
-

e V A X ZZ System

Digital Technical Journal
.. > . , , , , ,<, ,~,. , :, . , , , , . . <?.. '- ys-5vzr4',.,pi - ,

, , , .; . ,, . - ' , ~- , i* .: $:'& s?ijg-~~$$~~~: KT,. ,. :gAmw! . .z, %$$+ of Digital Equipment Corporation
. .. ~ , + 'ji:",d+.q;-; , ;: $T.:*z . - ~$@&;~~.*.;~~~L3,

d *,,6T..

Number 2

March 1986

Editorial Staff
Editor - Richard W. Beane

Cover Design

Hardware, software, and peripheral devices for the
MicroVAX ZZ system are featured in this issue. Two VLSZ
devices, the 78032 CPU chip and the 78132 FPU chip,
form the core of this system. Our cover shows the input
programmable logic array for the FPU chip.

The cover was designed by Deborah Falck of the Graphic
Design Department.

Production Staff
Production Editor - M. Terri Autieri
Designer - Charlotte Bell
Typesetting Programmer -James K. Scarsdale

Advisory Board
Samuel H. Fuller, Chairman
Robert M. Glorioso
John W. McCredie
John F. Mucci
Mahendra R. Pate1
Grant F. Saviers
William D. Strecker
Maurice V. Wilkes

The Digital Technical Journal is published by Digital
Equipment Corporation, 77 Reed Road, Hudson,
Massachusetts 0 1749.
Comments on the content of any paper are welcomed.
Write to the editor at Mail Stop HL02-3/K11 at the
published-by address.
Comments can also be sent on the ENET to
RDVAX: :BEANE or on the ARPANET to
BEANE%RDVAX.DEC@DECWRL.
Copyright O 1986 Digital Equipment Corporation.
Copying without fee is permitted provided that such
copies are made for use in educational institutions by
faculty members and are not distributed for commer-
cial advantage. Abstracting with credit of Digital
Equipment Corporation's authorship is permitted.
Requests for other copies for a fee may be made to the
Digital Press of Digital Equipment Corporation. All
rights reserved.
The information in this journal is subject to change
without notice and should not be construed as a com-
mitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for
any errors that may appear in this document.
ISBN 932376-89-4
Documentation Number EY-3474E-DP
The following are trademarks of Digital Equipment
Corporation: CompacTape, DEC, the Digital logo,
MicroVAX, MicroVAX I, MicroVAX 11, MicroVMS,
PDP-7, PDP-11, Q-BUS, RSTS, TK50, ULTRIX,
ULTRIX-32, UNIBUS, VAX, VAX-11/730, VAX-11/750,
VAX-11/780, VAX 8600, VAX 8200, VAXEW,
VAXstation, VMS, VT.
Apple I1 is a trademark of Apple Computer, Inc.
AT&T is a trademark of American Telephone & Tele-
graph Company.
IBM is a registered trademark of International Business
Machines, Inc.
Mylar is a trademark of E. I. duPont deNemours &
Company.
Tek is a registered trademark of Tektronix, Inc.
UNIX and System V are trademarks of AT&T Bell
Laboratories.
Xerox is a registered trademark of Xerox Corporation.
68000 is a trademark of Motorola, Inc.
8086 and Intel are trademarks of Intel Corporation.
The manuscript for this book was created using
generic coding and, via a translation program, was
automatically typeset. Book production was done by
Educational Services Media Communications Group in
Bedford, MA.

Contents

8 Foreword
Jeffrey C . Kalb

New Products
1 2 The MicroVAX 78032 Chip, A 32-Bit Microprocessor

Daniel W. Dobberpuhl, Robert M. Supnik, Richard T. Witek

24 The MicroVAX 78132 Floating Point Chip
William R. Bidermann, h n o n Fisher, Burton M . Leary,
Robert J . Simcoe, William R . Wheeler

3 7 Developing the Micro V ' II CPU Board
Barry A. Maskas

48 The Evolution of the Custom CAD Suite Used on the
Micro V M 11 System
Anthony F. Hutchings

56 The Making of a MicroVM Workstation
Rick Spitz, Peter George, Stephen Zalewski

66 The RQDm Design Project
Nicholas A. Warchol, Stephen F. Shirron

76 The Evolution of Instruction Emulation for the
Micro VAX Systems
Kathleen D. Morse, Lawrence). Kenah

86 The TK50 Cartridge Tape Drive
Steven E. Boone, Guenter E . Schneider

99 Porting UL TRLX Somare to the MicroVAX System
Raymond J . Lanza

Editor's Introduction

Richard W. Beane
Edilov

This issue of the journal is the second pub-
lished by Digital's engineering organization.
Our first issue (August 1985) featured
papers about the technologies used in
designing the VAX 8600 processor. The jour-
nal presents papers written by the technical
contributors who design Digital's products.
The information is directed at engineering
faculty members, Digital's own engineers,
and customers.

This issue features the 1MicroVA.X I1 system,
which implements the VAX architecture on a
single CPU chip, the 78032. Another chip,
the 78132, executes fast floating point oper-
ations; a single board holds both those chips,
plus one megabyte of memory. New per-
ipherals have been designed, and the VMS
and ULTRIX sof tware adap ted t o t he
MicroVAX I1 system. This collection of
papers, by authors from different engineer-
ing groups, presents a wide spectrum of the
MicroVAX I1 hardware and software.

The first paper, by Dan Dobberpuhl, Bob
Supnik, and Rich Witek, is a description of
the 78032 CPU chip, which implements a
subset of the full VAX instruction set. The
decisions about wh ich instruct ions to
microcode are discussed, along with hard-
ware simplifications needed to fit functions
on one chip. The chip's various operations
are explained, with emphasis on parallel
execution.

The CPU chip can use a coprocessor, the
78132 FPU chip, to perform fast floating
po in t ope ra t ions . T h e pape r by Bill
Bidermann, Amnon Fisher, Mike Leary, Bob
Simcoe, and Bill Wheeler relates the 78132's
architecture and algorithms. The protocol
between the two chips is discussed and a

description is given of the wiring and signal
i n t eg r i t y i ssues and h o w t h e y w e r e
addressed.

Both chips are mounted on a single board
containing one megabyte of memory. Barry
Maskas' paper explains how the CPU board
had to be designed as a linked sequential
machine with dual ports. The development
process is interesting because the board and
the chips were designed in parallel.

The paper on CAD tools, by Tony Hutch-
ings, relates the large role they played in the
chip and board designs. The various levels of
CAD support, from behavioral modeling,
through logic and circuit simulation, to
wirelist generation is described.

The software graphics that tu rn t he
MicroVAX I1 system into a single-user work-
station are reported in the paper by Rick
Spitz, Peter George, and Steve Zalewski. The
control of windowing software and virtual
displays is discussed, as are the implementa-
tion details.

The RQDX3 disk controller provides fast
data transfers between a CPU and disk stor-
age devices. Nick Warchol and Stephen Shir-
ron explain the top-down development pro-
cess that lead to unique solutions to difficult
problems. Their description of the final
architecture shows how the original goals
were met in the eventual design.

With a subset architecture, those instruc-
tions not in the set have to be executed
another way. The paper by Kathy Morse and
Larry Kenah describes the macrocode emula-
tion of the VMS changes required to do that.
The testing techniques are interesting since
they were done without MicroVAX hardware.

The paper by Steve Boone and Guenter
Schneider describes the TK50, a streaming
cartridge tape drive providing fast data trans-
fer. The authors discuss the unique cartridge,
tape transport, and controller designs, high-
lighting the self-threading technique and the
serpentine read/write process.

The final paper, by Ray Lanza, describes
porting the ULTRIX-32 software to the
~ i c r o k processor. Ray explains the cross-
development environment and the mapping
techniques that allowed the heart of the
ULTRIX software to fit on a small system.

