

Fditorial
Jane C. Blake, Managing Editor
Helen L. Patterson, Editor
Kathleen M. Stetson, Editor

Cover Design
The cover design captures two major concepts
in this issue-symmetry andparallelism. At the
hardware level, the AlphaServer multiprocess-
ing systemsprovide symmetrical access to hard-
ware system resources. Asprocessors are added
to the multiprocessing system, the DEC OSF/l
operating system provides the parallelism that
allows applications to take advantage of the
addedprocessorpawe~ The Wpreprocessor
also providesparallelism, specifically forpro-
grams running on symmetric multiprocessing
systems. In each case, symmetry andparallel-
ism are among the keys to achieving designs
that offer the highest levels ofp~ormance.

The cover was designed by Joe mzerycki, JK,
of Digital's Design Group.

Circulation
Catherine M. Phillips, Administrator
Dorothea B. Cassady, Secretary

Production
Terri Autieri, Production Editor
Anne S. Katzeff, Qpographer
Peter R. Woodbury, Illustrator

Advisory Board
Samuel H. Fuller, Chairman
Richard W Beane
Donald 2. Harbert
Richard J. Hollingsworth
Alan G. Nemeth
Jean A. Proulx
Jeffrey H. Rudy
Stan Smits
Robert M. Supnik
Gayn B. Winters

The Digital Technical Journal is a refereed journal published quarterly by Digital
Equipment Corporation, 30 Porter Road LJ02/D10, Littleton, Massachusetts 01460.
Subscriptions to the Journal are $40.00 (non-U.S. $60) for four issues and $75.00
(non-U.S. $115) for eight issues and must be prepaid in U.S. funds. University and
college professors and Ph.D. students in the electrical engineering and computer
science fields receive complimentary subscriptions upon request. Orders, inquiries,
and address changes should be sent to the Digital Technical Journal at the published-
by address. Inquiries can also be sent electronically to dtj@digital.com. Single copies
and back issues are available for $16.00 each by calling DECdirect at 1-800-DIGITAL
(1-800-344-4825). Recent back issues of the Journalare also available on the Internet
at http://wmw.digital.com/info/DTJ/home.htd. Complete Digital Internet listings can
be obtained by sending an electronic mail message to info@digital.com.

Digital employees may order subscriptions through Readers Choice by entering VTX
PROFILE at the system prompt.

Comments on the content of any paper are welcomed and may be sent to the managing
editor at the published-by or network address.

Copyright O 1994 Digital Equipment Corporation. Copying without fee is permitted
provided that such copies are made for use in educational institutions by faculty
members and are not distributed for commercial advantage. Abstracting with credit
of Digital Equipment Corporation's authorship is permitted. All rights reserved.

The information in the Journal is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation or by the companies
herein represented. Digital Equipment Corporation assumes no responsibility for any
errors that may appear in the Journal.

Documentation Number EY-S799E-TJ

The following are trademarks of Digital Equipment Corporation: Alpha, Alphaserver,
DEC, DEC Fortran, DEC OSWI, DECpc, DECthreads, Digital, the DIGITAL logo, MicroVAX,
OpenVMS, Storageworks, and ULTRM.

CRAY-1 is a registered trademark of Cray Research, Inc.

Intel is a trademark of Intel Corporation.

KAP is a trademark of Kuck &Associates, Inc.

Microsoft and MS-DOS are registered trademarks and Windows NT is a trademark of
Microsoft Corporation.

MIPS is a trademark of MIPS Computer Systems, Inc.

Multimax is a trademark of Encore Computer Corporation.

Open Software Foundation is a trademark and OSF/l is a registered trademark of Open
Software Foundation, Inc.

PAL is a registered trademark of Advanced Micro Devices, Inc.

SPECfp, SPECint, and SPECmark are registered trademarks of the Standard Performance
Evaluation Council.

SPICE is a trademark of the University of California at Berkeley

TPC-A and TPC-C are trademarks of the Transaction Processing Performance Council.

UNM is a registered trademark licensed exclusively by X/Open Company, Ltd.

Book production was done by Quantic Communications, Inc

Contents

6 Foreword
Steve Holmes

Alphaserver Multiprocessing Systems

8 Design of the AlphaServer Multiprocessor
Server Systems
Fidelma M . Hayes

20 The Alphderver 2100 I/O Subsystem
Andrew l? Russo

DEC OSF/l Symmetric Multiprocessing

29 DEC OSF/l Version 3.0 Symmetric
Multiprocessing Implementation
Jeffrey M . Denham, Paula Long, and
James A. Woodward

Scientific Computing Optimizations for Alpha

44 DXML: A High-performance Scientific
Subroutine Library
Chandrika Kamath, Roy Ho, and Dwight I? manl ley

57 The KAP Parallelizer for DEC Fortran and
DEC C Programs
Robert H. Kuhn, Bruce Leasure, and Sanjiv M. Shah

Editor's Introduction

Jane C. Blake
~Mclnaging Editor

Designs that capitalize on Digital's 64-bit Alpha
RlSC processors or that enhance the performance
of scientific applications are the subjects of papers
in this issue. Featured topics include the well-
received AlphaServer multiprocessing systems,
the DEC OSWl symmetric multiprocessing operat-
ing system, a high-performance math library, and
a preprocessor program developed by Kuck Sr
Associates, Inc.

To develop a price/performance leader for the
server market, designers of the AlphaServer 2100
and 2000 multiprocessing systems had to make
decisions that were at once creative, pragmatic,
and timely. Fidelma Hayes, an engineering manager
for the Server Group, presents an overview of these
high-performance servers that incorporate Alpha
RISC technology and PC-style I/O subsystems, and
support three operating systems-Microsoft's
Windows NT, DEC OSF/l, and OpenVMS. Because of
the engineering teain's persistent focus on perfor-
mance, cost, and time-to-market, all these goals for
the AlphaServer systems were surpassed.

Introducing two PC buses in the AlphaServer
multiprocessing system was an important factor in
market success and an interesting engineering chal-
lenge. Andy Russo discusses the benefits of a dual-
level I/o structure that contains both the witlely
used EISA bus and the newer high-performance
PC1 bus that connects to a 128-bit multiprocessing
system bus. He describes several innovative tech-
niqiies that promote efficiency in the hierarchi-
cal bus structure, the advantages offered by the
selection of bus bridges (one custom ASIC ancl one
standard chip set), and the I/O interrupt scheme
that combines familiar technology with cilstom
support logic.

The next paper presents the significant software
work done to ensure high performance and reliabil-
ity as CPUs are added to the 2100 and 2000 multipro-
cessing systems. Jeff Denham, Paula Long, and Jim
Woodward first review the foundations of DEC:
OSWl version 3.0, Digital's implementation of UND(.
for the Alphaserver multiprocessing systems. They
then examine issues that arise when moving an
operating system from a uniprocessor to a shared-
memory SMP platform, in particular, the design
team's efforts in lock-based synchronization and
algorithm n~odifications aimed at parallelism
within the operating system kernel.

The total impact of 64-bit RlSc systems and oper-
ating system support for shared memory SMP plat-
forms is demonstrated by meeting the demands
of scientific and technical applications. A tool for
accelerating application performance on all Alpha
systems is the DXML Extended Math Library.
Chandrka Kamath, Roy Ho, and Dwight Manley
briefly discuss the role of mathematical libraries
and then present an overview of DXMI. compo-
nents, which include both, public domain BLAS and
LAPACK libraries and Digital proprietary software.
Using example routines, they explain optimization
techniques that effectively exploit the memory
hierarchy and provide substantial performance
improvements.

Another tool for optimizing scientific application
performance is KAP, a preprocessor to parallelize
DEC Fortran and DEC C programs. As authors Rob
Kuhn, Bruce Leasure, and Sanjiv Shah from Ki~ck &
Associates describe it, the K A P product is a super-
optimizer, performing optimizations at the source
code level that go beyond those performed by the
compilers. Their paper reviews adaptations to KAP
for SMP systems and the key design aspects, such as
data dependence analysis and the selection of loops
to parallelize from among many in a program

The editors thank Alidrei Shishov, Mid-range
AlphaServers Program Manager, for his help in
developing this issue of t11eJouriznl.

Biographies

Jeffrey M. Denham A principal software engineer in the UNlX Software
Group, Jeffrey Denham is a contributor to the DEC OSW1 version 3.0 symmetric
multiprocessing effort. Prior to this, he helped add POSIX.lb features to the DEC
OSWl operating system and worked on the VAXELN real-time kernel. Jeff came to
Digital in 1986 from Raytheon Corporation. He holds a B.A. (1979) from Hiram
College, an M.A. (1980) from Tufts University, both in English, and an M.S. (1985)
in Technical Communication from Rensselaer Polytechnic Institute.

Fidelma M. Hayes As an engineering manager in the Server Group, Fidelma
Hayes led the development of the AlphaServer 2100 and AlphaServer 2000 sys-
tems. Prior to this work, she led the design of the DECsystem 5100. She has con-
tributed as a member of the development team for several projects, including
the DECsystem 5800 CPU, the PRlSM system design, and the MicroVAX 3100.
Ficlelma joined Digital in 1984 after receiving a bachelor's degree in electrical
engineering from University College Cork, Ireland. She is currently working
toward a master's degree in computer science at Boston University.

Roy Ho As a principal software engineer in Digital's High Performance
Compi~ting Group, Roy Ho developed the signal-processing routines used in
DXML Prior to this work, he was a member of the High Performance Compi~ting
Technology Group. There he designed the clock distribution system for the VAX

hult-tolerant system and the delay estimation software package for the VAX

9000 system boards. Roy has B.S. (1985) and ,M S (1987) degrees in electrical engl-
neerlng from Rensselaer Polytechnic Institute. He joined Digital in 1987

Chandrika Kamath Chandrika Kamath is a member of the Applied Computa-
tional Mathematics Group. She has designed and implemented the sparse linear
solver packages that are included in DXML. She has also optimized customer
benchmarks for Alpha systems. Chandrika holds a Bachelor of Technology in
electrical engineering (1981) from the Indian Institute of Technology, an M.S.

in computer science (1984) and a Ph.D. in computer science (1986), both from
the llniversity of Illinois at Urbana-Champaign. She has published several papers
on numerical algorithms for parallel computers.

Robert H. Kuhn Robert Kuhn joined Kuck Sr Associates as the Director of
Products in 1992. His functions are to forn1ul;ctc technical business strategy and
to manage procluct deliveries. From 1987 to 1992, lie worked at Alliant Computer
Systems, where he managed compiler development ancl application software
for par;~llel processing. Bob received his P1i.D. in computer science from
the University of Illinois at Champaign-Urbana in 1980. He is the author of
several technical publications and has participated in organizing various techni-
cal conferences.

Bruce Leasure Bruce Leasure. one of three founders of Kuck Sr Associates in
1979, serves as Vice President of Technology and is tlie chief scientist for the
company As ;I charter member and executive director of the Parallel Computing
Forum (PCF), a standards-setting consortium, h e was a leader in efforts to stan-
dardize basic forms of parallelism. The P<:F subsequently became the ANSI X3H5
committee for Pardl lel Program Constructs for High-level Languages, which he
chaired. Bruce received 8 s. and M.s clegrees in computer science from the
University of Illinois at Champaign-Urbana

Paula Long Since joining Digital in 1986. R ~ u l a Long has contributed to vari-
ous operating system projects. Presently a principal software engineer with the
UNlX Software Group. she leads tlie development of symmetric multiprocessing
(SIMP) capabilities for the DEC OSF/l operating system. In previous positions, she
led the DE(: OSF/1 real-time and DECwindows on VAXELN projects. Paula received
a B.S.C.S. from Westfield State College in 1983.

Dwight P. Manley Dwight Manley is a consulting software engineer in the
Applied Computational Mathematics Group. He joined tlie DXML Group in 1989
and continues to support and enhance the DXiLIL and W ' F products. Since joining
Digital in 1979, he has worked on system measurement and modeling projects
ancl was responsible for all performance modeling of the VAX 9000 CPU design.
He is listed as a coinventor on 11 patents and as a coauthor of a paper on matrix
computation theory. Dwight has a B.S. in matliematics from the University of
Mass;~chusetts and a n M.S. in operations research from Northeastern University

Andrew P. Russo Andy Russo is a principal hardware engineer in the Alpha
Server Group. Since joining Digital in 1983, Andy has been a project leader for
several jnternal organizations, including the Mid-range I / O Options Group, tlie
Fault Tolerant Group, and the Alpha Server Group. While at Digital. Andy
has contributecl to the architecture and design of high-performance hSlCs ancl
modules t o provide a variety of end-product requirements. Andy holds several
patents ant1 has authored two papers. He receivetl a 13,s. in computer engineer-
ing from Boston University.

Sanjiv M. Shah Sanjiv Shah received a B.S. in computer science and mathe-
matics (1986) and an MS. in computer science and engineering (1988) from the
University of Michigan. In 1988, he joined Kuck & Associates' KAP development
group as a research programmer. He has since been involved in researching and
developing the KAP Fortran and C products and managing the KAP development
group. Currently, Sanjiv leads the research and development for parallel KAP

performance.

James A. Woodward Principal software engineer James Woodward is a mem-
ber of tlie I iNlX Software Group. He is responsible for DEC OSF/l symmetric
multiprocessing (SMI-') processor scheduling and base kernel support. In previ-
ous work, Jim lecl the ULTRlX SIMP project and the VAX 8'200, VAX 8800, and VAX

6000 UI..TRIX operating system ports. He also wrote microcode for the VAX 8200
-..

systems as ;I member of the Semiconductor Engineering Group. Jim joined
Digital in 1981 after receiving a B.S.E.E. from the University of Michigan.

Steve Holmes
Engineering Gro~tp
Manage?; Serzler
PlntJorm Deldopnzent,
and Db*ecto~; OjJice
Server Product Line

The engineering developments described in this
issue represent tlie second of ni;lny planned gener-
ations of products that will be designed to fi~lfill
Digital's Alpha vision. That vision is (a) to make
Alpha systems open, and (b) to deliver a rich set of
Alpha system proclucts tli:~t lead the marlcet both
in performance ant1 price/performance. It is heart-
ening to see the vision being realized. It is yet more
heartening to see it unfolding simultaneously with
appreciable improvements in Digital's business
practices. These combined events have alreatly
resultetl in substantial 111;trket acceptance of
Digital's AlphaServer products.

The particular set of papers in this issue is for-
tuitous in tIi;lt it demonstr;~tes tlie large number
of individuals and range of engineering skills
required to bring about an industry phenomenon
such as Alpha. Included are papers focusecl on the
AlphaServer multiprocessing systems, on the sym-
metric multiprocessing i~iipleme~itation of the DE<:

OSF/l operating system, on the optimization o f
mathematical subroutine libraries for the Alpha
architecture. ant1 on the KAP preprocessor. If one
can imagine these technical efforts multij>lied
rnanyfo.lcl, tlie scope of the Alpha undertaking
will emerge.

The first gener;ction of products based on tlie
Alpha architecture was introduced in 1992. The
AlphaServer 2100 system ant1 DEC OSF/l SIMP operat-
ing system. introtluced in mid-1994, together repre-
sent the beginning of the second-gener~tioii Alpha
server products. The overarcl~ing develol>ment
goal was to give o i ~ r present and h~ tu re customers
a compelling reason to buy. The resultant direction
was to provitle very low cost multiprocessing sys-
tem capability with intlustry-stantlard open I/(>
buses. in this case PC1 and EISA. To capitalize 011

these attributes and to ensure that a complete solu-
tion was delivered, the engineering teams m:~in-
tained a customer-focused perspective. I t is this
perspective th;~t h;~s enabled the AlphaServer 2100
to achieve rapid nl;~rket ;lccept;lnce.

Truly, though. the most significant achievelilent
for the present rouncl o f Alpha server protlucts is
this: a whole new standard of price/performance
for tlie industry has been reached. Computing that
in the past could have been performed only with
very expensive high-end machines or extensive dis-
tributed networks is now performed by ;iffortlable
AlphaServer systems.

This price/performarice breakthrough augments
Digital's strong capabilities.

A truly open environment that supports UNM and
Windows NT operating systems on Alpha systems

The ongoing strength of the world's best full-
featured commercial operating system, the
OpenVMS system

A xvorld-class ant1 worltlwicle service and deliv-
ery organization

An extensive and growing network of channels

Overall, Digital's renewed and meaningful com-
mitment to be responsive to the demands and
needs of the markets

This is a very exciting ant1 procluctive time in
Digital's history

If this were the end of the story, there woultl be
much of which to be proud. In fact, there is more to
come across the range of AlphaGeneration prod-
ucts, including workstations, PCs, clustering, oper-
ating systems, ant1 networking. In the server area
specifically, the recently announced A.lphaServer
2000 increases the price/performance lead of the
2100 system. Processor and cache upgrades have
increased the ;ib>olute perfor~nance of the family.
Just round the corner are similar advances for
other members of Iligital's server products. A little
further ;IW:I~ are significant enhancements in our
clustering c;~pabilities and in our server manage-
ment tools.

All these developn~ents are of direct and measur-
able benefit to our customers. All are guicled by
what the markets are telling us they want. The
trend and pace of these enhancements will allow
Digital to continue to deliver on the promise of the
Alpha vision.

Performance measurements. for example,
SPECmark data and transaction-per-seconcl tests.
and competitive comparisons support the state-
ments above. However. the case is made most con-
vincingly by the early acceptance and rapid ramp
up of AJphaServer 2100 system purchases by our
customers. In the highly competitive server arena.
success is being den~otwtratetl tlaily.

I would like to take this opportunity to offer
a very enthusiastic thank-you to all whose work is
represented in the accomp;lnying technical papers.
most especially to the Alphaserver 2100 develop-
ment team whose work I have had the privilege to
observe since the team's formation. The hard work
and dedication of everyone is recognized, ;~ppreci-
ated, and needed for the foture.

This forewortl will conclude in favor of the sub-
stantive papers that detail the technical contribu-
tions made by the authors and their colleagues. It is
my expectation that readers of this issue of the
Digital Tec~~nicc~l . /o~~i~~rral will gain usefill technical
insights. It is my hope that they will also see, as I do.
that the h~ture of Digital computing is bright.

Fidelwzn M. Hayes I

Design of the AlphaSeruer
Multiprocessor Server Systems

Digital's AlpbaSert~er. i~i~~ltipr.ocessor' s~s tnns are bigb-perforn~arzce ser-11er.s tbnt
cotrtbine r~~~~ltipr~ocessi~zg tecI311ologj1 zl~itl9 PC-style I/O strbs,s)aterrzs. The sj~stern
ar-cl~itecture alloirs ji)~lr.processi~zg ~iocles, fo~li. rnenzor:]~ rrodes (I [/ , to a rrinxirriirrri
of 2 GR), arid t~ilo //O riodes All rzodes co~?zn?unrcnte thr~o~lgb a s)islern 6~rs Tl~e
s)lstt~n 611s ~ilas designe~l to sl~ppot-t ~lzultiple generations of Alphap~.ocesso/. tech-
no log)^ The arr/~ilectr~r-e car1 be ii?~plei~zeizted in differ-el?[ziuja dependirzg on the
sire of the sjlstern packagit~g.

The Alphaserver 2100 (large peclestal) and the
A117haServer 2000 (sm;~ll pedestal) servers from
Digital combine multiprocessing Alpha technology
with an I/() subsystem tl-aditionally associ:ited with
personal computers (P<:s). Tlie I/() subsystem in the
AlpliaServer systems is b;lsed on the Peripher;il
Component Interconnect (l'(:I) ant1 the Extended
Industry St;~nd;~rd Architecture (EISA) buses. All
AJphaServer products. inclutling the AIphaSer\wr
2100 cabinet version. share common technology
and support at least three generations of tlie Alpha
processor. In addition. the servers support three
operating systems: Microsoft's Winclo~vs NT version
3.5. ant1 Digit;il's I)E<: OSI/l version 3.0 (: III~ higher)
and Open\OlS version 6.1 (;lntl higher).

The Alp1i;tServer systems are designed to be
general-purpose servers for P(: local area network
(LAN) ant1 d;it;ib;lse applications. All motlels of the
system use a common multjprocessing bus inter-
connect t1i;lt s~~pl>ort.s different numbers of notles.
depending on the system configur:ition. The s).stems
share a common (:1111, memory. ;lncl I/O architecture.
The number of (:Pl!s. the amount of niemor): tlie
number of I/() slots, ;lnd the amount of internal stor-
age vary depending on the mecIi;~nic;il packaging.
The flexibility of the ;~rcliitecture ;~llows the quick
tlevelopnient of new and enhanced systems.

This paper discusses the tr;~nsformation of a
set o f requirements into high-perform;~~~ce, cost-
effective protluct iml,lementations. The following
section describes the evolution of tlie AlphaServer
design from ;in ;~d\~;lnced clevelopmenr project into
;I design project. The p;rper then clescribes the (:PI1
motlule, the multiprocessor systcm bus. ;ind the
memor). module. Subsequelit sections tliscuss

module ancl silicon technology ant1 the I~igli-
availability feat~~res incorporated into tlie design.
The paper ends with a performance summary and
conclusions about the project.

Concept Developrnertt
The engineering investigations of ;I client-server
s!.steni originated from ;I business need t11:1t Digital
perceived wben it introduced the first systenls
to incorporate the Alpli;~ technology in late 1992.
Among Digital's first products in the server n~;rrket
were the DEC 4000 high-performance tlep;~rtmental
s!.stern, the DEC 3000 tleskside workstatioll/ser\~err
and the EISA-based Alph:~ I>(:. The lack of :in esplic-
i t ly identifiecl, general-pilrpose system h)r the mid-
range system market generated many requests from
Digit;~l's iMicroVAX I1 system customers. Reqilests
from these customers propelled the AlphaSe~*ver
protluct developn~ent effort.

Fro111 the beginning of the project, two 1n;ijor
constraints were eviclent: l'he schedule required
a protluct by mid-1994. and thc budget was limited.
Accordingly. tlie product team was requiretl to
leverage other developnients or to find newer. less
costly ways of achieving tlie product go;lls. Work
on the AlpliaServer systems started ;IS ;I joint effort
between an atlvanced developlnent team ;inel a
business pl;inning team. Tlie bu>iliess te;m clevel-
oped market profiles and a list of features without
which the system woultl not be competitive. l'he
business team followeel ;I ni:irket-driven pricing
model, The profit expected from the >ystcl~i tlic-
tatecl tlie product cost h)r the syatcln. This cost is
referrecl to ns "tr:rnsfer cost." The businrss tcani's
cost requirenient was critical: if it coulcl not bc met.

the project would be canceled Furthermore, the
entry-level system was requirecl to

I . Support at least two CPUs. with performance for
;I single CPIJ to yield 120 SPECmarks and 100+
transactions per second (TPS) o n tlie TPC-A
benchmark.

2. Support at least 1 gigabyte (<in) ofmemorjl.

3. Sulyx)rt multiple 1/0 buses with at least six
option slots supportecl on tlie base system.

4. l'rovide high-;ivaiI;tbility fe;~tures such as redun-
cl;lnt power si~pplies. rreluntlant arr;iy of inex-
pensive disks (RAID), "warm swap" of drives, and
clustering.

5. Provide a number of critical system connec-
tivity options, including Ethernet, fiber clistrib-
i~ted data interface (FDDI). and synchronous
control Iers.

6. Support the Wintlows NI ' , the LIE(: OSF/l, ;und tlie
OpenVh4S operating systems.

<;iven these criteria, the engineering team
decidecl to base the development of the new server
on concepts taken from two Digital products and
combine them with the enclosures, power SLIP-

plies. ancl options commonly associated with PCs.
The I>E(: 4000 server is a multiprocessor system
with a Futurebus+ L/O subsystem; it provided
the basis for the multiprocessor bus design.' The
I>E<:pc 150 PC: is a uniprocessor system wit11 ;In EISA
I/() subsystem; it provided :I moclel for designing an
l/O subsystem capable of running the Windows N7'
oper:~ting system. The engineering te;ini chose PC-
style peripherals because of their low cost.

A strategic tlecision was made to incorporate the
emerging P<:I bus into the product in addition to
the EISA bus. Major PC vendors hacl expressed high
interest in its tlevelopment, ;~nd they believed the
]'<:I bus woultl gain acceptance by the I)<: comruu-
nity. T'lie tlCl bus provides a I~igh-performance, low-
cost I / () ch;innel that allows connections to many
options sucli ;IS sm;~ll computer systems interface
(S(:SI) adapters ancl other common I><: prriplierals.

After the initial design hacl been completetl, chang-
ing market ant1 competitive environments imposed
additional requirements on the clesign team.

I . The initial transfer cost goal was reduced by
approximately 13 percent.

2. Support for a maximum of four processor 1i10tl-
11 les .iv:~s necess;iry.

To meet these new recluirements, the clesign team
had to modify the system design cluring the product
development phase.

System Overview
The base architecture developed for Digital's
AlphaServer multiprocessor systems allows four
processing noeles, four memory nodes (up to a max-
imum of 2 <;H), and two I/O nodes. All nodes com-
municate througli ;I system bus. The system bus
was designed to support multiple generations of
Alpha processor technology. The architecture can
be implemented in different w~ys . depending on
the size of the system packaging. It is flexible
enough to meet a variety of market needs. Two
implementations of the architecture are the
AlphaServer 2100 and the Alphaserver 2000 prod-
ucts. Figure 1 is a blocl< diagram of the AJphaServcr
2100 implernent;~tion of the arcliitecti~re.

In tlie Alph;~Server 2100 large pedestal server.
the system bus supports eight nodes. It is imple-
mented on a backpl;~ne that has seven slots. The
seven slots can be configured to support up to
four processors. Due to the number of slots avail-
able, the server supports only 1 GB of memory
when four processors are installed. It supports
the full 2 CiB of memory with three processors
or less. The eighth nocle. which is the system bus-
to-PC1 bridge, is resident on the backplane. This
provides a 32-bit ['<:I bus that operates at 33 mega-
hertz ($11-12). It is referred to 2s the primary PC1 bus
on the system.

A seconcl 1 / 0 bridge c;ui be installed in one of
the system bus slots. This option, which will be
available in 1995. will provide a 64-bit PC1 bus for
the system. A 64-bit I'CI is an extension of ;I 32-bit
PC1 bus with a wider data bus. It operates at 33 MHz
and is completel!- interoperable with the 32-bit P<:I
specification.' Options designed for the 3 -b i t
PC1 bus will also work in a 64-bit PC1 slot.

ElSA slots ;!re supported through a bridge o n [lie
primary PC1 bus on the system. Only one Elst\ bus
can be supportecl in tlie system since many of the
addresses used by ElSA options are f ixed. Support
of a single EISA bus is not perceived as an issue given
the migration from the EIM bus to the much higher
performing P<:I bus. The maximum supported
bandwiclth on an ElSA bus is 33 megabytes per
second (MB/s) versus the lnaxirnum bandwidth on
a 32-bit P<:I bus of 132 M13/s. The EISA bus is i~sed in
the system for support o f oltler ad;ipters that have
not migrated to]'(:I.

AlphaServer Multiprocessing Systems

Slots 4 and 5 may be used lor Slot 1 accommodates
two additional memory modules either expansfon 110
if CPU 2 IS not installed module or CPU.

tciu
MEMORY MEMORY CPU2 CPU 1 CPUO
MODULE MODULE MODULE MODULE MODULE 'I0 (64-BIT

OR CPU 3

SERIAL
CONTROL
BUS

I
SYSTEM BUS - 128 BITS

INTERRUPT CONTROLLEq
r - - - - - - - - - - - - - - -

I 8259A-2

I 000000 L - - - - - - - - - - - - - - J

CONTROLLER a
KEYBOARD

MOUSE

KEYBOARD
AND MOUSE

+-+ OPERATOR CONTROL PANEL

n
PARALLEL

CONTROLLER

ROM

PARALLEL XI

SERIAL PORT

SERIAL PORT
*I1
4

Figure I Block D i ~ / g v ~ ~ i , ? oJtl?e AlpbaServer 2100 .Yy.st(~ A ~-c/~itect/tre

The Alphaserver 2000 small petlest;il s)lstem sup- node. A system bus slot can also be used to support
ports five nodes o n the system bus. The backplane the optional second I/<) bridge.
provicles four system bus slots, allowing a maxi- The AlphaServer 2100 cabinet system is a rack-
mum configuration of two processor modules and mountable version o f the large pedestal
two memory modules. The system bus-~O-PCI MphaServer 2100 system. The rackmountable unit
bridge resides o n the backplane and is tlie fifth provides a highly ;ivailable configuration of the

Design of tlge AlplnaSerller Multipr~ocessor Serzler Sj~sterns

pedestal system. I t incorporates two separate back-
planes. One bac.kplane supports eight system bus
notles that are implemented its seven system
bus slots. The eighth node (the system bus-to-P<:I
bridge) resides on the backplane. The second back-
plane provides the I/() slots. The number and
configuration of I/O slots are identical to the
AlphaServer 2100 pedestal system. The rackmount
unit psovitles minimal storage capacity. Atlditional
storage is supported in the cabinet version through
Stor;tge\Vorks shelves. These storage shelves can
be powered independently of the base system
unit. providing a highly available configuration.

Table 1 gives the specific:~tions for the
AlphaScrver 2100 and the AlphaServer 2000
pedestal systems. Information o n the cabinet
version is not included because its characteristics
are similar to the AlphaServer 2100 large pedestal

version. iUl multiprocessing members of the
AlphaServer family use the same processor and
memory modules and differ only in system packag-
ing and backplane implementations. This illustrates
the flexibility of the architecture developed for the
system and decreases the development time for
new models.

