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Editor's Introduction 

Jane C. Blake 
~Mclnaging Editor 

Designs that capitalize on Digital's 64-bit Alpha 
RlSC processors or that enhance the performance 
of scientific applications are the subjects of papers 
in this issue. Featured topics include the well- 
received AlphaServer multiprocessing systems, 
the DEC OSWl symmetric multiprocessing operat- 
ing system, a high-performance math library, and 
a preprocessor program developed by Kuck Sr 
Associates, Inc. 

To develop a price/performance leader for the 
server market, designers of the AlphaServer 2100 
and 2000 multiprocessing systems had to make 
decisions that were at once creative, pragmatic, 
and timely. Fidelma Hayes, an engineering manager 
for the Server Group, presents an overview of these 
high-performance servers that incorporate Alpha 
RISC technology and PC-style I/O subsystems, and 
support three operating systems-Microsoft's 
Windows NT, DEC OSF/l, and OpenVMS. Because of 
the engineering teain's persistent focus on perfor- 
mance, cost, and time-to-market, all these goals for 
the AlphaServer systems were surpassed. 

Introducing two PC buses in the AlphaServer 
multiprocessing system was an important factor in 
market success and an interesting engineering chal- 
lenge. Andy Russo discusses the benefits of a dual- 
level I/o structure that contains both the witlely 
used EISA bus and the newer high-performance 
PC1 bus that connects to a 128-bit multiprocessing 
system bus. He describes several innovative tech- 
niqiies that promote efficiency in the hierarchi- 
cal bus structure, the advantages offered by the 
selection of bus bridges (one custom ASIC ancl one 
standard chip set), and the I/O interrupt scheme 
that combines familiar technology with cilstom 
support logic. 

The next paper presents the significant software 
work done to ensure high performance and reliabil- 
ity as CPUs are added to the 2100 and 2000 multipro- 
cessing systems. Jeff Denham, Paula Long, and Jim 
Woodward first review the foundations of DEC: 
OSWl version 3.0, Digital's implementation of UND(. 
for the Alphaserver multiprocessing systems. They 
then examine issues that arise when moving an 
operating system from a uniprocessor to a shared- 
memory SMP platform, in particular, the design 
team's efforts in lock-based synchronization and 
algorithm n~odifications aimed at parallelism 
within the operating system kernel. 

The total impact of 64-bit RlSc  systems and oper- 
ating system support for shared memory SMP plat- 
forms is demonstrated by meeting the demands 
of scientific and technical applications. A tool for 
accelerating application performance on all Alpha 
systems is the DXML Extended Math Library. 
Chandrka Kamath, Roy Ho, and Dwight Manley 
briefly discuss the role of mathematical libraries 
and then present an overview of DXMI. compo- 
nents, which include both, public domain BLAS and 
LAPACK libraries and Digital proprietary software. 
Using example routines, they explain optimization 
techniques that effectively exploit the memory 
hierarchy and provide substantial performance 
improvements. 

Another tool for optimizing scientific application 
performance is KAP, a preprocessor to parallelize 
DEC Fortran and DEC C programs. As authors Rob 
Kuhn, Bruce Leasure, and Sanjiv Shah from Ki~ck & 
Associates describe it, the K A P  product is a super- 
optimizer, performing optimizations at the source 
code level that go beyond those performed by the 
compilers. Their paper reviews adaptations to KAP 
for SMP systems and the key design aspects, such as 
data dependence analysis and the selection of loops 
to parallelize from among many in a program 

The editors thank Alidrei Shishov, Mid-range 
AlphaServers Program Manager, for his help in 
developing this issue of t11eJouriznl. 
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Steve Holmes 
Engineering Gro~tp  
Manage?; Serzler 
PlntJorm Deldopnzent, 
and Db*ecto~; OjJice 
Server Product Line 

The engineering developments described in this 
issue represent tlie second of ni;lny planned gener- 
ations of products that will be designed to fi~lfill 
Digital's Alpha vision. That vision is (a) to make 
Alpha systems open, and (b) to deliver a rich set of 
Alpha system proclucts tli:~t lead the marlcet both 
in performance ant1 price/performance. It is heart- 
ening to see the vision being realized. It is yet more 
heartening to see it unfolding simultaneously with 
appreciable improvements in Digital's business 
practices. These combined events have alreatly 
resultetl in substantial 111;trket acceptance of 
Digital's AlphaServer products. 

The particular set of papers in this issue is for- 
tuitous in tIi;lt it demonstr;~tes tlie large number 
of individuals and range of engineering skills 
required to bring about an industry phenomenon 
such as Alpha. Included are papers focusecl on the 
AlphaServer multiprocessing systems, on the sym- 
metric multiprocessing i~iipleme~itation of the DE<: 

OSF/l operating system, on the optimization o f  
mathematical subroutine libraries for the Alpha 
architecture. ant1 on the KAP preprocessor. If one 
can imagine these technical efforts multij>lied 
rnanyfo.lcl, tlie scope of the Alpha undertaking 
will emerge. 

The first gener;ction of products based on tlie 
Alpha architecture was introduced in 1992. The 
AlphaServer 2100 system ant1 DEC OSF/l SIMP operat- 
ing system. introtluced in mid-1994, together repre- 
sent the beginning of the second-gener~tioii Alpha 
server products. The overarcl~ing develol>ment 
goal was to give o i ~ r  present and h~ tu re  customers 
a compelling reason to buy. The resultant direction 
was to provitle very low cost multiprocessing sys- 
tem capability with intlustry-stantlard open I/(> 
buses. in this case PC1 and EISA. To capitalize 011 

these attributes and to ensure that a complete solu- 
tion was delivered, the engineering teams m:~in- 
tained a customer-focused perspective. I t  is this 
perspective th;~t h;~s enabled the AlphaServer 2100 
to achieve rapid nl;~rket ;lccept;lnce. 

Truly, though. the most significant achievelilent 
for the present rouncl o f  Alpha server protlucts is 
this: a whole new standard of price/performance 
for tlie industry has been reached. Computing that 
in the past could have been performed only with 
very expensive high-end machines or extensive dis- 
tributed networks is now performed by ;iffortlable 
AlphaServer systems. 

This price/performarice breakthrough augments 
Digital's strong capabilities. 



A truly open environment that supports UNM and 
Windows NT operating systems on Alpha systems 

The ongoing strength of the world's best full- 
featured commercial operating system, the 
OpenVMS system 

A xvorld-class ant1 worltlwicle service and deliv- 
ery organization 

An extensive and growing network of channels 

Overall, Digital's renewed and meaningful com- 
mitment to be responsive to the demands and 
needs of the markets 

This is a very exciting ant1 procluctive time in 
Digital's history 

If this were the end of the story, there woultl be 
much of which to be proud. In fact, there is more to 
come across the range of AlphaGeneration prod- 
ucts, including workstations, PCs, clustering, oper- 
ating systems, ant1 networking. In the server area 
specifically, the recently announced A.lphaServer 
2000 increases the price/performance lead of the 
2100 system. Processor and cache upgrades have 
increased the ;ib>olute perfor~nance of the family. 
Just  round the corner are similar advances for 
other members of  Iligital's server products. A little 
further ;IW:I~ are significant enhancements in our 
clustering c;~pabilities and in our server manage- 
ment tools. 

All these developn~ents are of direct and measur- 
able benefit to our customers. All are guicled by 
what the markets are telling us they want. The 
trend and pace of these enhancements will allow 
Digital to continue to deliver on the promise of the 
Alpha vision. 

Performance measurements. for example, 
SPECmark data and transaction-per-seconcl tests. 
and competitive comparisons support the state- 
ments above. However. the case is made most con- 
vincingly by the early acceptance and rapid ramp 
up of AJphaServer 2100 system purchases by our 
customers. In the highly competitive server arena. 
success is being den~otwtratetl tlaily. 

I would like to take this opportunity to offer 
a very enthusiastic thank-you to all whose work is 
represented in the accomp;lnying technical papers. 
most especially to the Alphaserver 2100 develop- 
ment team whose work I have had the privilege to 
observe since the team's formation. The hard work 
and dedication of everyone is recognized, ;~ppreci- 
ated, and needed for the foture. 

This forewortl will conclude in favor of the sub- 
stantive papers that detail the technical contribu- 
tions made by the authors and their colleagues. It is 
my expectation that readers of this issue of the 
Digital Tec~~nicc~l . /o~~i~~rral  will gain usefill technical 
insights. It is my hope that they will also see, as I do. 
that the h~ture of Digital computing is bright. 



Fidelwzn M. Hayes I 

Design of the AlphaSeruer 
Multiprocessor Server Systems 

Digital's AlpbaSert~er. i~i~~ltipr.ocessor' s~s tnns  are bigb-perforn~arzce ser-11er.s tbnt 
cotrtbine r~~~~ltipr~ocessi~zg tecI311ologj1 zl~itl9 PC-style I/O strbs,s)aterrzs. The sj~stern 
ar-cl~itecture alloirs ji)~lr.processi~zg ~iocles, fo~li. rnenzor:]~ rrodes ( I [ / ,  to a rrinxirriirrri 
of 2 GR), arid t~ilo //O riodes All rzodes co~?zn?unrcnte thr~o~lgb a s)islern 6~rs Tl~e 
s)lstt~n 611s ~ilas designe~l to sl~ppot-t ~lzultiple generations of Alphap~.ocesso/. tech- 
no log)^ The arr/~ilectr~r-e car1 be ii?~plei~zeizted in differ-el?[ ziuja dependirzg on the 
sire of the sjlstern packagit~g. 

The Alphaserver 2100 (large peclestal) and the 
A117haServer 2000 (sm;~ll pedestal) servers from 
Digital combine multiprocessing Alpha technology 
with an I/() subsystem tl-aditionally associ:ited with 
personal computers (P<:s). Tlie I/() subsystem in the 
AlpliaServer systems is b;lsed on the Peripher;il 
Component Interconnect (l'(:I) ant1 the Extended 
Industry St;~nd;~rd Architecture (EISA) buses. All 
AJphaServer products. inclutling the AIphaSer\wr 
2100 cabinet version. share common technology 
and support at least three generations of tlie Alpha 
processor. In addition. the servers support three 
operating systems: Microsoft's Winclo~vs NT version 
3.5. ant1 Digit;il's I)E<: OSI/l version 3.0 ( : III~ higher) 
and Open\OlS version 6.1 (;lntl higher). 

The Alp1i;tServer systems are designed to be 
general-purpose servers for P(: local area network 
(LAN) ant1 d;it;ib;lse applications. All motlels of the 
system use a common multjprocessing bus inter- 
connect t1i;lt s~~pl>ort.s different numbers of notles. 
depending on the system configur:ition. The s).stems 
share a common (:1111, memory. ;lncl I/O architecture. 
The number of (:Pl!s. the amount of niemor): tlie 
number of I/() slots, ;lnd the amount of internal stor- 
age vary depending on the mecIi;~nic;il packaging. 
The flexibility of the ;~rcliitecture ;~llows the quick 
tlevelopnient of new and enhanced systems. 

This paper discusses the tr;~nsformation of a 
set o f  requirements into high-perform;~~~ce, cost- 
effective protluct iml,lementations. The following 
section describes the evolution of tlie AlphaServer 
design from ;in ;~d\~;lnced clevelopmenr project into 
;I design project. The p;rper then clescribes the (:PI1 
motlule, the multiprocessor systcm bus. ;ind the 
memor). module. Subsequelit sections tliscuss 

module ancl silicon technology ant1 the I~igli- 
availability feat~~res incorporated into tlie design. 
The paper ends with a performance summary and 
conclusions about the project. 

Concept Developrnertt 
The engineering investigations of ;I client-server 
s!.steni originated from ;I business need t11:1t Digital 
perceived wben it introduced the first systenls 
to incorporate the Alpli;~ technology in late 1992. 
Among Digital's first products in the server n~;rrket 
were the DEC 4000 high-performance tlep;~rtmental 
s!.stern, the DEC 3000 tleskside workstatioll/ser\~err 
and the EISA-based Alph:~ I>(:. The lack of :in esplic- 
i t ly identifiecl, general-pilrpose system h)r the mid- 
range system market generated many requests from 
Digit;~l's iMicroVAX I1 system customers. Reqilests 
from these customers propelled the AlphaSe~*ver 
protluct developn~ent effort. 

Fro111 the beginning of the project, two 1n;ijor 
constraints were eviclent: l'he schedule required 
a protluct by mid-1994. and thc budget was limited. 
Accordingly. tlie product team was requiretl to 
leverage other developnients or to find newer. less 
costly ways of achieving tlie product go;lls. Work 
on the AlpliaServer systems started ;IS ;I joint effort 
between an atlvanced developlnent team ;inel a 
business pl;inning team. Tlie bu>iliess te;m clevel- 
oped market profiles and a list of features without 
which the system woultl not be competitive. l'he 
business team followeel ;I ni:irket-driven pricing 
model, The profit expected from the >ystcl~i tlic- 
tatecl tlie product cost h)r the syatcln. This cost is 
referrecl to ns "tr:rnsfer cost." The businrss tcani's 
cost requirenient was critical: if it coulcl not bc met. 



the project would be canceled Furthermore, the 
entry-level system was requirecl to 

I .  Support at least two CPUs. with performance for 
;I single CPIJ to yield 120 SPECmarks and 100+ 
transactions per second (TPS) o n  tlie TPC-A 
benchmark. 

2. Support at least 1 gigabyte (<in) ofmemorjl. 

3. Sulyx)rt multiple 1/0  buses with at least six 
option slots supportecl on tlie base system. 

4. l'rovide high-;ivaiI;tbility fe;~tures such as redun- 
cl;lnt power si~pplies. rreluntlant arr;iy of inex- 
pensive disks (RAID), "warm swap" of drives, and 
clustering. 

5. Provide a number of critical system connec- 
tivity options, including Ethernet, fiber clistrib- 
i~ted data interface (FDDI). and synchronous 
control Iers. 

6. Support the Wintlows NI ' ,  the LIE(: OSF/l, ;und tlie 
OpenVh4S operating systems. 

<;iven these criteria, the engineering team 
decidecl to base the development of the new server 
on concepts taken from two Digital products and 
combine them with the enclosures, power SLIP- 

plies. ancl options commonly associated with PCs. 
The I>E(: 4000 server is a multiprocessor system 
with a Futurebus+ L/O subsystem; it provided 
the basis for the multiprocessor bus design.' The 
I>E<:pc 150 PC: is a uniprocessor system wit11 ;In EISA 
I/() subsystem; it  provided :I moclel for designing an 
l/O subsystem capable of running the Windows N7' 
oper:~ting system. The engineering te;ini chose PC- 
style peripherals because of their low cost. 

A strategic tlecision was made to incorporate the 
emerging P<:I bus into the product in addition to 
the EISA bus. Major PC vendors hacl expressed high 
interest in its tlevelopment, ;~nd they believed the 
]'<:I bus woultl gain acceptance by the I)<: comruu- 
nity. T'lie tlCl bus provides a I~igh-performance, low- 
cost I / ( )  ch;innel that allows connections to many 
options sucli ;IS sm;~ll computer systems interface 
(S(:SI) adapters ancl other common I><: prriplierals. 

After the initial design hacl been completetl, chang- 
ing market ant1 competitive environments imposed 
additional requirements on the clesign team. 

I .  The initial transfer cost goal was reduced by 
approximately 13 percent. 

2. Support for a maximum of four processor 1i10tl- 
11 les .iv:~s necess;iry. 

To meet these new recluirements, the clesign team 
had to modify the system design cluring the product 
development phase. 

System Overview 
The base architecture developed for Digital's 
AlphaServer multiprocessor systems allows four 
processing noeles, four memory nodes (up to a max- 
imum of 2 <;H), and two I/O nodes. All nodes com- 
municate througli ;I system bus. The system bus 
was designed to support multiple generations of 
Alpha processor technology. The architecture can 
be implemented in different w~ys .  depending on 
the size of the system packaging. It is flexible 
enough to meet a variety of market needs. Two 
implementations of the architecture are the 
AlphaServer 2100 and the Alphaserver 2000 prod- 
ucts. Figure 1 is a blocl< diagram of the AJphaServcr 
2100 implernent;~tion of the arcliitecti~re. 

In tlie Alph;~Server 2100 large pedestal server. 
the system bus supports eight nodes. It is imple- 
mented on a backpl;~ne that has seven slots. The 
seven slots can be configured to support up to 
four processors. Due to the number of slots avail- 
able, the server supports only 1 GB of memory 
when four processors are installed. It supports 
the full 2 CiB of memory with three processors 
or less. The eighth nocle. which is the system bus- 
to-PC1 bridge, is resident on the backplane. This 
provides a 32-bit ['<:I bus that operates at 33 mega- 
hertz ($11-12). It is referred to 2s the primary PC1 bus 
on the system. 

A seconcl 1 / 0  bridge c;ui be installed in one of 
the system bus slots. This option, which will be 
available in 1995. will provide a 64-bit PC1 bus for 
the system. A 64-bit I'CI is an extension of ;I 32-bit 
PC1 bus with a wider data bus. It operates at 33 MHz 
and is completel!- interoperable with the 32-bit P<:I 
specification.' Options designed for the 3 -b i t  
PC1 bus will also work in a 64-bit PC1 slot. 

ElSA slots ;!re supported through a bridge o n  [lie 
primary PC1 bus on the system. Only one Elst\ bus 
can be supportecl in tlie system since many of the 
addresses used by ElSA options are f ixed.  Support 
of a single EISA bus is not perceived as an issue given 
the migration from the EIM bus to the much higher 
performing P<:I bus. The maximum supported 
bandwiclth on an ElSA bus is 33 megabytes per 
second (MB/s) versus the lnaxirnum bandwidth on 
a 32-bit P<:I bus of 132 M13/s. The EISA bus is i~sed in 
the system for support o f  oltler ad;ipters that have 
not migrated to ]'(:I. 
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Slots 4 and 5 may be used lor Slot 1 accommodates 
two additional memory modules either expansfon 110 
if CPU 2 IS not installed module or CPU. 

tciu 
MEMORY MEMORY CPU2 CPU 1 CPUO 
MODULE MODULE MODULE MODULE MODULE 'I0 (64-BIT 

OR CPU 3 

SERIAL 
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I 
SYSTEM BUS - 128 BITS 

INTERRUPT CONTROLLEq 
r - - - - - - - - - - - - - - -  

I 8259A-2 

I 000000 L - - - - - - - - - - - - - - J  

CONTROLLER a 
KEYBOARD 

MOUSE 

KEYBOARD 
AND MOUSE 

+-+ OPERATOR CONTROL PANEL 

n 
PARALLEL 

CONTROLLER 

ROM 

PARALLEL XI 
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Figure I Block D i ~ / g v ~ ~ i , ?  oJtl?e AlpbaServer 2100 .Yy.st(~ A ~-c/~itect/tre 

The Alphaserver 2000 small petlest;il s)lstem sup- node. A system bus slot can also be used to support 
ports five nodes o n  the system bus. The backplane the optional second I/<) bridge. 
provicles four system bus slots, allowing a maxi- The AlphaServer 2100 cabinet system is a rack- 
mum configuration of two processor modules and mountable version o f  the large pedestal 
two memory modules. The system bus-~O-PCI MphaServer 2100 system. The rackmountable unit 
bridge resides o n  the backplane and is tlie fifth provides a highly ;ivailable configuration of the 
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pedestal system. I t  incorporates two separate back- 
planes. One bac.kplane supports eight system bus 
notles that are implemented its seven system 
bus slots. The eighth node (the system bus-to-P<:I 
bridge) resides on  the backplane. The second back- 
plane provides the I/() slots. The number and 
configuration of I/O slots are identical to the 
AlphaServer 2100 pedestal system. The rackmount 
unit psovitles minimal storage capacity. Atlditional 
storage is supported in the cabinet version through 
Stor;tge\Vorks shelves. These storage shelves can 
be powered independently of the base system 
unit. providing a highly available configuration. 

Table 1 gives the specific:~tions for the 
AlphaScrver 2100 and the AlphaServer 2000 
pedestal systems. Information o n  the cabinet 
version is not included because its characteristics 
are similar to the AlphaServer 2100 large pedestal 

version. iUl multiprocessing members of the 
AlphaServer family use the same processor and 
memory modules and differ only in system packag- 
ing and backplane implementations. This illustrates 
the flexibility of the architecture developed for the 
system and decreases the development time for 
new models. 

CPU Module 
The CPU module contains an Alpha processor, a 
secondary cache, and bus interface application 
specific integrated circuits @SICS). As previously 
mentioned, the system architecture allows multiple 
processor generations. Multiple variations of the 
processor module :ire available for the system, but 
different v:~riations cannot be used in the same 
system. Software has timing loops that depend on 
the speed of the processor and cannot guarirntee 

Table 1 AlphaServer System Specifications 

Specifications Large Pedestal Small Pedestal 
Alphaserver Alphaserver 
2100 System 2000 System 

Height, inches 27.6 23.8 

Width, inches 
Depth, inches 
Maximum DC power output, 
watts per supply 

Number of system slots 
Number of processors supported 
Minimum memory 
Maximum memory 
Embedded I/O controllers supported 
Optional I/O controllers supported 
32-bit PC1 slots 
64-bit PC1 slots (on separate I10 
controller module)* 
ElSA slots 
Serial ports 
Parallel port 
Ethernet ports (AUI and 10Base-T) 

SCSl I I  controller 
Removable media bays 
Internal warm-swap drive slots 

7 
2 

1 
Not integral 
to system 

Comments 

Two possible per 
system in either 
redundant or current 
shared mode 

Up to 18 total network 
ports supported on 
system via PC1 and 
ElSA options 

" Future option 
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re;rtls/writes to I/O space are handled as uncached 
memory accesses. Clearly, this was incompatible 
with the nonpended bus. which assumes tlie use of 
m;lilboxes. Consequently, the designers stildied the 
advantages and disadvantages of using mailboxes 
to determine if they shoulcl be supportetl in the 
Windows NT operating system. They found that the 
software overhead of manipul;rting the mailbox 
structure made CSR accesses approximately three 
times slower than direct accesses by the hardware. 
Thus the <:PlJ performing the I/<) access waits 
longer to complete. For this reitson, the tlesigners 
chose not to use mailboxes. 

The designers also had to  ensure that the system 
bus woulcl be available for use by other processors 
while the I/O transaction was completing. To satisfy 
this requirement, they added a retry mechanism to 
the system bus. The retry support  was very simple 
and was layered on  top of existing bus signals. 
A retry condition exists when the <:p[J initiates a 
cycle to the I/O that cannot be completed in one  
system bus transaction by the I/O bridge. The CPU 
involved in the transaction is notified of the retry 
condition. The CPU then "backs off" the multipro- 
cessor bus and generates that trans;lction some 
period of time later. Other processor modules can 
access memory during the slow I/() transaction. 
The retry procedure continues until the I/<) bridge 
has the requested data. At that stage, the data is 
returned to tlie requesting CPIJ. 

Elite Addressing Byte granularity 11;1d been han- 
dled in the mailbox data structure. After tlie direct- 
mapped I / o  sche~i le  was adopted, the designers 
h;rd to overcome the lack of byte addressability in 
the Alpha architecture. Therefore, the designers 
p;rrticipated in a collabor;~tive effort across Digital 
to define a mechanism for adding byte ;lddress- 
ability in the IUpl~a architecture. The new schenie 
recluired the use of the four lower av;~il;tble Alpha 
Ad:[08:05] atldress bits to encode byte masks and 
lower order address bits for the P<:1 and ElSA buses. 
For more details. see  tlie paper on  the AlphaServer 
2100 I/o subsystem in this issuch 

The designers required ;I retlefinition of the 
atldress map. All I/O devices ;Ire now memory 
mapped. The Alpha 21064A processor has a 34-bit 
address field that yields an address space of 16 <;R. 
This 16-<;13 address region may be subdivided into 
4-(it3 quadrants. Each quadrant can be individually 
marked as cacheable o r  noncacheable memory. The 
DE<: 4000 system architectul.e split the 1 6 - ~ 0  region 

in half: 8 <;R was allocated as cacheable memory 
space and the remaining 8 <;R as noncacheable 
space. Memory-mapped I/<) devices are mapped 
into noncaclie:tble space. The decision to support 
multiple I/O buses in the new systems together with 
the decision to memory map all I/O (i.e., no  mailbox 
accesses) yielded a noncacheable memory require- 
ment in excess of tlie 8 <;I1 allocated in the DEC 4000 
system. Therefore the tlesigners of the AlpliaServer 
systems changed the address map and allocated a 
single cliiadrant (4 <;13) of memory as cac1ie;rble 
space and the remaining 12 <;B as noncache;ible. 
These 12 GB are used t o  memory map the I/O. 