Biographies

1
William R. Bidermann Bill Bidermann is the engineering manager of
the Advanced Development Memory Group. He consulted on the float-
ing point chips for both the VAX 8200 and MicroVAX I1 processors.
Before joining Digital in 1984, he was a consultant for Tenex and

1~ * / \ - / b l Rampower. Previously, he worked as a project manager at Hewlett
/*

I Packard Laboratories in Palo Alto, California, and as a design engineer at - Texas Instruments Central Research Labs. Bill received his S.B. and S.M.
degrees in electrical engineering and computer science from M.I .T. in
1978.

Steven E. Boone Steve Boone graduated from Michigan State Univer-
sity (B.S.E.E., 1974) and the University of Michigan (M.S.E.C.E., 1975).
He has also done advanced graduate work at Southern Methodist Univer-
sity. Before joining Digital in 1984, Steve worked as a principal hard-
ware engineer for Sequoia Systems, and as a senior design engineer at
Prime and Raytheon. For taro years, he was an engineering supervisor
working on the TK50 controller design. Steve is currently the technical
engineering manager for TK Cartridge Tape Subsystem Engineering.

Daniel W. Dobberpuhl Dan Dobberpuhl is a senior consulting engi-
neer and manager of the Processor Advanced Development Group. On
the MicroVAX I1 project, he led the implementation of the 78032 CPU

> chip. Previously, he consulted on CMOS, ZMOS, and TIP1 technology
development, and worked on the T11 and F11 projects. Dan joined

- .

: Dig~tal in 1976 from General Electric Company He received a B.S.E.E.
degree from the University of ILlinois in 1967 A member of IEEE, he -
holds four patents and is the coauthor of The Design and Analysis of
VLSI Circuits.

Amnon Fisher Educated at lsrael Institute of Technology (B.S.E.E.,
1973) and City College of New York (M.S.E.E., 1975), Amnon Fisher
worked as both a contributor and project leader on the 32016 CPU at
National Semiconductor. Joining Digital in 1983, he was a project
leader of the V1 l/SCORPIO floating point chip (VAX 8200 system),
and a contributor to the MicroVAX I1 78132 chip. Amnon is currently
an engineering manager in the Semiconductor Engineering Group,
working on the design and development of a four-chip set VAX
implementation.

Peter C. George Earning his bachelors and masters degrees in com-
puter science and engineering from M.I.T. in 1980, Peter George joined
the VMS Development Group in that year. He first worked on VMS user
interfaces, then on the workstation sofnvare as a principal engineer on
the VAXstation project. Peter is currently a project leader, working on
advanced workstation software projects. Peter is a member of ACM, and
the national honor societies Tau Beta Pi, and Eta Kappa Nu.

Anthony F. Hutchings Tony Hutchings received his B.S. degree
from the University of Newcastle On Tyne in 1965. At ICL in the U.K.
for 1 6 years, he designed operating systems and was one of the VME-
system architects on the 2900 series. He later became corporate man-
ager of CAD. Tony joined Digital in 1982 as the project manager for the
proprietary DECSIM software and then became manager of the VLSI CAD
Group. Tony, a member of IEEE and the British Computer Society, is
currently chairman of the CAD section of the ICCD.

Lawrence J. Kenah Larry Kenah, a consulting software engineer in
the VMS Development Group, wrote the decimal/string emulator for
the MicroVAX project. Since joining engineering in 1980, Larry has
worked on the VMS nucleus in the areas of memory management, pro-
cess scheduling, and image activation. He came to Digital in 1975 as an
instructor and course developer in Educational Services. Larry received
his B.S. degree (1968) from Boston College and his M.S. (1970) and
Ph.D. (1977) degrees in high-energy physics from Northwestern Uni-
versity. He is coauthor of VAX/VMS Znternals and Data Structures.

Raymond J. Lanza Ray Lanza is currently the project leader for the
ULTRIX-32 system. After joining Digital in 1983, he ported the ULTRIX
system to the MicroVAX I processor. As project leader, he ported the
system to the MicroVAX I1 processor in 1984. Ray received his
B.S.E.E./C.E. degree from the University of New Hampshire in 1980,
then became the lead engineer in a UNIX group at AT&T. Later he was a
senior software engineer at Wang Laboratories, Inc., researching
windowing systems and UNIX distributed systems.

Burton M. Leary In 1980, Mike Leary joined Digital after receiving
his B.S. degree in electrical engineering from the University of Massa-
chusetts. In semiconductor engineering, he worked on chip designs and
helped to develop the floating point chip for the MicroVAX I1 system.
Mike did behavioral modeling, wrote microcode, and designed the
main sequencer for that chip. He is now a senior engineer in the
Advanced Development Memory Group, designing the internal cache
for an advanced chip project.

Barry A. Maskas Barry Maskas is a principal engineer currently speci-
fying and designing an integrated circuit, and fiber-optic boards for
future systems. As a senior engineer on the MicroVAX I1 project, he was
co-designer of the CPU board and the memory boards. Barry came to
Digital in 1979 after receiving his B.S.E.E. degree from Pennsylvania
State University. He also holds an associate's degree from the Commu-
nity College of Allegheny County and did undergraduate work at LSU.
Barry is a member of Eta Kappa Nu; he has a patent pending for a self-
configurable memory subsystem.

Biographies

Kathleen D. Morse As a consulting software engineer, Kathy Morse is
responsible for VMS support on all low-end CPUs and peripherals. Ear-
lier, she did the VMS support for both MicroVAX systems, the VAX
11/782 system, and the MA780 multiport memory. Kathy joined Digital
in 1976 after receiving her B.S.C.S. degree from Worcester Polytechnic
Institute, where she also earned her M.S.C.S. degree in 1985. Kathy is a
member of IEEE, the Professional Council, and ACM, as well as Tau Beta
Pi and Upsilon Phi Epsilon. She has published in the Computer Mea-
surement Group's 1985 Conference Proceedings, and Datamation.

Guenter E. Schneider Guenter Schneider joined the Mass Storage
Group in 1970 , when it had only about 25 people. He has worked on
the designs for the RX05, RLOI, RX02, TU58, RX50, and RD50/51
storage devices. As a consulting engineer, he helped to design the TK50
cartridge tape drive. Guenter received a Diplom lngenieur from the
Technische Hochschule Aachen in West Germany and his M.S.M.E.
degree from M.I.T. in 1969. He holds two patents, with a third pending,
and is a member of the engineer ing society Verein Deutscher
Ingenieure.

l Stephen F. Shirron Educated at Catholic University of America (B.S.,
1980 and M.S., 1981) , Stephen Shirron came to Digital after graduating
Summa Cum Laude. As a senior software engineer, he developed an
interpreter for VAX/Smalltalk-80 and designed the VkYstation 100
firmware. Currently a principal software engineer, Stephen designed
and implemented the firmware for the RQDX3 disk controller. He is a
member of Phi Beta Kappa and has written a chapter in Smalltalk-80:
Bits of History, Words of A d ~ ~ i c e .

Robert J. Simcoe Bob Simcoe is a technical manager currently work-
ing on serial interconnect products. He was the technical manager for
the floating point chips in both the MicroVAX 11 and VAX 8 2 0 0 systems.
Before joining Digital in 1982 , Bob worked for the Department of
Defense and General Electric Company. His duties involved MOS
design, process development, and product design using custom ICs.
Bob holds seven patents on IC circuitry and systems. He graduated from
the University of lllinois (B.S.E.E., 1966) .

Rick Spitz Rick Spitz manages VAX/VMS software development for
CPUs and peripherals. As a consulting software engineer, he was a
primary member of the architectural design team on the MicroVAX
workstation project. Rick designed the VMS graphics hardware interface
architecture and, for six years, has specialized in VAX/VMS hardware-
software interfaces. He joined Digital in 1977 as a senior software
specialist and received Digital's Software Excellence Award. Previously,
Rick developed microprocessor software for Inco, Inc. He earned a
B.S.E.E. degree from Clemson University in 1974 and his M.S.C.E.
degree from the University of Lowell in 1983.

Robert M. Supnik Bob Supnik is a corporate consultant and group
manager in semiconductor engineering. On the MicroVAX CPU chip
project, he was project leader and lead microprogrammer. Bob was the
project manager for the J11, a contributor to the F11, and supervised
advanced development on the HSC5O and UDA5O. Before joining
Digital in 1977, he worked at Applied Data Research. Bob received his
S.B. degrees (1967) in math and history from M.I.T. and his M.A. degree
(1972) in history from Brandeis University. He received Science
Digest's "100 Top Innovators of 1985" award.