CPU Module
The CPU module contains an Alpha processor, a
secondary cache, and bus interface application
specific integrated circuits @SICS). As previously
mentioned, the system architecture allows multiple
processor generations. Multiple variations of the
processor module :ire available for the system, but
different v:~riations cannot be used in the same
system. Software has timing loops that depend on
the speed of the processor and cannot guarirntee

Table 1 AlphaServer System Specifications

Specifications Large Pedestal Small Pedestal
Alphaserver Alphaserver
2100 System 2000 System

Height, inches 27.6 23.8

Width, inches
Depth, inches
Maximum DC power output,
watts per supply

Number of system slots
Number of processors supported
Minimum memory
Maximum memory
Embedded I/O controllers supported
Optional I/O controllers supported
32-bit PC1 slots
64-bit PC1 slots (on separate I10
controller module)*
ElSA slots
Serial ports
Parallel port
Ethernet ports (AUI and 10Base-T)

SCSl I I controller
Removable media bays
Internal warm-swap drive slots

7
2

1
Not integral
to system

Comments

Two possible per
system in either
redundant or current
shared mode

Up to 18 total network
ports supported on
system via PC1 and
ElSA options

" Future option

Digital Technical Jorrrrral Vol. 6 I V ~ . .3 .Sf~tnnr~t' I994 I I

Design of the Alpl~uSerrler IC.lulti~!roccssor~ Serr lei- Systel?~.~

re;rtls/writes to I/O space are handled as uncached
memory accesses. Clearly, this was incompatible
with the nonpended bus. which assumes tlie use of
m;lilboxes. Consequently, the designers stildied the
advantages and disadvantages of using mailboxes
to determine if they shoulcl be supportetl in the
Windows NT operating system. They found that the
software overhead of manipul;rting the mailbox
structure made CSR accesses approximately three
times slower than direct accesses by the hardware.
Thus the <:PlJ performing the I/<) access waits
longer to complete. For this reitson, the tlesigners
chose not to use mailboxes.

The designers also had to ensure that the system
bus woulcl be available for use by other processors
while the I/O transaction was completing. To satisfy
this requirement, they added a retry mechanism to
the system bus. The retry support was very simple
and was layered on top of existing bus signals.
A retry condition exists when the <:p[J initiates a
cycle to the I/O that cannot be completed in one
system bus transaction by the I/O bridge. The CPU
involved in the transaction is notified of the retry
condition. The CPU then "backs off" the multipro-
cessor bus and generates that trans;lction some
period of time later. Other processor modules can
access memory during the slow I/() transaction.
The retry procedure continues until the I/<) bridge
has the requested data. At that stage, the data is
returned to tlie requesting CPIJ.

Elite Addressing Byte granularity 11;1d been han-
dled in the mailbox data structure. After tlie direct-
mapped I / o sche~i le was adopted, the designers
h;rd to overcome the lack of byte addressability in
the Alpha architecture. Therefore, the designers
p;rrticipated in a collabor;~tive effort across Digital
to define a mechanism for adding byte ;lddress-
ability in the IUpl~a architecture. The new schenie
recluired the use of the four lower av;~il;tble Alpha
Ad:[08:05] atldress bits to encode byte masks and
lower order address bits for the P<:1 and ElSA buses.
For more details. see tlie paper on the AlphaServer
2100 I/o subsystem in this issuch

The designers required ;I retlefinition of the
atldress map. All I/O devices ;Ire now memory
mapped. The Alpha 21064A processor has a 34-bit
address field that yields an address space of 16 <;R.
This 16-<;13 address region may be subdivided into
4-(it3 quadrants. Each quadrant can be individually
marked as cacheable o r noncacheable memory. The
DE<: 4000 system architectul.e split the 1 6 - ~ 0 region

in half: 8 <;R was allocated as cacheable memory
space and the remaining 8 <;R as noncacheable
space. Memory-mapped I/<) devices are mapped
into noncaclie:tble space. The decision to support
multiple I/O buses in the new systems together with
the decision to memory map all I/O (i.e., no mailbox
accesses) yielded a noncacheable memory require-
ment in excess of tlie 8 <;I1 allocated in the DEC 4000
system. Therefore the tlesigners of the AlpliaServer
systems changed the address map and allocated a
single cliiadrant (4 <;13) of memory as cac1ie;rble
space and the remaining 12 <;B as noncache;ible.
These 12 GB are used t o memory map the I/O.

Arbitrcztion The bus used in the DEC 4000 system
supports two CPU nodes am1 a single 110 node. To
achieve the AlpliaServer product goals of multiple
I/O bridges and multiple <;PU nodes, the designers
changed the address map to accommodate csR
space for these extra nodes and designed a new
arbiter for the system. The arbiter includes
enhanced functionality to increase the perfor-
mance of future generations of processors. Some
key features of tlie arbiter are listed below.

1. The arbiter is implemented ;IS ;I separate chip on
all processor motlules. The logic was partitioned
into a separate chip to accommodate a flexible
architecture and to allow additional arbitrating
nodes in the filture. As many as four arbiters can
exist in the system. Only one arbiter is enabled in
the system. It is on the processor installed in slot
2 of the system bus.

2. I/O node arbitration is interleaved with CPIJ node
arbitration. The arbitration is round robin and
leads to an ordering scheme of CPU 0, I/o, cPU 1.
I/O, CP1J 2, I/O, <:PU 3,1/O. This scheme attempts
to minimize 1/0 I;~tency by ensuring many arbi-
tration slots for I/O devices. Processors still have
Inore than adequate access to the system bus due
to tlie nature of I/o traffic (generally bursts
of data in short periods of time). On an idle
bus, the arbiter reverts to a first-come. first-
served scheme.

3. The arbiter implements an exclusive access cycle.
This allows ;In arbitrating node to retain tlie use
of the system bus for consecutive cycles. This
cycle is used by the I/o bridge in response to a
lock cycle. A P<:I lock cycle may be generated by a

device that requires an atomic operation, which
may take multiple transactions to complete. For
example, tlie AIphaServer 2100 and 1UpIiaServer

Digital Technical Journnl 1/01. 6 tVo. .i .Srr/,~/ner 1994

AlphaServer Multiprocessing Systems

2000 systems use a PcI-to-Els~ britlge chip set
(Intel 82430 chip set).- This chip set requests
a lock cycle on PC1 when an ElSA tlevice requires
an atomic read-modify-write operation.

The use of atomic read-modify-write operations
is common in older I/(> adapter designs. The I/O
britlge on the system bus recluests an exclusive
access cycle from the arbiter. When i t is grantecl, all
buffers in the path to memory are flushecl and the
device has exclusive use of the Ir:l and the system
bus nnril its transaction is conipletetl. The use of
this mode is not recommended for new adapter
designs clue to the unfair nature o f its tenure on the
systeni bus. It was implemented in the AlpliaServer
product design to support older ElSA devices.

Memory Module
Main memory is accessed over the system bus either
by processors (after missing in their on-board c;~clies)
o r by I/o nodes performing direct memory access
(DMA) transactions. They are calletl commanders.

The memory controller incorpor;~tes :I number of
performance-enhancing features that reduce latency
in accessing the dynamic Rkkl (DRAM) array One
concept used is called a stre;lm buffer. Stream
buffers reduce the read latency to main memory
Reads to main memory normally require 9 to 10
cjrcles on the system bus, depetitling on the speed of
DRAMS in the array. The use of stream buffers reduces
this time to 7 cycles. The stream buffers provide a
facility to load data fetched from tlie Dbhv array
prior to the receipt of n read request for that dara.

A stream is detected by monitoring the read
adtlresses fro111 each cotnmantler o n the system
bus. The logic simply keeps a record of the memory
addresses of tlie previous eight re;~tl transactions
from each comniander and comp;lres e ;~ch subse-
quent read address to see if the new address is con-
tiguous to any of the recorded atldresses. If a new
address is deter~ninecl to be contigi~ous to any of
the previous eight addresses. a new stream is
declared. As :I result, one of the strexrn buffers
is allocated to a new stream.

A stream buffer is implementetl as a four-deep,
first-in, first-out (FIFO) boffer. Each entry in the
FIFO buffer is 32 bytes. whicli is equivalent to tlie
system bus line size. Each memory motlule con-
tains four stream buffers that can be allocntetl to dif-
ferent commanders. A least recently used (LRIJ)
algorithm is used to allocate stream buffers. When
a new stream is detected, o r an existing strealn is

empty the stream buffer fills f ro~ l l the DRr\hq array
by using successive acltlresses from the heat1 of the
stream. After a buffer has been allocated ant1 some
amount of data has been placed in the FIFO buffer,
"hit" logic conip:lrcs inco~ning read addresses from
the system bus to the stream address. If a compari-
son of these two addresses is successfi~l, read data
is delivered from the memory module wi thoi~t
incurring the latency of accessing the DRAM array.

An invalidation scheme is used to ensure that the
stream buffers stay coherent. Write cjrcle adtlresses
are checked to see if they coincide with a stream
buffer address. If the write acldress is equal to
any atldress ci~rrently in the stream buffer, that
entire stream buffer is tleclared invalid. Once it is
invalidated, it can I>e reallocated to the next
detected stream.

Writes to main memory complete on the system
bus in six cyclcs, which is achieved using write
buffers in tlie memory controller. The write transac-
tions are essentially "dump and run." The total write
buffering ;~vailable in each memory module is 64
bytes. which is large enough to ensure that tlie sys-
tem bus never h:w to stall during a write transaction.

The implementation of the memory module dif-
fers from the Alpli;~Server 2100 to the AlpliaSer\~er
2000 system. Rot11 memory modules contain the
same memory controller ASIC:s, but the implemen-
tation of tlie DtUM array is different. Due to space
constraints o n the AlphaServer 2100, the DILOI
array was implemented as a flat, two-sided surface-
mount module. O n the AlphaServer 2000, single
in-line memory modules (SIMMs) were usecl for the
DRhiM array Memory motlule capacities vary from
32 MB to 512 MI). The Alph;lServer 2100 system pro-
vides four system bus slots that can be populatetl
witli memory tnodules. The maximum supportetl
configur;ltion is 2 < ; I 1 witli four nielnor)' motlules.
This limits the maximlim system configuration to
three processors since one of tlie processor slots
must be used ;IS ;I memory slot. The AlphaServer
2000 system provitles two system bus slots that
can be populatetl with memory The maximum
memory supportetl in this system is 640 MH. 'This
configuration consists of one 512-MB module and
one 128-MI$ motlule. The maximum memory con-
straint is tlictatetl by tlie power and cooling avail-
able within this system package. The AlphaServer
2000 still supports two processor modules when
configured with masimum memory. F i g ~ ~ r e 2
shows a block diagram of the Alphaserver 2000
memor). motlule.

14 W)I. 6 No .f .Sri,)lt>irr 1994 Digital Techtrical Jourttnl

Design of the AlphaSeroer ibl~~ltiyrocessor Server Sj~stems

SERIAL CONTROL BUS

I
> TO MEMORY MODULES AND CPU MODULE

SERIAL CONTROL BUS
EEPROM

I BANK 3 1-1 I
1-1 I

EIGHT X3fi SlMMs I I I I

BANK 2
EIGHT X36 SlMMs

BANK 1
EIGHT X36 SlMMs

BANK 0 I ,'I
I I M

EIGHT X36 SlMMs I I
I I

A

DATA PATH DATA PATH
128 DATA ADDRESS 128 DATA
AND 12 EDC AND CONTROL AND 12 EDC

DRIVERS

I I v
EVEN SLICE

INTERFACE

SYSTEM BUS TO MEMORY MODULE. I10 INTERFACE. AND CPU MODULES

Figure 2 Block D i ~ ~ ~ y r c r ~ n of the Alphasel-uer 2000 Memory Module

Technology Choices
This section briefly discusses some of the decisions
and trade-offs made concerning module and silicon
technology used in the systems.

ilfodule Techrzology
The designers partitioned the logic into modules for
two reasons: (1) Removable processor and memory
modules allow for installation of i~dditional memory
and processors and (2) They ;~lso allow for easy
upgrade to fi~ster processor speeds. Since modularity
;~dds cost to a system, the clesigners decided that the
I/O subsystem (EISA and 13CI logic) should reside on
the backplane. They deviated from this strategy for
the AlphaServer 2100 system design because the PCI-
to-EISA bridge was a new, unfamiliar design. Fixing
any problems with this chip set or any of the support-

ing logic would have required a backplane upgrade,
which is a time-consuming effort. For this reason,
the engineers chose to build an 1/0 module for the
AlphaServer 2100 system that contained the PC1-to-
EISA bridge; associated control logic; controllers for
mouse, keyboard, printer, and floppy drive; and the
integral Ethernet and sCs1 controllers. This module
was eliminated in the AlphaServer 2000 system due
to the design stability of the I/O module.

The Metral connector specified by the
Futurebus+ specification was chosen for the sys-
tem bus implernent;~tion on the DEC 4000 product.
This choice was co~lsiste~lt with the design of the
DEC 4000 server, which is a Futurebus+ system.
Cost studies undertaken during the initial design of
the AlphaServer 2100 system showed that the cost
per pin of the Metral connector was high and added
a significant cost to the system. The team decided

Digilul Technical Journal lbl. 6 No .j . S ~ i i ~ r r ~ z e r 1994 15

AlphaServer Multiprocessing Systems

to investigate the use of either the PCI, or the EISA

connector for the system bus, since both connec-
tors are used widely in the system. The p<:I cot?-
llector is actually a variant of tlie Microchannel
Architecture (M<:A) connector used in microchan-
nel systems. SPICE simulations showed that it per-
formed better than the Metral connector on the
Futi~rebus+.~ The team chose ;I 240-pin version of
the connector for i~nplenientation because it met
the system requirements and had a low cost.

Due to the choice of tlie MCt\ connector, tlie
board thickness was limited to a maximun~ of 0.062
inches. An 8-layer layup was chosen for the module
technology The processor modules had a require-
ment for both a 5.0-V supply and a 3.0-\/ supply.
The designers chose a split plane to distribute the
power rather than two separate power planes for
each voltage. Routing high-speetl signals across the
split was minimized to reduce any enlissions that
might arise from using ;I split plane. Testing later
validated this approach as emissions from this arex
were minimal.

Silicon Technology
The system partitioning reqi~ired the design of four-
ASICS. TIiese were the cPrr bus interface ASIC. the
memory bus interface ASIC:. the system arbitel: and
the system bus-to-PC1 britlge. The DEC 4000 imple-
mentation of the Futurebus+ usetl ;11i exten1;llly
supplied gate-array process that was customizeil to
meet tlie perforniance neetls of the bus and tlie per-
formance goals of the first Alpha systems. Crate-
array costs are determined by the number of chips
that are produced on tlie chosen gate-array process.
The volume of chips produced by the gate-array
process for the DEC 4000 system was low bec;ulse
the process was speci;illy adjustetl for that system
applic;~tion. As a result. the volume of chips was
tlirectly proportional to the volume of the DEC 4000
sjVstenis built. Therefore, the cost per component
produced by this process was relatively high.

If they had i~sed this customized gate-array pro-
cess, tlie designers o f the AlphaServer product
could not have met their cost goals. They ~ieedetl
;I more generic process that could produce chips
t1i;it many system ventlors could use. This would
ensure that the line utilization was high and that
the cost per component was low. Therefore, they
changed the te~hnolog!~ to one that is stanclartl in
the industry. Gate-array process technology had
evolved since the DE<; 4000 design, and a standard
technology that was cap;~l>le of meeting the system

timing reqi~irernellts was available. Extensive SPICE
siniul;~tions verified the process capabilitj.. ASI<:S

t11;lt were inlple~nented with this process had no
clifficulty meeting the bus timing.x

Another interesting feaii~re of the analog design
on the AlphaServer 2100 system involves the SLIP-

port of 11 loads on the I'<:I. The I><:[specification
recommentls 10 loads as the "cookbook" design.?
The system requirement on thc AphaServer 2100
was to support three P<:I slots. the integral PC[-
Ethernet chip, tlie N(:R8IO (l'(:I-to-fast-SCSI con-
troller), and the P(:I-to-ElSA bridge. Each I'CI
connector has been modeled to be eqi~ivalent to
two electrical loads. T ~ k j ~ i g ;\ccount of the system
bus-to-P<:I britlge and the ;tdditional load con-
tributed by the 1/0 module connector yielded a PC1
bus with 11 electrical lo;lds. Extensive SPICE sin~u-
lations of the bus and careful routing to ensure
;I short bus guafi~nteed that the new design woulcl
meet the electrical specifications o f the P<:1 bus.X

System Start-up
The tlesign team incorpornted many availability fea-
tures into the AlphaServer 2100 and AlphaServer
2000 servers. These inclutled support of "hot-swap"
stor;~ge tlevices that can be removed or illstalletl
wl~ile the system is operating, error correction code
(E<:(:)-protected nienior!: redund;ult power sup-
plies. and <:PI' recover!: Perhaps the most interest-
ing part of the design for avail:tbility was the
emphasis on ensuring t11;lt tlie system had enough
built-in recovery and retluntlancy to allow it to
remain in a usable or tliagnosable state. Large sys-
tems sometimes have conil~licatetl paths in wliicli
to access the initial start-up code. and a system fail-
ure in that path can leave the owner with no visible
failure intlication. Moreover, in ;I multiprocessor
system with more than one <:I'[i installed, it is
highly t1esir;tble to initi;ilize tlie resiclent firmware
and tlie operating system even if all CPOs ;ire not in
workiug order. The AlphaServer 2100 and 2000 sys-
tems employ two schemes to help achieve this goal.

The start-LIP code for the Al,pIl:~St.rver 2100 ant1
AlphaServer 2000 systems is locatetl in flash reacl-
only memory (ROM), whicli resides on ;I peripheral
bus behind tlie PCI-to-EISA britlge. In starting up
a multiprocessing operating system. only one
processor is designated to access tlie start-up code
ant1 initialize the oper;iting sjtstem. This is referred
to as the primary processor. Accessing the start-up
code requires the processes. system bus, memory
and nlost of tlie I/() subsysteni to be fi~nctional.

Des ig~~ of the AlphaSeriler Multiprocessor Seriler Systems

The Alphaserver systems have a number of fea-
tures that help make the start-up process more
robust. Each processor module contains ;I separate
maintenance processor ilnplemented as a simple
microcontroller that connects to a serial bus on the
system. The serial bus is a two-wire bus that has
a data line and a clock line. 011 power-up the pro-
cessor module performs a number of diagnostic
tests and logs the results in an electrically erasable
programmable read-only memory (EEPROM) on the
module. This EEPROM resides on the serial bus. If
a <:PI! fails one of its power-up tests or if it has an
error logged in its EEPROM. then i t is not allowed to
be tlie primary processor. Assume that four CPUs
are installed in the system; if only CPLi 0 fails, then
(:I'U 1 is the primary processor. If CPU 0 and CPU 1
fail, then CPu 2 is the primary processor. If CPU 0,
CPIJ 1, and CPU 2 fail, tlien CPU 3 is the primary pro-
ccssoc If all four CPUs fail, then <;PI! 0 is the primary
processor. If any one of the CPrrs fails, a message is
clisplayed on the operator control panel to inform
the user that there is a problem. Any secondary CPU
that has failed is disabled and will not be seen by tlie
firmware console or the operating system. The pri-
mary processor tlien uses the system bus to access
the start-up code in the flash ROM.

The flash ROM may contain incorrect tlata. Tlie
fl;~sh ROMs on many systems have a program
update, and errors from a power spike or surge can
be introduced into the ROM code during the update
procedure. User error is another common way to
introduce data error; for example, a user can acci-
dentally press a key while the update program is
running. Flash ROMs can also fail from i~ltrinsic
manufacturing faults such as current leakage,
which will eventually convert a stored " 1" into a
stored "0." thus corrupting the program stored in
the flash ROMs. Many techniques in the industry
partially solve the problem of corrupted flash ROM
dat;~. One well-known tecl~nique uses a checksum
and reports an error to the user i f the data is not cor-
rect. Another technique provides a second set of
flash I<OiLls and a switch that tlie user manipulates
to transfer control to the new set in the event of
a failure. The designers stildietl many previously
used methods, but rejected them since they
required intervention by the user.

In the Alphaserver 2100 and the Alpli, <I S erver
2000 system design, the design team implemented
a scheme that did not require user intervention in
the event of flash RON corruption. The system has
1 MR of f.lash ROM of which the first 512 KB contain

the system initialization code. This code is loadetl
into main memory, and many data integrity tests are
performed. These include single and multiple bit
parity checks, various data correction code check-
ing, and a checksum calculation. Tlie processor
detects an error if the checksum calculation fails,
i t . , if the calculated value is not equal to the stored
value. The processor then writes a value to a regis-
ter on the I/O module, which automatically changes
the address pointing to the flash ROM to a second
bank of flash ROM. This combination of hardware
and software support provides a way for the
AlphaServer 2100 system user to overcome any
flash ROM corruption.

Design Considerations for tbe
AlphaServer 2000 System
The design of the AlphaServer 2000 small pedest;~l
system followed the AlphaServer 2100 system.
Market pressures dictated the need for a sm~ller
system with a lower entry-level cost. The introduc-
tion of the smaller server was scheduled to coin-
cide with the release of the Windows NT version 3.5
operating system.

An examination of the AlphaServer 2100 develop-
ment schedule reve:iletl the following interesting
points: (1) System power on occurred nine months
after the team was formed; (2) Initial system sliip-
ments occurred eight months later; (3) The eight-
month time period was spent mainly in porting ancl
qual@ing operating system software.

Based on these facts, the system designers
believed that the key to reducing the time-to-market
of the AlphaServer 2000 system was to eliminate tlie
dependency on synchronizing the design schedule
with an operating system release. Consequently, the
new system could not require any software changes
at the operating system level. Any changes woulcl
have to be transparent to software. To achieve this,
the designers took ;idvantage of a new feature in the
DEC OSF/l and the OpenVkls operating systems
called dynamic system recognition (DSR).

A DSR machine is defined as a machine that
requires no new software development. Operat-
ing systems, liowevel; require licensing; this
information is dependent upon the system model
number. There are two components to building
a DSR machine.

1. A programmer's view of the machine must be a
subset of a n alre;~tly supported machine. In the
case of the AlphaServer 2000, the designers

Digital Technical Jourtrnl k l . 6 IVO. .3 . $ i r ~ ~ r i ~ ~ t ~ r 1994 17

AlphaServer Multiprocessing Systems

decided to make it a subset of the AlphaServer
2100. A clear understanding of how the operat-
ing systems initialized the AlphaServer 2100 sys-
tem was critical to understanding what changes
could be made. A joint team of hardware and
software engineers examined various pieces of
the code to iclenttfy the areas of the system
design that could be changed. Investigations
revealed that the system bus configuration cocle
for the AlphaServer 2100 is somewhat generic.
It assumes a maximum of eight nodes, which is
the AlphaServer 2100 implementation. The I/O
node to the primary PC1 bus is expected to be
present. The presence of additional processors
and memories is detected by reading the CSR
space of each module. A module that is present
gives a positive acknowledgment. The design
team could therefore reduce the number of sys-
tem bus slots from seven to four. This had no
effect on the software since nonexistent slots
would merely be recognized as modules not
installed in the system.

The physical packaging of the AlphaServer 2000
also dictated that the number of I/O slots be
reduced from 11 (8 EISA and 3 PCI) to 10. Given
the industry trend toward PC[, the desirable mix
would have been 6 EISA slots and 4 PC1 slots. The
PC1 bus configuration code searched for as many
as 32 PC1 slots, which is the number allowed
by the PC1 specifi~ation.~ After carefiil consid-
eration, the designers determined that the addi-
tion of another PC1 slot would involve a change
in interrupt tables to acconlmodate the addi-
tional interrupts and vectors required by the
additional slot. Therefore, the team decided to
implement 3 PC1 and 7 EISA slots.

2. The other component to building a DSR machine
is to provide the system model number to the
operating system so that licensing i~lforn~at io~l
can be determined. The system resident code
that runs at start-up is referred to as tlle console.
The console and the operating systems commu-
nicate via a data structure known as the hard-
ware parameter block (InVRPB). The HWRPB is
used to communicate the model number to the
operating system, which uses this number to
provide the correct licensing information.

The AlphaServer 2000 system was completed in
approximately nine months. Qualification was not
dependent on the operating system schedules. By

building a DSR machine, the design team met the
project's time-to-market requirements.

Performance Sum~nary
Table 2 summarizes the performance of the systems
described in this paper. The numbers are heavily
influenced by the processor speed, cache, memory,
and I/O subsystems. The systems exceeded the per-
formance goals specified at the beginning of the
project. In some cases the important benchmarks
that had been relevant in the industry changed dur-
ing the course of system development. In the trans-
action processing measurement, for example, the
TPC-A benchmark was superseded by the TPC-C
benchmark.

The AlphaServer 2100 server was the price-
performance leader in the industry at the time of its
introduction in April 1994. Successive improve-
ments in processor and I/O subsystems should help
the AlphaServer 2100 and 2000 products maintain
that position in the industry.

Table 2 System Performance

AlphaServer AlphaServer
2100 41275 2000 41200

SPECint92' 200.1 131.8

SPECfp92' 291.1 161.0
AIM Ill7
Number of AIMS 227.5 177.5
User loads 1941.2 1516.0

Estimated TPSr 850 660

Notes:

* Single-processor system only

t Dual-processor system only

$ TPS is an abbrev~ation for transactions per second. These
numbers are estimated for a quad-processor system using
OpenVMS version 6.1 running Rdb.

Conclusions
The design team exceeded all the product require-
ments set at the beginning of the AlphaServer proj-
ect. The transfer cost of the final product was I0
percent better than the goal. The reduced cost was
achieved despite the erratic price levels for DRAMS,
which were much higher in 1994 than predicted
in late 1992.

Separate cost targets were established for each
portion of the system, and each tiesign engineer
was responsible for meeting a particular goal.

18 1'01. 6 No. .3 Surnr-ner I994 Digital Technical Journal

Design of the AlphaServer Mzlltiprocessor Server Systems

Constant cost reviews ensured that variances could
be quickly addressed. The requirement to run three
operating systems quickly expanded the size and
scope of the project. The operating system devel-
opers became an integral part of the design team.
Multiple reviews and open communication between
the hardware development team and the software
groups were essential to managing this work. The
hardware team performed system-level testing on
all three operating systems. This proved invaluable
in tracking down bugs quickly and resolving them
in either hardware or software.

The project team delivered the expected perfor-
mance and functionality on schedule. Develop-
ment time was allocated for new power and
packaging subsystems (using third-party design
companies), new modules, new ASICS, new system
firmware, and porting of three operating systems.
To attain the schedule, development tasks were
frozen at the beginning of the project. The tasks
were also categorized into three classes: mandatory,
nonessential, and disposable. Consequently, engi-
neers were able to make trade-offs when required
and maintain the integrity of the product. Another
key factor to meeting the schedule was the use of
knowledge and technology developed for previous
products. This yielded many benefits: less design
time, fewer resources required, known simulation
environment, and less time to a working prototype.

Acknowledgments
Many people contributed to the success of this proj-
ect. They spent long weekends and nights working
to a schedule and a set of requirements that many
thought were unachievable. The inspired dedica-
tion of team members made this project a reality.
Although not complete, the following list credits
those who were the most deeply involved: Vince
Asbridge, Kate Baumgartner, Rachael Berman,
Jack Boucher, John Bridge, Bob Brower, Harold
Buckingham, Don Caley, Steve Campbell, Dave
Carlson, Mike Chautin, Marco Ciaffi, Doug Field,
Rich Freiss, Nitin Godiwala, Judy Gold, Paul
Goodwin, Tom Hunt, Paul Jacobi, Steve Jenness, Jeff
Kerrigan, Will Kerchner, Jeff Metzger, John Nerl,
Mike O'Neill, Kevin Peterson, Bryan Porter,
Ali Rafiemeyer, Lee Ridlon, Andy Russo, Stephen
Shirron, Andrei Shishov, Gene Smith, Kurt Thaller,
Frank Touserkani, Vicky Triolo, and Ralph Ware.
Special thanks also to our manufacturing team in
Massachusetts, Canada, and Scotland.

References and Note

1. B. Maskas, S. Shirron, and N. Warchol, "Design
and Performance of the DEC 4000 AXP Depart-
mental Server Computing Systems," Digital
Technical Journal, vol. 4 , no. 4 (Special Issue,
1992): 82- 99.

2. PCI Local Bus Specification, Revision 2.0 (Hills-
boro, OR: PC1 Special Interest Group, Order No.
281446-001, April 1993).

3. E. Solari, ISA and EISA, Theory and Operation
(San Diego, CA: Annabooks, 1992).

4. R. Sites, ed., Alpha Architecture Reference Man-
ual (Burlington, MA: Digital Press, Order No.
EY-L52OE-DP, 1992).

5. DECchip 21064 Microprocessor Hardware Refer-
ence Manual (Maynard, MA: Digital Equipment
Corporation, Order No. EC-N0079-72, 1992).

6. A. Russo, "The AlphaServer 2100 l/O Subsystem:'
Digital TechnicalJournal, vol. 6, no. 3 (Summer
1994, this issue): 20-28.

7 82420/82430 PClset ISA and EISA Bridges (Santa
Clara, CA: Intel Corporation, 1993).

8. SPICE is a general-purpose circuit simulator pro-
gram developed by Lawrence Nagel and Ellis
Cohen of the Department of Electrical Engineer-
ing and Computer Sciences, University of Cali-
fornia, Berkeley.

Digital Technical Journal Vol. 6 No. 3 Summer 1994 19

Andrew l? Russo I

The Alphaserver 2100
I/O Subsystem

The AlphclSeruer 2100 I/O subsystem contains a dual-level I/O structure that
incllides the higbpou~ered PC1 local bus and the widely used ElSA bus. The PC1 bus is
connected to the seruer's nzultiprocessing systenz bzis through tiye ctistonz-designed
bridge chip. The EISA bus szrpports eight general-purpose E I S M A connectors, pro-
zliding connections to plug-in, industrjt-stan~ard options. Data rclte isolation, clis-
connected transaction, and data bzffer management techniques were used to
ensure bz~s efficiency in the I/O subsystein. Innovatiue eugineering designs nccom-
plished the task of combining Alpha CPUs and standard-sjatem 1/0 devices.

Digital's Alphaserver 2100 server combines Alpha
multi~xocessing technology with an I/O subsystem
typically associ;~tetl with personal computers
(PCs).' Tlie I/O subsystem on the AlphaServer 2100
system contains a two-level hierarchical bus struc-
ture consisting of a high-performance primary
J/o bus connected to ;I secondary. lower per-
formance 1/0 bus. The primary I/o bus is a 32-bit
peripheral component interconnect (PCI) local bus
(or simply, P<:I bus).? The PC1 1x1s is connected
to the AlphaServer 2100 system's multiprocessing
system bus through a custom apl'lication specific
integrated circuit (ASIC:) bridge chip (referrecl to
as the T2 bridge chip). The seconclary r/O bus is a
32-bit Extended Industry Standard Architecture
(EISA) bus connected to the Pcr bus through a
bridge chip set provided by Intel Corporation.?
Figure 1 shows the V o si~bsystem designed for the
AlphaServer 2100 protluct. The i/O subsystem
demonstrated sufficient flexibility to become the
I/(> interfiicc for the small pedestal AIpliaServer
2000 product and the rackmountable version of the
AlphaServer 2100 server:

This paper discusses the dual-level bus hierarchy
and the several I/O adv;~ntrlges it provicles. The
design considerations of the I/() subsystem for the
Npl~aServer 2100 server are examined in the sec-
tions that follo~v.