Arbitrcztion The bus used in the DEC 4000 system 
supports two CPU nodes am1 a single 110 node. To 
achieve the AlpliaServer product goals of multiple 
I/O bridges and multiple <;PU nodes, the designers 
changed the address map to accommodate csR 
space for these extra nodes and designed a new 
arbiter for the system. The arbiter includes 
enhanced functionality to increase the perfor- 
mance of future generations of processors. Some 
key features of tlie arbiter are listed below. 

1. The arbiter is implemented ;IS ;I separate chip on 
all processor motlules. The logic was partitioned 
into a separate chip to accommodate a flexible 
architecture and to allow additional arbitrating 
nodes in the filture. As many as four arbiters can 
exist in the system. Only one  arbiter is enabled in 
the system. It is on the processor installed in slot 
2 of the system bus. 

2. I/O node arbitration is interleaved with CPIJ node 
arbitration. The arbitration is round robin and 
leads to an ordering scheme of CPU 0, I/o, cPU 1. 
I/O, CP1J 2, I/O, <:PU 3,1/O. This scheme attempts 
to minimize 1/0 I;~tency by ensuring many arbi- 
tration slots for I/O devices. Processors still have 
Inore than adequate access to the system bus due 
to tlie nature of I/o traffic (generally bursts 
of data in short periods of time). On an idle 
bus, the arbiter reverts to a first-come. first- 
served scheme. 

3. The arbiter implements an exclusive access cycle. 
This allows ;In arbitrating node to retain tlie use 
of the system bus for consecutive cycles. This 
cycle is used by the I/o bridge in response to a 
lock cycle. A P<:I lock cycle may be generated by a 

device that requires an atomic operation, which 
may take multiple transactions to complete. For 
example, tlie AIphaServer 2100 and 1UpIiaServer 

Digital Technical Journnl 1/01. 6 tVo. .i .Srr/,~/ner 1994 



AlphaServer Multiprocessing Systems 

2000 systems use a PcI-to-Els~ britlge chip set 
(Intel 82430 chip set).- This chip set requests 
a lock cycle on  PC1 when an ElSA tlevice requires 
an atomic read-modify-write operation. 

The use of atomic read-modify-write operations 
is common in  older I/(> adapter designs. The I/O 
britlge on the system bus recluests an exclusive 
access cycle from the arbiter. When i t  is grantecl, all 
buffers in the path to  memory are flushecl and the 
device has exclusive use of the Ir:l and the system 
bus nnril its transaction is conipletetl. The use of 
this mode is not recommended for new adapter 
designs clue to the unfair nature o f  its tenure on the 
systeni bus. It was implemented in the AlpliaServer 
product design to support  older ElSA devices. 

Memory  Module 
Main memory is accessed over the system bus either 
by processors (after missing in their on-board c;~clies) 
o r  by I/o nodes performing direct memory access 
(DMA) transactions. They are calletl commanders. 

The memory controller incorpor;~tes :I number of 
performance-enhancing features that reduce latency 
in accessing the dynamic Rkkl (DRAM) array One 
concept used is called a stre;lm buffer. Stream 
buffers reduce the read latency to main memory 
Reads to main memory normally require 9 to 10 
cjrcles on the system bus, depetitling on  the speed of 
DRAMS in the array. The use of stream buffers reduces 
this time to 7 cycles. The stream buffers provide a 
facility to load data fetched from tlie Dbhv array 
prior to the receipt of n read request for that dara. 

A stream is detected by monitoring the read 
adtlresses fro111 each cotnmantler o n  the system 
bus. The logic simply keeps a record of the memory 
addresses of tlie previous eight re;~tl transactions 
from each comniander and comp;lres e ;~ch subse- 
quent read address to see if the new address is con- 
tiguous to any of the recorded atldresses. If a new 
address is deter~ninecl to be contigi~ous to any of 
the previous eight addresses. a new stream is 
declared. As :I result, one  of the strexrn buffers 
is allocated to a new stream. 

A stream buffer is implementetl as a four-deep, 
first-in, first-out (FIFO) boffer. Each entry in the 
FIFO buffer is 32 bytes. whicli is equivalent to tlie 
system bus line size. Each memory motlule con- 
tains four stream buffers that can be allocntetl to dif- 
ferent commanders. A least recently used (LRIJ) 
algorithm is used to  allocate stream buffers. When 
a new stream is detected, o r  an existing strealn is 

empty the stream buffer fills f ro~ l l  the DRr\hq array 
by using successive acltlresses from the heat1 of the 
stream. After a buffer has been allocated ant1 some 
amount of data has been placed in the FIFO buffer, 
"hit" logic conip:lrcs inco~ning read addresses from 
the system bus to the stream address. If a compari- 
son of these two  addresses is successfi~l, read data 
is delivered from the memory module wi thoi~t  
incurring the latency of accessing the DRAM array. 

An invalidation scheme is used to ensure that the 
stream buffers stay coherent. Write cjrcle adtlresses 
are checked to see if they coincide with a stream 
buffer address. If the write acldress is equal to 
any atldress ci~rrently in the stream buffer, that 
entire stream buffer is tleclared invalid. Once it is 
invalidated, it can I>e reallocated to  the next 
detected stream. 

Writes to main memory complete on the system 
bus in six cyclcs, which is achieved using write 
buffers in tlie memory controller. The write transac- 
tions are essentially "dump and run." The total write 
buffering ;~vailable in each memory module is 64  
bytes. which is large enough to ensure that tlie sys- 
tem bus never h:w to stall during a write transaction. 

The implementation of the memory module dif- 
fers from the Alpli;~Server 2100 to the AlpliaSer\~er 
2000 system. Rot11 memory modules contain the 
same memory controller ASIC:s, but  the implemen- 
tation of tlie DtUM array is different. Due to space 
constraints o n  the AlphaServer 2100, the DILOI 
array was implemented as a flat, two-sided surface- 
mount module. O n  the AlphaServer 2000, single 
in-line memory modules (SIMMs) were usecl for the 
DRhiM array Memory motlule capacities vary from 
32 MB to 512 MI). The Alph;lServer 2100 system pro- 
vides four system bus slots that can be populatetl 
witli memory tnodules. The maximum supportetl 
configur;ltion is 2 < ; I 1  witli four nielnor)' motlules. 
This limits the maximlim system configuration to 
three processors since one  of tlie processor slots 
must be used ;IS ;I memory slot. The AlphaServer 
2000 system provitles two system bus slots that 
can be populatetl with memory The maximum 
memory supportetl in this system is 640 MH. 'This 
configuration consists of one  512-MB module and 
one  128-MI$ motlule. The maximum memory con- 
straint is tlictatetl by tlie power and cooling avail- 
able within this system package. The AlphaServer 
2000 still supports two  processor modules when 
configured with masimum memory. F i g ~ ~ r e  2 
shows a block diagram of the Alphaserver 2000 
memor). motlule. 
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Figure 2 Block D i ~ ~ ~ y r c r ~ n  of the Alphasel-uer 2000 Memory Module 

Technology Choices 
This section briefly discusses some of the decisions 
and trade-offs made concerning module and silicon 
technology used in the systems. 

ilfodule Techrzology 
The designers partitioned the logic into modules for 
two reasons: (1) Removable processor and memory 
modules allow for installation of i~dditional memory 
and processors and (2) They ;~lso allow for easy 
upgrade to fi~ster processor speeds. Since modularity 
;~dds cost to a system, the clesigners decided that the 
I/O subsystem (EISA and 13CI logic) should reside on 
the backplane. They deviated from this strategy for 
the AlphaServer 2100 system design because the PCI- 
to-EISA bridge was a new, unfamiliar design. Fixing 
any problems with this chip set or any of the support- 

ing logic would have required a backplane upgrade, 
which is a time-consuming effort. For this reason, 
the engineers chose to build an 1/0 module for the 
AlphaServer 2100 system that contained the PC1-to- 
EISA bridge; associated control logic; controllers for 
mouse, keyboard, printer, and floppy drive; and the 
integral Ethernet and sCs1 controllers. This module 
was eliminated in the AlphaServer 2000 system due 
to the design stability of the I/O module. 

The Metral connector specified by the 
Futurebus+ specification was chosen for the sys- 
tem bus implernent;~tion on the DEC 4000 product. 
This choice was co~lsiste~lt with the design of the 
DEC 4000 server, which is a Futurebus+ system. 
Cost studies undertaken during the initial design of 
the AlphaServer 2100 system showed that the cost 
per pin of the Metral connector was high and added 
a significant cost to the system. The team decided 

Digilul Technical Journal lbl. 6 No .j . S ~ i i ~ r r ~ z e r  1994 15 



AlphaServer Multiprocessing Systems 

to investigate the use of either the PCI, or the EISA 

connector for the system bus, since both connec- 
tors are used widely in the system. The p<:I cot?- 
llector is actually a variant of tlie Microchannel 
Architecture (M<:A) connector used in microchan- 
nel systems. SPICE simulations showed that it per- 
formed better than the Metral connector on the 
Futi~rebus+.~ The team chose ;I 240-pin version of 
the connector for i~nplenientation because it met 
the system requirements and had a low cost. 

Due to the choice of tlie MCt\ connector, tlie 
board thickness was limited to a maximun~ of 0.062 
inches. An 8-layer layup was chosen for the module 
technology The processor modules had a require- 
ment for both a 5.0-V supply and a 3.0-\/ supply. 
The designers chose a split plane to distribute the 
power rather than two separate power planes for 
each voltage. Routing high-speetl signals across the 
split was minimized to reduce any enlissions that 
might arise from using ;I split plane. Testing later 
validated this approach as emissions from this arex 
were minimal. 

Silicon Technology 
The system partitioning reqi~ired the design of four- 
ASICS. TIiese were the cPrr  bus interface ASIC. the 
memory bus interface ASIC:. the system arbitel: and 
the system bus-to-PC1 britlge. The DEC 4000 imple- 
mentation of the Futurebus+ usetl ;11i exten1;llly 
supplied gate-array process that was customizeil to 
meet tlie perforniance neetls of the bus and tlie per- 
formance goals of the first Alpha systems. Crate- 
array costs are determined by the number of chips 
that are produced on tlie chosen gate-array process. 
The volume of chips produced by the gate-array 
process for the DEC 4000 system was low bec;ulse 
the process was speci;illy adjustetl for that system 
applic;~tion. As a result. the volume of chips was 
tlirectly proportional to the volume of the DEC 4000 
sjVstenis built. Therefore, the cost per component 
produced by this process was relatively high. 

If  they had i~sed this customized gate-array pro- 
cess, tlie designers o f  the AlphaServer product 
could not have met their cost goals. They ~ieedetl 
;I more generic process that could produce chips 
t1i;it many system ventlors could use. This would 
ensure that the line utilization was high and that 
the cost per component was low. Therefore, they 
changed the te~hnolog!~ to one that is stanclartl in 
the industry. Gate-array process technology had 
evolved since the DE<; 4000 design, and a standard 
technology that was cap;~l>le of meeting the system 

timing reqi~irernellts was available. Extensive SPICE 
siniul;~tions verified the process capabilitj.. ASI<:S 

t11;lt were inlple~nented with this process had no 
clifficulty meeting the bus timing.x 

Another interesting feaii~re of the analog design 
on the AlphaServer 2100 system involves the SLIP- 

port of 11 loads on the I'<:I. The I><:[ specification 
recommentls 10 loads as the "cookbook" design.? 
The system requirement on thc AphaServer 2100 
was to support three P<:I slots. the integral PC[- 
Ethernet chip, tlie N(:R8IO (l'(:I-to-fast-SCSI con- 
troller), and the P(:I-to-ElSA bridge. Each I'CI 
connector has been modeled to be eqi~ivalent to 
two electrical loads. T ~ k j ~ i g  ;\ccount of the system 
bus-to-P<:I britlge and the ;tdditional load con- 
tributed by the 1/0 module connector yielded a PC1 
bus with 11 electrical lo;lds. Extensive SPICE sin~u- 
lations of the bus and careful routing to ensure 
;I short bus guafi~nteed that the new design woulcl 
meet the electrical specifications o f  the P<:1 bus.X 

System Start-up 
The tlesign team incorpornted many availability fea- 
tures into the AlphaServer 2100 and AlphaServer 
2000 servers. These inclutled support of "hot-swap" 
stor;~ge tlevices that can be removed or illstalletl 
wl~ile the system is operating, error correction code 
(E<:(:)-protected nienior!: redund;ult power sup- 
plies. and <:PI' recover!: Perhaps the most interest- 
ing part of the design for avail:tbility was the 
emphasis on ensuring t11;lt tlie system had enough 
built-in recovery and retluntlancy to allow it to 
remain in a usable or tliagnosable state. Large sys- 
tems sometimes have conil~licatetl paths in wliicli 
to access the initial start-up code. and a system fail- 
ure in that path can leave the owner with no visible 
failure intlication. Moreover, in ;I multiprocessor 
system with more than one <:I'[i installed, it is 
highly t1esir;tble to initi;ilize tlie resiclent firmware 
and tlie operating system even if all CPOs ;ire not in 
workiug order. The AlphaServer 2100 and 2000 sys- 
tems employ two schemes to help achieve this goal. 

The start-LIP code for the Al,pIl:~St.rver 2100 ant1 
AlphaServer 2000 systems is locatetl in flash reacl- 
only memory (ROM), whicli resides on ;I peripheral 
bus behind tlie PCI-to-EISA britlge. In starting up 
a multiprocessing operating system. only one 
processor is designated to access tlie start-up code 
ant1 initialize the oper;iting sjtstem. This is referred 
to as the primary processor. Accessing the start-up 
code requires the processes. system bus, memory 
and nlost of tlie I/() subsysteni to be fi~nctional. 
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The Alphaserver systems have a number of fea- 
tures that help make the start-up process more 
robust. Each processor module contains ;I separate 
maintenance processor ilnplemented as a simple 
microcontroller that connects to a serial bus on the 
system. The serial bus is a two-wire bus that has 
a data line and a clock line. 011 power-up the pro- 
cessor module performs a number of diagnostic 
tests and logs the results in an electrically erasable 
programmable read-only memory (EEPROM) on the 
module. This EEPROM resides on the serial bus. If 
a <:PI! fails one of its power-up tests or if it has an 
error logged in its EEPROM. then i t  is not allowed to 
be tlie primary processor. Assume that four CPUs 
are installed in the system; if only CPLi 0 fails, then 
(:I'U 1 is the primary processor. If CPU 0 and CPU 1 
fail, then CPu 2 is the primary processor. If CPU 0, 
CPIJ 1, and CPU 2 fail, tlien CPU 3 is the primary pro- 
ccssoc If all four CPUs fail, then <;PI! 0 is the primary 
processor. If any one of the CPrrs fails, a message is 
clisplayed on the operator control panel to inform 
the user that there is a problem. Any secondary CPU 
that has failed is disabled and will not be seen by tlie 
firmware console or the operating system. The pri- 
mary processor tlien uses the system bus to access 
the start-up code in the flash ROM. 

The flash ROM may contain incorrect tlata. Tlie 
fl;~sh ROMs on many systems have a program 
update, and errors from a power spike or surge can 
be introduced into the ROM code during the update 
procedure. User error is another common way to 
introduce data error; for example, a user can acci- 
dentally press a key while the update program is 
running. Flash ROMs can also fail from i~ltrinsic 
manufacturing faults such as current leakage, 
which will eventually convert a stored " 1" into a 
stored "0." thus corrupting the program stored in 
the flash ROMs. Many techniques in the industry 
partially solve the problem of corrupted flash ROM 
dat;~. One well-known tecl~nique uses a checksum 
and reports an error to the user i f  the data is not cor- 
rect. Another technique provides a second set of 
flash I<OiLls and a switch that tlie user manipulates 
to transfer control to the new set in the event of 
a failure. The designers stildietl many previously 
used methods, but rejected them since they 
required intervention by the user. 

In the Alphaserver 2100 and the Alpli, <I S erver 
2000 system design, the design team implemented 
a scheme that did not require user intervention in 
the event of flash RON corruption. The system has 
1 MR of f.lash ROM of which the first 512 KB contain 

the system initialization code. This code is loadetl 
into main memory, and many data integrity tests are 
performed. These include single and multiple bit 
parity checks, various data correction code check- 
ing, and a checksum calculation. Tlie processor 
detects an error if the checksum calculation fails, 
i t . ,  if the calculated value is not equal to the stored 
value. The processor then writes a value to a regis- 
ter on the I/O module, which automatically changes 
the address pointing to the flash ROM to a second 
bank of flash ROM. This combination of hardware 
and software support provides a way for the 
AlphaServer 2100 system user to overcome any 
flash ROM corruption. 

Design Considerations for tbe 
AlphaServer 2000 System 
The design of the AlphaServer 2000 small pedest;~l 
system followed the AlphaServer 2100 system. 
Market pressures dictated the need for a sm~ller  
system with a lower entry-level cost. The introduc- 
tion of the smaller server was scheduled to coin- 
cide with the release of the Windows NT version 3.5 
operating system. 

An examination of the AlphaServer 2100 develop- 
ment schedule reve:iletl the following interesting 
points: (1) System power on occurred nine months 
after the team was formed; (2) Initial system sliip- 
ments occurred eight months later; (3) The eight- 
month time period was spent mainly in porting ancl 
qual@ing operating system software. 

Based on these facts, the system designers 
believed that the key to reducing the time-to-market 
of the AlphaServer 2000 system was to eliminate tlie 
dependency on synchronizing the design schedule 
with an operating system release. Consequently, the 
new system could not require any software changes 
at the operating system level. Any changes woulcl 
have to be transparent to software. To achieve this, 
the designers took ;idvantage of a new feature in the 
DEC OSF/l and the OpenVkls operating systems 
called dynamic system recognition (DSR). 

A DSR machine is defined as a machine that 
requires no new software development. Operat- 
ing systems, liowevel; require licensing; this 
information is dependent upon the system model 
number. There are two components to building 
a DSR machine. 

1. A programmer's view of the machine must be a 
subset of a n  alre;~tly supported machine. In the 
case of the AlphaServer 2000, the designers 
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decided to make it a subset of the AlphaServer 
2100. A clear understanding of how the operat- 
ing systems initialized the AlphaServer 2100 sys- 
tem was critical to understanding what changes 
could be made. A joint team of hardware and 
software engineers examined various pieces of 
the code to iclenttfy the areas of the system 
design that could be changed. Investigations 
revealed that the system bus configuration cocle 
for the AlphaServer 2100 is somewhat generic. 
It assumes a maximum of eight nodes, which is 
the AlphaServer 2100 implementation. The I/O 
node to the primary PC1 bus is expected to be 
present. The presence of additional processors 
and memories is detected by reading the CSR 
space of each module. A module that is present 
gives a positive acknowledgment. The design 
team could therefore reduce the number of sys- 
tem bus slots from seven to four. This had no 
effect on the software since nonexistent slots 
would merely be recognized as modules not 
installed in the system. 

The physical packaging of the AlphaServer 2000 
also dictated that the number of I/O slots be 
reduced from 11 (8 EISA and 3 PCI) to 10. Given 
the industry trend toward PC[, the desirable mix 
would have been 6 EISA slots and 4 PC1 slots. The 
PC1 bus configuration code searched for as many 
as 32 PC1 slots, which is the number allowed 
by the PC1 specifi~ation.~ After carefiil consid- 
eration, the designers determined that the addi- 
tion of another PC1 slot would involve a change 
in interrupt tables to acconlmodate the addi- 
tional interrupts and vectors required by the 
additional slot. Therefore, the team decided to 
implement 3 PC1 and 7 EISA slots. 

2. The other component to building a DSR machine 
is to provide the system model number to the 
operating system so that licensing i~lforn~at io~l  
can be determined. The system resident code 
that runs at start-up is referred to as tlle console. 
The console and the operating systems commu- 
nicate via a data structure known as the hard- 
ware parameter block (InVRPB). The HWRPB is 
used to communicate the model number to the 
operating system, which uses this number to 
provide the correct licensing information. 

The AlphaServer 2000 system was completed in 
approximately nine months. Qualification was not 
dependent on the operating system schedules. By 

building a DSR machine, the design team met the 
project's time-to-market requirements. 

Performance Sum~nary 
Table 2 summarizes the performance of the systems 
described in this paper. The numbers are heavily 
influenced by the processor speed, cache, memory, 
and I/O subsystems. The systems exceeded the per- 
formance goals specified at the beginning of the 
project. In some cases the important benchmarks 
that had been relevant in the industry changed dur- 
ing the course of system development. In the trans- 
action processing measurement, for example, the 
TPC-A benchmark was superseded by the TPC-C 
benchmark. 

The AlphaServer 2100 server was the price- 
performance leader in the industry at the time of its 
introduction in April 1994. Successive improve- 
ments in processor and I/O subsystems should help 
the AlphaServer 2100 and 2000 products maintain 
that position in the industry. 

Table 2 System Performance 

AlphaServer AlphaServer 
2100 41275 2000 41200 

SPECint92' 200.1 131.8 

SPECfp92' 291.1 161.0 
AIM Ill7 
Number of AIMS 227.5 177.5 
User loads 1941.2 1516.0 

Estimated TPSr 850 660 

Notes: 

* Single-processor system only 

t Dual-processor system only 

$ TPS is an abbrev~ation for transactions per second. These 
numbers are estimated for a quad-processor system using 
OpenVMS version 6.1 running Rdb. 

Conclusions 
The design team exceeded all the product require- 
ments set at the beginning of the AlphaServer proj- 
ect. The transfer cost of the final product was I0 
percent better than the goal. The reduced cost was 
achieved despite the erratic price levels for DRAMS, 
which were much higher in 1994 than predicted 
in late 1992. 

Separate cost targets were established for each 
portion of the system, and each tiesign engineer 
was responsible for meeting a particular goal. 
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Constant cost reviews ensured that variances could 
be quickly addressed. The requirement to run three 
operating systems quickly expanded the size and 
scope of the project. The operating system devel- 
opers became an integral part of the design team. 
Multiple reviews and open communication between 
the hardware development team and the software 
groups were essential to managing this work. The 
hardware team performed system-level testing on 
all three operating systems. This proved invaluable 
in tracking down bugs quickly and resolving them 
in either hardware or software. 

The project team delivered the expected perfor- 
mance and functionality on schedule. Develop- 
ment time was allocated for new power and 
packaging subsystems (using third-party design 
companies), new modules, new ASICS, new system 
firmware, and porting of three operating systems. 
To attain the schedule, development tasks were 
frozen at the beginning of the project. The tasks 
were also categorized into three classes: mandatory, 
nonessential, and disposable. Consequently, engi- 
neers were able to make trade-offs when required 
and maintain the integrity of the product. Another 
key factor to meeting the schedule was the use of 
knowledge and technology developed for previous 
products. This yielded many benefits: less design 
time, fewer resources required, known simulation 
environment, and less time to a working prototype. 
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The Alphaserver 2100 
I/O Subsystem 

The AlphclSeruer 2100 I/O subsystem contains a dual-level I/O structure that 
incllides the higbpou~ered PC1 local bus and the widely used ElSA bus. The PC1 bus is 
connected to the seruer's nzultiprocessing systenz bzis through tiye ctistonz-designed 
bridge chip. The EISA bus szrpports eight general-purpose E I S M A  connectors, pro- 
zliding connections to plug-in, industrjt-stan~ard options. Data rclte isolation, clis- 
connected transaction, and data bzffer management techniques were used to 
ensure bz~s efficiency in the I/O subsystein. Innovatiue eugineering designs nccom- 
plished the task of combining Alpha CPUs and standard-sjatem 1/0 devices. 

Digital's Alphaserver 2100 server combines Alpha 
multi~xocessing technology with an I/O subsystem 
typically associ;~tetl with personal computers 
(PCs).' Tlie I/O subsystem on the AlphaServer 2100 
system contains a two-level hierarchical bus struc- 
ture consisting of a high-performance primary 
J/o bus connected to ;I secondary. lower per- 
formance 1/0 bus. The primary I/o bus is a 32-bit 
peripheral component interconnect (PCI) local bus 
(or simply, P<:I bus).? The PC1 1x1s is connected 
to the AlphaServer 2100 system's multiprocessing 
system bus through a custom apl'lication specific 
integrated circuit (ASIC:) bridge chip (referrecl to 
as the T2 bridge chip). The seconclary r/O bus is a 
32-bit Extended Industry Standard Architecture 
(EISA) bus connected to the Pcr bus through a 
bridge chip set provided by Intel Corporation.? 
Figure 1 shows the V o  si~bsystem designed for the 
AlphaServer 2100 protluct. The i/O subsystem 
demonstrated sufficient flexibility to become the 
I/(> interfiicc for the small pedestal AIpliaServer 
2000 product and the rackmountable version of the 
AlphaServer 2100 server: 

This paper discusses the dual-level bus hierarchy 
and the several I/O adv;~ntrlges it provicles. The 
design considerations of the I/() subsystem for the 
Npl~aServer 2100 server are examined in the sec- 
tions that follo~v. 

