ~ r c
support t o ne\v operating systems and programming
paradigms.

T h e IMEIMORY C H A N N E L 2 performance/hard-
*are enhancement goals \\,ere

N c n \ ~ o r k bisection band\vidtli scalable \\r~th the
number o f nodes: 1 ,000 lMB/s for an 8 - n o d e clus-
ter and 2 ,000 MB/s for a 16-node cluster

Impro\rcd point- to-point band\\,idth, exploiting
the maximum capability o f the 32-bi t PC1 bus:
77 i\/IB/s for 32-byte paclccts and 1 2 7 MB/s
for 256-byte packets

Full-duplex chan~lels t o allon, simultaneous bidirec-
tional transfers

Maximum copper cable length o f 1 0 meters
(i~icreasecl from 4 meters o n MEMORY CHANNEL
1) and ti bcr support u p t o 3 I<ilometcrs

A link layer c o ~ n m l ~ n i c a t i o n protocol co~npa t ib le
with future generations o f MkMORY C H A N N E L
liard\\rare dnd optical fiber interco~inect io~is

Enhanced degrcc o f error detection

The R!Il-,MORY C H A N N k L 2 fiinctional/soft\\'are
enhancement goals \\!ere

S o h \ , a r c cornpatiblc \\81th the f i rs t -gencr~t ion
I M E ~ I O R Y CHANNEL h'i~-d\\nare

liccei\lc-side address remapping and \,ariablc page
size t o better support new operating syste~iis, SLICI I
as Windo\\s NT, and non-Alpha microprocessors

R c ~ n o t c read capabilities

Global time synchronization mechanisnl

Conditional \\,rite access t o support a faster recoITcr-
able rnessaglng

These n1.o sets o f requirements translate into archi-
tectural 2nd technological constraints that define the
MEMORY CHANNEL 2 design space. To increase the
bisection ba~ldul idth, the h u b had t o irnplenient an
architecture that supported concurrent transfers. O n
MEMOlXY C H A N N E L 1, all senders must arbitrate
for tlie same h u b resource (t h e bus) o n every data
transfer. Every data transmission occupies the entire
MEbIORY C H A N N E L 1 h u b for t11c duration o f its

Vo1.9 No. 1 1997

transfer, ~ ~ n c i 311 message filtering is pcrformcd by tllc
rccci\rcl.s. Substantial nct\\rorlt traffic causes congcs-
tion bcc,lusc 'ill scndcr nodcs fight for the same -
resource. This congestion r e s ~ ~ l t s in '1 clecrease in the
c o r n ~ i i ~ ~ n i c a t i o n spccd ancl t l i ~ ~ s ,In incrcasc in the
effecti\.c cl-ratio as seen by the applications.

O n MF,I\/IORY <:HANNEL 2 , the hub h ~ s bccn
designed ,IS an IV-by-l\:nonbloclti~ig f ~ ~ l l - d u p l e x cross-
bar \ \~ i th bro,ldcast capabilities, \\.ith N = S o r N = 16.
Such an a r c h i t c c t ~ ~ r c pro\,ides 'I bisection band\\,idth
that scales with tllc number o f nocles and t h ~ l s remains
matched t o the point-to-point band\\idtli of tlie jndi-
\.idual channels \\~hilc a \ , o i d i ~ ~ g congestion a m o n g
indepcndc~l t co~l lmi~nica t ion paths. Therefore, an
incrcasc in ncn\rorlt traffic \ \ r i l l ha\,e little effect on the
effective cl-r,ltio.

'l 'hr i\llF.h/l0l<lr CHANNEL orclcl-ing I - L I I ~ S arc easily
met o n a crossb'lr o f this q rpc , as follo\\rs:

1. T h e single-sender ordering rule is naturally obc~gcd
by tlie E ~ c t that the ~ I - C ~ ~ ~ ~ C C ~ L I I - C pl-o\,idcs a single
path horn any source t o an!! destinatioll.

2. 'Phc multisc~idcr ordering rule is enforced by tdlti11g
o \ , c ~ . ~ l l the crossbar routillg rcso~lrccs cii~ring
bro,~dcast. Although less efficient than broadcast
by packet replication, this tcclinique cllsures a strict
common ordering for all dcstinntions.

Fin~lly, cl.ossbar s\\,itchcs are practical t o ilnplcmcnt
for a lnodcst number o f nodcs (8 t o 32) , bu t given
tlic ~\.ail~iL>ility o f n l c d i ~ ~ ~ i i - s i z e SI\/Il's, tllcy pro\,icle a
~ ~ ~ t i s f ~ l c t o ~ ~ ~ ~ degree o f scaling for the gl.cat mc1jorit\, o f
practical clustcl-ing applications. For instance, cluster
tccllnology can casil\, pro\ridc a 1,000-processor
system simp]!, by connecting 3 2 nodcs, each one a
32-\\,ay Si\/ll'.

'l'hc rcq~~i l . ement for a highcr point- to-point band-
\\.idth called for sliift from ha l f -d~~plex t o full-duplex
linlts. A longel. cable length imposed tlie choice o f a
s ignding t c c l i ~ l i q ~ ~ c o ther thnn the T T L employed in
tlic MEh/lORY <:HANNEL 1 ucn\.orl<. T h e design
tc'lm acloptcd lo\\,-\,oltage cliffcl-enrid signaling
(LV1)S)'" as tlic signaling tcc l i~ l ic l~~c for the second and
f ~ ~ t u r c generations o f the i\/lEA4Olil' C H A S N k l ,
nct\\rorl< o n c o ~ p e r . O n e o f tlic major decisions tliat
faced tllc team \\r,ls \\,liether t o m ~ i n t a i ~ l the pal-allcl
channel o f ~\llEiVIOlil' CHANNEL 1 o r t o adopt ,I ser-
ial channel t o minimize s l t r \ \ transmission problems
fw- large commllnication dista~lces. ba~ld \ \~ id th
dcm'lnds o f ti~tul-e cluster liodcs indicated tliat serial
links \\rould not pro\,ide s ~ ~ f f i c i e n t band\vidth cspan-
sion c'lpabilitics ~ l t ~-c'lsonable cost. Tllus, tlic channel
data px'h \\.idth \\,as clloscn t o hc 1 6 bits, a suitable
compromise t h ~ t \\,auld offer a manage,tblc c h a n ~ ~ e l -
to-clianncl site\\, while providing tlic rcclllired band-
\\.idth. Figilrc 3 ill~lstratcs the distinctions bcn\,ecn the
first- dnd second-generatio11 I\IIEIUORY CHhVNEC
arch i tcc t~~res .

MEMORY CHANNEL 2 Link Protocol
T h e MEMOIlY CIWNNEL 2 c o m m u n i c ~ t i o n proto-
col \\,as engineered \\.it11 tllc goal o f e n s ~ l r i n g comp,~t i-
bility \\,it11 optical fiber's uniciirectional mcdiu111. T h e
interconnectiol1 substrr~tc consists o f p; l~r o f ~~nici i rcc-
tional channels, ollc illcoming nncl one outgoing.
E ~ c l l ch'lnncl consists o f a 16-bit dnta p ~ t l ~ , '1 fi..i~ning
signal, and a cloclt. Thc channel carries n \o types o f
pacltets: data and cont1.01. DL1ta pclcltcts \.ar!, in size ,lnd
c ~ r r y applicatioll d ~ t a . C:ontrol pacltcts are used t o
exchange flo\\. control, por t state, anci glob'll clock
information. Control pdckets t,ll<c priorin? o\,cr dnta
pacltcts. They are inserted i m m c d i ~ t c l ! ~ \\.he11 tlo\\.
control st,ltc c h ~ n g c is llccclccl and , other\\ . isc, ~ r c
gcncratcd o n a regular intcr\.al (millisecond) t o update
less time-critical state. hlEi\/IOl<L' (:Flr\SNEL 2
data packet form'lt is s l l o \ \ ~ ~ in Figure 4a. ?'he h c ~ d c r
o f thc data pacltct contains n pacltct type (TI'), a
clestination identifier (I)NIl)), '1 rclnotc corn~i iand
(CIML)), and a sender i d c ~ l t i f c r (SJ1)). Tlic data pay-
load starts \\,ith t h c c l~s t in~l t ion ,~ciclrcss a n d cdn \ , ,~ r !~
in Icngtll f rom 4 t o 2 5 6 b\,tcs (t \ \ , o t o o n c Iluncired
t\\,cnty-eight 16-b i t c!,clcs). I t is follo\\,cd b!, t \ \ ~ o
16-b i t cycles o f l lccd-Solomon cl.ror detection cocic.

T h e control pacltet fo rm.~t is sho\\,11 in Figure 4 b .
7 7

l he pacltct is identified by a distinct 7'1' and c ~ ~ r r i e s
nctn,orlc and f lo\ \ control inform'ltion s~1c11 ,IS por t
statils (l'STAT), corlfigllr:1tion (<:PC;), IINll), h u b
status, and global status.

Similar t o i\//IEh/IOl<Y (:HANKEL 1, h4t;hllORY
C H A N N E L 2 uses a clocli-for\\~arcIi~~g rcclinicl~lc in
\\dlich the transmit clock is sent along \\.it11 thc d ~ t a
and is used at tlic rccci\,cr t o rcco\.cr the d'lta. l) ,~ ta is
transmitted o n both edges of t l le for\\.arclccl clock, and

no\-el ti!,n'~mic retiming tcchniqilc is ~lsccl t o svn-
chronizc tllc incoming paclccts t o tlie node's local
clock. T h e retiming circuit loclis o n t o a good sample
o f the incoming ddta dt the s t ~ r t ofc\.c~.\r p,lcltet anci
ensures accurate ~ \ ~ n c I i r o n i z a t i o ~ ~ for the p,lcl<ct dura-
tion, as long '1s prcdcfi ned coniiitions o n m a s i m ~ l l n
pacltct size and clock drifis at-e maint.lincd.

T h e I\/lF.MORY (:HANNEL. 2 li~llt protocol has
an cmbccidcd autoconfig~rration mechanisln that is
inf.okcd \\,liene\,cr a node goes on-line. T h e h u b port
and the ad'iptcr use tliis a u t o c o l ~ f i ~ u ~ . . ~ t i o n ~ncc l~anisn i
t o n e g o t i ~ t c the mode o f operation (link frcclucnc!,,
data p ~ t h \\idtli , e tc .) . ?'he s'11mc mech,lnisln allo\\,s a
nvo-node h~rblcss system ('1 \,irtc~al h ~ ~ b contig~11-ation)
t o consistently m i g n node identifiers \ \ . i t l i o ~ ~ t an!,
operator intrr\ .cntion o r m o d l ~ l c jumpers.

MEMORY CHANNEL 2 Enhanced Software Support
MEMORY C H A N N E L 2 pro\.ides foul- m,~ jor rlddi-
tions t o application anel operating systcnl support :
(1) recci\,c-side address remapping, (2) rcmotc reads,
(3) a global clock s!znchl-oniz'ltion ~ncclianism, and
(4) conditional \\,rites.

L>i$ i t '~ I ~ I ~ c ~ I I I I ~ c , I I J ~ L I I 1n,11 \'ol 9 No. I 1997 ;

(a) MEMORY CHANNEL 1 Network

Characteristics

(b) MEMORY CHANNEL 2 Netu~ork

MEMORY CHANNEL 1 MEMORY CHANNEL 2

Channel data path width

Channel communication

Electrical signaling

Optical fiber compatible

Link operating frequency
Peak raw data transfer rate
Sustained point-to-point bandwidth

Maximum packet size

Remote read support

Packet error detection

Address space remapping

Supported page sizes
Hub architecture

Network bisection bandwidth

37 bits

Half duplex
TTL
N 0

33 MHz
133 MBIs

66 MBIs

32 bytes

No
Horizontal and vertical parity

None

8 KB
Shared bus
77 MB/s

16 bits
Full duplex

LVDS
Yes

66 MHz
133 + 133 MB/s
100 MBIs

256 bytes

Yes
32-bit Reed-Solomon

Receive
4 KB and 8 KB

Crossbar

800 to 1,600 MBIs

Figure 3
Comparison of First- and Second-generation MEMORY CHANNEL kcl~itectures

> HEADER

- - - - - - - - - -

> PAY LOAD

(4 TO 256 BYTES)

- - - - - - - - - - ERROR

(a) Data Pnckct

1
HLJR

- - - - - - - - - -
DETECTION

(b) Control Packet

HEADER

CONTROL
INFORMATION

Figure 4
MEiMORY CHANNEL 2 Packct Format

Vo1.9 No. 1 1097

O n MEMOIIY CHANNEL 1 clusters, tlie nen\rork
address is mapped to a local pagc of physical melnory
i ~ s i ~ i g remapping resources contained in the sjlstem's
PCT-to-host niernory bridge. All AlphaScr\~cr systcnls
iniplcrnc~it tliesc remapping resources. Other sys-
tems, particularly tliosc \\,ith 32-bit addrcsscs, d o]lot
i~nplement this I'CI-to-host memory remapping
resource. O n MEMORY CHANNEL 2, sokware has
the option to cnablc rc~iiapping in the receiver side
of thc MEIVORY CHANNEL 2 adapter o n a per-
ncn\,ork-page basis. When configured for remapping,
a section of the I'CT is used to store the upper address
bits needed to map any network page to any 32-bit
addrcss on the 1'C:I bus. Such enhanced mapping
capability \vill also be used to support remote access
to I'CI pel-ipherals across tlie MEMOlKY CHANNEL
nemorl<.

A simplc rcniote I-cad primitive \\,as added to
A4EMOKY CHANNEL 2 to support research into
sofn\:at-e-assisted shnrcd menlory. The primitive
allo\\fs a node to co~uplete a read request t o another
nodc \\,itliout soft\\.arc intervention. I t is imple-
mcntcd by a 11c\\l rcrnotc red-on-write attribute in
the receive pagc control table. The requesting node
generates a \\'rite with the appropriatc remote address
(a read-I-cclucst write). When thc packet arrives at the
rccci\rcr, its acldrcss maps in the PCT to a page ~narked
as remotc rcad. Afc r rcmapping (if enabled), the
address is convcrtcd to a PC1 rcad comlnand. Tlic
read data is re t i~r~lcd as a MEIMORY <;HANNF.L\vrite
to the same address as the original read-request write.
Since read acccss to a page of mcmory in a remote
node is provided by a ~uiique ~let\vork address, privi-
leges to \\.rite or read cluster menlory remain com-
pletely independent.

A global cloclc mechanism has been introduced to
provide support fix cluster\vide synchrorlization.
Global cloclts, \vhicJi arc highly accurate, are estrcmcly
useful in many distributed applications, sucli as p;uallel
databases or distributed debugging. The J\/IEMOI<Y
CHANNEL 2 hub implements this global clock by
periodically sending synchronization packets to all
llodcs in the cluster. 'l'lie reception of sucli a pulse
can be m,lde to trigger an i n t c r r ~ ~ p t or, 011 future
MEIVORY CHANNE1.-to-CPU direct-intel-face sys-
tems, may be i~sed to update a local counter. 'The
interrupt service sohra rc updates thc offset benvcen
tlie local tilnc and tlie global time. This synchroniza-
tion mechanism allo\\,s a uniclue cluster\\~idc time to
be maintained \\:it11 an accuracy cqiial to t\vicc the
range (mas - 1i1in) o f the MEMORY CHANNEL net-
\vorlt I'itcncy, plus tlic interrupt ser\.icc routine tirne.

Conditional \\,rite transactio~~s have bccn intro-
duced in MEIMOR\' CHANNEL 2 to improve the speed
of a recovcrablc messaging systeni. On MEbIORY

CHANNEL 1, the simplest irnplanentation of general-
purpose reco\~erable ~ucssaging requires a round-trip
acknowledge delay to validate the message transfer,
\vhicli adds to tlie cornmi~nication Intcnc!!. l111c
R/IEblOl<Y (ZMNNEL 2's nc\\,ly introduced condi-
tional \\rite transaction provides a more efficient
iniplcrncntation that recluil-es a single acknowledge
packet, thus practically reducilig tlic associated latc~icy
by more than a factor of nvo.

Memory Channel 2 Hardware
As suggested in the previous architectural description,
MEMORY CHANNEL 2 hardware components arc
siniilar t o those in MElVOl<Y CHANNEL 1, namely
a 1'CI adaptcr card (one per nodc), a cable, and a
ccntral l i ~ ~ b .

The MEMORY CHANNEL 2 PC1 Adapter Card The PC1
adapter card is the hardware interface of a node to the
MEMORY CHANNEL ncn\,ork. A block diagram of
the adaptcr is sho\\~n in Figure 5. The adapter card is
functionally p<lrtitioned into t\\'o subs!lstems: the PC1
interficc and the link intcrk~cc. First in, first out (FIFO)
queues arc placed benveen the n\,o subsytenis. The
PC1 interface communicates \\.it11 the host system,
feeds the link intcrf:lce \\it11 data packets to be sent, dnd
for\\lards rccei\rcd packets on to tlic PC[bus. 'h link
interface manages the link protocol and data tlou,: It
formats data packets, generates control paclcets, and
handles error codc generation and detection. I t also
multiplexes the data path fiom the 1'CI format (32 bits
at 3 3 megahertz [MHz]) to the link protocol (16 bits
at 66 MHz). In addition, tlic link interface i~nplemcnts
the conversion to dnd fi.on1 L\IDS signaling.

The transmit (TS) and rccci\~c (RY) data patlis,
both heavily pipelined, are kept completely separate
from each other, and there is n o I-esourcc conflict
other tha11 the 1'CI bus access. A special case occurs
\\,lien a packet is received \vith the ack~io\\lledge
reqi~cst bit or the loopback bit set: the paths in both
directions arc coordinated to t ra~ls~ni t back the
response packet urhile still recei~ing the original one
(e111plo)ring the gray path in Figure 5) . During a nol--
ma1 IMEMO~~Y CHANNEL 2 transaction, the transmit
pipeline processes a transmit request from the 1'CI
bus. The transmit PCT is addressed u~ith a si~bset of
the PC1 addrcss bits and is used to dctcrminc the
intended destination of the packet ancl its attributes.
The t ra~is~ni t pipeline feeds tlie link interface with ddta
packets and appropriate co~nmands through tlie trans-
mit F1l2O queue. T l ~ e linlc interhcc formats thc pc~clc-
ets and sends them on the link cable. At the receiver,
the link i~itcrface disnssembles thc packet in an intcl--
mediate format and stores it into the receive FIFO
queue. The PC1 interfacc performs a looltup in the

CONTROL P CONTROL I
r - - - - - - - - - - - - - - - - -
I LINK INTERFACE I

PC1

FORMATTER

CABLE

R X PIPE

I

RECOVERY

Figure 5
I<loc.k l) i ,~ ig im o f a MEALORY (:HANNt;I. 2 ;\d;~ptcr

r.ccci\,c~. I)(:T to ensure that the page has bccn cnablccl
fbr rcccptio~i and to determine tlic loc;il dcstinatio~l
atldrcss.

In the simplest imple~ i~cn ta t io~~ , ~>.lcltcts ~1.c subjcct
to t\\.o store-and-for\vard dcI;~ys-o~~c o11 tllc tra~ls~iiit
132th a n d one o n the reccij-c pxli. I<ccnusc. of the
;~tomicin. of packets, the transmit path must \\.nit k)r
the Inst clat.1 tvord to be con-cctl!. t.lkcn in tiom tlic
1'(:1 17115 bcfo~c fos\\.arding the packct to tlic link inter-
E~cc. The rccci\.c path cspcricnccs n dcla! hccausc the
error detection protocol rccl~rircs the clicclting of rhc
last c!,clc before the packct cnn be dccla~,cd c~-~.o~. -hcc .
A set ofcontrol/status MF,MORY <:HANNEI. 2 rcgis-
tcss, addressable throng11 tlic I'(:l, is ~ ~ s c d t o set \ , ~ r i -
011s motics of operation and to rc;id Ioc;11 status of the
link 2nd globnl cluster status.

The MEMORY CHANNEL2 Hub l'hc l i i~b is rhc cen-
trill I Y \ ~ L I I . C ~ that intcrco~inccts ~ 1 1 1 ~ iodcs t o fimn
a clustcr. Figurc 6 is a block dingl.;lm of ;in 8-b!,-S
h8lEhlORY (:HAYSEL 2 huh. The hub implcmcnrs
a no11l)lockillg S-b!,-S crossb.~r iuiti intc~.ficcs to ciglit
16-l>it-\\-idc hll-duplex li~ilts b!, mc,lns of;l link inter-
ficc sinlilnr to that used in the nd.~ptcr. .l'lic nc t~~a l
crossb'~r I ~ ; I s eight illp~lt ports ;l~id ciglit o ~ ~ t p ~ ~ t ports,
,111 16 bits \\,icic. Each output port [ins ;In 8-to- 1 multi-
p l e s ~ ~ . , \\~l~icli is able to choose horn one of ciglit input
ports. Each multiplexer is controlled hy a local arbiter,
\\~liicli is fed dccodcd cicstinntion rcclLlcsts horn tlic
eight input ports. The port arbitr~tion is bnscd o n a
tiscci-priorit?; recluest-sampli~~g nlgoritlim. All rcclucsts
tliat al.ri\,c \\,itliin ;I snmpliug i~itc~.\',d .11.c co~isidc~,cci of
cquul ngc 311d are scr\.iced before any nc\\. rcqucsts.
'l'liis n[gorjtllm, \\.hilt not enforcing . ibsol~~tc ,~rt-i\.~l-
t i~nc ordering ;lrnong paclicts scnt horn different

~lodes, L ~ S S L I ~ C S n o stnr\,ntion a~ ld n hir age-driven prior-
ity across sampling i~ltc~.\,als.

When a broadcast recluest arri\fes at the hub, thc
otllcr\\.~sc intic1,cncicnt nr0itcrs synchronize rlicm-
scl\fes to transfer the broadcast packet. The . J I .I 71tcrs '

uxit for the completion of the pacltct currently being
transfcl-red, ciis,thlc poilit-to-point arbitration, signal
that the!. arc cad!* for broacicast, and then \\-ait for all
other ports t o a~.~.i\.c nt tlic samc s!~nclirollization
point. O11cc 311 output ports are ready for broadcast,
port 0 p rocwds to read f r o n ~ the appropriate input
port, ~ n c i all other ports (including port 0) sclcct tlic
samc input source. The maximum sy~ichronizatio~i
\\,air timc, assuming n o o ~ ~ t p ~ ~ t c lue~~e blocking, is cclual
to the timc it takes to tra~isfcr the largest size packets
(256 bytes), ~ h o u t 4 ps, and is independent of the
number of ports. As in an!? crossbar architecture: \\,it11
a single point of cohcrcnc!-, such broadcast operation
is ~iiol-c costly rlian ,I point-to-point transfer. Our
cslxric~lcc has bccn that some critical but relativcl!,
Ion.-hcqucnc!. operations (primarily fasc locks) exploit
the bro;~ricilst circuit.

MEMORY CHANNEL 2 Design Process and Physical
lmplemen ta tion
Figurc 7 illustrnrcs the main MEMORY CHANNEI.
physicdl components. As sIio\\111 in Figure 7'1, n\fo-node
c l~~stcrs can he constructed by directly co~lnecting two
MElMORY <:HANNEI, P<:l adapters and a cable. This
configuration is cnllctl the \,irtual hub configuration.
Figure 713 sho\vs clustcrs i~iterconnccted by means of
a .I~ub.