I/O Suppowor EISA arul PCI Buses
The EISA bus enables the AlphaServer 2100 systern
to support ;I wide range of existing EISA or Industry
Standard Architecture (1s~) I/(> peripherals.' The
ElSA bus ciln sustain data rates ilp to a theoretical

limit of 33 megabytes per second (IMWS) at a clock
rate of 8.25 ~negaliertz (MI-lz). In the current config-
uration for the AphaServer 2100 product, the ElSA
bus supports eight general-purpose EISA/ISA con-
nectors, and the EISA bridge chip set provides
connections to various low-speed, system-standard
I/O devices such as keyboard, mouse, and time-of-
year (TOY) clock. For most system configurations,
the AlphaServer 2100 system's ElSA bus provides
enough data bi~ncl~idtll to meet all data throughput
requirements. In light of the ncw requirements for
faster data rates, however, the ElSA bus will soon
begin to run out of bus bandwidtl~.

To provide for more bandwidth, the AlphaServer
2100 system also contains a PC1 bus as its prim;~t-y
bus. With data rates four times that of the ElSA bus,
the PC1 bus provides a direct migration pat11 from
the EISA bus. The 32-bit PC1 bus can sustain data
rates up to a theoretical limit of 132 Ml3/s at a clock
rate of 33 MHz. In the AlphaServer 2100 system
configuration, the PC1 bus provides connections
to three general-purpose 32-bit P<:I connectors, an
Ethernet device, a SC:SI clevice, the 1'C.I-to-EISA
bridge chip, and the T2 bridge chip.

A close examination of the bus structure reveals
that the AlphaServer 2100 system actually contains
a three-level, hierarchical bus structure. In addition
to the PC1 and ElSA buses, the AlphaServer 2100 sys-
tem includes a 128-bit multiprocessing systeni bus,
as shown in Figure 1. Each bus is clesigned to adhere
to its own bus interface protocols at different data
rates. Tlie system bus is 128 hits pcr 24 n;lnosec-
onds (ns); the PC1 bus is 32 bits per 30 ns; and the
EISA bus is 32 bits per 120 ns. E;~ch bus js required

MEMORY n
C I I SYSTEM BUS 128 BlTS

I I >

, I , , I , , cyy 1 FI
21 SLOTS

1 PC1 BUS 1 1 32 BlTS I I I I
+I

BRIDGE
(INTEL) 4 I 1.

SUBSYSTEM

EIGHT
32-BIT ElSA

SYSTEM
STANDARD

Fig~lre I Y O S~tbsystem for the A/phaSerzler 2100 System

to provide a particular fi~nction to the system and
is positioned in tlie bus hierarchy to maximize
that efficiency. For example, the system bus is
positioned close to the CPl!s and memory to maxi-
mize CPU memory access time, and the lower per-
formance 1/0 devices are placed on the ElSA bus
because their timing recluirements are less critical.
To maintain maximum bus efficiency on all three
buses, it is critical that each bus be able to perform
its various fi~nctions autononlously of each other.
In other words, a slower performing bus should not

dently: it provides bus interfaces with extensive
data buffering that function at the same data rates
as the interfacing bus. For example. the T2 bridge
chip contains both a system bus interface and a PC1
bus interhce that run synchronously to their
respective buses but ;Ire totally asynchronous to
each other. The data buffers inside the T2 bridge
chip act as a domain connector from one bus time
zone to the other and help to isolate the data rates
of the two buses.

affect the efficiency of a high-performance bus. The
section below discusses a few techniclues that we

Disconnected Transactions
clesigned into the [/o subsystem to enable the buses ~~~~~~~~l bridges promote the of
to work together efficiently. disconnected (or pended) protocols to move data

across the buses. Disconnected protocols decrease

Using the Bus Hierarchy Efliciently
This section discusses the data rate isolation, dis-
connected transaction, data buffer management,
and data bursting techniques used to ensure bus
efficiency in the I/() subsystem.

Data Rate Isolation
The three-level bus hierarchy promotes d;~ta rate
isolation and concurrency for simultaneous opera-
tions on all three buses. The design of the bus
bridges helps to enable each bus to work indepen-

the interdependencies between the different buses.
For example, when a c:PrJ residing on the system
bus needs to move data to the PC[bus, the cprr does
so by sending its data onto the system bus Here tlie
T2 bridge chip (see Figure 2) stores the data into
its internal data buffers at the system bus data
rate. The T2 bridge chip provides enough buffering
to store an entlre (.I'll transdct~on. From the CPU's
perspective, the transaction is completed as soon
as the T2 bridge chip accepts its data. At that point,
the T2 bridge chip must forward tlie data to the PC1
bus, inclependetit of the CPU 111 tliis way, the CPIJ

Digital Technical Journal Vo1. 6 No. .l .S~rrrr~rte~. I994 21

Alphaserver Multiprocessing Systems

TLB I 1 BUS 1 1 1
COMMANDER

1 T.;'pq RESPONDER 1
Figure 2 Block Diugmm ofthe T2 Bridge Chip

is not required to waste bus bandwidth by waiting
for the transfer to complete to its final destination
on the PC1 bus.

The T2 bridge chip implements disconnected
transactions for all CPU-to-PC1 transactions and most
PC1-to-memory transactions. In a similar fashion,
the PCI-to-EISA bridge implements disconnected
transactions between the PC1 bus and the EISA bus.

Data Buffer Management
In addition to containing temporary data buffering
to store data on its journey from bus to bus, each
bridge chip utilizes buffer management to allocate
and deallocate its internal data buffers from one
incoming data stream to another. In this way, a single
ASIC bridge design can efficiently service miiltiple
data streams with a relatively small amount of data
buffering and without impacting bus performance.

The T2 bridge chip contains 160 bytes of tempo-
rary data buffering divided across the three specific
bus transactions it performs. These three transac-
tions are (1) direct memory access (D m) writes
from PC1 to memory (system bus), (2) DMA reads
from memory (system bus) to PCI, and (3) pro-
grammed I/O (system bus) reads/writes by a CpU
from/to the PCI. The T2 bridge chip's data buffering
is organized into five 32-byte buffers. Two 32-byte
buffers each are allocated to the DMA write and
DMA read fi~nctions, and one 32-byte buffer is allo-
cated to the programmed I/O function. Each of
the three transaction functions contains its own
buffer management logic to determine the best use
of its available data buffering. Buffer management is
especially valuable in situations in which a PC1

device is reading data from memory on the sys-
tem bus. To maintain an even flow of data from
bus to bus, the buffer management inside the T2
bridge chip attempts to prefetch more read data
from memory while it is moving data onto the PCI.

Buffer management helps the bridges service bus
transactions in a way that promotes continuous
data flow that, in turn, promotes bus efficiency

Burst Transactions
Using a bus efficiently also means utilizing as much
of the bus bandwidth as possible for "usefi~l" data
movement. Useful data movement is defined as that
section of time when only the actual data is moving
on the bus, devoid of address o r protocol cycles.
Maximizing useful data movement can be accom-
plished by sending Inany data beats (data per cycle)
p e r single transfer time. Sending multiple data
beats pe r single transfer is referred to as ;i "burst
transaction."

All three buses have the ability to perform burst
transactions. The system bus can burst as much as
32 bytes of data per transaction, and the PC1 and
EISA buses can burst continuously as required.

Data bursting promotes bus efficiency and very
high data rates. Each bus bridge in the server is
required to support data bursting.

The Bus Bridges
In the previous section, w e discussed certain
design techniques used to promote efficiency
within the server's hierarchical bus structure. The
section that follows describes the bus bridges in
more detail, emphasizing a few interesting features.

22 Lo/. 6 IVO. .$.S~r~wrrrc.r 1994 Digilal Technical Journal

The A1phaSerz)er 2100 1/O Subsystem

The T2 Bridge Chip
The T2 bridge chip is a specially designed ASIC that
provides bridge functionality between the server's
multiprocessing system bus and the primary PC1

bus. (See Figures 1 and 2.) The T2 ASlC is a 5.0-volt
chip designed in complementary metal-oxide semi-
conductor (CMOS) technology. It is packaged in
a 299-pin ceramic pin grid array (CPGA).

As stated earlier, the T2 bridge chip contains a
128-bit system bus interface running at 24 ns and
a 32-bit PC1 interface running at 30 ns. By using these
two interfaces and data buffering, the T2 bridge
chip translates bus protocols in both directions and
moves data on both buses, thereby providing the
logical system bus-to-PC1 interface (bridge). In addi-
tion to the previously mentioned bridge features,
the T2 bridge chip integrates system functions such
as parity protection, error reporting, and cpu-to-
PC1 address and data mapping, which is discussed
later in the section Connecting the Alpha CPU to the
PC1 ancl EISA Buses.

The T2 bridge chip contains a sophisticated D M
controller capable of servicing three separate PC1
masters simultaneously. The D M controller sup-
ports different-size data bursting (e.g., single, multi-
ple, or continuous) and two kinds of DMA transfers,
direct mapped and scatter/gather mapped. Both
DMA mappings allow the T2 bridge chip to transfer
large amounts of data between the PC1 bus and the
system bus, independent of the CPU.

Direct-mapped DMAs use the address generated
by the PC1 to access the system bus memory directly.
Scatter/gather-mapped DMAs use the address gener-
ated by the PC1 to access a table of page frame num-
bers (PFNs) in the system bus memory. By using the
PFNs from the table, the T2 bridge chip generates a
new address to access the data. To enhance the per-
formance of scattedgather-mapped DMAs, the T2
bridge chip contains a translation look-aside buffer
(TLB) that contains eight of the most recently used
PFNs from the table. By storing the PFNs in the TLB.
the T2 bridge chip does not have to access the table
in system bus memory every time it requires a new
PFN. The TLB improves scatter/gather-mapped DMA
performance and conserves bus bandwidth. Each
entry in the TLB can be individually invalidated as
required by software.

The T2 bridge chip also contains a single I/O data
mover that enables a CPU on the system bus to initi-
ate data transfers with a device on the PC1 bus. The
I/O data mover supports accesses to all the valid PC1

address spaces, including PC1 I/O space, PC1 rnem-

ory space, and PC1 configi~ration space. The T2
bridge chip supports two 1/0 transaction types
when accessing PC1 memory space: sparse-type
data transfers and dense-type data transfers. Sparse-
type transfers are low-performance operations
consisting of 8-, 16-, 24-, 32-, and 64-bit data trans-
actions. Dense-type transfers are high-performance
operations consisting of 32-bit through 32-byte data
transactions. Dense-type transfers are especially
useful when accessing I/O devices with large data
buffers, such as video graphics adapter (VGA) con-
trollers. A single PC1 device mapped into PC1 mem-
ory space can be accessed with either sparse-type
operations, dense-type operations, or both.

In addition to accessing the PCI, a CPU can access
various T2 bridge chip internal control/status regis-
ters (CSRs) for setup and status purposes. For maxi-
mum flexibility, all the T2 bridge chip's functions
are CSR programmable, allowing for a variety of
optional features. All CPU I/O transfers, other than
those to T2 bridge chip CSRs, are forwarded to the
PC1 bus.

Intel PCI-to-EISA Bridge Chip Set
The Intel PCI-to-EISA bridge chip set provides the
bridge between the PC1 bus and the EISA bus? It inte-
grates many of the common I/O functions found in
today's EISA-based PCs. The chip set incorporates
the logic for a PC1 interface running at a clock rate
of 30 ns and an EISA interface running at a clock
rate of 120 ns. The chip set contains a DMA con-
troller that supports direct- and scatter/gather-
mapped data transfers, with a sufficient amount of
data buffering to isolate the PC1 bus from the EISA
bus. The chip set also includes PC1 and ElSA arbiters
and various other support control logic that pro-
vide decode for peripheral devices such as the flash
read-only memories (ROMs) containing the basic
VO system (BIOS) code, real-time clock, keyboard/
mouse controller, floppy controller, two serial
ports, one parallel port, and hard disk drive. In the
Alphaserver 2100 system, the PCI-to-EISA bridge
chip set resides on the standard I/O module, which
is discussed later in this paper.

Connecting the Alpha CPU to the PCI
and EISA Buses
In the next section, we discuss several interesting
design challenges that we encountered as we
attempted to connect PC-oriented bus structures to
a high-powered multiprocessing Alpha chassis.

Digilul Technical Journal Vol. 6 No. .3 Summer 1994 23

Alphaserver Multiprocessing Systems

Address and Data ililapping
When a CPU initiates a data transfer to a device on
the PC1 bus, the T2 bridge chip must first determine
the location (address) and amount of data (mask)
information for the requestetl transaction and then
generate the appropriate PC1 bus cycle. This issue is
not straightforward because the PC1 and EISA buses
both support data transfers down to the byte granu-
larity- but the Alpha <:l'rJ and the system bus provide
masking granillarlty only down to 32 bits of data.

To generate less than 52-bit addresses and byte-
masked data transactions o n the P<:I bus, the T2
bridge chip needed to implement a special decod-
ing scheme t h ~ t converts an Alpha CPU-to-I/<) trans-

Table 1 CPU-to-PC1 Read Size Encoding

action, ;IS it appears on the system bus, to a cor-
rectly sized P<:I transaction. Tables I and 2 give the
low-order Alpha address bits ant1 Alpha 32-bit mask
fields and show how they are encoded to generate
the appropriate P<:I address and data masks. By
using this encoding scheme, the Alpha CPL can per-
form read and write transactions to a P<:I device
ni;ipperl in either P<:I I/O, PC1 memory o r PC1
configi~r;~tion space with sparse-type transfers.
(Sp;irse-type transfer sizes llave 8-, 1 6 , 24-, 32-, o r
64-bit d;it;~ gr;~nularit)~,)

Another mapping problem exists when a PC1

device wants to move a byte of data (or anything
smaller than 32 bytes of data) into the system bus

Transaction EVpddr[6:5] EV_Addr[4:3] Instructions PC1 Byte PCI-AD[l:O] Data Returned
Size Enables to Processor,

(L) EV_Data[l27:0]

16 bits

8 bits 00 00 LDL 1110 0 0 OW_O:[D7:DO]

0 1 00 LDL 1101 0 1 OW_O:[D15:D8]

10 00 LDL 1011 10 OW_O:[D23:D16]

11 00 LDL 01 11 11 OW_O:[D31 :D24]

00 0 1 LDL 1100 00 OW-0: [D79:D64]

0 1 0 1 LDL 1001 0 1 OW_O:[D87:D72]

10 0 1 LDL 001 1 10 OW_O:[D95:D80]

24 bits 0 0 10 LDL 1000 00 OW-1 :[D23:DO]

0 1 10 LDL 0001 0 1 OW-l :[D31 :D8]

32 bits 00 11 LDL 0000 00 OW-1 :[D95:D64]

64 bits 11 11 LDQ 0000 00 OW-l :[D95:D64]
0000 OW-1 :[D127:D96]

Table 2 CPU-to-PC1 Write Size Encoding

Trans- EV_Addr[6:5] EV_Addr[4:3] EV_Mask[7:0] (H) Instruc- PC1 Byte PCI_AD[l:O] Data Returned
action tions Enables to Processor,
Size (L) EV_Data[l27:0]

8 bits 00 00 00000001 LDL 1110 0 0 OW_O:[D7:DO]

0 1 00 OOOOOOOl LDL 1101 0 1 OW_O:[D15:D8]

10 00 00000001 LDL 1011 10 OW_O:[D23:D16]

11 00 00000001 LDL 0111 11 OW_O:[D31 :D24]

16 bits 00 0 1 00000100 LDL 1100 00 OW_O:[D79: D64]

0 1 0 1 00000100 LDL 1001 0 1 OW_O:[D87:D72]

10 0 1 00000100 LDL 001 1 10 OW_O:[D95:D80]

24 bits 00 10 00010000 LDL 1000 0 0 OW-1 :[D23:DO]

0 1 10 00010000 LDL 0001 0 1 OW-1 :[D31 :D8]

32 bits 00 11 01000000 LDL 0000 00 OW-l :[D95:D64]

64 bits 11 11 11000000 LDQ 0000 00 OW-1 :[D95:D64]
0000 OW-1 :[D127:D96]

24 k t . 6 IVO. .$.SI I I I I I I IC, I . 1334 Digital Tecbnicrrl Journal

The Alphaserver 2100 I/O Subsystem

memory. Neither the system bus nor its memory intention is to mark frequently accessed sections
supports byte granularity data transfers. 'Therefore, of code as read cacheable but write noncacheable.
the T2 bridge chip must perform a read- mod^- In this way, read accesses "hit" in main memory (or
write operation to move less than 32 bytes of data into cache), and writes update the ROMs directly.
the system bus memory During the read-modfy-
write operation, the T2 bridge chip first reads a full Interrupt Mechanism
32 bytes of data from memory at the address range
specified by the device.' It then merges the olcl 'ystem be without

data (read data) with the new data (PC1 write data) providing a mechanism for an 1/0 device to send

and writes the full 32 bytes back into memory. interrupts to a CPU. The 1/0 interrupt scheme on
the AlphaServer 2100 system combines familiar

ISA Fixed-address Mapping
We encountered a third interesting mapping prob-
lem when we decided to support certain ISA

devices with fixed VO addresses in the Alphaserver
2100 system. These ISA devices (e.g., ISA local area
network [LAN] card or an ISA frame buffer) have
fixed (hardwired) memory-mapped I/O addresses
in the 1-MB to 16-MB address range.

The ISA devices being discussed were designed
for use in the first PCs, which contained less than
1 MB of main memory. In these PCs, the I/O devices
had fixed access addresses above main memory in
the 1-MB to 16-&l~ address range. Today's PCs have
significantly more physical memory and use the
I-MB to 16-MB region as a part of main memory.
Unfortunately, these I ~ A devices were never
redesigned to accommodate this change. There-
fore, to support these ISA options, the PC designers
created I/() access gaps in main memory in the 1-MB
to 16-~IB adclress range. With this technology, an
access by a CPU in that address range is automati-
cally forwarded to the I ~ A device.

To remain compatible with the rsA cornmunit):
the T2 bridge chip also had to allow for a gap in
main memory at the I-MB to 1 6 - ~ ~ address range so
that these addresses could be forwarded to the
appropriate ISA device.

BIOS Caching Compatibility
Today's Microsoft-compatible PCs provide another
performance-enhancing mechanism. We decided to
implement this function inside the T2 bridge chip
as well.

During system initialization, JMS-DOS-based PCs
read several HIOS ROMs from their I/O space. Once
the ROMs are read, their contents are placed in fixed
locations in main memory in the 512-kilobyte (K13)
to 1-MB address range. The software then has
the ability to mark certain addresses within this
range as reacl cacheable, write cacheable, read
noncacheable, or write noncacheable. The basic

technology with custom support logic to provide
a new mechanism.

Electrical and architectural restrictions prohib-
ited the interrupt control logic from being directly
accessed by either the system bus or the PC1 bus.
As a result, the interrupt control logic is pllysically
located on a utility bus called the XBUS. The XRUS
is an 8-bit slave ISA bus placed nearby the PCI-to-EISA
bridge chips.

'The base technology of the I/O interrupt logic is
a cascaded sequence of Intel 8259 interrupt con-
trollers. The 8259 chip was chosen because it is a
standard, accepted, and well-known controller
used by the PC industry today. The use of the 8259
interrupt controller translated to low design risk as
well. Altl~ough the 8259 interrupt controller is not
new, its integration into a high-performance multi-
processing server, without incurring undue perfor-
mance degradation, required some novel thinking.

The integration of the 8259 interrupt controller
into the AlphaServer 2100 system presented two
considerable problems. First, the designers had
to satisfy the 8259 interface requirements in a way
that would have a minimal impact on the perfor-
mance of the interrupt-servicing CPU. The 8259
requires two consecutive special-acknowledge
cycles before it will present the interrupt vector.
To resolve this problem, we designed a set of
handshaking LACK programmable array logic (PAL)
devices. These PALS enhance the functions of the
8259 controllers as XBUS slaves. The interrupt-
servicing CPU performs only a single read to a desig-
nated address that is decoded to the XBUS. The LACK-
control PALS decode this read and then generate the
special, double-acknowledge cycles required to
access the vector. The PAL logic also deasserts
CHRDY, a ready sig~lal to the ISA bus, so that the cycle
has ample time to proceed without causing a con-
formance error for a standard ISA slave cycle. When
the double acknowledge is complete and the vector
is guaranteed to be driven on the bus, the PALS
assert the CHRDY ready signal.

Digital Tecbnicul Journal I'ol. G No. 3 . \ ' L L I ~ Z I Y I ~ ~ I994 25

Alphaserver Multiprocessing Systems

The secolid problem involved the location of the
interrupt controller. As mentioned earlier, because
of electrical and architectural restrictions, the inter-
rupt controller was located on the XBUS near the
PCI-to-EISA bridge chips. With the interrupt con-
troller located on the XBUS, an interrupt-servicing
CPU is required to perform a vector read that spans
two I/O bus structures. For this reason and its
potential effect on system performance, vector
reads had to be kept to a minimum, which is not
easy in a system that allows more than one CPU
to service a pending interrupt request.

Since the Alphaserver 2100 system can have as
many as four CPUs, all four CPUs can attempt to
service the same pending interrupt request at the
same time. Without special provisions, each CPU
would perform a vector read of the interrupt con-
troller only to find that the interrupt has already
been serviced by another CPU. Requiring each CPU

to perform a vector read of the interrupt controller
on the XBUS wastes system resources, especially
when each vector read spans two bus structures. Of
course, this problem could be resolved by assigning
only one CPU to service pending interrupts, but this
would negate the advantage of having multiple CPUs
in a system. To solve this problem, the T2 bridge
chip on the system bus implements special "passive-
release" logic that informs a CPU at the earliest possi-
ble time that the pending interrupt is being serviced
by another CPU. This allows the "released" CPU to
resume other, more important tasks.

The term passive release typically refers to a vec-
tor code given to an interrupt-servicing CPU during
a vector read operation. The passive-release code
informs the CPU that no more interrupts are pend-
ing. The special passive-release logic allows the T2
bridge chip to return the passive-release code to a
servicing CPU on behalf of the interrupt controller.
The T2 bridge chip performs this function to save
time and bus bandwidth.

After the designers implemented all the features
described above, they needed to address the prob-
lem of how to deal with all the slow, highly volatile,
"off-the-shelf" parts. To integrate these compo-
nents into the VO subsystem, they invented tlie
standard I/O module.

The Standard I/O Module
As part of the development effort of tlie I/O subsys-
tem, the engineering team faced the challenge of
integrating several inexpensive, low-performance,
off-the-shelf, PC-oriented I/O functions (e.g., TOY

clock, keyboard, mouse, speaker) into a high-
performance Alpha multiprocessing system, with-
out affecting the higher performing architectural
resources. The ~nultilevel I/O bus structure served
to alleviate the performance issues, but the develop-
ment of a PC-style I/O subsystem with off-the-shelf
components involved inherent risk and challenge.

To reduce the risks inherent with using new and
unfamiliar devices, such as the PCI-to-EISA bridge
chip set, we chose to build an I/O module (called
the standard I/O module) that plugs into the
AlpliaServer 2100 system backplane and contains
the PCI-to-EISA bridge, associated control logic, con-
trollers for mouse, keyboard, printer, and floppy
drive as well as tlie integral Ethernet and SCSI con-
trollers. Without this plug-in module, fixing any
problems with the PCI-to-EISA bridge chip set or
any of the supporting logic would have required
a backplane upgrade, which is a costly and time-
consuming effort.

The standard I/O module is relatively small, inex-
pensive both to manufacture and to mod@, and
easily accessible as a field replaceable unit (FRU). As
shown in Figure 3, the standard I/O module con-
tains the following logic:

PCI-to-Ethernet controller chip

PC]-to-SCSI controller chip

PCI-to-EISA bridge chips

Real-time clock speaker control

8 - K B , nonvolatile, EISA-configuration, random-
access memory (RAM)

1-MB BIOS flash ROkl

Keyboard and mouse control

Parallel port

FDC floppy controller

Two serial ports

12C support: controller, expander, and 1tOM

Intel 8259 interrupt controllers

Ethernet station address ROM

Reset and sysevent logic

Fan speed monitor

Remote fault management connector

External PC1 subarbiter

3.3-volt and - 5.0-volt generation

26 Vo1.6 No. '0.3 Summer 1994 Digital Technical Journal

ETHE

The Alphaserver 2100 I/O Subsystem

ROTATION
MONITOR

RESET
GENERATION

GENERATION GENERATION Elm

PARALLEL XI

M boppy g
CHIP 0

SERIAL PORT

Figure 3 The Standcird I/O ~Vlodule

For the most part, all these h~nctions were gener-
ated by using integrated, off-the-shelf components
at commodity pricing. Solutions known to work
on other products were used as often as possible.
The flash memory resides on the EISA memory bus
and is controlled by the PC[-to-EISA bridge chip.
A simple multiplexing scheme with minimal hard-
ware enabled the server to address more locatio~ls
than the bridge chip allowed, as much as a full 1 MB
of BlOS ROM. The National PC87312, which provides
the serial and parallel port control logic, and the
floppy disk controller reside directly on the ISA bus.
The rest of the devices are located on the xBUS (an

8-bit buffered slave ISA bus), with control managed
by the PCI-~o-EISA bridge chips.

In addition, the common PC f~~nctions are
located at typical PC addresses to ease their integra-
tion and access by software. As expected, hardware
changes were required to the standard I/O module
during its hardware development cycle. However,
the standard l/O module, which takes only minutes
to replace, provided an easy and efficient method of
integrating hardware changes into the Alphaserver
2100 system. We expect the usef~~lness of the stan-
dard I/O module to continue and hope that it will
provide an easy and inexpensive repair process.

Digital Technical Journal Vol 6 No. .3 Su~nrrrer 1994 27

Alphaserver Multiprocessing Systems

Sz~mrnary
The I/O subsystem on the AlphaServer 2100 system
contains a two-level I~ierarchical bus structure con-
sisting of a high-performance PC1 bus connected to
a secondary EISA bus. The PC1 bus is connected to
the AlphaServer 2100 system's multiprocessing sys
tem bus through the T2 bridge chip. The secondary
I/O bus is connected to the PC1 bus through a stan-
dard bridge chip set. The I/O subsystem demon-
strated sufficient flexibility to become the I/O
interface for the small pedestal Alphaserver 2000
and the rackmountable version of the AlphaServer
2100 products.

Acknowledgments
The AlphaServer 2100 1/O would not be what it is
today, without the dedicated, focused efforts of sev-
eral people. Although not complete, the following
list gives credit to those who were the most deeply
involved. Thanks to Fidelma Hayes for leading the
Sable effort; to Vicky Triolo for the Sable mother
board and her support of the T2 bridge chip effort;

to Kachael Berman for her unflagging support of
the standard I/o module; to Lee Ridlon for his much
needed early conceptual contributions; to Stephen
Shirron for driving Sable software 1/0 issues; to Jolm
Briclge for cleaning up the second-pass T2; and to
Tom Hunt and Paul Rotker for their contributions
to the first-pass T2.

References

1. E Hayes. "Design of the AlphaServer Multiproces-
sor Server Systems,'' Digital Technical Journal,
vol. 6, no. 3 (Summer 1994, this issue): 8-19.

2. PC1 Local Bus Specz~icatior Reoisiotz 2.0 (Hills-
boro. OR: PC1 Special Interest Group, Order No.
281446-001. April 1993).

3. 82420/82431) PCIset ISA and ELSA Bridges (Santa
Clara, CA: Intel Corporation, 1993).

4. E. Solari, ISA and EISA, Theory atzd Operation
(San Diego, CA: Annabooks, 1992).

28 Vol. 6 No. .l Sunrrner 1994 Digital Technical Jourrnl

JeHrey M. Denham
Paula Long

James A. Woodward

DEC OSF/l Version 3.0 Symmetric
Multiprocessing Implementation

The primary goal for an operating system in a symmetric ~nultiprocessing (SMP)
implementation is to convert the additional conzptiti~zg po~uerprouided to the sys-
tem, as processors are added, into improved sj)stemperfonnance zi~itl~ozit coml~ro-
mising system q~c~l iQ. The DEC OSF/l version 3.0 operating system uses a number
of techniqzies to achieve this goal. The techniques include algorithmic enhance-
ments to improve parallelism within the kernel and additional lock-based sjmchro-
nization to protect global system state. Syizchronization primitives include spin
locks and blocking locks. An optional locking hierarchy was imposed to detect
latent sj,rnmetljc multiprocessor synchronization issues. Enhancements to the ker-
nel scheduler improue cache usage by enabling soft arffinitj, of threads to theproces-
sor on zilhich the tlwead last mlz; n load-balancing algoritlgm keeps the ntinzber of
runnable threads spread evenly across the available processors. A highly scalable
and stable SMP implementation resulteclfrom the project.

The DEC OSWl operating system is a Digital product
based in part on the Open Software Foundation's
OSF/l operating system.' One major goal of the DEC
OSWl version 3.0 project was to provicle a leader-
ship multiprocessing implementation of the {:NIX
operating system for Alpha server systems, such as
the Digital AlphaServer 2100 product. This paper
describes the goals and development of this operat-
ing system feature for the version 3.0 release.

Tbe DEC OSF/l Vwsion 3.0
Multiprocessing Project
Multiprocessing platforms like the AlphaServer
2100 product provide a cost-effective means of
increasing the computing power of a server. Addi-
tional computing capacity can be obtained at a
potentially significant cost advantage by simply
adding CPU modules to the system rather than by
adding a new system to a more loosely coupled
network-server arrangement. An effective execu-
tion of this server-scaling strategy requires signifi-
cant cooperation between the hardware and
software components of the system. The hardware
must provide symmetrical (i.e., equal) access to sys-
tem resources, such as memory ant1 J/O, for all pro-
cessors; the operating system software must
provide for enough parallelism in its major subsys-
tems to allow applications to take advantage of the

additional CPUs in the system. That is, the operating
system cost of multiprocessing must be kept low
enough to enable most of an additional CPU's com-
puting power to be used by applications rather
than by the operating system's efforts to synchro-
nize simultaneous access to shared memory by mul-
tiple processors.