Nicholas A. Warchol In 1977, Nick Warchol joined Digital after
receiving his B.S.E.E. degree (cum laude) from the New Jersey Institute
of Technology. Later he earned his M.S.E.E. degree from Worcester
Polytechnic Institute in 1984. He is a member of Tau Beta Pi and Eta
Kappa Nu. Nick has worked on the advanced development of charged-
couple device memories, bubble memories, and laser video disks. In
his present position as a principal engineer, he worked on the design of
the RQDX3 disk controller.

William R. Wheeler After earning his B.S.E.E. degree in 1982 and his
M.S.E.E. degree in 1983 from Cornell University, Bill Wheeler came to
Digital as a junior engineer. On the MicroVAX I1 project, he designed
the exponent datapath and control for the 78132 floating point chip.
Later he designed the exponent section of the floating point chip in the
VAX 8200 system. Bill is currently working on the instruction box
and bus interface unit for a new microprocessor chip.

Richard T. Witek Rich Witek is a consulting engineer working on the
architecture and implementation of new microprocessors. He helped to
develop and debug the MicroVAX 78032 CPU chip. Rich also worked
on implementing DECnet/E and on the DECnet Architecture Review
Group during Phases 2 and 3 . He also worked in the VLSI CAD group.
Before joining Digital in 1977, Rich was a senior technical associate at
AT&T Bell Laboratories and an engineering assistant at Argonne National
Laboratory. He received his B.A. degree in computer science from
Aurora College, and is a member of ACM and IEEE.

Stephen H. Zalewski Steve Zalewski is a senior software engineer
working on the graphics execution routines for the VAXstation II/GPX
system. He joined Digital in 1981 after receiving his B.S. degree in
computer engineering from 'Worcester Polytechnic Institute. Steve
developed the graphics device driver for the VAXstation I and I1 sys-
tems. His earlier work involved writing RMS file-sharing internals and
implementing RMS file sharing and global buffers for VAXcluster
software.

Foreword

Jeffrey C . Kalb
Vice Presidenl
and Croup Manager
Large Scale Integralion

The roots of the MicroVAX program go back to
the summer of 1981. To understand why this
program was initiated and the thinking behind
it, one has to look at the events of that time.
Many developments were taking place, sug-
gesting that a whole new class of systems capa-
bilities could emerge before long.

The VAX-11/780 system was in its heyday. It
was recognized as the standard against which
all o ther computers were compared and
benchmarked. And true to fashion, everyone
seemed to find some way to benchmark his
machine in some particular niche against the
11/780's capabilities. That was particularly
t r u e of t h e u p c o m i n g g e n e r a t i o n of
microprocessors and microprocessor-based sys-
tems. The universities were busily benchmark-
ing Intel Corporation's latest generations of
8086s, 80186s, and the early 80286s on spe-
cific jobs. The same was true of the 68000-
based system. Many companies were starting to
come to market with engineering workstations
a n d s i m i l a r p r o d u c t s based o n t h e s e
microprocessor chips. In fact if one believed
the trade press, the VAX-11/780 system had
actually been eclipsed in performance and
capabilities by these "upstarts."

Needless to say, these events caused some
degree of consternation and soul-searching
within Digital Equipment Corporation. More-
over, another factor was becoming painfully
obvious: the emergence of the independent
software vendors. Hoards of small companies
were springing u p everywhere to generate
software for various personal computers that
either had already been introduced to the mar-
ketplace, like the Apple 11, or shortly would be,
like the IBM PC. These small vendors wanted to
write software for the systems that had the high-
est market volume. Their reasoning was clear.
To sell as many of their software packages as
possible required implementing their ideas on
the highest volume hardware. It was also clear
that the highest volume hardware was going to
b e m i c r o p r o c e s s o r based a n d q u i t e
inexpensive.

Meanwhile, within Digital, the Semiconduc-
tor Engineering Group (SEG) was busy devel-
oping a multichip implementation of the VAX
architecture. Built with a midrange, multiuser,
high-performance system in mind, this chip set
and its attendant system implementations were
aimed at the marketplace for systems above $50
thousand. CAD tools were being developed and
manufac tur ing processes deve loped and
refined. The module and system concepts were
then in the definition stage.

Discussions began a t this time, centered
around what was later known as the MicroVAX
system. There was a perceived need to counter
the rising tide of encroachment on our systems
business by microprocessors. We wanted to cre-
ate systems with volumes high enough to war-
rant the attention of the independent software
vendors. In general, we wanted to establish the
VAX architecture as one of the preferred archi-
tectures at all potential price levels in the
entire industry.

These discussions and strategic thinking con-
verged after receiving an unsolicited proposal
from a semiconductor manufacturer. This firm
had approached us during that summer, want-
ing to implement the VAX architecture in one
or two high-performance chips. This set of
chips could be used in our systems and sold as
standalone products. The firm wanted to use
the VAX/VMS architecture (and primarily the
software associated with it) to get a jump in the
marketplace by establishing a high-volume
architectural standard at the 32-bit level. We
were concerned from the beginning that the
capabilities and resources of this smaller firm
would not be sufficient to execute such a for-
midable program. But the notion that building a
single-chip VAX implementation and using it to
counter-attack the emerging microprocessor-
based systems had struck a responsive chord.
Until that time, our thinking had been in terms
of our traditional price/performance learning
curves. Our strategies did not include extraor-
dinarily low-priced VAX systems.

As indicated above, the Semiconductor Engi-
neering Group in Hudson, Massachusetts, was
already heavily committed to the multichip

VAX system. A number of other major chip
projects were in development as well. There-
fore, we searched for a larger semiconductor
vendor who could bring additional design and
manufacturing resources to bear on this con-
cept. Such a vendor could also make available
additional distribution channels for sales of
high-volume chips to the general marketplace.
This line of thinking was pursued with various
vendors throughout the fall and winter of 198 1,
until April 1982.

Interestingly enough, there was less than
wholehearted enthusiasm on the part of the
various vendors who were approached. Each of
them had already decided on an approach to
the problem and were unwilling to make the
development of the MicroVAX chip a priority
i tem. That commitment was an extremely
important issue to us. Experience had shown
that complex projects of this nature always
exceeded the schedules and the budgets antici-
pated when they received second-class atten-
tion within the merchant semiconductor indus-
try. Thus one criteria for working with a vendor
was that he commit to the MicroVAX architec-
ture as a primary market thrust. No one was
willing to do that.

At the same time, other issues had to be
worked. It was clear that the full VAX architec-
ture as implemented in the multichip set could
not easily be put on a single chip. That would
have taken over 1 million transistors, a capabil-
ity that would not be available until the end of
the decade. Therefore, early in the project, we
recognized that there was a need to subset the
architecture to make it implementable on a sin-
gle chip. By December 1981, the idea of devel-
oping a single-chip VAX implementation was
beginning to get some positive re-enforcement
within Digital. As a result, in that month,
Gordon Bell, then vice-president of Engineer-
ing, chartered a subcommittee to investigate
what should be included in a MicroVAX
architecture.

The key people involved were Roy Moffa,
who had been leading the strategic thinking
about a single-chip VAX system; Bob Supnik,
representing semiconductor technology; Dick

- Foreword

Hustved t a n d Dave C u t l e r , r e p r e s e n t i n g
software technology; and Bill Strecker, repre-
senting VAX architecture technology. After a
few intensive meetings, they proposed a subset
of the VAX architecture in January 1982 . Bob
Supnik and the semiconductor technologists
thought that this subset could be implemented
in a single chip. This new architecture would
be modified slightly later in the year, but i t is
essentially the architecture that exists today.
The only significant modification was in the
memory management capability, and in some
sense, this change actually simplified the devel-
opment of the chip.