The hl EhlORY (:HANNEl. adapter is implementcd
as a sirlglc l'<:I card. 'l'hc hub consists of a motlier-

PORT

PORT

INIOUT L I N K 4
I

I N 0 16
:=:

0;; 0 * - - - -
- - - -
- - - - d +

t
- - INIOUT LlNK - INTERFACE 1

IN 1 1:

- - - -
- - - - + + ,, t

Figure 6
Block Dingrnln ofnn 8-by-8 IMEMOKY CHANNEL 2 Hub

board that Ilolds tlic s\\.itcli and a sct of liocc:irds, o n e
pcr port , thiit ~ x o \ ' i d c s the illtcr61cc t o tlic link cable.

'1'lic ;id.iptcr. a11J 111117 i r l i p I c ~ i ~ ~ ~ l t , ~ t i o ~ l s IISC a c o m -
binntion o f progrnm~nablc logic dc\.iccs rid off-the-
cliclf cornponcnts. ?'his design \\,IS prcfcrrcd t o an
~pplicntion-spccitic ilitcyrarcd circuit (ASIC:) imple-
rnentarior~ bcc,lc~sc OF the shor-t tinlc-to-rmlrkct

rcquircmcnts. I n .~ddi t ion, some o f tlic lie\\, f ~ ~ l i c t i o n -
ality \ \ r i l l c\.ol\.c .IS soft\\.,~rc is modified t o t ~ l i c ~d\. . lri-
tagc o f t h c nc\\. fc.~tnrcs. 'l.'hc h~lLiVIOI1Y (:HANSEI. 2
design \\.:IS de\rclopod cnrircl\' in Vcrilop , ~ t tlic rcsis-
tcr transfer Icvcl (11-1.1.). I t \\,ns s i n ~ ~ ~ l n t c t i ~ l s i n g the
Vien.logic \'<:S c \~cn t -~ i r i \ . cn simulator kind s!.nthc-
sizctl \\.ith thc S!mops!.s tool . 'I'llc ~ . c s u l r i l ~ ~ rlctlist

PC1 - MEMORY
CHANNEL

CHANNEL
/ / ADAPTER 2

(3) Virtual 11~11, molic: direct nodc-to-node
in tc rco~l~ lcc t io~~ o f t\\.o I'<:I ncinptcr car-ds

ADAPTER 8

(b) Using the IUEMORY <;HAS\'NEI, huh
to crcatc clusters of up to I 0 nodes

Figure 7
MEMOIIY <:HANNEJ. tl;u-d\\,nrc <:omponc~~rs

\:)I. 0 So. I 1097 .37

\\.as fcci tlirougli tlie .~pprop~.i;ltc \ ,cncio~' tools for
placing 2nd rout ing t o thc specific cic\.iccs. 01ic.c the
dc\.icc \\.as ~ . o u t c d , tlie \ . C I ~ C ~ O L . too .1~ pro\,icictI a gate-
Ic\,cl Vel-ilog nctlist \i.ith tilning i l~f i)r~rinr ion, \ \ , l ~ i c l ~
\\,as then simulated t o \.critj, the cor1.cct11css o f tlic
s \vthcsizcd design. Bonrd\ \ idc static tillling nnal!~sis
\\,as run using rlie Vieu.logic lLIOvl'l\iF, tool . r171ic linlc
intcrf,lcc \vas fitted t o a single Lucent ' k c l i ~ ~ o l o g i c s
O p t i ~ n i z c d R e c o n f i g ~ ~ r a b l e Cell Array (OR(:A) Scrics
field-programmable ga te array (FI'GA) de\fice. *l'he
1'CI intcrFacc \\.as i ~ n p l c ~ n c n t c d \\-it11 o n e ORCA
FI'GA dcvicc and several high-speed AMl) p o g r a ~ i i -
mablc array logic de\.ices (PAl,s). ?'lianlts t o tlic in-
s!.stcm programmability o f PA1.s a n d FI'GAs, tlic
I\II.EMOKY C H A N S E L 2 adapter board is designed
t o be complctcly rcprogrammnblc in the field from
the s\.strm console th rough the I'(:I intcrfacc.

MEMORY CHANNEL 2 Performance

?'his section presents IMFMORY <:NANNFL, 2 perfor-
mance data configured in v i r t ~ ~ a l I i ~ b mo(ic (direct
node-to-node connection). Whcrc \~cr possible ~lctual
~ncasurcd results are presented. A t \ \ fo-node
AlpheScrvcr 4 1 0 0 5/300 cluster \\.ns used for 311 hard-
\\'.Ire measurements.

Network Throughput
Tlic iVIk.i\/lOl<Y CCHXSSEL, 2 ncn\.o~.l< hns 3 ra\\, clnta

T C ~ arc rntc o f 2 h\,tcs c \ cr!. 13 ns o r 133.3 h,IIS/s. hllcssnb .:
packcti~ccl I>!, the interf'icc into one or more hfll..hiIOl<Y
(:HXNNF,L packrts. Paclzets \\.itl.i tintn pa!'loacis o f 4 t o
2 5 6 bytes arc s~rpported. Figure 8 coliipnrcs, f?)~ . \ , n r i o ~ ~ s

ALPHASERVER 4100
MEMORY CHANNEL 2 CLUSTER
PROCESS-TO-PROCESS BANDWIDTH

O: 8 16 32 64 128 256
MESSAGE SIZE (BYTES)

Figure 8
iVIEl\.IOl<Y (<:HANSEL 2 Point-ro-poinr H;l~id\\.iiirh
.IS .I ~ u n c - r ~ o ~ ~ of P.liIict S i x , Coliiparinp NU\\ o r k
'l'licorctic.al limit , ~ n d Si~staiiicci I ' roccss- lo-~~'o~"\>
I\lcnsu~-cci I'csforn~.i~~cc.

paclcct sizes, tlic ~ i ~ a s i r n u m band\vidth the I\/IF.I\IOI<Y
CHANNEI. 2 ~ict\\'ork is capable ofsustaining \\.it11 the
effecti\.c process-to-PI-occss band\\.idth achieved sing a
pair oFAlpliaSc~.\,cr- 4 100 s\.stcms. With 256-b)~ tc pack-
ets, ~blEI\~101<Y (:tlANNEI, 2 n c h i ~ \ ~ e s 1 2 7 lMR/s o r
about 96 ~ x r c c ~ i t o f rlic !-a\\, \\,ire band\\.idtli.

For l'C1 \\.rites oflcss than 01. equal t o 2 5 6 bytes, the
MEMORY (:HANNEI, 2 intcrfacc simply c o n \ r r t s the
PC1 write t o a sirnila1.-size I\/IER/IO~XY CHANNEI .
packet. T h e current clcsign docs no t aggregl tc r n ~ ~ l t i -
plc PC1 \\,rite transactions illto a s i~iglc MEMORY
CHANNELpackct ~ n d autom~tical ly breaks PC1 \\,rites
larger than 2 5 6 bytes into a sequence o f 256-b!,tc
packets.

As Figure 8 shon-s, tlic bandlvidth capabilin, of tllc
MEA4ORY (:HASSEI, 2 nct\\.ork esceeds the sustain-
able data rate o f the Alp1iaSc1-\.er 4 1 0 0 s!.stcm. T h e
AlpliaScrvcr ~!~stc111 is capnblc o f generating 32-b!~c
pa~l ie t s t o the MF.J\/IOI<Y k'(:HiEiSNEL 2 interfncc a t
88 MB/s or about 1 0 pcrccnt less than the rnasinium
nenvork band\\,idth at a 32-byte paclzet size. This rep-
resents a 3 3 percent band\vidth improvement over thc
previoi ls-gcncmtio~~ MEMORY CHANNEI, , \ ~ ~ I i o s c
eff'rcti\sc band\\.idth \\.as 66 MlS/s. hi ideal PC1 host
intcr6icc \\.auld nchic\,c tlic f ~ ~ l l 97 iMB/s, b u t the
current AlpliaScrvcr 4 1 0 0 design inserts an extra 1'CI
stall c!,clc o n sustained .32-b!.tc \\-rites t o tlic I'CI. T'lic
32-b!~c packet size is .I limitation o f the Alpha 2 1 1 6 4
microprocessor; l i ~ t u r c \.el-sions o f the Alpha micro-
~>roccssor \ \ . i l l 1~ ~ 1 7 1 ~ to sencrate larger \\.rites t o the
1 x 1 bus.

Latency
F i g ~ ~ r e 9 slio\\,s tlic Intcncy c o n t r i b ~ ~ t i o n s along a
point-to-point path from .I scnding proccss OI I nodc
1 t o n I-ccci\.ing p~.ocess o n node 2 . Using 3 si~iiplc
8-b!rrc p i ~ i g - l > o ~ q tcst, \\,c deterniined that the one-
\\xy latcnc!, o f this p ~ t l i is 2.17 ~ s . In tlic tcst, a ~ ~ s c r
process o ~ i ~iocic 1 scnds an 8-byte messagc t o node 2 .
N o d e 2 is polling its mcmol-y \\.siting for the Incssagc.
Aficr nodc 2 sccs the mcssclgc, it sends a si~liilal- mcs
sage b ~ c k t o 11ocic 1 . (S o d c 1 started polling its Incm-
ol-!. .~ficr it scnt the PI-cvious message.) 011c-\\..1!.
latcncy is calculclrcd b!. diviciing b!.n\.o the time it tnlics
to co~nplc rc ,I ping-pong csc l~angc . Approsilnntel!-
3 3 0 ns clapsc from the tirnc n scnding processor issues
a stol-c jnstr~lcrion i~rltil the storc propagates to the
sender's ('(:I bus. 'l'lic Intcncy fi-om thc sender's I'(.:I to
the rccci\,cr's l'<;I over tlic MEMORY CHANNEL 2
net\\,o~-k is about 1.1 ps . PVriting tlic main memory 011

the rcccivcr ~iocic tnkcs an additional 3 3 0 ns. Finall!.,
the poll loop tnlzcs nn average of a b o u t 4 0 0 ns t o rend
thc Hag \-nluc horn n1cnlor!..

Tnblc 2 she\\-s tllc process-to-process onc-\\.a!,
mcssngc I.~tcnc!: for diffcrcnt n p c s o f con~niunicat ions

- - - - - - - - - - - - -

I NODE 1 (SENDER) I

PROCESSOR

MEMORY 0

.
MEMORY
CHANNEL
ADAPTER

I
I
1 PROCESSOR

MAIN
MEMORY

I
I A r
I
I

. I /' --

I HOST 1
BRIDGE ! I

I
I
I MEMORY

CHANNEL
1 ADAPTER

I

b 4
CABLE

Figure 9
L.;ltcnc!. C;ontrib~~rions dong the P ~ r b from 3 Scnticr to ,I Kecei\.er

a t a fixed 8-byte mcss.lge size. T h e first row contains
the result o f the ping-pong experiment p~-c\riously
cicscribcd. For comp'u-ison, tlie pre~zious gcncration
o f IMEMORY CHANNEL, had a ping-pong latcnc), o f
2.60 ks. T h e seconcl rou. represents the latency h)r the
simplest implc~ncntat ion o f \sariable-length messaging.
'.l'lic latelicies ofstandal.d conimunicatio~i intel-hccs arc
sho\\,n in the last n\.o ro\\.s, na~nel!., High Pcrfo~.mancc
Fortran and Mcssagc Passing Interface. T h e rcsults
shown i l l this table arc only benveen nlro and tlircc
times s l o ~ r e r than t11c latencies measured for the same
communication intcrfiiccs over tlie SM1' bus of the
Alpht~Scr\rer 4100 system.

Table 2
IMEMORY CHANNEL 2 One-way Message Latency
in Virtual Hub Mode for Different Communication
Interfaces

T h e latency o f tlic lMEMORY CHANNEL, 2 rlcnvork
increases with tlie size o f the message bec,~usc of the
presence o f store-and-fbr\\,ard delays in the path. As
discusscd in tlic preirious hardware description, all
packets are s ~ ~ b j e c t to two store-and-fi)r\\ ,mt delays,
o n e o n the ou tgo ing buffer and o n e on tlic incoming
buffer (required for crror checking). These ciclays also
play a role in the cffecti\,e bandn'idth o f n stream o f
packets. On the o n e hand, smaller packets arc less effi-
cient than larger ones in term o f o\,crhcad. O n the
o ther hand, sm,~llcr packets i n c ~ ~ r a slio~.tcr store-and-
for\\gard dcla!~ per packet, \vliich can then bc over-
lapped ii~itli the transfer o f pre\.ious packets o n t h e
Ii~ik, making the o\-er'~ll transfer more cficicnt. T h e
hub p c r f o r ~ n s cut- through paclcct r o t ~ t i n g \\,ith an
additional delay o f a b o u t 0.5 ~ s .

Summary and Future W o r k

One-way Message Latency
Communication Type (Microseconds)

-

Ping-pong 8-byte message 2.17
8-byte message plus 8-byte flag 2.60
H P F 8-byte message 5.10
MPI 8-byte message 6.40

This paper presents a n over\,ie\\j o f the second-
generation MEIMORY C W U X E L ncn\,ork, MEMORY
C H A N N E L 2. T h e rationale behind the niajor design
decisions arc discussed in light of the cspcrience
gained fiom A/IF,IMORY CHANNEI. 1 . A description
o f the kl EMORY CHANNEL 2 hard\\~arc components
led to the prcscntation of measured pcrforrn'~ncc results.

IS. W. Gropp and E. Lusk, "The MPI Communication
Librar!,: Its Design 2nd a Port.~blc [~nplcmenration,"

1
l~tt~>://\\~\v\\~.mcs.dnl.go\~/Papers/Lusk/mississippi/
pnpcr.hrlnl (Argonnc, Ill.: Mathematics and C o r n p ~ ~ t c r I . . -
Science Di\.ision, Argonnc National Laboratory).

19 . \Y. Cardom, F. C;lo\cr, and PV. Snalnan, Jr., "Design of
the 'Tr~l<:lustcr ~Mul t i con~p~l t e r Sysre~ii for tlie Digital
UNlS E~lvironmcnt," D i ~ i t u l Tecln~?icalJo~i~-rrcr/, \,ol.
8,110. I (1996): 5-17,

20. Inforlnation about the Transaction Processing Pcrfor-
Inancc <:ouncil ('I'PC) is available at http://\\,\\.\v.
tpc.org.

21, MI. Blumricli ct d . , "Virtual iMcnlor!l Mlappcd Ner-
work Inrcrfiicc for the SHRIM1' ~Vlulticomputcr,"
Pmcc~cd i~z~qs of the 2 I s l ~~~~~~~~zc~tiotzul S j*nzpos i s r~~~
o ~ r C o ~ ? ~ p l l t o A~abi tec l l l , r (April 1994): 142-1 53.

22. R . C;illcrt, 1V. <:ollins, and I>. P ~ J I I I ~ , "O\lcr\~ie\\~ of
Nc t \~or I i M e ~ n o r y Channel for P<:l," P,uccccli~r,qs qf
C'O~llPCOiV 96, San Josc, Calif. (1996).

23. Inforni.~tio~i about the Scalable <;ohcrent Interface is
n\,ailablc at I~ttp://\v\v\\~.SCIzzL.com.

24. N. Boden c t al., "~Myrinct-A Gigabit-per-Second
Local Arc.1 Nct\\,o~-k," TEE/? Micro, vol. 15, no. 1
(Fcbr~31-y 1995): 29-36.

25. J. la\vroli c t al., "Ruilding a H i d l l 'aforn~ancc ~Mcssagc
Pnssing System k) ~ - r\/lcmo~-y Charinel Cltlsters,"Di'qilal
T ~ ~ C / ~ I I I C C I ~ , J O I I I ' I I ~ ~ / ~ \,oI. 8,110. 2 (1996) : 96-1 16.

26. IEEE l h f i Standard for Low Voltage Differential Sig-
nals (1.VI)S) for Scalable Coherent Intcrfacc (S<:l).
I h f t I k E E PI 596.3-1995.

Biographies

Richard B. Gillett
Itick Gillett is a corporate consulting engineer in Digital
Ecluipment Corporation's AlphaServcr Engineering
Group, \\.liere he designs anii de\,elops custom VLSI chips,
1 / 0 systcms, and SiUl' systems. As 1)IGIrR%" parallel
cluster architect, he defined and led tlic MEIMO~IY
C H A N N E L project. H c holds 1 7 patents on inventions in
SIMI' architcct~rres 2nd high-performance communication
and 11'1s patents pending on thc MEI\IOI<Y CHANNEI ,
for PC1 nenvork. His primary interests are high-spccd local
and distribi~tcd shared-memory arcliitect~~rcs. Kick bas a
B.S. in electrical engineering from thc Uni\,crsin o f New
Han~pshire . H e is a member o f the I E E E and the 1EF.E
(:omputcr Socict!).

Marco Fillo
hlarco Fillo is a principnl cngincer o n tlie IMEMORY
C H A N N E L 2 team in the AlphaSer\,cr Engineering
Group. H e is responsible for the design of thc MEMORY
C H A N N E L 2 link protocol and hub. Before joining
l)IGII'/-\L in Scptcnibcr 1995,~M;lrco held a position as
rese:ircli associate a t 1V1.1.7'. in t l x Artificial Intclligcncc
Laboratory, \vlierc he was one of the architects o f the
I\]\-Macliinc, an espcriniental ~nultitlireadcd parallel com-
pute~.. ~Mnrco o b t ~ i n c d 3 Ph.1). in electrical cnginccring
fi.o~ii the S\\,iss Institute ofTcclinolo_g!~, Zurich, in 1993.
Hc is a niclnbcr of the IEEH and ACiM, ;uid his researell
intcrcsts arc pamllel computer architccturcs and intcr-
PL.OCCSSO~ c o n i ~ n ~ ~ ~ l i ~ t i o ncn\.orks.

\.'ol. 9 No. 1 1997 41

I
John H. Parodi
Fred W. Burgher

Integrating ObjectBroker
and DCE Security

The integration of the ObjectBroker software
product with the Distributed Computing
Environment (DCE) Security Service makes
ObjectBroker the most secure object request
broker (ORB) in the industry. ObjectBroker and
DCE Security together allow client-to-server,
server-to-client, and mutual authentication.
The integrated software provides these security
functions, as well as message integrity protec-
tion, transparently to the applications. Integra-
tion has been accomplished in a way that allows
plug-in replacement of the ObjectBroker security
subsystem by DCE Security, Kerberos, or any third-

party software security product that supports
the DCE's Generic Security Service Application
Programming Interface (GSS-API). This approach
supports future GSS-API-compliant third-party
security products based on Kerberos and also prod-
ucts that may address other security technologies
such as biometrics and smart cards. In addition,
the approach places responsibility for compliance
with International Traffic in Arms Regulations in
the hands of the purveyors and owners of GSS

libraries rather than with the ORB vendor. Note
that the ObjectBroker product is middleware
jointly developed and distributed by DIGITAL and
BEA Systems, who have formed a worldwide tech-
nology and distribution partnership.

An object request brolter (01<1%) is a clistributed soft-
\\.arc Id!.er that transl,ltes abstract ser\,ice requests
from 3 client application into rcclilcsts for specific
scr\.crs, regardless o f whcrc those serIrers actuall!,
1.csidc o n tlie net\\jork.' I n this \\'a)', ORBS provide
n middle tier in m~tltitiercti client-scr\lcr systems. l ' h c
Objcctl3roker soft\\,arc, de\,clopcd 'lntl distributed
by str:~tcgic pdrtners l)IC;ITAL, a~ici 13F.A Systems, is
nn i~nplc~l ien ta t ion o f the C o m m o n Object R e q ~ l e s t
Ht.okcr Arcliitecturc (C:OlU3r\) specified by the Object
l \~ l ,~nagement G r o u p (OblC;).'

Sccuriry is ,I gro\\.ing concern for those \\.ho manage
iiistributed computing systems, anti the security options
,~\~ai lablc t o the CORl3A comm~~nit!r lia\~e been quite
limited until recently. I n the past year, OIMG has
atloptcd a spccifcation for n <:OlillA Security Ser\jicc,
, i l t l i o ~ ~ g h f c ~ v comlnercially a\nailablc implementations
csist ,lt t l ~ c time o f tlus \\,riting.

Outside the (:ORBA c o m ~ n u n i ~ , , one \\idel!, acccptcd
st,lndnrci for security in clist1.i ~ L I t cd, Ihcterogeneous
s!,srcms is the Generic Sccul.in8 Scr\.icc Application
l'rogramming Interface (GSS-AI'I),; ' as specified by
71'lic 0 p c 1 i G r o u p (\\'hicli \\,as formed b* tlie met-gcr
o f the 0pc11 Sohtznrc Found:~t ion and S/Open
(:o~iipxiy Ltd .) . l ' l ic GSS-A1'1 pro\ridcs the abilit). for
s o h \ ~ a r c entities in a d i s t r i b ~ ~ t c d npplication t o authen-
ticlltc o n c anotlicl- atid t o protect ongoing communi -
cation l>ct\\,ecn them. T h e 1)istributed Comput ing
En\.ironlnent (DCE) Sccurit!' Scr\.ice pro\,ides an
i lnplclncnt~t ion o f the GSS-AI'I '1s o n e \\.a!, t o access
its sc.cu~-it\~ services.

l'lans .11.c under \\.a!, t o itnplcmcnr the CORn;Z
Sccurir!, Scr\-ice in thc 0hjcctllt.okc1- soti\\~arc, bu t
the implc~nentat ion specificatio~is \\,ere no t complctc
\\)hen ObjcstRrolter \zersion 2.6 \\,as designed. At
p ' c x n t , by integrating support fix GSS-API implc-
~nentat ions, the Objectllroltcr soft\\i~r.r pro\~icies its
customc1.s state-of-the-art distl-ibutcd system security
\ \ . i tli tlic \\ridest choice o f sccul-it\, tcclinologies 'uld
p rod i~c ts . T h e first commcrci,~ll!~ a\.ailablc GSS-API
i~nl>lc~i~cnt , l t ion \\.as tlie I<crbc1-os-b,lse11t 1)CE S e c ~ ~ r i ? ~
Scr\,icc itself, bu t o thcr implcmcnt3tio11s, n.hich use
n \.<~l.ict!, o f sccurin, tcchnologics anti arc produced b\.
\.nrious indcpe l~dent soh\rare \,cnciors, arc expected t o
ti)l lo\\, soon .