Regarding hardware, the AlphaServer 2100 prod-
uct and the other Alpha multiprocessing platforms
provide the shared memory and symmetric access
to the system and r/O buses desired by the operat-
ing system designers.2 The design allows all CPUs
to share a single copy of the operating system
in memory. The hardware also has a load-locked/
store-conditional instruction sequence, which pro-
vides both a mechanism for atomic updates to
shared memory by a single processor and an inter-
processor interrupt mechanism.

Given these hardware features, operating system
software developers have a great deal of freedom
in developing a multiprocessing strategy. The
approach used in DEC OSWl version 3.0 is called
symmetric multiprocessing (SNIP), in which all pro-
cessors can participate fully in the execution of
operating system code. This symmetric design con-
trasts with asymmetric multiprocessing (ASMP), in
which all operating system code must be executed
on a single designated "master" processor. Such an

Digital Techtricul Jozirirul W)/. 6 No. 3 Summer 1994 29

DEC OSF/l Symmetric multiprocessing

a valu;tble protluct feature and was a preview of the
effort that would be recluired to adapt the osF/l
cotle for the DEC 2000, 4000, and 7000 multipro-
cessing platforms. Supporting separate preemptive
kernels for three versions prior to DE<: OSF/l
version 3.0, combined mrith the developers' esperi-
ence on other multiprocessing systems (including
IJLTRIX version 4 and an advanced development
project using MII'S multiprocessing platforms),
uncovered the following challenges and problems
that the t a m had to overcome to produce a com-
petitive multiprocessing product:

Supporting two complete sets of kernel binary
objects-b;ise and real-time-mias burdensome
for the operating system engineers ant1 ~ w k -
ward for third-party developers Therefore, the
DE<: OSF/l multiprocessing product team had to
strive to ship a single, unified set of kernel bina-
ries. This bet should encompass the full r;tnge
of real-time features. including preemption and
POSIX fixed-priority scheduling. For that to be
practical, the result~ng multiprocessing kernel
woulcl have to perform as well on a uniproces-
sor as the non-SMP kernel.

Diagnosing locking problems in the preemptive
kernel was expensive in developer time. The
process required painstaking inspection of
the simple-locking source code, which is often
disguised in subsystem-specific macros. Lock-
ing or unlocking a spin lock multiple times or
not unlocking it at all (ilsually in code loops)
woultl disable preemption well beyond the end
of a critical section or enable it before the entl.
A coherent locking architecture with autonlatecl
debugging facilities was needed to ship a reliable
product on time. The lock-debugging facility
present in the original OSWl code was probably
inadequate for the task.

Experiments with the real-time kernel revealecl
~~nacceptable preemption latencies, especially
in fiinneled code paths. This deficiency indi-
cated t h t , wlien moved to a multiprocessing
platform, the existing kernel would fail to use
atlditional processors effectively. That is, the
kernel would not exhibit adequate parallelism
to scale effectively. Clearly, major work was
required to significantly increase p;~rallelism in
the kernel. This task would likely involve renlov-
ing most uses of funneling, eliminating some
spin locks, and adding other spin locks to create
;I finer granul;irity of lock~ng.

Adapting the Base Operating System
for Symmetric Multiprocessing
Making the leap from a preemptive ~~niprocessor
kernel to an effective S;MP implementation. built
from ;I single set of kernel binaries, required con-
tributions from the OSF/l version 1.2 and the DE<:
OSF/l version 3.0 projects. Fundamental changes
were introduced into the system to support siv~l).

The basic approach planned by the Skip project
team was first to bootstrap the DE<: OSF/l version
1.3 kernel on the existing Alpha multiprocessing
platforms. This task was accomplished by funneling
all major subsystems to a single processor while sta-
bilizing the underpinnings of the mi~ltiprocessing
system (i.e.. the scheduler. the virti~al memory sub-
system, the virtilal file system, and the hartlw;~re
s11plx)rt) in the new environment. This approach
allowed the team to make progress in unclerstand-
ing the scope of the effort while analyzing the
multiprocessing requirements of each kernel sub-
system. The in-depth analysis was necessary to
identify those subsystems in the kernel that
required n~otlifications to run safely and efficiently
under SMP. A s each subsystem was confirmed to
exhibit parallelism or was made parallel, it was
unfi~nneled and thus freed to nln on any process01-.
This process was iterative. If incorrectly paral-
lelized, a subsystem will reveal itself by (1) leaving
tlata incorrectly unprotected and thus open for cor-
ruption and (2) developing a deadlock. i t . . a situa-
tion in which each of two threads holds a spin lock
required by the other thread and thus neither
thread can take the lock ant1 proceed.

The efforts at parallelizing the kernel fell into
two classes of modification: lock-based synchro-
nization to ensure multiprocessing correctness and
algorithmic changes to increase the level of par;tl-
lelism achieved.

Lock- based Sj~~zchro~zisntion
The code base on which the DE<: OSF/l product
is bi~ilt, i t . , the Open Software Fountlation's osW1
software, provides a strong foundation for SMI'. The
OSF further strengthened this found;~tion in osF/l
versions 1.1 and 1.2, when it correctetl multiple
SMI' problems in the code base and p;tralleIizecl
(and thus unfi~nneled) additional subsystems. As
the multipl-ocessing bootstrap effort continued.
the te;irn analyzed and incorporatctl the OSW1 ver-
sion 1.2 SMP improvements into DEC OSF/l version
3.0. As strong as this starting point was, however,
some structures in the system clid not receive the

3 2 WJI. 6 Ai,. -5 S I I I I I I I ~ K I . 1994 Digital Tecb~ricnl Jorrr.nnl

DEC 0Sfi;'l Version .j.O Sy~lzmetric ~1/Ii~ltip1-ocessir Im]>lenzentnti017

appropriate level of synchronization. The team cor-
rected these problems as they were uncovered
through testing and code inspection.

The DEC oSF/l operating system uses a cornbina-
tion of simple locks, complex locks, elevated SPL,

and funneling to guarantee synchronized access to
system resources and data structures. Simple locks,
SPL, and funneling were clescribed briefly in the
earlier discussion of preemption. Complex locks.
like elevated SPL, are ~lsed in both uniprocessor and
multiprocessor environments. These locks are 11~11-

ally sleep locks-threads can block while they wait
for the lock-which offer aclditional features,
including multiple-rez~der-/singlewriter access and
recursive acquisition.

An example of the use of each synchronization
technique follows:

A simple lock is used to protect the kernel's call-
out (timer) queue. In an SMP environment, mul-
t~ple threads can 11pd;lte the callout queue at the
same time, as each of them adds a timer entry
to the queue. Each thread must obtain the call-
out lock before adding an entry and release the
lock when done. The cal lout simple lock is also
a good example of SPL synchronization under
n~ultiprocessing because the callout queue is
scanned by the system clock ISR. Therefore,
before locking tlie calloi~t lock, a thread mt~s t
raise the SPL to the clock's IPL Otherwise, the
thread holding the callout lock at an SPL of zero
c;ln be interrupted by the clock iSK. which will
in turn attempt to take the callout lock. The
result is a permanent deadlock.

A complex lock protects the file system direc-
tory structure. A blocking lock is required
because the directory lock holder must perform
I/<) to update the directory, which itself can
block. Whenever blocking can occur while
;I lock is held, a complex lock is required.

Funneling is used to synchronize access to the
1%) 9660 CD-ROM file system.- The decision to
funnel this file system was largely due to liniita-
tions in the DE<: OSF/1 version 3.0 schedule;
however, the file system is a good choice for fun-
neling because of its gencr;~lly slow operation
and light usage.

To ensure adequate performance and scaling as
processors are added to thc system, an SMP imple-
rnent;~tion must provide for as much p;~rallelism
through the kernel ;IS possible. The granularity of

locks placed in the system has a major impact on
the amount of parallelism obt;~inecl.

During nli~ltiprocessing tlevelopment, locking
strategies were designed to

Reduce the total number of locks per subsystem

Reduce the number of locks taken per subsys-
tem operation

Improve the level of parallelism throughout the
kernel

At times, these goals clashed: enhancing paral-
lelism 11su;llly involves adcling 21 lock to some struc-
ture or code path. This outcome conflicts with the
goal of reclucing lock counts. Consequently, in prac-
tice, the process of successft~lly p;~rallelizing a sub-
system involves striking a balance between lock
reduction and the resulting increase in lock granu-
I;lrit)< Often, benchmarking different approaches is
required to fine-time this balance.

Several general trends were uncovered during
lock ;inalysis and tuning. In some cases locks were
removed because they were not needed; they
were the products of overzealous synchronization.
For example, a structure that is private to a thread
may require no locking at all. Moreover, a data ele-
ment that is read aton~ically needs no locking. An
example of lock removal is tlie gettimeofd;~y() sys-
ten1 call, which is used frequently by DBMS servers.
'rlie system call simply reacls the system time, a 64-
bit quantity and copies it to a buffer provicled by tlie
caller. The original OSF/l system call. running on a
32-bit architecture, had to take a simple lock before
re;~tling the time to guarantee a consistent value. On
the Alpha architecture, the system call can read the
entire 64-bit time value atomically. Removing the
lock resultecl in a 40 percent speeclup.

In other cases, analyzing how structures are usecl
revealed that no locking w;~s needed. For example,
an I/O control block called the buf structure was
being locked in several device drivers while the
block w;u in a state that allowetl only the device
driver to access it. Removing these unnecess;iry
locks saved one complex and one simple locking
secluence per I/O operation in these drivers.

Another effective optimiz;ition involved post-
poning Locking until a threacl determined that it had
actilal work to do. This technicli~e was ilsecl success-
fully in a routine freqi~ently called in ;I tr;lnsaction
processing benchmark. The routine, which was
locking structures in ;unticipation of following
a rarely used code path, was nioclified to lock only

DEC OSF/1 Symmetric Multiprocessing

when the uncommon code path was needed. This
optimization signific;lntly reduced lock overhc;~d.

To improve parallelism across the system, the
DEc: OSF/l SMP development team modified the lock
strategies in numerous other cases.

Algorithm Changes
In some instances. the effective migration of a sub-
system to the multiprocessing environment
required significilnt reworking of its fundamental
algorithms. This section presents three examples of
this work. The first example involves the rework
of the process management subsystem; the second
example is a new technique for a thread to refer to
its own state; ancl tlie third example deals with
enhancements in translation buffer coherency or
"shootdown."

ikf~rrtoigirzg Processes cr r ~ d Pt.oces.s .gate Early ver-
sions of the DEC OSF/l software maintained a set of
systemwide process lists, most notably proc (static
proc structiire array), allproc (active process list),
and zomproc (zombie process list). These lists tend
to be fairly long and are normally traversed sequen-
tially. Operations involving access to these lists
include process-creation time (fork()), signal post-
ing. and process termination. The original OSF/l
code protected these process lists and the individ-
ual proc structures themselves by means of funnel-
ing. This meant that virtlially every system call that
involved process state, such as exit(). wait(),

ptrace(), and sigaction(), was also forced into
a single funnel. Experience with real-time preemp-
tion indicated that this approach would exact
excessive multiprocessing costs. Although it is pos-
sible to protect these lists with loclts, the develop-
ment team decided that this basic portion of the
kernel must be optimized for m;~ximum multi-
processing performance. The OSF also recognized
the need for optimiz;~tion; they addressed the prob-
lem in OSF/l version 1.2 by aclopting a redesign
of the process m;lnagement tleveloped for their
Multimax systems by Encore Coinpiiter Corpora-
tion. The DEC OSF/I team adopted and enhanced
this design for hand ling process lists, process m;ln-
agement system calls, and signal processing.

The redesign replaces the statically sized array of
proc structures with an array of smaller process
identification (PID) entry structures. Each PID entry
striicture potentially points to n tlynamically allo-
cated proc structure. Under this new scheme, fincl-
ing the proc structtire ;~ssociated with a user PID
has been reduced to hashing the PID value to an

index into the PID entry array. The process state
associated with that PID (active, zombie, or nonesis-
tent) is maintained in the PI[) entry structure. This
allows process structures to be allocated dynami-
cally, as needed, rather than st;ltic;rlly at boot time.
;IS before. Simple locks are also added to the process
structure to allow rnultiple thre;~ds in the process to
perform process management system calls and sig-
n;11 handling concurrently. These changes allowecl
process management funneling to be removetl
entirely, which significantly improved the degree of
parallelism in tlie process management subsystem.

Accessing Czlrrent TlnreadSt~rte One critical design
choice in implementing SivlP on the DEC: OSF/I sys-
tem concerned how to access the state of the cur-
rently running threatl. This state includes the
current thread's process, task. ancl virtual memory
structures, ant1 the so-callecl ii;ire;l, which contains
the pageable UNIX state. Access to this state, which
threads require frequently ;IS they run in kernel
context, must have low overhead. Further, because
the DEC oSF/l operating system supports kernel-
mode preemption, the method for accessing the
current thread's state must work even if a context
switch to another CPU occurs during the access
operation.

The original OSF/l code used arrays indexed by
the CPV number to look up the state of a running
thread. One of these arrays was the U-ADDRESS
army, which was used to access the currently active
uarea. The U-ADDRESS array was loaded at context
switch time and accessed while the thread exe-
cuted. Before the advent of multiprocessing. the
(:PLI number was a compile-time constant, so
that thread-state lookup involved simply reading
a global variable to form the pointer to the data.
Adding multiprocessing support meant changing
the Cl'rJ number from a constant to the result of
the wmNr1 ("Who am I?") PALcotle call to get the
current CPU number. (II~Lcode is the operating-
system-specific privileged architecture library
that provides control oves interrupts, exceptions.
context switching, etc .9

Using such global arrays for accessing tlie current
thre;~d's state presented three sliortcomings:

1 . The V W M I PALcode call adcled a minimum over-
head of 21 machine cycles on the Alphaserver
2100 server, not including further overhead due
to cache misses or instruction stream stalls. The
multiprocessing team felt that this was too large
;I performance price to pap.

Vol 6 No.$ Sunrmer 1994 Digital Technical Journul

LlEC OSF/I Version 3.0 Sj~mmetric M~~ltiprocessing I?r~~~lernetzt~rtiot~

2. Allowing multiple CPUs to write sequelltial
pointers caused cache thrashing and extra over-
head during context switching.

3. Indexing by <:PI1 number was not a safe practice
when kernel-mode preemption is enabled.
A thread coulcl switch processors in the midclle
of an array access, and the wrong pointer would
be fetched. Providing additional locking to pre-
vent this hat1 ~~nacceptable performance impli-
cations because the operation is so common.

These prol3lems co~ivinced the team that a new
algorithm was required for accessing the current
thread's state.

The solution selected was modeled on the way
the OpenVMS VAX system uses the processor inter-
rupt stack pointer to derive the pointer to per-CPU
state.9 In the OSF/1 system, each thread has its own
kernel stack. By aligning this stack on a power-of-
two boundary, a simple masking of the stack
pointer yields a pointer to the per-thread data, such
as the process control block (PCB) and uthread
structure. Any data item in the per-thread area can
be accessed with the following code sequence:

I d a r16, MASK # G e t mask v a l u e
b i c sp, 1-16, r O # Mask s t a c k p o i n t e r t o

p o i n t t o s t a c k b a s e
l d q rx, O F F S E T (I - 0) # Add o f f s e t t o b a s e

and f e t c h i t e m

Accessing thread state using the kernel stack
pointer solves all three problems with CPU-number-
based indexing. First, this technique has very low
overhead; accessing the current thread's data
involves only ;r simple masking operation and a read
operation. Second, using the kernel stack pointer
incurs no extra overhead during context switching
because the pointer has to be loacled for other uses
Third, because thread stack areas are pages, no
cache conflicts exist between threads running on
different processors Finally, the data access can
be preempted at any point, and the correct polnter
is still fetched. No processor-dependent state is
used to access the current threacl state.

Interprocessor Translation Lookaside Buffer
Shootclown Alpha processors employ translation
lookaside buffers (TLRs) to speed up the translation
of physical-to-virtual mappings. The TLB caches
page table entries (PTEs) that conti~in virtual-to-
physical address mappings and access control infor-
mation. Unlike data cache coherency, which the

hardware maintains, TLH cache coherency is a task
of the software. Thc L)EC OSF/l system uses an
enhanced version of the TLB shootdown algorithm
developed for the Mach kernel to maintain TLR
coherency."J First, a modification to the original
shootdown algorithm was needed to implement
the Alpha architecture's address space numbers
(ASNs). Second, a syncllronization feature of the
original algorithm was removed entirely to enhance
shootdown performance. This feature provided
synchronization for architectures in which the
hardware can moclify nEs, such as the VAX plat-
form; the added protection is unnecessary for
the Alpha architecture.

The final shootdown algorithm is as follows. The
physical map (PhMP) is the software structiire that
holds the virtual-to-physical mapping information.
Each task within the system has a P M P ; operating
system mappings hwe a special kernel PIMAP. Each
PkMP contains a list of processors currently iising
the associated address space. To initiate a virt~~al-to-
physical translation change, a processor (the initia-
tor) first locks the PMAP to prevent any other threads
from modifying it. Next, the initiator updates the PTE
mapping in memory and flushes the local TLB. The
processor then sends an interprocessor interrupt
to all other processors (the responders) that are
currently active in the same address space. Each
responder needs to acknowledge the initiator and
invalidate its own mapping. Once all responders
are accounted for, the initiator is free to continue
with the knowledge that all TLBs are coherent on
the system. The initiator marks nonactive proces-
sors' ASNs inactive, spins while it waits for other
processors to check in, and then unlocks the PIMAP.
Figure 1 shows this final TLB shootdown algorithm
as it progresses from the initiating processor to the
potential responcling processors.

Developing the Lock Package
Key to meeting the performance and reliability
goals for the multiprocessing portion of the DEC
OSF/l version 3.0 release was the development o f
a lock package with the follonling characteristics:

Low execution and memory overhead

Flexible support for both uniprocessor ant1
multiprocessor pl;~tforms, wit11 and without
real-time preemption

Automated debugging facilities to detect incor-
rect locking practices at run time

Digital Technical Journal &)I. 6 1Vo. .j 5~l1n1rrer. 1934 35

DEC OSF/l Symmetric Multiprocessing

Initiator: Responders:
Lock the PMAP.
Update the translation map (PTE).
Invalidate the processor TLB entry.
Send an interprocessor interrupt to all

processors that are using the PMAP.

Mark the nonactive processors' ASNs inactive.
Spin while it waits for other processors to check in.
Unlock the PMAP.

Acknowledge the shootdown.
Invalidate the processor TLB entry.
Return from the interrupt.

Statistical facilities to track the number of locks development team hat1 to enhance the lock package
used, how many times a lock is taken, antl how to be configurable at boot time. That is, the package
long threads wxit to obtain locks needed to be able to tailor itself to fit the configura-

Of course, the overall role of the lock package
is to provide ;I set of synchroniz.ation primitives.
tIi:.lt is, the simple ant1 complex locks tlescribetl in
earlier sections. To support kernel-mode tIire;~d
preemption, DEC OS1'/1 version 1.0 had extended
the lock package originally clelivered with OSF/l

version 1.0. Early in the DEc osF/1 version 3.0 proj-
ect, the development team extended the package
again to optimize its performance and to add tlie
desired debugging and statistical features.

As previously noted, a major goal for I>E(: oSW1
version 3.0 was to ship a single version of its kernel
objects, instead of tlie base and real-time sets of
previous ~~eleases. Therefore, simple locks would
have to be co~npiletl into the kernel, even for ker-
nels that woultl run only on uniprocessor s)atems.
Achieving this goal required minimizing the size of
the lock structure; jt would be unaccel?t;ll,le to
have hundreds of kilobytes (KB) of memory dedi-
cated to lock structi~res in systems t l ~ ; l t clicl not use
such structures. Further. the simple lock and
~r~i lock invocations required by the nii~ltiprocess-
ing code woultl have to be present for all platforms,
which woultl raise serious performance issues for
tlniprocessor systems. In fact, in the original <>SF/l
lock package, the (:I'1J overhead cost of compiling
in the lock code was between I antl 20 percent.
Compute-intensive bcriclimarks slio\vetl the cost to
be less than 5 percent. but the cost for multiuser
benchmarks wns greater than 10 percent, which
represents an unacceptable performance dcprxda-
tion. To meet the goill of a single set o f bini~ries, the

tion and real-time requirements of the plntform on
which it would run.

The lock package supplied by t1.1~ oSF/l system
was further deficient in that it did not >upport error
checking when locks were asserted. This tleficienq
left developers open to the most cornmoll tormen-
tor of concurrent programmers. i t . , dead locks.
Without error checking, potential system hangs
caused by locks being asserted in the wrong order
c o ~ ~ l d go untletected for years ant1 be difficult to
debug. A formal locking order or hierarchy for all
locks in t l~e s).stem had to be established, antl the
lock package neetled tlie ability to check the hierar-
chy o n each locli taken.

These needs were met by introducing the notion
of lock mode to the lock p;~ck;~ge. I>cvelopers
defined the following five motles ancl associated
roles:

Mode 0: N o Jock operations; for production
uniprocessor systems

Mocle 1 : Lock counting only to miinage kernel
preemption; for procluction real-time unipro-
cessor sysrerns

Mode 2: Locking without kernel preemption;
for prod~~ction nlultiprocessing systems

Mode 3: Locking with kernel preemption; for
production real-time multiprocessing systems

Mode 4: Full lock debugging with or without
preemption; for ;lny development system

DEC OSF/I Version 3.0 Synzmetric Multiprocessing Implenzentc~tio~z

The defi~ult uniprocessor lock mode is 0; the mul-
tiprocessing default is lock mode 2. Both selections
favor non-real-time production systems. The sys-
tem's lock mode, however, can be selected at boot
time by a number of mechanisms. Lock modes are
implemented through a dynamic lock configura-
tion scheme that essentially iqstalls the appropriate
set of lock primitives for the selected lock mode.
Installation is realized by patching the compiled-in
function calls, such as simple-lock(), to dispatch
to the corresponding lock primitive for the selected
lock mode. This technique avoids the overhead
of dispatching indirectly to different sets of lock
primitives for each call, based on the lock mode.
The compiled-in lock function calls to the lock
package are all entry points that branch to a call-
patching routine called simple-lock-patch(). This
routine changes the calling machine instruction to
be patched out (for lock mode 0) or to branch to
the corresponding primitive in the appropriate set
of actual primitives, and then branches there (for
lock modes 1 through 4). Thus, the overhead for
dynamically switching between the versions of sim-
ple lock primitives occurs only once for each code
path. In the case of lock mode 0, calls to simple
lock primitives are "back patched" out. Under this
model, uniprocessor systems pay a one-time cost to
invoke the simple lock primitives, after which the
expense of executing a lock primitive is reduced to
executing a few no-op instructions where the code
for the lock call once resided.

To address memory consumption issues and to
provide better system debug capabilities, the devel-
opers reorganized the lock data structures around
the concept of the lockinfo structure. This struc-
ture is an encapsulation of the lock's ordering (hier-
archical relationship) with surrounding locks and
its minimum SPL requirement. Lock debugging
information and the lock statistics were decoupled
from the lock structures themselves. To facilitate
the expression of a lock hierarchy, the developers
introduced the concept of classes and instances.
A lock class is a grouping of locks of the same type.
For example, the process structure lock constitutes
a lock class. A lock instance is a particular lock of
a given class. For example, one process structure
simple lock is an instance of the class process struc-
ture lock. Error checking and statistics-gathering
are performed on a lock-class basis and only in lock
mode 4.

Decoupling the lock debugging information
from the lock itself significantly reduced the sizes

of the simple and complex lock structures to 8 and
32 bytes, respectively. Embedded in both structures
is a 16-bit index into the lockinfo structure table
for that particular lock class. The lockinfo structure
is dynamically created at system startup in lock
mode 4. All classes in the system are assigned a rela-
tive position in a single unified lock hierarchy.
A lock class's position in the lockinfo table is also
its position in the lock hierarchy; that is, locks must
be taken in the order in which they appear in the
table. Lock statistics are also maintained on a per-
class basis with separate entries for each processor.
Keeping lock statistics per processor and separat-
ing this information by cache blocks eliminates
the need to synchronize lock-primitive access to
the statistics. This design, which is illustrated in
Figure 2, prevents negative cache effects that could
result from sharing this data.

Once this powerful lock package was opera-
tional, developers analyzed the lock design of their
kernel subsystems and attempted to place the locks
used into classes in the overall system lock hierar-
chy. The position of a class depends on the order in
which its locks are taken and released in relation to
other locks in the same code path and in the sys-
tem. At times, this static lock analysis revealed prob-
lems in existing lock protocols, in which locks were
taken in varying orders at different points in
the code. Clearly, the lock protocol needed to be
reworked to produce a consistent order that could
be codified in the hierarchy. Thus, the exercise of
producing an overall lock hierarchy resulted in

LOCK INSTANCES LOCK CLASS LOCK STATISTICS

Figure 2 Lock Structure

Digilal Technical Journal WM. 6 No. 3 S~rtnmer I994 37

--I+ -
I

- - - - - - -
- - - - - - -

- - - - - - -
CPUO - - - - - - -

- - - - - - -
CPU 1 - - - - - - -

- - - - - - -
CPU N - - - - - - -

- - -

-
-
-

DEC OSF/l Symmetric Multiprocessing

a significant cleanup of the original multiprocess-
ing code base. To add a new lock to the system,
a developer would have to determine the hierarchi-
cal position for the new lock class and the rnini-
mum SPL at which the lock must be taken.

Running the system in lock mode 4 and exercis-
ing code paths of interest provided developers with
immediate feedback on their lock protocols. Using
the hierarchy and SPL information stored in the run-
time lockinfo table, the lock primitives aggressively
check for a variety of locking errors, which include
the following:

Locking a lock out of hierarchical order

Locking a simple lock at an SPL below the
required minimum

Locking a simple lock already held by the caller

Unlocking an unlocked simple lock

Unlocking a simple lock owned by another CPU

Locking a complex 1oc.k with a simple lock held

Locking a complex lock at interrupt level

Sleeping with a simple lock held

Locking or unlocking an uninitialized lock

Encountering any of these types of violation
results in a lock fault, i.e., a system bug check that
recortls the information required by the developer
to quickly track down the lock error.

The reduction in lock sizes and the major
enhancement of the lock package enabled the team
to realize its goal of a single set of kernel binaries.
Benchmarks that compare a pure uniprocessor
kernel and a kernel ill lock mode 0 that are both
running on the same hardware show a less than
3 percent difference in performance, a cost consid-
ered by the team to be well worth the many advan-
tages to returning to a unified kernel. Moreover, the
debugging capabilities of the lock package with
its hierarchical scheme streamlined the process of
lock analysis and provided precise and immediate
feedback as developers adapted their subsystems to
the multiprocessing environment.

Adapting the Scheduler for
Multiprocessing
The normal scheduling behavior, i.e., policy, of
the OSF/l system is traditional UNlX time-sharing.
The system time-slices processes based on a time
quanti~m and adjusts process priorities to favor
interactive jobs over compute-intensive jobs. To

support the POSIX real-time standard, the DEC OSF/l
system incorporates two additional fixed-priority
scheduling policies. first in, first out (POLI<:Y-FIFO)
and round robin (POLICY-RR).

A time-share thread's priority degrades with CPU
usage; the more recent the thread's CPU usage,
the more its priority degrades. (Note that OSF/l
scheduling entities are threads rather than pro-
cesses.) In contrast, a fixed-priority thread never
suffers priority degradation. Instead, a POLICY-RR
thread runs until it blocks voluntarily, is preempted
by a higher-priority thread, or exhausts a quantum
(and even then, the round robin scheduling applies
only to threads of equal priority). A 1'OLICY-FIFO
thread has no scheduling quantum; it runs until it
blocks or is preempted. These specialized policies
are used by real-time applications and by threads
created and managed by the kernel. Examples
of these kernel threads include the swapper and
paging threads, device driver tlireads, and network
protocol handlers. A feature called thread binding,
or hard affinity, was aclded to DEC OSF/l version 3.0.
Binding allows a user or the kernel to force a thread
to run only on a specified processor. Binding sup-
ports the funneling feature used by i~nparallelized
code ancl the bind-to-cpu() system call.

The goal of a multiprocessing operating system in
scheduling threads is to run the top N priority
threads on N processors at any given time A simple
way to accomplish this would be to schedule
threads that are not bound to a CPU in a single, global
run queue and schedule bound threads in a run
queue local to its bound processor. When a proces-
sor reschedules, it would select the highest-priority
thread available in the local or the global run queue.

Scheduling threads out of a global run queue is
highly effective at keeping the N highest-priority
threads running; however, two problems arise with
this approach:

1. A single run queue leads to contention between
processors that are attempting to reschedule, as
they race to lock the run queue and renlove the
highest-priority thread.

2. Scheduling with a global run queue does not
take advantage of the cache state that a thread
builds on the CPU where it last ran. A thread that
migrates to a different processor must reload its
state into the new processor's cache. This can
substantially degrade performance.

To help preserve cache state and reduce wastefi11
global run queue contention, the developers

Vol. G No. .J S~r~nrrrrr I994 Digital Technical Jourmal

DEC OSF/I Version 3.0 Symmetric rMultiprocessi~zg Implementation

enhancecl the multiprocessing scheduler by adding
tn7o new scheduling models: a soft-affinity sched-
uling model for time-share threads and a last-
processor-preference model for fixed-priority
threads. Under these models, each processor sched-
ules time-share and bound threads in its local run
queue, and it schedules unbound fixed-priority
threads out of a global run queue.

Fixed-priority threads scheduled from a global
run qi~eue are able to run as soon as possible. This
behavior is required for high-priority tasks like
kernel threads and real-time applications. The last-
processor-preference model gives a fixed-priority
thread a preference for running on the processor
where it last ran; if that processor is busy, the thread
runs on the next available processor. Each time-
share thread is softly bound to the processor on
which it last ran; that is, the thread shows an affinity
for that processor. Unlike funneling or user bind-
ing, wl~ich support hard (mandatory) affinity, soft
affinity allows a thread to run elsewhere if it is
advantageous, i.e., if such activity balances the load.
Otherwise, the softly bound thread tries to return
to the processor where it last ran and where its
recent cache state may still reside.