I/O Suppowor EISA arul PCI Buses 
The EISA bus enables the AlphaServer 2100 systern 
to support ;I wide range of existing EISA or Industry 
Standard Architecture (1s~) I/(> peripherals.' The 
ElSA bus ciln sustain data rates ilp to a theoretical 

limit of 33 megabytes per second (IMWS) at a clock 
rate of 8.25 ~negaliertz (MI-lz). In the current config- 
uration for the AphaServer 2100 product, the ElSA 
bus supports eight general-purpose EISA/ISA con- 
nectors, and the EISA bridge chip set provides 
connections to various low-speed, system-standard 
I/O devices such as keyboard, mouse, and time-of- 
year (TOY) clock. For most system configurations, 
the AlphaServer 2100 system's ElSA bus provides 
enough data bi~ncl~idtll  to meet all data throughput 
requirements. In light of the ncw requirements for 
faster data rates, however, the ElSA bus will soon 
begin to run out of bus bandwidtl~. 

To provide for more bandwidth, the AlphaServer 
2100 system also contains a PC1 bus as its prim;~t-y 
bus. With data rates four times that of the ElSA bus, 
the PC1 bus provides a direct migration pat11 from 
the EISA bus. The 32-bit PC1 bus can sustain data 
rates up to a theoretical limit of 132 Ml3/s at a clock 
rate of 33 MHz. In the AlphaServer 2100 system 
configuration, the PC1 bus provides connections 
to three general-purpose 32-bit P<:I connectors, an 
Ethernet device, a SC:SI clevice, the 1'C.I-to-EISA 
bridge chip, and the T2 bridge chip. 

A close examination of the bus structure reveals 
that the AlphaServer 2100 system actually contains 
a three-level, hierarchical bus structure. In addition 
to the PC1 and ElSA buses, the AlphaServer 2100 sys- 
tem includes a 128-bit multiprocessing systeni bus, 
as shown in Figure 1. Each bus is clesigned to adhere 
to its own bus interface protocols at different data 
rates. Tlie system bus is 128 hits pcr 24 n;lnosec- 
onds (ns); the PC1 bus is 32 bits per 30 ns; and the 
EISA bus is 32 bits per 120 ns. E;~ch bus js required 
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to provide a particular fi~nction to the system and 
is positioned in tlie bus hierarchy to maximize 
that efficiency. For example, the system bus is 
positioned close to the CPl!s and memory to maxi- 
mize CPU memory access time, and the lower per- 
formance 1/0 devices are placed on the ElSA bus 
because their timing recluirements are less critical. 
To maintain maximum bus efficiency on all three 
buses, it is critical that each bus be able to perform 
its various fi~nctions autononlously of each other. 
In other words, a slower performing bus should not 

dently: it  provides bus interfaces with extensive 
data buffering that function at the same data rates 
as the interfacing bus. For example. the T2 bridge 
chip contains both a system bus interface and a PC1 
bus interhce that run synchronously to their 
respective buses but ;Ire totally asynchronous to 
each other. The data buffers inside the T2 bridge 
chip act as a domain connector from one bus time 
zone to the other and help to isolate the data rates 
of the two buses. 

affect the efficiency of a high-performance bus. The 
section below discusses a few techniclues that we 

Disconnected Transactions 
clesigned into the [/o subsystem to enable the buses ~~~~~~~~l bridges promote the of 
to work together efficiently. disconnected (or pended) protocols to move data 

across the buses. Disconnected protocols decrease 

Using the Bus Hierarchy Efliciently 
This section discusses the data rate isolation, dis- 
connected transaction, data buffer management, 
and data bursting techniques used to ensure bus 
efficiency in the I/() subsystem. 

Data Rate Isolation 
The three-level bus hierarchy promotes d;~ta rate 
isolation and concurrency for simultaneous opera- 
tions on all three buses. The design of the bus 
bridges helps to enable each bus to work indepen- 

the interdependencies between the different buses. 
For example, when a c:PrJ residing on the system 
bus needs to move data to the PC[ bus, the cprr does 
so by sending its data onto the system bus Here tlie 
T2 bridge chip (see Figure 2) stores the data into 
its internal data buffers at the system bus data 
rate. The T2 bridge chip provides enough buffering 
to store an entlre (.I'll transdct~on. From the CPU's 
perspective, the transaction is completed as soon 
as the T2 bridge chip accepts its data. At that point, 
the T2 bridge chip must forward tlie data to the PC1 
bus, inclependetit of the CPU 111 tliis way, the CPIJ 
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Figure 2 Block Diugmm ofthe T2 Bridge Chip 

is not required to waste bus bandwidth by waiting 
for the transfer to  complete to its final destination 
on  the PC1 bus. 

The T2 bridge chip implements disconnected 
transactions for all CPU-to-PC1 transactions and most 
PC1-to-memory transactions. In a similar fashion, 
the PCI-to-EISA bridge implements disconnected 
transactions between the PC1 bus and the EISA bus. 

Data Buffer Management 
In addition to containing temporary data buffering 
to store data on its journey from bus to bus, each 
bridge chip utilizes buffer management to allocate 
and deallocate its internal data buffers from one  
incoming data stream to another. In this way, a single 
ASIC bridge design can efficiently service miiltiple 
data streams with a relatively small amount of data 
buffering and without impacting bus performance. 

The T2 bridge chip contains 160 bytes of tempo- 
rary data buffering divided across the three specific 
bus transactions it performs. These three transac- 
tions are (1) direct memory access ( D m )  writes 
from PC1 to  memory (system bus), (2) DMA reads 
from memory (system bus) to PCI, and (3) pro- 
grammed I/O (system bus) reads/writes by a CpU 
from/to the PCI. The T2 bridge chip's data buffering 
is organized into five 32-byte buffers. Two 32-byte 
buffers each are allocated to the DMA write and 
DMA read fi~nctions, and one  32-byte buffer is allo- 
cated to the programmed I/O function. Each of 
the three transaction functions contains its own 
buffer management logic to determine the best use 
of its available data buffering. Buffer management is 
especially valuable in situations in which a PC1 

device is reading data from memory on  the sys- 
tem bus. To maintain an  even flow of data from 
bus to bus, the buffer management inside the T2 
bridge chip attempts to prefetch more read data 
from memory while it is moving data onto the PCI. 

Buffer management helps the bridges service bus 
transactions in a way that promotes continuous 
data flow that, in turn, promotes bus efficiency 

Burst Transactions 
Using a bus efficiently also means utilizing as much 
of the bus bandwidth as possible for "usefi~l" data 
movement. Useful data movement is defined as that 
section of time when only the actual data is moving 
on  the bus, devoid of address o r  protocol cycles. 
Maximizing useful data movement can be accom- 
plished by sending Inany data beats (data per  cycle) 
p e r  single transfer time. Sending multiple data 
beats pe r  single transfer is referred to as ;i "burst 
transaction." 

All three buses have the ability to perform burst 
transactions. The system bus can burst as much as 
32 bytes of data per transaction, and the  PC1 and 
EISA buses can burst continuously as required. 

Data bursting promotes bus efficiency and very 
high data rates. Each bus bridge in the  server is 
required to support data bursting. 

The Bus Bridges 
In the  previous section, w e  discussed certain 
design techniques used to  promote efficiency 
within the server's hierarchical bus structure. The 
section that follows describes the bus bridges in 
more detail, emphasizing a few interesting features. 
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The T2 Bridge Chip 
The T2 bridge chip is a specially designed ASIC that 
provides bridge functionality between the server's 
multiprocessing system bus and the primary PC1 

bus. (See Figures 1 and 2.) The T2 ASlC is a 5.0-volt 
chip designed in complementary metal-oxide semi- 
conductor (CMOS) technology. It is packaged in 
a 299-pin ceramic pin grid array (CPGA). 

As stated earlier, the T2 bridge chip contains a 
128-bit system bus interface running at 24 ns and 
a 32-bit PC1 interface running at 30 ns. By using these 
two interfaces and data buffering, the T2 bridge 
chip translates bus protocols in both directions and 
moves data on both buses, thereby providing the 
logical system bus-to-PC1 interface (bridge). In addi- 
tion to the previously mentioned bridge features, 
the T2 bridge chip integrates system functions such 
as parity protection, error reporting, and cpu-to- 
PC1 address and data mapping, which is discussed 
later in the section Connecting the Alpha CPU to the 
PC1 ancl EISA Buses. 

The T2 bridge chip contains a sophisticated D M  
controller capable of servicing three separate PC1 
masters simultaneously. The D M  controller sup- 
ports different-size data bursting (e.g., single, multi- 
ple, or continuous) and two kinds of DMA transfers, 
direct mapped and scatter/gather mapped. Both 
DMA mappings allow the T2 bridge chip to transfer 
large amounts of data between the PC1 bus and the 
system bus, independent of the CPU. 

Direct-mapped DMAs use the address generated 
by the PC1 to access the system bus memory directly. 
Scatter/gather-mapped DMAs use the address gener- 
ated by the PC1 to access a table of page frame num- 
bers (PFNs) in the system bus memory. By using the 
PFNs from the table, the T2 bridge chip generates a 
new address to access the data. To enhance the per- 
formance of scattedgather-mapped DMAs, the T2 
bridge chip contains a translation look-aside buffer 
(TLB) that contains eight of the most recently used 
PFNs from the table. By storing the PFNs in the TLB. 
the T2 bridge chip does not have to access the table 
in system bus memory every time it requires a new 
PFN. The TLB improves scatter/gather-mapped DMA 
performance and conserves bus bandwidth. Each 
entry in the TLB can be individually invalidated as 
required by software. 

The T2 bridge chip also contains a single I/O data 
mover that enables a CPU on the system bus to initi- 
ate data transfers with a device on the PC1 bus. The 
I/O data mover supports accesses to all the valid PC1 

address spaces, including PC1 I/O space, PC1 rnem- 

ory space, and PC1 configi~ration space. The T2 
bridge chip supports two 1/0 transaction types 
when accessing PC1 memory space: sparse-type 
data transfers and dense-type data transfers. Sparse- 
type transfers are low-performance operations 
consisting of 8-, 16-, 24-, 32-, and 64-bit data trans- 
actions. Dense-type transfers are high-performance 
operations consisting of 32-bit through 32-byte data 
transactions. Dense-type transfers are especially 
useful when accessing I/O devices with large data 
buffers, such as video graphics adapter (VGA) con- 
trollers. A single PC1 device mapped into PC1 mem- 
ory space can be accessed with either sparse-type 
operations, dense-type operations, or both. 

In addition to accessing the PCI, a CPU can access 
various T2 bridge chip internal control/status regis- 
ters (CSRs) for setup and status purposes. For maxi- 
mum flexibility, all the T2 bridge chip's functions 
are CSR programmable, allowing for a variety of 
optional features. All CPU I/O transfers, other than 
those to T2 bridge chip CSRs, are forwarded to the 
PC1 bus. 

Intel PCI-to-EISA Bridge Chip Set 
The Intel PCI-to-EISA bridge chip set provides the 
bridge between the PC1 bus and the EISA bus? It inte- 
grates many of the common I/O functions found in 
today's EISA-based PCs. The chip set incorporates 
the logic for a PC1 interface running at a clock rate 
of 30 ns and an EISA interface running at a clock 
rate of 120 ns. The chip set contains a DMA con- 
troller that supports direct- and scatter/gather- 
mapped data transfers, with a sufficient amount of 
data buffering to isolate the PC1 bus from the EISA 
bus. The chip set also includes PC1 and ElSA arbiters 
and various other support control logic that pro- 
vide decode for peripheral devices such as the flash 
read-only memories (ROMs) containing the basic 
VO system (BIOS) code, real-time clock, keyboard/ 
mouse controller, floppy controller, two serial 
ports, one parallel port, and hard disk drive. In the 
Alphaserver 2100 system, the PCI-to-EISA bridge 
chip set resides on the standard I/O module, which 
is discussed later in this paper. 

Connecting the Alpha CPU to the PCI 
and EISA Buses 
In the next section, we discuss several interesting 
design challenges that we encountered as we 
attempted to connect PC-oriented bus structures to 
a high-powered multiprocessing Alpha chassis. 
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Address and Data ililapping 
When a CPU initiates a data transfer to a device on 
the PC1 bus, the T2 bridge chip must first determine 
the location (address) and amount of data (mask) 
information for the requestetl transaction and then 
generate the appropriate PC1 bus cycle. This issue is 
not straightforward because the PC1 and EISA buses 
both support data transfers down to the byte granu- 
larity- but the Alpha <:l'rJ and the system bus provide 
masking granillarlty only down to 32 bits of data. 

To generate less than 52-bit addresses and byte- 
masked data transactions o n  the P<:I bus, the T2 
bridge chip needed to  implement a special decod- 
ing scheme t h ~ t  converts an Alpha CPU-to-I/<) trans- 

Table 1 CPU-to-PC1 Read Size Encoding 

action, ;IS it appears on the system bus, to a cor- 
rectly sized P<:I transaction. Tables I and 2 give the 
low-order Alpha address bits ant1 Alpha 32-bit mask 
fields and show how they are encoded to generate 
the appropriate P<:I address and data masks. By 
using this encoding scheme, the Alpha CPL can per- 
form read and write transactions to a P<:I device 
ni;ipperl in either P<:I I/O, PC1 memory o r  PC1 
configi~r;~tion space with sparse-type transfers. 
(Sp;irse-type transfer sizes llave 8-, 1 6 ,  24-, 32-, o r  
64-bit d;it;~ gr;~nularit)~,) 

Another mapping problem exists when a PC1 

device wants to move a byte of data (or anything 
smaller than 32 bytes of data) into the system bus 

Transaction EVpddr[6:5] EV_Addr[4:3] Instructions PC1 Byte PCI-AD[l:O] Data Returned 
Size Enables to Processor, 

(L) EV_Data[l27:0] 

16 bits 

8 bits 00 00 LDL 1110 0 0 OW_O:[D7:DO] 

0 1 00 LDL 1101 0 1 OW_O:[D15:D8] 

10 00 LDL 1011 10 OW_O:[D23:D16] 

11 00 LDL 01 11 11 OW_O:[D31 :D24] 

00 0 1 LDL 1100 00 OW-0: [D79:D64] 

0 1 0 1 LDL 1001 0 1 OW_O:[D87:D72] 

10 0 1 LDL 001 1 10 OW_O:[D95:D80] 

24 bits 0 0 10 LDL 1000 00 OW-1 :[D23:DO] 

0 1 10 LDL 0001 0 1 OW-l :[D31 :D8] 

32 bits 00 11 LDL 0000 00 OW-1 :[D95:D64] 

64 bits 11 11 LDQ 0000 00 OW-l :[D95:D64] 
0000 OW-1 :[D127:D96] 

Table 2 CPU-to-PC1 Write Size Encoding 

Trans- EV_Addr[6:5] EV_Addr[4:3] EV_Mask[7:0] (H) Instruc- PC1 Byte PCI_AD[l:O] Data Returned 
action tions Enables to Processor, 
Size (L) EV_Data[l27:0] 

8 bits 00 00 00000001 LDL 1110 0 0 OW_O:[D7:DO] 

0 1 00 OOOOOOOl LDL 1101 0 1 OW_O:[D15:D8] 

10 00 00000001 LDL 1011 10 OW_O:[D23:D16] 

11 00 00000001 LDL 0111 11 OW_O:[D31 :D24] 

16 bits 00 0 1 00000100 LDL 1100 00 OW_O:[D79: D64] 

0 1 0 1 00000100 LDL 1001 0 1 OW_O:[D87:D72] 

10 0 1 00000100 LDL 001 1 10 OW_O:[D95:D80] 

24 bits 00 10 00010000 LDL 1000 0 0 OW-1 :[D23:DO] 

0 1 10 00010000 LDL 0001 0 1 OW-1 :[D31 :D8] 

32 bits 00 11 01000000 LDL 0000 00 OW-l :[D95:D64] 

64 bits 11 11 11000000 LDQ 0000 00 OW-1 :[D95:D64] 
0000 OW-1 :[D127:D96] 
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memory. Neither the system bus nor its memory intention is to mark frequently accessed sections 
supports byte granularity data transfers. 'Therefore, of code as read cacheable but write noncacheable. 
the T2 bridge chip must perform a read- mod^- In this way, read accesses "hit" in main memory (or 
write operation to move less than 32 bytes of data into cache), and writes update the ROMs directly. 
the system bus memory During the read-modfy- 
write operation, the T2 bridge chip first reads a full Interrupt Mechanism 
32 bytes of data from memory at the address range 
specified by the device.' It then merges the olcl 'ystem be without 

data (read data) with the new data (PC1 write data) providing a mechanism for an 1/0 device to send 

and writes the full 32 bytes back into memory. interrupts to a CPU. The 1/0 interrupt scheme on 
the AlphaServer 2100 system combines familiar 

ISA Fixed-address Mapping 
We encountered a third interesting mapping prob- 
lem when we decided to support certain ISA 

devices with fixed VO addresses in the Alphaserver 
2100 system. These ISA devices (e.g., ISA local area 
network [LAN] card or an ISA frame buffer) have 
fixed (hardwired) memory-mapped I/O addresses 
in the 1-MB to 16-MB address range. 

The ISA devices being discussed were designed 
for use in the first PCs, which contained less than 
1 MB of main memory. In these PCs, the I/O devices 
had fixed access addresses above main memory in 
the 1-MB to 16-&l~ address range. Today's PCs have 
significantly more physical memory and use the 
I-MB to 16-MB region as a part of main memory. 
Unfortunately, these I ~ A  devices were never 
redesigned to accommodate this change. There- 
fore, to support these ISA options, the PC designers 
created I/() access gaps in main memory in the 1-MB 
to 16-~IB adclress range. With this technology, an 
access by a CPU in that address range is automati- 
cally forwarded to the I ~ A  device. 

To remain compatible with the rsA cornmunit): 
the T2 bridge chip also had to allow for a gap in 
main memory at the I-MB to 1 6 - ~ ~  address range so 
that these addresses could be forwarded to the 
appropriate ISA device. 

BIOS Caching Compatibility 
Today's Microsoft-compatible PCs provide another 
performance-enhancing mechanism. We decided to 
implement this function inside the T2 bridge chip 
as well. 

During system initialization, JMS-DOS-based PCs 
read several HIOS ROMs from their I/O space. Once 
the ROMs are read, their contents are placed in fixed 
locations in main memory in the 512-kilobyte (K13) 
to 1-MB address range. The software then has 
the ability to mark certain addresses within this 
range as reacl cacheable, write cacheable, read 
noncacheable, or write noncacheable. The basic 

technology with custom support logic to provide 
a new mechanism. 

Electrical and architectural restrictions prohib- 
ited the interrupt control logic from being directly 
accessed by either the system bus or the PC1 bus. 
As a result, the interrupt control logic is pllysically 
located on a utility bus called the XBUS. The XRUS 
is an 8-bit slave ISA bus placed nearby the PCI-to-EISA 
bridge chips. 

'The base technology of the I/O interrupt logic is 
a cascaded sequence of Intel 8259 interrupt con- 
trollers. The 8259 chip was chosen because it is a 
standard, accepted, and well-known controller 
used by the PC industry today. The use of the 8259 
interrupt controller translated to low design risk as 
well. Altl~ough the 8259 interrupt controller is not 
new, its integration into a high-performance multi- 
processing server, without incurring undue perfor- 
mance degradation, required some novel thinking. 

The integration of the 8259 interrupt controller 
into the AlphaServer 2100 system presented two 
considerable problems. First, the designers had 
to satisfy the 8259 interface requirements in a way 
that would have a minimal impact on the perfor- 
mance of the interrupt-servicing CPU. The 8259 
requires two consecutive special-acknowledge 
cycles before it will present the interrupt vector. 
To resolve this problem, we designed a set of 
handshaking LACK programmable array logic (PAL) 
devices. These PALS enhance the functions of the 
8259 controllers as XBUS slaves. The interrupt- 
servicing CPU performs only a single read to a desig- 
nated address that is decoded to the XBUS. The LACK- 
control PALS decode this read and then generate the 
special, double-acknowledge cycles required to 
access the vector. The PAL logic also deasserts 
CHRDY, a ready sig~lal to the ISA bus, so that the cycle 
has ample time to proceed without causing a con- 
formance error for a standard ISA slave cycle. When 
the double acknowledge is complete and the vector 
is guaranteed to be driven on the bus, the PALS 
assert the CHRDY ready signal. 
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The secolid problem involved the location of the 
interrupt controller. As mentioned earlier, because 
of electrical and architectural restrictions, the inter- 
rupt controller was located on the XBUS near the 
PCI-to-EISA bridge chips. With the interrupt con- 
troller located on the XBUS, an interrupt-servicing 
CPU is required to perform a vector read that spans 
two I/O bus structures. For this reason and its 
potential effect on system performance, vector 
reads had to be kept to a minimum, which is not 
easy in a system that allows more than one CPU 
to service a pending interrupt request. 

Since the Alphaserver 2100 system can have as 
many as four CPUs, all four CPUs can attempt to 
service the same pending interrupt request at the 
same time. Without special provisions, each CPU 
would perform a vector read of the interrupt con- 
troller only to find that the interrupt has already 
been serviced by another CPU. Requiring each CPU 

to perform a vector read of the interrupt controller 
on the XBUS wastes system resources, especially 
when each vector read spans two bus structures. Of 
course, this problem could be resolved by assigning 
only one CPU to service pending interrupts, but this 
would negate the advantage of having multiple CPUs 
in a system. To solve this problem, the T2 bridge 
chip on the system bus implements special "passive- 
release" logic that informs a CPU at the earliest possi- 
ble time that the pending interrupt is being serviced 
by another CPU. This allows the "released" CPU to 
resume other, more important tasks. 

The term passive release typically refers to a vec- 
tor code given to an interrupt-servicing CPU during 
a vector read operation. The passive-release code 
informs the CPU that no more interrupts are pend- 
ing. The special passive-release logic allows the T2 
bridge chip to return the passive-release code to a 
servicing CPU on behalf of the interrupt controller. 
The T2 bridge chip performs this function to save 
time and bus bandwidth. 

After the designers implemented all the features 
described above, they needed to address the prob- 
lem of how to deal with all the slow, highly volatile, 
"off-the-shelf" parts. To integrate these compo- 
nents into the VO subsystem, they invented tlie 
standard I/O module. 

The Standard I/O Module 
As part of the development effort of tlie I/O subsys- 
tem, the engineering team faced the challenge of 
integrating several inexpensive, low-performance, 
off-the-shelf, PC-oriented I/O functions (e.g., TOY 

clock, keyboard, mouse, speaker) into a high- 
performance Alpha multiprocessing system, with- 
out affecting the higher performing architectural 
resources. The ~nultilevel I/O bus structure served 
to alleviate the performance issues, but the develop- 
ment of a PC-style I/O subsystem with off-the-shelf 
components involved inherent risk and challenge. 

To reduce the risks inherent with using new and 
unfamiliar devices, such as the PCI-to-EISA bridge 
chip set, we chose to build an I/O module (called 
the standard I/O module) that plugs into the 
AlpliaServer 2100 system backplane and contains 
the PCI-to-EISA bridge, associated control logic, con- 
trollers for mouse, keyboard, printer, and floppy 
drive as well as tlie integral Ethernet and SCSI con- 
trollers. Without this plug-in module, fixing any 
problems with the PCI-to-EISA bridge chip set or 
any of the supporting logic would have required 
a backplane upgrade, which is a costly and time- 
consuming effort. 

The standard I/O module is relatively small, inex- 
pensive both to manufacture and to mod@, and 
easily accessible as a field replaceable unit (FRU). As 
shown in Figure 3, the standard I/O module con- 
tains the following logic: 

PCI-to-Ethernet controller chip 

PC]-to-SCSI controller chip 

PCI-to-EISA bridge chips 

Real-time clock speaker control 

8 - K B ,  nonvolatile, EISA-configuration, random- 
access memory (RAM) 

1-MB BIOS flash ROkl 

Keyboard and mouse control 

Parallel port 

FDC floppy controller 

Two serial ports 

12C support: controller, expander, and 1tOM 

Intel 8259 interrupt controllers 

Ethernet station address ROM 

Reset and sysevent logic 

Fan speed monitor 

Remote fault management connector 

External PC1 subarbiter 

3.3-volt and - 5.0-volt generation 
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Figure 3 The Standcird I/O ~Vlodule 

For the most part, all these h~nctions were gener- 
ated by using integrated, off-the-shelf components 
at commodity pricing. Solutions known to work 
on other products were used as often as possible. 
The flash memory resides on the EISA memory bus 
and is controlled by the PC[-to-EISA bridge chip. 
A simple multiplexing scheme with minimal hard- 
ware enabled the server to address more locatio~ls 
than the bridge chip allowed, as much as a full 1 MB 
of BlOS ROM. The National PC87312, which provides 
the serial and parallel port control logic, and the 
floppy disk controller reside directly on the ISA bus. 
The rest of the devices are located on the xBUS (an 

8-bit buffered slave ISA bus), with control managed 
by the PCI-~o-EISA bridge chips. 