In parallel with these other activities, Bob
Supnik and other members of SEG had been
studying ways to get the chip developed inter-
nally. They w e r e h o p i n g t o leverage t h e
existing investments in process technology,
ch ip modeling, CAD tools, and the various
other elements that were necessary. Further-
more, and highly significant to the whole pro-
gram, they developed ways of re-using some of
the investments being made in the multichip
VAX implementa t ion a n d o t h e r p rograms
already in progress. As a result the floating
point c h i p being developed for a PDP-11
microprocessor was used as the building block
for the MicroVAX implementation. Not only
that but the ch ip was also retrofitted back into
the existing mult ichip set to minimize the
workload. Moreover, the datapath was lifted
from the instruction/execution unit of the mul-
t i c h i p s e t t o fo rm t h e b a c k b o n e of t h e
MicroVAX CPU. Tools and techniques were bor-
rowed whenever it was possible.

In this sense the MicroVAX program was
unique. There were almost nine months of
strategy discussion and evaluations of various
ways of implementing and executing before any
real design actually started. While many of the
p r o p o s e d bus iness s t ra teg ies w e r e never
adopted, they at least received a hearing. In any
case the die was cast.

The real implementation of the MicroVAX
ch ip did not get started until June 1982 , the
official start date being July 6, 1982. (Some
work had been done prior to that for recruiting

and staffing.) I t was soon evident that there
w e r e s o m e key e l e m e n t s that had to b e
addressed. The first was CAD tools. There was
no question that this device had to be simulated
extensively at all levels of implementation.
There was no other way to get the quality of
design and performance levels being planned.
At the time the program started, these tools
were mostly experimental. Some techniques
had been tested, but the reality was that CAD
tools "broke" on numerous occasions during
the development of the system. Crisis-oriented
SWAT teams had to be pu t in place to bridge
over o r break through barriers that threatened
to bring the entire program to a halt.

There was another equally important ele-
ment. The entire program was an extremely
complicated one, with many elements on paral-
lel paths. Process technology had to be devel-
oped, CAD tools developed and refined, chip
designs done , systems implementations exe-
cu ted , and test techniques and equ ipment
developed Each of those elements was inti-
mately entwined with the others. Therefore the
possibility clearly existed that, upon reaching
the end of the design, w e would b e faced with
debugging a new process technology, a new
manufacturing line, new testers, a new ch ip
design, new packages, and a new system, all
simultaneously. A real possibility existed that
w e couldn't separate the variables in a suffi-
ciently clear and timely manner to allow the
chip debugging and system evaluation to take
place This phase could last for months or per-
haps even years, something that has happened
before on many such programs in the merchant
industry.

'To avoid that, w e segmented the major risks
in the program and put plans in place to mini-
mize as many of those as possible in parallel
before the new ch ip arrived. For instance,
rather than debugging an entirely new manufac-
turing line while trying to build this new chip,
w e combined the existing two wafer fabrication
lines into o n e . 'The smaller l ine was then

retrofitted to provide a pilot line capability.
That gave us a trained staff, a debugged facility,
and all the other elements necessary to mini-

mize the interaction of the process and facility.
Additionally, a test vehicle was designed so that
manufacturing could run wafers, debug process
steps, and improve the basic yields of the pro-
cess well before the new chip arrived. In the
test area, test programs were implemented on
older, proven testers on which the engineers
had experience. That worked even though we
knew that, for the eventual production, an
entirely new generation of testers would be
necessary to precisely test such a complicated
device at its full speed.

Similarly, other areas, such as packaging,
CAD tool development, and parts of the system
evaluation, were examined and improved in
parallel long before they had to work together.
A major program was put in place to uncouple
risks and to hire and train the workforce well in
advance of the completion of the MicroVAX
chip design. This effort was quite expensive;
some people thought that much of the money
was being thrown out with the materials that
were made experimentally. But the end result
was one of the smoothest debugs and introduc-
tions into chip manufacturing that I have ever
witnessed for a complex device. While there
were problems and although things didn't
always work right, there were almost always
independent ways of separating the variables in
the problem. In that way i t could be properly
analyzed and corrections put in place. This
example should serve us well with complex
development programs in the future.

One other thing done to enhance the debug
and ensure the quality at the system level was
to co-locate the CPU module designers with the
chip designers. In that way their interaction
was enhanced and the rate of problem resolu-
tion greatly accelerated. The module team itself
was exceptionally small for such a major pro-
gram, consisting of only three primary engi-
neering people. But this unique program envi-
ronment featured a high degree of simulation,
close proximity of the engineers (the MicroVAX
chip team had only 20 people), and heavy reli-
ance on thorough evaluation at every step.

The end result was very, very few bugs in
either the chip or the system. In fact there were

fewer than 20 bugs that had to be corrected
before the integrated chip and system were able
to boot the operating system. It should be noted
that this quality has continued to manifest itself
in the rapid manufacturing ramp-up and the
quality of the systems that have been generated.
There were more engineering changes to the
parts and the system to enhance our margin and
ease of manufacture than there were to make
the system functional in the first place. That is
evidence of a fundamentally different approach
to building systems.

As noted above, the MicroVAX program is
quite unique, from its initial conception to the
continuing efforts to enhance quality and pro-
ductivity. From the initial conception of the
strategy, through the organization of the people
and problems, to the ongoing engineering
activity around quality and ease of manufac-
ture, this program has provided a new paradigm
for program execution and management. Our
hope is that, with this knowledge, people can
emulate the success of this program while elim-
inating the errors. In so doing, Digital can
greatly enhance its ability to build and manu-
facture high-quality systems in increasingly
shorter periods of time.

Daniel W. Dobberpuhl
Robert M. Supnik
Richard T. Witek I

me MicroVAX 78032 Chip,
A 32-Bit Microprocessor

The MicroVM 78032 implements the VAX architecture on one chip. To do
that, the instruction set was repartitioned to reduce the number of tran-
sistors. The instructions used most frequently are in microcode; others,
notably floating point, are emulated in macrocode. Hardware was sim-
plzj?ed by having a small address translation cache and no memory
cache; however, full VAX memory management is supported. A fast 200-
nanosecond microcycle allows instructions to execute in parallel. The
CPU chip is made using a 3-micron, double-metal NMOS process. The
control store ROM has X-shaped cells, which help to reduce its size.

The MicroVAX 78032 chip is the latest exten- tionality, but the basic VAX functions
sion of the VAX architecture and the first in the had to be incorporated in the base CPU
form of a single-chip microprocessor. As the design.
CPU of the MicroVAX I1 computer system, the

2. The chip had to be compatible with all
7 8 0 3 2 pe r fo rms nea r ly as fast as t h e

\'AX application programs. It had to exe-
VAX-11/780 superminicomputer , bu t in a cute any application program, whatever
microcomputer package. its size or complexity, written for any

Origins and Goals
Digital began the MicroVAX CPU chip project
in late 1981 in anticipation of increasing com-
petitive pressures from industry-standard
microprocessors. The original intent of the pro-
gram was to license a semiconductor vendor to
design and manufacture a MicroVAX single-chip
microprocessor. However, the leading semicon-
ductor companies were unable to meet the
high-performance requirements and tight
schedules that the project required. In May
1982, an internal development project was
chartered to design the MicroVAX CPU chip.

From a designer's viewpoint, the develop-
ment of this CPU was a challenging exercise in
shrinking the VAX computer architecture with-
out changing its function. There were five
major goals that governed the design.

computer in t he VAX family. And it had
to execute without alterations to the pro-
gram code. That meant that the chip had
to run the MicroVMS and ULTRIX-32m
(Digital's enhanced UNIX software)
operating systems, and the VAXELN real-
time kernel.

3. The chip had to perform at or near the
speed of the VAX-11/780 processor. This
goal implied that the chip had to have a
highly parallel internal implementation,
a high-performance external interface,
and a fast microcycle. Accordingly, the
internal microcycle of the chip was set at
the same 200 nanoseconds (ns) as the
1 1/780's microcycle.