Security

Ensilri~ig S C ~ I I I . ~ co~i l~n l l~ i ic . i t io~ i ' i~nol lg entities in a
distl-ihutcd c o r n ~ > i ~ t c r y(stc1i7 in c11,illcnging task. Tlic
term s c c ~ ~ r i t \ , nor.m,illy inclucics thrcc 1>road classrs
ofsvstcm rcq11i1-cmcnts:"

1 . Scc1~cc\~/pri\~~1c!~-tIic c~bilit!z t o pl-otcct information
ti-om u n , i ~ ~ t l i o ~ - i ~ c c t ,icccss

2 . Inregrit\,--the nbilit!, t o protcct information fi-om
~ ~ n n u t h o r i z c d .lItcr,ition o r dcstrnction

3. A\,ailabilin,-thc ubilinp t o cnsurc tliat d i d access t o
infornlation can be ,iccomplishcd in n tilnel!, manner

F,nfo~.ccmt.~it o f ,I security policy is ,lccornplished by
\\.,I\. o f the follo\\,i~lg scci~~.it\ , functions:

Ai~tlic~iticatio~i-tlic \>crifc,ition o f tlic identity o f a
security pri~lcip.iI

Autlio~.iz~tion-tlic clctcrminatioli o f \\,hich princi-
pals c , i~i perfor111 \\,liicli actions

Access cont~.ol-tllc cnforccmcl~ t o f the security
policy, b,iscd on autliclitication and nuthorization
int?)l.rn~tion, t o i l e t c r m i ~ ~ c \\,hcthcr t o allo\\~ o r dis-
a l l i) ~ ~ a p c ~ r t i c ~ ~ l ~ l r Lictio~l

The Distributed Computing Environment

T h e 01x11 G r o t ~ p ' s 1)istributcit <:o~nputing Environ-
ment is Jn intcgl.nrcci, stnndnrii set of tccliliologies,
tools, ,lnd scl-\.ices tIi,lt enables tlic dc \~c lopment and
iicplo!,mcnt o f d ~ s t r i b i ~ t c d ,~pplic.itions in J. lictcroge-
ncous, ~ i i~~l t i \ , cnc ior c o l n p ~ ~ t i n g cn\.ironmcnt.- Typic-
rill!., system \.c~iciors implcmclit t l ~ c l)<X on thcjr o\\.n
plntforms. 'l'hc l)(:F. lins bccli endorsed h!, \.irtuall!~ all
s!.stcm \ cnilol.s, i n c l ~ ~ i i i ~ i g I I{iU, M l', I ~ I G I T A L , N<;R,
S r r ~ t u s , <:r,i\., HAl., Hit.lchi, S ic~ncns Nixdorf, S E C ,
1) a t ~ Gcncl-nl, 13~111, T,incicm, Trans.lrc, S<:O, Gradient,
S ic~ncns P!wlnid, ~ i n d Oli\.crti.

I-lie I)<:E pro\ idcs the follo\\,ing s i ~ teclinology
col1l~>o11clits:

1 . I<c~notc P ~ - o c c d ~ l ~ - c <;.ill (I<I '< :) , \\,hicli f:icilitatcs
i i i s t r ib~~tcd c o n ~ m ~ ~ n i c , i t i o ~ i

2. I>irccrol.y Scr\.icc, \\,liicl~ pro\.idcs 2 single naming
model t l i r o ~ ~ g l i o ~ ~ r the ~ i i s t r ib~ l tcd cn\rironmcnt

3. Scct~riry Scr\,icc, \\,hich l>ro\,idcs rcliablc authcnti-
cation, , ~ ~ ~ t l i o r i / n t i o ~ i , ,lnd d'1t.i protection

4. l)ist~.ih~~tcci 'I'imc Scr\,icc, \\,liicli synchronizes the
nct\\,orIt systcnl clocl<s

5. l) is t r i l>~~tcd File Scr\.icc, \\,liich pro\ridcs access t o
ncr\\,o~.l<\\,itic ti lcs

6. Tl ircxis Scr\,icc ('l'hc I)<:E ~ lscs POSIX threads
\ \ . l~crc ,i\.,iil'ihlc; 0 1 1 o p c r ~ t i ~ l g systems \\.llcrc POSIX
is [lot a \ -ai l~blc , the I) (' t . supplies a tlircnds package
t l i ~ t p~.o\.iclc tlic s,lmc inrcrfilcc '1s 1'OSIS threads.)

DCE uscrs can be ch.11-actcrizcd by tlici~. nccd t o
deploy and/or integrate large-scale c~pplic,ltions o n
multiple Iieterogencous p1,ltfornls. T h e most common
reasoils given t?>r choosing the 1)C;E arc its security
feati~res, its scalability, and its robustness.

DCE Security pro\yides the follo\\,ing services:

The LICE Authentication Scr\ricc ,~l lo\ \~s users and
resources t o prove their identin, t o cacli other. This
ser\.ice is currently based on Kcrbcros, \\,liicli requires
that all users and resources possess a sccrcr kc!,.

The 13CE Authorization Ser\.icc \,crifcs oper'ltions
that users ma!. perform on resoill-ces. A l)(:E Rcgstr!.
contains A list of \ ,did uscrs. An ~cccss control list asso-
ciated \\rith each resource dctcrmines \.did users c ~ ~ n d
the types ofoperations n user ma!. perform.

T h e 1)CE Data Integrity Scr\ricc protects ncn\,orlt
data from tampering. Automatic;llly generated
cryptographic checltsu~ns arc appcndcd t o ~lct\\,orlt
transmissions, allo\ving the l)CE t o cietcrminc if
datd has been corrupted in transit. 'T'l~e cncr\iptecl
checl<sum is a rncssagc nuthenticution code (MAC:)
based 011 the Data Encryption Standard (1)ES).

ObjectBrokcr uses the 1X:E Authentication and Llata
Integrity ser\lices.

ObjectBroker Security

Although DCE Security pro\7idcs thrcc b'lsic le\rcls
o f protcction (N o n c , L)ata Integrity, ancl P~-i\,acy),
ObjectBroker uses onl!. the l l ~ t a Intcgrinr le\.el.
This l e \ d pro\.ides a mcch,lnism t h ~ t computes ,In
encrypted, time-stalnpcd chccl<sum , ~ n d ~tt,iclics it
t o the message so that an!, a t tempt t o change o r
rep]+, the infor~nat ion c,ln bc detected. 111 addition,
ObjectBrokcr ~ l s c s csplicit c ~ l l s t o the 1)CE Sccurinr
librar!.'~ GSS-API t o accomplish ,~~~tl ienric , i t iol i bur
mnintdins its o\ \ .~i access colitl-ol lists , ~ n d a ~ ~ t h o r i z ~ i t i o n
databasc and ~nedi,ltcs access control itself."

N o t e thnt \\.ithin a 1)CE cell, it is possiblc t o L I S ~ the
D C E Rl'C \\.it11 the l)<:E Sccurit!. Scr\,icc t o protcct
comm~lnic,ition . ~ t the \\,ire p~.otocol Ic\,cl. Ho\\,c\rcr,
because ObjcctBroltcr does not use the I)CE 1W<:
\\,ire protocol, its usc o f tlic 1)C:t.; S c c ~ ~ r i t y Scl-\icc
is ,~ccornplishcd by means of csplicit calls by
ObjectRroker t o the GSS-AI'I implc~ncntnt io~i .

ObjectBroltcr's use o f the I)<:E Sccul-ity Scr\ricc
provides data integrity protcction, ,luthcnticutioli o f
clients t o ser\/el-s and servers t o clients, and protcctioo
against replay and scclucncing ,~ttaclts. Al tho l~gh
encryption is used t o create the digital signatures
tlidt pro\jiclc these protections at the nct\\forlc l h t a
Integrity level, ObjcctRrokcr docs not directly sup-
port the capability t o cncr!ipt data, c\,cn on nodes tliat
h ~ v e I'ri\racy-lc\zel 1)CE Scct~ri t \ f Scr\~icc support .
ObjcctBroker pro\riiles n o PI-otcction from ticniul o f
ser\,icc attacks either.

O f co~i~.sc, ;I c ~ ~ s t o ~ n e r ' s use o f l)(:E Sccu~.it\r is
c~iti~.cl!. o p t i o ~ ~ d , and the sec~~r i ty mccl~anis~n used in
p re \ f io~~s \~ersio~is of the ObjectRroltcr soft\\.,lrc is still
supported. With this niecha~lism, culled trusted sccu-
rity, thc node/username associatcci \\pith n request
fi-on1 a rcmotc node is accepted to bc as claimed. For
trustcd security, ObjectBroker uses a prosy approach
in \\rllich the node/userna~nc associated \\it11 a I-cnlotc
rcclucst is mapped to a proxy idc~~t i ty o n the scr\,cr's
system. An access co~itrol decision is thus b.lsed o n
the nuthorization information for the pros!, idcntity.
Tllc prosy approach to the trusted sccurity mccli,~nis~n
\\.:is necessary because there \\,ns IIO concept o f glohnl
identie for a LIser, that is, nn identi? kno\vn to all
co~nputcr nodcs in a distributed systcni.

To implement 1)CE Security on a p;irticul,lr plat-
h r m , a Security Integration Architecturc nccomplishes
the mapping of a globally understood uscr~~nmc (c.g., a
~ ~ s c r or a sccurity principal defined \\~ithin a l>(:F. cell or
;I I<crbcros rcalni) to a login of n locnl user on :I p,lrticu-
lnr s!lstcm. Some implcmcntations of IX;E Scct~rity a n d
some systems (for example, the OpcnViMS operating
system) ilsc the notion of integrated or global login, in
\\,hich a loc;il user login also causes a global user login
to be ~ x r h r m e d . For the OpenVMS system, the global
realm is the cluster. For the implcmcntatio~~ of 1)C:E
Security o n the DIGITAL UNlN s!.stc~n, the global
I-calrn is tlie I)CE cell.

l2ccnusc an ObjcctKroker configuration c.ln inclutic
platforms that ha\e no implcmentatio~i of the I K E ,
;~nci because the Security Integration A~.cliitect~~re is
difkrcnt o n e\7e~-!r 1)CE platform, thcrc \\,as no com-
mon mcchiiuis~n for ObjectBroltcr to use to implc-
m c ~ i t an intcgl-atcd global login across all supported
platf)rms. Thus, ObjectBrolzer is lin~itcd by the inte-
grated login capabilities a\~ailablc o n other platforms'
irnplcmcntations of the 1 X E .

For this reason, ObjectBrokcr retains ;I proxy rncch-
i~n i s~n , c\,cn for use b!~ nodes tliat s ~ ~ p p o r t tlic D(:F,.
For authcntic3tion benvecn such nocics, ,I gcneric
remote]lost definition (called SecGlobnlS,lmtt) is
mnppccl to a local user on the local s\,stem. Should a
scr\.cr rcccivc a request that rcqi~ircs nuthcnticatio~~
fi-om n client node, the server uses SccGlobalNamc to
iittcmpt to match thc col-responding global princip.11
I I ~ I I I ~ to ;i local user name.

I n other \vords, because there is n o comnion global
idcntity mcchallism, Objcct13roltc1.'~ prosy implcmcn-
tntion maps either a trusted remote L I S ~ I or n glohnl
user identity to 3 local system idcntity to accomplish
a gcncric mapping benvccn global and l o c ~ l ~ ~ s c r s .
R;lthcr than map multiple host/uscrname pairs to the
local prosy, the ObjcctBroltcr soh\\.arc maps :I single
SccGlobalNamc, known to all nodcs in the 1)CF. cell,
to that prosy \\.hcnc\.cr possible.

Mechanism for Global Authentication
The 1>Ck Sec~~l - i t \~ Scr\,icc pro\.ides the mec[i,u~ism
for global idcntit!~. T'hc ~ncclianis~n is h ~ s e d OII

IGrbcros cncr!rption, \\,tlicll is a pritratr o r s!~mmetric
key schcnic (as opposed to a public or asymmetric Itcy
schemc). A prirntc Itc!. SCIICIIIC requires some trusted
third-party nodc to ;let as a distr ib~~tion ccnter for
encryption keys or crcdcntials. Each node or uscr 11;is n
key that is kno\\ln only to the uscr and the distribution
center. 111 l>(:F, Security, the distr ib~~tion ccntcr is
lulo\\~n as a pri\.ilcgc. scr\.cr."

The fi)llo\\,ing is n simplified description of t l ~ c
encryption ltc!, protocol bcn\~ccn thc pri\.ilcgc scr\.cr
and a clicnt. The nctunl Itcy cschangc protocol, \\~Iiich
uses three ezch~ingcs n ~ ~ d con.i.ersion keys, results in a
Pd\.ilegcd Access <:crtificntc (PAC:) in the possession
ofa clicnt. The I'AC:, \\.hich is appended to cach request,
contains the authorization information to be conl-
pared \\,it11 the ;lcccss control information stored \virh
thc applic.ltion scr\.cr. . .

WIlell a client \\,ishcs to coll~rnunicate \\,it11 a ser\?cr,
cach must nccluil-c n time-starnpcd scssion Itcy tbr
sccilrc conirni~nicntio~~. The scssion Itcy is protcctcd in
se\w-al \\lays. The time s t a n ~ p means that tlie key is
only valid h r 3 limitcd tinic (the amount of time is
configurablc), \\.Iiich protccts against brute-force
attempts to brcnk the kc! and reuse it. Also, each kcy is
host-specific and c;ln only be iiscd from the nodc tbr
\\.hicli it is iss~rcd. Finally, t l ~ c scssion key is ncvcr sent
over the nct\\.o~-k ill ~111c11cr!'ptcri form.

For ii uscr to i~litiatc a l>(:E-login, the client must
cntcr its LICE-login ~.r;lss\\~ord. 'l'h register as an initia-
tor and acceptor of security contests, a ser\.el ~lscs a
SERVTAR kc? f lc. This file contains an encrypted key
that permits the scr\.cr tc.) obtain a set of crcdcntials
similar to those given to n uscr. Thcse credentials allo\\f
the server to accept sccurinr contests from clicllts or to
initiate rcclucsts (that is, bcco~nc a client) to other
servers. Tlic rc'lson for lia\,ing ser\>ers acquire crcdcn-
tials through the SElW'l'AU ~ncchanis~n is that ~ c r \ ~ c r s
ma!, be stnrtcd o n dcmanri by tlic ObjectBroker Agent
(the comporlcnr that locates tlic appropriate scr\.cr
to satisfir a clicnt request) or system adlninistrators
who d o not \van[to bc burdened by ha\.ing to kno\\-
a server pnss\vord.

In cithcr case, the clic~lt or the server specifics the
principal nnmc to be authenticated. The nodc scl~ds
the spccificd priricipal's name to the privilege server.
The pri\,ilcgc scr\.cr rcrLlrns a scssion Itc!~ tliat is
cncryptcd using tllc pl.incipal's pass\\,ord or SER\'Till<
kt!: 'Tlic l X E 1.~1n-timc sok\\rarc running on tlie local
system tfccrypts the scssion ke!. using the pass\\.ord or
SERVfiB kcv. Once the client and the scr\.cr have
decr!.ptcct session Iicys, they can use the kc!^ to illitintc
secllrc co~nlli~11iic.ltio11 \\.it11 each other.

Thus, if a server is configi~rcd to rccluirc authcntica-
tion, then before invoking a method on that serlrer,
a client must succcssfull!l perform a 11CElogin and
obtain the credentials needed to establish a security
context \\lit11 that server. A client may also require
authentication from the server to ensure that some
malicious soh\,arc is not ~nasquerading as a real server.

Note that the operations for acquiring credentials
are accomplished outside the server csccutable. The
operations arc performed by the ObjectBroker run-
time soft\\rare, based o n configuration settings in the
ObjcctBroltcr Security l<cgistr)~. 'l'lic goal is t o avoid
burdening applications \\lit11 the lulo\\lledge ofsecurity
mechanisms.

Authentication rcqi~ircme~lts can apply to the
ObjcctBroker Agent as well as to clients and servers.
The Agent is in fact a separate security principal,
and one can rccluirc client-to-Agent, Agent-to-client,
Agent-to-scr\.cr, and server-to-Agent authentication
in an Objectliroker config~~ration-in addition to
autlientication bcn\/ccn tlic clicnt and the scrvcr. Thc
clicnt 01- the server can inclepende~ltly set these modes,
or the Objectl31.olter system can require that modes
be set nodc\vidc.

Security Design Issues for ObjedBroker
The security issi~es associated \vith the design of
ObjecrBrokcr \:crsions 2.6, 2.7, and 3.0 were primar-
ily those of increasing the security capabilities and
preserving up\vard compatibility with previous
ObjectRrolcer \frrsions. While compatibility is al\\!a)rs
a concern \\,hen upgrading sofh\larc, ObjcctBroltcr's
rcqi~ircmcnts in this area arc partic~~larly stringent
because cLlstomcrs have mission-critical applications
running in \,cry large configurations. I n sonie cases, it
is difficult or impossible to upgrade all ObjcctBroker
nodes at onc timc, so it must be possible to d o a
rolling upgrade that mi~l in~izes the disturbance to the
configuration and allows unintcrruptcd opcration
of applications.

The need for dynamic, plug-in replaceability of
the sccurity suhsyste~n npAs an important issue for nvo
reasons. First, to pl-o\ide standards-based solutions to
computing probletns, the ObjectBrolter design had to
allo\\l tlic integration of any security product that
iniplements the GSS-Al'I. The second reason has to d o
\ilitli export controls.

United States go\rcrnment esport regulations spccfi
that harciw'ire, sohvare, and docume~ltation for cryp-
tographic products may be exported by license only.
Specifically, thc Department of State's International
Traffic in Arms 1Xcgulations (22 Code of Federal
Reg~~lations Subcliapter M) require that an export
licc~lsc 13c obtai~lcd fi-om the department before any
cryptogapllic Iiard\varc, sotintare, or doculllentation is

exportecl from the United Stares. An ObjectBroker
desig~l goal uras not to encumber the product \\lit11
export restrictions. Therefore, ObjectBrolcer itselfdocs
not include any cryptographic security mechanism. hi
ObjectRroker customer- must provide an appropriate
GSS library; \\iliate\~er package is available on the system
is the one ObjectBroker \ \ f i l l use.

ObjectBroker Security Features
The sccurity featirres that have been succcssf~~ll!! imple-
rrle~lted in the ObjectRroltcr sott\\!are i n c l ~ ~ d e

Client-to-server, ser\ler-to-client, and mutual
authcntication

Protection fi-om replay and sequencing attacks and
integrity protection

Fine-grain control over the authe~iticatio~i n~echa-
nism (per-host, per-server, or per-method)

Ability to demand a netv security contest for an
invocation

Ability to apply ~ i c \ \ ~ securlv features to applic'i-
tions \\~itliout rebuilding them

D!lnamically loadable security librar~es

Usage
One of the most important characteristics of a secure
ORB is that applications (clients and ser\lers) need not
be aware of security operations undertalcen on their
behalf. For ORISs, as u~ell as for other support soft-
ware, the goal is to avoid burdening applications with
the need to deal cijtli tlie co~nplesities of a distributed
system so that they can concentrate on the application
problcrn at hand.

Therefore, most of ObjectBrolter's sccurity-rele\r'int
operations are invisible to applications. Objectnroker's
management utilities are used to specifi the rules for
authenticating clients and scrvel-s. These rules are
stored in the 0bjcctB1-olter Security Registry, and the
recluircd authentications are performed auton~atically.

There are two exceptions to tlie general rule of
Itccping security operations in\isible to the ,~pplica-
tion. The first is that a client or a server (\\,hen acting as
a client) can explicitly make a call to an ObjectBroker
API to toggle mutual authcntication on or off. This
operation is allowed as long as it docs not diminish the
security le\~el specified for the ObjectBrokcr node as a
whole. In other cvords, a clicnt can demand n ~ i ~ t u a l
authentication o n a node that does nor require such
authentication but cannot disable mutual authentica-
tion ifthe node does require it. This feature \\.as implc-
mented to make it possible for clients to cnal~le n ~ ~ ~ t i ~ a l
a~~tlientication for specific operations that have sccu-
rit\r rele\ra~lce.

Digiral Tcchnic,~l Journa l \,'<)I. 9 No. 1 1997 45

T h e second exception is that a scr\.cr c,ln cicm,lrld
the creation o f a ne\lr security c o ~ i t c s t fos an in\~oca-
tion, \\,hich immediately tests tllc nutl~cntication o f
the principal ~nal i ing the recl~rcst. This is i ~ n p o r t a n t
bccausc the GSS-API allo\\,s the initiation of^ sccurit\r
contcst that has n o expiration. Clc,i~-I*, if ,I sccurin,
colitest exists for a long e n o i ~ g l l period, tllcrc ma!r bc
a concern that it is 110 I O I I ~ C I - \ d i d . For csnniplc, \\,hen
,I ~ ~ s c r ' s account is revolted from the l)<:E Scc~rrity
Registry, it is possible that the user's crcdc~lti,lls arc still
\lalid in sonic existing security contcst . F,st~ll.>lislling a
new secu~.ity contest forces tlic 1X;E run-tirnc s o h \ , a r c
t o go back t o the sccurin, ser\,cl- nnci \.csi5. r l ~ c \,,qlidity
o f the principal.

Figure 1 illustrates the intcl-c~crion o f Objcctl3roltcr
and thc 1 X E Securih. Scr\.icc components in the
establishment o f a seci~sin, context. Once the sccu~.in,
contcst is estnblished, it is used i l l the \cr i f icat~on o f
i\/lii<:-scaled messages ben \~een t l ~ c sewer and the
clicnt. In this illustration, access t o the D<:E scc~~rit!l
subsystem is ticpictcd as a local call, though accessing
thcsc scrvices c o i ~ l d also be done remotely.

T h e sccluence o f operations in Figure 1 is JS k)llo\\~s:

1 . A metliod in\~ocation (a clicnt rec l~~cs t for a rcniorc
opcrdtion) results in a call t o Objcctl3roltrr's sccu-
rity subsystem.

2 . Tllc ObjectKroker securit!. suhs\~stcm in turn
in\rokes a GSS routine in the l)<:F. S c c ~ ~ r i n r librar\,.
This c'lll determines \ \ ,hct l~cr a nc\\. scc~~r-it!, con-
rcst needs t o be established, \\.hie11 CCIII Ii,~ppcn for
o n e o f n1.o reasons: either it is tlic first in\,oc<ltion
of this server from this client o r the contcst rcficsh
rate has been specified as per - in \ ,oc~t io~i .

3. T h e 1X:E Security library csccutcs tlic c ~ l l , \\,hich
sets irp the security contcst . (N o t e tli;lt tllc process
o f deleting an existing security contcst is not
sll0\4'11.)

I CLIENT

4. 7-lie sccusln. s~~bs\ .s tcrn checks the return s t ~ t ~ ~ s of
the C;SS ~.olrtinc t o d c t c r ~ n i n c \\ .hether the rc\ult-
ing token is t o bc p,lsscd t o the in\.ocation I,l\.cr.

5. If so , the toltcn is p~ssccl t o the transport I.l\.cr for
~narshnling.

6 . T h e clicnt comr~~irnicatcs \\it11 thc scr\.c~- nodc
through tlic noslll,~l ObjcctR~.olter channel.

7. T h e transport layer i l l thc receiving nodc L1nrnar.-
shals the mc<s,igc, cx,lnlincs the transport mcss'lgc
I~cacics, 'lr~d pc~sscs contsol t o a dispatchcr in the
i11\.ocntio11 Ia\rcr-.

8. Depending o n the Incssagc t\,pe, the mess'lge may
then hc p.lsscci t o J slxxial dispatcher, in this c,l\c
t l ~ c sccu~-it! tiisp'~tcllcr. ill the sccurin' sul>s\,stc~n.

9. T h e scc~rrit\r s~rhs\,stcnl cictcrrnines that the incs-
s ~ g c s l~o~l lc i hc h,~ncilcd b!. the GSS implemcnr,i-
tion and p.lsscs the mcj\Jgc thcrc.

10. T h e 1X:E S c c ~ ~ r i t \ , I a \ ~ r chcclcs t11c rccci\,cci toltc~l
and if it is \.,llici, ,~cccpts the sccurit!' c o ~ l t c s t . .l'l~c
r o ~ ~ t i ~ i c gcncr,ltcs a c o ~ l t c s t establishmcnt token
t o hc p,~sscd t o tllc clicnt. T h e call also returns the
scr\;cr's coritcst l i ~ n d l c &)I. the security c o ~ i t c s t the
SCI-\.CI. sllnrcs \\.it11 the cl ie~l t .