In addition, the common PC f~~nctions are 
located at typical PC addresses to ease their integra- 
tion and access by software. As expected, hardware 
changes were required to the standard I/O module 
during its hardware development cycle. However, 
the standard l/O module, which takes only minutes 
to replace, provided an easy and efficient method of 
integrating hardware changes into the Alphaserver 
2100 system. We expect the usef~~lness of the stan- 
dard I/O module to continue and hope that it will 
provide an easy and inexpensive repair process. 
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Sz~mrnary 
The I/O subsystem on the AlphaServer 2100 system 
contains a two-level I~ierarchical bus structure con- 
sisting of a high-performance PC1 bus connected to 
a secondary EISA bus. The PC1 bus is connected to 
the AlphaServer 2100 system's multiprocessing sys 
tem bus through the T2 bridge chip. The secondary 
I/O bus is connected to the PC1 bus through a stan- 
dard bridge chip set. The I/O subsystem demon- 
strated sufficient flexibility to become the I/O 
interface for the small pedestal Alphaserver 2000 
and the rackmountable version of the AlphaServer 
2100 products. 
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DEC OSF/l Version 3.0 Symmetric 
Multiprocessing Implementation 

The primary goal for an operating system in a symmetric ~nultiprocessing (SMP) 
implementation is to convert the additional conzptiti~zg po~uerprouided to the sys- 
tem, as processors are added, into improved sj)stemperfonnance zi~itl~ozit coml~ro- 
mising system q~c~l iQ.  The DEC OSF/l version 3.0 operating system uses a number 
of techniqzies to achieve this goal. The techniques include algorithmic enhance- 
ments to improve parallelism within the kernel and additional lock-based sjmchro- 
nization to protect global system state. Syizchronization primitives include spin 
locks and blocking locks. An optional locking hierarchy was imposed to detect 
latent sj,rnmetljc multiprocessor synchronization issues. Enhancements to the ker- 
nel scheduler improue cache usage by enabling soft arffinitj, of threads to theproces- 
sor on zilhich the tlwead last mlz; n load-balancing algoritlgm keeps the ntinzber of 
runnable threads spread evenly across the available processors. A highly scalable 
and stable SMP implementation resulteclfrom the project. 

The DEC OSWl operating system is a Digital product 
based in part on the Open Software Foundation's 
OSF/l operating system.' One major goal of the DEC 
OSWl version 3.0 project was to provicle a leader- 
ship multiprocessing implementation of the {:NIX 
operating system for Alpha server systems, such as 
the Digital AlphaServer 2100 product. This paper 
describes the goals and development of this operat- 
ing system feature for the version 3.0 release. 

Tbe DEC OSF/l Vwsion 3.0 
Multiprocessing Project 
Multiprocessing platforms like the AlphaServer 
2100 product provide a cost-effective means of 
increasing the computing power of a server. Addi- 
tional computing capacity can be obtained at a 
potentially significant cost advantage by simply 
adding CPU modules to the system rather than by 
adding a new system to a more loosely coupled 
network-server arrangement. An effective execu- 
tion of this server-scaling strategy requires signifi- 
cant cooperation between the hardware and 
software components of the system. The hardware 
must provide symmetrical (i.e., equal) access to sys- 
tem resources, such as memory ant1 J/O, for all pro- 
cessors; the operating system software must 
provide for enough parallelism in its major subsys- 
tems to allow applications to take advantage of the 

additional CPUs in the system. That is, the operating 
system cost of multiprocessing must be kept low 
enough to enable most of an additional CPU's com- 
puting power to be used by applications rather 
than by the operating system's efforts to synchro- 
nize simultaneous access to shared memory by mul- 
tiple processors. 

Regarding hardware, the AlphaServer 2100 prod- 
uct and the other Alpha multiprocessing platforms 
provide the shared memory and symmetric access 
to the system and r/O buses desired by the operat- 
ing system designers.2 The design allows all CPUs 
to share a single copy of the operating system 
in memory. The hardware also has a load-locked/ 
store-conditional instruction sequence, which pro- 
vides both a mechanism for atomic updates to 
shared memory by a single processor and an inter- 
processor interrupt mechanism. 

Given these hardware features, operating system 
software developers have a great deal of freedom 
in developing a multiprocessing strategy. The 
approach used in DEC OSWl version 3.0 is called 
symmetric multiprocessing (SNIP), in which all pro- 
cessors can participate fully in the execution of 
operating system code. This symmetric design con- 
trasts with asymmetric multiprocessing (ASMP), in 
which all operating system code must be executed 
on a single designated "master" processor. Such an 
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a valu;tble protluct feature and was a preview of the 
effort that would be recluired to adapt the osF/l 
cotle for the DEC 2000, 4000, and 7000 multipro- 
cessing platforms. Supporting separate preemptive 
kernels for three versions prior to DE<: OSF/l 
version 3.0, combined mrith the developers' esperi- 
ence on other multiprocessing systems (including 
IJLTRIX version 4 and an advanced development 
project using MII'S multiprocessing platforms), 
uncovered the following challenges and problems 
that the t a m  had to overcome to produce a com- 
petitive multiprocessing product: 

Supporting two complete sets of kernel binary 
objects-b;ise and real-time-mias burdensome 
for the operating system engineers ant1 ~ w k -  
ward for third-party developers Therefore, the 
DE<: OSF/l multiprocessing product team had to 
strive to ship a single, unified set of kernel bina- 
ries. This bet should encompass the full r;tnge 
of real-time features. including preemption and 
POSIX fixed-priority scheduling. For that to be 
practical, the result~ng multiprocessing kernel 
woulcl have to perform as well on a uniproces- 
sor as the non-SMP kernel. 

Diagnosing locking problems in the preemptive 
kernel was expensive in developer time. The 
process required painstaking inspection of 
the simple-locking source code, which is often 
disguised in subsystem-specific macros. Lock- 
ing or unlocking a spin lock multiple times or 
not unlocking it at all (ilsually in code loops) 
woultl disable preemption well beyond the end 
of a critical section or enable it before the entl. 
A coherent locking architecture with autonlatecl 
debugging facilities was needed to ship a reliable 
product on time. The lock-debugging facility 
present in the original OSWl code was probably 
inadequate for the task. 

Experiments with the real-time kernel revealecl 
~~nacceptable preemption latencies, especially 
in fiinneled code paths. This deficiency indi- 
cated t h t ,  wlien moved to a multiprocessing 
platform, the existing kernel would fail to use 
atlditional processors effectively. That is, the 
kernel would not exhibit adequate parallelism 
to scale effectively. Clearly, major work was 
required to significantly increase p;~rallelism in 
the kernel. This task would likely involve renlov- 
ing most uses of funneling, eliminating some 
spin locks, and adding other spin locks to create 
;I finer granul;irity of lock~ng. 

Adapting the Base Operating System 
for Symmetric Multiprocessing 
Making the leap from a preemptive ~~niprocessor 
kernel to an effective S;MP implementation. built 
from ;I single set of kernel binaries, required con- 
tributions from the OSF/l version 1.2 and the DE<: 
OSF/l version 3.0 projects. Fundamental changes 
were introduced into the system to support siv~l). 

The basic approach planned by the Skip project 
team was first to bootstrap the DE<: OSF/l version 
1.3 kernel on the existing Alpha multiprocessing 
platforms. This task was accomplished by funneling 
all major subsystems to a single processor while sta- 
bilizing the underpinnings of the mi~ltiprocessing 
system (i.e.. the scheduler. the virti~al memory sub- 
system, the virtilal file system, and the hartlw;~re 
s11plx)rt) in the new environment. This approach 
allowed the team to make progress in unclerstand- 
ing the scope of the effort while analyzing the 
multiprocessing requirements of each kernel sub- 
system. The in-depth analysis was necessary to 
identify those subsystems in the kernel that 
required n~otlifications to run safely and efficiently 
under SMP. A s  each subsystem was confirmed to 
exhibit parallelism or was made parallel, it was 
unfi~nneled and thus freed to nln on any process01-. 
This process was iterative. If incorrectly paral- 
lelized, a subsystem will reveal itself by (1) leaving 
tlata incorrectly unprotected and thus open for cor- 
ruption and (2) developing a deadlock. i t . .  a situa- 
tion in which each of two threads holds a spin lock 
required by the other thread and thus neither 
thread can take the lock ant1 proceed. 

The efforts at parallelizing the kernel fell into 
two classes of modification: lock-based synchro- 
nization to ensure multiprocessing correctness and 
algorithmic changes to increase the level of par;tl- 
lelism achieved. 

Lock- based Sj~~zchro~zisntion 
The code base on which the DE<: OSF/l product 
is bi~ilt, i t . ,  the Open Software Fountlation's osW1 
software, provides a strong foundation for SMI'. The 
OSF further strengthened this found;~tion in osF/l 
versions 1.1 and 1.2, when it correctetl multiple 
SMI' problems in the code base and p;tralleIizecl 
(and thus unfi~nneled) additional subsystems. As 
the multipl-ocessing bootstrap effort continued. 
the te;irn analyzed and incorporatctl the OSW1 ver- 
sion 1.2 SMP improvements into DEC OSF/l version 
3.0. As strong as this starting point was, however, 
some structures in the system clid not receive the 
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appropriate level of synchronization. The team cor- 
rected these problems as they were uncovered 
through testing and code inspection. 

The DEC oSF/l  operating system uses a cornbina- 
tion of simple locks, complex locks, elevated SPL, 

and funneling to guarantee synchronized access to 
system resources and data structures. Simple locks, 
SPL, and funneling were clescribed briefly in the 
earlier discussion of preemption. Complex locks. 
like elevated SPL, are ~lsed in both uniprocessor and 
multiprocessor environments. These locks are 11~11- 

ally sleep locks-threads can block while they wait 
for the lock-which offer aclditional features, 
including multiple-rez~der-/singlewriter access and 
recursive acquisition. 

An example of the use of each synchronization 
technique follows: 

A simple lock is used to protect the kernel's call- 
out (timer) queue. In an SMP environment, mul- 
t~ple threads can 11pd;lte the callout queue at the 
same time, as each of them adds a timer entry 
to the queue. Each thread must obtain the call- 
out lock before adding an entry and release the 
lock when done. The cal lout simple lock is also 
a good example of SPL synchronization under 
n~ultiprocessing because the callout queue is 
scanned by the system clock ISR. Therefore, 
before locking tlie calloi~t lock, a thread mt~s t  
raise the SPL to the clock's IPL Otherwise, the 
thread holding the callout lock at an SPL of zero 
c;ln be interrupted by the clock iSK. which will 
in turn attempt to take the callout lock. The 
result is a permanent deadlock. 

A complex lock protects the file system direc- 
tory structure. A blocking lock is required 
because the directory lock holder must perform 
I/<) to update the directory, which itself can 
block. Whenever blocking can occur while 
;I lock is held, a complex lock is required. 

Funneling is used to synchronize access to the 
1%) 9660 CD-ROM file system.- The decision to 
funnel this file system was largely due to liniita- 
tions in the DE<: OSF/1 version 3.0 schedule; 
however, the file system is a good choice for fun- 
neling because of its gencr;~lly slow operation 
and light usage. 

To ensure adequate performance and scaling as 
processors are added to thc system, an SMP imple- 
rnent;~tion must provide for as much p;~rallelism 
through the kernel ;IS possible. The granularity of 

locks placed in the system has a major impact on 
the amount of parallelism obt;~inecl. 

During nli~ltiprocessing tlevelopment, locking 
strategies were designed to 

Reduce the total number of locks per subsystem 

Reduce the number of locks taken per subsys- 
tem operation 

Improve the level of parallelism throughout the 
kernel 

At times, these goals clashed: enhancing paral- 
lelism 11su;llly involves adcling 21 lock to some struc- 
ture or code path. This outcome conflicts with the 
goal of reclucing lock counts. Consequently, in prac- 
tice, the process of successft~lly p;~rallelizing a sub- 
system involves striking a balance between lock 
reduction and the resulting increase in lock granu- 
I;lrit)< Often, benchmarking different approaches is 
required to fine-time this balance. 

Several general trends were uncovered during 
lock ;inalysis and tuning. In some cases locks were 
removed because they were not needed; they 
were the products of overzealous synchronization. 
For example, a structure that is private to a thread 
may require no locking at all. Moreover, a data ele- 
ment that is read aton~ically needs no locking. An 
example of lock removal is tlie gettimeofd;~y( ) sys- 
ten1 call, which is used frequently by DBMS servers. 
'rlie system call simply reacls the system time, a 64- 
bit quantity and copies it to a buffer provicled by tlie 
caller. The original OSF/l system call. running on a 
32-bit architecture, had to take a simple lock before 
re;~tling the time to guarantee a consistent value. On 
the Alpha architecture, the system call can read the 
entire 64-bit time value atomically. Removing the 
lock resultecl in a 40 percent speeclup. 

In other cases, analyzing how structures are usecl 
revealed that no locking w;~s  needed. For example, 
an I/O control block called the buf structure was 
being locked in several device drivers while the 
block w;u in a state that allowetl only the device 
driver to access it. Removing these unnecess;iry 
locks saved one complex and one simple locking 
secluence per I/O operation in these drivers. 

Another effective optimiz;ition involved post- 
poning Locking until a threacl determined that it had 
actilal work to do. This technicli~e was ilsecl success- 
fully in a routine freqi~ently called in ;I tr;lnsaction 
processing benchmark. The routine, which was 
locking structures in ;unticipation of following 
a rarely used code path, was nioclified to lock only 
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when the uncommon code path was needed. This 
optimization signific;lntly reduced lock overhc;~d. 

To improve parallelism across the system, the 
DEc: OSF/l SMP development team modified the lock 
strategies in numerous other cases. 

Algorithm Changes 
In some instances. the effective migration of a sub- 
system to the multiprocessing environment 
required significilnt reworking of its fundamental 
algorithms. This section presents three examples of 
this work. The first example involves the rework 
of the process management subsystem; the second 
example is a new technique for a thread to refer to 
its own state; ancl tlie third example deals with 
enhancements in translation buffer coherency or 
"shootdown." 

ikf~rrtoigirzg Processes cr r ~ d  Pt.oces.s .gate Early ver- 
sions of the DEC OSF/l software maintained a set of 
systemwide process lists, most notably proc (static 
proc structiire array), allproc (active process list), 
and zomproc (zombie process list). These lists tend 
to be fairly long and are normally traversed sequen- 
tially. Operations involving access to these lists 
include process-creation time (fork( )), signal post- 
ing. and process termination. The original OSF/l 
code protected these process lists and the individ- 
ual proc structures themselves by means of funnel- 
ing. This meant that virtlially every system call that 
involved process state, such as exit( ). wait( ), 

ptrace( ), and sigaction( ), was also forced into 
a single funnel. Experience with real-time preemp- 
tion indicated that this approach would exact 
excessive multiprocessing costs. Although it is pos- 
sible to protect these lists with loclts, the develop- 
ment team decided that this basic portion of the 
kernel must be optimized for m;~ximum multi- 
processing performance. The OSF also recognized 
the need for optimiz;~tion; they addressed the prob- 
lem in OSF/l version 1.2 by aclopting a redesign 
of the process m;lnagement tleveloped for their 
Multimax systems by Encore Coinpiiter Corpora- 
tion. The DEC OSF/I team adopted and enhanced 
this design for hand ling process lists, process m;ln- 
agement system calls, and signal processing. 

The redesign replaces the statically sized array of 
proc structures with an array of smaller process 
identification (PID) entry structures. Each PID entry 
striicture potentially points to n tlynamically allo- 
cated proc structure. Under this new scheme, fincl- 
ing the proc structtire ;~ssociated with a user PID 
has been reduced to hashing the PID value to an 

index into the PID entry array. The process state 
associated with that PID (active, zombie, or nonesis- 
tent) is maintained in the PI[) entry structure. This 
allows process structures to be allocated dynami- 
cally, as needed, rather than st;ltic;rlly at boot time. 
;IS before. Simple locks are also added to the process 
structure to allow rnultiple thre;~ds in the process to 
perform process management system calls and sig- 
n;11 handling concurrently. These changes allowecl 
process management funneling to be removetl 
entirely, which significantly improved the degree of 
parallelism in tlie process management subsystem. 

Accessing Czlrrent TlnreadSt~rte One critical design 
choice in implementing SivlP on the DEC: OSF/I sys- 
tem concerned how to access the state of the cur- 
rently running threatl. This state includes the 
current thread's process, task. ancl virtual memory 
structures, ant1 the so-callecl ii;ire;l, which contains 
the pageable UNIX state. Access to this state, which 
threads require frequently ;IS they run in kernel 
context, must have low overhead. Further, because 
the DEC oSF/l operating system supports kernel- 
mode preemption, the method for accessing the 
current thread's state must work even if a context 
switch to another CPU occurs during the access 
operation. 

The original OSF/l code used arrays indexed by 
the CPV number to look up the state of a running 
thread. One of these arrays was the U-ADDRESS 
army, which was used to access the currently active 
uarea. The U-ADDRESS array was loaded at context 
switch time and accessed while the thread exe- 
cuted. Before the advent of multiprocessing. the 
(:PLI number was a compile-time constant, so 
that thread-state lookup involved simply reading 
a global variable to form the pointer to the data. 
Adding multiprocessing support meant changing 
the Cl'rJ number from a constant to the result of 
the wmNr1 ("Who am I?")  PALcotle call to get the 
current CPU number. (II~Lcode is the operating- 
system-specific privileged architecture library 
that provides control oves interrupts, exceptions. 
context switching, etc .9 

Using such global arrays for accessing tlie current 
thre;~d's state presented three sliortcomings: 

1 .  The V W M I  PALcode call adcled a minimum over- 
head of 21 machine cycles on the Alphaserver 
2100 server, not including further overhead due 
to cache misses or instruction stream stalls. The 
multiprocessing team felt that this was too large 
;I performance price to pap. 
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2. Allowing multiple CPUs to write sequelltial 
pointers caused cache thrashing and extra over- 
head during context switching. 

3. Indexing by <:PI1 number was not a safe practice 
when kernel-mode preemption is enabled. 
A thread coulcl switch processors in the midclle 
of an array access, and the wrong pointer would 
be fetched. Providing additional locking to pre- 
vent this hat1 ~~nacceptable performance impli- 
cations because the operation is so common. 

These prol3lems co~ivinced the team that a new 
algorithm was required for accessing the current 
thread's state. 

The solution selected was modeled on the way 
the OpenVMS VAX system uses the processor inter- 
rupt stack pointer to derive the pointer to per-CPU 
state.9 In the OSF/1 system, each thread has its own 
kernel stack. By aligning this stack on a power-of- 
two boundary, a simple masking of the stack 
pointer yields a pointer to the per-thread data, such 
as the process control block (PCB) and uthread 
structure. Any data item in the per-thread area can 
be accessed with the following code sequence: 

I d a  r16, MASK # G e t  mask v a l u e  
b i c  sp, 1-16, r O  # Mask s t a c k  p o i n t e r  t o  

p o i n t  t o  s t a c k  b a s e  
l d q  rx, O F F S E T ( I - 0 )  # Add o f f s e t  t o  b a s e  

and f e t c h  i t e m  

Accessing thread state using the kernel stack 
pointer solves all three problems with CPU-number- 
based indexing. First, this technique has very low 
overhead; accessing the current thread's data 
involves only ;r simple masking operation and a read 
operation. Second, using the kernel stack pointer 
incurs no extra overhead during context switching 
because the pointer has to be loacled for other uses 
Third, because thread stack areas are pages, no 
cache conflicts exist between threads running on 
different processors Finally, the data access can 
be preempted at any point, and the correct polnter 
is still fetched. No processor-dependent state is 
used to access the current threacl state. 

Interprocessor Translation Lookaside Buffer 
Shootclown Alpha processors employ translation 
lookaside buffers (TLRs) to speed up the translation 
of physical-to-virtual mappings. The TLB caches 
page table entries (PTEs) that conti~in virtual-to- 
physical address mappings and access control infor- 
mation. Unlike data cache coherency, which the 

hardware maintains, TLH cache coherency is a task 
of the software. Thc L)EC OSF/l system uses an 
enhanced version of the TLB shootdown algorithm 
developed for the Mach kernel to maintain TLR 
coherency."J First, a modification to the original 
shootdown algorithm was needed to implement 
the Alpha architecture's address space numbers 
(ASNs). Second, a syncllronization feature of the 
original algorithm was removed entirely to enhance 
shootdown performance. This feature provided 
synchronization for architectures in which the 
hardware can moclify nEs,  such as the VAX plat- 
form; the added protection is unnecessary for 
the Alpha architecture. 

The final shootdown algorithm is as follows. The 
physical map (PhMP) is the software structiire that 
holds the virtual-to-physical mapping information. 
Each task within the system has a P M P ;  operating 
system mappings hwe a special kernel PIMAP. Each 
PkMP contains a list of processors currently iising 
the associated address space. To initiate a virt~~al-to- 
physical translation change, a processor (the initia- 
tor) first locks the PMAP to prevent any other threads 
from modifying it. Next, the initiator updates the PTE 
mapping in memory and flushes the local TLB. The 
processor then sends an interprocessor interrupt 
to all other processors (the responders) that are 
currently active in the same address space. Each 
responder needs to acknowledge the initiator and 
invalidate its own mapping. Once all responders 
are accounted for, the initiator is free to continue 
with the knowledge that all TLBs are coherent on 
the system. The initiator marks nonactive proces- 
sors' ASNs inactive, spins while it waits for other 
processors to check in, and then unlocks the PIMAP. 
Figure 1 shows this final TLB shootdown algorithm 
as it progresses from the initiating processor to the 
potential responcling processors. 

Developing the Lock Package 
Key to meeting the performance and reliability 
goals for the multiprocessing portion of the DEC 
OSF/l  version 3.0 release was the development o f  
a lock package with the follonling characteristics: 

Low execution and memory overhead 

Flexible support for both uniprocessor ant1 
multiprocessor pl;~tforms, wit11 and without 
real-time preemption 

Automated debugging facilities to detect incor- 
rect locking practices at run time 
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Initiator: Responders: 
Lock the PMAP. 
Update the translation map (PTE). 
Invalidate the processor TLB entry. 
Send an interprocessor interrupt to all 

processors that are using the PMAP. 

Mark the nonactive processors' ASNs inactive. 
Spin while it waits for other processors to check in. 
Unlock the PMAP. 

Acknowledge the shootdown. 
Invalidate the processor TLB entry. 
Return from the interrupt. 

Statistical facilities to track the number of locks development team hat1 to enhance the lock package 
used, how many times a lock is taken, antl how to be configurable at boot time. That is, the package 
long threads wxit to obtain locks needed to be able to tailor itself to fit the configura- 

Of course, the overall role of the lock package 
is to provide ;I set of synchroniz.ation primitives. 
tIi:.lt is, the simple ant1 complex locks tlescribetl in 
earlier sections. To support kernel-mode tIire;~d 
preemption, DEC OS1'/1 version 1.0 had extended 
the lock package originally clelivered with OSF/l 

version 1.0. Early in the DEc osF/1 version 3.0 proj- 
ect, the development team extended the package 
again to optimize its performance and to add tlie 
desired debugging and statistical features. 

As previously noted, a major goal for I>E(: oSW1 
version 3.0 was to ship a single version of its kernel 
objects, instead of tlie base and real-time sets of 
previous ~~eleases. Therefore, simple locks would 
have to be co~npiletl into the kernel, even for ker- 
nels that woultl run only on uniprocessor s)atems. 
Achieving this goal required minimizing the size of 
the lock structure; jt would be unaccel?t;ll,le to 
have hundreds of kilobytes (KB) of memory dedi- 
cated to lock structi~res in systems t l ~ ; l t  clicl not use 
such structures. Further. the simple lock and 
~r~i lock invocations required by the nii~ltiprocess- 
ing code woultl have to  be present for all platforms, 
which woultl raise serious performance issues for 
tlniprocessor systems. In fact, in the original <>SF/l 
lock package, the (:I'1J overhead cost of compiling 
in the lock code was between I antl 20 percent. 
Compute-intensive bcriclimarks slio\vetl the cost to 
be less than 5 percent. but the cost for multiuser 
benchmarks wns greater than 10 percent, which 
represents an unacceptable performance dcprxda- 
tion. To meet the goill of a single set o f  bini~ries, the 

tion and real-time requirements of the plntform on 
which it would run. 