Under load, however, a soft affinity model used
alone can degenerate to a state where one proces-
sor builds up a large queue of threads, leaving the
other processors with little to do and thus dimin-
ishing the performance of the multiprocessing sys-
tem. To mitigate these side effects of soft affinity,
developers paired the soft affinity feature with the
ability to load-balance the runnable threads in the
system. To keep the load of time-share jobs spread
evenly across processors, the scheduler must peri-
odically load-balance the system. In addition to dis-
tributing threads evenly across the local run queues
in the system, this load-balancing activity must

Cost no more in processing time than it saves

Prevent excessive thread movement among
processors

Recognize and effectively acconlmodate changes
in the job mix

To implement load balancing, each processor
maintains a time-share load average, i.e., the aver-
age local run queue depth over the last five sec-
onds. Each processor updates its own load average
on each system clock tick. Processors also keep
track of the time they spend handling interrupts
and running fixed-priority threads, which are not
accounted for in the local run queue depth. Taking

Digital Technical Journal Vnl. 6 A'o.3 S~rrnmer 1394

a processor's total potential execution time for a
scheduling period and subtracting from this time
the interrupt-processing and fixecl-priority run
times yields the total time available on a processor
(processor ticks available) to run time-share threads.
In the worse case, a processor could be completely
consumed by fixed-priority threads and/or inter-
rupt processing and have no time to run time-share
threads. In this extreme case, the scheduler should
give no time-share load to that processor.

Adding the time-share load averages of all proces-
sors determines the aggregate time-share load for
the system. Similarly, summing the processor ticks
available yields the total time available on the sys-
tem for handling time-share tasks. Using this data,
the scheduler calculates the desired load for each
processor once per second, as follows:

Processor ticks System time-share
Desired - available

-
load

load System ticks available

Load balancing is called for when at least one pro-
cessor is above and one is below its desired load by
a minimal amount. If this condition arises, then
those processors under their desired loads are
declared to be "out of balance." The next time an
out-of-balance processor rescl~edules, it will try to
take a thread from the local run queue of a proces-
sor that is above its desired load ("thread stealing").
A processor can declare itself back in balance when
its current load is above its desired load or when
there are no eligible threads to steal. Figure 3 shows
a simplified load-balancing scenario, in which a
processor below its desired load steals a thread
from a processor above its desired load.

To help preserve the cache benefits of soft affin-
ity, a thread is eligible for stealing only when it has
not run on its current processor for some config-
urable number of clock ticks. After this time has
elapsed without a thread running, the chance of it
having significant cache state remaining has dimin-
ishecl sufficiently that the thread is more likely to
benefit from migrating to another processor and
running immediately than from waiting longer to
run on its current processor.

To demonstrate that soft affinity with load bal-
ancing improves multiprocessing performance
through cache benefits and the elimination of run
queue contention, developers ran a simple test pro-
gram. The program, which writes 128 KB of data,
yields the processor, and then reads the same data
back, was run on a four-processor DEC 7000 system.

DEC OSF/l Symmetric Multiprocessing

(CPU 1 (
CURRENT LOAD
(NUMBER OF
THREADS)

DESIRED LOAD

I ONETHREAD I

LOCAL

QUEUE

HIGHEST PRIORITY
THREAD BETWEEN
LOCAL RUN QUEUES
AND GLOBAL RUN QUEUE JJ-J-
WINS THE PROCESSOR

GLOBAL

QUEUE

Tab.le 1 shows tlie results of running ~nultiple
versions of this program with and without soft affin-
ity and load balancing in operation. Performance
benefits appear only when multiple copies of the
program begin piling up in the run queues at
the 16-job level. Prior to this point, each job keeps
running on the same processor, i.e., the cache it had
just filled still had its data cached when tlie pro-
gram read it back-the ideal case. At the 16-job
level, the four processors must be time-shared. The
jobs that are running with soft affinity now benefit
significantly because they continue to run on the
same processor and thus find some of their cache
state preserved from when they last ran. The sys-
tems that schedule from a global run queue provide
no such benefit. Jobs take longer to complete, since
they are likely to run on a different processor
for each time slice and find no cache state that they
can reuse.

The soft affinity and load-balancing feati~res
improved many other multiuser benchmarks. For
example, a transaction processing benchmark
showed a 17 percent performance improvement.

Focusing on Quality
The error-checking focus of the lock package is just
one example of how the DE<: OSF/l version 3.0 proj-
ect focused on the quality and stability of the prod-
uct. Most rnembers of the lni~ltiprocessing team
had been involved in an SMP development effort
prior to their DEC OSF/l effort. This past experi-
ence, coupled with the cliffici~lties other vendors
had experienced with their own multiprocessing
irnplernentations, reinforced the need to have a
strong quality focus i.11 the SMP project.

Developers took niultiple steps to ensure that
tlie SMP solution dehered in DEC OSF/l version 3.0
would be production qualit): including

Table 1 Benefits of Soft Affinity with Load Balancing (SAILB)

Number
of Jobs

-

Time with SA/LB
(Seconds)

Time without
SAILB (Seconds)

Benefit from
SAIL6 (Percent)

40 Wl. 6 No. j . S I I I ? I I ? ~ ~ ~ ' I994 Digital Techriical Jourlzal

DEC OSF/I Version -3.0 S.]~mrnetric Multiprocessing I~nplementntion

Code reviews

Lock debugging

In-line assertion checking

Multithreaded test suite development for SMP

qualification

The base kernel code was reviewed for multi-
processing correctness. I>uring this review phase,
checks were made to ensure that the proper level of
synchronization was employed to protect global
data structures. Ni~merous defects were uncovered
during this process and corrected. Running code
with lock checking enabled provided empirical
evidence of the incremental improvements of tlie
multiprocessing implementation.

Beyond code reviews and lock debugging, inter-
nal consistency checks (assertions) were coded
into the kernel to verify correctness of operations
at key points. Assertion checking was enabled dur-
ing the develop~nent process to ensure that the ker-
nel was functioning correctly; it was then compiled
out for the production version of the kernel.

In parallel with the operating system develop-
ment effort, new component tests were designed
to force as much concurrency as possible through
particular code paths. The core of the test suite is
a threacl-race library, which consists of a set of rou-
tines that can be usecl to construct m~~ltithreaded
system-call exercisers. The library provides the
ability to commence multiple test instances simul-
taneously. The individual tests are then combined
to form focused subsystem tests and systemwide
tests. These tests have been used to uncover multi-
ple race conditions in the operating system.

The UNIX development organization hatl a four-
processor DEC 7000 system deployed in its develop-
ment environment for more than 7 months prior
to releasing the SiviP product. This system has been
extremely stable, with few complaints from the
user community. Extensive internal and external
field testing produced similar results.

Measuring Multiprocessing
Performance Outcomes
The ~llajor functionality clelivered with SMP is
improved performance tl~rough application con-
currency. The goal of the SIMP project was to
provitle leadership performance in tlie areas of
compute and data servers. To gauge success in this
effort, several industry-standard benchmarks were

utilized. These benchmarks include SPECrate-lNT92,
SPECrate-FP92, and AIM Suite 111.

SMP performance is measured in terms of the
incremental performance gained as processors are
added to the system. Adding processors by no means
guarantees increased system performance. Systems
that have I/O or memory limitations rarely benefit
from introducing additional CPUs. Systems that are
compute bound tend to have the largest potential
for gain from additional processors. Note that large,
monolithic applications tend to see little perfor-
mance improvement as processors are added
because such applications employ little concur-
rency in their designs.

Performance tuning for SMP was an iterative pro-
cess that can be characterized as follows:

1. Collect and analyze performance data

CPU utilization across the processors

Lock statistics

I/O rates

Context switch rates

Kernel profiling

2. Identlfy areas that require improvement.

3. Prototype changes.

4. Incorporate changes that demonstrate improve-
ment.

5. Repeat steps 1 through 4.

In reality, the process has two stages for each
benchmark. The initial phase was devoted to clriv-
ing the system to become conlpute bound. The sec-
ond phase improved code efficiencies.

Figures 4 and 5 show that, as expected, the
SPECrate-lNT92 and SPECratecFP92 benchmarks
scale almost linearly. Both of these bencl~marks
are compute intensive and make only nominal
demands on the operating system.

MM Suite 111 is a multiuser benchmark that
stresses multiple components of an operating sys-
tem, including the virtual memory system, the
scheduler, UNIX pipes, and the 110 subsystem.
Figure 6 shows AIM 111 results for one and four pro-
cessors, with a resulting 3.27 to 4 scaling factor.
This equates to a greater than 80 percent scaling
factor, a figure well within the goals for this bench-
mark at first multiprocessing release. Efforts to pro-
duce still better results are under way.

AIM Suite 111 scaling appears to be gated by a
single test in the AIM Suite HI benchmark, i.e.,

Digital Technical Journal Vol. 6 No. .? Sumtner 1994 4 1

Chandrika Kamath

Dwight I? Manley

DXML: A High-performance
Scientific Subroutine Library

Mathematical szibroutine libraries for science and engineering applications are an
iinportant tool in high-l,erfornzclnce con~puting. identfi~ing and optimizing
frequently used, numericallj~ irztensive operations, these libraries help in reducing
the cost of conzput~rtion, enhancing portability, a ~ l d inzproving productivity The
Digital extended ~Vlath Libtarjl is a set of p~lblic do~ncrin and Digital proprietary
softzuare that has been optimized for high pevformance on Alpha systems. In this
papel; UXcVIL and the issues related to librarjl softzi~are technologjr are described.
Specific a~a~nples illustrate how algoritb~ns can be optimized to take advantage of
the ctrchitectzire of Alpha systems. modern algorithnzs that effectivelj~ exploit the
menaory bierarclgi enable DXWL !*outines to provide s~lbstaiztic11 i~nprouei?zents in
perfornzance.

The Digital extended Math Library (DXML) is a set
of mathematical subroutines, optimizecl for high
performance on Alpha systems. These subroutines
perform numerically intensive subtasks that occur
frequently in scientific computing. They can tliere-
fore be used as building blocks for the optimization
of various science ancl engineering applications in
industries such as chemical, aerospace, petroleum,
automotive, electronics, finance, and transportation.

In this papel; we discuss the role of mathematical
software libraries, followed by an overview of
the contents of the Digital extended Math Library.
DXML includes optimized versions of both the stan-
dard BLAS and LAPACK libraries as well as libraries
designed and developed by Digital for signal pro-
cessing and the solution of sparse linear systems
of equations. Next, we describe various aspects of
library software technology, including the design
ancl testing of D)(1\1L subroutines. Using Itey routines
as examples, we illlistrate the techniques used
in the performance optimization of the library.
Finally, we present clata that demonstrates the per-
formance improvement obtained through the use
of DXML.

The Role of Math Libraries
Early matl~ematical libraries concentrated 011 sup-
plementing the functionality provided by the
Fortran compilers. In addition to routines such as
sin and exp, which were includecl in the run-time

math library, more complicated special functions,
linear algebra algorithms, and Fourier transform
algorithms were includetl in the software layer
between the hardware and the user application.

Then, in the early 1970s, there was a concerted
effort to produce high-quality numerical software,
with the aim of provitling end users with implemen-
tations of numerical algorithms that were stable,
robust, and accurate. This led to the develop~nent
of several math libraries, with the public domain
LINPACK and EISPACK libraries for the solution of
linear and eigen systems, setting the standards for
future development of math software.'-'

The late 1970s and early 1980s saw the availability
of advanced architectures, including vector ant1
parallel computers, as well as high-performance
workstations. This added another facet to the devel-
opment of math libraries. namely, the implernen-
tation of algorithms for high efficiency on an
underlying architecture.

The effort to produce mathematical software thus
became a task of building bridges between numeri-
cal analysts, who devise algorithms, computer archi-
tects, who clesign high-performance computer
systems, and computer users, who need efficient,
reliable software for solving their problems. Con-
sequently these libraries embody expert knowledge
in applied mathematics, numerical analysis, data
structures, software engineering, compilers, oper-
ating systems, and computer ;irchitectiire and

44 I*/. 6 IVO. ;i S1r112inc.i. 1994 Digital Tecbrrical Jorrrrrnl

DXiML: A Hi#-perfornzance Scientific Subl.outir-~e Libraqj

;Ire an important programming tool in the use of
high-performance compi~ters.

Motlern superscalar RISC architectures with
floating-point pipelines, such as tlie Alpha, have
deep memory hierarchies. These include floating-
point registers, multiple levels of caches, and virtual
memory. The significant latency ;lnd bandwidth dif-
ferences between these memory levels imply that
numerical algorithms h;lve to be restrilcturetl to
make effective use of the data brouglit into any one
level. The performance of an algorithm is , 'I 1 . SO ~11s-
ceptible to the order in which computations are
scheduled as well as the higher cost associated with
some operations such as floating-point square-root
and division.

The architecture of tlie Alpha systems ;111d the
technology of the Fortran ;und C compilers usually
provide an efficient cornpilting environment with
adequate performance. However, there is often
room for improvement, especially in engineering
and science applications. where vast amounts of
data are processetl and repeatecl operations are per-
formed o n each data element. One way to achieve
these improvements is through the use of opti-
mized subroutine libraries.

The Digital extendecl Math Library is a collection
of routines that performs frequently occurring,
numerically intensive operations. By identifying
such operations and optimizing them for high per-
formance on Alpha systems. DXML provides several
benefits to the compi~tational scientist.

It allows tlefir~ition of functions at a sufficiently
high level ;lnd therel0re optimization beyond
the capabilities of the compiler.

It makes tlie architecture of tlie systems more
transparent to the usel-.

It improves productivity by providing easy
access to Iiiglily optimized, efficient code.

It enhances the por t~bi l i ty of user software
through the support of stand21rd libraries and
interfaces.

I t promotes good software engineering practice
and avoids tluplication of work by identifying
and optimizing common functions across sev-
eral application areas.

Overview oJDXML
L~XML contains al~iiost 400 user-c;~ll;tble routines,
optimized for Alpha systems.j This includes both
software developecl by Digital as well as the ULAS

and LAPACK libraries. most routines are available

in four versions: real single precision, re;~l double
precision, complex single precision. and complex
double precision.

DXML is available on both OpenVMS and DEC
OSF/1 operating systems. Its routines can be called
from either Fortrxn o r C , provided the difference in
array storage between these langu;~ges is taken into
account. DXML is av;iil;tble as ;I sl1;lreable library,
with a simple interface, enabling easy access to the
routines. On DE<: OSF/I systems, DXML supports the
IEEE floating-point format. On C)penVMS systems,
either the IEEE floating-point format o r the VAX

F-flo;~t/G-float format can be selected.
DXML routines can be broadly categol-ized into

the following four areas:

B U S . The Basic Li11e;ir Algebra Subroutines inclucle
the standard HlAS and Digital enhancements.

LAI'ACK. The Linear Algebra t'ACKage includes
linear and eigen-system solvers.

9 Signal processing. This includes fast Fourier
tr;lnsforms (FFTs), convolution, and correlation.

Sparse linear system solvers. 'These include
direct and iterative solvers.

Of these, the signal-processing library and the
sparse linear system solvers are designetl, devel-
oped, and optimized by Digital. The majority of the
B U S routines and the IA3ACK library are versions of
the pilblic domain standard that were optimized for
the Alpha architecture. By slipporting tlie industry
standard interfaces of these libraries, DXNlL pro-
vides both portability of user code and high perfor-
mance of the optimized software.

We next provide a brief description of the h ~ n c -
tionality provided by each subcomponent of DXML.
Furtlier details are available in the Digital extended
Math Library Reference Manua1.i

The vector library consists of seven double-
precision ro~lt ines that perform operations such as
sine. cosine, and natural logarithm, o n data stored
as vectors.

BLAS I
The B ~ s i c Line;~r Algebra level I subprograms per-
form low-grani11;lrity operations o n vectors that
involve one or two vectors a5 input and return
either a vector or a scalar as output."xamples of
BLAS 1 routines include dot product, index of the
maximum element in a vector, and s o on.

Digital Trchwicul Journal btd. 6 No. .3 .SIIMIIIW 1994 4 5

Scientific Computing Optimizations for Alpha

BLAS I Extensions (BLAS IE)
Digital has extended the functionality of the BLAS 1
routines by including 13 similar operations. These
include index of the minimum element of a vector,
sum of the elements of a vector, and s o on.

BLAS I Sparse (BLAS IS)
DXML also includes nine routines that are sparse
extensions of the BLAS 1 routines. Of these, six art.
from the sparse BLAS 1 standard and three are
enhancernetits.- These routines operate on two
vectors, one of which is sparse and stored in a com-
pressed form. As most of the elements in a sparse
vector are zero, both computational time and mem-
ory are reduced by storing and operating o n only
the nonzeros. B U S 1S routines include construc-
tion of a sparse vector from the specified elements
of a dense vector, dot product, and so on.

BLAS 2
The BIAS level 2 routines perform opesations of
a higher granularity than the level 1 routincs.8 These
inclutle matrix-vector operations such as matrix-
vector product, rank-one and rank-two upclates,
and solutions of triangi~lar systems of equations.
V~rious storage schemes are supported, including
general, sj~mmetric, banded, and packed.

BIAS 3
The BLAS level 3 routines perform matrix-matrix
operations, which are of a higher granularity than
the HLAS 2 operations. These routines include
matrix-matrix product, rank-k updates, solution of
triangnlar systems with multiple right-hand sides,
and multiplic;~tion ofa matrix by a triangular matrix.
Where appropriate, these operations are defined
for matrices that may be general, symmetric, or tri-
angular9 The functionality of the public domain
BLAS 3 library has been enhanced by three addi-
tional routines for matrix addition, subtraction,
and transpose.

LA PACK
DXM1. includes the standard Linear Algebra
PACKage, LAPACK, which supersedes the LINPACK
and EISPACK packages by extending the functional-
ity, using algorithms with higher accurac): ant1
improving the performance through the use of
the optimizecl RLAS library.KJ LAPACK can be used
for solving many common linear algebra proh-
lems, including solution of linear systems, linear
least-squares problems, eigenvalue problems, and

singular value problems. Various storage schemes
are supported, including general, band, tridiagonal,
symmetric positive definite, and s o on.

Signal Processing
The signal-processing subcomponent of DXML
includes FFTs, convolutions, and correlations.
A comprehensive set of Fourier transforms is
provided, including

FFTs in one, two. and three dimensions

FFTs in forward and inverse directions

Multiple one-dimensional transforms

There is n o limit on the niinlber of elements being
transformed, though the performance is best when
the data length is a power of 2. Popular storage for-
mats for the input and output data are supported.
allowing for possible symmetry in the output data
and consequent reduction in tlle storage required.
Further efficiency is provided through the use of
the three-step FFT, which separates the process
of setting u p and deallocating the internal data
s t r u c t ~ ~ r e s from the actt~al application of the FFT.
This results in significant performance gain when
repeated application of FFTs is required.

The convolution and correlation routines in
D?(IML support both periodic (circular) and nonperi-
odic (linear) definition. A discrete summing tech-
nique is used for calculation. Special versions of the
routines allow control of output options such as
the range of coefficients computed, scaling of the
output, ant1 addition of the output to an array.

All FFT, convolution, and correlation routines are
available in both single and double precision and
support both real and complex data.

Sparse Iterative Solvers
DXML includes a set of routines for the iterative solu-
tion of sparse linear systems of equations using pre-
conditioned, conjugate-gradient-like methods.I1.l2
A flexible user interface, based on :t matrix-free for-
mulation of the solver, allows a choice among vari-
ous solvers, storage schemes, and preconditioners.
This formulation permits the user to define his or
her own preconditioner and/or storage scheme for
the matrix. It also allows the user to store the
matrix using one of the storage schemes defined
by DXML and/or use the precontlitioners provided.
A driver routine provides a simple interface to the
iterative solvers when the DXML storage schemes
and preconditioners are used.

46 W)I 6 No .$ F~ilnrne~. 1994 Digifnl Technical Jorrrnal

LIXML: A High-performance Scientific Subroutine Library

The different iterative methods provided are
(1) conjugate gradient, (2) least-squares conjugate
gradient, (3) biconjugate gradient, (4) conjugate-
gradient squared, and (5) generalized minimum
residual. Each method supports various applica-
tions of the preconditioner: left, right, split, and
no preconditioning.

The matrix can be stored in the symmetric diago-
nal storage scheme, the unsymmetric diagonal stor-
age scheme, or the general storage (by rows)
scheme. Three preconditioners are provided for each
storage scheme: diagonal, polynomial (Neumann),
and incomplete LU with zero diagonals added.

A choice of four stopping criteria is provided,
in addition to a user-defined stopping criterion.
The iteration process can be controlled by setting
various input parameters such as the maximum
number of iterations, the degree of polynomial pre-
conditioning, the level of output provided, and the
tolerance for convergence. These soJvers are avail-
able in real double precision only.

Sparse Skyline Solvers
The sparse skyline solver library in DXlML includes
a set of routines for the direct solution of a sparse
linear system of equations with the matrix stored
using the skyline storage scheme.'3,'4 The following
functions are provided.

For unsymmetric matrices:

- Profile-in storage mode
- Diagonal-out storage mode

- Structurally symmetric profile-in storage
mode

These solvers are available in real double precision
only.

SoNare Considerations
As with any software effort, many software engi-
neering issues were encountered during the design
and development of DXML. Some issues were spe-
cific to math libraries such as the numerical accu-
racy and stability of the routines, while others were
more general such as the design of a user interface,
testing of the software, error checking, ease of use,
and portability. We next discuss some of these key
design issues in further detail.

Designing the Interface
The first task in creating a library was to decide the
functionality, followed by the design of the inter-
face. This included both the naming of the subrou-
tines as well as the design of the parameter list. For
each subcomponent in DXML, the calling sequence
was designed to be consistent across all routines
in that subcomponent. In the case of the BLAS and

LDU factorization, which includes options for LAPACK libraries, the public domain interface was

the evaluation of the determinant and inertia, maintained to enable portability of user code.

partial factorization, statistics on the matrix, and For the routines added by Digital, the routine

options for handling small pivots. names were chosen to indicate the function being
performed as well as the precision of the data.

Solve, which includes multiple right-hand sides Furthermore, the parameter lists were chosen
and solves systems involving either the matrix or
its transpose.

Norm evaluation, including I-norm, infinity-
norm, Frobenius norm, and the maximum abso-
lute value of the matrix.

Condition number estimation, which includes
both the 1-norm and the infinity norm.

Iterative refinement, including the component-
wise relative backward error and the estimated
forward error bound for each solution vector.

Simple and expert drivers.

This functionality is provided for each of the fol-
lowing storage schemes:

For symmetric matrices:

- Profile-in storage mode
- Diagonal-out storage mode

to provide a simple interface, yet allow flexibility
for the sophisticated user. For example, the sparse
solvers require various real and integer parameters.
By using arrays instead of scalar variables, a more
concise interface that did not vary from routine
to routine was obtained. In addition, all solver
routines have arguments for real and integer work
arrays, even if these are not used in the code. This
not only provides a uniform interface but also acts
as a placeholder for work arrays, should they be
required in the fiiture.

Accuracy
The numerical accuracy of the routines in DXML is
dependent on the problem size as well as the algo-
rithm used, which may vary within a routine. Since
performance optimization often changes the order
in which a computation is performed, identical
results between the DXML routines and the public

Digital Tecbnical Journal Vol. G No. 3 Sumnzer. 1994

Scientific Computing Optimizations for Alpha

rlomain RLAS and LAPACK routines may not occilc
The accurac)/ of the resi~lts obt;~ined is checkecl by
ensuring that the opti~nized versions of the IHAS
and LAPACK routines pass the public domain tests
to within the specified to1er:ince.

Error Processing
Most of the routines in DXML trap usage errors and
provide sufficient information so that the user can
identdy ;ind fix the proble~n. The low-level, fine-
grained computational routines. such as the ULAS
level 1. do not provide this function bec;ulse tlie
overhead of testing and error trz~pping would seri-
ously clegade tlie performance.

In the case of BLAS 2, HLAS 3, ;lnd LAPACK, the pub-
lic domain error-reporting mechanism has been
~1laint;iined. If all i~lpilt argument is invalid, such as
a negative value for the order of the matrix, the rou-
tine prints out an error message and stops. I f a hil-
ilre occurs in tlie course of the r~lgorithm, such :IS

a matrix being singular to working precision. an
error flag is set and control is returnecl to the call-
ing program.

The signal-processing routines report success or
failure using a status function value. Further infor-
mation on the error can be obtained by using a user-
callable routine that prints out an error message and
an error flag. The user documentation intlicates the
actions to be taken to recover from the error.

In the case of the sparse solvers, error is intli-
cated by setting an error flag and printing an appro-
priate message if the printing option is enabled.
Control is always returned to the calling program.

Testi~zg
DXML routines are tested for correctness and accu-
racy using a regression test suite. This includes
both test cocle developed by Digital, as well as the
public domain test codes for BLAS and LAPACK.
These codes are used not only during the imple-
ment;ition and performance optimization of the
routines, but also during the builcling of the com-
plete library from each of the subcomponents.

The test cotles check each routine extensively,
including checks for error exits, accuracy of the
results obt;~inecl, inviiriance of read-only data ant1
the correctness of all paths through tlie code. As
the complete regression tests take over 20 hours
to execute. two input tlata sets ;ire ~lsed: ;I short one
that tests each routine and can be used to make a
quick check that all subcomponents compiled and
built correctly, ant1 :I long data set th;it tests each
path through a routine ancl is thus more exh;iustive.

Many of the routines, such as tlie FFTs ant1 ULAS 3,
are tested using 1-andom input data. However, some
ro~~tines, S I I C I I as the sp;irse solvers, operate on spe-
cific data structilres or matrices with specific prop-
erties. These 1i;ive been tested using matrices
generiited from the finite difference discretization
of partial clifferential ec1u;ltions or using the matri-
ces in tlie Harwell-Boeing test suite.Ii

Another aspect to the DXML regression test pack-
age is the inclusion of n performance test gauge.
This software tests the performance of key routines
in each comlwnent of I)X.\IL and is used to ensure
that the perform;ince of DXML routines is not
;~dversely nffectetl by cl7;lnges in compilers or the
opfl;iting systems.

IJei$onnance Trade-offs
The tlesign and optimization of the routines in
1)X;LIL often promptecl a trade-off between perfor-
mance o n one hand, and accuracy and generality
on the other. Althoi~gli every effort bas been 111;lde
not to s;icrifice accuracy for perform;tnce. the
reordering of computations during performance
optimization may lead to results before optimiz;l-
tion that are not bit-for-bit identical to the results
after optimization. In other cases, performance has
been sacrificed to ensure generality of a routine.
For es;~rnple, although the matrix-free formul;~tion
of the iterative solvers permits the use of any sparse
matrix storage scheme, it coultl result in ;I slight
clegracl;rtion in perform;ince due to less efficient
use of the instruction cache and the inability to
reuse some of the d;it:i in the registers.

Performance Optimizatiori
I)XML routines have bcen designetl to provicle high
~xrform;incc on the Alpha systems.l(' These
routines are t;~ilored to talx ;ldvant;ige of the sys-
tem characteristics sucli as the nu~nber of floating-
point registers. the size o f the primary and
secontl;iry data caches, ;ind the page size. This opti-
miz;ltion involves changes to data structures and
the use of new algorithms as well as the restructur-
ing of computation to effectively manage the mem-
ory 1iier;irchy.

Sevcral general techniques art. i~sccl ;icross all
I)XMI. subcomponents to improve the pcrfor-
m;rnce.l- Thcse inclutle the following techniclues:

[Inrolling loops to make better use of the
floating-point pipelines

Reusing d;it;~ in registers and c:ichcs whenever
possiblc

DXML: A High-pe~fornza~zce Scientific S~~brolrtine Liblzlry

Managing the data caches effectively s o that the
cache hit ratio is m;iximizetl

Accessing d;~ta using stride-1 computation

Using algorithms that exploit the memory hierar-
chy effectively

Reordering computations to minimize cache and
translation buffer thrashing

Although many of these optimizations are done by
the compiler, occasionally, for example in the case
of the skyline solver. the data structilres o r the
implementation o f the algorithm are such that they
d o not lend themselves to optimization by the com-
piler. In these cases, explicit reordering of the com-
putations is recluirecl.

We next discuss these optimization techniques as
used in specific examples. All performance data is
for the r)EC 3000 Model 900 system using the DEC
()sF/I version 3.0 operating system. This work-
station uses the Alpha 21044A chip, running at 275
meg;~hertz (MHz). The on-chip data and instruction
caches arc each 16 kilobytes (KB) in size, and the
secondary cache is 2 megabytes (MB) in size.

In the next section, w e compare the perfor-
mance of DXML BLAS and LAPACK routines with the
corresponding public domain routines. Both ver-
sions are written in standard Fortran and compiled
using identical compiler options.

0pti.11zizntion of BLAS 1
BLAS 1 routines operate on vector and scalar data
only. As the operi~tions and data structures are sim-
ple, there is little opportunity to use advanced data
blocking and register reuse techniques. Neverthe-
less, as the plots in Figure 1 demonstrate, it is pos-
sible to optimize the RLAS 1 routines by careful
coding that t;tkes advantage of the data prefetch
features of the Alpha 21064A chip and avoids data-
path-related ~ t a l l s . ~ (~ . l ~

Gener;~lly, the DXML routines are 10 percent to 15
percent faster than the corresponding public
domain routines. Occasionally, as in the case of
DDOT for very short, cache-resiclent vectors, the
benefits can be much greater.

The sl1;lpes of the plots in Figure 1 rather dramat-
ically demonstrate the benefits of data caches. Each
plot shows very high performance for short vectors
that reside in the I ~ - K u , on-chip data cache, much
lower performance for data vectors that reside in
the 2-MH, on-board secondary data cache, and even
lower performance when the vectors reside com-
pletely in memory.

' \ - - - - - - - - _ ,

0
6 8 10 12 14 16 18 20 22

VECTOR LENGTH (AS POWER OF 2)
KEY:

---- BLAS DAXPY
- - -- DXML DAXPY
. BLAS DDOT
- . - - DXML DDOT

Figure 1 Pe~for~ma~zcc. of BLAS I I<outilzes
DDOT and DAXPY

Optimization of BLAS 2
BLAS 2 routines operate on matrix, vector. and
scalar data. The data structures are larger and more
complex than the BLAS 1 data structures and the
operations more complicated. Accordingly. these
routines lend themselves to more sophisticated
optimization techniques.

Optimized DXVL B U S 2 routines are typically 20
percent to 100 percent faster than the public domain
routines. Figure 2 illustrates this performance
improvement for the matrix-vector multiply routine.
DGELMV, and the triangular solve routine. DTRSV.X

The DXML DGEMV uses a data-blocking technique
that asymptotically performs two floating-point
operations for each memory access, compared to
the p t~b l i c domain version, which performs two
floating-point operations for every three memory
accesses.lVhis technique is designecl to minimize
translation buffer anti data cache misses and maxi-
mize the use of floating-point register~.~*l""' The
same data prefetch considerations used on the BLAS
1 routines are also used on the MAS 2 routines.