12. Tllc in\-ocarion I.i\.e~- nl,l~.sh'lls the infc)srnation ~ n d
scncis it as a n nl.g~rrl1~11t t o tlic lo\\.-le\.cl tr.xnsport
routinc call.

1 5 . Tlic mcss,lgc is sent t o the scc~~s i t) . subs\~stcnl

1 6 . T h e token is p,lsscd t o t l ~ c GSS i m p l c m c n t a t i o ~ ~
t o initialize thc scc~rrit!! context, \vith the ~ c r \ ~ c r -
supplied toltcn ns nn nssLuncnt. The routine
r e t ~ ~ t - r ~ s the clic~it's contcst handlc, \\,hie11 is used
t o sign s ~ ~ h s c c l ~ ~ c n t Inessngcs.

INVOCATION
LAYER

I SERVER I

t 1-

SECURITY
SUBSYSTEM

4 I

DCE
SECURITY TRANSPORT

Figure 1
Esr.lblish~nc.nt of^ Security Con tn t

DISPATCHER INVOCATION

+ &-,8 LAYER

\'ol 9 No. I 1007

+

TRANSPORT

SECURITY
SUBSYSTEFA

DISPATCHER

DCE SECURITY

Performance Considerations
T h e b c ~ ~ c f i t s o f .I secure OR13 arc not frcc. If authenti-
cation is I-cquircd \\,hen s. clicnt anti scr\Icr establish a
connection tl11.o~lgh a binding, p ~ l - t o f t h ~ t binding
in\.ol\.cs the cstablishmcnt o f '1 security contest .
Establishment o f ,I sccl~rit!, contckt rccluires a ro111id-
trip o n tlic ncn\rorl<, dill-iny \\rl?icli u token k o m the
clicnt is passed t o rhc scr\.cr, anti '1 tolicn is returned
from the ~ c r \ ~ c l - t o tlic clicnt in the m ~ l t u a l a~~t t l cn t ica -
t1o1i case.

Once cstablislicd, tlic sccurin, con tes t is i~scd in
s u b s c q ~ ~ c n t rcclucsts (pro\.idcd tliat the configuration
docs not rcqilirc s c c ~ ~ r i ~ , contcst deletion ahcr c\.ery
method in\.oc,ltion). If the same security contest is
rcuscd, tlic only ,ldciitional o\,crliead considerations
,lrc (1) the signing and \,critication o f requests and
responses in tlic clicnt and scr\.cr, ,lnd (2) the sccurin,
colitcst linndlc (3 2 ndditional bytes o f information)
appended t o each message p ~ s s c d bcn\,ccn the client
and the SC~L'CI . .

Tlic signing ,lnd verification o f .I signature o n a
rcqucst o r response is different from the \ ~ e r i f i c a t i o ~ ~
of t l i c pri\/ilcgcs used \vlicn the sccurity con tcs t is first
set up, in rh'it verification o f a signature docs no t
require a licnvorli r o ~ l n d - t r i p . In contrast, \\/hen you
first set up a sccurity contcst , a network r o ~ ~ ~ i d - t r i p t o
the pri\rilcgc ~ c r \ ~ c r is rcq~rircd, a11ci its overhead is
significantly 1norc costly than that o f the verification
and signarul-c opcr,ltions.

Note tliat \ \hen a clicnt 113s ~i i l~l t iplc object references
t o J si~iglc ~iictliod i~ l lp lc~ i ic~ i tn t io~i in a scl-vcr, a single
sccur i~r contcst can still bc ~ l scd . Fo~.csamplc, a derived
o l jcc t rcfcrcncc docs not rcquil-c a sccilrit\. c o ~ i -
test. This is hot11 all optimization '1nd a f i~nct io~ial
r e q ~ ~ i r e l ~ i e n t , since only one scc~lrit\, contest is allo\\.ed
bcn\~ecn J clicnt process ,11id J S C I - \ . C ~ i ~ i i p l e ~ i i ~ ~ i t a t i ~ n .

Future Work

-Phc 01\1IG specifics a n~l lnbcr ofobjcct scr\%xs in addi-
tlon t o the C0III:A specifcation itself. One of the most
important specifications is for the <:ORBA Securinr
Scr\.icc. Objcctll~.okc~.'s intcgr.ltion with 1)CE Security
\v,is desiglicci and implemented before tlie OMG's
(:OR13A Security Ser\,icc spccif c'ltion \\,as complete.
T h ~ l s , cvcn t l io i~gh Objcctlirokcr is tlic most sccarc
OlU3 a\,ailablc toda!~, it is reasonable t o ask \\,hen and
lio\v its s c c ~ ~ r i t y Fe.lt~~res \\ ' i l l be llladc compliant with
the lutest spccificntio~ls fi-om the Oi\/IG.

Given s~lfficicnt I-csourccs, ObjectRroker engineer-
ing could in\~cstigitc support ing <:ORBA2 inter-
opcc.lbility by implcrnc~iting tlic Oi\/lG's General
Inter-OR1; l'rotocol (GIOI'). ?'lie G I O P architecture
supix)~'tstboth the Inrcrnct Intcr-OM3 Protocol (I IOP)
2nd the I)(:1\ bascci (:ommon Inter-ORB Protocol

(D<:E-CIOP). Tod,~!: Objcctl31-oker uses ,I \\,ire proto-
col based o n the CORRA version 1.2 spccif c,ition.

Security for the IIOP is go\cr~icci by the Scc~lrc Ilitcr-
ORB Protocol (SECIOP) spccific,~tion"', although fc\\,
com~nercially a\'ailable implc~iicnt . l t io~~s of the SE:,<:IOI'
are a~~ai lable at tlir time of this \\,riting. Also, ~s Inen-
tioned pre\riousl!; sccurin, fol- tlic l)(:E-(:IOI' is s ~ c c o ~ n -
plished by protecting the RIY: colinections ~t the \\,ire
protocol le\,el. For the 1 X E lIJ'<:, the l)(:F, docs its
o\\m authentication tix Rl'<: sessions; hcrc the Rl'C:
connection bct\\zeen t l ~ c clicnt dnii tlic scr\.c~-, rather
than the client and tlie scr\.cr tlic~nscl\.cs, is authcnri-
catcd. This appro'lch pro\.idcs the s,lme potential for
security management in the OR13 configurat iol~; it
simply accomplishcs the s c c ~ ~ r i n , filnctions at ,I Ic\rcl in
the p r o t o c ~ l stack tliat docs no t rcq~li1.c the LISC o f t h c
GSS-M'I. By buildi~lg in su1,pol.t for the GIOP,
ObjcctGroltcr gains the c,~pabilir\, t o pro\ridc the S ~ C L I -

rity features for both the 1101' and tlic l)<:E-<:JOI'
protocols in fi~tllre rele'~scs.

T h e SECIOP 'ind tlic I)<:F.-(:IOl' hot11 ti)llo\\n the
usage model o f m i ~ i i ~ n i ~ i n g the nccd for .1pplic,ltions
t o be a\\lare o f security. In the SF,:.(:IOl', tlic OIMG
has specified AI'Is for sccul-it)! ftlnctiolis, and thcsc
f i~nct ions are entirely scparatc from an!! mcclinnism
that implements them. OR13 \zcnciors \\,ill be frcc t o
provide security fc~tul-cs in much the s'lrnc \\,,I!~ tliat
ObjectRroltcr pl-o\fidcs s c c u r i ~ ~ j totin!!, i.c., b\j \\.orkilig
fro111 securinr-relatecl inhrrnat ion ltcpt by tlic OlIR.
T h e SE<:IOP also provides for ,lciministruti\c ohjccts
and operations that perform sccurin, 1iia1i,1gc1i~c1it
functions b \ r means o f Al'ls.

Conclusion

ObjectHroker p~.o\,idcs state-of-the-,lrt distl-ihutcd
slrstem security toddy. Its sccurit!. f c ~ t l ~ r c s p~-o\.idc
up\\,ard compatibilin., as \\.ell ,IS t11c l c ~ s t possible tiis-
turbancc t o existing Objcctllroltcr applic:~tions and
configurations. I n addition, Objcctl3roltcr's implc-
mentation o f sccurity b!, rnc,llls o f the I)(:E1s Generic
Security Ser\,icc Applicatio~i Progrnlnming I ntcrfacc
provides the gre'ltcst possible choice a m o n g s c c ~ ~ r i t ! ~
mechanisms and scc~ll-it!, ilnplc~ncnrnrioli pro\.iclcrs.

References and Notes

1 . R. Ottc, P. I'nr~.~cl<, alid iVI. KO\,, I : I I ~ / ~ , T : ~ / ~ I I / L / I I I ~
COIUR (Upper S.lddlc I<i\,c~-, N.J.: 1'1-cliriic M.111,

1996).

3. I11fonn3tion about -l-lic Open C;roup is availGiblc . i ~

1lrr}'://\\.\v\v."pcll~rO11~>.01-~.

6. M. Gasser, B ~ ~ i l t l i t ~ ~ q n Soc//t.c> Cbt??pri/s/- Slslctt?
(Nc\\ , l'ork, N.Y.: \1111 No\r1-a11d I1ei1iliolC1, 1988) .

7 . zX/O1l~>ll DCk:, ~ ~ I I ~ ~ ~ O I ~ I ~ C ~ ~ I I I O I ~ l/ti(/ S ' ~ c t o - i (~ ~ Sc,t./,ic~~.<,
S / O p c ~ l l'reli~nin.~r! Specification 1'315, ISI<K
1 -85912-013-S, c l c ~ r r o n r ~ i\csioll (Kcading, U. l< . :
S/Open Company I,imircd, 1995) .

8. O l ~ j ~ ~ ~ ~ / B t ~ o ~ ~ ~ t ~ - l ~ ~ ~ . ~ i ~ ~ t ~ i t ~ ~ q ~ t / (/ 1311i/ditt,q ,4p/>lic.(/-
/iotl.s. Part No. .-lA-US 1 I..\-.I'l (hf ayl~.~rd , iMm.:
l>ipiral E q ~ ~ i p m c n t (;orpor.ition, 1996) .

9 . S . Miller, B . Ncumnn, J . Sc-hiller, ;ind J . Salrzcr, Jic.1.-
hc)/un A~ithct?Iic~a/io,r [IIILI , ~ I I I / / . I O ~ . ~ Z L I / ~ O ~ S ~ / (, t t /
((:a111 bridgc, mass.: Mnssnchuwrrs Instirl~te of 'l'cch-
nolog!, l'roject A t l ~ c n ~ , 1987) .

10. (,'ORL?d S~c///'i/,i'. l)oc~~rncn t N~~~i lbc l -95 -12-01 ('Flnlu-
ingli'ini, hlass.: Objcct hlnnngcrnc~~t Group, 1995).
7'hc OX4G mcn1bc1-s \I-lio conrl-ibutcd to tllc docu~llcrlt
\\.ere AT&T Glob.~l 1nfo1-mario~l Solutions Co., 1)igital
E ~ L I ~ ~ I I I C I I C Corpor.ition, E ~ p c r s o k <:o~poration,
Groupc Bull, Hc\\.lcrt-P.iek.11-rl Company, Inrcrnationnl
I3~1sincss hlncliincs <:orporntion (in coll3boration
\\.it11 Taligenr Inc.), [nrcrnnrion;il C:on,puters L.iniircd,
No\.ell I~ic . , Siemens Nisdorf Ink)lmario~issystr.mc AC;,
Sunsoft Inc., T.indcm Computer Incorporated (in col-
labo~.ation *it11 Od!,ssc!, I<cscC1rch Associ.~tes Ins.), and
Ti\.oli S!,stcms 111~.

Biographies

J o h n H. Parodi
John I'nrodi is a consultins tcchnii.ll \\.rircr in the
h l~~ l r ip l~ r fo rn l Engineerills g l - o ~ ~ p . His lvimnr! \\.ark
i~ivolvcs ~ L I S ~ O I ~ ~ C I . co1il1ii~l1iic.1tio1~ anrl c*;ingclis111
for objcct rcchnolog!~. 111 c.irlicr \\.Orli, John pro\.idcd
tcchnicnl \ v r i r i~~g support for tlic <:o~npo~rnd 1)ocunlcnt
Architecture group and Architcc~ul-31 o f
S!'stcms .und Soft\\,.~rc 'Pcchnic.11 Office. J o h n joined
I)I(;I'L;U. in 1979 after \ \ ol.kr11g ill collll>utcr opcmtions
nr Hcndris Electronics .111d nr thc LJni\cssir\. o t 'Sc \ \ .
H;lml>diirc. He has ~-ccci\cd r \ \ o ;1\ \ , ;11.~1~ fi.olli the Soc~et!
for'l 'ccl~~lical C o r n r n ~ ~ n i c ~ t ~ o ~ i .111cl Iins more rhan 30 puhli-
cations 011 \.;~rious compurcl- hcicncc topics, i~icluciing com-
pou11J doc~umcnts, objcct tcchnolo~!., computer securit!-,
and I1ASI(:.

Fred W. Burgher
Principnl enginecr Fred Rurglic~- ih cmploycd by BEr\
Systclns 3s 3 member of the Ohjcctllroker Enpi~lccring
tc.in~. HC is currcntl!. in\.ol\.cd in ObjccrBrokcr I l O P
dc~\.cloprnc~lt. l'rc\,io~~sl!., FI-cd \\ orkcd at L)ICITAl. on
i ~ i t c p r i ~ i n p D(.:E Sec~~r i r !~ .~rlri S.11ninp for the. Opcn\'hlS
olwr;l.ri~lp s!,stcnl. E~l.licr i n Iiis C.II .CC~, I1e \I .I\ c~iipIo!.c(I
2s 3 ~)l.inci~>nl engi~lcc~. at M' . I I I~ I ,aL)olxro~.ics, \ \ . l~erc lit.

\\orkcd ill rlic Imsg i~ l s Engineel-i~ig C;l ,o~~p. F I ~ sriidicti
cornpinu scicl~cc nt Boston Univcrsit\.

A 160-MHz, 32-b,
0.5-W CMOS RlSC
Microprocessor

This paper describes a 160 MHz 500 mW
StrongARM microprocessor designed for low-
power, low-cost applications. The chip imple-
ments the ARM V4 instruction set' and is bus
compatible with earlier implementations.
The pin interface runs at 3.3 V but the internal
power supplies can vary from 1.5 to 2.2 V, pro-
viding various options to balance performance
and power dissipation. At 160 MHz internal clock
speed with a nominal Vdd of 1.65 V, it delivers
185 Dhrystone 2.1 MIPS while dissipating less
than 450 mW. The range of operating points
runs from 100 MHz at 1.65 V dissipating less
than 300 mW to 200 MHz at 2.0 V for less than
900 mW. An on-chip PLL provides the internal
clock based on a 3.68 MHz clock input. The chip
contains 2.5 million transistors, 90% of which
are in the two 16 kB caches. It is fabricated
in a 0.35-km three-metal CMOS process with
0.35 V thresholds and 0.25 1J.m effective channel
lengths. The chip measures 7.8 mm x 6.4 mm
and is packaged in a 144-pin plastic thin quad
flat pack (TQFP) package.

0 1996 IEEE. Ilcp~.ii~tcd, \virh l)ct.mission, ti-om IliIiIi,/o~i~-l~al (!/'
.G)lirl-.S/o/c, C;irci~it.~, \.olumc 3 1 , nu~nl>c~ . I 1 , No\.etn hcr 1996,
[X I ~ S 170.3-1 714.

James Montanaro
Richard T. Witek
IG-isha Anne
Andrew J. 131ack
Elizabeth M. Cooper
Daniel W. Dobberpuhl
Paul M. Donahue
Jim E n o
Gregory W. Hoeppner
David Kruckemyer

Thomas H. Lee
Peter C. M. Lin
Liam Madden
Daniel LMurray
Mark H. Pearce
Sr ibdan Smthanam
I h t h r p n J. Snyder
Ray Stepllany
Stephen C. Thierauf

Introduction

As pcrso~i:il digital assistants (1'l)A's) move into the
nest generation, there is an ob\rious need for 'iddi-
tional processing po\\,cr to enable nc\\, applications
and j~nl-71x)\rc c s i s t i n ~ ones. While cnhnnccd fi~nction-
ality s ~ ~ c h as in~pro\.cd hand\ \~i t ing recognition, voicc
recognition, and speech syntl~csis are desirable, the
size and \\,eight limitations of 1'l)A's rccluirc that
micropx)ccssors cleli\.cr this perti)rrna~~cc \\itIiout
consuming additional po\\,er. Tlic microprocessor
describcd in this paper-the Digital E q ~ ~ i p ~ n e l l t
Corporation SA- 110, the first micropl-occssor in tllc
StrongAKM family-directly addresses this nccd by
deli\~ering 1 S5 Dhrystonc 2.1 MIPS \\,hilt dissipating
less tli'in 450 mW. This represents 3 significantly
higher petfor~nance than is currently ,lvailablc a t this
I'O\\'" Ic\,cl.

CMOS Process Technology

The chip is tabl.icatcti i l l a 0.35 p.m thrcc-metal (;MOS
process 114th 0.35 V thresholds and 0.25 11111 effccti\sc
channel lengths. Process characteristics arc sho\\.n
in Table 1. The process is the result o f sc\rcral gcncra-
tions of dc\~elopmcnt efforts directed to\\,ard h i ~ h -
pcrfc)rmancc mjcroproccssors. It is identical t o tlic one
used in Digital Equipment Corporatio~i's current
generation of Alpha chips' cxccpt for the rc~no\.al of
the fourth layer of metal and the <iciditio~i ol-' a find
nitride passi\vatiol~ rcqui~.cd ti)r plastic p'~cltnging.

The hctors \vhich dri\>c process dcvclopment for
lo\\,-po\ver dcsign ;ire similar to thosc \vhich dri1.c the
proccss ti)r purc high-pcrfor~i~a~icc altliougli the moti-
\ration sonietimcs diffcrs. For example, \\rliilc both
types of designs benefit fro111 mnximizi~ig Itisat of thc
transistors at the lo\\,cst acceptable Vdd, the moti\r;~-
tion for a pure high-pcrhrmancc desigi is rcd~lcing
po\vcr distribution and therm:il problems rather than
extending battery life. Similar ~i rgu~ncnts apply to
~~ i in i~n iz ing transistor Ical<age ;uld 011-chip \,ariatior1 of
tKlnsistor paralnctcrs. This con\,crgcncc of goals has
bccn essc~ltial t o our ability to develop one proccss
to satis& the rcq~drcmcnts of both lo\\,-po\\~er and
high-per6)rmflnc.c hnlilics.

1)igirdl 1ciIiiiic.al Jolirn,ll I 9 So. 1 1997 49

Table 1
Process Features

Feature size 0.35 pm

Channel length 0.25 pm

Gate oxide 6.0 nm
VtnlVtp 0.35 VI-0.35 V

Power supply 2.0 V (nom~nal)
Substrate P-epi with n-well
Salicide Cobalt-disil~cide in diffusions and gates
Metal 1 0.7 pm AICu, 1.225 pm pitch (contacted)
Metal 2 0.7 prn AICu, 1.225 pm pitch (contacted)
Metal 3 1.4 vm AICu, 2.8 pm pitch (contacted)
RAM cell 6 transistor, 25.5 pm2

Power Dissipation Tradeoffs

I<IS(: microprocessors operating at 160 MHz arc hirly
comlnon using current (:bIOS proccss technolog!,.
T h e novel aspect o f th i s dcsign is t l ~ c abi l in~ t o acIiic\.c
this operating freclucnc!, , ~ t po\\,cr Icvcls \vhich are l o ~ v
c n o ~ i g l i for handheld npplicntions. Sc\.crnl J c s i g ~ i
tladcoffs \\,ere made t o achic\.c the desired po\\.cr
dissipation. In o rder t o illustrate t l i c i ~ effect on the
design, it is intercsting t o imagine applying tlicsc
traclcoffs to an earlier dcsign \vliosc power dissipation
occupies the opposite end o f tlic po\\'cl- spectrum,
tllc first reported Alphn micl-op~.occssor.' This Alphn
chip \\.as fabricated in a 0.75-pm (:ILIOS proccss and
opcrntcd at 200 h'lHz dissipnt in~ 26 W nt 3.45 V. T h c
impact o f these tradcot'ti is sirm~ilarizcd in Tablc 2 .

Tlic first decision is t o I-cducc tlic internal po\vcr
suppl!~ t o 1 .5 V. "This c h n ~ ~ g c c ~ ~ t s the po\\.cr by a factor
of 5.3. While this has tlic desired effect, it has implica-
tions f ix the cycle time \vhicIi arc considered in the
section Circiut I ~ ~ i p l c ~ i l c ~ i t d t i o ~ x

T h c ncs t step is to reduce thc ti lnctionality. As c o m -
pared t o the early Alpha chip, the most ob \~ ious scc-
t i o ~ i s missing in this dcsign arc t l ~ c floating point unit
and the branch history tnblc. F l o ~ t i n g point is n o t
rccluired in t h e target applications n ~ i d the lo\\ branch
I ,~tc~ic) , o f this design cliliijnntcs t l ~ c nccd for the

Table 2
Power Dissipation Tradeoffs

Start with Alpha 21064: 200 MHz Q 3.45 V.
Power dissipation = 26W

Vdd reduction: Power reduction = 5 . 3 ~ *> 4.9 W

Reduce functions: Power reduction = 3x *> 1.6 W

Scale process: Power reduction = 2x

Reduce clock load: Power reduction = 1 . 3 ~ * 00. W

Reduce clock rate: Power reduction = 1 . 2 5 ~ + 0.5 w

br.inch history tab.lc. I r s s oh\ . io~ls , bu t \ c r y impor-
r.lnt, is I-educed control complc\it!,. This is 11 simple
m.~cliinc and \vc lia\.c \ ~ o r l i c d hard t o keep it so. \Vc
cstini,~tcd that thc redtlced fi~nctionality \\,auld cu t
po\\,cr I)!, '1 Klctor o f tllrcc.

Process scaling reduces ~ l o i i c capacitances and thcrc-
fore chip po\\rcr. Note that although tlic :1rca compo-
nents o f the capacita~icc will dccrcasc as the square
o f tlic scalc factor, the total cap. ici t~~ice cl la~igc \\.it11
sc:~lins \ \ , i l l be less ciram.~tic p~.i~ii.~~.il!~ d u c to the ctfccr
o f periphcr!* capacitance. \,Vc estimate that scaling
fi-om 0.75 p m o f thc c:l~-l\ :!lpIia chip to o u r current
0.35 1J.m ~ v o c e s s r e s ~ ~ l t s in n po\\,er ~.cduct iou of ahout
.I filctol- of nvo, a linear reduction \\.ith scale hctor .
Once agrun, coupled \vith this positi\.c effect o f proccss
scnling ,Ire a host of other issues. S o ~ n c o f t l ~ o s e issues
arc co~isidered in the scct io~i l'o\\~cr l)o\vn Modes.

Nes t , consider the clock po\\,cr. 'l'hc clock po\lrcr o f
the Alpha cliips is fairl!, l ~ ~ . g c rind \\,liilc that clocking
stratcg! \vorl<s \\.ell For Alpha mnchincs, i t is no t appro-
printc for a lo\\.-po\\.cr chip. O L I ~ c l o c k i ~ l g s t r a t c g ~ and
o u r latch circuits arc dcscribcd in solnc detail later.
O n c ~ n n j o r change fi-om tlic A l p l i ~ ciesign \vas t o reject
t l ~ c pair o f trar~sp;irc~it Iatclicz per c!,clc ~ ~ s c d o n the
Alldia dcsign. Instead, o n this dcsign, 1i.c s\\ritcl~ed t o a
singlc cdgc-triggered latch per c!~clc t o r e d i ~ c e clock
loaci ;uld latch delay. O u r cstirn,itc is that the changes
in tlic cloclting reduced the clock po\ver by a factol- of
mro. Sincc the clock po\\.cr \\,as nI>o~rt 65% o f the tot;il
po\\,u' on the first A l p h ~ cllip, this results in a rcduc-
tion o f a b o u t 1.3.