The lock package supplied by t1.1~ oSF/l system 
was further deficient in that it did not >upport error 
checking when locks were asserted. This tleficienq 
left developers open to the most cornmoll tormen- 
tor of concurrent programmers. i t . ,  dead locks. 
Without error checking, potential system hangs 
caused by locks being asserted in the wrong order 
c o ~ ~ l d  go untletected for years ant1 be difficult to 
debug. A formal locking order or hierarchy for all 
locks in  t l~e  s).stem had to be established, antl the 
lock package neetled tlie ability to check the hierar- 
chy o n  each locli taken. 

These needs were met by introducing the notion 
of lock mode to the lock p;~ck;~ge. I>cvelopers 
defined the following five motles ancl associated 
roles: 

Mode 0: N o  Jock operations; for production 
uniprocessor systems 

Mocle 1 : Lock counting only to miinage kernel 
preemption; for procluction real-time unipro- 
cessor sysrerns 

Mode 2: Locking without kernel preemption; 
for prod~~ction nlultiprocessing systems 

Mode 3: Locking with kernel preemption; for 
production real-time multiprocessing systems 

Mode 4: Full lock debugging with or without 
preemption; for ;lny development system 
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The defi~ult uniprocessor lock mode is 0; the mul- 
tiprocessing default is lock mode 2. Both selections 
favor non-real-time production systems. The sys- 
tem's lock mode, however, can be selected at boot 
time by a number of mechanisms. Lock modes are 
implemented through a dynamic lock configura- 
tion scheme that essentially iqstalls the appropriate 
set of lock primitives for the selected lock mode. 
Installation is realized by patching the compiled-in 
function calls, such as simple-lock( ), to dispatch 
to the corresponding lock primitive for the selected 
lock mode. This technique avoids the overhead 
of dispatching indirectly to different sets of lock 
primitives for each call, based on the lock mode. 
The compiled-in lock function calls to the lock 
package are all entry points that branch to a call- 
patching routine called simple-lock-patch( ). This 
routine changes the calling machine instruction to 
be patched out (for lock mode 0) or to branch to 
the corresponding primitive in the appropriate set 
of actual primitives, and then branches there (for 
lock modes 1 through 4). Thus, the overhead for 
dynamically switching between the versions of sim- 
ple lock primitives occurs only once for each code 
path. In the case of lock mode 0, calls to simple 
lock primitives are "back patched" out. Under this 
model, uniprocessor systems pay a one-time cost to 
invoke the simple lock primitives, after which the 
expense of executing a lock primitive is reduced to 
executing a few no-op instructions where the code 
for the lock call once resided. 

To address memory consumption issues and to 
provide better system debug capabilities, the devel- 
opers reorganized the lock data structures around 
the concept of the lockinfo structure. This struc- 
ture is an encapsulation of the lock's ordering (hier- 
archical relationship) with surrounding locks and 
its minimum SPL requirement. Lock debugging 
information and the lock statistics were decoupled 
from the lock structures themselves. To facilitate 
the expression of a lock hierarchy, the developers 
introduced the concept of classes and instances. 
A lock class is a grouping of locks of the same type. 
For example, the process structure lock constitutes 
a lock class. A lock instance is a particular lock of 
a given class. For example, one process structure 
simple lock is an instance of the class process struc- 
ture lock. Error checking and statistics-gathering 
are performed on a lock-class basis and only in lock 
mode 4. 

Decoupling the lock debugging information 
from the lock itself significantly reduced the sizes 

of the simple and complex lock structures to 8 and 
32 bytes, respectively. Embedded in both structures 
is a 16-bit index into the lockinfo structure table 
for that particular lock class. The lockinfo structure 
is dynamically created at system startup in lock 
mode 4. All classes in the system are assigned a rela- 
tive position in a single unified lock hierarchy. 
A lock class's position in the lockinfo table is also 
its position in the lock hierarchy; that is, locks must 
be taken in the order in which they appear in the 
table. Lock statistics are also maintained on a per- 
class basis with separate entries for each processor. 
Keeping lock statistics per processor and separat- 
ing this information by cache blocks eliminates 
the need to synchronize lock-primitive access to 
the statistics. This design, which is illustrated in 
Figure 2, prevents negative cache effects that could 
result from sharing this data. 

Once this powerful lock package was opera- 
tional, developers analyzed the lock design of their 
kernel subsystems and attempted to place the locks 
used into classes in the overall system lock hierar- 
chy. The position of a class depends on the order in 
which its locks are taken and released in relation to 
other locks in the same code path and in the sys- 
tem. At times, this static lock analysis revealed prob- 
lems in existing lock protocols, in which locks were 
taken in varying orders at different points in 
the code. Clearly, the lock protocol needed to be 
reworked to produce a consistent order that could 
be codified in the hierarchy. Thus, the exercise of 
producing an overall lock hierarchy resulted in 

LOCK INSTANCES LOCK CLASS LOCK STATISTICS 

Figure 2 Lock Structure 
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a significant cleanup of the original multiprocess- 
ing code base. To add a new lock to the system, 
a developer would have to determine the hierarchi- 
cal position for the new lock class and the rnini- 
mum SPL at which the lock must be taken. 

Running the system in lock mode 4 and exercis- 
ing code paths of interest provided developers with 
immediate feedback on their lock protocols. Using 
the hierarchy and SPL information stored in the run- 
time lockinfo table, the lock primitives aggressively 
check for a variety of locking errors, which include 
the following: 

Locking a lock out of hierarchical order 

Locking a simple lock at an SPL below the 
required minimum 

Locking a simple lock already held by the caller 

Unlocking an unlocked simple lock 

Unlocking a simple lock owned by another CPU 

Locking a complex 1oc.k with a simple lock held 

Locking a complex lock at interrupt level 

Sleeping with a simple lock held 

Locking or unlocking an uninitialized lock 

Encountering any of these types of violation 
results in a lock fault, i.e., a system bug check that 
recortls the information required by the developer 
to quickly track down the lock error. 

The reduction in lock sizes and the major 
enhancement of the lock package enabled the team 
to realize its goal of a single set of kernel binaries. 
Benchmarks that compare a pure uniprocessor 
kernel and a kernel ill lock mode 0 that are both 
running on the same hardware show a less than 
3 percent difference in performance, a cost consid- 
ered by the team to be well worth the many advan- 
tages to returning to a unified kernel. Moreover, the 
debugging capabilities of the lock package with 
its hierarchical scheme streamlined the process of 
lock analysis and provided precise and immediate 
feedback as developers adapted their subsystems to 
the multiprocessing environment. 

Adapting the Scheduler for 
Multiprocessing 
The normal scheduling behavior, i.e., policy, of 
the OSF/l system is traditional UNlX time-sharing. 
The system time-slices processes based on a time 
quanti~m and adjusts process priorities to favor 
interactive jobs over compute-intensive jobs. To 

support the POSIX real-time standard, the DEC OSF/l 
system incorporates two additional fixed-priority 
scheduling policies. first in, first out (POLI<:Y-FIFO) 
and round robin (POLICY-RR). 

A time-share thread's priority degrades with CPU 
usage; the more recent the thread's CPU usage, 
the more its priority degrades. (Note that OSF/l 
scheduling entities are threads rather than pro- 
cesses.) In contrast, a fixed-priority thread never 
suffers priority degradation. Instead, a POLICY-RR 
thread runs until it blocks voluntarily, is preempted 
by a higher-priority thread, or exhausts a quantum 
(and even then, the round robin scheduling applies 
only to threads of equal priority). A 1'OLICY-FIFO 
thread has no scheduling quantum; it runs until it 
blocks or is preempted. These specialized policies 
are used by real-time applications and by threads 
created and managed by the kernel. Examples 
of these kernel threads include the swapper and 
paging threads, device driver tlireads, and network 
protocol handlers. A feature called thread binding, 
or hard affinity, was aclded to DEC OSF/l version 3.0. 
Binding allows a user or the kernel to force a thread 
to run only on a specified processor. Binding sup- 
ports the funneling feature used by i~nparallelized 
code ancl the bind-to-cpu( ) system call. 

The goal of a multiprocessing operating system in 
scheduling threads is to run the top N priority 
threads on N processors at any given time A simple 
way to accomplish this would be to schedule 
threads that are not bound to a CPU in a single, global 
run queue and schedule bound threads in a run 
queue local to its bound processor. When a proces- 
sor reschedules, it would select the highest-priority 
thread available in the local or the global run queue. 

Scheduling threads out of a global run queue is 
highly effective at keeping the N highest-priority 
threads running; however, two problems arise with 
this approach: 

1.  A single run queue leads to contention between 
processors that are attempting to reschedule, as 
they race to lock the run queue and renlove the 
highest-priority thread. 

2. Scheduling with a global run queue does not 
take advantage of the cache state that a thread 
builds on the CPU where it last ran. A thread that 
migrates to a different processor must reload its 
state into the new processor's cache. This can 
substantially degrade performance. 

To help preserve cache state and reduce wastefi11 
global run queue contention, the developers 
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enhancecl the multiprocessing scheduler by adding 
tn7o new scheduling models: a soft-affinity sched- 
uling model for time-share threads and a last- 
processor-preference model for fixed-priority 
threads. Under these models, each processor sched- 
ules time-share and bound threads in its local run 
queue, and it schedules unbound fixed-priority 
threads out of a global run queue. 

Fixed-priority threads scheduled from a global 
run qi~eue are able to run as soon as possible. This 
behavior is required for high-priority tasks like 
kernel threads and real-time applications. The last- 
processor-preference model gives a fixed-priority 
thread a preference for running on the processor 
where it last ran; if that processor is busy, the thread 
runs on the next available processor. Each time- 
share thread is softly bound to the processor on 
which it last ran; that is, the thread shows an affinity 
for that processor. Unlike funneling or user bind- 
ing, wl~ich support hard (mandatory) affinity, soft 
affinity allows a thread to run elsewhere if it is 
advantageous, i.e., if such activity balances the load. 
Otherwise, the softly bound thread tries to return 
to the processor where it last ran and where its 
recent cache state may still reside. 

Under load, however, a soft affinity model used 
alone can degenerate to a state where one proces- 
sor builds up a large queue of threads, leaving the 
other processors with little to do and thus dimin- 
ishing the performance of the multiprocessing sys- 
tem. To mitigate these side effects of soft affinity, 
developers paired the soft affinity feature with the 
ability to load-balance the runnable threads in the 
system. To keep the load of time-share jobs spread 
evenly across processors, the scheduler must peri- 
odically load-balance the system. In addition to dis- 
tributing threads evenly across the local run queues 
in the system, this load-balancing activity must 

Cost no more in processing time than it saves 

Prevent excessive thread movement among 
processors 

Recognize and effectively acconlmodate changes 
in the job mix 

To implement load balancing, each processor 
maintains a time-share load average, i.e., the aver- 
age local run queue depth over the last five sec- 
onds. Each processor updates its own load average 
on each system clock tick. Processors also keep 
track of the time they spend handling interrupts 
and running fixed-priority threads, which are not 
accounted for in the local run queue depth. Taking 

Digital Technical Journal Vnl. 6 A'o.3 S~rrnmer 1394 

a processor's total potential execution time for a 
scheduling period and subtracting from this time 
the interrupt-processing and fixecl-priority run 
times yields the total time available on a processor 
(processor ticks available) to run time-share threads. 
In the worse case, a processor could be completely 
consumed by fixed-priority threads and/or inter- 
rupt processing and have no time to run time-share 
threads. In this extreme case, the scheduler should 
give no time-share load to that processor. 

Adding the time-share load averages of all proces- 
sors determines the aggregate time-share load for 
the system. Similarly, summing the processor ticks 
available yields the total time available on the sys- 
tem for handling time-share tasks. Using this data, 
the scheduler calculates the desired load for each 
processor once per second, as follows: 

Processor ticks System time-share 
Desired - available 

- 
load 

load System ticks available 

Load balancing is called for when at least one pro- 
cessor is above and one is below its desired load by 
a minimal amount. If this condition arises, then 
those processors under their desired loads are 
declared to be "out of balance." The next time an 
out-of-balance processor rescl~edules, it will try to 
take a thread from the local run queue of a proces- 
sor that is above its desired load ("thread stealing"). 
A processor can declare itself back in balance when 
its current load is above its desired load or when 
there are no eligible threads to steal. Figure 3 shows 
a simplified load-balancing scenario, in which a 
processor below its desired load steals a thread 
from a processor above its desired load. 

To help preserve the cache benefits of soft affin- 
ity, a thread is eligible for stealing only when it has 
not run on its current processor for some config- 
urable number of clock ticks. After this time has 
elapsed without a thread running, the chance of it 
having significant cache state remaining has dimin- 
ishecl sufficiently that the thread is more likely to 
benefit from migrating to another processor and 
running immediately than from waiting longer to 
run on its current processor. 

To demonstrate that soft affinity with load bal- 
ancing improves multiprocessing performance 
through cache benefits and the elimination of run 
queue contention, developers ran a simple test pro- 
gram. The program, which writes 128 KB of data, 
yields the processor, and then reads the same data 
back, was run on a four-processor DEC 7000 system. 
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( CPU 1 ( 
CURRENT LOAD 
(NUMBER OF 
THREADS) 

DESIRED LOAD 

I ONETHREAD I 

LOCAL 

QUEUE 

HIGHEST PRIORITY 
THREAD BETWEEN 
LOCAL RUN QUEUES 
AND GLOBAL RUN QUEUE JJ-J- 
WINS THE PROCESSOR 

GLOBAL 

QUEUE 

Tab.le 1 shows tlie results of running ~nultiple 
versions of this program with and without soft affin- 
ity and load balancing in operation. Performance 
benefits appear only when multiple copies of the 
program begin piling up in the run queues at 
the 16-job level. Prior to this point, each job keeps 
running on the same processor, i.e., the cache it had 
just filled still had its data cached when tlie pro- 
gram read it back-the ideal case. At the 16-job 
level, the four processors must be time-shared. The 
jobs that are running with soft affinity now benefit 
significantly because they continue to run on the 
same processor and thus find some of their cache 
state preserved from when they last ran. The sys- 
tems that schedule from a global run queue provide 
no such benefit. Jobs take longer to complete, since 
they are likely to run on a different processor 
for each time slice and find no cache state that they 
can reuse. 

The soft affinity and load-balancing feati~res 
improved many other multiuser benchmarks. For 
example, a transaction processing benchmark 
showed a 17 percent performance improvement. 

Focusing on Quality 
The error-checking focus of the lock package is just 
one example of how the DE<: OSF/l version 3.0 proj- 
ect focused on the quality and stability of the prod- 
uct. Most rnembers of the lni~ltiprocessing team 
had been involved in an SMP development effort 
prior to their DEC OSF/l effort. This past experi- 
ence, coupled with the cliffici~lties other vendors 
had experienced with their own multiprocessing 
irnplernentations, reinforced the need to have a 
strong quality focus i.11 the SMP project. 

Developers took niultiple steps to ensure that 
tlie SMP solution dehered in DEC OSF/l version 3.0 
would be production qualit): including 

Table 1 Benefits of Soft Affinity with Load Balancing (SAILB) 

Number 
of Jobs 

- 

Time with SA/LB 
(Seconds) 

Time without 
SAILB (Seconds) 

Benefit from 
SAIL6 (Percent) 
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Code reviews 

Lock debugging 

In-line assertion checking 

Multithreaded test suite development for SMP 

qualification 

The base kernel code was reviewed for multi- 
processing correctness. I>uring this review phase, 
checks were made to ensure that the proper level of 
synchronization was employed to protect global 
data structures. Ni~merous defects were uncovered 
during this process and corrected. Running code 
with lock checking enabled provided empirical 
evidence of the incremental improvements of tlie 
multiprocessing implementation. 

Beyond code reviews and lock debugging, inter- 
nal consistency checks (assertions) were coded 
into the kernel to verify correctness of operations 
at key points. Assertion checking was enabled dur- 
ing the develop~nent process to ensure that the ker- 
nel was functioning correctly; it was then compiled 
out for the production version of the kernel. 

In parallel with the operating system develop- 
ment effort, new component tests were designed 
to force as much concurrency as possible through 
particular code paths. The core of the test suite is 
a threacl-race library, which consists of a set of rou- 
tines that can be usecl to construct m~~ltithreaded 
system-call exercisers. The library provides the 
ability to commence multiple test instances simul- 
taneously. The individual tests are then combined 
to form focused subsystem tests and systemwide 
tests. These tests have been used to uncover multi- 
ple race conditions in the operating system. 

The UNIX development organization hatl a four- 
processor DEC 7000 system deployed in its develop- 
ment environment for more than 7 months prior 
to releasing the SiviP product. This system has been 
extremely stable, with few complaints from the 
user community. Extensive internal and external 
field testing produced similar results. 

Measuring Multiprocessing 
Performance Outcomes 
The ~llajor functionality clelivered with SMP is 
improved performance tl~rough application con- 
currency. The goal of the SIMP project was to 
provitle leadership performance in tlie areas of 
compute and data servers. To gauge success in this 
effort, several industry-standard benchmarks were 

utilized. These benchmarks include SPECrate-lNT92, 
SPECrate-FP92, and AIM Suite 111. 

SMP performance is measured in terms of the 
incremental performance gained as processors are 
added to the system. Adding processors by no means 
guarantees increased system performance. Systems 
that have I/O or memory limitations rarely benefit 
from introducing additional CPUs. Systems that are 
compute bound tend to have the largest potential 
for gain from additional processors. Note that large, 
monolithic applications tend to see little perfor- 
mance improvement as processors are added 
because such applications employ little concur- 
rency in their designs. 

Performance tuning for SMP was an iterative pro- 
cess that can be characterized as follows: 

1. Collect and analyze performance data 

CPU utilization across the processors 

Lock statistics 

I/O rates 

Context switch rates 

Kernel profiling 

2. Identlfy areas that require improvement. 

3. Prototype changes. 

4. Incorporate changes that demonstrate improve- 
ment. 

5. Repeat steps 1 through 4. 

In reality, the process has two stages for each 
benchmark. The initial phase was devoted to clriv- 
ing the system to become conlpute bound. The sec- 
ond phase improved code efficiencies. 

Figures 4 and 5 show that, as expected, the 
SPECrate-lNT92 and SPECratecFP92 benchmarks 
scale almost linearly. Both of these bencl~marks 
are compute intensive and make only nominal 
demands on the operating system. 

MM Suite 111 is a multiuser benchmark that 
stresses multiple components of an operating sys- 
tem, including the virtual memory system, the 
scheduler, UNIX pipes, and the 110 subsystem. 
Figure 6 shows AIM 111 results for one and four pro- 
cessors, with a resulting 3.27 to 4 scaling factor. 
This equates to a greater than 80 percent scaling 
factor, a figure well within the goals for this bench- 
mark at first multiprocessing release. Efforts to pro- 
duce still better results are under way. 

AIM Suite 111 scaling appears to be gated by a 
single test in the AIM Suite HI benchmark, i.e., 
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DXML: A High-performance 
Scientific Subroutine Library 

Mathematical szibroutine libraries for science and engineering applications are an 
iinportant tool in high-l,erfornzclnce con~puting. identfi~ing and optimizing 
frequently used, numericallj~ irztensive operations, these libraries help in reducing 
the cost of conzput~rtion, enhancing portability, a ~ l d  inzproving productivity The 
Digital extended ~Vlath Libtarjl is a set of p~lblic do~ncrin and Digital proprietary 
softzuare that has been optimized for high pevformance on Alpha systems. In this 
papel; UXcVIL and the issues related to librarjl softzi~are technologjr are described. 
Specific a~a~nples illustrate how algoritb~ns can be optimized to take advantage of 
the ctrchitectzire of Alpha systems.  modern algorithnzs that effectivelj~ exploit the 
menaory bierarclgi enable DXWL !*outines to provide s~lbstaiztic11 i~nprouei?zents in 
perfornzance. 

The Digital extended Math Library (DXML) is a set 
of mathematical subroutines, optimizecl for high 
performance on Alpha systems. These subroutines 
perform numerically intensive subtasks that occur 
frequently in scientific computing. They can tliere- 
fore be used as building blocks for the optimization 
of various science ancl engineering applications in 
industries such as chemical, aerospace, petroleum, 
automotive, electronics, finance, and transportation. 

In this papel; we discuss the role of mathematical 
software libraries, followed by an overview of 
the contents of the Digital extended Math Library. 
DXML includes optimized versions of both the stan- 
dard BLAS and LAPACK libraries as well as libraries 
designed and developed by Digital for signal pro- 
cessing and the solution of sparse linear systems 
of equations. Next, we describe various aspects of 
library software technology, including the design 
ancl testing of D)(1\1L subroutines. Using Itey routines 
as examples, we illlistrate the techniques used 
in the performance optimization of the library. 
Finally, we present clata that demonstrates the per- 
formance improvement obtained through the use 
of DXML. 

The Role of Math Libraries 
Early matl~ematical libraries concentrated 011 sup- 
plementing the functionality provided by the 
Fortran compilers. In addition to routines such as 
sin and exp, which were includecl in the run-time 

math library, more complicated special functions, 
linear algebra algorithms, and Fourier transform 
algorithms were includetl in the software layer 
between the hardware and the user application. 

Then, in the early 1970s, there was a concerted 
effort to produce high-quality numerical software, 
with the aim of provitling end users with implemen- 
tations of numerical algorithms that were stable, 
robust, and accurate. This led to the develop~nent 
of several math libraries, with the public domain 
LINPACK and EISPACK libraries for the solution of 
linear and eigen systems, setting the standards for 
future development of math software.'-' 

The late 1970s and early 1980s saw the availability 
of advanced architectures, including vector ant1 
parallel computers, as well as high-performance 
workstations. This added another facet to the devel- 
opment of math libraries. namely, the implernen- 
tation of algorithms for high efficiency on an 
underlying architecture. 

The effort to produce mathematical software thus 
became a task of building bridges between numeri- 
cal analysts, who devise algorithms, computer archi- 
tects, who clesign high-performance computer 
systems, and computer users, who need efficient, 
reliable software for solving their problems. Con- 
sequently these libraries embody expert knowledge 
in applied mathematics, numerical analysis, data 
structures, software engineering, compilers, oper- 
ating systems, and computer ;irchitectiire and 
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;Ire an important programming tool in the use of 
high-performance compi~ters.  

Motlern superscalar RISC architectures with 
floating-point pipelines, such as tlie Alpha, have 
deep memory hierarchies. These include floating- 
point registers, multiple levels of caches, and virtual 
memory. The significant latency ;lnd bandwidth dif- 
ferences between these memory levels imply that 
numerical algorithms h;lve to be restrilcturetl to 
make effective use of the data brouglit into any one 
level. The performance of an algorithm is , 'I 1 .  SO ~11s- 
ceptible to the order in which computations are 
scheduled as well as the higher cost associated with 
some operations such as floating-point square-root 
and division. 

The architecture of tlie Alpha systems ;111d the 
technology of the Fortran ;und C compilers usually 
provide an efficient cornpilting environment with 
adequate performance. However, there is often 
room for improvement, especially in engineering 
and science applications. where vast amounts of 
data are processetl and repeatecl operations are per- 
formed o n  each data element. One way to achieve 
these improvements is through the use of opti- 
mized subroutine libraries. 

The Digital extendecl Math Library is a collection 
of routines that performs frequently occurring, 
numerically intensive operations. By identifying 
such operations and optimizing them for high per- 
formance on  Alpha systems. DXML provides several 
benefits to the compi~tational scientist. 

It allows tlefir~ition of functions at a sufficiently 
high level ;lnd therel0re optimization beyond 
the capabilities of the compiler. 

It makes tlie architecture of tlie systems more 
transparent to the usel-. 

It improves productivity by providing easy 
access to Iiiglily optimized, efficient code. 

It enhances the por t~bi l i ty  of user software 
through the support  of stand21rd libraries and 
interfaces. 

I t  promotes good software engineering practice 
and avoids tluplication of work by identifying 
and optimizing common functions across sev- 
eral application areas. 

Overview oJDXML 
L~XML contains al~iiost 400 user-c;~ll;tble routines, 
optimized for Alpha systems.j This includes both 
software developecl by Digital as well as the ULAS 

and LAPACK libraries.  most routines are available 

in four versions: real single precision, re;~l double 
precision, complex single precision. and complex 
double precision. 