4 . The price of the chip had to be competi-
t i ve w i t h c o m m e r c i a l 3 2 - b i t

1 . The kernel architecture was to be imple- microprocessors of comparable com-
mented on a single chip. Other chips or plexitp. This required a relatively con-
hardware could be used to improve per- servative die size and an inexpensive
formance or to provide additional func- package. It also required the implemen-

1 2 Digital Tecbnical Journal
No. 2 March 1986

Digital Tecbntcal Journal
No. 2 March 1386 1 3

New Products

tation of an external interface that was
compatible with standard VLSI periph-
eral chips and demanded minimal sup-
port from the hardware on the CPU
board.

5. The chip had to be designed and built
quickly. To meet or beat competitive
products, the chip had to be in produc-
tion less than 2 Yi years after the start of
development.

With these goals guiding the chip design
team, the major problem was quickly identi-
fied: to reduce the number of transistors. That,
in turn , required repart i t ioning the VAX
instruction set and simplifying hardware func-
tions wherever possible.

Reducing the Number of Transistors
The principal problem in designing the 78032
was how to implement the complexity of the
VAX architecture on a single chip. There are
304 instructions in the full instruction set, with
14 data types and 2 1 addressing modes. Instruc-
tions vary in length from 1 byte to 54 bytes.'
Demand-paged virtual memory suppor t is
required to guarantee compatibility with the
operating system software. To accommodate
this complexity in a full-scale VLSI VAX imple-
mentation requires about 1 .25 million transis-
tor sites.' However, the semiconductor tech-
nologies available at the time of design could
support only about one-tenth that number in a
single-chip microprocessor."

The architectural functions in all VAX sys-
t ems a r e pa r t i t i oned a m o n g ha rdware ,
microcode, and the operating system. All previ-
ous VAX implementations have similar bounda-
ries between these three. The hardware pro-
vides the registers and memory, the microcode
provides the instruction set, and the operating
system provides the program services. A large
control store-a minimum of 400 kilobits (Kb)-
is r equ i r ed t o con ta in t h e i n s t ruc t ion
microcode. The console function is handled in
either microcode or a support processor. More-
over, the control logic needed to support mem-
ory management and the variable instruc-
tion format is quite complex.4

Two different approaches were taken to
reduce the transistor count in the microproces-
sor chip. First, the VAX instruction set was
repartitioned to cut the size of the control store

to 62Kb. Second, the amount of on-chip hard-
ware was reduced by simplifying some func-
tions, placing others elsewhere, or omitting
some altogether.

Repartitioning the Instruction Set
As the first repartitioning step, the design team
assumed that all VAX instructions had to be
implemented in order to execute all VAX appli-
cation software. However, there are several
classes of instructions that involve a good deal
of microcode and yet are infrequently exe-
cuted. For example, a typical timesharing work-
load is handled by base instructions, scientifi-
cally oriented instructions, and commercially
oriented instructions. Analyses of more than 70
million executed instructions showed that the
commercially oriented ones represented less
than 0.2 percent of the total e x e ~ u t e d . ~ , ~ Stud-
ies of scientific and engineering workloads
showed even lower percentages. Even in com-
mercial applications, the commercially ori-
ented instructions represented less than 4 per-
cent of the total executed, the majority being
base instructions. Therefore, emulating the
commercially oriented instructions in the oper-
ating system rather than using microcode
would significantly reduce the size of the con-
trol store, but would have little effect on over-
all performance because these instructions
were seldom executed.

On the other hand, floating point instructions
require a good deal of microcode and are exe-
cuted more frequently. Even with microcode,
instruction execution is relatively slow unless a
separate floating point accelerator (FPA) is
used. Therefore, although existing VAX imple-
mentations offered both microcoded (warm)
and hardware (hot) floating point, the design
team decided not to implement these instruc-
tions in microcode. Instead, floating point
instructions would be executed in an optional
floating point chip, o r by emulation using
macrocode.

In total, 175 of the 304 VAx instructions and
6 of the 14 data types are implemented in on-
chip microcode. Those include integer and log-
ical instructions, variable-bit field, control,
queue, procedure calls, character string moves,
and operating system support. This microcoded
subset comprises over 9 8 percent of the
instructions that are used to execute a typical
program. However, the required microcode

The Micro VAX 78032 Chip, A 32-Bit Microprocessor

occupies only one-fifth the control store space
of a full VAX implementation. Seventy floating
point instructions and three data types (F. D ,
and G floating) are implemented in the floating
point ch ip , when i t is present. If that c h i p is
a b s e n t , t h e i n s t r u c t i o n s a r e e m u l a t e d i n
macrocode. The remaining 59 instructions and
5 data types are always emulated in macrocode.
Those a re mainly decimal s t r ing , character
string, and H floating point operations. The
CPU c h i p provides some microcode suppor t for
the emulated instructions. Table 1 summarizes
the instruction se t architecture of the 78032
ch ip .

The dec i s ion t o e m u l a t e ins t ruc t ions i n
macrocode has an effect o n speed because e m u -
lated instructions take three to ten t imes longer
to execute than microcoded instructions. How-
ever, t he instructions in this g roup of 59 are

normally used s o infrequently that the execu-
tion speed of a typical program is reduced by
n o more than four percent . Table 2 illustrates
the division of instructions between the CI'U
ch ip , t he FPU ch ip , and the macrocode. All in
all. t he fivefold reduction in the size of the
control s tore halved what wou ld have been the
active area of the ch ip .

Simplifying the Hardware Functions
The principal hardware simplifications in the
78032 are the reduced size of the address trans-
lation cache (translation buffer) , and the el imi-
nation of a memory cache in favor of tightly
coupled local memory.

As mentioned earlier, demand-paged virtual
memory management was required for compati-
bility wi th the VAX architecture. Consequently,
t he design team decided that the 78032 would

Table 1 Instruction Set Architecture

Implemented in
CPU Chip

Implemented in
Floating Point Chip

-

Implemented in
Macrocode

Instructions:

lnteger and
Logical

Address
Variable Bit

Field

Control
Procedure Call

Miscellaneous

Queue
Operating System
Support

F floating
D floating
G floating

H floating
Octaword
Character
String

Decimal String
Edit

CRC

Character Move 2

Total 175 7 0 59

Data Types:
Byte lnteger
Word lnteger

Longword lnteger

Quadword lnteger
Variable Bit Field

F floating

D floating

G floating

H floating

Octaword
Leading Separate
Numeric String

Trailing Numeric String

Packed Decimal

Variable Character
String

14 Digital Tecbnical Journal
h'o. 2 ,March 1986

New Products

Table 2 Division of lnstructions

Instructions Instructions Instructions
Implemented in Implemented in Implemented in
CPU Chip Floating Point Chip Macrocode

Percent by Instruction
Count
Percent by M~croword
Count

Percent by Typical
Execution Frequency

be the first single-chip CPU with full demand-
paged virtual memory support right on the
chip. At first the design team proposed to use a
simplified version of VAX memory manage-
ment. During the course of the design, how-
ever, the software engineers reported that not
providing full memory management was quite
expensive in terms of the use of physical mem-
ory. Therefore, the design team implemented
full VAX double-mapped compatibility in the
chip. As the design progressed, it became evi-
dent that the incremental cost of providing this
capabili ty was much lower than originally
anticipated.

All existing VAX processors implement mem-
ory management with a large address transla-
tion cache (at least 1 2 8 entries), with system
and process addresses in separate halves. A
translation cache must have a high hit rate to be
effective. Since most caches are direct mapped,
many entries are required to achieve a high
cache rate.'.' Implementing a comparable num-
ber of translation cache entries in the 78032
was out of the question, due to die size con-
straints. However, the VLSI technology in the
78032 is very amenable to using a fully associa-
tive translation cache with least-recently-used
(LRIJ) replacement.

Such a cache needs many fewer entries to
achieve the same hit rate as the direct-mapped
version. In addition, the tight coupling to local
memory, as explained in the next paragraph,
made i t possible to reduce drastically the
amount of time required to process a transla-
tion cache miss. Thus the translation cache in
the chip has only eight entries, but the cache is
fully associative, uses true LRU replacement,
a n d is s u p p o r t e d by h i g h l y o p t i m i z e d
microcode for fast processing of misses. More-

over, simulation studies showed that the best
use of the eight entries was with a homogene-
ous structure. Therefore, the system and pro-
cess addresses are cached together.