Finally, the reduction in clock ti-cquency from
200 iClHz t o 160 iCl Hz drops tlic po\\,cr by 1 .25.

(:lcarly, this analysis is no t rigorous, b u t i t suggests
that it is 1.caso11ablc t o build a 160 M H z processor chip
tlint Jissipatcs around 11,llf a \\rilrt. A s j m i l ~ r nnalysis
puf i) rmcd a t the b r g i n n i ~ l g o f the project to select thc
power supply voltage and opcr.lting fi-cq~~cnc)! and t o
determine \\rhether significant cliangcs in dcsign
mctliod would be required to mcct the perfo~-mancc
,lncf po\\.cr goals. I t is intc~.cst i~ig t o note that \\.it11 the
csccl>tio~l o f the clocking changcs, the dcsign methods
nnri pllilosoph\. used o n this dcsign \\.ere vcl-y similar
t o rl1.1t uscd o n the Alplin chips.

Instruction Set

'l'llc microprocessor iniplcmcnrs thc ARiilI V4'
instruction set. T h e architecture defines thirty 32-b
guic~'al pur~x)sc registu'sand ,I progra111 c o ~ i ~ l t c r (PC.:).
l<cgisrcrs are specified by u 4-h ficld \vhcrc registers
0 t o 14 arc general p~rrposc 1-cgisrcrb (C;PI<) and rcgis-
tcr 15 is tlic 1'C. -1'lic current pr.occssoi- stilt i~s register
contains a currcrlt mode ficld \\.hich sclccts eithcr an
i~~ip~. i \ . i lcged user: mode o r one ol'sis pl.i\,ilcged niodcs.
'l 'hc currcsnt mode selects *hich set of GI'R's is \isiblc.

In addition to b ~ s i c IIISC: fcaturcs of fiscd Icngth
instructions and simple load/storc .lrchitccti~re, the
arcliitcct~~rc implcmcntcd includes sc\,crul f ca t~~res to
i~ i ipro\~tcodc dc11sity. 'l'liese includc conditional esecu-
tion of all instructions, load and stol-c n~ultiplc instruc-
tions, auto-increment and auto-dccl-c~ncnt for loads
and stores, 'incl a sliiti of one opcr,lncl in c\,cl.y AI,U
operation. -1'Iie ~~.cliitccturc supportsloacis ancl stores o f
8-, 16-, and 32-b d,itn \-alucs. In addition to the stan-
dard 32-b computations, there is a 32-b X 32-b multi-
ply accumulate \\lit11 a 64-b product and accu~nulator.

Chip Microarchitecture

As sho\\.n in Figure 1, the chip is fi lnctionally parti-
tioned into the tbllo\\ing majol sections: rlic instruction
uuit (IBOS), integer csccution unit (i-.130S), integer
multiplier (MUI,), memory management unit for data
(I)iMMU), memory management il lnit ti)r i~lstructions
(IMMU), \\,rite buffer (WE), b i ~ s intcl.Licc unit (RIU),
phase locl<cd loop (l'I,I>), and caches for data (Dcache)
and instructio~is (Icachc). To minilnizc pin po\ver and
support the 11igl1-spccd internal corc, one half of the
chip area is dc\x)tcd to the n\'o 16 1< cncl~cs. The pad
ring occupics c)nc-tliirti of the clup ;uca 2nd the proces-
sor corc tills tllc remaining one-sisth of the chip area.

Thc processor is a sin& issuc design with a classic
five-stage pipeline-Fetch, Issue, Esccutc, 13uftkr, and
Register Filc LVritc (Figure 2) . All arithmetic logic unit
(AJ,U) rcsults call be for\\.arded to the A1.U input and
there is a one-cycle bitbblc for dcpcnclcnt losds.

For csamplc, the pipeline diagram in Figure 2
slio\vs a SUKT1WC:'f follo\ved b y LI dcpcndcnt 1,OAD.
Nott: that ~t the end of cycle 3, \vc 1)ypass the rcsult
from the SUR?'M<:'T back illto the 41,U to compute
the load address in cyclc 4 \\,ithout st;illing the pipe.

k;; :. s;+:: - , -.L;:$&;-''.- -
, , &- I.?.

. - = -- , ,
- -.--

. - .---. -
- + ,-.--. 2

,. .i a,. -
' L R - *.

Figure 1
(:hip l'hoto \ \ . ~ r l i O\,crlay

1 1 pc 1 R y d 1 w c d+Rl l ~ ~ r n ~ (l . 9 1 ~ b , 1
LDR RZ, [Rl ,a! lb c LDR Rm Rn la c drRl w' c w

100:
SUBS R l

Figure 2
Bnsic Pipeline Diagmm

p c c l 0 0
lb c SUBS

108:
noox.R2.y

Tlic third instruction is ;In ,\DL) \\,hich uses tlic result
of the previous LOAl). 'fhc AD13 is held jn the Issue
stage for one additional cyclc iuitil tlic 1.0Al) data is
a\i:lilablc at the cnd ofcycle 5.

The I BOX can ~.csolvc conditional branches in the
Issue stage e\.en \\.lien r11c condition codcs arc being
updated in the current Esccutc cyclc. R y pro\,iding
this optimized path, thc I13OX incurs on ly n olic-c!~clc
l x ~ i d t y for b~.dnclics ralccn, s o t l ~ e chip docs not
rccli~irc branch prediction ha~-d\\.arc. For csamplc, in
the pair of instructions sIio\\ln in Figure 3, the
BIWNC:H and LINI< instruction at tlic (program
counter) PC of 104 ticpencis o n the condition codcs
\vIiicli are being gc~~c la t cd by the SU13TIlAC:T in the
prc\.ious i~~st ruct ion. The condition coclcs fiom the
Esccute stagc of the SUI3TMCT arc available at thc
end of cycle 3, in t i ~ n c to s\\,ing the PC: rn~~ltiplcscr in
the I B O S to point at the branch target 1'C; during the
nest Fetch cycle.

The optimization of the branch path represents a
~xnva- \,ersus perfol-mancc tr<ldeoff in \\.liich pc rh r -

F

Read
Rm,Rn

pc <-I08
I b c A D D

Figure 3
I'ipcllnc 1)iagrani o f n Ill.allch

I

100:
SUBS R l

wcrn-rm
cc <-a1u.m

Read
Rm. Rn

E

pc 1-1m
lb 1- SUBS

w' c w

Read
Rm. Rn

104:
BLNE
CTargcltpc = 200)

Rl-'

B

w cR2+y

Read
Rm.Rn

W

w<- rn-rm
cc<slu.cc

F

pc <-I04

108:
ux

I

Target pc
<- 200

5

F

pC1-108
Ib -- n x

F

E

w <- pc - 4
i

I

I

8

w' .- w

E

w

R14 <. w'

E B

1na11cc \\-on. In o u r c f h r t t o I1olci rllc one c\clc branch
I X I ~ L I I ~ ~ , \\,r incli~dcci n clcdic.lccci ,lcidcr in the IBOS t o
calculate the b ra~ich target addr.css and c o n s ~ l l ~ ~ c c i
additional po\\,el- in thc EI$OX ;ldcicr t o ~ i i c c t the criti-
cal spccd path to contl-01 the I'<: multipleser. I h c to

c1.iric.11 path constr,~ints, tlic acidel ill the I 1 3 0 X niust
run ever!. cycle, w e n if tlic instruction is n o t a h ranc l~ .

In tlic early stage o f the ilcsign, o n c of o u r conccrns
\\.as \\,hctlicr the decision t o pul.suc this optinlizcd
branch p'itli \ \ .oi~ld inc~.cnsc oLlr c!~clc time. As the
design turned ou t , o u r hcst efforts in this ALL' pat11
and in the cache acccss path rcsultcd in nearly identical
dcl.~!,s for thcsc n1.o lo~igcst criric,ll spccd parlls.

llatn tor intcgcr opc~.ations coliics fi.oln a 3 1 -cntr \ ,
1,cgistcr file \\.it11 three cad and t\tro \\.rite ports.
Sistccn o f tlie registers arc \,isil>lc a t any time *it11
15 .~ciditional sllrido\\, rcgistcrs spcciticd by the archi-
t cc t i~~ .c t o rnini~nizc the o\~c~.I~c,lci ,~ssociatcd \\,it11 initi-
ating esccptions. ?'he EHOS contains an AI,U \\,ith a
f i l l 1 32-b bidirectional sliiftcr o n o n e o f the input
o p c r ~ ~ ~ d s . I t incl~~cics h!~pnssing circ~~itr!. to for\\xrii
the iiat.1 from tlie 1)cnchc or thc AL.U on tpn t t o an!.
o f the read ports. Figure 4 sho\\.s the circuit hlocks
in\.ol\.cd in tllc branch p;lrh. '1-l~c path starts a t a I;ltcli
111 tllc b!,passcrs nnd, ill a sinslc c!~clc, includes a
0 - to 32-b shift, n 3 2 - b AI,U opcr.ltion, and J coniii-
tioil codc cornpittation t o swing the 1'C: multiplcscr
tbr rhc ncst cyclc. Tllc rcgistcrs t o hold tlic condition
coilcs \\,ere i~nplcnlcnteci i l l the EI3OX s o tliat this
pat11 could be locall!, optir.nizccl. A~~al!~sis o f codc
traces indicated that most r\l.L1 opcrlltions inclucled a
shift o f zero, s o ti)r tllis case, the sliihel. is disabled and
l>!,p"sccl t o r c d ~ e e po\\.c~..

.l'lle F,ROX also conta i~ l s ,I 32-L> ~ni~l t ipl! . / '~ccu~ni~-
Iatc unit. T h e multiplicr co~lsists o f a 12- b!. 3 2 - b
carry-save multiplicr array \\'llich is I I S C ~ for o n e t o
tlircc c\vlcs depc17cting o n tlic \,,ili~c o f ~n~~lt ipl ic ;uici
and a 32-b final adder t o reduce the carrg-sd\rr result.

--

Figure 4
EBOS l i lock l)i3g~.am

For multiyl!' a c c ~ u n l ~ l a t c operations, the accumulate
\ ,nl i~c is inscrtcd into the arl.J!' s o that .1n additional
c!,clc is no t rccli~ircd for the ~Multiplics \\!it11
Accumulate. multiply I m n g instructions rcquirc
o n e aciditional cyclc. This rcsu!ts in a &IULTIPL,Y o r
All U I .-PI ~'LY/AC(:UIMUI,KI~E in t\\'o t o four cycles
a i d iblU1, I .ONG o r iblUI. I ,ONG/ACCUMULATE
in thrcc t o five cycles.

'I'lic M l l a c c trcc imp1cmcnt;ltion \\.as c h o s c ~ i t o
m i n i n i i ~ c the dcla!. t l lroi~gll rllc arm!!. 'This implemcn-
t,ltion req i~ i red carefill floor p1,lllning and custom la!,-
o u t t o keep the \\.iring under control. 'The dccisioti t o
pc.rti)rm 12 b o f m ~ ~ l t i p l y per c!~clc *as based o n wiring
rrndcoffs made du~. ing the pli!,sic.ll planning phase o f
tllc dcs ig i rather than critical p ~ t h concerns. \.147cli the
multiplicr is n o t jn use, all clocks t o the section s top
and the input operands d o nor togglc.

rl'llc cliip features scparJtc 16 ItKgtc, 22-\\71y set
nssocinti\.e \.irtual cachcs h r instructions a ~ l d data.
Each cache is implemented as 16 fi~lly associative
hlocks. Each cache is acccsscd in a single cyclc fix both
~.cnris .11id \\.rites, pro\,iciing .I t\\,o-c!'clc latent!, fol.

return c l ~ t a t o the register file. 0111.. ciglltli o f each
cache is cnablcd for a caclic acccss.

'T'hc 1)cache is \vritcback \\it11 n o *rite allocation.
'I'llc hloclc size is 32 b!'tcs \\,it11 dirt), bits pro\,idcd for
C;ICII 1)df block t o minimizc the data \\,hich lleeds to be
castout in tlic cvrn t o f a ciirty \,ictim. T h e ph!lsical
acidrcss is stored \\it11 the data t o avoid address transla-
tion ci~11.ing castouts.

Gi\-cn tlic size o f the cachcs and the lo\\. polver
rargct for the chip, it \\,as important that \vc halve fine
g~ . r~n~r l~ l~- i t ! ofbanlc selection. I n ncldition, \vc required
associ.~ti\.it!, o f a t least four-\\ , .~y for cache efficjcnc\'
and it \\.as inlportant t o pcrfol-manee that we maintain
a s i~iglc cyclc acccss. PVc co~lsidcrcd sc\~cral solutions
t o thih p~.oblcm, i n c l ~ ~ d i n g traditional fi)ur-\vay set
nssoci,lti\~e cuclics, and decided tliat the simplest
n p p ~) a c l ~ which satisfied all rlic requirements \itas t o
ijnplcment the cachcs as smaller, hank-addressed, fully
associ,lti\,c caches. This resulted in 32-\\.ny nssociati\.it_\,
l>ilr this lc\.cl o f associati\it!, \\.as n side effect o f tlic
irnplcmcntatio~l ~ ~ s e c l , n o t thc result of a goal t o get
associati\.in signiticandy abo\,c four-*a!*.

'I ' l~c ellip includes scp3r;1tc mcliior!, management
1111its (i\lli\ilU) for inst~.uctions nnd data. Each iMMU
contains a 32-entry fi~lly associ,itivc translation look-
nsidc buffcr (TIB) \\lit11 cntl-ics \vIlich can map either
4 lil',, 64 k l l , o r 1 i\lR pages. -I?,]< f lls arc implemented
in li;1rd\\.arc. In addition t o the standard memory
ni;ln;lgcmcnt protection nlcchanisms, the ARM archi-
tecture dcf nes a n or thogonal menlory protection
schcmc to al lo\ \ t l ~ c opcmting s\'stcm easy acccss to
I;lrgc ~ c c t i o ~ i s of mcmor!, \ \ , i thout l n a ~ i i p ~ ~ l a t i n g the
page tnhles. .l 'l~is f~~nc t iona l i ty requires a set o f addi-

\!oI. 9 No. 1 1997

tio11.11 checks \\,liicli 1ii11st he I > C I ~ ~ ' ~ ~ I I I C ~ ;iftcr the Tl,R
lookup. 'l'lic ~ . c s u l t i ~ ~ g critical path \\$as si~fficicntl!~
long tli.lt \\!c scltlti~ncd tlic 1Wi\/l access in the TL,R t o
allo\\r us t o perform the lool i~lp ,lnd co~i ip lcs protec-
tion cliccks ill ,I siliglc c!rclc.
X \\'rite b ~ ~ t f c r \\zit11 eight 1 6 - h ! ~ c entries hanciles

stores ,111j. castouts ti-om tlic l)cncl~c. T h e \\!rite bi~ffcr
inclucics n s i~ ig lc -c~ l t~- \ . me]-gc I ~ t c h t o pack up scqucn-
tial ~ t o r c s t o the salnc cntl.!,.

11u1.ing norlt).iI opcl..itions, J I I cstcrnal load rcqucst
tdltcs priorit\' o \ , c ~ ' sto~.cs oil tlic pin bus. Ho\\,e\'cr, i l l

the c\.cnt o f n Ioati \\.liicIi hits in the \\.i.itc buffer, the
chi[> csccurcs .I series ofpr- ior iy storcs \\.liich raises the
priority o f tlic Write 1<~1ffc1. o n the cstcrlinl hus abo\.e
that o f any lonrls. F,xrcr~ial storcs occur 2nd the \\.rite
buffer cmprics until the store \\.liicli \\.as pending a t
the load ;~ddrcss complcrcs. At tliis ~ > o i ~ l t , t o p priority
reverts bnck t o loacis.

Power Down Modes

' 1 . . hcrc ;u-c t\\,o power rlo\\,n modes supported by the
chi(>-Idle and Slccp.

Idlc ~ n o d c is in tc~)dcd ti)r short periods o f inacti\rity
2nd is y>l '~'olx-i~tc for situntions in \ \~hich rapid
~.csuml>tio~i o f ~xoccssiing is rccluircd. In Idle ~ n o d c ,
the o ~ i - c h i p I'L,I, c o n t i n ~ ~ c s t o run but the internal
clock grid 2nd the bus clock t o p toggling. This climi-
nates most .lcti\-iry in the chip n ~ i d the po\j1er dissipa-
tion cl~.ol>sti.onl 4 5 0 III\,V t o 20 mW. lieturn fiwm Idlc
t o ~ioi.ni,il modc is ,lccomplislicd \\.ith cssc~ltiall\, n o
dcla!, b!, sinipl, rc.;t,l~-ti~ig tlic b ~ s clock.

Slccp modc is ricsignctl tix cs tc~ idcd ~>criods of innc-
ti\ . in \\ liicli rccluil-c tllc lo\\.cst po\\.cr consumption.
l'hc cul-I-cnt in Sleep niodc is 50 FA \\~Iiich is achic\,cd
b \ t ~ ~ r l l i n g of f thc intcl.lial po\\.cr t o tlic chip. T h e 3 .3 V
I/() circuitr!. rcrnnins ~>o\\.cr.cd and the chip is \\,ell
bcha\.cd on the bus, m~i i i t a in ing spcciticd Ic\,c.ls j.F

rcqi~ircd b!* rlic ciri\.c cnahlc inputs. I<ctur~l from Sleep
t o 1iorii1;11 o p c ~ ~ t i o ~ i r'iltcs . lp~>ro~i~ii.i tcly 140 p.s.

As \vns noted earlier, n lo\v \,oltagc process is key
t o the dcsign o f n microprocessor ivliich \\ . i l l r un at
160 i\/IHz \\,liilc dissipating less than 450 m\V.
Ho\\,c\,c~-, tlic same lo\\. dc\.icc tl~rcslioltls \\~liicli allo\\,
the rctiuctio~l o f Vdd also result in significant device
Icnltngc. While tliis Icnk;igc is no t I ~ r g c enough t o
c-.iusc n PI-oblcm ti)r norm,ll operation, it docs pose
problcrns ti^ st.indby current , cspcci;llly if the pro-
cess sJte\\,s to\\,al-d sh01.r chalincl dcvices. O L I ~ initial
.~nalysis indicated tli:lt the chip \ \ f o ~ ~ l d dissipate o\-cr
100 nlW ili Itllc tnotic \\,it11 the clocks stopped. To
rctlucc tliis I c a k ~ g c , \\.c Icngrllcncd dc\~iccs in the
c.lclic .ll.rajJs, the p ~ d dri\,c~.s, 2nd ccl.tai11 otlicr areas.
- 7 I his iv-ought tlic l c ~ l l ~ . ~ g c po\\,cr t o \ \ ~ i t l ~ i ~ i tlic recl~~irc(l
\ ,nlt~c o f 2 0 mLV in tlic histest p~'occss corner. As a
b a c k ~ ~ p , \\.c rcl.i~cci 0111. dcsign rulcs t o allo\\r tlie

remaining gate regions, \\,liicli nrc drn\\.n \\,it11 ;I sr.ln-
dard 0.35 pm g;itc length, t o bc 1,iasccl 111' algorithmi-
call!! \ \ . i thout \.iolnting dcsign rulcs in c,isc it \\..is
ncccss.lr\r t o mcct rlic Ic,lkagc ~ ' c t l ~ ~ i ~ . c ~ ~ i c n t s .

T h e rciluircmc~it for st.~ndb\r po\\.cr in Slccp is 1i101.c
than n1.o ordcrs o f m a g ~ i i t l ~ d c lo\\.cr rlln~i the Idlc
po\jrer. -To meet the po\\,cl- limit i l l Slccp, \\.c consid-
ered n \.ariet! o f options inclutiing intcg~.ntcii ~ o \ \ ' c r
suppl! s\\~itclics and s ~ b s t ~ - ~ t c biasing cclicnics hcfi)rc
choosing the simple ~pl>l-o,~ch o f t ~ i ~ . n i ~ i g off tlic inter-
nnl s~~ppl!'. 'IIhjs ~pp~.o . lc l i is ~ .ca \o~l .~ l> lc fix r l i i genera-
tion of parts si11cc the!. Ii,l\~c ,I dcdic,ltcci lo\\, \x)ltngc
supply. As more p,ll.ts o f t l ~ c s\.stciii sliift t o rlic lo\\,
~ .o l tagc suppl!., this rn.l!. 110 Io~igcr I>c acccl>r;ihlc. 'l'lic
contlicting rccluircmcnts o f liigl~ pcl.fi)~.liiancc .I[lo\\.
voltage ~ n d lo\\- ~ t a n d b ! ~ cul.r.cnt pl.o~nisc t o create
interesting cliallcngcs in f ~ ~ t u r c designs.

The po\r.cr s\vitch t o turn off tllc ilitcrllal po\\,ci.
supply dur ing Sleep is iml,lcmcntcd off-cliil> as 1>;11't
o f the po\\,er supply circi~i t fol- tlic lo\\ \,olt,igc supply.
N o state is stored intcrnnlly during Slccp since in
typical 1'1)A systems, the Slccp scntc corrcspontls t o
thc user turning the system off. 'l'I1c1-chrc the time
associated with reloading the c;iclic Llpon rctilrn lion)
Sleep is acccptablc.

T h c rcquircmcnts in ldlc and Slccp complicated tlic
dcsign of t l ~ c bus in rc~-hcc circuits. 'l'llis section
i~icludcs the Ic\.cl-shitii~ig intcrhcc bct\\,ccn the inter-
nal lo\\, \,olt.igc (1 . 5 t o 2 .2 \ /) sigli,lls and the 3.3 V
cstcrnal pin bus. T h e bus ilitc~.ticc ci~.ck~it$ m w t tiri\,c
and recci\,c sigli,ils \\~liicli JI -C I1igIic1- \ .olt ,~gc thnn those
nominally suppo~.tcci b\, the 0 . 3 5 - p n p~.occss \\ , i thout
using circuits \\.llicli \ \ ,o~~lc i c ~ ~ ~ s c 11s t o cscccti the ~ L I I . -
rent limit spcciticci L y the Icllc spec. In niitiition, J L I Y -
ing Slccp the pads must Oc ~ h l c t o s ~ ~ s r n i ~ l the \ ,a l~lc
o n tlie o u t p ~ l t pills dcsl~irc tllc loss of i l ~ t c ~ . ~ i n l \'(id
(V d d i) PI-om the lo\\. \,olt,igc \~ lpp l \ . \\.liicli is ~>o\\,cl.cci
ofFb\, tlic s!?stcm. 'l'llc circ~litr!, 11scd t o i~iiplcliicnt tliis
f i~nct ion is slio\\ n in F i g ~ ~ l - c 5.