DXML is available on  both OpenVMS and DEC 
OSF/1 operating systems. Its routines can be called 
from either Fortrxn o r  C ,  provided the difference in 
array storage between these langu;~ges is taken into 
account. DXML is av;iil;tble as ;I sl1;lreable library, 
with a simple interface, enabling easy access to the 
routines. On DE<: OSF/I systems, DXML supports the 
IEEE floating-point format. On C)penVMS systems, 
either the IEEE floating-point format o r  the VAX 

F-flo;~t/G-float format can be selected. 
DXML routines can be broadly categol-ized into 

the following four areas: 

B U S .  The Basic Li11e;ir Algebra Subroutines inclucle 
the standard HlAS and Digital enhancements. 

LAI'ACK. The Linear Algebra t'ACKage includes 
linear and eigen-system solvers. 

9 Signal processing. This includes fast Fourier 
tr;lnsforms (FFTs), convolution, and correlation. 

Sparse linear system solvers. 'These include 
direct and iterative solvers. 

Of these, the signal-processing library and the 
sparse linear system solvers are designetl, devel- 
oped, and optimized by Digital. The majority of the 
B U S  routines and the IA3ACK library are versions of 
the pilblic domain standard that were optimized for 
the Alpha architecture. By slipporting tlie industry 
standard interfaces of these libraries, DXNlL pro- 
vides both portability of user code and high perfor- 
mance of the optimized software. 

We next provide a brief description of the h ~ n c -  
tionality provided by each subcomponent of DXML. 
Furtlier details are available in the Digital extended 
Math Library Reference Manua1.i 

The vector library consists of seven double- 
precision ro~lt ines that perform operations such as 
sine. cosine, and natural logarithm, o n  data stored 
as vectors. 

BLAS I 
The B ~ s i c  Line;~r Algebra level I subprograms per- 
form low-grani11;lrity operations o n  vectors that 
involve one or  two vectors a5 input and return 
either a vector or  a scalar as output."xamples of 
BLAS 1 routines include dot product, index of the 
maximum element in a vector, and s o  on.  
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BLAS I Extensions (BLAS IE) 
Digital has extended the functionality of the BLAS 1 
routines by including 13 similar operations. These 
include index of the  minimum element of a vector, 
sum of the elements of a vector, and s o  on. 

BLAS I Sparse (BLAS IS) 
DXML also includes nine routines that are sparse 
extensions of the BLAS 1 routines. Of these, six art. 
from the sparse BLAS 1 standard and three are 
enhancernetits.- These routines operate on  two 
vectors, one  of which is sparse and stored in a com- 
pressed form. As most of the elements in a sparse 
vector are zero, both computational time and mem- 
ory are reduced by storing and operating o n  only 
the nonzeros. B U S  1S routines include construc- 
tion of a sparse vector from the specified elements 
of a dense vector, dot product, and so  on.  

BLAS 2 
The BIAS level 2 routines perform opesations of 
a higher granularity than the level 1 routincs.8 These 
inclutle matrix-vector operations such as matrix- 
vector product, rank-one and rank-two upclates, 
and solutions of triangi~lar systems of equations. 
V~rious  storage schemes are supported, including 
general, sj~mmetric, banded, and packed. 

BIAS 3 
The BLAS level 3 routines perform matrix-matrix 
operations, which are of a higher granularity than 
the HLAS 2 operations. These routines include 
matrix-matrix product, rank-k updates, solution of 
triangnlar systems with multiple right-hand sides, 
and multiplic;~tion ofa  matrix by a triangular matrix. 
Where appropriate, these operations are defined 
for matrices that may be general, symmetric, or  tri- 
angular9 The functionality of the public domain 
BLAS 3 library has been enhanced by three addi- 
tional routines for matrix addition, subtraction, 
and transpose. 

LA PACK 
DXM1. includes the standard Linear Algebra 
PACKage, LAPACK, which supersedes the LINPACK 
and EISPACK packages by extending the functional- 
ity, using algorithms with higher accurac): ant1 
improving the performance through the use of 
the optimizecl RLAS library.KJ LAPACK can be used 
for solving many common linear algebra proh- 
lems, including solution of linear systems, linear 
least-squares problems, eigenvalue problems, and 

singular value problems. Various storage schemes 
are supported, including general, band, tridiagonal, 
symmetric positive definite, and s o  on.  

Signal Processing 
The signal-processing subcomponent of DXML 
includes FFTs, convolutions, and correlations. 
A comprehensive set of Fourier transforms is 
provided, including 

FFTs in one,  two. and three dimensions 

FFTs in forward and inverse directions 

Multiple one-dimensional transforms 

There is n o  limit on  the niinlber of elements being 
transformed, though the performance is best when 
the data length is a power of 2. Popular storage for- 
mats for the input and output  data are supported. 
allowing for possible symmetry in the  output data 
and consequent reduction in tlle storage required. 
Further efficiency is provided through the use of 
the three-step FFT, which separates the process 
of setting u p  and deallocating the internal data 
s t r u c t ~ ~ r e s  from the actt~al  application of the FFT. 
This results in  significant performance gain when 
repeated application of FFTs is required. 

The convolution and correlation routines in 
D?(IML support  both periodic (circular) and nonperi- 
odic (linear) definition. A discrete summing tech- 
nique is used for calculation. Special versions of the 
routines allow control of output  options such as 
the range of coefficients computed,  scaling of the 
output,  ant1 addition of the output to an array. 

All FFT, convolution, and correlation routines are 
available in both single and double precision and 
support  both real and complex data. 

Sparse Iterative Solvers 
DXML includes a set of routines for the iterative solu- 
tion of sparse linear systems of equations using pre- 
conditioned, conjugate-gradient-like methods.I1.l2 
A flexible user interface, based on :t matrix-free for- 
mulation of the solver, allows a choice among vari- 
ous solvers, storage schemes, and preconditioners. 
This formulation permits the user to define his or  
her own  preconditioner and/or storage scheme for 
the matrix. It also allows the user to store the 
matrix using one  of the storage schemes defined 
by DXML and/or use the precontlitioners provided. 
A driver routine provides a simple interface to the 
iterative solvers when the DXML storage schemes 
and preconditioners are used. 
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The different iterative methods provided are 
(1) conjugate gradient, (2) least-squares conjugate 
gradient, (3) biconjugate gradient, (4) conjugate- 
gradient squared, and (5) generalized minimum 
residual. Each method supports various applica- 
tions of the preconditioner: left, right, split, and 
no preconditioning. 

The matrix can be stored in the symmetric diago- 
nal storage scheme, the unsymmetric diagonal stor- 
age scheme, or the general storage (by rows) 
scheme. Three preconditioners are provided for each 
storage scheme: diagonal, polynomial (Neumann), 
and incomplete LU with zero diagonals added. 

A choice of four stopping criteria is provided, 
in addition to a user-defined stopping criterion. 
The iteration process can be controlled by setting 
various input parameters such as the maximum 
number of iterations, the degree of polynomial pre- 
conditioning, the level of output provided, and the 
tolerance for convergence. These soJvers are avail- 
able in real double precision only. 

Sparse Skyline Solvers 
The sparse skyline solver library in DXlML includes 
a set of routines for the direct solution of a sparse 
linear system of equations with the matrix stored 
using the skyline storage scheme.'3,'4 The following 
functions are provided. 

For unsymmetric matrices: 

- Profile-in storage mode 
- Diagonal-out storage mode 

- Structurally symmetric profile-in storage 
mode 

These solvers are available in real double precision 
only. 

SoNare Considerations 
As with any software effort, many software engi- 
neering issues were encountered during the design 
and development of DXML. Some issues were spe- 
cific to math libraries such as the numerical accu- 
racy and stability of the routines, while others were 
more general such as the design of a user interface, 
testing of the software, error checking, ease of use, 
and portability. We next discuss some of these key 
design issues in further detail. 

Designing the Interface 
The first task in creating a library was to decide the 
functionality, followed by the design of the inter- 
face. This included both the naming of the subrou- 
tines as well as the design of the parameter list. For 
each subcomponent in DXML, the calling sequence 
was designed to be consistent across all routines 
in that subcomponent. In the case of the BLAS and 

LDU factorization, which includes options for LAPACK libraries, the public domain interface was 

the evaluation of the determinant and inertia, maintained to enable portability of user code. 

partial factorization, statistics on the matrix, and For the routines added by Digital, the routine 

options for handling small pivots. names were chosen to indicate the function being 
performed as well as the precision of the data. 

Solve, which includes multiple right-hand sides Furthermore, the parameter lists were chosen 
and solves systems involving either the matrix or 
its transpose. 

Norm evaluation, including I-norm, infinity- 
norm, Frobenius norm, and the maximum abso- 
lute value of the matrix. 

Condition number estimation, which includes 
both the 1-norm and the infinity norm. 

Iterative refinement, including the component- 
wise relative backward error and the estimated 
forward error bound for each solution vector. 

Simple and expert drivers. 

This functionality is provided for each of the fol- 
lowing storage schemes: 

For symmetric matrices: 

- Profile-in storage mode 
- Diagonal-out storage mode 

to provide a simple interface, yet allow flexibility 
for the sophisticated user. For example, the sparse 
solvers require various real and integer parameters. 
By using arrays instead of scalar variables, a more 
concise interface that did not vary from routine 
to routine was obtained. In addition, all solver 
routines have arguments for real and integer work 
arrays, even if these are not used in the code. This 
not only provides a uniform interface but also acts 
as a placeholder for work arrays, should they be 
required in the fiiture. 

Accuracy 
The numerical accuracy of the routines in DXML is 
dependent on the problem size as well as the algo- 
rithm used, which may vary within a routine. Since 
performance optimization often changes the order 
in which a computation is performed, identical 
results between the DXML routines and the public 
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rlomain RLAS and LAPACK routines may not occilc 
The accurac)/ of the resi~lts obt;~ined is checkecl by 
ensuring that the opti~nized versions of the IHAS 
and LAPACK routines pass the public domain tests 
to within the specified to1er:ince. 

Error Processing 
Most of the routines in DXML trap usage errors and 
provide sufficient information so that the user can 
identdy ;ind fix the proble~n. The low-level, fine- 
grained computational routines. such as the ULAS 
level 1. do not provide this function bec;ulse tlie 
overhead of testing and error trz~pping would seri- 
ously clegade tlie performance. 

In the case of BLAS 2, HLAS 3, ;lnd LAPACK, the pub- 
lic domain error-reporting mechanism has been 
~1laint;iined. If all i~lpilt argument is invalid, such as 
a negative value for the order of the matrix, the rou- 
tine prints out an error message and stops. I f  a hil- 
ilre occurs in tlie course of the r~lgorithm, such :IS 

a matrix being singular to working precision. an 
error flag is set and control is returnecl to the call- 
ing program. 

The signal-processing routines report success or 
failure using a status function value. Further infor- 
mation on the error can be obtained by using a user- 
callable routine that prints out an error message and 
an error flag. The user documentation intlicates the 
actions to be taken to recover from the error. 

In the case of the sparse solvers, error is intli- 
cated by setting an error flag and printing an appro- 
priate message if the printing option is enabled. 
Control is always returned to the calling program. 

Testi~zg 
DXML routines are tested for correctness and accu- 
racy using a regression test suite. This includes 
both test cocle developed by Digital, as well as the 
public domain test codes for BLAS and LAPACK. 
These codes are used not only during the imple- 
ment;ition and performance optimization of the 
routines, but also during the builcling of the com- 
plete library from each of the subcomponents. 

The test cotles check each routine extensively, 
including checks for error exits, accuracy of the 
results obt;~inecl, inviiriance of read-only data ant1 
the correctness of all paths through tlie code. As 
the complete regression tests take over 20 hours 
to execute. two input tlata sets ;ire ~lsed: ;I short one 
that tests each routine and can be used to make a 
quick check that all subcomponents compiled and 
built correctly, ant1 :I long data set th;it tests each 
path through a routine ancl is thus more exh;iustive. 

Many of the routines, such as tlie FFTs ant1 ULAS 3, 
are tested using 1-andom input data. However, some 
ro~~tines, S I I C I I  as the sp;irse solvers, operate on spe- 
cific data structilres or matrices with specific prop- 
erties. These 1i;ive been tested using matrices 
generiited from the finite difference discretization 
of partial clifferential ec1u;ltions or using the matri- 
ces in tlie Harwell-Boeing test suite.Ii 

Another aspect to the DXML regression test pack- 
age is the inclusion of n performance test gauge. 
This software tests the performance of key routines 
in each comlwnent of I)X.\IL and is used to ensure 
that the perform;ince of DXML routines is not 
;~dversely nffectetl by cl7;lnges in compilers or the 
opfl;iting systems. 

IJei$onnance Trade-offs 
The tlesign and optimization of the routines in 
1)X;LIL often promptecl a trade-off between perfor- 
mance o n  one hand, and accuracy and generality 
on the other. Althoi~gli every effort bas been 111;lde 
not to s;icrifice accuracy for perform;tnce. the 
reordering of computations during performance 
optimization may lead to results before optimiz;l- 
tion that are not bit-for-bit identical to the results 
after optimization. In other cases, performance has 
been sacrificed to ensure generality of a routine. 
For es;~rnple, although the matrix-free formul;~tion 
of the iterative solvers permits the use of any sparse 
matrix storage scheme, it coultl result in ;I slight 
clegracl;rtion in perform;ince due to less efficient 
use of the instruction cache and the inability to 
reuse some of the d;it:i in the registers. 

Performance Optimizatiori 
I)XML routines have bcen designetl to provicle high 
~xrform;incc on the Alpha systems.l(' These 
routines are t;~ilored to talx ;ldvant;ige of the sys- 
tem characteristics sucli as the nu~nber of floating- 
point registers. the size o f  the primary and 
secontl;iry data caches, ;ind the page size. This opti- 
miz;ltion involves changes to data structures and 
the use of new algorithms as well as the restructur- 
ing of computation to effectively manage the mem- 
ory 1iier;irchy. 

Sevcral general techniques art. i~sccl ;icross all 
I)XMI. subcomponents to improve the pcrfor- 
m;rnce.l- Thcse inclutle the following techniclues: 

[Inrolling loops to make better use of the 
floating-point pipelines 

Reusing d;it;~ in registers and c:ichcs whenever 
possiblc 
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Managing the data caches effectively s o  that the 
cache hit ratio is m;iximizetl 

Accessing d;~ta using stride-1 computation 

Using algorithms that exploit the memory hierar- 
chy effectively 

Reordering computations to minimize cache and 
translation buffer thrashing 

Although many of these optimizations are done by 
the compiler, occasionally, for example in the case 
of the skyline solver. the data structilres o r  the  
implementation o f  the algorithm are such that they 
d o  not lend themselves to optimization by the com- 
piler. In these cases, explicit reordering of the com- 
putations is recluirecl. 

We next discuss these optimization techniques as 
used in specific examples. All performance data is 
for the r)EC 3000 Model 900 system using the DEC 
()sF/I version 3.0 operating system. This work- 
station uses the Alpha 21044A chip, running at  275 
meg;~hertz (MHz). The on-chip data and instruction 
caches arc each 16 kilobytes (KB) in size, and the 
secondary cache is 2 megabytes (MB) in size. 

In the next section, w e  compare the perfor- 
mance of DXML BLAS and LAPACK routines with the 
corresponding public domain routines. Both ver- 
sions are written in standard Fortran and compiled 
using identical compiler options. 

0pti.11zizntion of BLAS 1 
BLAS 1 routines operate on  vector and scalar data 
only. As the operi~tions and data structures are sim- 
ple, there is little opportunity to use advanced data 
blocking and register reuse techniques. Neverthe- 
less, as the plots in Figure 1 demonstrate, it is pos- 
sible to optimize the RLAS 1 routines by careful 
coding that t;tkes advantage of the data prefetch 
features of the Alpha 21064A chip and avoids data- 
path-related ~ t a l l s . ~ ( ~ . l ~  

Gener;~lly, the DXML routines are 10 percent to 15 
percent faster than the corresponding public 
domain routines. Occasionally, as in the case of 
DDOT for very short, cache-resiclent vectors, the 
benefits can be much greater. 

The sl1;lpes of the plots in Figure 1 rather dramat- 
ically demonstrate the benefits of data caches. Each 
plot shows very high performance for short vectors 
that reside in the I ~ - K u ,  on-chip data cache, much 
lower performance for data vectors that reside in 
the 2-MH, on-board secondary data cache, and even 
lower performance when the vectors reside com- 
pletely in memory. 
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Figure 1 Pe~for~ma~zcc. of BLAS I I<outilzes 
DDOT and DAXPY 

Optimization of BLAS 2 
BLAS 2 routines operate on  matrix, vector. and 
scalar data. The data structures are larger and more 
complex than the BLAS 1 data structures and the 
operations more complicated. Accordingly. these 
routines lend themselves to more sophisticated 
optimization techniques. 

Optimized DXVL B U S  2 routines are typically 20 
percent to 100 percent faster than the public domain 
routines. Figure 2 illustrates this performance 
improvement for the matrix-vector multiply routine. 
DGELMV, and the triangular solve routine. DTRSV.X 

The DXML DGEMV uses a data-blocking technique 
that asymptotically performs two floating-point 
operations for each memory access, compared to 
the p t~b l i c  domain version, which performs two  
floating-point operations for every three memory 
accesses.lVhis technique is designecl to minimize 
translation buffer anti data cache misses and maxi- 
mize the use of floating-point register~.~*l""' The 
same data prefetch considerations used on  the BLAS 
1 routines are also used on  the MAS 2 routines. 

The DXMLversion of the DTRSV routine partitions 
the problem such that a sma.ll tri;~nguI;~r solve oper- 
ation is performed. The result of this solve opera- 
tion is then used in a DGEMV operation to update the 
remainder of the vector. The process is repeated 
until the  final triangular update completes the 
operation. Thus the D1'KSV routine relies heavily on  
the optimizations used in the DGEMV routine. 
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Figure 2 Performance of BLAS 2 Routines 
DGEMV and DTRSV 

As with BLAS 1 routines, BLAS 2 routines benefit 
greatly from data cache. Although the effect is less 
dramatic for the BLAS 2 routines, Figure 2 clearly 
shows the three-step profile observed in Figure 1. 
Best performance is achieved when both matrix 
and vector fit in the primary cache. Performance is 
lower but flat over the region where the data fits 
on the secondary board level cache. The final per- 
formance plateau is reached when data resides 
entirely in memory. 

Optimization of BLAS 3 
BLAS 3 routines operate primarily on matrices. The 
operations and data structures are more compli- 
cated that those of BLAS 1 and BLAS 2 routines. 
Typically, BLAS 3 routines perform many computa- 
tions on each data element. These routines exhibit a 
great deal of data reuse and thus naturally lend them- 
selves to sophisticated optimization techniques. 

DXML BLAS 3 routines are generally two to ten 
times faster than their public domain counterparts. 
The plots in Figure 3 show these performance dif- 
ferences for the matrix-matrix multiply routine, 
DGEMM, and the triangular solve routine with multi- 
ple right-hand sides, DTRSM9 

All performance optimization techniques used 
for the DXML BLAS 1 and BLAS 2 routines are used 
on the DXML BLAS 3 routines. In particular, data- 
blocking techniques are used extensively. Portions 

0 200 400 600 800 1000 
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KEY: 

- BLAS DGEMM 
- - - -  DXML DGEMM 

. . . . . . . BLAS DTRSM 
. - - DXML DTRSM 

Figure 3 Performance of BLAS 3 Routines 
DGErMM and DTRSM 

of matrices are copied to page-aligned work areas 
where secondary cache and translation buffer 
misses are eliminated and primary cache misses are 
absolutely minimized. 

As an example, within the primary compute loop 
of the D L i L  DGEMM routine, there are no transla- 
tion buffer misses, no secondary cache misses, and, 
on average, only one primary cache miss for every 
42 floating-point operations. Performance within 
this key loop is also enhanced by carefully using 
floating-point registers so that four floating-point 
operations are performed for each memory read 
access. Much of the DXML BLAS 3 performance 
advantage over the public domain routines is a 
direct consequence of a greatly improved ratio of 
floating-point operations per memory access. 

Tbe DXML DTRSM routine is optimized in a man- 
ner similar to its BLAS 2 counterpart, DTRSV. A small 
triangular system is solved. The resulting matrix 
is then used by DGEMM to update the remainder of 
the right-hand-side matrix. Consequently, most 
of the DXML DTRSM performance is directly attrib- 
utable to the DXML DGEMM routine. In fact, the tech- 
niques used in DGEMM pervade DXML BLAS 3 
routines. 

Figure 3 illustrates a key feature of DXML BLAS 3 
routines. Whereas the performance of public 
domain routines degrades significantly as the 
matrices become too large to fit in caches, DXML 
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routines are relatively insensitive to array size, 
shape, or 0rientation.~.9The performance of a DXML 
B U S  3 routine typically reaches an asymptote and 
remains there regardless of problem size. 

Optimization of M A C K  
The LAPACK subroutine library derives a large 
part of its high performance by using the opti- 
mized BLAS as building blocks.1° The DXML ver- 
sion of LAPACK is largely unmodified from the 
public domain version. However, in the case of 
the factorization routine for general matrices, 
DGETRF, we have introduced changes to the 
algorithm to improve the performance on Alpha 
systems. 

For example, while the original public domain 
DGETRF routine uses Crout's method to factor a 
matrix, the DXML version uses a left-looking 
method. 1' Left-looking methods make better use 
of the secondary cache and translation buffers than 
the Crout method. Furthermore, the public domain 
version of the DLASWP routine swaps a single 
matrix row across an entire matrix. This is a very 
bad technique for RISC machines; it causes severe 
cache and translation buffer thrashing. To avoid 
this, the DXML version of DUSW performs all 
swaps within columns, which makes much better 
use of the caches and the translation buffer and 
results in a much improved performance of the 
DXML DC;ETRF routine. 

The DGETRS routine was not modified. Its perfor- 
mance is solely attributable to use of optimized 
DXML routines. 

Figure 4 shows the benefits of the optimizations 
made to DGETRF and the BLAS routines. DGETRF 
makes extensive use of the BLAS 3 DGEMM and 
DTRSM routines. The performance of DXML DGETRF 
improves w ~ t h  increasing problem size largely 
because DXML BLAS 3 routines do not degrade in the 
face of larger problems. 

The plots of Figure 4 also show the performance 
of DGETRS when processing a single right-hand-side 
vector. In this case, DTRSV is the dominant BLAS 

routine, and the performance differences between 
the public domain and DXML DGETRS routines 
reflect the performance of the respective DTRSV 
routines. Finally, although not shown, we note that 
the performance of DXML DGETRS is much better 
than the public domain version when many right- 
hand sides are used and DTRSM becomes the domi- 
nant BLAS routine. 
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KEY: 
- BLAS DGETRF 
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Figure 4 Performance of LAPACK Routines 
DGETRF and DGETRS (LDA = N + I )  

Optimization of the 
Signal-processi~zg Routines 
We illustrate the techniques used in optimizing 
the signal-processing routines using the one- 
dimensional, power-of-2, complex FFT.21 The algo- 
rithm used is a version of Stockham's autosorting 
algorithm, which was originally designed for vector 
computers but works well, with a few modifica- 
tions, on a NSC architecture such as Alpha.22 23 

The main advantage in using an autosorting algo- 
rithm is that it avoids the initial bit-reversal permu- 
tation stage characteristic of the Cooley-Tukey 
algorithm or the Sande-Tukey algorithm. This stage 
is implemented by either precalculating and load- 
ing the permutation indices or calculating them 
on-the-fly. In either case, substantial amounts of 
integer multiplications are needed. By avoiding 
these multiplications, the autosorting algorithm 
provides better performance on Alpha systems. 

This algorithm does have the disadvantage that 
it cannot be done in-place, resulting in the use 
of a temporary work space, which makes more 
demands on the cache than an algorithm that can be 
done in-place. However, this disadvantage is more 
than offset by the avoidance of the bit-reversal stage. 

The implementation of the FFT on the Alpha 
makes effective use of the hierarchical memory of 
the system, specifically, the 31 usable floating-point 
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registers, whicll are at the lowest, and therefore the 
fastest, level of this hierarchy. These registers are 
utilized as much as possible, and any data brought 
into these registers is reused to the extent possible. 
To accomplish this, the FFT routines itnplement the 
largest radices possible for all stages of the power- 
of-2 FFT calculation. Radix-8 was used for all stages 
except the first, utilizing 16 registers for the data 
ant1 14 for the twiddle  factor^.^ For the first stage, 
as all twiddle factors are 1, radix-16 was used. 