The team also decided to forgo the use of an
external memory cache, which required a com-
plex external interface. Use of an internal mem-
ory cache had already been ruled out due to die
size constraints. Accordingly, the speed of
memory access is 400 ns, or two microcycles,
which is the speed of local memory. Thus the
chip encounters no wait states, and its average
time to access memory is approximately the
same as the 11/780's. In a typical program,
there is little difference between the integer
instruction performance of the two CPUs.

Additional simplifications included the elim-
ination of warm (microcoded) floating point in
favor of a floating point accelerator, elimina-
tion of writable control store capability, and
elimination of on-chip console support.

Design Narrative
The starting point for the chip design was the
instruction execution chip of a multichip VLSI
VAX processor already in design. This ch ip
would provide a general floorplan and a base
microarchitecture, and might even provide
complete design sections that could be used for
t h e MicroVAX 7 8 0 3 2 . As t h e p r o j e c t
progressed, the designs of the VLSI VAX proces-
sor and the MicroVAX 78032 tended to diverge
under the pressure of differing constraints: chip
set and system functionality for the former; die
size, power, and time to market for the latter.
Ultimately, only part of the main datapath was
shared be tween t h e t w o ; t h e rest of the
MicroVAX 7 8 0 3 2 design and its microcode
were unique.

Digital TecbnfcnlJOlrrnai 15
No. 2 March 1986

The MicroVAX 78032 Chip, A 32-Bit Microprocessor

The MicroVAX 78032 project took 2 0 months
from start to first-pass mask generat ion: 6
months for specification and general design,
and 14 months for physical implemcntation.
Eighteen people worked o n the design team.

Project Design Tools
The design team was aided by a hierarchical
CAD tool suite that ran o n a VAX system. The
use of these tools was one of the primary rea-
sons that the project was completed o n sched-
ule. The principal components of this tool suite
are as follows:

1 . A proprietary chip-database manager and
tool interface called the CHAS system

2. A schematic capture program, QUICK-
DRAW, that uses simple terminals

3 . A proprie tary hierarchical s imula to r
cal led t h e DECSIM system, used for
behavioral simulation

4 . A switch- level MOS logic s imulator ,
RSIM, used for unit-delay logic simula-
tion

5 . A modified version of the standard SPICE
circuit simulator that incorporates new
analytical, rather than empirical, MOS
transistor models

6 . Design-rule checking programs, DRC and
DRACULA 11

7 . An in terconnect verification program
called the 1V system, which performs
both layout extraction and wiring verifi-
cationY

8. A cross-reference program, XREF, that
analyzes c o u p l i n g , boots t rap ra t ios ,
dynamic node stability, and other circuit
problems

The ch ip layout was done on Calma GDS 11
systems. Three dedicated VAX-11/780 systems
and five Calma stations were used throughout
the project. The back-end verification of cir-
cuits and the layout required as many as eight
VAX systems.

Final Chip Design
The final product of this design process is a
microprocessor that contains 125 ,000 transis-
tor sites in a 3-micron, double-metal NMOS
chip that measures 8 . 7 by 8 . 6 mm. It requires

only 5 Vdc and a maximum of 3 watts of power;
i t is packaged in a 68-pin, surface-mounted
leaded chip carrier. The ch ip operates at 2 0
MHz and has full 32-bit internal and external
d ~ t a p a t h s . The 78032 is mounted on a single-
board. quad-sized (8 . 5 by 10.5 in.) CPIJ mod-
ule having a 4 2 2 1 / 0 bus and 1 megabyte (MB)
of loca l m e m o r y . An o p t i o n a l FPA, t h e
MicroVAX 781 3 2 chip, can also be mounted on
the CPU board.

The measured speeds of integer and floating
point operations of the 7 8 0 3 2 represent a
breakthrough in 32-bit microprocessors. System
evaluations of MicroVAX 78032 modules indi-
cate that their performance in processing inte-
gers is approximately equal t o that of the
VAX'-1 1/780 system. With the floating point
chip. the performance is between those of the
VAX-11/750 and VAX-11/780 systems with
FPAs .

The remainder of this paper explains the
functional organization of the ch ip and its phys-
ical implemcntation in silicon.

Functional Organization
The diagram in Figure 1 and the photomicro-
graph in Figure 2 outline the various subsec-
tions, o r functional boxes, of the MicroVAX
78032 chip. They are organized into three sec-
tions. At the left of Figure 2 are the datapaths
for decoding and executing instructions and for
memory management. At the center is the con-
trol logic for internal operations and the proto-
col signal logic for external operations. At the
right is the sequencing logic for both internal
and external operations.

The left sect ion in t h e photomicrograph
(Figure 2) , comprising the datapaths, consists
of the I Box, the E Box, and the M Box.

The 1 Box prefetches and decodes instruc-
tions. Its main function is to parse the cur-
rent macroinstruction in the instruction
stream and work in conjunction with the
microsequencer to generate the microad-
dress for the next microinstruction. This
microaddress is a function of the current
macroinstruction. A prefetcher, which works
in paral le l wi th o t h e r c h i p operat ions ,
accesses and stores instruction data in an
eight-byte prefetch queue . The prefetcher
acts autonomously by attempting to keep
that queue full at all times, using any free
I/O-bus cycles to access the instruction

1 6 Digital Technical Journal
No. 2 ~Mnrch 1986

INTERRUPT
\

RNAL CONTROLS

CLOCK GENERATOR E l
Figure I Block Diagram of the CPU Chip

stream. Even if the q u e u e is ful l , the
prefetcher will start to read data if the queue
will be at least half-empty after the current
microcycle.

The I Box also decodes instructions and vari-
able-length operand specifiers in parallel
with other chip operations. That avoids
requiring explicit decode cycles to execute
successive macroinstructions. Due to the
constraints on the size of the control store,
most of the address-specific microcode had
to be shared among all instructions. The

CONTROL STORE

instruction-decode PLA (IPLA) generates 19
bits of opcode-specific data for controlling
other chip operations related to a given
instruction. That allows many microcode
sequences to be table driven and shared.

The E Box is the instruction execution unit
and contains the main datapath of the chip.
This box holds 16 VAX-specified general
purpose registers (GPRs), 20 microcode reg-
isters, a 32-bit arithmetic logic unit (ALU),
and a 32-bit barrel shifter. The E Box also
maintains condition codes for the process

New Products

Digital Technical Journal
No. 2 March 1386

17

The MicroVAX 78032 Chip, A 32-Bit Microprocessor

i.r r i m ? - - Y

4
Y

m y; .
" rl
'. :
1;

,If: -:

I 1' ;I

Figure 2 Photomicrograph of the CPU Chip

status longword (PSL) and determines VAX
branch conditions at the macrocode level. In
a 200-11s cycle, the E Box can read two regis-
ters, perform an ALU operation or shift, and
write the result into a register. Since reading
and writing to registers are performed
sequentially, the ALU result bus is mul-
tiplexed with an input bus, thus saving verti-
cal interconnect. The ALU employs a 4-bit
lookahead carry scheme, with ripple carries
across the nibbles. The carry chain uses dual-
rail logic for maximum speed. The barrel
shifter is a pass-transistor network, which is
very compact and fast enough for this task.

The M Box serves as the memory manage-
ment unit and translates virtual addresses to
physical addresses. The address translation
cache, which is fi~lly associative, stores the
most recently referenced address transla-
tions. The M Box maintains three virtual
address registers, one for instruction data and
two for program data. This unit also detects
cross-page accesses and includes a separate
comparator for length checking. A dedicated
adder generates the next virtual address for
sequential data and instruction addresses.
The time to perform an address translation is
less than 25 ns when the virtual address is in

Digital Technical Journal
N o 2 Mcirch 1986

the translation cache. This short translation
time allows memory management to be trans-
parent to the external chip timing.

The center section of the photomicrograph is
composed mostly of random control logic. That
logic translates the highly vertical (39-bit)
microcode into the many discrete control sig-
nals required to operate the datapath.