The DXMLversion of the DTRSV routine partitions
the problem such that a sma.ll tri;~nguI;~r solve oper-
ation is performed. The result of this solve opera-
tion is then used in a DGEMV operation to update the
remainder of the vector. The process is repeated
until the final triangular update completes the
operation. Thus the D1'KSV routine relies heavily on
the optimizations used in the DGEMV routine.

Scientific Computing Optimhations for Alpha

0
0

200 400 600 800 1000

ORDER OF VECTORSIMATRICES
KEY:

- BLAS DGEMV
- - - - DXML DGEMV
.. .. .- BLAS DTRSV
- DXML DTRSV

Figure 2 Performance of BLAS 2 Routines
DGEMV and DTRSV

As with BLAS 1 routines, BLAS 2 routines benefit
greatly from data cache. Although the effect is less
dramatic for the BLAS 2 routines, Figure 2 clearly
shows the three-step profile observed in Figure 1.
Best performance is achieved when both matrix
and vector fit in the primary cache. Performance is
lower but flat over the region where the data fits
on the secondary board level cache. The final per-
formance plateau is reached when data resides
entirely in memory.

Optimization of BLAS 3
BLAS 3 routines operate primarily on matrices. The
operations and data structures are more compli-
cated that those of BLAS 1 and BLAS 2 routines.
Typically, BLAS 3 routines perform many computa-
tions on each data element. These routines exhibit a
great deal of data reuse and thus naturally lend them-
selves to sophisticated optimization techniques.

DXML BLAS 3 routines are generally two to ten
times faster than their public domain counterparts.
The plots in Figure 3 show these performance dif-
ferences for the matrix-matrix multiply routine,
DGEMM, and the triangular solve routine with multi-
ple right-hand sides, DTRSM9

All performance optimization techniques used
for the DXML BLAS 1 and BLAS 2 routines are used
on the DXML BLAS 3 routines. In particular, data-
blocking techniques are used extensively. Portions

0 200 400 600 800 1000
ORDER OF MATRICES

KEY:

- BLAS DGEMM
- - - - DXML DGEMM

. BLAS DTRSM
. - - DXML DTRSM

Figure 3 Performance of BLAS 3 Routines
DGErMM and DTRSM

of matrices are copied to page-aligned work areas
where secondary cache and translation buffer
misses are eliminated and primary cache misses are
absolutely minimized.

As an example, within the primary compute loop
of the D L i L DGEMM routine, there are no transla-
tion buffer misses, no secondary cache misses, and,
on average, only one primary cache miss for every
42 floating-point operations. Performance within
this key loop is also enhanced by carefully using
floating-point registers so that four floating-point
operations are performed for each memory read
access. Much of the DXML BLAS 3 performance
advantage over the public domain routines is a
direct consequence of a greatly improved ratio of
floating-point operations per memory access.

Tbe DXML DTRSM routine is optimized in a man-
ner similar to its BLAS 2 counterpart, DTRSV. A small
triangular system is solved. The resulting matrix
is then used by DGEMM to update the remainder of
the right-hand-side matrix. Consequently, most
of the DXML DTRSM performance is directly attrib-
utable to the DXML DGEMM routine. In fact, the tech-
niques used in DGEMM pervade DXML BLAS 3
routines.

Figure 3 illustrates a key feature of DXML BLAS 3
routines. Whereas the performance of public
domain routines degrades significantly as the
matrices become too large to fit in caches, DXML

50 Vol. (5 No. 3 .Srrmmer 1994 Digital Technical Journal

DXML: A High-perfornzance Scientific Subroutine Library

routines are relatively insensitive to array size,
shape, or 0rientation.~.9The performance of a DXML
B U S 3 routine typically reaches an asymptote and
remains there regardless of problem size.

Optimization of M A C K
The LAPACK subroutine library derives a large
part of its high performance by using the opti-
mized BLAS as building blocks.1° The DXML ver-
sion of LAPACK is largely unmodified from the
public domain version. However, in the case of
the factorization routine for general matrices,
DGETRF, we have introduced changes to the
algorithm to improve the performance on Alpha
systems.

For example, while the original public domain
DGETRF routine uses Crout's method to factor a
matrix, the DXML version uses a left-looking
method. 1' Left-looking methods make better use
of the secondary cache and translation buffers than
the Crout method. Furthermore, the public domain
version of the DLASWP routine swaps a single
matrix row across an entire matrix. This is a very
bad technique for RISC machines; it causes severe
cache and translation buffer thrashing. To avoid
this, the DXML version of DUSW performs all
swaps within columns, which makes much better
use of the caches and the translation buffer and
results in a much improved performance of the
DXML DC;ETRF routine.

The DGETRS routine was not modified. Its perfor-
mance is solely attributable to use of optimized
DXML routines.

Figure 4 shows the benefits of the optimizations
made to DGETRF and the BLAS routines. DGETRF
makes extensive use of the BLAS 3 DGEMM and
DTRSM routines. The performance of DXML DGETRF
improves w ~ t h increasing problem size largely
because DXML BLAS 3 routines do not degrade in the
face of larger problems.

The plots of Figure 4 also show the performance
of DGETRS when processing a single right-hand-side
vector. In this case, DTRSV is the dominant BLAS

routine, and the performance differences between
the public domain and DXML DGETRS routines
reflect the performance of the respective DTRSV
routines. Finally, although not shown, we note that
the performance of DXML DGETRS is much better
than the public domain version when many right-
hand sides are used and DTRSM becomes the domi-
nant BLAS routine.

0 200 400 600 800 1000
ORDER OF VECTORSIMATRICES

KEY:
- BLAS DGETRF
- - - - DXML DGETRF

. BLAS DGETRS
DXML DGETRS

Figure 4 Performance of LAPACK Routines
DGETRF and DGETRS (LDA = N + I)

Optimization of the
Signal-processi~zg Routines
We illustrate the techniques used in optimizing
the signal-processing routines using the one-
dimensional, power-of-2, complex FFT.21 The algo-
rithm used is a version of Stockham's autosorting
algorithm, which was originally designed for vector
computers but works well, with a few modifica-
tions, on a NSC architecture such as Alpha.22 23

The main advantage in using an autosorting algo-
rithm is that it avoids the initial bit-reversal permu-
tation stage characteristic of the Cooley-Tukey
algorithm or the Sande-Tukey algorithm. This stage
is implemented by either precalculating and load-
ing the permutation indices or calculating them
on-the-fly. In either case, substantial amounts of
integer multiplications are needed. By avoiding
these multiplications, the autosorting algorithm
provides better performance on Alpha systems.

This algorithm does have the disadvantage that
it cannot be done in-place, resulting in the use
of a temporary work space, which makes more
demands on the cache than an algorithm that can be
done in-place. However, this disadvantage is more
than offset by the avoidance of the bit-reversal stage.

The implementation of the FFT on the Alpha
makes effective use of the hierarchical memory of
the system, specifically, the 31 usable floating-point

Digital Tecbnical Journal Vol. 6 No. 3 Sunrmer 1994 5 1

Scientific Computing Optimizations for Alpha

registers, whicll are at the lowest, and therefore the
fastest, level of this hierarchy. These registers are
utilized as much as possible, and any data brought
into these registers is reused to the extent possible.
To accomplish this, the FFT routines itnplement the
largest radices possible for all stages of the power-
of-2 FFT calculation. Radix-8 was used for all stages
except the first, utilizing 16 registers for the data
ant1 14 for the twiddle factor^.^ For the first stage,
as all twiddle factors are 1, radix-16 was used.

Figure 5 illustrates the performance of this algo-
rithm for various sizes. ~Utliough the performance
is very good for small data sizes that fit into the pri-
mar): 1 6 - ~ ~ data cache, it drops off cluickly as the
data exceeds the primary cache. To remedy this, a
blocking algorithm was used to better utilize the
primary cache.

The blocking algorithm. which was developed
for computers with I~ierarchical memory systems,
decomposes a large FFT into two Sets of smaller
FFTs.'" The algorithm is implemented using four
steps:

1. Compute N1 sets of FFTs of size N2.

2. Apply twiddle factors.

3. Compllte N2 sets of FFTs of size N1.

4. Transpose the N l by N2 matrix into an N2 by Nl
matrix.

SIZE OF FFT (AS POWER OF 2)

KEY:
- AUTOSORTING
- - - - BLOCKING

Figure 5 PerJbrrr~ancc 01 1-D Con~plex FIT

In the above. N = N1 X N2. Steps (1) and (3) use
the autosorting algorithm for small sizes. In
step (2), insteitd of precomputing a11 N twiddle
factors, a table of selected twiddle factors is com-
puted and the rest calculated using trigonometric
identities.

Figure 5 compares the performance of the block-
ing algorithm with the autosorting algorithm. Due
to the adtled cost of steps (2) and (4), the maximum
computation speed for the blocking algorithm
(115 million floating-point operations per second
[Mflops] at N=2I2) is lower than the maximum
computation speed of the autosorting algorithm
(192 Mflops at N=2'). The crossover point
between the two algorithms is at a size of approxi-
mately 2K. with the autosorting algorithm perform-
ing better at smaller sizes. Based on the length of
the FFT, the UXML routine automatically picks the
faster algorithm. Note that at ~ = 2 ' ~ , as the size
of the data ant1 workspace exceeds the 2-alB
second;lry cache, the performance of the blocking
algorithm drops off.

Optirnizntio~z of the Skyline Solz~ers
A shyline matrix (Figure 6) is one where only the
elements within the envelope of the sparse matrix
are stored. This storage scheme exploits the fact
tb;tt zeros that occur before the first nonzero ele-
ment in a row or column of the matrix, remain
zero during the factorization of the matrix. pro-
vitled no row or column interchanges are made.14
Thus, by storing the envelope of the matrix, no
;idditional storage is reqi~ired for the fill-in that
occurs tluring the factorization. Thougll the sky-
line storage scheme does not exploit the sparsity
withill the envelope, it allows for a static data
structure, and is therefore a reason;tble compro-
mise between organizational simplicity and com-
piitation;~l efficient)!

In the skyline solver, the system, Ax=O, where A
is an N by N matrix, and b and x are N-vectors, is
solved by first factorizing A as A=J,DU, where L and
U are unit lower and upper triangular matrices, and
D is a diagonal matrix. The solution x is then calcu-
lated by solving in order. Iy=6, Dz=y, and Ux=z,
where y and z are N-vectors.

In o i ~ r discu~sion of performance optimization,
we concentrate on the factorization routine as it is
often the most time-consuming part of an applica-
tion. The algorithm implemented in DXML uses a
technique that generates a column (or row) of the

DXrML: A High-performance Scientific Szlbroutine LiDrurj-3,

Fkqure 6 Skyline Column Storage of
n Symmetric ~Mntrix

factorization using an inner product formulation
Specifically, for a symmetric matrix A, let

'4 = ("I:)

where the symmetric factorization of the leading
(IV - 1) by (N - 1) leading principal submatrix M
has already been obtained as

M = v,: 4, or,
Since the vector 1.i of length (N - I) , and the scalar
s are known, the vector u: of length (N - 1) and the
sc;llar d can be determined as

and

The definition of zu indicates that a column of the
factorization is obtained by taking the inner prod-
uct of the appropriate segment of that column with
one of the previous columns that has already been
calculated. Referring to Figure 7, the value of the
element in location (i , j) is calculated by taking
the inner product of the elements in column j
above the element in location (i , j) with the corre-
sponding elements in column i. The entire column

-

Digital Techrricnl Jocrrrral Vol. 6 .Vo. .3 Sl tm~~ter 1994

COLUMN I COLUMN I

LENGTH OF THE
INNER PRODUCT

EVALUATION
OF ELEMENT (I, 1)

t ROW I

Figure 7 Unoptimized Skylilze
Cofrzputational Kernel

j is thus calculated starting with the first nonzero
element in the column and moving down to the
diagonal entry

The optimization of the skyline factorization is
based on the following two observations 2j26:

The elements of column j, used in the evalua-
tion of the element in location (i J) , are also
used in the evaluation of the element in location
(i + l , j) .

The elements of column i, used in the evalua-
tion of the element in location (i , j) , are also
used in the evaluation of the element in location
(i,j + 1) .

Therefore, by itnrolling both the inner loop on i
and the outer loop on j, twice, we can generate the
entries in locations (i , j) , (i+ l , j) , (i J f I), (i+ l , j + I)
at the same time, as shown in Figure 8. These four
elements are generated using only half the memory
references made by the standard algorithm. The
nlemory references can be reduced further by
increasing the level of unrolling. This is, however,
limited by two bctors:

The number of floating-point registers required
to store the elements being calculated and the
elements in the columns.

The length of consecutive columns in the
matrix, which should be close to each other to
derive full benefit from the unrolling.

Based on these factors, we have unrolled to a depth
of 4, generating 16 elements at a time.

Scientific Computing Optimizations for Alpha

COLUMN i
COLUMN (i + 1)
COLUMN j
COLUMN (j + 1)

LENGTH OF THE
INNER PRODUCT
FOR THE PARTIAL
EVALUATION OF
ELEMENTS (i, j)

ROW (i + 1)

Figure 8 Optimized Skyline
Computational Kenzel

A similar technique is used in optimizing the for-
ward elimination and the backward substitution.

Table 1 gives the performance improvements
obtained with the above techniques for a symmet-
ric and an unsymmetric matrix from the Harwell-
Boeing c ~ l l e c t i o n . ~ ~ The clsaracteristics of the matrix
are generated using D X i routines and were
included because the performance is dependent on
the profile of the skyline. The data presented is for
a single right-hand side, which has been generated
using a known random solution vector.

The results show that for the matrices under con-
sideration, the technique of reducing memory
references by unrolling loops at two levels leads to
a factor of 2 improvement in performance.

Summary
In this paper, we have shown that optimized mathe-
matical subroutine libraries can be a useful tool in
improving the performance of science and engi-
neering applications on Alpha systems. We have

Table 1 Performance Improvement in the Solution of Ax=b, Using the Skyline Solver on the
DEC 3000 Model 900 System

Example 1 Example 2

Harwell-Boeing matrix15
Description

Storage scheme
Matrix characteristics
Order
TY pe

Condition number estimate
Number of nonzeros
Size of skyline
Sparsity of skyline
Maximum row (column) height
Average row (column) height
RMS row (column) height

Factorization time (in seconds)
Before optimization
After optimization

Solution time (in seconds)
Before optimization
After optimization

Maximum component-wise
relative error in solution
(See equation below.)

Stiffness matrix of the Calgary
Olympic Saddledome Arena
Symmetric diagonal-out

3562
Symmetric

ORSREGl
Jacobian from a model of
an oil reservoir
Unsymmetric profile-in

2205
Unsymmetric with
structural symmetry
1.54E+4
141 33
1575733
99.10%
442 (442)
357.81 (357.81)
395.45 (395.45)

wherex(i) is the i-th component of the true solution, and x7i) is the i-th component of the calculated solution.

54 Vol. G No. 3 Summer. 1994 Digitul Technical Journal

DXML: A HiM-performance Scientific Subroutine Library

described the functionality provided by DXML,
discussed various software engineering issues
and illustrated techniques used in performance
optimization.

Future enhancements to DXML include symmet-
ric multiprocessing support for key routines,
enhancements in the areas of signal processing and
sparse solvers, as well as further optimization of
routines as warranted by changes in hardware and
system software.

Achmledgments
DXML is the joint effort of a number of individuals
over the past several years. We would like to
acknowledge the contributions of our colleagues,
both past and present. The engineers: Luca Broglio,
Richard Chase, Claudio Deiro, Laura Farinetti, Leo
Lavin, Ping-Charng Lue, Joe O'Connor, Mark
Schure, Linda Tella, Sisira Weeratunga and John
Wilson; the technical writers: Cheryl Barabani,
Barbara Higgins, Marl1 McDonald, Barbara Schott
and Richard Wolanske; and the management: Ned
Anderson, Carlos Baradello, Gerald Haigh, Buren
Hoffman, Tomas Lofgren, Vehbi Tasar and David
Velten. We would also like to thank Roger Grimes at
Boeing Computer Services for making the Harwell-
Boeing matrices so readily available.

References

1. W Cowell, ed., Sources and Development of
Matl~ematical Software (Englewood Cliffs,
N J : Prentice-Hall, 1984).

2. D. Jacobs, ed., Numerical Software-Needs
andAuailability (New York: Academic Press,
1978).

3. J. Dongarra, J. Bunch, C. Moler, and G. Stewart,
LINPACK Users' Guide (Philadelphia: Society
for Industrial and Applied Mathematics
[SLAM], 1979).

4. B. Smith et al., Matrix Eigensystem
Rou tines-EISPACK Guide (Berlin: Springer-
Verlag, 1976).

5. Digital extended Math Library Reference
Manual (Maynard, MA: Digital Equipment
Corporation, Order No. AA-QOMBETE for VMS

and AA-QONHB-TE for OSFII).

6. C. Lawson, R. Hanson, D. Kincaid, and
F. Krogh, "Basic Linear Algebra Subprograms
for Fortran Usage:' ACM Transactions on
Mathematical Software, vol. 5, no. 3 (Septem-
ber 1979): 308-323.

7 D. Dodson, R. Grimes, and J. Lewis, "Sparse
Extensions to the FORTRAN Basic Linear Alge-
bra Subprograms," ACM Transactions on
Mathematical Software, vol. 17 no. 2 (June
1991): 253-263.

8. J. Dongarra, J. DuCroz, S. Hammarling, and
R. Hanson, "An Extended Set of FORTRAN
Basic Linear Algebra Subprograms," ACM

Transactions on Mathematical Software,
vol. 14, no. 1 (March 1988): 1-17

9. J. Dongarra, J. DuCroz, S. Hammarling, and
I. Duff, "A Set of Level 3 Basic Linear Alge-
bra Subprograms," ACM Transactions on
Mathematical Software, vol. 16, no. 1 (March
1990): 1-17

10. E. Anderson et al., LAPACK Users' Guide
(Philadelphia: Society for Industrial and
Applied Mathematics [SIAM] , 1992).

11. J. Dongarra, I. Duff, D. Sorensen, and H. van
der Vorst, Solving Linear Systems on Vector
and Shared Memory Computers (Philadel-
phia: Society for Industrial and Applied Math-
ematics [SL4M], 1991).

12. R. Barrett et al., Templates for the Solution of
Linear Systems: Building Blocks for Iterative
Methods (Philadelphia: Society for Industrial
and Applied Mathematics [SLAM], 1993).

13. C. Felippa, "Solution of Linear Equations with
Skyline Stored Symmetric Matrix," Computer
andStructz~res, vol. 5, no. 1 (April 1975): 13-29.

14. I. Duff, A. Erisman, and J. Reid, Direct Methods
for Sparse Matrices (New York: Oxford
University Press, 1986).

15. I. Duff, R. Grimes, and J. Lewis, "Sparse
Matrix Test Problems," ACM Transactions on
Mathe~matical Software, vol. 15, no. 1 (March
1989): 1-14.

Digital Technical Journal Vol. 6 No. 3 Summer 1994 5 c

Scientific Computing Optimizations for Alpha

16. Alpha AXP Architecture and Systems, Digital
Teclnizicctl.Jo~~rna1, vol. 4 , no. 4 (Special Issue
1992).

17. K. Dowd, High Performance Computing
(Sebastopol, CA: O'Reilly & Associates, Inc..
1993).

18. DECchip 21064-AA microprocessor-Hard-
ware Reference Manual (Maynard, M A :

Digital Equipment Corporation, Order No.
EC-N0079-72, October 1992).

19. J. Dongarra and S. Eisenstat, "Squeezing the
Most Out of an Algorithm in CRAY FORTRAN,"
ACM Transactions on Mathematicul Soft-
zunre, vol. 10, no. 3 (September 1984):
219-230.

20. R. Sites, ed., Alpha Architecture Reference
il.lanual (Burlington, NU: Digital Press, 1992).

21. H. Nussbaumer, Fc~st Fourier Trcznsforms and
Con,zlolzltion Algorithms, Second Edition
(New York: Springer Verlag, 1982).

D. Bailey, "A High-performance FFT Algorithm
for Vector Supercomputers," The Interna-
tional Jozrrnal of Supercomputer Applicn-
tions, vol. 2, no. 1 (Spring 1988): 82-87

I? Swarztrauber, "FFT Algorithms for Vector
Computers:' P~?rallel Computing, vol. 1, no. 1
(August 1984): 45-63.

D. Bailey, "FFTs in External or Hierarchical
Memory,'' The Jorirnal of Sz.tpercomnputiizg,
vol. 4, no. 1 (March 1990): 23-35.

0. Storaasli, D. Nguyen, and T Agarnral,
"Parallel-Vector Solution of Large-Scale Struc-
tural Analysis Problems on Supercomputers,"
American Institute of Aeronautics and
Astrona~~tics (AIAA) Journal, vol. 28, no. 7
(July 1990): 1211-1216.

H. San~ukawa. "A Proposal of Level 3 Interface
for Band and Skyline Matrix Factorization Sub-
routine," Proceedings of tbe 1993 ACM Inter-
~zatiorzccl Conference on Super Computing,
Tokyo, Japan (July 1993): 397-406.

56 W/. 6 No. .J Stflllmer 1994 Digital Tec/~nicalJourrral

Robert H. Kuhn
Bruce Leasure
Sanjiu M. Shah

The KA P Parallelizer
for DEC Fortran and
DEC C Programs

The KAPpreprocessor optimizes DEC Fortran and DEC Cprograms to achieve their
best per$irmance on Digital Alpha systems. One key optimization that KAP per-
forms is theparallelizntion ofprogmms for Alpha shared memory multiprocessors
that use the nezil capabilities of the DEC OSF/l version 3.0 operating system zoith
DECthreads. The heart of the optimizer is a sophisticated decision process that
selects the best loop to parallelize from the many loops in aprogram. Thepreproces-
sor implements a robust data dependence analysis to determine whether a loop is
inherently serial or parallel. In engineering a high-quality optimizer the designers
specified the KAP software architecture as a sequence of modular optimization
passes. These passes are designed to restructure the progmm to resolve tnanj) of the
apparent serializations that are artifncts of coding in Fortmn or C. End users can.
also annotate their DEC Fortran or DEC Cprogrnrns zvitb directives orpragmas to
guide KAP's decision process. As an alternative to clsilzg KAPS autolnaticparcll-
lelization cG[Pabilitj~, end users can explicitlji identifj~aralleli~ln to KAP using the
enzelPging irid~lstry-stc~ndard X 3 H 5 directiz~es.

The K A P preprocessor developed by Kuck Sr
Associates, Inc. (KAI) is used on Digital Alpha sys-
tems to increase the performance of DEC Fortran
and DEC C programs. KAP accomplishes this by
restructuring fragments of code that are not effi-
cient for the Alpha ;~rcIiitecture. Essentially a super-
optimizer. KAP performs optimizations at the
source code level that augment those performed
by the DEC Fortran or DEC C compilers.'

To enhance the performance of DEC Fortran and
DEC C programs on Alpha systems, KAI engineers
selected two challenging aspects of the Alpha archi-
tecture as K A P targets: symmetric multiprocessing
(SIMP) and cache memory. An adclitional design goal
was to assist the compiler in optimizing source
code for the reduced instruction set computer
(RISC) instruction processing pipeline and multiple
fi~nctional units.

This paper discusses how the KAP preprocessor
design was adapted to parallelize programs for SMP
systems running under the DEC OSF/l version 3.0
operating system. This version of the DEC OSF/l
system contains die DECthreads product, Digital's
POSIX-compliant multithreading library. The first

part of the paper describes the process of mapping
parallel programs to DECtllreads. The paper then
discusses the key teclitliques used in the KAP

design. Finally, the paper presents examples of how
KAP performs on actual code and mentions some
remaining challenges. Readers with a con~piler
background may wish to explore Optimizing Stiper-
compilers for Sz~percomp~iters for more details on
KM's techniq~res.~

In this paper, the term directive is used inter-
changeably to mean directive, when referring to DEC
Fortran programs, and pragma, when referring to
DEC C programs. The term processor generally rep-
resents the system component used in parallel pro-
cessing. In discussions in which it is significant to
distinguish the operating system component used
for parallel processing, the term thread is used.

The Parallelism Mapping Process
Figure 1 shows the input modes and major phases
of the compilation process. Parallelism is repre-
sented at three levels in programs using the KAP
preprocessor on an Alpha SMP system. The first two
are input to the KAP preprocessor; the third is the

Digital Tecbnicul Journul 1411. 6 lvo. 3 Sio,i,~zer 1994 57

Scientific Computing Optimizations for Alpha

I - - - - - - - - 7 -

I
IMPLICIT PARALLELISM I I EXPLICIT HIGH-LEVEL PARALLELISM I

SCANNERS w
OPTIMIZATIONS

DEPENDENCE

KAP PARALLELISM
DETECTION AND
OPTIMIZATION

I

I I KAP PREPROCESSOR ,

I EXPLICIT LOW-LEVEL PARALLELISM
I

I I
I KAP-OPTIMIZED

I FORTRAN OR

I
C OUTPUT FILE

DEC FORTRAN

COMPILER

I APPLICATION I I KAP SMP SUPPORT
LIBRARY LIBRARY I
DEC OSFI1 V3.0 OPERATING SYSTEM
WITH DECTHREADS

Figure I Parallelism Mnpping Process

representation of parallelism that KAP generates.
The three levels of parallelism are

1. Implicit parallelism. Starting from DEC Fortran
or DEC C programs, KAP automatically detects
parallelism.

2. Explicit high-level parallelism. As an advanced
feature, users can provide any of three forms:

KAP guiding directives, KAP assertions, or X3H5
directives. K A P guiding directives give KAP hints
on which program constructs to parallelize. KAP
assertions are used to convey information about
the program that cannot be described in the DEC
Fortran or DEC C language. This information can
sometimes be used by KAP to optimize the pro-
gram. Using X3H5 directives, the user can force
KAP to parallelize the program in a certain way.3

58 Vol. 6 No. 3 Summer I994 Digital Technical Journal

The KAP Parallelizer for DEC Fortran and DEC C Programs

3. Explicit low-level parallelism. KAP translates
either of the above forms to DECthreads with the
help of an SMI' support library. (The user could
specify paralleljsm directly, using DECthreads;
however, KAP does not perform any optimiza-
tion of source code with DECtlweads. Therefore,
the user should not mix this form of parallelism
with the others.)

Because the user can employ parallelism at any
of the three levels, a discussion of the trade-offs
involved with using each level follows.

From DEC Fortran or DEC C Programs
The KM preprocessor accepts DEC Fortran and DEC
C programs as input. Although starting with such
programs requires the compilers to intelligently
utilize a high-performance SMP system, there are
several reasons why this is a natural point at which
to start.

Lots of software. Since DEC Fortran and DEC C
are de facto standards, there exists a large base of
applications that can be parallelized relatively
easily and inexpensively.

Ease of use. Given the high rate at which hard-
ware costs are decreasing, every workstation may
soon have multiple processors. At that point, it
will be critical that programming a multiproces-
sor be as easy as programming a single processor.

Portability. Many software developers with
access to a n~ultiprocessor already work in a het-
erogeneous networking environment. Some sys-
tems in such an environment do not support
explicit forms of parallelism (either X3H5 or
DECthreads). The developers would probably
like to have one version of their code that runs
well on all their systems, whether uniprocessor
or multiprocessor, and using DECthreads would
cause their uniprocessors to slow down.

Maintainability. Using an intricate programming
model of parallelisn~ such as X3H5 or DECthreads
makes it more difficult to maintain the software.

KAP produces KAP-optimized DEC Fortran or DEC

C as output. This fact is important for the following
reasons:

Performance. Users can leverage optimizations
from both Digital's compilers and KAP.

Integration. Users can employ all of Digital's per-
formance tools.

Ease of use. Expert users like to "tweak" the
output of KAP to fine-tune the optimizations
performed.

With KAP Guiding Directives, KAP
Assertions, or X3H5 Directives
Although the automatic detection of parallelism is
frequently within the range of KAP capabilities on
SMP systems, in some cases, as described below,
users may wish to speclfy the parallelism.

In the SivrP environment, coarse-grained paral-
lelism is sometimes important. The higher in the
call tree of a program a preprocessor (or com-
piler, as well) operates, the more difficult it is
for a preprocessor to parallelize automatically.
Even though the KAP preprocessor performs
both inlining and interprocedural analysis, the
higher in the call tree KAP operates, the more
likely it is that KAP will conservatively assume
that the parallelization is invalid.

Sometimes information that is available only at
run time precludes the preprocessor from auto-
matically finding parallelism.

Occasionally, experts can fine-tune the paral-
lelism to get the highest efficiency for programs
that are run frequently.

For software that is more portable between sys-
tems, it is sometimes important to get repeatable
parallel performance or to indicate where paral-
lelism has been applied. In such cases, explicit
parallelism may be preferable.

Three mechanisms are available to the user for
directing KAP to parallelism. The first mechanism
uses KAP guiding directives to guide KAP to the
preferred way to parallelize the program. The sec-
ond mechanism uses KAP assertions. The third
mechanism uses X3H5-compliant directives to
directly describe the parallelism. The first two
mechanisms differ significantly from the third. With
the first two, KNJ analyzes the program for the feasi-
bility of parallelism. With the third, KAP assumes
that parallelism is feasible and restricts itself to man-
aging the details of implementing parallelism. In
particular, the user does not have to be concerned
with either the scoping of variables across proces-
sors, i.e., designating which are private and which
are shared, or the synchronization of accesses to
shared variables.4 KAP guiding directives will not be

Digital Technical Journal Vol. 6 ,Vo .3 S ~ ~ m ~ n e i 1994 59

Scientific Computing Optimizations for Alpha

discussed in this paper. KM assertions and how they
are implemented are discussed later in the section
Advanced Ways to Affect Dependences. A descrip-
tion of the X3H5 directives follows.

The X3H5 model of parallelism is well struc-
tured; all operations have a begin operation-end
operation format. The parallel region construct
identifies the fork and join points for parallel
processing. Parallel loops identify units of work
to be distributed to the available processors. The
critical section and one processor section con-
structs are used to synchronize processors where
necessary. Table 1 shows the X3H5 directives as
implemented in KAP.

Because this standard is broadly adopted and
language independent, it is only slightly less
portable than implicit parallelism.