Since Vddi \ \ . i l l bc ci~.i\-cn t o ~ c 1 . 0 t l ~ c s\'stclii
during Sleep, it is used not o111\. .IS ,i po\ \ 'c~ ' S L I P I ' I \ ,
bu t also as a logic sign.11. All circi~itr!. \\.l~icli niust
be 3ctii.e in Sleep is ciri\.cn from tlic cstcr.11.11, 3.3 \'
si~pply (Vdds) I\-hich I i ~ s l>ccn dl.oj>pcrl t l l r o t ~ ~ l i tliodc-
connected I'kIOS dc\,iccs t o rcdiicc tlic stress on the
os idc o f thcsc ricviccs. I3cforc sign,lling tlic chip t o
enter Slccp, the system nsscrts the nRI'SE'I' pin (ncti\.c
lo\\.,) n-hich drives all cnnhlcd ou t l> t~ ts t o a sl>cciticti
state-disabled k)r control signals 2nd ~ c r o for
addrcsscs and data. It then nsscrts nl'Wl1SI.I' (.~cti*c
lo\\!) \\,hie11 is Ah'1)cd \\.it11 the npprolwintc o u t p u t
enable control t o turn on s r n ~ l l Icnkcl. dc\.iccs \\~liicli
\ \ , i l l holcl the o ~ ~ t p ~ ~ t pill in the apl>~.ol>~.i.lrc st;lrc ri~~l.illg
Slccp. I n the cjrcuit s l ~ o \ \ . l ~ in Figure 5, tlic o ~ ~ t p ~ ~ t is
an ~ d d r c s s . Tllcrcti)~.c, tlic acicircss l>us cnnblc (Al',li,)
pin is tlic control pin on tlic lo\\,cr XhlIOS Icnkcl. anti .I

nRESET ABE VDDX nPWRSLP A[nl VDDl

Pad Driver
I - - - - - - - - - - - 1

Pad Driier Transistors 1

I I
I I
I

E
I

I I
PWRSLP I 1 I 8 I

$
Y

I

a I
Z
U1 I

I
Level Shifter

I
I

-
and Predriver I

Input Input Input I - - - - - - - - - - - I Receiver Receiver Receiver

NOT RESET

Internal Chip Circuitry ADDRESS[n]

Figure 5
I'ad Circuitr!,

bufkred \~ersion ot'r~I~\~VRSI,l' controls the top dc\licc.
Fin'llly, tlic Vddi pills arc ;lctivcly driven to zcl-o by tlic
system. This action disnblcs the o ~ i t p ~ ~ t stngc of tlic
pnd dri\.cr circuit b!. turning offthc transistors closest
to the pad-the NMOS directly and the 1'1UOS \.ia the
bins nct\\,ol~l< \\.llosc o u t p ~ ~ t gocs to \Jdci\ \\-he11 its
px'h to VSS is C L I I oft: Note that for ~II!, i~ipllt \ \ . I I O S C
value is required during Slccp (ARE :ind nl'\,\'l<Sl,I' in
the csamplc clcscribcd), a scparatc parallel i ~ i l ~ u t
rccei\lcr must bc implcmcntcd since the normal input
rccci\cr rccluircs Vticii.

Circuit Implementation

.l'he circuit iniplcmcntation is pscudostntic nnd nllo\\,s
thc internal clock to he stoppcd indcfinitcl!. in citlicl.
s r ~ t e . Usc of c i rc~~i ts \4,llicl1 might limit lo\\, \~oltngc
operation \vns stricrl!, controlled and the dcsign \\.as

s im~~latcd to cnsure operation sipnifcnntly bclo\\l
tlic nomin;il 1 .5 V lcvcl of the Jo\\) \,oltagc supply. :I7lic
\lalucs of tlic internal si~pply r111ci opcr.1ti11g t i re~l i~~nc!~
\\u-c optimizcci to achicvc mnsimum pel-ti)rmancc for
less tl1;in lialfn \\.art.

The \.ast mnjorit\. of the dcsign is pl~rcly static,
composed ot'cithcr coniplcmcntnr!, (:iblOS gates or
static diffcrcntial logic. In ccrtnin situations, \\.idc
NOR fi~nctions \\.ere requircd and tlicsc \\.ere imple-
mented in n pseudostatic hshion using citlicr static
weak fccdhaclt c i r c~~ i t s or sclt-timed cil-cuits to]>itch
the o i ~ t p t ~ t d ~ t d and return the dynamic node to its
prcch:~rgcd state.

The register fi lc (1W) uses t l ~ c self-ti~nccl approach
to return the bit lines to the preclinrgcd state akcr an
'icccss (Figure 6) . In this circl~it, nn csna self-timing
colum~i o f hit cclls \\!it11 a d\,naniic bit lint \\,as implc-
me~itccl to miniic tlic timing of tlic d.1t.1 hit lines.

t'ig[r~.c 6 sho\\,s one cell kon i ,I column o f register file
iint.1 bit cclls a11ci one cell fi.0111 tllc cYtr<l self-timing
col~1rn11 (onl!, one rcad port js s l~o\ \ . l l) . l 'hc bit cclls
in rliis cs tra coltlmn arc all tied off so t h ~ t tlic
SF.1.F-BI~I'1,INE signal \\-ill al\\,ays discharge \\.hell
tlic REA1)-WOlWLINE goes high. \I\'llcn the
SE1.F-RIT1,INE falls, it \\,ill set an RS latch causing the
SEI.!--KNAI<I,E signal t o fall. This \ \ , i l l disablc the
I<EAI)-WORI)I,INE alid causc the bit lines to be
p1-ccIi3rgcd high when the rcad acccss is complctc.
Since the l)KI~AA_RI'TLINE's nre rccci\,cd by lo\\: scnsi-
tivc 1<S I;~tclics, the o u t p u t dntn \\ . i l l bc Iiclci \vlicn tllc
1)ir line ia p~~cchal.gcd high. T h e sclf-timing 11s Intch is
clcal-cd \ \ , l ~ c n (:1.0(:1<-1, goes lo\\.. 71'l~is cnuscs the
Sk,I.I-'-ENAR1.E signal t o g o high, c n ~ b l i n g the read
port ti)^. t l ~ c acccss in the nes t cloclc c\rclc. A scparatc
S t:I .t.-I31.1'1 .I NF, signal is implemented for cuch of the
tlil.cc ~.cgistcr f lc ports so that tllc cloclis for t l ~ c tllrcc
p) ~ - t s c.in bc cnabled incicpcndcntly.

'l'lic ~ r ~ l n s i s t o r lealtage associated \\.it11 tllc lo\\-
threshold voltages is problematic ti>r tlicsc pscudo-
st.ltic cir-cuits. If n wcalc feedback circuit is used in a

NOR s t ruc t~~r .c \\,hie11 is prcch,lrgcd high, csccssivc
lealzagc in the pnr~llcl SiVlOS ~ L I I I ~ O \ \ - I ~ S \\,0111ci
require that the f c c d b ~ c k be tiirl!. s t rons, \\.hich in turn
\ \ ~) u l d rcclucc tlic spccii of r l ~ c circ~l i t . In the limit O F
\,cr!, \\ride NOI\'s, m.l\ n o t be possible: to size ,I

PMOS Icnlzcr so that i t <.In suppl!~ tllc lenkage oFnII tllc
o f f NIMOS pulldo\\.ns \\.itliout ~ n a k i n g the Icalzcr t o o
large t o be o\;ct-po\vcrcd by a single acti\.c pulldo\\.n.
In thc case o f 3 self-tinled approach, a similar problclii
esists bu t it usually is manifested ;IS a \~anishingly small
timing n~arg in fix- tlic self-timed c i r c ~ ~ i t to fire before
the data o n tlic dyn;imic ~ i o d c decays a\ray. I n citlicr
case, addrcsscd this issue by rccluirillg the Icngth o f
p~l l ldo\ \~ns o n dynamic nodes t o be slightly larger tlinn
n i i n i n i ~ ~ l n . Tr.11lsisto1. Ic.lli,lgc current is n strong firnc-
tion o f chai~ncl lcngtll so .I 12% incrcnsc in dc\.icc
lcngtli rcs~llts il l n Icnk.lgc r c c i u c t i o ~ ~ in the \\.orst cusc
o f about n fileror o f 20. 'l'l-~c resulting leakage mnltcs
i rnplcmc~~rat ior i of c i thc~. \ \ w k fccdbncl< o r n self-
timed approach *cr!, rcasonal.>lc.

T h e opw.lting frcclucncy ut 1.5 V call he roughly
dcri \~cd b y starting \\,it11 the ficcli~cncy o f the A l p h ~

Figure 6
S c l l ' r i l i ~ c ~ i I<F L'l.ci.ll;?l.pc

3' -t w' J z I- <
a
W

5

ADORESS_DECODE
I ,
I
I
I

VDD VDD

4 L PRECHARGE L L r

CLOCK-L

DATA-OLJT

a

['
Bit -11

1

!- "
a
O

W
z
6
m
L J

W
V)

Dummy Bit h I I for Self-timing r - - - - - - - " - - - - - ' - - - . - . r -
I . I WRITE-WOW)LIF(E

processor in tlic same process technolog!*' .1nd scaling
ti)r the use o f a l o n g c ~ tick moclel and then Vdd. Sincc
the Ions tick cicsign r c q ~ ~ i r e s the chip t o ~ c r t i) ~ - ~ i i a f~ill
SHIFT and '1 fi~ll A1)I) in a single cycle, this , ipp~-osi-
matcly doubles the c!~clc time recliiircd. T h e effect of
Vdd scaling is roughly lincar for this i-angc o f Veld.
Combining these effects I-csi~lts in 311 opcr,lting
ticqucncy a t 1 .5 \' gi\.cn 1)).

'I'liis pair of\,oltngc nnd h.ccl i~cnc\ , \ , i~l~~cs . i ~ r e e s \\.ell
\\,it11 the po\\.cr estimate out l i~icd in the section I'o\\,c~-
1)issipation ?'~.nticof'ti. Note that for po\\,cr s~~ppl!,
\ rol t~gcs mucli lo\\,cr tlinn 1 .5 V, the opcr.lting k c -
quency decreases \\,it11 \,oltagc in a manncl- \\,liich is
signifc;lntl!. s t ronger than lincar. This hicr sets n p ~ a c -
tical lo\vcr limit o n the po\\.cr s ~ ~ p p l y \.oltagc in most
applications.

Po\\.cr estimates mndc earl!. in tlic design ;i~-c p r o ~ i c to

el-I-01-s in either direction. 111 the case o f this dcsign, the
po\\.c~- diss ip~tcd at 1.5 V \\,as lo\vcr than the 450 mW
tnrgct, s o nrc sliiticd thc nominal inter~lal Vdri to 1.65 V
to increase the yiclcl in the 1 6 0 MHz bin.

Clock Genera tion
XII on-chip 1'1 .I .' scncr;itcs rlic internal clocli .it olic o f
16 fi.cqucncics r ~ n g i n g froni 88 to 2 8 7 AIH/ h,i$cci o n
.i fixed 3 . 6 8 M H z i ~ i p ~ ~ t clock, 1) ~ 1 c t o i~itcrn,il
I . C S O L I ~ ~ C c011str~i1lts i11ici O L I ~ li~iiiteci c \ p c ~ ~ i c ~ ~ c c \\.it11

lo\\,-po\\.cr anillof?; c j ~ . c ~ ~ i t s , \\'c contr.1ctcd \\zit11 (:clit~.c
Suisse d ' E l c c t ~ . o ~ ~ i c l ~ ~ c c t cic hllicrotccl~nicl~~c (('SF,h/l)
from Neucli,itcl, S\\,itzcrl,lnd, to dcsign tlic I'l . I , ,lnd
engaged Profcsso~. '1'. I.cc horn Stanford as a c o n s ~ ~ l -
t i n t o n the project. O u r initial fcasibilit\. \\-01-li I-csultcd
in sc\.cral dcsign tlndcoffs.

First, \\-hilc tlicrc \\.as J ~ ! ~ s t c n i rcquircmcnt t1i;lt the
chip return cluicltl!, horn thc Idle stntc to nol-m;ll o ~ x r -
ation, thcrc \\-as n o such constraint on rc tur~ i ing horn
tlic Slccp state. I<ascd on this dcter~nin;ltion and ~ L I I -

2 0 mW po\\,er budget in Iillc, *c concluded tli,lt if \\,c
c o ~ t l d kcep the I'I.,l, po\\.cr hclo\v 2 m\\', \\-c c o ~ ~ l d
len\-c thc 1'1,1, r~1111iing ill ldlc .ind rcmo\.c the 1.cc1ui1-c-
mcnts o n tllc 1'1.1. lock t i~i ic . T I ~ L I s , tlic need ti)r ;I \.el-!.
lo\\ po \~ .c r 1'1,I. is ilict,~tcci b!. tllc po \ \ , c~- h i~ i igc t 111

Iiilc, not in nolmnl opc1.ntio11.
N c \ t , \\ 'c had spcciticrf ;I 1.11.gc ~ ? C I C ~ L I ~ I I C \ . ~i i~~lt i l l l icn-

t lon tictor t o allo\\ tlic use of.> conlmon and cl1c,il> lo\\
h-ci l~~cnc\ , crystal clock s o ~ ~ ~ . c c for consLllncr j > r o d ~ ~ i t s .
1;.11-l\, i~i\cstigations i ~ i i i i c ~ ~ t c d that this \\,o~11i1 ~ii.llkc
I islit p h ~ s c locl t i~ls c:iiftic~~lt. Ho\\ .c \ cl-, \\.lie11 \ \ c
looked nt target s\.stc~lis, \\.c ti)und no prc~z ing ~ i c c d tbl-
pliasc locking. <:onzccluc~itl!-, \\.e ren~o\-crl ~)llnsc lock-
ing as 3 dcsip11 critcri;l 2nd co11ccntl.atcd our cfti)~-ts ~lnrl
dcsign tmdcofti o n minimizing phase compression.

Finally, \\.hilt tllc PLL \\.as designed to I1;lndle the
noise cspcctccl on the chip p o u u supplies, \\.c discov-
crcd to\\,nrd the end of the dcsign that the I'LL \\,as
~111dcr its area budge t and thcrc was additional space
available in the vicinity. We took xivantage o f this
o p p o r t ~ ~ ~ ~ i t v to provide cleaner po\lrcr t o the PLL by
R<: filtering o u r internal supply and \\.c dedicated 1 n F
o f on-chip dccoupling cap to this purpose.

(:SEi\/I performed the circuit and l a y o ~ ~ t dcsign
and \\,c placed the completed block i ~ i t o the micro-
processor. Sincc \\.c allticipatccl that rlic clinmctcriza-
tion o f t l i c I'I.,I, ilircgratcd in thc clijp \ \ , o ~ ~ l d prescnt
some ciifticultics, \\'c rcsc~. \~cd o n e o f tlic six die sites
o n O L I ~ first p . 1 ~ ~ reticle set for a test cliip \ \~hich con-
tained sc\.crnl \~ariants of the fill1 1'1,I, 2nd interesting
sub-blocl<s. ~l'licsc circuits allo\\'cd ,~cccss t o ,i \rarien o f
nodes in the 1'1.1. \\,itliout compromisilig the dcsign o f
the PLI, instnntiatcd in the chip. -l'lic I-csults of the
PI .I. chalacrcrizntion are reported in Rcfcrcnce 4.

Clock Distribution
T h e chip operates fi-om n\,o clocks as sIio\\,11 in Figurc 7.
An internal clock, called I)<:LI<, is usually generated
by the PI,],. '1'11~ S C C O I ~ ~ clock is 3 bus clock, I<no\\m as
MCl,I< \\.hich opcrates u p t o 66 1~1Mz. 1I1<;1,1< can be
supplied b!, 311 c x t e r ~ ~ a ~ a s ! ~ ~ ~ c ~ ~ r o n o i ~ s source o r by the
chip basccl o n n di\.ision of t l ic 1'1.1. clock s i ~ n n l .

Tlicrc a1.c fi\.c clock rcgimcs in the chip. T h e first
nvo rcgimcs 21.c sourced b\s I\ZCI .I< anrl consist o f thc
pad ring \\'liic.li ~.ccci\,cs M<:LI< ciil.cctl!, . ~ n d thc ~ L I S

intcrhcc ~ ~ ~ i i t (I IIU) and part o f tlic \\,rite huff'cr \\~llich
rccci\zc iU(:I .I< t l ~ ~ . o ~ ~ g l i conditional clock b ~ ~ f f c r s . T h c
last tlircc ~xgirncs ~11.c s o u r ~ c d b\' tlic inrcl-n;ll D(:LI<
clock tree anci colitnin the Dcaclic, the Icaclic, and tlic

FaTiq EBOX

DMMU

CACHE

Figure 7
<;locli Ltcgil1ic\

co~.c. I n tliis case, tlic corc includes tlic I I IOS, EI3OS,
hlL'lL, li\TiblLl, l) ~ \ ' l ~ b l L ' , ,111ci part of t l i ~ \\.~.itc h ~ ~ f f c r .

13otli i\l(:LK .mi I)(:I .I\: ,Ire distributeti b\, buffel-cd
H-trccs t o contiitiollnl clocli buffers in tlie \..lrious scc-
tions o f the cliip. 'I'lic buffers in the H- t rcc allo\\ the
use ofsmaller lines I-i)r J is t~. iht~t ion and result in l o \ \ ~ c ~ .
clock po\\cr. Although the tlircc intern,ll cloclc
~.cgiliies arc . ~ l l s o~~rccc i I)\, the s,imc H- t rcc , the topol-
og!, o f the chip did no t LiIIo\\. corresponding sections
of the H- t ree t o be ~ . o ~ ~ t c d in the same mct ,~l . 'l'liis
r c s ~ ~ l t c d in ,in i~icrc.isc in the c ~ p c c t c d skc\\. bcr\\.ccn
the c,iclics and tlic corc. 111 'lddition, \\.c disco\,cl.cci
tli.lt \\,c could s c l ~ ~ c c z c hit more performance fi.om
tlic c l ~ i p if \rrc intc~itionally offset the cloclc in the
caclics rclati\rc t o the cloclc in the corc. (:onscqucntl!:
\\,c used tlic cloclc lx~ffcrs in the H- t ree t o ~ L I I ~ C the
clock so tliat the 11c,1chc rccci\-cs a clock \\~Iiicli is one
g ~ t r cicl.a\r earlier tllan tlic corc and tlic Icaclic ~.ccci\.cs
,I cloclc \\ liicli is o n r gate dcl,~\r I,~ter than the core.

F ig~~l -c 8 slio\\.s tlic ~>li\,sical routing o f tlie i~itcrn.~l
clock trcc. T h e ~ L I R ~ I - s t ~ g c s ,Ire not slio\\.n hut the!,
exist in the ccntcr o f t l ~ c cliip 2nd in four s y m ~ i ~ c t r i c
locations-n\lo in the ccntcr o f the I and 11 caches a ~ i d
t\\,o in Iocatio~ls nt tlic cnclic/corc interface. The ti nal
Icg of t l ic H-tree is tied t o conditional clock buft21.s in
tllc c,iclics and tlic corc. 7'hc problems associ,itcci \\,it11
cloclc skc\\. \\.itliin tlic c.lcIics arc reduced b\, the fict
t l ~ i t only ,I single 1>,1111< in c,lcli caclic is cn,lblcd. 'fliis
I i ~ i ~ i t s the pli!~sic.il tiist,lncc o \ r r \\.Iiich tiglitl!, c o ~ i -
trolled clocks ~ i c c d t o be clcli\.crcd in tlic caclic regions.

T h e clocks in tlic corc present a more interesting
~m)lhlcm. T h e fin'll Icg o f the clock trcc in tlic core
strctclics tlic hciglit of t l ic cliip and tight cont~.ol o f
sltc\\z along this noiic is rcc l~~i rcd for speed ,1nd func-
tionalit!.. I t is iniplc~iicntcd '1s a \.crtic,ll, mctul 2 linc

Figure 8
I'li!,sic~~l R o ~ ~ t i n g ot'<:loc.k '1'1.c~

1 0 2 0 3 0 4 0 5 0

Relative Skew (pS)

Figure 9
Clock XI.l.i\.~l 'I'lnlc in the Core

driven f i w n four nominally cquidist.lnt points. T h e
clock buffers arc standard cells o f \,,i~'\ling drive
strength built directly under this [\/I2 linc t o minimize
local variation in dclny.

Circuit s i ~ n ~ ~ l a t i o n s o f the H- t rcc \\.ere performed
using Sl'ICF, t o dctel.luine the sl<c\\, bct\\.ccn clock
regions 'lnd \\!itliili each o f the cloclc regions. T h e
nodes in the grid \\,ere extracted from I , i \ ,o~~r ,lnd con-
tained niorc than 30,000 R a n d C c lc~ncnts . Figure 9
sho\vs the rclati\rc clock arrival time \.c~.sus t l ~ c Y coor-
dinate for each conciitional cloclc 11~1ffcr o ~ i rlic \vertical
leg o f thc cloclc trcc in the corc. Tlic f i x ~ r .lrro\\,s o n
the gmpli indicate the points from \\,hicli the final leg
is d r i \ , c~ i . Tlic ii,lta points arc tlic I-clnti\zc ,lrri\.al times
o f the cloclc input t o the condition.il cloclc buffers
sourced b\$ the clock tree. Tlic total sirnul,ltcci skc\\. is
41 pS a s s ~ ~ m i n g maximum lnctal resisr,lncc

Clock Switching
O n e additional complication related t o the internal
clock trcc is tliat it is no t al\\r.avs driven by tlic cloclc
from the PIrI,, I<no\\m as CCLI<. 11~11.ing caclic fills, tlic
clock sourcc for the internal sections o f the chip
~ \ \~ i tc l i cs o \ r r t o MCLI< s o that the \\ hole chip is run-
ning s!,nclironous t o tlie bus (Figure 10). 'Tliis simpli-
fies fills and it r c d ~ ~ c c s po\\.cr sincc the 1x1s clock is
signiticanrl!. slo\\,cr tliali CCLIC. N o t e that sincc tliis
machine Ii,is ,I bloclting caclic, no t lnucli hal>pcns
\\~hile \\,airing for a cache till. Thcrcforc, running o n
the slo\vcr bus clock d ~ ~ r i n g fills has essentially no
performance impact.

Since h:l<:L,I< and CCLI< ~nig l i t be as\~~icl i ronous,
s\\,itching tlic dri\.cl- of llCLI< cluickly bcr\\ ,cc~l the n1.o
clocl< sourccs is ~Iiffici~It. Cdrefi~l , ~ r t c ~ ~ r i o n must be
paid t o tlic s!~~iclironization o f the ~\/ILII control sisnals
t o prc\,ent glitch pi~lscs o n the cloclc during the trdnsi-
tion bet\\rcen the clock sourccs.

Enable

Divider

S y n c h r o n i z e r s 1
Mux C o n t r o l

DCLK

Figure 10
(:lock S\\i~cliing Circuit

Cloclc s\\;itching is only used dur ing tills. Storcs
\vhich 111iss in the cache and castouts arc \\,ritten t o
memory t l i roi~gl i tlie write buffer \\tithout s\vitching
tlic internal clock over to 1M(:l,I<. T h e \\,rite buffcr
rccci\~cs both DCLK and IM(:LI< and passes the data
for cstcrnal s tores across thc l)(:LI</bI(:I.I< intcr-
f ~ c c \\it l l pl.opcr attention t o s!,ncllro~~ization issues
bet\\ cell thc t\\.o cloclc reginics. O n e interesting cli.lr-
,ictc~.istic o f clock s\\.itchi~lg is tllnt i t gi\.cs t l ~ c s!,stcm
iicsigncr another opt ion t o sa\,c p o \ \ , c ~ in s i t ~ ~ a t i o n s fix
\\,Iiich the f~ill performance o f tlic c l ~ i p is not r c q ~ ~ i ~ . c d .
13y iiisabling clocl< s\\ritching o n the tl!; \ ~) u can cnnfig-
L I ~ C tlic chip t o run o f f t h r bus cloclc. 1'1ic1.c is n o limit
o n asym~lictry o r masimum pulse \vidtli o f the bus
clock, s o the chip call be operated at \,cry lo* k c q ~ ~ c n -
cics ifdcsircd.