The right section of the photomicrograph,
comprising the sequencing and clocking logic,
consists of the interrupt logic, the control
s tore , the DAL interface, and the clock
generator.

The interrupt logic accepts, synchronizes,
and prioritizes external interrupt requests,
compares them with the current interrupt
priority level (IPL), and determines if the
request will be serviced. The interrupt
requests are checked at the beginning of
each microcycle and the interrupt update is
forwarded to the I Box. That all happens
through the central control logic before the
next microcycle begins.

External interrupt processing has been
implemented on-chip in the 78032 to avoid
the complexity that results from having the
interrupt priorities arbitrated outside the
chip. Since these priorities are an integral
part of the processor state, an off-chip design
would involve broadcasting the interrupt
priority level each time it changed. More-
over, off-chip interrupt processing would
also require additional hardware on the CPU
board.

The microsequencer accepts inputs from
various points on the chip and generates the
next microaddress t o access the control
store. The microsequencer logic performs
such operations as microsubroutine calls and
returns, microcode traps, n-way (or case)
branches, and signed offset conditional
branches. Implemented in the microse-
quencer is an eight-level microprogram
stack.

The control store is a 39-bit ROM with 1600
entries. It receives microaddresses and status
signals and generates the next set of microin-
structions. The control store transfers those
microinstructions to the control section in
the center area. That section, in turn, gener-

New Products

ates control signals for the three principal
functions in the main datapath: the I Box, the
E Box, and the M Box. The access time of the
control store is less than 100 ns.

The DAL interface handles all control signals
and transfers data and addresses between the
chip and local memory, peripherals, and
other devices outside the chip. The DAL
interface transparently processes variable-
length operands and aligns data references
that cross natural 32-bit memory boundaries.
I t also causes the microprocessor to stall dur-
ing 1 / 0 references, so that additional
microcode is not needed to test for 1 / 0 com-
pletion. The DAL interface controls transac-
tions involving the CPU chip, the FPU chip,
and external devices. I t also arbitrates direct
memory access (DMA) requests.

The clock generator receives an external 40-
MHz clock reference and produces the eight
25-ns clock phases that time functions on the
chip. The control logic of the chip makes
extensive use of bootstrapped drivers. For
that reason, certain clock phases have to
drive very high capacitances, as much as 250
picofarads. To assist in that task, a special
driver circuit with current-limiting resistors
is used to provide fast edges without using
excessive power or silicon area. These resis-
tors control the overlap current drawn dur-
ing bootstrapping and provide a voltage drop
during the overlap.

External Interface
A principal goal in designing the chip's exter-
nal interface (Figure 3) was to demand as few
support functions as possible from the CPU
board. The 78032 chip provides seven hard-
ware interrupt inputs. Four of these inputs
(IRQ<3:O> L) correspond to standard VAX 1/0
interrupts and result in vectored interrupt
transactions. Three others (INTTIM L, PWRFL L,
HALT L) have preassigned interpretations and
the corresponding vectors are generated inside
the chip. The 78032 takes in a double-fre-
quency clock input from a standard oscillator.
The chip produces a normal-frequency clock
output, which can be used to drive or synchro-
nize external logic. The functions between the
chip and the Q-bus can be implemented in off-
the-shelf discrete logic.

Dig l ld Tecbnkd Journal
No. 2 March 1986

19

The MicroVAX 78032 Chip, A 32 -B i t Microprocessor

INTERRUPT
CONTROL (3

IRQ<3:0>

CONTROL {=Ig
-
ERR
-
RDY

BM<3:0>
-
DS

-
ERR -

4 RDY
BM<3:0>
-
D S

ADDRESS
LATCH 8A<31:00>

I CS<2:0> -
I CLKO

MicroVAX 78032
CENTRAL PROCESSING
UNIT DATA

TRANSCEIVERS

Figzrre 3 External Interface

-
DEE
-
W R

-
EPS

-
RESET CS<2:0>

CLKl CLKO

Except for the 32-bit DAL bus, the external
interface closely resembles those for existing
16-bit microprocessors. Specifically, its timing
and signal complement are quite similar to
those in current machines. The addresses and
data on the DAL are time division multiplexed,
with separate timing strobes (AS and DS, respec-
tively, in Figure 3). The data direction and the
data buffer signals (WR and DBE in Figure 3)
are used to control external transceivers
directly. The cycle status signals differentiate
among the various types of bus transactions.
Four-byte mask signals, one for each group
of eight bits on the DAL bus, allow straightfor-
ward manipulation of bytes within longwords
(four bytes).

The RDY signal allows slower peripheral
devices on the 1 / 0 bus to stretch the memory
access time beyond 400 ns until they are ready
to respond.

A
-

t -
DEE
- e
W R

I e

MlcroVAX 78 132
FLOATING

Parallel Operation

I I 1 I

Besides giving the 78032 optimized microcode
and a fast microcycle time, the design team
enhanced the chip's performance by allowing
parallel operations between and within func-
tional subsections. This parallel flow is actually
a form of pipelining in which the operations
happen independently and concurrently. For
example, while the E Box is executing a
datapath operation, the control store can access
the next microinstruction. At the same time, the

POINT
UNlT

9 9
EPS

L

r

Digital Tecbnical Journal
No. 2 March 1986

*
L

microsequencer can be calculating the address
of the microinstruction after that one, and the
M Box can be translating a virtual address.
Meanwhile, the 1 Box can be decoding an
instruction or operand specifier and prefetch-
ing more instruction data. And the DAL inter-
face can b e ini t ia t ing o r comple t ing an
external bus operation.

For example, assume that the chip is to exe-
cu t e the fol lowing two three-microcycle
macroinstructions in sequence:

ADDL3 RO, R1, R2

Within the third 200-13s microcycle, some
operations associated with these two macroin-
structions are performed in parallel by several
subsections. The E Box will write the result of
ADDL3 into R2 in the register file, set the PSL
condition codes, and check for arithmetic
exceptions, such as an overflow trap. Mean-
while, the I Box will decode the next macroin-
struction, SUBL3, and its first specifier, R4 .
Concurrently, the prefetcher in the I Box will
determine if the decode of the instruction and
specifier will c lear enough space in the
prefetch stack to warrant another longword
transfer. If so, the I Box will then initiate the
transfer and fetch another macroinstruction,
which also involves the DAL interface.

Within each subsection, there are also a num-
ber of parallel operations that reduce the over-
all execution speed significantly. In addition to
simultaneous prefetch and decode actions in
the I Box (as described above), the microcode
access in the control store is pipelined: The
next microaddress is accessed while the current
microinstruction at the current microaddress is
being executed. In the M Box, length checks
against referenced addresses take place simulta-
neously with the translation cache lookups. If a
lookup misses, therefore, the length check will
have already determined whether or not the ref-
erenced page is within range. In the E Box, a
separate program counter (PC) adder maintains
the PC so that the ALU can be dedicated to its
primary task.

Some typical execution times for instructions
under normal operating conditions (aligned
operands, no memory management exceptions)
are as follows:

Typical
Execution Time

Instruction Operands (Nanoseconds)

MOVL

ADDL2

MOVL

Reg, Reg

Reg, Reg
Mem, Reg

ADDL2 Mem, Reg

MOVL Reg, Mem

ADDL2 Reg, Mem

Conditional
Branch,
not taken

Conditional
Branch,
taken

Physical Implementation
The MicroVAX 78032 chip is made using a
3-micron, double-metal NMOS process that
allows power savings and superior circuit flexi-
bility. Until the MicroVAX 78032 chip design,
single metal was a standard for NMOS technol-
ogy. The use of a second layer on the 78032
chip was a significant departure for NMOS
design. There are two main advantages of a
double-metal implementation. First, it is easier
to place logic circuits in the interconnect layer,
where there are more circuits per unit area of
silicon. Second, the metal interconnect has
lower resistance than polysilicon, thus avoiding
wire delays that are difficult to eliminate in
design.