Figure 5 illustrates the performance of this algo- 
rithm for various sizes. ~Utliough the performance 
is very good for small data sizes that fit into the pri- 
mar): 1 6 - ~ ~  data cache, it drops off cluickly as the 
data exceeds the primary cache. To remedy this, a 
blocking algorithm was used to better utilize the 
primary cache. 

The blocking algorithm. which was developed 
for computers with I~ierarchical memory systems, 
decomposes a large FFT into two Sets of smaller 
FFTs.'" The algorithm is implemented using four 
steps: 

1. Compute N1 sets of FFTs of size N2. 

2. Apply twiddle factors. 

3. Compllte N2 sets of FFTs of size N1. 

4. Transpose the N l  by N2 matrix into an N2 by Nl 
matrix. 

SIZE OF FFT (AS POWER OF 2) 

KEY: 
- AUTOSORTING 
- - - -  BLOCKING 

Figure 5 PerJbrrr~ancc 01 1-D Con~plex FIT  

In the above. N = N1 X N2. Steps (1) and (3) use 
the autosorting algorithm for small sizes. In 
step (2), insteitd of precomputing a11 N twiddle 
factors, a table of selected twiddle factors is com- 
puted and the rest calculated using trigonometric 
identities. 

Figure 5 compares the performance of the block- 
ing algorithm with the autosorting algorithm. Due 
to the adtled cost of steps (2) and (4), the maximum 
computation speed for the blocking algorithm 
(115 million floating-point operations per second 
[Mflops] at N=2I2) is lower than the maximum 
computation speed of the autosorting algorithm 
(192 Mflops at N=2'). The crossover point 
between the two algorithms is at a size of approxi- 
mately 2K. with the autosorting algorithm perform- 
ing better at smaller sizes. Based on the length of 
the FFT, the UXML routine automatically picks the 
faster algorithm. Note that at ~ = 2 ' ~ ,  as the size 
of the data ant1 workspace exceeds the 2-alB 
second;lry cache, the performance of the blocking 
algorithm drops off. 

Optirnizntio~z of the Skyline Solz~ers 
A shyline matrix (Figure 6) is one where only the 
elements within the envelope of the sparse matrix 
are stored. This storage scheme exploits the fact 
tb;tt zeros that occur before the first nonzero ele- 
ment in a row or column of the matrix, remain 
zero during the factorization of the matrix. pro- 
vitled no  row or column interchanges are made.14 
Thus, by storing the envelope of the matrix, no 
;idditional storage is reqi~ired for the fill-in that 
occurs tluring the factorization. Thougll the sky- 
line storage scheme does not exploit the sparsity 
withill the envelope, it allows for a static data 
structure, and is therefore a reason;tble compro- 
mise between organizational simplicity and com- 
piitation;~l efficient)! 

In the skyline solver, the system, Ax=O, where A 
is an N by N matrix, and b and x are N-vectors, is 
solved by first factorizing A as A=J,DU, where L and 
U are unit lower and upper triangular matrices, and 
D is a diagonal matrix. The solution x is then calcu- 
lated by solving in order. Iy=6, Dz=y, and Ux=z, 
where y and z are N-vectors. 

In o i ~ r  discu~sion of performance optimization, 
we concentrate on the factorization routine as it is 
often the most time-consuming part of an applica- 
tion. The algorithm implemented in DXML uses a 
technique that generates a column (or row) of the 
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Fkqure 6 Skyline Column Storage of 
n Symmetric ~Mntrix 

factorization using an inner product formulation 
Specifically, for a symmetric matrix A, let 

'4 = ("I:) 

where the symmetric factorization of the leading 
(IV - 1) by ( N  - 1) leading principal submatrix M 
has already been obtained as 

M =  v,: 4, or, 
Since the vector 1.i of length (N - I ) ,  and the scalar 
s are known, the vector u: of length (N - 1) and the 
sc;llar d can be determined as 

and 

The definition of zu indicates that a column of the 
factorization is obtained by taking the inner prod- 
uct of the appropriate segment of that column with 
one of the previous columns that has already been 
calculated. Referring to Figure 7, the value of the 
element in location ( i , j )  is calculated by taking 
the inner product of the elements in column j  
above the element in location ( i , j )  with the corre- 
sponding elements in column i. The entire column 

- 

Digital Techrricnl Jocrrrral Vol. 6 .Vo. .3 Sl tm~~ter  1994 

COLUMN I COLUMN I 

LENGTH OF THE 
INNER PRODUCT 

EVALUATION 
OF ELEMENT (I, 1) 

t ROW I 

Figure 7 Unoptimized Skylilze 
Cofrzputational Kernel 

j is thus calculated starting with the first nonzero 
element in the column and moving down to the 
diagonal entry 

The optimization of the skyline factorization is 
based on the following two observations 2j26: 

The elements of column j, used in the evalua- 
tion of the element in location ( i J ) ,  are also 
used in the evaluation of the element in location 
( i + l , j ) .  

The elements of column i, used in the evalua- 
tion of the element in location ( i , j ) ,  are also 
used in the evaluation of the element in location 
(i,j + 1 ) .  

Therefore, by itnrolling both the inner loop on i 
and the outer loop on j, twice, we can generate the 
entries in locations ( i , j ) ,  (i+ l , j ) ,  ( i J f  I), (i+ l , j +  I)  
at the same time, as shown in Figure 8. These four 
elements are generated using only half the memory 
references made by the standard algorithm. The 
nlemory references can be reduced further by 
increasing the level of unrolling. This is, however, 
limited by two bctors: 

The number of floating-point registers required 
to store the elements being calculated and the 
elements in the columns. 

The length of consecutive columns in the 
matrix, which should be close to each other to 
derive full benefit from the unrolling. 

Based on these factors, we have unrolled to a depth 
of 4, generating 16 elements at a time. 
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Figure 8 Optimized Skyline 
Computational Kenzel 

A similar technique is used in optimizing the for- 
ward elimination and the backward substitution. 

Table 1 gives the performance improvements 
obtained with the above techniques for a symmet- 
ric and an unsymmetric matrix from the Harwell- 
Boeing c ~ l l e c t i o n . ~ ~  The clsaracteristics of the matrix 
are generated using D X i  routines and were 
included because the performance is dependent on 
the profile of the skyline. The data presented is for 
a single right-hand side, which has been generated 
using a known random solution vector. 

The results show that for the matrices under con- 
sideration, the technique of reducing memory 
references by unrolling loops at two levels leads to 
a factor of 2 improvement in performance. 

Summary 
In this paper, we have shown that optimized mathe- 
matical subroutine libraries can be a useful tool in 
improving the performance of science and engi- 
neering applications on Alpha systems. We have 

Table 1 Performance Improvement in the Solution of Ax=b, Using the Skyline Solver on the 
DEC 3000 Model 900 System 

Example 1 Example 2 

Harwell-Boeing matrix15 
Description 

Storage scheme 
Matrix characteristics 
Order 
TY pe 

Condition number estimate 
Number of nonzeros 
Size of skyline 
Sparsity of skyline 
Maximum row (column) height 
Average row (column) height 
RMS row (column) height 

Factorization time (in seconds) 
Before optimization 
After optimization 

Solution time (in seconds) 
Before optimization 
After optimization 

Maximum component-wise 
relative error in solution 
(See equation below.) 

Stiffness matrix of the Calgary 
Olympic Saddledome Arena 
Symmetric diagonal-out 

3562 
Symmetric 

ORSREGl 
Jacobian from a model of 
an oil reservoir 
Unsymmetric profile-in 

2205 
Unsymmetric with 
structural symmetry 
1.54E+4 
141 33 
1575733 
99.10% 
442 (442) 
357.81 (357.81 ) 
395.45 (395.45) 

wherex(i) is the i-th component of the true solution, and x7i) is the i-th component of the calculated solution. 
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described the functionality provided by DXML, 
discussed various software engineering issues 
and illustrated techniques used in performance 
optimization. 

Future enhancements to DXML include symmet- 
ric multiprocessing support for key routines, 
enhancements in the areas of signal processing and 
sparse solvers, as well as further optimization of 
routines as warranted by changes in hardware and 
system software. 
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The KA P Parallelizer 
for DEC Fortran and 
DEC C Programs 

The KAPpreprocessor optimizes DEC Fortran and DEC Cprograms to achieve their 
best per$irmance on Digital Alpha systems. One key optimization that KAP per- 
forms is theparallelizntion ofprogmms for Alpha shared memory multiprocessors 
that use the nezil capabilities of the DEC OSF/l version 3.0 operating system zoith 
DECthreads. The heart of the optimizer is a sophisticated decision process that 
selects the best loop to parallelize from the many loops in aprogram. Thepreproces- 
sor implements a robust data dependence analysis to determine whether a loop is 
inherently serial or parallel. In engineering a high-quality optimizer the designers 
specified the KAP software architecture as a sequence of modular optimization 
passes. These passes are designed to restructure the progmm to resolve tnanj) of the 
apparent serializations that are artifncts of coding in Fortmn or C. End users can. 
also annotate their DEC Fortran or DEC Cprogrnrns zvitb directives orpragmas to 
guide KAP's decision process. As an alternative to clsilzg KAPS autolnaticparcll- 
lelization cG[Pabilitj~, end users can explicitlji identifj~aralleli~ln to KAP using the 
enzelPging irid~lstry-stc~ndard X 3 H 5  directiz~es. 

The K A P  preprocessor developed by Kuck Sr 
Associates, Inc. (KAI) is used on Digital Alpha sys- 
tems to increase the performance of DEC Fortran 
and DEC C programs. KAP accomplishes this by 
restructuring fragments of code that are not effi- 
cient for the Alpha ;~rcIiitecture. Essentially a super- 
optimizer. KAP performs optimizations at the 
source code level that augment those performed 
by the DEC Fortran or DEC C compilers.' 

To enhance the performance of DEC Fortran and 
DEC C programs on Alpha systems, KAI engineers 
selected two challenging aspects of the Alpha archi- 
tecture as K A P  targets: symmetric multiprocessing 
(SIMP) and cache memory. An adclitional design goal 
was to assist the compiler in optimizing source 
code for the reduced instruction set computer 
(RISC) instruction processing pipeline and multiple 
fi~nctional units. 

This paper discusses how the KAP preprocessor 
design was adapted to parallelize programs for SMP 
systems running under the DEC OSF/l version 3.0 
operating system. This version of the DEC OSF/l 
system contains die DECthreads product, Digital's 
POSIX-compliant multithreading library. The first 

part of the paper describes the process of mapping 
parallel programs to DECtllreads. The paper then 
discusses the key teclitliques used in the KAP 

design. Finally, the paper presents examples of how 
KAP performs on actual code and mentions some 
remaining challenges. Readers with a con~piler 
background may wish to explore Optimizing Stiper- 
compilers for Sz~percomp~iters for more details on 
KM's techniq~res.~ 

In this paper, the term directive is used inter- 
changeably to mean directive, when referring to DEC 
Fortran programs, and pragma, when referring to 
DEC C programs. The term processor generally rep- 
resents the system component used in parallel pro- 
cessing. In discussions in which it is significant to 
distinguish the operating system component used 
for parallel processing, the term thread is used. 

The Parallelism Mapping Process 
Figure 1 shows the input modes and major phases 
of the compilation process. Parallelism is repre- 
sented at three levels in programs using the KAP 
preprocessor on an Alpha SMP system. The first two 
are input to the KAP preprocessor; the third is the 
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Figure I Parallelism Mnpping Process 

representation of parallelism that KAP generates. 
The three levels of parallelism are 

1. Implicit parallelism. Starting from DEC Fortran 
or DEC C programs, KAP automatically detects 
parallelism. 

2. Explicit high-level parallelism. As an advanced 
feature, users can provide any of three forms: 

KAP guiding directives, KAP assertions, or X3H5 
directives. K A P  guiding directives give KAP hints 
on which program constructs to parallelize. KAP 
assertions are used to convey information about 
the program that cannot be described in the DEC 
Fortran or DEC C language. This information can 
sometimes be used by KAP to optimize the pro- 
gram. Using X3H5 directives, the user can force 
KAP to parallelize the program in a certain way.3 
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3. Explicit low-level parallelism. KAP translates 
either of the above forms to DECthreads with the 
help of an SMI' support library. (The user could 
specify paralleljsm directly, using DECthreads; 
however, KAP does not perform any optimiza- 
tion of source code with DECtlweads. Therefore, 
the user should not mix this form of parallelism 
with the others.) 

Because the user can employ parallelism at any 
of the three levels, a discussion of the trade-offs 
involved with using each level follows. 

From DEC Fortran or DEC C Programs 
The KM preprocessor accepts DEC Fortran and DEC 
C programs as input. Although starting with such 
programs requires the compilers to intelligently 
utilize a high-performance SMP system, there are 
several reasons why this is a natural point at which 
to start. 

Lots of software. Since DEC Fortran and DEC C 
are de facto standards, there exists a large base of 
applications that can be parallelized relatively 
easily and inexpensively. 

Ease of use. Given the high rate at which hard- 
ware costs are decreasing, every workstation may 
soon have multiple processors. At that point, it 
will be critical that programming a multiproces- 
sor be as easy as programming a single processor. 

Portability. Many software developers with 
access to a n~ultiprocessor already work in a het- 
erogeneous networking environment. Some sys- 
tems in such an environment do not support 
explicit forms of parallelism (either X3H5 or 
DECthreads). The developers would probably 
like to have one version of their code that runs 
well on all their systems, whether uniprocessor 
or multiprocessor, and using DECthreads would 
cause their uniprocessors to slow down. 

Maintainability. Using an intricate programming 
model of parallelisn~ such as X3H5 or DECthreads 
makes it more difficult to maintain the software. 

KAP produces KAP-optimized DEC Fortran or DEC 

C as output. This fact is important for the following 
reasons: 

Performance. Users can leverage optimizations 
from both Digital's compilers and KAP. 

Integration. Users can employ all of Digital's per- 
formance tools. 

Ease of use. Expert users like to "tweak" the 
output of KAP to fine-tune the optimizations 
performed. 

With KAP Guiding Directives, KAP 
Assertions, or X3H5 Directives 
Although the automatic detection of parallelism is 
frequently within the range of KAP capabilities on 
SMP systems, in some cases, as described below, 
users may wish to speclfy the parallelism. 

In the SivrP environment, coarse-grained paral- 
lelism is sometimes important. The higher in the 
call tree of a program a preprocessor (or com- 
piler, as well) operates, the more difficult it is 
for a preprocessor to parallelize automatically. 
Even though the KAP preprocessor performs 
both inlining and interprocedural analysis, the 
higher in the call tree KAP operates, the more 
likely it is that KAP will conservatively assume 
that the parallelization is invalid. 

Sometimes information that is available only at 
run time precludes the preprocessor from auto- 
matically finding parallelism. 

Occasionally, experts can fine-tune the paral- 
lelism to get the highest efficiency for programs 
that are run frequently. 

For software that is more portable between sys- 
tems, it is sometimes important to get repeatable 
parallel performance or to indicate where paral- 
lelism has been applied. In such cases, explicit 
parallelism may be preferable. 

Three mechanisms are available to the user for 
directing KAP to parallelism. The first mechanism 
uses KAP guiding directives to guide KAP to the 
preferred way to parallelize the program. The sec- 
ond mechanism uses KAP assertions. The third 
mechanism uses X3H5-compliant directives to 
directly describe the parallelism. The first two 
mechanisms differ significantly from the third. With 
the first two, KNJ analyzes the program for the feasi- 
bility of parallelism. With the third, KAP assumes 
that parallelism is feasible and restricts itself to man- 
aging the details of implementing parallelism. In 
particular, the user does not have to be concerned 
with either the scoping of variables across proces- 
sors, i.e., designating which are private and which 
are shared, or the synchronization of accesses to 
shared variables.4 KAP guiding directives will not be 
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discussed in this paper. KM assertions and how they 
are implemented are discussed later in the section 
Advanced Ways to Affect Dependences. A descrip- 
tion of the X3H5 directives follows. 

The X3H5 model of parallelism is well struc- 
tured; all operations have a begin operation-end 
operation format. The parallel region construct 
identifies the fork and join points for parallel 
processing. Parallel loops identify units of work 
to be distributed to the available processors. The 
critical section and one processor section con- 
structs are used to synchronize processors where 
necessary. Table 1 shows the X3H5 directives as 
implemented in KAP. 

Because this standard is broadly adopted and 
language independent, it is only slightly less 
portable than implicit parallelism. 

The KAP preprocessor translates a program in 
which KAP has detected implicit parallelism or a pro- 
gram in which the user explicitly directs parallelism 
to DECthreads. KAP performs this translation in two 
steps. First, it translates the internal representation 
into calls to a parallel SMI? support library. Second, 
the support library makes calls to DECthreads. 

The SMP support library implements various 
aspects of X3H5 notation, as can be seen by com- 
paring Tables 1 and 2. 

In the parallelism translation phase, KAP signifi- 
cantly restructures a program by moving the code 

TO the DEC OSF/l Operating System in a parallel region to a separate subroutine. A call 
with DECthl-ends to the SMP support library replaces the parallel 
Although KAP does not optimize programs that use region. This call references the new subroutine. 
DECthreads directly, there may be some benefits to KAP examines the scope of each variable used in 
specifying parallelisn~ explicitly using DECthreads. the parallel region and, if possible, converts each 

DECthreads allows a user to construct almost any 
model of parallel processing fairly efficiently. 
The high-level approaches described above are 
limited to loop-structured parallel processing. 
Some applications obtain more parallelism by 
using an unstructurecl model. It can even be 
argued that for some cases,  unstructured paral- 
lelism is easier to understand and maintain. 

variable to a local variable of the new subroutine. 
Otherwise, the variable becomes a n  argument to 
the subroutine so that it can be passed back out of 
the parallel region. 

Converting variables to local variables makes 
accessing these variables more efficient. A variable 
that is referenced outside the parallel region cannot 
be made local and must be passed as an argument. 

A user who invests the time to analyze exactly shared M~~~~~ ~ ~ l ~ i ~ ~ ~ ~ ~ ~ ~ ~ ~  
where parallelism exists in a program may wish  hi hi^^^^^^^ concerns 
to forego the benefits mentioned above and to 

Given its parallelism model, the KAP preprocessor 
capture the parallelism in detail with DECthreads. 

requires operating system and hardware support 
In that manner, no efficiency is lost because the 

from the system for efficient parallel execution. 
preprocessor misses an optimization. 

There are three areas of concern: threacl creation 
The POSlX threads standard to which DECthreads and scheduling, synchronization between threads, 
conforms is available on several platforms. and data caching and system bus bandwidth. 

Table 1 X3H5 Directives As Implemented in KAP 

Function X3H5 Directives 

To specify regions of parallel execution CnKAP* PARALLEL REGION 
C*KAP* END PARALLEL REGION 

To specify parallel loops C*KAP* PARALLEL DO 
C*KAP* END PARALLEL DO 

To specify synchronized sections of code C*KAP* BARRIER 
such that all processors synchronize 
To specify that all processors execute sequentially C*KAP* CRITICAL SECTION 

CnKAP* END CRITICAL SECTION 

To specify that only the first processor executes C*KAP* ONE PROCESSOR SECTION 
CnKAPn END ONE PROCESSOR SECTION 
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Table 2 KAP SMP Support Library 

Fortran OSFII DECthreads 
C Entry Point Name Name Function Subroutines Used 

- kmp-en te r -csec  mppecs Toenteracriticalsection p t h r e a d - m u t e x - l o c k  

- kmp-ex i t - c sec  m p  p  x  c  s  To exit a  critical section p t h r e a d - m u t e x - u n l o c k  

- kmp-f o r k  m p p f r k  Toforktoseveralthreads p t h r e a d - a t t r - c r e a t e ,  
p t h r e a d - c r e a t e  

- k m p - f o r k - a c t i v e  mppf  k d  

- kmp-end mppend 

- kmp-en te r -onepsec  mppbop 

- kmp-ex i t - onepsec  mPPeoP 

- kmp-ba r r i e r  mppbar  

To inquire if already 
parallel 
To join threads 

To enter a  single 
processor section 
To exit a  single 
processor section 
To execute a  barrier wait 

( n o n e )  

p t h r e a d - j o i  n, 
t h r e a d - d e t a c h  
p t h r e a d - m u t e x - l o c k ,  
p t h r e a d - m u t e x - u n l o c k  

p t h r e a d - m u t e x - l o c k ,  
p t h r e a d - m u t e x - u n l o c k  

p t h r e a d - m u t e x - l o c k ,  
p t h r e a d - c o n d - w a i t ,  
p t h r e a d - m u t e x - u n l o c k  

Thread Creation and Scheduling Thread cre- 
ation is the most expensive operation. The X3H5  
standard minimizes the need for creating threads 
through the use of parallel regions. The SMP sup- 
port library goes further by reusing threads from 
one parallel region to the next. The SMP support 
library examines the value of an environment vari- 
able to determine how many threads to use. The 
appropriate scheduling of threads onto hardware 
processors is extremely important for efficient 
execution. The support library relies on the 
DECthreads implementation to achieve this. For 
the most efficient operation, the library sl~ould 
schedule at most one thread per processor. 

Sj~tzchronization Oetzueen Threads In the K A P  

model of parallelism, threads can synchronize at 

A point where loop iterations are scheduled 

A point where data passes between iterations 
(for collection of local reduction variables only) 

A barrier point leaving a work-sharing construct 

Single processor sections 

Two versions of the sMP support library have been 
developed: one with spin locks for a single-user 
environment and the second with mutex locks for 
a multiuser environment. Either library works in 
either environment; however, using the spin lock 

version in a single-user environment yields the 
most efficient parallelism. 

Using spin locks in a multiuser environment may 
waste processor cycles when there are other users 
who could use them. Using mutex locks for a single- 
user cnvironment creates unnecessary operating 
system overhead. In practice, however, a system 
may shift from single-user to n~ultiuser and back 
again in the course of a single run of a large pro- 
gram. Therefore. KAP supports all lock-environment 
combinations. 

Data Caching and System Bus Ba~zdzuidth 
Multiprocessor Alpha systems support coherent 
caches between processors.' To use these caches 
efficiently, as a policy, K A P  localizes data as much 
as possible, keeping repeated references within 
the same processor. Localizing data reduces the 
load on the system bus and reduces the chances of 
cache thrashing. 

When all the processors sinli~ltaneously request 
data from the memory, system bus bandwidth can 
limit SMP performance. If optimizations enhance 
cache locality, less system bus bandwidth is used, 
and therefore SMP performance is less likely to be 
limited. 

KAP Technology 
This section covers the issues of data dependence 
analysis, preprocessor architecture, and the selec- 
tion of loops to parallelize. 
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Data Dependence Analysis-The Kernel 
of Parallelism Detection 
DEC Fortran and DEC C have standard rules for the 
order of execution of statements and expressions. 
These rules are based on  a serial model of program 
execution. Data dependence analysis allows a com- 
piler to see where this serial order of execution can 
be modified without changing the meaning of the 
program. 

Types of Dependence KAP works with the four 
basic types of dependence:6 

1. Flow dependence, i.e., when a program writes 
a variable before it reads the variable 

2. Antidependence, i.e., when a program reads 
a variable before it writes the variable 

3. Output dependence, i.e., when a program 
writes the same variable twice 

4. Control dependence, i.e., when a program state- 
ment depends on a previous conditional 

Because dependences involve two actions on the 
same variable, for example, a write and then a read, 
KAP uses the term dependence arc to represent 
information flow, in this example from the write to 
the read. 

Since these dependences can prevent paralleliza- 
tion, KAP uses various optimizations to eliminate 
the different dependences. For example, an optimi- 
zation called scalar renaming removes some but 
not all antidependences. 

Loop-related Dependences When dependences 
occur within a loop, the control flow relations are 
captured with direction vector symbols tagged to 
each dependence arc.' The transformations that 
can be applied to a loop depend on what depen- 
dence direction vectors exist for that loop. The 
symbols used in KAP and their meanings are 

= The dependence occurs within the same loop 
iteration. 

> The dependence crosses one or several itera- 
tions. 

< The dependence goes to a preceding iteration 
of the loop. 

" The dependence relation between iterations is 
not clear. 

or a combination of the above, for example, 

<>The dependence is known not to be on the 
same iteration. 

When a dependence occurs in a nested loop, KAP 
uses one symbol for each level in the loop nest. A 
dependence is said to be carried by a loop if the cor- 
responding direction vector symbol for that loop 
includes <, >, or ". 