The KAP preprocessor translates a program in
which KAP has detected implicit parallelism or a pro-
gram in which the user explicitly directs parallelism
to DECthreads. KAP performs this translation in two
steps. First, it translates the internal representation
into calls to a parallel SMI? support library. Second,
the support library makes calls to DECthreads.

The SMP support library implements various
aspects of X3H5 notation, as can be seen by com-
paring Tables 1 and 2.

In the parallelism translation phase, KAP signifi-
cantly restructures a program by moving the code

TO the DEC OSF/l Operating System in a parallel region to a separate subroutine. A call
with DECthl-ends to the SMP support library replaces the parallel
Although KAP does not optimize programs that use region. This call references the new subroutine.
DECthreads directly, there may be some benefits to KAP examines the scope of each variable used in
specifying parallelisn~ explicitly using DECthreads. the parallel region and, if possible, converts each

DECthreads allows a user to construct almost any
model of parallel processing fairly efficiently.
The high-level approaches described above are
limited to loop-structured parallel processing.
Some applications obtain more parallelism by
using an unstructurecl model. It can even be
argued that for some cases, unstructured paral-
lelism is easier to understand and maintain.

variable to a local variable of the new subroutine.
Otherwise, the variable becomes a n argument to
the subroutine so that it can be passed back out of
the parallel region.

Converting variables to local variables makes
accessing these variables more efficient. A variable
that is referenced outside the parallel region cannot
be made local and must be passed as an argument.

A user who invests the time to analyze exactly shared M~~~~~ ~ ~ l ~ i ~ ~ ~ ~ ~ ~ ~ ~ ~
where parallelism exists in a program may wish hi hi^^^^^^^ concerns
to forego the benefits mentioned above and to

Given its parallelism model, the KAP preprocessor
capture the parallelism in detail with DECthreads.

requires operating system and hardware support
In that manner, no efficiency is lost because the

from the system for efficient parallel execution.
preprocessor misses an optimization.

There are three areas of concern: threacl creation
The POSlX threads standard to which DECthreads and scheduling, synchronization between threads,
conforms is available on several platforms. and data caching and system bus bandwidth.

Table 1 X3H5 Directives As Implemented in KAP

Function X3H5 Directives

To specify regions of parallel execution CnKAP* PARALLEL REGION
C*KAP* END PARALLEL REGION

To specify parallel loops C*KAP* PARALLEL DO
C*KAP* END PARALLEL DO

To specify synchronized sections of code C*KAP* BARRIER
such that all processors synchronize
To specify that all processors execute sequentially C*KAP* CRITICAL SECTION

CnKAP* END CRITICAL SECTION

To specify that only the first processor executes C*KAP* ONE PROCESSOR SECTION
CnKAPn END ONE PROCESSOR SECTION

Val. 6 No. .$ Su/?*i~iei. 1994 Digital Techrcicnl Jou~.nal

The KAP Pamllelizer for DEC Fortran and DEC C Progrnrns

Table 2 KAP SMP Support Library

Fortran OSFII DECthreads
C Entry Point Name Name Function Subroutines Used

- kmp-en te r -csec mppecs Toenteracriticalsection p t h r e a d - m u t e x - l o c k

- kmp-ex i t - c sec m p p x c s To exit a critical section p t h r e a d - m u t e x - u n l o c k

- kmp-f o r k m p p f r k Toforktoseveralthreads p t h r e a d - a t t r - c r e a t e ,
p t h r e a d - c r e a t e

- k m p - f o r k - a c t i v e mppf k d

- kmp-end mppend

- kmp-en te r -onepsec mppbop

- kmp-ex i t - onepsec mPPeoP

- kmp-ba r r i e r mppbar

To inquire if already
parallel
To join threads

To enter a single
processor section
To exit a single
processor section
To execute a barrier wait

(n o n e)

p t h r e a d - j o i n,
t h r e a d - d e t a c h
p t h r e a d - m u t e x - l o c k ,
p t h r e a d - m u t e x - u n l o c k

p t h r e a d - m u t e x - l o c k ,
p t h r e a d - m u t e x - u n l o c k

p t h r e a d - m u t e x - l o c k ,
p t h r e a d - c o n d - w a i t ,
p t h r e a d - m u t e x - u n l o c k

Thread Creation and Scheduling Thread cre-
ation is the most expensive operation. The X3H5
standard minimizes the need for creating threads
through the use of parallel regions. The SMP sup-
port library goes further by reusing threads from
one parallel region to the next. The SMP support
library examines the value of an environment vari-
able to determine how many threads to use. The
appropriate scheduling of threads onto hardware
processors is extremely important for efficient
execution. The support library relies on the
DECthreads implementation to achieve this. For
the most efficient operation, the library sl~ould
schedule at most one thread per processor.

Sj~tzchronization Oetzueen Threads In the K A P

model of parallelism, threads can synchronize at

A point where loop iterations are scheduled

A point where data passes between iterations
(for collection of local reduction variables only)

A barrier point leaving a work-sharing construct

Single processor sections

Two versions of the sMP support library have been
developed: one with spin locks for a single-user
environment and the second with mutex locks for
a multiuser environment. Either library works in
either environment; however, using the spin lock

version in a single-user environment yields the
most efficient parallelism.

Using spin locks in a multiuser environment may
waste processor cycles when there are other users
who could use them. Using mutex locks for a single-
user cnvironment creates unnecessary operating
system overhead. In practice, however, a system
may shift from single-user to n~ultiuser and back
again in the course of a single run of a large pro-
gram. Therefore. KAP supports all lock-environment
combinations.

Data Caching and System Bus Ba~zdzuidth
Multiprocessor Alpha systems support coherent
caches between processors.' To use these caches
efficiently, as a policy, K A P localizes data as much
as possible, keeping repeated references within
the same processor. Localizing data reduces the
load on the system bus and reduces the chances of
cache thrashing.

When all the processors sinli~ltaneously request
data from the memory, system bus bandwidth can
limit SMP performance. If optimizations enhance
cache locality, less system bus bandwidth is used,
and therefore SMP performance is less likely to be
limited.

KAP Technology
This section covers the issues of data dependence
analysis, preprocessor architecture, and the selec-
tion of loops to parallelize.

Digital Tecbnical Journal W. 6 No. -3 Suin~ner 1994

Scientific Computing Optimizations for Alpha

Data Dependence Analysis-The Kernel
of Parallelism Detection
DEC Fortran and DEC C have standard rules for the
order of execution of statements and expressions.
These rules are based on a serial model of program
execution. Data dependence analysis allows a com-
piler to see where this serial order of execution can
be modified without changing the meaning of the
program.

Types of Dependence KAP works with the four
basic types of dependence:6

1. Flow dependence, i.e., when a program writes
a variable before it reads the variable

2. Antidependence, i.e., when a program reads
a variable before it writes the variable

3. Output dependence, i.e., when a program
writes the same variable twice

4. Control dependence, i.e., when a program state-
ment depends on a previous conditional

Because dependences involve two actions on the
same variable, for example, a write and then a read,
KAP uses the term dependence arc to represent
information flow, in this example from the write to
the read.

Since these dependences can prevent paralleliza-
tion, KAP uses various optimizations to eliminate
the different dependences. For example, an optimi-
zation called scalar renaming removes some but
not all antidependences.

Loop-related Dependences When dependences
occur within a loop, the control flow relations are
captured with direction vector symbols tagged to
each dependence arc.' The transformations that
can be applied to a loop depend on what depen-
dence direction vectors exist for that loop. The
symbols used in KAP and their meanings are

= The dependence occurs within the same loop
iteration.

> The dependence crosses one or several itera-
tions.

< The dependence goes to a preceding iteration
of the loop.

" The dependence relation between iterations is
not clear.

or a combination of the above, for example,

<>The dependence is known not to be on the
same iteration.

When a dependence occurs in a nested loop, KAP
uses one symbol for each level in the loop nest. A
dependence is said to be carried by a loop if the cor-
responding direction vector symbol for that loop
includes <, >, or ".

In the following program segment

1 f o r (i = l ; i < = n - , i++) (
2 t e m p = a C i 1 ;
3 a C i l = b C i 1 ;
4 b C i l = t e m p ; 1

there is a flow dependence from statement 2 to
statement 4. There is an antidependence from state-
ment 2 to statement 3 and from statement 3 to
statement 4. There are control dependences from
statement 1 to statements 2, 3, and 4 because exe-
cuting 2 , 3 , and 4 depends on the i < = n condition.
All these dependences are on the same loop itera-
tion; their direction vector is =.

Some dependences in this program cross loop
iterations. Because temp is reused on each itera-
tion, there is an output dependence from statement
2 to statement 2, and there is an antidependence
from statement 4 to statement 2. These two depen-
dences are carried by the loop in the program seg-
ment and have the direction vector >.

Data Dependence Analysis The purpose of depen-
dence analysis is to build a dependence graph, i.e.,
the collection of all the dependence arcs in the pro-
gram. KAP builds the dependence graph in two
stages. First, it builds the best possible conservative
dependence graph.' Then, it applies filters that
identify and remove dependences that are known
to be conservative, based on special circumstances.

What does the phrase "best possible conserva-
tive dependence graph" mean? Because the values
of a program's variables are not known at prepro-
cessing time, in some situations it may not be clear
whether a dependence actually exists. KAP reflects
this situation in terms of assumed dependences
based on imperfect information. Therefore, a
dependence graph must be conservative so that
KAP does not optimize a program incorrectl)~. On
the other hand, a dependence graph that is too con-
servative results in insufficient optimization.

In building the best possible dependence graph,
KM uses the following optimizations: constant
propagation, variable forward substitution, and

62 Vo1. 6 No. 3 S~rrnmer- I994 Digital Tecbnical Journal

The KAP Parallelizer for DEC Fortran and DEC C lDrograms

scalar expansion. KAP does not, however, leave the lelizing the loop. KAP applies the two-version loop
program optimized in this manner unless the opti- optimizations selectively to avoid dramatically
mizations will improve performance. increasing the size of the program. However, the

payback of parallelizing a frequently executed loop

Advanced Wc~ys to Affect Dependences When
there are assumed dependences in the program,
KAP may not have enough information to decide on
parallelism opportunities. KAP implements two
techniques to mitigate the effects of imperfect
information at preprocessing time: assertions and
alternate code sequences.

Assertions, which are similar to directives in syn-
tax, are used to provide information not otherwise
known at preprocessing time. KAP supports many
assertions that have the effect of removing assumed
dependences. Table 3 shows KAP assertions and
their effects.ag When the user specifies an asser-
tion, the information contained in the assertion is
saved by a data abstraction called the oracle. When
an optimization requests that a data dependence
graph be built for a loop, the dependence analyzer
inquires whether the oracle has any information
about certain arcs that it wants to remove.

When accurate information is not known at com-
pile time, a few KAP optimizations generate two
versions of the source program loop: one assumes
that the assumed dependence exists; the other
assumes that it does not exist. In the latter case, KAP
can apply subsequent optimizations, such as paral-

Table 3 KAP Assertions

warrants their use.
For example, the KAP C pointer disambiguation

optimization is employed in cases in which C point-
ers are used as a base address and then incremented
in a loop. Neither the base address of a pointer nor
how many times the pointer will be incremented is
usually known at compile time. At run time, how-
ever, they can be computed in terms of a loop
index. KAP generates code that checks the range of
the pointer references at the tail and at the head of
a dependence, If the two ranges do not overlap, the
dependence does not exist and the optimized code
is executed.

KAP Preprocessor Architecture
A controversial control architecture decision in
KAP is to organize the preprocessor as a sequence
of passes, generally one for each optimization per-
formed. This design decision was controversial
because of the following concerns:

Run-time inefficiency would occur in process-
ing programs because each pass would sweep
through the intermediate representation for the
program being processed, causing some amount
of virtual memory thrashing.

Assertion
- -

Specifiers Primary Effect

[N O] A R G U M E N T A L I A S I N G

[N O] B O U N D S V I O L A T I O N S

C O N C U R R E N T C A L L

D 0 (<specifier>)
D 0 P R E F E R (<specifier>)

E N 0 1 E Q U I V A L E N C E
H A Z A R D

[N O] L A S T V A L U E
N E E D E D (<specifier>)

P E R M U T A T I O N
(<specifier>)
N O R E C U R R E N C E
(<specifier>)

S E R I A L , C O N C U R R E N T

S E R I A L , C O N C U R R E N T

Variable names for
which [no] last
value is needed
Names of permutation
variables
Names of recurrence
variables

Relation loop index
known to be true

Removes assumed dependence arcs

Removes assumed dependence arcs
Removes assumed dependence arcs
Guides selection of loop order strongly
Guides selection of loop order loosely
Removes assumed dependence arcs
(Fortran only)
Tunes the parallel code and
sometimes removes assumed
dependences
Removes assumed dependence arcs

Removes assumed dependence arcs

Removes assumed dependence arcs

N O S Y N C Tunes the parallel code which is
produced

Digital Technical Journal Vol. 6 No. 3 Summer 1334 63

Scientific Computing Optimizations for Alpha

Added software development cost would be
incurred because the KAP code that loops
through the intermediate representation would
be repeated in each pass.

The second concern has been dispelled. The
added modularity of KAP, provided by its multipass
structure, has saved development time as KAP has
grown from a moderately complex piece of code to
an extremely complex piece of code.

The KAP preprocessor uses more than 50 major
optimizations. The pass structure has helped to
organize them. In some cases, such as cache man-
agement, one optimization is broken into several
passes. KAP performs some basic optimizations,
e.g., deadcode elimination, more than once in dif-
ferent ways. In some cases, such as scalar expan-
sion, KAP performs an optimization to uncover
other optimizations and then perfornls the reverse
optimization to tighten up the program again.

The run-time efficiency issue is still of interest.
There is always some benefit to making the prepro-
cessor slnaller and faster.

Selecting Loops to Parallelize
Parallelizing a loop can greatly enhance the perfor-
mance of the program. Testing whether a loop can
be parallelized is actually quite simple, given the
data dependence analysis that KAP performs. A loop
can be parallelized if there are no dependence arcs
carried by that loop. The situation, however, can be
more complicated. If the program contains several
nested loops. it is important to pick the best loop to
parallelize. Additionally, it may be possible not only
to parallelize the loop but also to optimize the loop
to enhance its performance. Moreover, the loops in
a program can be nested in very complex structures
so that there are many different ways to parallelize
the same propam. In fact, the best option may be
to leave all the loops serial because the overhead of
parallel execution may outweigh the performance
improvement of using multiple processors.

The KtW preprocessor optimizes programs for
parallelism by searching for the optimum program
in a set of possible configurations, i.e., ways in
which the original program can be transformed for
parallel execution. (In this regard, KAP optimizes
programs from a classical definition of numerical
optimization.) There is an objective fiunction for
evaluating each configuration. Eacb member of
the set of configurations is called a loop order. The

optimum program is the loop order whose objec-
tive fiinction 11% the highest performance score, as
discussed later in this section.

Descriptions of loop orders, the role of depen-
dence analysis, and the objective ti~nction, i t . , how
each program is scored, follow.

Loop Orders A loop order is a combination of
loop transformations that the KAP preprocessor has
performed on the program. The loop transforma-
tions that KAP performs while searching for the
optimal parallel form are

Loop distribution

Loop fusion

Loop interchange

Loop distribution splits a loop into two or more
loops. Loop fusion merges two loops. Loop fusion
is used to combine loops to increase the size of the
parallel tasks and to reduce loop overhead.

Loop interchange occurs between a pair of loops.
This transformation takes the inner loop outside the
outer loop, reversing their relation. If a loop is triply
nested, there are three factorial (3!), i.e.. six, differ-
ent ways to interchange the loops. Each order is
arrived at by a secluence of pairwise interclunges.

To increase the opportunities to interchange
loops, KAP tries to make a loop nest into one that is
perfectly nested. This means that there are no exe-
cutable statements between nested loop state-
ments. Loop distribution is used to create perfectly
nested loops.

KAP examines all possible loop orders for each
loop nest. Each loop nest is treated independently
because no transformations between loop nests
occur at this phase of optimization.

For example, an LU Factorization program con-
sists of one loop nest that is three deep and not per-
fectly nested. Figure 2 shows the loop orders. Loop
orcler (a) is the original LU program. The KAP pre-
processor first distributes the outer loop in loop
orders (b) and (c). Nest, KAP performs a loop inter-
change on the second loop nest which is two deep,
as shown in 1.oop order (d). Then, KAP interchanges
the third loop nest in loop orders (e) through (i).
Note that KAP eliminates some loop orders, (i) for
example, when the loop-bound expressions cannot
be interchanged. As explained above, there are six
different loop orders because the nest is triply

64 Vol 6 No .J P ~ r i n r ~ r e ~ ~ 1994 Digitril Tecbtricn~Jurrrrral

The KAP Parallelizer for DECForCran and DEC C Programs

(a) ORIGINAL LU (OUTLINED):
d o i = l , n

/ * I n v e r t E l i m i n a t o r * /

e n d d o
d o j = i + l , n

do k = i + l , n
/ * U p d a t e M a t r i x * /

e n d d o
e n d d o

(d) FOR SECOND NEST INTERCHANGE
SECOND do I LOOP:

d o k = l , n
d o i = l , k - I

/ * C o m p u t e M u l t i p l i e r s * /

REEXAMINE LOOP ORDERS
(e) THROUGH (I)

(b) DISTRIBUTED do i LOOP:
d o i = l , n

/ * I n v e r t E l i m i n a t o r * /
e n d d o

d o i = l , n
d o k = i + l , n

/ * C o m p u t e M u l t i p l i e r s * /
e n d d o

do j = i + l , n
d o k = i + l , n

/ * U p d a t e M a t r i x * /
e n d d o

e n d d o
e n d d o

I

(c) DlsTRlBuTE do i L o o p AGAIN: I

(e) FOR THlRD NEST
INTERCHANGE do i AND do j:

d o j = l , n
d o i = l , j - I

d o k = i + l , n
/ * U p d a t e M a t r i x * /

(g) FOR THIRD NEST
INTERCHANGE do j AND do k:

do i = l , n
d o k = i + l , n

d o j = i + l , n
/ * U p d a t e M a t r i x * /

Figure 2 Loop Orders for LU Factorization

I I I I
4 +

Digital Technical Jozrrnul Vol 6 No .? Stun~ner. 1994 65

(f) FOR THIRD NEST INTERCHANGE
do i AND do k:

L o o p O r d e r R e j e c t e d --
New b o u n d s s p l i t l o o p .
d o j = l , n

d o k=2, j
do i = l , k - I

/ * U p d a t e M a t r i x * /
d o k=j ,n

d o i = l , j - I
/ * U p d a t e M a t r i x * /

(h) FOR THIRD NEST
INTERCHANGE do i AND do k:

d o k=l ,n
d o i = l , k - I

d o j = i + l , n
/ * U p d a t e M a t r i x * /

J.
(i) FOR THIRD NEST INTERCHANGE

do i AND do j:
L o o p O r d e r R e j e c t e d --
New b o u n d s s p l i t l o o p .
d o k=l ,n

do j=Z,k
d o i = l , k - I

/ * U p d a t e M a t r i x * /
d o j=k,n

d o i = l , k - I
/ * U p d a t e M a t r i x * /

Scientific Computing Optimizations for Alpha

nested. Since the loop nest in (d) was originally
nested with the triply nested loop at the outermost
do loop, KAP will reexamine these six loop orders
after the interchange in (d).

Dependence Analysis for Loop Orders Before a
loop order can be evaluated for efficiency, KAP deter-
mines the validity of the loop order. A loop order is
valid if the resulting program would produce equiva-
lent behavior. KAP tests validity by examining the
dependences in the dependence graph according to
the transformation being applied.

For example, the test for loop interchange validity
involves searching for dependence direction vec-
tors of a certain type. The direction vector (<,>)
indicates that a loop interchange is invalid. The
direction vectors (<,*), P,>), or (*,*), if present, also
indicate that the loop interchange may be invalid.

Evaluation of a Loop Order After the KAP prepro-
cessor determines that a loop order is valid, it
scores the loop order for performance. KAP consid-
ers two major factors: (1) the amount of work that
will be performed in parallel and (2) the memory
reference efficiency.

The memory reference efficiency of a loop order
can degrade performance so much that it out-
weighs the performance gained by executing a
loop in parallel. On an SMP, if a processor refer-
ences one word on a cache line, it should reference
all the words contiguously on that line. In Fortran,
a two-dimensional array reference, A(ij), should be
parallelized so that the j loop is parallel and each
processor references contiguous columns of mem-
ory If a loop order indicated that the i loop is paral-
lel, this reference would score low. If a loop order
indicated that the j loop is parallel, it would score
high. The score for the loop order is the sum of
the scores for all the references, and the highest-
scoring loop order is preferred.

The score for a loop order depends on which
loops in the order can be parallelized. For a given
loop nest, there may be several (or no) loops that
can be parallelized. The first step is to determine
if any loops can be parallelized. If multiple loops
can be parallelized, KAP selects the best one. KAP
chooses at most one loop for parallel execution.

K M tests loops to determine whether they can
be executed in parallel by analyzing both the state-
ments in the loop and the dependence graph. The
loop may contain certain statements that block
concurrentization. I/O statements or a call to a func-

tion or subroutine are examples. (Users can code
KAP assertions to flag these statements as paralleliz-
able.) Second, data dependence conditions may
preclude parallelization. In general, a loop that car-
ries a dependence is not parallelizable. (In some
cases, the user may override the data dependence
condition by allowing synchronization between
loop iterations.) Finally, the user may give asser-
tions that indicate a preference for making a loop
parallel or for keeping it serial.

Barring data dependence conditions that would
prevent parallelization, the amount of work that will
be performed in parallel determines the score of par-
allelizing a loop. (The user can also spec@ with a
directive that loops should not be parallelized unless
they score greater than a specified value.) In this
manner, KAP prefers to parallelize outer loops or
loops that are interchanged to the outside because
they contain the most work to amortize the over-
head of creating threads for parallelism.

The actual parallelization process is even more
complex than this discussion indicates. KAP applies
a number of optimizations to improve the quality of
the parallel code. If there is a reduction operation
across a loop, KM parallelizes the loop. Too much
loop distribution can decrease program efficiency,
so loop fusion is run to try to coalesce loops.

Performance Analysis
How does the KAP preprocessor perform on real
applications? The answer is as complex as the soft-
ware written for these applications. Consider the
real-world example, DYNA3D, which demonstrates
some KAP strengths and weaknesses.

DYNA3D is nonlinear structural dynamics code
that uses the finite element analysis method. The
code was developed by the Lawrence Livermore
National Laboratory Methods Development Group
and has been used extensively for a broad range
of structural analysis problems. DYNA3D contains
about 70,000 lines of Fortran code in more than
700 subroutines.

When KAP is being used on a large program, it
is sometimes preferable to concentrate on the
compute-intensive kernels. For example, KAP devel-
opers ran six of the standard benchmarks for
DYNA3D through a performance profiling tool and
isolated two groups of three subroutines that
account for approximately 75 percent of the run
time in these cases. This data is shown in Table 4.

KAP'S performance on some of these key subrou-
tines appears in Table 5. KAP parallelized all the

66 Vol. G No. 3 Summer 1994 Digital Technical Journal

The KAP Parallelizer for DEC Fortran and DEC C Programs

Table 4 Performance Profiles of Six DYNA3D Problems

Problem Profile (First Two Initials of the
Subroutine and Percent of Run Time)

Key Call
Sequences*

NlKE2D ST 19%, FO 15%, FE 12O/o, PR lo%, HG 7%, HR 5% (a) and (b)
Example
Cylinder Drop ST 20%, FO 15%, FE 11 %, PR lo%, HG 7%, HR 5% (a) and (b)
Bar Impact WR 17%, S T 7%, FE 6% None of interest

Impacted Plate SH 22%, TN 16%, TA 16%, YH 14%, BL 7% (c)
Single Contact YH 24%, SH 21 %, TN 7%, TA 7%, BL 6% (c)
Clamped Beam EL 12%, SH 12%, TN 8%, TA 8%, BL 6% (c)

'Call Sequences

(a) ST is called; ST calls PR; and then FE is called.

(b) HR is called; HR calls HG; and then FO is called.

(c) BL calls SH, then TA, and then TN.

Table 5 KAP's Performance on Key Subroutines

Subroutine Number of Number of Loops Maximum Number of Loops
Loops Parallelized Nest Depth after Fusion

STRAIN 5 5 1 3
PRTAL 9 9 1 1

FELEN 6 6 1 1

FORCE 9 9 2 2
HRGMD 5 5 1 3
HGX 4 4 1 1

loops in these subroutines. Since DYNA3D was
designed for a CRAY-1 vector processor, it is perhaps
to be expected that the KAP preprocessor would
perform well. KAP, however, is intended for a
shared memory multiprocessor rather than for
a vector machine. For this reason, KAP does more
than parallelize the loops. The entries in the col-
umn labeled "Number of Loops after Fusion" show
how KAP reduced loop overhead by fusing as many
loops together as it could. KAP fused the five loops
in subroutine STRAIN into three loops and fused all
nine loops in subroutine PRTAL.

Another example of KAP's optimization for an
SMP system is that in the doubly nested loop cases,
such as subroutine FORCE (see Figure 3), the
KAP preprocessor automatically selects the outer
loop for parallel execution. In contrast, a vector
machine such as the CRAY-I prefers the inner loop.

Because the kernels of DYNA3D code span multi-
ple subroutines, cross compilation optimization is
suggested. There are three ways to do this: inlining,
interprocedural analysis, and directives specifying
that the inner subroutines can be concurrentized.

s u b r o u t i n e F O R C E OUTER LOOP

d o 60 n = 1 , n n c / PARALLEL'ZED

l c n = L c z c + n + n h l 2 - "
i O = i a (1 n c)
i l = i a (l c n + 1) - 1

c d i r $ i v d e p
d o 5 0 i = i O , il

e (l , i x (i)) =
e (l , i x l (i)) + e p l l (i)

5 0 c o n t i n u e

6 0 c o n t i n u e

Figure 3 Parallel Loop Selection

Using KAP's inlining capability gives KAP the
most freedom to optimize the program because
in this manner KAP can restructure code across
subroutines.

Figure 4 shows part of the call sequence of sub-
routine SOLDE. (Subroutine SOLDE contains call

Digital Technical Journal Vol. G No 3 Summer 1994 67

Scientific Computing Optimizations for Alpha

s u b r o u t i n e S O L D E

c a l l HRGMD \ WHOLE CALL s u b r o u t i n e HRGMD
SEQUENCE

c a l l HGX

c a l l FORCE 3 lNLINED

to enable inlining autom;~tically to depth two of
subroutine SOLDE because it contains calls to many
other subroutines that are not in the kernel. Here,
the user specified the subroutines to inline on the
command line. When the user specified inlining,
KAP fi~sed all the loops in subroutines HRGMD, HGX,
and FORCE to minimize loop overhead, and then it
parallelized the fi~sed loop.

In some cases, the user can make simple restruc-
turing changes that improve KAP's optimizations.

Fig~~re 4 It l l i~~iizg GI Kernel Figure 5 shows a case in which fusion was blocked
by two scalar statements between a pair of loops.
The first loop does not assign any values to the vari-

sequence (b) of Table 4.) Subroutine SOLDE calls ables used to create these scalars, so the user can
subroutine HRGMD which calls subroutine HGX. move the assignments above the loop to enable KAP

Then subroutine SOLDE calls subroutine FORCE. to fuse them.
KAP supports inlining to an arbitrary depth. Finall): the user can elect to specify the paral-
Inlining in KM can be automatic or controlled from lelism directly. Figure 6 shows subroutine STRAIN
the command line. In this case, we clid not want with X3H5 directives used to describe the

MOVE UP
STATEMENTS

s u b r o u t i n e S T R A I N s u b r o u t i n e S T R A I N
d o 5 i = L f t , l l t

0 6 2 5 * r h o (1 f

e n d d o
d o 6 i = l f t , L L t

e n d d o

Figure 5 Assisted Loop Fusion

s u b r o u t i n e S T R A I N
c * k a p * p a r a l l e l r e g i o n
c * k a p x & s h a r e d (d x y , d y x , d l)
c * k a p * & L o c a l (i , d t l d 2)
c * k a p * p a r a l l e l d o

d o 5 i = L f t , l l t
d y x (i) = . . .

ALL c'kap' STATEMENTS 5 i
ARE X3H5 EXPLICIT

d t l d 2 = .. .
c x k a p * p a r a l l e l d o

d o 6 i = l f t , l l t
d l = d t l d 2 * (d x y (i) + d y x (i))

6 c o n t i n u e
c k k a p * e n d p a r a l l e l d o
c * k a p * e n d p a r a l l e l r e g i o n

Figure 6 X3H5 Explicit Parallelism

68 1'01. 6 iVo .3 . S / ~ / r r , ~ ? c v 1994 Digi lnl Tecbrricnl Jorrrnal

The KAP Pnmllelizer for DEC Fortran and DEC C Programs

parallelism. In this case, the user elected to keep
the same unfused loop structure as in the original
code. This case is not dramatically less efficient
than the fused version because the parallel region
causes KAP to fork threads only once.

A very sophisticated example of KAP usage occurs
when a user inputs a program to KAP that has
already been optimized by KM. This is an advantage
of a preprocessor that does not apply to a compiler
because a preprocessor produces source code out-
put. In this case, the statements shown in Figure 6
were generated by KAP to illustrate X3H5 paral-
lelism. A user may want to perform some hand opti-
mization on this output, such as removing the
barrier statement, and then optimize the modified
program with KAP again.

Challenges Tbat Remain
Although the KAP preprocessor is a robust tool that
performs well in a production software develop-
ment environment, several challenges remain.
Among them are adding new languages, further
enhancing the optimization technology, and
improving KM's everyday usability.

As the popular programming languages evolve,
KAP evolves also. KM will soon extend KAP support
for DEC Fortran to Fortran 90 and is developing C++
optimization capabilities.

In optimization technology, KAI's goal is to make
an SMP server as easy to use as a single-processor
workstation is today. "Automatic Detection of Par-
allelism: A Grand Challenge for High-Performance
Computing" contains a leading-edge analysis of par-
allelization technology.lO The research reported
shows that further developing current techniques
can improve optimization technology. These tech-
niques frequently involve the grand challenge of
compiler optimization-whole program analysis.

In a much more pragmatic direction, the K M

preprocessor should be integrated with Digital's
compiler technology at the intermediate represen-
tation level. Such integration would increase pro-
cessing efficiency because the compiler w o ~ ~ l d not
have to reparse the source code. In addition, inte-
gration would increase the coordination between
KAP and the compiler to improve performance for
the end user.