Conditional Clock Buffers
<:onditional clock buffers are simple NANl>/in\rc~-t
s t r~lcturcs \vitli a n intcgral Intch o n the condition
i ~ l p u t . ?'he buffcrs must bc nlatclicd t o their 1o.d
t o minimize site\\.. Since adding dumm! clock loads
is contrar!. t o tlic lo\\.-pon.cr dcsign philosophy, \\.c
created scaled clock b ~ ~ f f c r s \\,hicli \\.auld produce
matclled cloclts for a \i.idc range o f loads and onl!
nccdcd to add d u m m y clock loads for :I small n ~ ~ m b c r
o f \,el-!, liglitly loaded cloclc nodcs. 7'ltc t ~ s k oFmatch-
ing the clock buffers t o thc load \\,as grc.~rl!f sinlplifcd
hy tlic h c t tlic cloclc load prcscntcii by O L I ~ staniinrii
Intchcs is largely data-independent.

Wliilc the usc o f conditional clock b11t'fcl.s is ce~it~-,lI
t o the d c s i p rncthod iiscd o11 the chip, ~r shoulci bc
notcti that the critical paths t o generate tlic condition
input to thcsc buffers reprcscnt some o f the niosr diffi-
cult dcsign problems in the chip. In this c3sc, \\-c

dccidcd that tlic po\\.cr saving associated \\.ith the con-
ditional clocking \\.as \\ ,orth thc additional dcsign
effort and possible performance reduction.

Latch Circuits
T h e standard Iatchcs used in tlic design are differential
edge-triggered Iatchcs (Figure 11). T h e circuit struc-
ture is a prcchargcti tiiffc~.cntial scnsc a m p follo\\,cd by
a pair o f cross-coupled NAN1) gates. The sense nmp
need 11ot he partici~lal.ly \\lcll balanced becai~sc the
inputs t o the Intcli arc f~ll (;JMOS le\lels. 'l'hc NIMOS
short ing clc\icc bct\\,ccn nocles L3 and L4 pro\~idcs n
d c path t o g r o u ~ i d for leakage currents o n nodcs 1-1
anti L2 in case tlic inp l~ ts t o tlic latch s\\itcli af?c~- t l ~ c
latch culilntcs. At normal opera t i~ lg frequencies, this
device is no t particularly important bu t it is rccluircti
for tlic latch t o bc static. Note that since the d c current
flo\\.ing is d u c only to dc\.icc leakage, the ~nagni t~ lc ic
o f the current is insignificant t o the po\vcr in normal
operation.

Testability
T h c chip supports IEEF. 1149.1 boundary scan for
continuitv testing. In addition, it has two hard\\rarc
features t o aid i l l I I ~ ~ I I L I ~ . > C ~ L I ~ ~ I I S testing. T h e first is a
bypass to allo\\ (:(:I,F; t o be cirjrcn from a pin synchro-
I I ~ L I S t o I\/l(:I,I<. 'l'liis allo\\fs t h e tester to control thc
timing bct\\,ccn (:(: I .I< and iW(:L1< t o makc the asyli-
chronous sections appcnr t o be dctcnninistic. The scc-
ond test fcature pro\,idcs n lineal fccdbacli shif? re,'. ' T I S ~ C ~

(LFSlI) that can bc lonilcd \\,it11 i n s t r ~ ~ c t i o n ciara fi .o~li

thc Icachc, I.,oading t l ~ c 1,FSII can bc conditioncii
basccl o n tlic \ , ; I ~ L I ~ ofaciti~.css bit 2 and the Icachc hit
signal. 7:hc L,FSI< is londcd aher the Fetch s t a y t o
allo\\, tlic instruction follo\\~ing a branch to bc rcx i
f rom the Icaclic ; ~ n d loaded into tlie 1,t;SK. This t'ca-
tul-c allows any random pattern t o be loaded into the

CLK I T

IN-H

vss
-

IN L

Figure 11
Latcl~ (:il.c.uit

A

T OUT L
L5

L3

r vselt
L4 OUT H ,
I

T

1c;icIic and then read oilt by alternating branch
instructions \\.ith data patterns \\-ords.

Power Dissipation Results

Measured Results
Po\\,cr dissipation data was collected o n an evaluation
bonrtj r u n ~ i i ~ l g Dhrystone 2.1 with the ~ L I S clock
r u ~ i ~ i i n g at one-third of the PLL cloclc frccluency.
1)hrystonc fits entirely in the internal caches so, after
tlic ti rsr pass tlirougl~ tlic loop, pin activity is li~iiited.
'fliis is the highest pourer case b c c ~ ~ ~ s c cache misses
cause the i~itcrnal clocks to r ~ ~ n at tlic bus spccd and
result in ,I lo\\rcr total po\Ircr. For both sets ofmcnsurc-
mclits, estcl.~ial Vdd is fixed at 3.3 V. For an internal
Vdd of 1.5 V, the total po\\,cr is 2.1 mW/i\/1HZ. I f
tlic intcrnnl suppl!. is set to 2 .0 V, tlic total po\\,er is
3.3 mMJ/i\/IHz. Note that tlie mtio of tlie po\\,cr at
1.5 and 2.0 V does not track Vdd' l~ccausc it contains
n compo1ic1it of external power and tlic external Vdd
is ti xcci.

Simulated Power Dissipation by Section
An analysis of node transitions based o n simulation
\\.as pcrk)l-rncd to estimate the po\vcr dissipation asso-
ciated \\,it11 the \,arious major sections of the chip
(Tablc 3). Toggle information \\.as collected based 011

160,000 cycles of Dhrystone and co~iibincd with
cstractcd ~ i o d c capacitances to estimate po\\,cr dissipa-
tion by node and this data \\.as ti~rthcr grouped by sec-
tion. The clock po\\-cr listed in Tablc 3 is due only to
the global clock circuits.

A fcu, points are \vorth noting.

First, the po\\lcr is dominated b y rhc caches as
!JOLI might cxpcct given tlicir size. 'This is despite
our efforts to reduce their po\\,cr through balilc
sclcction id other menns. The Icachc burns
Iiiorc po\\,cr than tlic Dcaclic bccdusc it runs
c\Yr\r c\,c1c.

Table 3
Simulated Power Dissipation by Section

ICACHE 27%

IBOX 18%

DCACH E 16%

CLOCK 10%
IMMU 9%

EBOX 8%

DMMU 8%
Write buffer 2%

Bus interface unit 2%

PLL < I %

Nest, the PLI. po\\,cr is insigSfcant in normal oper-
ation. As \\.;is noted earlier, its lo\\. po\\.er charactel--
istics are only important in Idle.

Finally, since reduction in clock po\\.cr \\,as one uf
our explicit goals, it is interesting to considcr the
total clock po\\:cr. If ~ O L I extract the local clock
power from the nonclock sections and sum it, sou
get a total clock po\jrcr, i~icludi~ig the global clocl<
trees, thc local clock buffcrs and the local clock
loads. This power is 25% of the total chip po\\icr,
significantly less than the 65% consumed by tlic
clocks in the Alpha microprocessor ~ ~ s e d in our ini-
tial feasibility s t ~ ~ d i c s .

Conditional clocki~ig \\,as an integral part of the
design nicthod, so it is difficult to determine tlic
po\ver saving associated \vith it. Ho\\re\,er, the po\\.cr
associated \vitli dri\,ing tlic conditional clocks is 15%
of the chip po\\ler and if the conditions on all the
conditional cloclc buffcrs \\.ere always true, this pourer
would quadruple. This does not account for the
additional powcr savings that has been achieved by
blocking spurious data transitions.

CAD Tools

The CAI) tools used on this chip were largely the same
as those usecl on our Alpha designs.' This is riot sur-
prising since the pcrfor~nance target of the chip
roughly parallels that of the Alpha family as noted
in the section Circuit Implementation. The most sig-
nificant departure was in the area of s t ~ t i c timilis
verification and race a~~alysis \\,here the adoption of
edge-triggered I:itching required significant modific,i-
tions to thc tools used in the Alpha designs.

Project Organization

01 ic of the cliilllcngi~~g aspects of this project \'ir;ls
geographical. ?‘lit detailed design was performed at
four sites across a nine l ioi~r time zone range. l'hc ini-
tial feasibility \vork and architectural definition \\.as
done at Digital Scrniconciuctor's design ccntcr- j11

Austin 'tiit11 on-site participation by personnel from
Ad\canced RISC Machines Limited (A F W) . Thc
imple~-nentation was more \videly distributed \\,it11 the
caches, MMU's, \+,rite buffer, and bus interface unit at
Digital Seniiconductor's design center in Palo Alto,
the instruction unit, execution unit, and clocks in
Austin, the pad driver and ESD protection circuits at
Digital Semiconductor's main facility in Hudson,
MA, and the PLL at tlie CSEM design center in
Neucliitel, S\\fitzcrland. In addition, we consulted
uritli Hudson for (:A l l and process issues, with A R I I
in Cambridge, England, for all manner of architec-

Digital Tcchnic;~l Joul.n;ll Vol. 9 N o I I997 59

tural issues and implcrncntat io~i tradeoffs associated
\\;it11 ARM designs and \\.ith T. Lee from S u n f o r d o n
thc PLL. T h e implementation phase o f the project
took less than nine m o n t h s \\.it11 a b o u t 20 design
engineers.

Conclusion

T h e microproccssor dc~crit.~:d uses traditional Iiigli
pcrfivmance custom circui.; dcsign, an intentionally
simple architectural dcsign, and advanced (:MOS
process technology t o produce a 160 iMYz niicro-
processor which dissipates less than 450 mW. 'The
intcrnal supplics can vary ti-om 1.5 t o 2.2 V wliilc the
pin interface runs a t 3.3 V. T h e chip inlplcmcnts the
A13M V4 instruction set ancl deli\lers 1 8 5 Dhrystone
2.1 MIPS a t 1 6 0 1\4Hz. T h c chip contains 2.5 ~nilljon
transistors and is fabricated in a 0 . 3 5 - ~ n i tlircc-metal
CMOS process. I t Iiicnsurcs 7.8 nim X 6 . 4 m m and ib

packaged in a 144-pin plastic thin quad flat pack
(TQFP) package.

Acknowledgments

T h c authors \\,auld likc to ackno\\.ledgc thc contribu-
tions o f the follo\ving pcople:

F. Aires, IM. Bazol., (;. C:h, ney, K. C h i ~ i , bI. Culbcrt,
T. D a u m , I<. Fielding, J . Gcc, J . Grodstr in , 'I,. Hall,
J . Hallcock, H . Horovitz, C. H o u g h t o n , L. Ho\\~art l i ,
D. Jaggar, G. Joe , R. I<ayc, J . I<app, I . k ~ n , Y. Lou,
S. L u ~ n , D. Noorlag, Id. O'Do~ine l l , I<. Patton,
J. Rcinschmidt, S. Roberts, A. Silvcria, P. Skcrry,
D. Sou!~adala): E. Supnct , L. Tran, D . Zoehrer, and
the I'LL design team at CSEM.

T h e support \vhich thcy rcccived o n many aspects of
die design from the people at Advanced RlSC ~Machinr;,
I,td. \\.as very important and kccnly appreciated.

References

1 . /iR/lI A ~ . c ~ ~ ~ c c / I I I ~ (J NC:/L,IPIICC (Canibridgc, E~~glnnd:
Advanced 1USC Machi~1cs, Ltd., 1995).

2 . 1'. Grono\vski ct al., "A 433 M H z 64b Quad-lssuc
RISC microprocessor," I.Y.YCC Dige.cl (!I' 7i.c.b1ti~.rtl
Pupets(Fcbrunry, 1996): 222-223.

3. D. Dobbcrp~1111 er d . , "A 200 MHz 64b Ihn l - l sue
CMOS Microproccssor," IEEEEJo~onnl c?/'.So/ir/-S/a/e
Ci'rcuits, vol. 27, no . l l (I 992).

4. V. \,on Ibe~lel cr al., "A 32C /MHz, 1 .S rn\Y (:i\ilOS I'LL
k)r Microprocessor ('lock (;c~~cratio~:," /SSC'C'/1iLqc,.\-/ r!/'
T?cht~ical Pnl/x,ts(t:cbr~iar!; 1996): 132-1 3.3.

5 . T. Fox, "TIi(. 1)csign of High-Pcrformalce Microproces-
sors at Digital," .$Is/ AC:.LVIEM Dt.s(q11 Alrlo~r~cllio~t
Col?fkre~.lcc~, Snn l)icgo, Calif. (Junc 1994): 5 8 6 5 9 1 .

Biographies

James Molitallaro
James ~Uonrannro rccei\ted the B.S.F..E. .lnd iM.S.E.E.
degree from the I\/l.issachusctts Institute of'l'ccli~iolog!~
Cambridge, MA, in 1980. He joined lligitnl Ecluipn~ent
Corpo~,;~t io~l i n 1982 and \\rorketi '15 3 circuit dcsig~leron
several RIS(: ~nicroprocessor chips incl~~il i~ig tile ti rst njro
Nplia dcsip~ls. In 1992, hc joincd Apple (: o ~ n p ~ ~ t c r as a
ci~.cuit dcsig~lcr on rllc I'o\\.erPC 603 chip. 111 1993, he
retumcd to Lligital, \\,orking in the Alrsli11 I<csca~.ch and
Design Ccnrcr on thc design of the first Srrong\l<hl micro-
processor chip.

Richard T. Witek
Rich Witck rcccivcd a I3.S. in computer scic~~ce tiom Aurora
College, Aurora, II., in 1976. He is the lead nrcliitect on
tlie Srron~AIWl microprocessors n r I)igit.~l's A~rstil) dcsigli
center. He \\.ns co-archircct of tlic lligitnl Alplln nrcliitec-
cure nnci Ic.lti arcllitccr on the tirst .4lpln ~llic~,op~.occssor.
kc11 \\.;IS o ~ i c of tllc l c ~ d dcsigncrs O J J tlie h/licro\'AS 11
microproccssor, the first single chip \'.AS. At I)ipiml, ltich
also \vorkcd o ~ i I'liasc 2 and Phase 3 I)EC:nct architecti~re
and implemcntatio~i along \\.it11 other PL>l'I I and \'AX'
sok\varc projects. Rich \\,as part of the Apple I'o\\serPC
arcliitectirc rcam at ~ o ~ n e r s > t in Austin. His currcnt pro-
fessional interests illelude processor architccrurc and i~nple-
mcntatio~is. I<icli has numerous Datcnts and tcclinical
publications o n ~nicroprocessors and c.~clics.

IO-ish~ia Anne
IO-islina Anne rccci\,cd tlie B .E . degree in clccrro~lics cngi-
neering in 199 1 fi.oni Andhra Unive~.sit!: Viz;~g, India,
and the M.S.'.F,. dcgrcc from tile Uni\.crsityof7rcxas at
Arlington ill 1993. After a brief stay at l'cnslccp lksign,
Inc., Austi~i,.I'S, in 1994, he joined Austin Kcscarcli and
Design <:cntcr of Digiral Eq~ripnient <:orpor:lrion as a
design engineer responsible for the fi~ll-cusro~il dcsign and
developnient of high-pcrforniancc lo\\--po\\.cr processors.
He \\,orkcd on tlic design and in~plcmcnmrion of tlie multi-
plier on the Stro~~gr\I<iLI project and is currently \\.orki~ig
on nnorlicr lo\\,-po\\,cr chip.

Andrew J . Black
Andy l3lac.k rccci\cd a R.S.E.E. from Pc~insyl\.ania Stntc
Uni\.ersity and ;111 X.1.S.E.E. from the Uni\.crsit! of
Southcr~i Califor~lin. H e joined Digirnl in 1992 ;lftcr
\\.orking for International S013r Electric l'ccli~iology.
Hc \\,as n senior hnrri\\.are engineer in 1)igital's l'alo Alto
Design <:c~lrcr, \\.liere he led tlic bus intcrhlcc unit design
for the StronpAllbl SA-1 10 niicroprocc~sor chip. 1)~lring
his \\,ark o n rlic Alpha 2 11 6 4 CPt:, lie \\,as a rncmbcr of
the dcsign tcnrri for the memory man;lgcmcnt unit nnd
contrib~~rcci to tlic cli~p's clock dcsign. Hc is currr~ltly
\\,ith Silicon Grapllics I~ lc . AS J menlbcr of tllc rcclinicnl
staffill rlic 1 \ [1 1 ' $ '['ccl~~iolog!~ lDi\.isio~l \\.licrc Ilc is n.ork-
ing or1 I I ~ ~ ~ ~ - ~ ~ c ~ ~ o I . I ~ ~ . I I ~ c c c~~11sunicr-oric1~tc~l products
Andy is a ~ilcrnbc~. o f I.E.E.E., Tau Rctn I'i, and Et:l
Kappa Nu.

Elizabeth M. Cooper
Elizabeth <:oopcr received the R.S. cicgrees (sunlma cum
laude) in clcc~ric;ll engineering and computer scicncc from
Washi~lgton U~iivcrsity in St. Louis in 1985. She received
tlie M.S. dcgrcc in computer scicncc fi.om Stanford
Univcrsir!. in 1995. She joined Oigital Equipment
Corporation in 1985. Her p rev io~~s responsibilities includc
design co~lrri l) l l~io~ls to SC\.CI..II ChlOS \/AS and iUpl1'1
C:l'Us. Slic \\,;IS roponsil,lc for rllc dcsig~l of the memory
nianngclnclit u111r on the S T - l 10 Stro~~gAlb\~I cliip. Slic is
currc~ltl!. clilpli)ycci 'IT Silico~i Gr;lphics MIPS 'l'cchnology
Di\'ision.

Daniel W. Dobberpuh l
1)anicl 1)obbcrpulil recei\.ed the R.S.E.E. dcgrcc fi.om
tlie University o f Illinois in 1967. H c joined Digirnl
E q ~ ~ i l x l ~ u ~ t <;orl)orarion in 1976 <lnd has been responsible
for five generations of rnicrop~.occssor tiesig~ls including
the initial Alplla (:I'Uj. Most rcccntly Iic has been tllc
Technical I3i1.ccto1. of the Lo\\, l'o\\,cr i\/licroproccsso~.
Group \\,it11 1)igir.ll's Palo Alro I)cs ig~~ <:enter. H e is thc
co-autlior of '/%o /)O.YI,~I/ ~orcl il ~rol~:\.is (!/'I %S/ C'it.c~ii/s
j.4ddison-\\/cslc!, 1985) .

Paul M. D o n a h u e
Paul Donalii~c received the R.S. dcgrcc in computer sci-
ence from Cornell Universiy, Irhaca, SY, in 1994. U p o ~ i
~ radua t ion lie joincd Digiml Semico~lductor's I'nlo Alro
Design <:enter .~nd \\-orked on rlir Sh-1 10. H e is c.u~.l.cnrly
\\.orking o n tllc n i i c .~~o;~rc . I~ i t cc . t~~rc and verification of ,I
Srso~igr\lb\~l \,arinnt.

Jim E n o
Jim El10 I . c ~ c ~ \ . c c ~ rlic l3.S.E.E iicg~.cc from North C~~ro l ina
Stare Ulli\,cr>iry, ILlcigh, in 1989. H e is eruploycd as 3

senior engineel- nt 1)igiral E q ~ ~ i p m c ~ l t C:orporarion's Austin
Research n~id 1)csign Center in Austin, TS, \\-orking most
recently on thc micro.~rcIiitecrur-c of the SA- 1 10 Srron@Ib\d
microprocessor. Rcfore his cmploynicnt \\it11 Digital, lie was
\\.it11 the Somerset Design Center in Austin, \vorlting o n the
microarchitectt~rc and design of rlic I'o\\.erPC: 6 0 3 micro-
processor. l'rc\.io~~s to rl-is, Jinl \\.as i~l\,ol\,cd in r\SIC dcsign
SLIPPOI.[a ~ i d tool dc\,clopmcnr at (:o~npnq C o ~ n p ~ r t c ~ .
Corporatio~n. His re\c.~rch inrc~.csrs illcludc lo\\.-po\\.cr
niicroprocchso~. dcsign and rlic pl.olxig3rion of acoustic
\\,a\,es in \,arioas ~ninrc~.ials, cnli,lnccd b!' interaction \\tit11
sclecrcd organic. c o ~ i n p o u ~ i d ~ .

Gregory \V. Hoeppner
Gregory Hocppncr g rad~~arcd \\,it11 distinction from Purdue
Univcrsin., \.Vest Lnf~!.erre, IN, in 1979. In 1980 he \\.orked
a: General -lklcplione and Electronics l<csearcli hborarosy,
\Vi~ltliani, MA, performing hasic ~>ropcrtics research o n
G d s . From 1981 to 1992 he liclti a number of positions
\\,ith I)igir.ll Equipment (:orporatio~i, Hudson, iblA, includ-
ing (:h,lOS ~>roccss dc\ cloplncnt, dc\,ice characterization
;i11d moticling, circuit des~gn, chip i~nplcnlentario~i, dnd
finall! co-led rhc 21064 hlp11.1 cllip implc~nentarion team.
I11 1992 Iic jor~lcd I RXl's i\d\.allccd kvorksration Division
before returning to lligir.11 E q ~ ~ i p m c n r <:orporarion in
1993 to c o - f i) ~ ~ ~ l d their Austin I<cscarch and Desig~l <:enter,
Austin,'l'S. t lcrc lie contributed to rllc microarcliitcctt~re,
irnplc~ncnr.ltion and verification of 1)igial's tirst
Strong.AlLVI processor.

David Kruckenlyer
David k ~ ~ c k e m y e r received the 13,s. degree in c o ~ n p u t c ~ .
engineering from the Universiy of Illinois at Ur1~;in.i-
Cl ia~npaig~l in 1993 and I-ccci\,cd the M.S. degrec kern
Stanford Uni\zcrsip in 1995. Afrcr graduatio~i, he joincd
Digital E q ~ ~ i p n l c n ~ Corporation's Palo Alto Design Center
to \\.ark on the i~nplementnrion of tlie lnstructio~i Mc~nol-y
Ma~iagc~ i i c~ l t Unit for rlic Sr\- 110, the first StrongAlt\,I
microprocessor. H e is currently involvcd in the niicroarclii-
tecture and implementation of a nest-generation
StrongAlWI variant.

T h o m a s H. Lee
Tllornas Lee rcceived the S.R., S.M., and Sc.1). dcprccs In
electrical engineering, all from rhe h~lassachusetts f i isri t~~tc
o f T c c h l i o l o ~ , Carnbricigc, XI(\, in 1983, 1985, 2nd 1990,
respecti\~cly. H e joined Andlog I)c\,ices in \Yilnlingto~i,
JW, in 1990 li lie re lie \\,as prirnnrily engaged in tllc ticsigll
o f high-speed clock recovery cic\,iccs. In 1992, he joincd
Rnrnbus, Inc. in hilountain \lie\\,, (:A, \\,here lie dc\~clopcd
high-speed a~l;llog circuitry for 500 niegabyte/s 1)lU~Us.
Since 1994, lie has been an Assisrant I'rofessor of Electrical
Engineering at Stanford Univcrsin \\here his research
illtcrcsts arc in lo\\.-po\ver, higlispccd analog circuits ~ n d
systclns, \\.it11 a focus on gigalicrrz-speed wireless illtc-
grated circuits built in conventional silicon tech~iologics,
particul;irly CMOS. H e has nvicc rccci\:rd the "Outsta~lding
Paper" a\\jard at tlie Inrernation~l Solid-State C i r c ~ ~ i t s
Conference.