In the following program segment 

1 f o r  ( i = l ;  i < = n -  , i++) ( 
2 t e m p  = a C i 1 ;  
3 a C i l  = b C i 1 ;  
4 b C i l  = t e m p ;  1 

there is a flow dependence from statement 2 to 
statement 4. There is an antidependence from state- 
ment 2 to statement 3 and from statement 3 to 
statement 4. There are control dependences from 
statement 1 to statements 2, 3, and 4 because exe- 
cuting 2 , 3 ,  and 4 depends on the i < = n condition. 
All these dependences are on the same loop itera- 
tion; their direction vector is =. 

Some dependences in this program cross loop 
iterations. Because temp is reused on each itera- 
tion, there is an output dependence from statement 
2 to statement 2, and there is an antidependence 
from statement 4 to statement 2. These two depen- 
dences are carried by the loop in the program seg- 
ment and have the direction vector >. 

Data Dependence Analysis The purpose of depen- 
dence analysis is to build a dependence graph, i.e., 
the collection of all the dependence arcs in the pro- 
gram. KAP builds the dependence graph in two 
stages. First, it builds the best possible conservative 
dependence graph.' Then, it applies filters that 
identify and remove dependences that are known 
to be conservative, based on special circumstances. 

What does the phrase "best possible conserva- 
tive dependence graph" mean? Because the values 
of a program's variables are not known at prepro- 
cessing time, in some situations it may not be clear 
whether a dependence actually exists. KAP reflects 
this situation in terms of assumed dependences 
based on imperfect information. Therefore, a 
dependence graph must be conservative so that 
KAP does not optimize a program incorrectl)~. On 
the other hand, a dependence graph that is too con- 
servative results in insufficient optimization. 

In building the best possible dependence graph, 
KM uses the following optimizations: constant 
propagation, variable forward substitution, and 
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scalar expansion. KAP does not, however, leave the lelizing the loop. KAP applies the two-version loop 
program optimized in this manner unless the opti- optimizations selectively to avoid dramatically 
mizations will improve performance. increasing the size of the program. However, the 

payback of parallelizing a frequently executed loop 

Advanced Wc~ys to Affect Dependences When 
there are assumed dependences in the program, 
KAP may not have enough information to decide on 
parallelism opportunities. KAP implements two 
techniques to mitigate the effects of imperfect 
information at preprocessing time: assertions and 
alternate code sequences. 

Assertions, which are similar to directives in syn- 
tax, are used to provide information not otherwise 
known at preprocessing time. KAP supports many 
assertions that have the effect of removing assumed 
dependences. Table 3 shows KAP assertions and 
their effects.ag When the user specifies an asser- 
tion, the information contained in the assertion is 
saved by a data abstraction called the oracle. When 
an optimization requests that a data dependence 
graph be built for a loop, the dependence analyzer 
inquires whether the oracle has any information 
about certain arcs that it wants to remove. 

When accurate information is not known at com- 
pile time, a few KAP optimizations generate two 
versions of the source program loop: one assumes 
that the assumed dependence exists; the other 
assumes that it does not exist. In the latter case, KAP 
can apply subsequent optimizations, such as paral- 

Table 3 KAP Assertions 

warrants their use. 
For example, the KAP C pointer disambiguation 

optimization is employed in cases in which C point- 
ers are used as a base address and then incremented 
in a loop. Neither the base address of a pointer nor 
how many times the pointer will be incremented is 
usually known at compile time. At run time, how- 
ever, they can be computed in terms of a loop 
index. KAP generates code that checks the range of 
the pointer references at the tail and at the head of 
a dependence, If the two ranges do not overlap, the 
dependence does not exist and the optimized code 
is executed. 

KAP Preprocessor Architecture 
A controversial control architecture decision in 
KAP is to organize the preprocessor as a sequence 
of passes, generally one for each optimization per- 
formed. This design decision was controversial 
because of the following concerns: 

Run-time inefficiency would occur in process- 
ing programs because each pass would sweep 
through the intermediate representation for the 
program being processed, causing some amount 
of virtual memory thrashing. 

Assertion 
- - 

Specifiers Primary Effect 

[ N O ]  A R G U M E N T  A L I A S I N G  

[ N O ]  B O U N D S  V I O L A T I O N S  

C O N C U R R E N T  C A L L  

D  0 (<specifier>) 
D  0 P R  E  F E R  (<specifier>) 

E N 0 1  E Q U I V A L E N C E  
H A Z A R D  

[ N O ]  L A S T  V A L U E  
N E  E D  E D  (<specifier>) 

P E R M U T A T I O N  
(<specifier>) 
N O  R E C U R R E N C E  
(<specifier>) 

S E R I A L ,  C O N C U R R E N T  

S E R I A L ,  C O N C U R R E N T  

Variable names for 
which [no] last 
value is needed 
Names of permutation 
variables 
Names of recurrence 
variables 

Relation loop index 
known to be true 

Removes assumed dependence arcs 

Removes assumed dependence arcs 
Removes assumed dependence arcs 
Guides selection of loop order strongly 
Guides selection of loop order loosely 
Removes assumed dependence arcs 
(Fortran only) 
Tunes the parallel code and 
sometimes removes assumed 
dependences 
Removes assumed dependence arcs 

Removes assumed dependence arcs 

Removes assumed dependence arcs 

N O  S Y N C  Tunes the parallel code which is 
produced 
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Added software development cost would be 
incurred because the KAP code that loops 
through the intermediate representation would 
be repeated in each pass. 

The second concern has been dispelled. The 
added modularity of KAP, provided by its multipass 
structure, has saved development time as KAP has 
grown from a moderately complex piece of code to 
an extremely complex piece of code. 

The KAP preprocessor uses more than 50 major 
optimizations. The pass structure has helped to 
organize them. In some cases, such as cache man- 
agement, one optimization is broken into several 
passes. KAP performs some basic optimizations, 
e.g., deadcode elimination, more than once in dif- 
ferent ways. In some cases, such as scalar expan- 
sion, KAP performs an optimization to uncover 
other optimizations and then perfornls the reverse 
optimization to tighten up the program again. 

The run-time efficiency issue is still of interest. 
There is always some benefit to making the prepro- 
cessor slnaller and faster. 

Selecting Loops to Parallelize 
Parallelizing a loop can greatly enhance the perfor- 
mance of the program. Testing whether a loop can 
be parallelized is actually quite simple, given the 
data dependence analysis that KAP performs. A loop 
can be parallelized if there are no dependence arcs 
carried by that loop. The situation, however, can be 
more complicated. If the program contains several 
nested loops. it is important to pick the best loop to 
parallelize. Additionally, it may be possible not only 
to parallelize the loop but also to optimize the loop 
to enhance its performance. Moreover, the loops in 
a program can be nested in very complex structures 
so that there are many different ways to parallelize 
the same propam. In fact, the best option may be 
to leave all the loops serial because the overhead of 
parallel execution may outweigh the performance 
improvement of using multiple processors. 

The KtW preprocessor optimizes programs for 
parallelism by searching for the optimum program 
in a set of possible configurations, i.e., ways in 
which the original program can be transformed for 
parallel execution. (In this regard, KAP optimizes 
programs from a classical definition of numerical 
optimization.) There is an objective fiunction for 
evaluating each configuration. Eacb member of 
the set of configurations is called a loop order. The 

optimum program is the loop order whose objec- 
tive fiinction 11% the highest performance score, as 
discussed later in this section. 

Descriptions of loop orders, the role of depen- 
dence analysis, and the objective ti~nction, i t . ,  how 
each program is scored, follow. 

Loop Orders A loop order is a combination of 
loop transformations that the KAP preprocessor has 
performed on the program. The loop transforma- 
tions that KAP performs while searching for the 
optimal parallel form are 

Loop distribution 

Loop fusion 

Loop interchange 

Loop distribution splits a loop into two or more 
loops. Loop fusion merges two loops. Loop fusion 
is used to combine loops to increase the size of the 
parallel tasks and to reduce loop overhead. 

Loop interchange occurs between a pair of loops. 
This transformation takes the inner loop outside the 
outer loop, reversing their relation. If a loop is triply 
nested, there are three factorial (3!), i.e.. six, differ- 
ent ways to interchange the loops. Each order is 
arrived at by a secluence of pairwise interclunges. 

To increase the opportunities to interchange 
loops, KAP tries to make a loop nest into one that is 
perfectly nested. This means that there are no exe- 
cutable statements between nested loop state- 
ments. Loop distribution is used to create perfectly 
nested loops. 

KAP examines all possible loop orders for each 
loop nest. Each loop nest is treated independently 
because no transformations between loop nests 
occur at this phase of optimization. 

For example, an LU Factorization program con- 
sists of one loop nest that is three deep and not per- 
fectly nested. Figure 2 shows the loop orders. Loop 
orcler (a) is the original LU program. The KAP pre- 
processor first distributes the outer loop in loop 
orders (b) and (c). Nest, KAP performs a loop inter- 
change on the second loop nest which is two deep, 
as shown in 1.oop order (d). Then, KAP interchanges 
the third loop nest in loop orders (e) through (i). 
Note that KAP eliminates some loop orders, (i) for 
example, when the loop-bound expressions cannot 
be interchanged. As explained above, there are six 
different loop orders because the nest is triply 
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(a) ORIGINAL LU (OUTLINED): 
d o  i = l , n  

/ * I n v e r t  E l i m i n a t o r * /  

e n d d o  
d o  j = i + l , n  

do  k = i + l , n  
/ * U p d a t e  M a t r i x * /  

e n d d o  
e n d d o  

(d) FOR SECOND NEST INTERCHANGE 
SECOND do I LOOP: 

d o  k = l , n  
d o  i = l , k - I  

/ * C o m p u t e  M u l t i p l i e r s * /  

REEXAMINE LOOP ORDERS 
(e) THROUGH (I) 

(b) DISTRIBUTED do i LOOP: 
d o  i = l , n  

/ * I n v e r t  E l i m i n a t o r * /  
e n d d o  

d o  i = l , n  
d o  k = i + l , n  

/ * C o m p u t e  M u l t i p l i e r s * /  
e n d d o  

do  j = i + l , n  
d o  k = i + l , n  

/ * U p d a t e  M a t r i x * /  
e n d d o  

e n d d o  
e n d d o  

I 

(c) DlsTRlBuTE do i L o o p  AGAIN: I 

(e) FOR THlRD NEST 
INTERCHANGE do i AND do j: 

d o  j = l , n  
d o  i = l , j - I  

d o  k = i + l , n  
/ * U p d a t e  M a t r i x * /  

(g) FOR THIRD NEST 
INTERCHANGE do j AND do k: 

do  i = l , n  
d o  k = i + l , n  

d o  j = i + l , n  
/ * U p d a t e  M a t r i x * /  

Figure 2 Loop Orders for LU Factorization 

I I I I 
4 + 
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(f) FOR THIRD NEST INTERCHANGE 
do i AND do k: 

L o o p  O r d e r  R e j e c t e d  -- 
New b o u n d s  s p l i t  l o o p .  
d o  j = l , n  

d o  k=2, j 
do  i = l , k - I  

/ * U p d a t e  M a t r i x * /  
d o  k=j ,n 

d o  i = l , j - I  
/ * U p d a t e  M a t r i x * /  

(h) FOR THIRD NEST 
INTERCHANGE do i AND do k: 

d o  k=l ,n 
d o  i = l , k - I  

d o  j = i + l , n  
/ * U p d a t e  M a t r i x * /  

J. 
(i) FOR THIRD NEST INTERCHANGE 

do i AND do j: 
L o o p  O r d e r  R e j e c t e d  -- 
New b o u n d s  s p l i t  l o o p .  
d o  k=l ,n 

do  j=Z,k 
d o  i = l , k - I  

/ * U p d a t e  M a t r i x * /  
d o  j=k,n 

d o  i = l , k - I  
/ * U p d a t e  M a t r i x * /  
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nested. Since the loop nest in (d) was originally 
nested with the triply nested loop at the outermost 
do loop, KAP will reexamine these six loop orders 
after the interchange in (d). 

Dependence Analysis for Loop Orders Before a 
loop order can be evaluated for efficiency, KAP deter- 
mines the validity of the loop order. A loop order is 
valid if the resulting program would produce equiva- 
lent behavior. KAP tests validity by examining the 
dependences in the dependence graph according to 
the transformation being applied. 

For example, the test for loop interchange validity 
involves searching for dependence direction vec- 
tors of a certain type. The direction vector (<,>) 
indicates that a loop interchange is invalid. The 
direction vectors (<,*), P,>), or (*,*), if present, also 
indicate that the loop interchange may be invalid. 

Evaluation of a Loop Order After the KAP prepro- 
cessor determines that a loop order is valid, it 
scores the loop order for performance. KAP consid- 
ers two major factors: (1) the amount of work that 
will be performed in parallel and (2) the memory 
reference efficiency. 

The memory reference efficiency of a loop order 
can degrade performance so much that it out- 
weighs the performance gained by executing a 
loop in parallel. On an SMP, if a processor refer- 
ences one word on a cache line, it should reference 
all the words contiguously on that line. In Fortran, 
a two-dimensional array reference, A(ij), should be 
parallelized so that the j loop is parallel and each 
processor references contiguous columns of mem- 
ory If a loop order indicated that the i loop is paral- 
lel, this reference would score low. If a loop order 
indicated that the j loop is parallel, it would score 
high. The score for the loop order is the sum of 
the scores for all the references, and the highest- 
scoring loop order is preferred. 

The score for a loop order depends on which 
loops in the order can be parallelized. For a given 
loop nest, there may be several (or no) loops that 
can be parallelized. The first step is to determine 
if any loops can be parallelized. If multiple loops 
can be parallelized, KAP selects the best one. KAP 
chooses at most one loop for parallel execution. 

K M  tests loops to determine whether they can 
be executed in parallel by analyzing both the state- 
ments in the loop and the dependence graph. The 
loop may contain certain statements that block 
concurrentization. I/O statements or a call to a func- 

tion or subroutine are examples. (Users can code 
KAP assertions to flag these statements as paralleliz- 
able.) Second, data dependence conditions may 
preclude parallelization. In general, a loop that car- 
ries a dependence is not parallelizable. (In some 
cases, the user may override the data dependence 
condition by allowing synchronization between 
loop iterations.) Finally, the user may give asser- 
tions that indicate a preference for making a loop 
parallel or for keeping it serial. 

Barring data dependence conditions that would 
prevent parallelization, the amount of work that will 
be performed in parallel determines the score of par- 
allelizing a loop. (The user can also spec@ with a 
directive that loops should not be parallelized unless 
they score greater than a specified value.) In this 
manner, KAP prefers to parallelize outer loops or 
loops that are interchanged to the outside because 
they contain the most work to amortize the over- 
head of creating threads for parallelism. 

The actual parallelization process is even more 
complex than this discussion indicates. KAP applies 
a number of optimizations to improve the quality of 
the parallel code. If there is a reduction operation 
across a loop, KM parallelizes the loop. Too much 
loop distribution can decrease program efficiency, 
so loop fusion is run to try to coalesce loops. 

Performance Analysis 
How does the KAP preprocessor perform on real 
applications? The answer is as complex as the soft- 
ware written for these applications. Consider the 
real-world example, DYNA3D, which demonstrates 
some KAP strengths and weaknesses. 

DYNA3D is nonlinear structural dynamics code 
that uses the finite element analysis method. The 
code was developed by the Lawrence Livermore 
National Laboratory Methods Development Group 
and has been used extensively for a broad range 
of structural analysis problems. DYNA3D contains 
about 70,000 lines of Fortran code in more than 
700 subroutines. 

When KAP is being used on a large program, it 
is sometimes preferable to concentrate on the 
compute-intensive kernels. For example, KAP devel- 
opers ran six of the standard benchmarks for 
DYNA3D through a performance profiling tool and 
isolated two groups of three subroutines that 
account for approximately 75 percent of the run 
time in these cases. This data is shown in Table 4. 

KAP'S performance on some of these key subrou- 
tines appears in Table 5. KAP parallelized all the 
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Table 4 Performance Profiles of Six DYNA3D Problems 

Problem Profile (First Two Initials of the 
Subroutine and Percent of Run Time) 

Key Call 
Sequences* 

NlKE2D ST 19%, FO 15%, FE 12O/o, PR lo%, HG 7%, HR 5% (a) and (b) 
Example 
Cylinder Drop ST 20%, FO 15%, FE 11 %, PR lo%, HG 7%, HR 5% (a) and (b) 
Bar Impact WR 17%, S T  7%, FE 6% None of interest 

Impacted Plate SH 22%, TN 16%, TA 16%, YH 14%, BL 7% (c) 
Single Contact YH 24%, SH 21 %, TN 7%, TA 7%, BL 6% (c) 
Clamped Beam EL 12%, SH 12%, TN 8%, TA 8%, BL 6% (c) 

'Call Sequences 

(a) ST is called; ST calls PR; and then FE is called. 

(b) HR is called; HR calls HG; and then FO is called. 

(c) BL calls SH, then TA, and then TN. 

Table 5 KAP's Performance on Key Subroutines 

Subroutine Number of Number of Loops Maximum Number of Loops 
Loops Parallelized Nest Depth after Fusion 

STRAIN 5 5 1 3 
PRTAL 9 9 1 1 

FELEN 6 6 1 1 

FORCE 9 9 2 2 
HRGMD 5 5 1 3 
HGX 4 4 1 1 

loops in these subroutines. Since DYNA3D was 
designed for a CRAY-1 vector processor, it is perhaps 
to be expected that the KAP preprocessor would 
perform well. KAP, however, is intended for a 
shared memory multiprocessor rather than for 
a vector machine. For this reason, KAP does more 
than parallelize the loops. The entries in the col- 
umn labeled "Number of Loops after Fusion" show 
how KAP reduced loop overhead by fusing as many 
loops together as it could. KAP fused the five loops 
in subroutine STRAIN into three loops and fused all 
nine loops in subroutine PRTAL. 

Another example of KAP's optimization for an 
SMP system is that in the doubly nested loop cases, 
such as subroutine FORCE (see Figure 3), the 
KAP preprocessor automatically selects the outer 
loop for parallel execution. In contrast, a vector 
machine such as the CRAY-I prefers the inner loop. 

Because the kernels of DYNA3D code span multi- 
ple subroutines, cross compilation optimization is 
suggested. There are three ways to do this: inlining, 
interprocedural analysis, and directives specifying 
that the inner subroutines can be concurrentized. 

s u b r o u t i n e  F O R C E  OUTER LOOP 

d o  60  n  = 1 , n n c  / PARALLEL'ZED 

l c n  = L c z c  + n + n h l 2  - " 
i O  = i a ( 1 n c )  
i l  = i a ( l c n  + 1 )  - 1  

c d i r $  i v d e p  
d o  5 0  i = i O ,  il 

e ( l , i x ( i ) )  = 
e ( l , i x l ( i ) )  + e p l l ( i )  

5 0  c o n t i n u e  

6 0  c o n t i n u e  

Figure 3 Parallel Loop Selection 

Using KAP's inlining capability gives KAP the 
most freedom to optimize the program because 
in this manner KAP can restructure code across 
subroutines. 

Figure 4 shows part of the call sequence of sub- 
routine SOLDE. (Subroutine SOLDE contains call 
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s u b r o u t i n e  S O L D E  

c a l l  HRGMD \ WHOLE CALL s u b r o u t i n e  HRGMD 
SEQUENCE 

c a l l  HGX 

c a l l  FORCE 3 lNLINED 

to enable inlining autom;~tically to depth two of 
subroutine SOLDE because it contains calls to many 
other subroutines that are not in the kernel. Here, 
the user specified the subroutines to inline on the 
command line. When the user specified inlining, 
KAP fi~sed all the loops in subroutines HRGMD, HGX, 
and FORCE to minimize loop overhead, and then it 
parallelized the fi~sed loop. 

In some cases, the user can make simple restruc- 
turing changes that improve KAP's optimizations. 

Fig~~re  4 It l l i~~iizg GI Kernel Figure 5 shows a case in which fusion was blocked 
by two scalar statements between a pair of loops. 
The first loop does not assign any values to the vari- 

sequence (b) of Table 4.) Subroutine SOLDE calls ables used to create these scalars, so the user can 
subroutine HRGMD which calls subroutine HGX. move the assignments above the loop to enable KAP 

Then subroutine SOLDE calls subroutine FORCE. to fuse them. 
KAP supports inlining to an arbitrary depth. Finall): the user can elect to specify the paral- 
Inlining in KM can be automatic or controlled from lelism directly. Figure 6 shows subroutine STRAIN 
the command line. In this case, we clid not want with X3H5 directives used to describe the 

MOVE UP 
STATEMENTS 

s u b r o u t i n e  S T R A I N  s u b r o u t i n e  S T R A I N  
d o  5 i = L f t , l l t  

0 6 2 5  * r h o ( 1 f  

e n d d o  
d o  6 i = l f t , L L t  

e n d d o  

Figure 5 Assisted Loop Fusion 

s u b r o u t i n e  S T R A I N  
c * k a p *  p a r a l l e l  r e g i o n  
c * k a p x &  s h a r e d ( d x y , d y x , d l )  
c * k a p * &  L o c a l  ( i , d t l d 2 )  
c * k a p *  p a r a l l e l  d o  

d o  5 i = L f t , l l t  
d y x ( i )  = . . .  

ALL c'kap' STATEMENTS 5 i 
ARE X3H5 EXPLICIT 

d t l d 2  = .. . 
c x k a p *  p a r a l l e l  d o  

d o  6  i = l f t , l l t  
d l  = d t l d 2  * ( d x y ( i )  + d y x ( i ) )  

6 c o n t i n u e  
c k k a p *  e n d  p a r a l l e l  d o  
c * k a p *  e n d  p a r a l l e l  r e g i o n  

Figure 6 X3H5 Explicit Parallelism 
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parallelism. In this case, the user elected to keep 
the same unfused loop structure as in the original 
code. This case is not dramatically less efficient 
than the fused version because the parallel region 
causes KAP to fork threads only once. 

A very sophisticated example of KAP usage occurs 
when a user inputs a program to KAP that has 
already been optimized by KM. This is an advantage 
of a preprocessor that does not apply to a compiler 
because a preprocessor produces source code out- 
put. In this case, the statements shown in Figure 6 
were generated by KAP to illustrate X3H5 paral- 
lelism. A user may want to perform some hand opti- 
mization on this output, such as removing the 
barrier statement, and then optimize the modified 
program with KAP again. 

Challenges Tbat Remain 
Although the KAP preprocessor is a robust tool that 
performs well in a production software develop- 
ment environment, several challenges remain. 
Among them are adding new languages, further 
enhancing the optimization technology, and 
improving KM's everyday usability. 

As the popular programming languages evolve, 
KAP evolves also. KM will soon extend KAP support 
for DEC Fortran to Fortran 90 and is developing C++ 
optimization capabilities. 

In optimization technology, KAI's goal is to make 
an SMP server as easy to use as a single-processor 
workstation is today. "Automatic Detection of Par- 
allelism: A Grand Challenge for High-Performance 
Computing" contains a leading-edge analysis of par- 
allelization technology.lO The research reported 
shows that further developing current techniques 
can improve optimization technology. These tech- 
niques frequently involve the grand challenge of 
compiler optimization-whole program analysis. 

In a much more pragmatic direction, the K M  

preprocessor should be integrated with Digital's 
compiler technology at the intermediate represen- 
tation level. Such integration would increase pro- 
cessing efficiency because the compiler w o ~ ~ l d  not 
have to reparse the source code. In addition, inte- 
gration would increase the coordination between 
KAP and the compiler to improve performance for 
the end user. 

Increasing the usability of the KAP preprocessor, 
however, benefits the end user directly. KAP 
engineers frequently talk to beta users and encour- 
age feedback. The following are examples of user 
comments: 

Optimizing programs is difficult when no sub- 
routine in the program takes more than a few 
percent of the run time. As its usability in this 
area improves, K M  will become a substantial p r o  
ductivity aid. If a program is generally slow, opti- 
mizing repeated usage patterns will allow the 
programmer to use a comfortable programming 
style and still expect peak system performance. 

Increasing feedback to the user would improve 
KAP's usability. When KAP cannot perform an 
optimization, often the user can help in several 
ways (e.g., by providing more information at 
compile time, by changing the options or direc- 
tives, or by making small changes to the source 
code). KAP does not always make it clear to the 
user what needs to be done. Providing such feed- 
back would improve KAP's usability. 

Integration with other performance tools would 
be useful. Alpha systems have a good set of per- 
formance monitoring tools that can provide 
clues about what to optimize in a program and 
how. The next release of the KAP preprocessor 
will provide some simple tools that a user can 
employ to integrate KAF with tools like prof and 
to track down performance differences. 

On a final note, the fact that K M  does not speed 
up a program should not always be cause for disap- 
pointment. Some programs already run as fast as 
possible without the benefit of a KAP preprocessor. 
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