Increasing the usability of the KAP preprocessor,
however, benefits the end user directly. KAP
engineers frequently talk to beta users and encour-
age feedback. The following are examples of user
comments:

Optimizing programs is difficult when no sub-
routine in the program takes more than a few
percent of the run time. As its usability in this
area improves, K M will become a substantial p r o
ductivity aid. If a program is generally slow, opti-
mizing repeated usage patterns will allow the
programmer to use a comfortable programming
style and still expect peak system performance.

Increasing feedback to the user would improve
KAP's usability. When KAP cannot perform an
optimization, often the user can help in several
ways (e.g., by providing more information at
compile time, by changing the options or direc-
tives, or by making small changes to the source
code). KAP does not always make it clear to the
user what needs to be done. Providing such feed-
back would improve KAP's usability.

Integration with other performance tools would
be useful. Alpha systems have a good set of per-
formance monitoring tools that can provide
clues about what to optimize in a program and
how. The next release of the KAP preprocessor
will provide some simple tools that a user can
employ to integrate KAF with tools like prof and
to track down performance differences.

On a final note, the fact that K M does not speed
up a program should not always be cause for disap-
pointment. Some programs already run as fast as
possible without the benefit of a KAP preprocessor.

Acknowledgments
We wish to acknowledge the Lawrence Livermore
National Laboratory Methods Development Group
and other users for providing applications that give
us insight into how to improve the KAP preproces-
sor. We would like to thank those at Digital who
have been instrumental in helping us deliver
KAP on the DEC OSF/l platform, especially Karen
DeGregory, John Shakshober, Dwight Manley, and
Dave Velten. Everyone at Kuck &Associates partici-
pated in the making of this product but of special
note are Mark Byler, Debbie Carr, Ken Crawford,
Steve Heale): David Nelson, and Sree Simhadri.

References

1. D. Blickstein et al., "The GEM Optimizing
Compiler System," Digital Technicnl Journal,
vol. 4, no. 4 (Special Issue 1992): 121-136.

Digital Technical Journal Vol. 6 No. .? S~rnzi~ier 1994

Scientific Computing Optimizations for Alpha

2. M. Wolfe, Optimizing Supercompilers for
Supercompz~ters (Cambridge, MA: MIT Press,
1989).

J. Parallel Processing Model for High Level Pro-
gramming Languages, ANSI X3H5 Document
Number ~3~5/94-SD2.1994.

4. I? Tu and D. Padua, "Automatic Array Privatiza-
tion,'' Proceedings of the Sixth Workshop on
Languages and Compilers for Parallel Com-
puting, vol. 768 of Lecture Notes in Com-
puter Science (New York: Springer-Verlag,
1993): 500-521.

5. B. Maskas et al., "Design and Performance of
the DEC 4000 AXP Departmental Server Com-
puting System," Digital Technical Journal,
vol. 4, no. 4 (Special Issue 1992): 82-99.

6. R. Allen and K. Kennedy, "Automatic Transla-
tion of FORTRAN Programs to Vector Form,"

ACM Transactions on Programming Lan-
guages and Systems, vol. 9, no. 4 (October
1987): 491-542.

7 U. Banerjee, Dependence Analysis for Super-
computing (Norwell, MA: Kluwer Academic
Publishers, 1988).

8. KAP for DEC Fortran for DEC OSF/l AXP User
Guide (Maynard, (MA: Digital Equipment
Corporation, 1994).

9. KAP for C for DEC OSF/I AXP User Guide
(Maynard, MA: Digital Equipment Corpora-
tion, 1994).

10. W Blume et a]., "Automatic Detection of Paral-
lelism: A Grand Challenge for High-Perfor-
mance Computing," CSRD Report No. 1348
(Urbana, IL: Center for Supercomputing
Research and Development, University of
Illinois at Urbana-Champaign, 1994).

70 Vol. 6 No. .? S~rm~tzer 1994 Digital Technical Journal

I Further Readings

The Digital Technical Journal
publishespapers that explore
the technological fozlndations
of Digital's majorproducts.
Each Journal focuses on a t least
one product area andpresents
a compilation of refereedpapers
written by the engineers who
developed theproducts. The con-
tent for the Journal is selected
by the Journal Advisory Board.
Digital engineers who zuould
like to contribute apaper to the
Journal should contact the editor
at RDVAX::BLAKE.

Topics covered in previous issues of the
Digital Technical Journal are as follows:

Alpha AXP Partners-Cray, Raytheon,
Kubota/DECchip 21071/21072 PC1 Chip
Sets/DLT2000 Tape Drive
Vol. 6, No. 2, Spring 1994, EY-F947E-TJ

High-performance Networking/OpenVMS
AXP System Software/Alpha AXP PC Hardware
VO~. 6, NO. I , Winter 1994: EY-QO11 E-TJ

Software Process and Quality
Vol. 5, No. 4, Full 199.3, E Y - P ~ ~ ~ E - D P

Product Internationalization
Vol. 5, No. 3, Summer 1993, EY-P986E-DP

Multirnedia/Application Control
Vol. 5, No. 2, Spring 1993, E Y - ~ 9 6 3 ~ - D P

DECnet Open Networking
Vol. 5, No. I , Winter 1993, EY-M770E-DP

Alpha AXP Architecture and Systems
Vol. 4, No. 4, Special Issue 1992, E Y - ~ 8 8 6 ~ - D P

NVAX-microprocessor VAX Systems
Vol. 4, No. 3, Summer 1992, E Y - ~ 8 8 4 ~ - D P

Semiconductor Technologies
Vol. 4, No. 2, Spring 1992, EYL521E-DP

PATHWORKS: PC Integration Software
Vol. 4, No. I , Winter 1992, EY-J825E-DP

Image Processing, Video Terminals, and
Printer Technologies
Vol. 3, No. 4, Fall 19.91, EY-H889E-DP

Availability in VAXcluster Systems/Network
Performance and Adapters
Vol. 3, No. 3, Summer 1991, EY-H89OE.De

Fiber Distributed Data Interface
Vol. 3, No. 2, Spring 1991, EY-H876E-DP

Transaction Processing, Databases, and
Fault-tolerant Systems
Vol. 3, No. I , Winter 1991, EY-F588E-DP

VAX 9000 Series
Vol. 2, No. 4, Fcill 1990, E Y - ~ 7 6 2 ~ - D P

DECwindows Program
Vol. 2, No. 3, Summer 1990, E Y - ~ 7 5 6 ~ - D P

VAX 6000 Model 400 System
Vol. 2, No. 2, Spring 1.990, EY-C197E-DP

Compound Document Architecture
Vol. 2, No. I , Winter 1990. EY-C196E-DP

Distributed Systems
Vol. I , No. 9, June 1989, EY-C179E-DP

Storage Technology
Vol. I , No. 8, February 1989, E Y - ~ 1 6 6 ~ - D P

CVAX-based Systems
Vol. I , No. 7, August 1988: EY-6742~-DP

Software Productivity Tools
Vol. 1, No. 6, Febr~iary 1988, EY-8259E-DP

VAXcluster Systems
Vol. I , No. 5, September 1987, EY-8258E-DP

VAX 8800 Family
Vol. I , No. 4, February 1987, EY-6711~-DP

Networking Products
Vol. I , No. 3, September 1986, EY-6715~-DP

MicroVAX Il System
VO~. I , NO. 2, March 1986, EY-3474 E-DP

VAX 8600 Processor
VO~. I , NO. I, August 1985, EY-3435~-DP

Digital Technical Journal lot 6 No. .3 Siirrzmer 1334 7'

Furti~er Readings

Subscriptions and Back Issues
Subscriptions to the Digital Technical Journal
are available on ;I prepaid basis. The subscription
rate is $40.00 (non-l1.S. 960.00) for four issues
and $75.00 (non-U.S. $115.00) for eight issues.
Orders should be sent to Cathy Phillips. Digital
Equipment Corporation, 30 Porter Road L102/D10,
Littleton. Massachusetts 01460, U.S.A.. Telephone:
(508) 486-2538, FAX: (508) 486-2444. Inquiries
can be sent electronically to cltjQdigital.corn.
Subscriptions must be paid in 1J.S. tlollars, and
checks should be made payable to Digital
Equipment Corporation.

Single copies and past issues of the Di'it~~l
Tecl71zicalJourncll are ;~vailable for $16.00
each by calling DECdirect at 1-800-DIGITAL
(1-800-344-4825). Recent back issues of the
Jocirnal are available on the Internet at
l~ttp://~~ww.digital.com/info/DTJ/Iiome.l~tml
Complete Digital Internet listings can be
obtained by sencling an electronic mail
message to info@digit;ll.con~.

Digital Research Laboratory Reports
Reports published by Digital's research labora-
tories can be accessed on the Internet through
the World Wide Web o r FTP. For access informa-
tion on the electronic or h;ird-cop). versions
of the reports. see 1ittp://g;1tekeeper.dec.com/
I~ypertext/info/cra.reports.html.

Digital Prodzcct Information
Readers of the Journal can keep up-to-date on
Digital's products and services by subscribing
to the Di'it~tl Reference Serilice. To receive cur-
rent information on all Digital's prorlucts and
services on a regular basis, contact the Digital
Reference Service, PO. Box 6464, Holliston,
01746. Within the United States, call (800) 494-4377
or (508) 429-5515, extension 765. Outside the United
States, call (508) 429-3015 or send a facsilnile to
(508) 429-6921.

Technical Books and Papers
by Digital Authors
Applications of Petri /Vets in /Wctn~t&~cturing
Systetris Modelitg, Cor?/r-ol, a / ~ d Perfc)rvnonce
A~?alysis, Ahn A. Desrochers ant1 Robert Y. Al-Jaar,
IEEE Press, New York. 1994 (ISBN 0-87942-295-5).

This practical, highly spec~alized book presents
theory and examples that clearly show how to use
the Petri net approach to model, control, and then
analyze the performance of these complex systems
This book also brlngs together newly documented
applications of Petri nets inJapan and Europe and
makes them available to practitioners worltlwide.

From this book. the reader will learn how to model
complex manufactiiring systems using Petri nets;
analyze the performance of the overall manufactur-
ing system in terms of prorluction rates, machine
utilization, average in-process inventory, and other
measures; generate control software from the Petri
net model of an ;~utomatetl manufacturing system;
and synthesize Petri net models for large automated
manufacturing systems.

A~plications of Pel/-i Nets ill ikfant~filclrt~~i~?g
Systems 1Modelir~g. Control. arzd Perforrna~zce
Ann/ysis will be of particular interest to researchers
in manufacturing systems engineer~ng ant1 individ-
uals involved in production planning and control,
plant layout and design. and scheduling of manu-
facturing operations

R. Abugov and K. Zinke, "Prioritization of Defect
Reduction Activity by Yield Impact," 1994 .TE;IJICON
Ultraclean 1McrnrlJnct~trirzg Confercrzce (October
1994).

M. Ackernlan and R. Bucklantl. multiple matrices
for a Marketing QFD," F~y t i~ .Sy,?z/,osium 0 1 1 Q ~ ~ a l i t y
F~inctiorr Deploj~/nent (June 1994).

M. Ackerman ant1 R. Buckl;ind. "Successfill QFD

Application at Digital: Unique Approaches and
Applications of QFD to Address Business Needs;'
Fift17 Sj~/nposiurn on Q 7 ~ ~ 1 l i t j ~ .Ft,~~~ction
Deplo~~melzt (June 1994).

H. Ali,J. Steele, J. Bosco, and C;. Bartlett, "Electro-
mechanical Stilclv of 'No-Clean' Flux Corrosivity,"
Proceedirzgs of the Eighth lnlectronic M~iterbls
and Processirzg Congress (August 1993).

R. Allmon, "Design of Portable Systems," Pyo-
ceedings of tlge IEEE Custom Intcgmted Circuits
Conference (M a y 1994).

F! Anick, "Adapting a Full-text Information lietriev;~l
System to the Computer Troubleshooting Domain.'
Proceedi~~gs of t l ~ e Serre1rteetrth Ar?r//rir/ I/?tern61-
tional ACill-51 GIH Confc~ret7ce ow Researel? lit? cl
De~v/opnzent in InJonnution Retrierlul (July 1994).

7 2 fhl. 6 'Vo. .3 S I I I I ~ I I I ~ I . 1994 Digitnl Tecbnicnl Jottrttnl

N. Arora and B. Doyle, "Modeling the I-V Charac-
teristics of Fully Depleted SO1 MOSFETs Inclucling
Self Heating," IEEE Iriternational Silicon-on-
Insulator Confiere~zce Proceedings (October 1994).

N. Arora, B. Doyle, and D. Krakauer, "SPICE Model
and Parameters for Fully Depleted SO[MOSFETs,
Including Self-heating;' IEEE E1ectro.n Device Letters
(October 1994).

N. Arora, R. Rios, and C. Huang, "Impact of Poly-
silicon Depletion Effect on Circuit Performance
for 0 . 3 5 ~ CMOS Technology," Proceedings of the
Tzcenty-fourth European Solid State Deuice
Research Conference (September 1994).

D. Bhavsar and J. Edmondson, "Testability Strategy
of the Alpha AXP 21164 Microprocessor," Proceed-
ings of the IEEE International Test Conference
(October 1994).

S Bilotta and D. Proctor, "Development of a Manu-
facturable Low Pressure ROXiVOX Oxidation Pro-
cess." Ad~wnced Seiniconcl~tctor- rVfan~@ct~lring
Coizference and Works17op Proceedings
(November 1994)

C Brench and B kchambeault , "Proposed Stan-
dard EN11 Modeling Problems." 1EEE Iriternntioncrl
Symposium on Electromagnetic Compatibility
(August 1994)

C Brench, 'Heatslnk Radldt~on '1s a Function of
Geometry,' /ELI: Internntiorzal Symposium on
Electromng~zetic Coi~zpatzDililji (Augi~st 1994)

C. Brench, "Shield Degradation in the Presence
of External Conductors;' IEEE International
Symposium on Electromugnetic Compntibility
(August 1994).

J. Clement and A. Enver, "Modeling Electromigration-
induced Stress Buildup Due to Nonuniform Tem-
perature," Materials Reliability in Microelectronics
I V Symposium Proceedings (April 1994).

W Cronin, J. Hutchison, K. Ramakrishnan, and
H. Yang, "A Comparison of High-speed LANs,"
Proceedings of the IEEE Nineteenth Conference O ~ L

Local Comp~rter Netuvorks (October 1994).

W Dubie, "Networtls: The Impact of Electronic
Text-Processing Utilities on Writing," Journal oJ.
Social and El~olutionaty Systems (November 1994).

J. Edrnondson and I! Rubinfeld, "An Overview of
the 21164 Alpha AXI-'Microprocessor," Hot Chips V1
Sj~tnposium (August 1994).

T. Fox, "The Design of High-Performance Micropro-
cessors at Digital," Thirty-first Design Automation
Conference Proceedings (June 1994).

J. Grodstein, E. Lehman, H. Harkness, and
W Grundmann, "Optimal Latch Mapping and
Retiming within a Tree;' IEEE/ACM Interna-
tional Conference on Computer-aided Design
(November 1994).

C. Gross, "Method for Selecting Semiconductor
Equipment Using Empowered Teams," Advanced
Semiconductor Manufactzrring Conference and
Workshop Proceedings (November 1994).

T. Guay, "CASE-based Reasoning for Knowledge
Acquisition Suggestions," International Journal
of Artzpcial Intelligence Tools (July 1994).

S. Jong, "Exploring Paths toward Quality Infor-
mation,'' Forty-JirstAnnual Society for Technical
Com?n~rnication (May 1994).

C. Juszczak and D. Lebel, "NFS Version +Design
and Implementation," Sctmrner 1994 USENIX
Technical Confere?rce (June 1994).

D. Krakauer and K. Mistry. "Circuit Interactions
During Electrostatic Discharge," 1EEE Electrical
Ozwr Stress/Electrost~rtic Discharge Synzpositlm
Proceedings (September 1994).

J. Lloyd, "Electromigration Failure of Narrow A1
Alloy Conductors Containing Stress Voids,"
Materials Reliability in Microelectro~zics N
Symposium Proceedings (April 1994).

J. Lloyd, "Electromigration Failure in Thin Film Con-
ductors," Materials Reliabifitjl in Microelectronics
l V Syrnposiurn Proceedings (April 1994).

I? Martino and G. Freedman, "Predicting Solder
Joint Shape by Computer Modeling," Proceedings
of the Forty-fourth Electronic Components and
Technology Conference (May 1994).

T. Moore, "A Test Process Optimization and Cost
Modeling Tool," Proceedings of the IEEE Interna-
tional Test Conference (October 1994).

Further Readings

D. Morin, T. Comard, M. Joshi, and K. Sprague,
"Calculating Error of Measurement on High-speed
Microprocessor Test," Proceedings of the IEEE
International Test Conference (October 1994).

G. Papadeas and D. Gauthier, "An On-line Data
Collection and Analysis System for vLSI Devices
at Wafer Probe and Final Test:' Proceedings of the
IEEE International Test Conference (October 1994).

M. Piasecki, K. Orvek, R. Jones, and S. Dass, "Deep
UV Technology for 0.35pm Lithography," 1994 IEEE
Lithography Workshop (September 1994).

K. Ramakrishnan and I? Biswas, "Performance
Benefits of Nonvolatile Caches in Distributed File
Systems:' Concurrency: Practice and Experience
(July 1994).

K. Ramakrishnan and H. Yang, "The Ethernet
Capture Effect: Analysis and Solution," Proceed-
ings of the IEEE Nineteenth Conference on Local
Computer Networks (October 1994).

K. Ramakrishnan and H. Yang, "FIFO Design for
a High-speed Network Interface," Proceedings
of the IEEE Nineteenth Conference on Local
Computer Networks (October 1994).

R. Razdan and K. Brace, "PRISC Software Accelera-
tion Techniques," IEEE International Conference
on Computer Design: VLS1 in Computers and
Processors (October 1994).

A. Sathaye, "Application of Supervisor Synthesis
for Controlled Time Petri Nets to Real-time Data-
base Systems," 1994 American Control Conference
(June 1994).

S. Sathaye, "Conventional and Early Token Release
Scheduling Models for the IEEE 802.5 Token Ring,"
Journal of Real-Time Systems (May 1994).

S. Sathaye, "A Real-time Scheduling Framework
for Packet-switched Networks," Fourteenth Inter-
national Conference on Distributed Computing
Systems (June 1994).

C. Schiebl, "Application of EDX Spectroscopy
to Accurate Nondestructive Measurement of
CoSi Film Thicknesses during Semiconductor
Processing," Twenty-eighth Annual Microbeam
Analysis Society Meeting (August 1994).

C. Schiebl, "Continuous Fluorescence Correction
Factor for Layered Specimen;' Twenty-eighth
Annual Microbeam Analysis Society Meeting
(August 1994).

C. Schiebl, "Secondary Depth Distribution Gener-
ated by Characteristic Fluorescence in Multilayer
Samples for Use in Quantitative EPMA," Twenty-
eighth Annual Microbeam Analysis Society
Meeting (August 1994).

J. Seyyedi, "Soldered Joint Reliability for Interstitial
Pin Grid Array Packages," Joz~rnal of .Surface Mount
and Related Technologies Group (October 1994).

H. Soleimani, "An Investigation of Phosphorous
Transient Diffusion in Silicon below the Solid Solu-
bility Limit and at a Low Implant Energy,"Journal
of the Electrocbemical Society (August 1994).

K. Steeples and D. Chang Kau, "Multiply Charged,
Channeled, Ion Implantation," Tenth International
Conference on Ion Implantation Technology
(June 1994).

K. Steeples, D. Chang Kau, M. Andreoli, and
K. Mistry, "Rapid Implementation of a LATID
Process," Tenth International Conference on
Ion Implantation Technology (June 1994).

N. Sullivan and S. Arsenault, "SEM/EDS Analysis
Method for Bare Silicon Particle Monitor Wafers;'
Advanced Semiconductor Manufacturing
Conference and Workshop Proceedings
(November 1994).

N. Sullivan and R. Newcomb, "Critical Dimension
Measurement in the SEM: Comparison of Backscat-
tered vs. Secondary Electron Detection," Proceed-
ings of the International Society of Photo-Optical
Instrumentation Engineers (SPIE): Integrated Cir-
cuitMetrology, Inspection, and Process Control
WII (February 1994).

B. Thomas, "OpenVMS I/O Concepts: Kernel
Processes," Digital Systems Journal (July 1994).

B. Thomas, "OpenVMS 110 Concepts: Software,"
Digital Systems Journal (July 1994).

B. Thomas and K. Morse, "OpenVMS AXP I/O Con-
cepts," Digital Systems Journal (June 1994).

74 Vol. 6 No. 3 Summer 19.94 Digital Technical Journal

A. Torabi, M. Mallary, and S. Marshall, "The Effect
of Rise Time and Field Gradient on Nonlinear Bit
Shift in Thin Film Heads," The Sixth Joint MMM-
Intermag Conference (June 1994).

R. Ulichney, "The Void-and-cluster Method for
Dither Array Generation," Proceedings of the
International Society of Photo-Optical Instru-
mentation Engineers (SPIE) (September 1993).

M. Utt, "A System for Discovering Relationships
A. Torabi, M. Mallary, S. Marshall, S. Batra, and

by Feature," Proceedings of the Seventeenth
S. Ramaswamy, "Performance Evaluation of Differ- Annual International ACM-SIGIR Conference
ent Pole Geometries in Thin Film Heads," The Sixth on Research and Development in Information
Joint MMM-Intermag Conference (June 1994). Retrieval (July 1994).

M. Tsuk, "FASTHENRY: A Multipole-accelerated
3-D Inductance Extraction Program," IEEE Trans-
actions on Microwave Theoly and Techniques
(September 1994).

M. Tsuk and R. Evans, "Modeling and Measure-
ment of the Power Distribution System of a High-
performance Computer System:' IEEE Topical
Meeting on Electrical Performance of Electronic
Packaging (October 1993).

R. Ulichney, "Halftone Characterization in the
Frequency Domain," The Society for Imaging
Science and Technology's (ISGTS) Forty-seventh
Annual Conference (May 1994).

J. Vicente, "Network Capacity Planning," CMC '93
Conference (December 1993).

A. Villani, "Cohesive Mechanical Behavior of
Adhesive Materials," Proceedings of the 1993 ASME
International Electronics Packaging Conference:
Advances in Electronic Packaging 1993 (October
1993).

J. Yang, "Reliability Performance of an R3000-Based
MCM for Desktop Workstations," International Elec-
tronics Packaging Conference (September 1993).

W Zahavi, "Modeling the Performance Budget,"
Computer Measurement Group Proceedings
(CMG '93) (September 1993).

Digital Technical Journal Vol 6 No. 3 Summer 1994 75

I Recent Digital US. Patents

The following patents were recently isssied to Digit~if Equipment Corporation. Titles and names supplied
to trs by the US. Patent and Trudemark Office are reproduced exactly m they rippear on the originalpub-
lished patent.

4,592,072 R.E. Stewart

5,210,834 W Beach and J. Zurawski

5,210,874 F! Karger

5,212,650 D. Hooper and S. Kundu

5,212,783 S. Sherman

5,214,770 R. Ramanujan, I? Bannon,
and S. Steely

L. Seiler, J. Pappas, and
R. Rose

D. Hayes and \! Triolo

D. Rhandarkar, W Cardoza,
D. Cutler, D. Orbits. and
R. Witek

M. Sidman

W Morgan, D. Cobb, G. Bell.
and A. Carlson

S. Das and J. Khan

D. Hooper and S. Kundu

R. Hetherington, D. Webb,
T. Fossum, J. Murray, and
D. Manley

S. h n o l d , S. Delahunt,
M. Flynn, T. Fossum,
R. Hetherington, and
D. Webb

F! Rubinfeld

S. Blyant and M. Harwood

B. Buch

5,230,071 B. Newman

5,230,072 D. Smith and K . O'Rourke

5,230,079 R. Grondalski

Decoder for Self-Clocking Serial Data Communications

High Speed Transfer of Instructions from a Master to
a Slave Process

Cross-Domain <:all System in a Capability Basecl Digital
Data Processing System

Procedure and Data Structure for Synthesis and Trans-
formation of Logic Circuit Designs

System Which Directionally Sums Signals for Identifying
and Resolving Timing Inconsistencies

System for Flushing Instruction-Cache Only When
Instruction-Cache Address and Data-Cache Address Are
Matched and the Execution of a Return-from-Execution-
or-Interrupt Command

Apparatus and Method for Spec*ing Windows with Priority
Ordered Rectangles in a Computer Video Graphics System

Memory Configilratjon System

Providing a Data Processor with a User-mode Accessible
Mode of Operations in Which the Processor Performs
Processing Operations without Interruption

Disk Drive with Constant Bandwidth Automatic Gain Control

Local Area Print Server for Requesting and Storing Required
Resource Data and Forwarding Printer Status Message to
Selected Destination

Lithographic Technique Using Laser Scanning for Fabrication
of Electronic Components and the Like

Bitwise Implementation Mechanism for a Circuit Design
Synthesis Procedure

Methocl and Apparatus for Ordering and Queueing Multiple
Memory Requests

Scheme for Insuring Data Consistency between a Plurality
of Cache memories and the Main Memory in a Multiprocessor
System

Interface between Processor and Special Instruction
Processor in Digital Data Processing System

Synchronous Communic;~tion Interface for Reducing the
Effect of Data Processor Latency

Bus Control Circuit for Latching ancl Maintxining Data
Intlependently ofTiming Event on the Bus Until New
Data Is Driven Onto

Method of Controlling the Variable Baud Rate of Peripheral
Devices

System for Managing Hierarchical Information in a Digital
Data Processing System

Massively Para1l.c.l Array Processing System with Processors
Selectively Accessing Memory Module Locations Using Address
in Microword o r in Address Register

76 Vo1. 6 No. .$.SNr?tmer 1994 Digilal Technical Journal

J. Lynch, K. Chinnaswamy,
F? Gooclwin, J. Tcssari. and
M. Gagliardo

Method and Apparatus for Reducing Buffer Storage in
a Read-Modify-Write Operation

L. Weng

R.E. Stewart, T.E. Leonard,
and S.T. Lee

M. Sidman

W Bruckert and T. Bissett

Error-resilient Information Encoding

Virtual Address to Physical Address Translation Using Page
Tables in Virtual Memory

Automatic Correction of Position Demodulator Offsets

Dual Rail Processors with Error Checking o n I/O Reads

B. Schreiber, C. Cockcroft,
M. Ozur, R. Bismouth, and
D. Doherty

Computer Network Providing Transparent Operation
on a Compute Server and Associated Method

I! Doyle, J. Ellenberger,
E. Jones, D. Carver, S. DiPirro,
6. Gerovac, W Armstrong,
E. Gibson, R. Shapiro,
K. Rushforth, and WC. Roach

Method of Operating a Computer Graphics System Including
Asynchronously Traversing Its Nodes

Fault Tolerant, Synchronized Twin Computer System with
Error Checking of I/O Communication

Apparatus and Method for a Single Operand Register Array
for Vector and Scalar Data Processing Operations

Hydrogenated Carbon Compositions

Database Access Mechanism for Rules Utilized by a Synthesis
Procedure for Logic Circuit Design

Destination Control Logic for Arithmetic and Logic Unit for
Digital Data Processor

Apparatus and Method for Data Induced Condition Signalling

W Bruckert, T. Bissett,
D. Mazur, and J. Munzer

N. F? Jouppi

PH. Schmidt and J.C. Angus

D. Hooper

A.S. Olesin and R.M. Supnik

D. Rhandarkal; W Cardoza,
D. Cutler, D. Orbits, and
R. \Vitek

R.E Brender and B.R. Brett Automatic Program Code Generation in a Compiler System for
an Instantiation of a Generic Program Structure and Based on
Formal Parameters and Characteristics of Actual Parameters

Method ancl Apparatus for Transferring Information over
a Common Parallel Bus Using a Fixed Sequence of Bus
Phase Transitions

Apparatus and Method for Synchronization of Access
to Main Memory Signal Groups in a Multiprocessor Data
Processing System

Object Transferring System and Method in an Object Based
Computer Operating System

Double Unequal Bus Timeout

System for Processing Data to Facilitate the Creation
of Executable Images

R.C. Frame and F.A. Zayas

D. Bhandarkar, W Cardoza,
D. Cutler, D. Orbits, and
R. Witek

D. Cutler, J. Kelly, and
E Perazzoli

R.C. Frame and F.A. Zayas

B. Foster, G. Brown, J. Piazza,
J. Tenny, 6. Nelson.
W Van Roggen, and
F? Anagnostopoulos

R. Grondalski Mechanism for Broadcasting Data in a Massively Parallel
Array Processing System

Integrated Communication Link Having Dynamically
Allocatable Bandwidth and Protocol for Transmission
of Allocation Information over the Link

G. Varghese, M. Fine, A. Smith,
and R. Szmauz

D. Bhandarkar, W Cardoza,
D. Cutler, D. Orbits, and
R. Witek

Apparatus and Method for Main Memory Unit Protection
Using Access and Fault Logic Signals

Digital Tecbtrical J o u m l Vol. 6 No. 3 Surnmer I994 77

Call for Authors
from Digital Press

Digital Press has become an imprint of Butterworth-Heinemann, a major inter-
national publisher of professional books and a member of the Reed Elsevier
group. Digital Press remains the authorized publisher for Digital Equipment
Corporation: the two companies are working in partnership to identify and pub-
lish new books under the Digital Press imprint and create opportunities for
authors to publish their work.

Digital Press remains committed to publishing high-quality books on a wide
variety of subjects. We would like to hear from you if you are writing or thinking
about writing a book.

Contact: Frank Satlow
Publisher
Digital Press
313 Washington Street
Newton, MA 02158
Tel: (617) 928-2649
Fax: (617) 928-2640
fps@world.std.com

	Front cover
	Contents
	Editor's Introduction
	Biographies
	Foreword
	Design of the AlphaServer Multiprocessor Server Systems
	The AlphaServer 2100 I/O Subsystem
	DEC OSF/1 Version 3.0 Symmetric Multiprocessing Implementation
	DXML: A High-performance Scientific Subroutine Library
	The KAP Parallelizer for DEC Fortran and DEC C Programs
	Further Readings
	Recent Digital U.S. Patents
	Call for Authors from Digital Press
	Back cover