Peter C. M. Lin
Peter L,in \\#as born in T a i c h ~ ~ n g , l'ai\\,an, on March 17,
1960. H e rccci\fed the I3.S.E E. degree from Feng <;liin
U~ii\-ersiry, Taicliung, Tai\\,nn, in 1982 and the M.E. illid
E.E. dcgrccs from Universin o f Utah, Salt Lake City,
in 1987 and 1989, respecri\.cl!,. From 1990 to 1993
he designed 2M \?RC\.l and SM \\fRAiM for S a n i s ~ ~ n g
Semicondt~ctor, Sdn Jose, Cr\. From 1994 to 19'95 he
worked for Digital Equipnicnt <:orporarion, I'alo Alro, CA,
whe~.c lie contributcd to the dcsign oflo\v pojver Alpli;i
and SrrongAlbbI mlcroproccssors. H c is c~~rrenr ly \\,orking
for C-Cube Micros),stems, Milpitns, CA. H c holds one
patcnt in output buffer design.

Liani Madden
Li.m ~Maddcn recei\.ed rlic R.E. degree from University
College, I)ublin, Ircland, in 1979 and the M.E. dcgrcc
from Cor~lcll University, lrhaca, NY, in 1990. Over the
past 1 5 !/ears lie has designed CMOS CISC and NS<: micro-
processors, including the 2 1064 Alpha processor. H e Icd
the design rcalii in Palo Alto \\,hicIi delivcrcd the caches,
\\.rite buffcr, memory rnnnngcnicnr, J I I ~ bus inrerhcc nits
for the S A - 1 10 St~.ongAlllCI ~nicrop~.ocessor. H e is currently
cn~p lo)~cd at Silicon Graplii r, ~\ / lou~~ra in Vie\\,, (:A, \ \ , l~erc
lie is Dirccto~. of Circuit Dcs~gn and Technology.

Daniel Murray
Daniel ~Murl-a!, rcceived the R.S. degree in electrical
enginewing in 1994 from the Ilniversin of California,
Berkeley. 111 1994, he joincd Digital Scniiconducror's lo\\.
pon.er ~nicroprocessor group in Palo Alto, CA. H e con-
tributcd as a circuit designcr on rhc first StrongARM <:PU
and is currently in\,ol\led in the implcmcntat io~~ o fano thc~ .
high-pwfi)rma~icc, lo\\.-pourer microprocessor.

Digital 'l'czliliic;~l Jo~rrnal \'ol. 9 No. I 1997 61

M a r k H. Pearce
Mark Pearce was born in C;eneva, Sivitzerland, o~ i June 12,
1969. H e received tlic B.S.E.E. degree froni University
o f Pennsylvania, Philadelphia, in 1992, and the iM.S.E.E.
degree from Stanford University, Stanford, CA, in 1994.
In 1994 he joined Digital Equipmcnt Corporation, at tlicir
Palo Alto Design Centcr, working initially on a lo\\ po\i7cl-
Alpha processor prototype. H e designed thc \\/rite buffer
on SA-110, the StrongARh4 processor. H e is ct~rlrnrl!. \vork-
ing on another high-perfor~nancc, lo\\'-po\\.er processor.

Sribalan Santhanam
Sribalan Snnthana~~i received the M.S.E. degree in computer
science and engineering fro111 the University of Michig.~n,
Ann Arbor, in 1989. H e joined Digital Equipmcnt Corp-
oration, in Hudson, M A , \\<here he worked on thc dcsign of
the tloating-point unit of the 2 1064 C1'U and subscqucntl))
on the design of the cacllc control unit of thc Alpha 21 164
Cl'U. H e then moved to 1)igital's Palo Alto Design Ccntc~-
u,here lie \\;as responsible for the design of thc cachcb ti)r the
SA-110 Stron@k\I n~icroproccssor. H e is currcntly .I princi-
pal liard\vare engineer \vorking on the irnplenicntarion o fa
follo\v-on StrongAlLM ~nicroproccssor.

Kathryn J. Snyder
Kathryn Snydcr (formerly Hoover) received the B.S. and
M.S. degrees from the U~livcrsity o f Michigan, Ann Arbor,
in 1990 and 1992, rcspectivcly. She is a circuit designer
with Digital Equipment Corporation working on lo\\,-
power ~nicroprocessor designs in Austin, TS. Slic designed
a \.ariety o f custom circuits for the SA-110 StrongAkV
microprocessor. Prior to cmplo\ment \vith Digital, shc
worked for IBbI in Austin, doing custom array dcsign for
l'o\\,erPC microprocessors.

Ray Stephany
I<ay Stcphany received tlic B.S.E.E. from l<enscll,xr
l'olytcchnic Institute, 'l'roy, NY, and an P1.B.A. firom
Worcester Polytechnic Institute, Worcester, kW. H e joined
lligital's Austin liesearch 'ind Design Center in July, 1993.
Since that time, lie has been one of the project leads o n the
SrrongXILLl line of microprocessors. H e has co~it~.ibuted to
the development of low po\\,er circuit design tctcliniqucs,
CAD tools, verification, and o\ferall methodology. H e is
currently leading the iniplcmcntation of a nestlgrncration
S t r o n g k U CPU and lookirlg at SO1 as a potential lowcr
power process for f11t~lt-e gcnerarions of microproccssors.

Stephen C. Thierauf
Stephen Tliierauf is a consulting hardware engineer a t
Digital Equipment Corporation's Digital Seni icond~~cto~-
Group, located in Hudson, I M ~ , and is responsible for 1 / 0
circuit design, on- and off-chip signal integrin, and I/()
modeling for Alpha microprocessors, PC1 peripherals, and
other ULSIfl'LSI devices. His previous \vork includes sysccrn
Icvcl signal intcgrin analysis, niicropackaging analysis .ind
micropackaging design for nunierous high-pcrforrn,inzc
microprocessors and periplierals.

Referees, February 1995
to February 1997

'l'lic editors ncltno\\.lcdgc and thank the rcfcrccs
\\,lie have p~rticipated in a pccr revie\\. of tllc papcrs
submitted for pi~blication in the /l(qilril 'lkchr~ical
< / ~ I I I . I I ~ / . The rcfcrccs' detailed reports hnvc hclpcd
cnsurc that pnpcrs published ill tlic~/o111.11~11offcr
rclc\,;int 31-1~1 informative discussions of computer
tcclinologics and products. The rcfcrccs arc computcr
scicncc and cng~iecring professionals from academia
and industry, including l)IGITAI, consulting engi-
neers. Affiliations reflect referee status at the time
of review. Note that independent consultants and
1)IC;I'I'AI.. cmplo!lccs are listed \ v i t h o ~ ~ t compan!l
nftilintion.

h~l;lsk I<. Abhort, O/.c:qo~r Stutc> I:~rirr,rsil]~
(:l.i,l~.lcs N. Abcsncrh!.
Jackie Albrcclit, . I k) r r i t o ~ ~ C i i ~ ~ ~ / ~ c / i ~ i ~
I$ri;111 I < , All~so~i
l > i ~ ~ i i t s i A , A~lto~i~adis, .~IL~.~.sLIL/~I~,so//~s I I / . s / I / I / /~~

c!/"/i~c.h~rolog\'
LVil l i ;~ni Arlkins, .Cei17ico1~cliicto1~Nc.~c~cti.~l1 (.O~l)orzrlio~t
KIJUS J , 13,1ch1n,11i1i, ,\biYh Ckti~oiiii~~ .S/(I/CA l,'//;i~c~rsi/,~~
Ed\\,nrd E. 13nlkovicli
l'si t l i v i r ~ j Ik~~lc~jee, [lrti~~er.iil]~ (!/'I/ii~toi.i LI/ 1 II.!)~IT/L/-

(,'\)o I?~/ILI ig 1.1

I'.ltrick Rdudclail-e
< : ~ r l J . licckmanll, DLII~ ' IXJ[I / /~ CoIIc~'qc
I<obcrt J . IiclI
\V~ltcr licnder, .WIT;lledic~ L L I ~ o ~ ~ I / o I :) *
r\ntlio~i\ N . Rcrent
Kenneth 1'. Birman, Curr7t.11 L'r~irrrsi!)~
\:ere11 11. l < o ~ c [~
\:ladirnir Bolkhovsliy
]can (1. I',onncy
V. Xlichacl Bo\.c, .1llT.\lc~~lia L L I ~ O I Z I ~ ~ I ? .
iVillia~n J . Ro\vhill
Scott 0. I ~ K I ~ I I C ~ , HUI-I:~II-L/ l ~ / ~ l / ~ ~ , / : i / () ~
M.11.k Rranlhall
<:olin E. Ilrcnch
Karen 13rouillcttc
M.lrc H. l%ro\\.n
Stc\\.art F. RI-!.;unr
l)n\.ici I<. Rutcnhof
Iircd <:. <hntc~-
1.uzn <:nrdclli
\\:.iyne b1. C.1rdoza
1)onald I<. <:ll~nd, Ber711qs Ci,lle,qe
1. I%r,~dclc\. C:hcn, Hn~-i ,c~~zi li?ilu~tsi!),

Peter M. Chc~i, i!rri~~ot:si/~* (!/',l/Iicl~&/r~
bVai-Mee Ching, T,/. W'r//.so// /\'c~sc.crrcb C<JII~P/-
James E. Chung, ,\~/~r.<.s~/cb~/.sc~//.s Irls/i/t//e (~'Tec/7r1olc<y]'
Matthe\\. J . Con\\.ay, i i/ii~c~rsi!lS q/' I i'rgir~in
W. Br~~ce <;raft, i ~ril~,r~i!) ' (!f .II~i.s.s~~ch~~.zett.s Ar~zhcrsl
Cliriscophcr L. <:ronlcr, ,\%Sl'
 mark E. <:rovclla, t!k~.sloll ~~llil'clsi!l~
Zarka C;vcmno\,ic
David Cyganski, IY'c~~.cc~.slcr.l'o/~~tc~chr~ic /r?stitt~tc~
Nathaniel J . l)a\,is IV, I . i '~~i l / ia T c ~ h
John De'Tre\rille
David J . IkWi tt. lllrir jclrsi!)l(?/' Wiscorisin
John C. Eck
John C. Egolf
Srephcn G. Eick, A7FTUclI Lahorulor-ic+q
Jol-ui Ellc~lbcl-ger
David C. Ellis
Joel S. Emcr
Nicholas Emer!
William E. Farrcll, ,Scicv~cc~ AppI ic~~f io~~ I I I / ~ ~ . ~ I L I / ~ O I ~ C I /

Corpv~nliorr
\Y. Burns Fishcr
Jose A. B. Fortcs, / ~ I / ~ Y / / I ~ 1 ir?irvrsi(r
Tr!igg\ze Fossuni
1MicIiael J , b'~.a~ikli~i, l ~ ~ t i ~ ~ c ~ ~ s i / , ~ ~ ~ ~ / ~ ~ V l c ~ t ~ ~ / ~ n d
ICo Fujimura, /V7~"l/'Ii~/i)rr17~11 iortI and Comlnrr niccrtions

LO bo ~-nlo I-ic.s
Bruce Gitton, ~\'k)~rle~.q)lUc~,)~ Ay//ari/r/rr Re.sect1-ch

Iristit~itr
Michael Glantz, N a ~ ? k ScJ~.o.\- l<c>.<ec/~.ch Ceittre. G~.e/rohlo
William Goldentllnl
Paul ,\I. Gooti\\.in
James F. Grocli~nnl
Greg J. Grula
Dirk Gran\\.ald, I ' r ? i ~ ~ o s i ~ c!/'Colo~.odo
Jonathan Harris
Jcffrcy R. Hnrro\\.
Paul K. Hartcr
Mark 1). Haytel.
Denise Heagerty, C'I~l?I('N
George T. Heincman, Cb1111~1hiu iJ~.lir:e~sit)~
Daniel Herr, S~~n~ic .or~d~~c. /o~~Kc~.sc~c~rc I~ Cvrpo~*~/tior~
F. S. (Sandy) Hill, I b?ic~i1r:si1]~ c?J',lf~~ssnch~~sc~//.i Ar~?/?c~~:st
Stephcn R . Hoffi~inn
Timothy A. Ho\vrs, I!rrir.c~rsi[)n c?/'.rlichi<qarr
Henry G. Jakiela
Aka11 L. J ~ I I I I ~ I I ~ S

Christopher F. Jocrg

~ ~ O l l ~ ~ ~ l h \L1. ~ O I ~ C S , ~ ' i l l ~ ' ~ ~ i : \ ; / ,) ' (?/'/O[i'Cl

I < i c ~ l l ~ i ~ . c i S . I < A L I ~ ' I ~ I ~ ~ I I I I
J,lmcs \\I. I<cclc!.
I<c~tll A . 1 G 1 ~ ~ l ~ a I l
Jnnic\].I\. IGstler
\'Villi-cci 1.. l d i ~ i g
(:li.i~.lcs Koclbcl, Ric.c l.i7i~t~c.,:ii(~~
\;ij.~yn I<. lconangi, C l c i ~ e l o ~ ~ c l S l (~ l c I:iri/.c,~:iil),
'I'liom.i\ E. I<opcc
NSIIC!, 1'. lGo~icl ihcrg, i l i l i ~ I 7'i~chli0/0~q)'. I IIC
(:hnrlcs I) . ICultla
IG\J l , ~ d k i 1 1
\~Villi.i~l~ A. lz.iil~g
l<~cl~.ircl F. L.ir!
h ' l ~ r k F.. I ,,I\\,, L ' ~ I I / > ~ ~ : S / I , \ , (!/'l-loi.i~/l/
Al\ 111 I< . I ,c l~cck, /Ii/kc) 1 ' i ~ i ~ , c ~ / : i I () ~
~Vliclincl I,cc, C1pc.11 L ' i ~ g i i ~ e o ' i ~ ~ g /iic
Ynn11- H a n g 1.ce. l ' i i i i , (~~~i!l , c!/'Floi'iilo
I<ohcrr I). I .cmbrce
L\'illi.i~~i H , l ,e~lI~.arr l~, l ~ i ~ i ~ ~ c ~ i : ~ t t ~ ~ ~ ~ / ' . \ ~ ~ i t ~ I / ~ ~ i i / [~ . ~ / ~ ~ i ~ c ~

N o ~ - b c ~ . t Lcsc~', T11c ope17 (;/'(ill/,

I)o~l.ilzl iL1. Lcski\\,, , ~ l ' i z l c i ~ s c ~ 1'17ic,c~i:~i/,i~
l<o\. I L\ ill
bliclincl I,c\,inc, P/rt,sbr/rgh St/~~oi.cci~ri / , i / / i~ig C~, I / /OI :

(,i-~i.~/c::,ic~ 'lk'//Oii l'riit r,i-si/j7
' l ' l 1 0 1 1 1 ~ ~ 1) . 1,1ttIc, B o . ~ l o i ~ k i i i / , c~ is i / j8
l)Ll\'i~i 13. ~ , O l l l ~ t , , \ , / /~t ' l)~O/l ~ l ~ i ~ l O ~ ~ l / i l ~ ~ /
l',llll,l 1,011g
1'. c;coffrc\ Lo\\-llc\.
A~l,ick \V. A l ~ l c r , ~ ~ i ~ i ~ ~ e ~ ~ i / , ~ ~ ~ ~ ' ~ l l c ~ l ~ ~ i i ~ ~ ~ ~ 111 1/11ii/s'i~//c,
Fr.lnco15 A4a1-t~loff, .\ICY'
l1.11.1-\. ,A. h l .~sk.is
i\l.i~i I . . ~\.l.~rtllc\\,s, 7i.or,i~ccrt , \ i~rn~'c*icc ' (,iill(::ic>
I<obcl.r S. hln!.o
I'nul I < . A4cJoncs
\\ '~ll~,im M. hilcI<ccmcln
Jol ln h4cllo1--(:rum11icy, Rice I / I ~ I / ~ L ~ I ~ I (I ~
C;~~ihcppc blellg,,~, Po / ; rec~i ico ci; ~?i / ' l / /O. 1)~1~117ii11ci/ /o

/111/oi71(1/icc7 P I ~ ! / i i r t ~ ? ~ t l c ~ ~
Scott t'. iblidkiff, I S ~ ~ i l i i c / Tee11
7'om h4illc1-, , l~l io 'oso/i Ci)rporntto/ i
J ~ f f r e ~ . (:, blogcl
(:li.irlcs I<obcrr il.101-gnn
EtI1.1n V. i\,lunso~i, l7i t i r ,e~lzi t ,~ (!/' \Yi.\.cciiisi/i
A ~ l d r c I . N.1s1.
(: h ~ ~ . l c s (;t-csot-\, Sc lson
r\l.~n C;. S c m c t l i
\\iilli.lm <;. Nichols
N ~ g c l Sorl-is
\Villi.lni I < . Noycc
D A \ id I < . Oral1
I<ick!, S . I'nlmcr
Sh,i~.on E. I'crl
l u ~ r k 1'cscc, L?i7/e/p).i,se I i ~ t e g ~ z / / i o i i ' l ~ c l ~ ~ ~ o / o , q i ~ . i
I < L I Y , ~ I I \$V. Q L I O I I ~ , P / i ~ z / i ~ c > ['uii~c't:\i/,i8
A4~1stntizul- R.ihln,ln
'1.. \r, l<.llll.lll
Snr~sll I. . I<cgc
Src\ c ~ i K. Rcinhardt, L ' i i i r~c~is i i , o / ' \\5.icoii.itit
Stcvc11 1'. [klbs, L ~ ~ . O L L , I Z L~i?;i~?i:~iI,1~
1.l.inein A'l. Rii.hn~-d\on
l ' , i~~l I . I < ~ ~ l ~ i ~ ~ f c l c i

Xlc\,indct- I . I<~~dni i l i \ , , C i / i . i / c~~ic~ . I /c~ l lo i i li/i/,ei:i/!),

Joel H . S ~ l t z , (i/ii~c,i:iil,l, c~/' .llc/i:),l~ilil
DL1nlcl Sc.ilc\
(:hri\rophcr Schm.inJr, .IIIT.llc~licc L[~hoizitoi?,
h/l~clincl I) . Scl1roc~icr
\17.1\71c S c l i ~ - o e ~ i ~ s ~ - , S(/it 1)tc:c~o St//jei~c.oi?i/~~/Ic~i. Cc~i11o1.
I<obcl.r \V. Scidcl, (,'/~(/i./o.< /;ohi,~(yc~ l i r .s t i l / / l~
b l ~ r g o Scltzcr, / / L I ~ Y , ~ I / . (/ (;i/i/'oi:\i/,],
I , 1\4icl1~icl (:. S l i ~ ~ i c i
Joli~l Sllcn, C'c~~.i/c:qio ,\IC,//OI/ 14ti~'c,,~1/,1'
Ad.lln Sllcpcl,i
\.Vill M. Slic~.\ \ .ood
] i ~ l l - HI\',) sll\ \I, .~/~//i/lOi'O (, ?) ~ ~) O / Z l ~ ~ O ~ 7
Kobe1.t J . Simcoc
Allen 1<. Sirnor15
Al~cli~icl 1). S ~ i i ~ t l i , / / ~ / I Y , c I ~ ? / I i t / i ,oi :~iI ,]~
T I i o m ~ \ I < . Snl~rl i I I I
Robert J . S0L1/.1
A ~ m ~ t ~ l l ~ l ~ Srl\ ~ \ t . l \ ~1

Sirno11 (1. Steel!,
Bri.111 hl. Src\clls
1bsh.il.d k,. Srockci.ilc
Aldn I,. Sussni,lli, 1 'i~ii,cv:xi/,), o/'.lf~li:)'kii7d
1\1l'irI< S\\.,ir toll t
Thomns A. S\\,ccnc\,
l\/lnl.lc W. S!,Ior
I).i~iicl T.~b,ik, Ccoi;::~ 1Ic1soi/ (' t i i /~c~ts i l) '
()\\-en H . T.iII~ii.i~i

C ~ J I - ~ C S P. '1li.ickc1-
[Curt Al Tl1.1llcr
Chnnd~- .~rnol~ . ln r\ 'I'lickk.ir11
lj'~\.ici \Ir, l'liicl
C.11.l \'. I honipson, Ili/.~.ictchtt.\c~//.i /ti .\/i/i/le

(l / ' ~ / ~ ' ~ ~ / l ~ 7 0 / 0 ~ ~) '
Leo 1'. .Sscg$~.ir~
~ (~ 1 1 ~ 1 ~ ~ 1 , 1 1 1 s. ' ~ ' L l l ' l l ~ l ' , \ ~ (l , \ / l i / / ~ < / f . ~ / / ['/i/i'('l:<//,)'
Kcl1.1 M. Enso!,, /'i/i~c/i/c~ I:i~ir,cv:~iI)

l l i E d \ \ w d F. Vogcl
Tl1codol.c V. Vor Ou r ~ c l . , ,\:JLS7'
p.tcli'i~.ci F, VV,iltcrs, 1 ~t t i / , cv . i ,~ / /) ' c ~ / ' C ~ i l ~ / i j ~ . ~ / i ~ i . 1161/~i.s
I<ci th \V.itcrs
\ \T i l l~~~m \\/cilil
T l ~ o ~ i i ~ \ Al. \ \ ;~I I I ICI . \
Sr.lnlc\. J . \\'liitloclc
Jolm C:. S . \\'h\,rock, 13.,1c,SI:.\A /.it/

l<cL>ecc~ \\rill
l > O ~ ~ l , l \ 1). \ \ ' l lll~lll\
L>J\ lei A. \\ 'oo~i, 1 ~/ i i~c~i :x i /] , (!I' I1 i5c,ui?.ii17

Call for Papers
Programming Languages, Tools,

and Technologies

The Digital Technical Journalseeks technical papers in all areas of programming
languages and tools for an issue to be published in the fall of 1998. DIGITAL
engineers and industry partners interested in participating in the special issue
should send topics and brief abstracts (100 words) by December 12,1997, to

Jane Blake, Managing Editor
Digital Technical Journal
Digital Equipment Corporation
50 Nagog Park, AK02-3/B3
Acton, MA 01720-9843
Email: jane.blake@digital.com
Tel: 508-264-7552

Notice of the topics accepted will be sent to all authors by January 9, 1997.
The manuscript-submission date for accepted topics is March 2,1998.

For information on topics published in the Journal, the audience, writing guide-
lines, and the peer-review process, see http://www.digital.com/info/dtj/
dtj-guide.htm or contact the managing editor at jane.blake@digital.com.

Printed in USA. EC-N7963-18/97 08 14 27.5 Capyright 0 Digi GI
1

	Front cover
	Contents
	Editor's Introduction
	DIGITAL FX!32: Combining Emulation and Binary Translation
	Development of the Fortran Module Wizard within DIGITAL Visual Fortran
	Architecture and Implementation of Memory Channel 2
	Integrating Object Broker and DCE Security
	A 160-MHz, 32-b, 0.5-W CMOS RlSC Microprocessor
	Referees, February 1995 to February 1997
	Call for Papers Programming Languages, Tools, and Technologies
	Back cover