The double-metal process provided the chip
design team with two layers of aluminum inter-
connect and four types of devices (N, E, L, and
D). The four types allow some savings in power
and a substantial increase in circuit flexibility.
However, the E device (light enhancement) is
typically used only in source-follower circuits,
and the L device (light depletion) only in
latches and static memories. The second layer
of aluminum interconnect manages the com-
plexity associated with 32-bit microprocessors.
That permits global communicat ions and
allows local control or routing to share the
same chip area. However, second metal can
only contact first metal, and then only through
an offset, or staggered, contact.

Digital Technical Journal
No. 2 March 1986

The Micro VAX 78032 Chip, A 32- Bit Microprocessor

Figure 4 X-shaped Cells

The control store is a 1600-entry by 39-bit
ROM. Although its size was decreased mostly
t h r o u g h r e p a r t i t i o n i n g a n d o p t i m i z e d
microcode, about ten percent of the reduction
was gained through the cell structure chosen.
X-shaped cells with a virtual-ground design
were used (Figure 4). This ROM has no physi-
cal ground, whereas standard ROMs with
H-shaped cells have one ground line for every
two data lines. The X-shaped cell, which is 9 5
microns square, is also more dense than the
standard cell. Moreover, in the X-shaped cells,
second metal is strapped across the top of the
array to minimize the row propagation time.
The cell access time is 100 ns.

The ROM bit lines are precharged to V,,;
using depletion pullups. Sensing is done with a
cross-coupled stage using local deplet ion
divider voltage references set at 0 .6 X V,,. Col-
umn access occurs in 25 ns.

The cont ro l circui ts (a t the center in
Figure 1) are implemented in dynamic logic so
that the total power dissipation is kept below
three watts. That also allows a low-cost packag-
ing design. The eight clock phases provide
refresh timing references to the dynamic logic.

Due to tight silicon constraints, the test fea-
tures built into the design had to be limited in
scope. The principal. ones used are as follows:

Serial shift registers with feedback for
observing the control store, IPLA, and micro-
sequencer outputs

Special test mode for overriding normal
sequencing with external microaddresses

Dedicated microcode for optimizing state
observations in the special test mode

Summary
The MicroVAX 78032 represents a major break-
through both in semiconductor technology and
in the VAX family. From a technology perspec-
tive, it is the first implementation of a success-
ful 32-bit superminicomputer on a single chip.
It is the first chip to provide integral demand-
paged virtual memory management. And it is
the first chip to provide system performance
comparable to the 11/780. From a VAX per-
spective, the 78032 is the key to the downward
extension of the industry-standard VAX family
into the realm of small systems and worksta-
tions.

Acknowledgements
The authors acknowledge the technical contri-
butions of John Beck, Sandy Carroll, Gerry Che-
ney, Mary Jo Doherty, John Glynn, Jim Gorr,
Bob Grondalski, Dave Grondalski, Pat Hart,
Ernie Hohengasser, Taan Lee, Steve Morris,
Tony Pasquito, Steve Thierauf, Tim Thrush,
Janet Vitello, and Barry Worster.

References
1 . VAX Architecture Handbook (Maynard:

Digital Equipment Corporation, Order
NO. EB-19580, 1981).

2. W.N. Johnson, "A VLSI Superminicom-
puter CPU," IEEE International Solid-
State Circuits Conference Digest of
Technical Papers (1984): 174-175.

3. J. Slager et al., "A 16-bit Microprocessor
w i th On-ch ip Memory Protect ion,"
International Solid-State Circuits Con-
ference Digest of Technical Papers
(1983): 24-25.

Digital Technical Journal
No. 2 March 1386

New Products

4. H.M. Levy and R.H. Eckhouse, Computer
Programming and Architecture: The
VAX- 1 I (Bedford: Digital Press, 1980).

5 . D.W. Clark and J.S. Emer, "Measurement
and Analysis of Instruction Use in the
VAX- 1 1/780," IEEE Proceedings of the
9th Annual Symposium on Computer
Architecture (1 982) : 9-1 7.

6. J.S. Emer and D.W. Clark, "A Characteri-
zation of Processor Performance in the
VAX-11/780," IEEE Proceedings of the
I 1 th Annual Symposium on Computer
Architecture (1 984) : 30 1-3 10.

7. W.D. Strecker, "Transient Behavior of
Cache Memories," ACM Transactions
on Computer Systems, vol. 1 , no. 4
(November 1983): 281-293.

8. D.W. Clark, "Cache Performance on the
VAX- 1 1 /780 ," ACM Transactions on
Computer Systems, vol. 1, no. 1 (Febru-
ary 1983): 24-37.

9 . G.M. Tarolli and W.J. Herman, "Hierar-
chical Circuit Extraction with Detailed
Parasitic Capacitances," ACM IEEE 20th
Design Automation Conference Pro-
ceedings (1983): 337-345.

Digital Tecbnical Journal
N o . 2 March 1986 23

WiNiam R. Bidermann
Amnon Fisher

Burton M. Leary
Robert J. Sitncoe

William R. Wheeler

Floating Point Chip
A separate chip, the 78132, in the MicroVAX ZI system pelforms fast
floating point calculations. Three datapaths, each controlled by
microcode, work in parallel to yield a 100-nanosecond microcycle. The
wide datapaths accommodate a large variety of instructions, using
microwords of only 35 bits for control. The 78132 is a 3-micron NMOS
chip connecting to the CPU chip of the MicroVAX IZ system uia a general-
purpose protocol and a limited set of lines. Crosstalk and resistivity
posed particular design problems, as did the routing of signals and
power. The 78132's electrical integrity was carefully checked to ensure
bigh reliability.

Scientific and engineering applications rcquire
strong floating point support from their com-
puters. All VAX implementations offer both
microcoded (warm) and hardware (hot) capa-
bilities to execute the 95 floating point instruc-
t ions in t h e full VAX instruction se t . The
MicroVAX I1 processor also supports floating
point instructions, but in a slightly different
fash ion . S ince t h e c o n t r o l s t o r e i n t h e
microprocessor, the CPU chip, has a limited
size, these instructions are not executed in
microcode ; instead they a r e e m u l a t e d in
macrocode.' Emulation is relatively slow and
does not provide the fast speeds required for
intensive mathematical applications. Therefore,
a separate floating point accelerator (FPA), the
MicroVAX 781 3 2 chip, has been developed as a
companion to the CPU chip, the MicroVAX
78032 chip.

The 78132 , o r FPU chip, is designed to pro-
vide fast floating point calculations on a single
chip. It executes 6 1 of the 7 0 floating point
instructions in the MicroVAX instruction set.
Nine of the 70 instructions simply move data,
and the CPU ch ip does not need the FPU ch ip to
handle them. The FPU ch ip also accelerates cal-
culations for 9 integer instructions, which are
associated with integer multiplies and divides.
The FPU chip executes instructions about 1 0 0
times faster than macrocoded emulation.

The FPU ch ip (Figure 1) contains 3 2 , 1 4 1
transistors in a 3-micron, double-metal NMOS
ch ip , which requires just under 2 watts of
power at 5 Vdc. It measures 8 .4 by 6.6 mm and
is packaged in a 68-pin leaded ch ip carrier. The
chip has a 100-nanosecond (ns) microcycle,
divided into four 25-ns clock phases generated
from a 40-MHz input clock. The CPU chip,
which also operates on a 40-MHz input clock,
has a microcycle of 200 ns. The faster micro-
cycle and wide datapaths enable the FPU chip
to perform floating point operations much
faster than the CPU c h i p with its general
datapath.

This paper discusses the implementation of
floating point in the MicroVAX 11's FPU ch ip
and the unique constraints of a single-chip
floating point accelerator. These constraints are
not limited only to architecture but include
interface design, wiring, and signal integrity, all
areas where design trade-offs are important.

At the highest level, the FPU ch ip imple-
ments the F, D, and G floating point instruc-
tions in the VAX instruction set. The chip is
constrained by the requirements of the VAX
architecture-data formats, accuracj7 require-
ments, and instruction vagaries-and by the
characteristics of the technology-limited num-
ber of pins, limited die size, and limited inter-

2 4 Digital Technicril Jortmal
No. 2 lMarcb 1986

Figure I Photomicrograph of the FPU chip

Digital Technical Journal
No. 2 March 1986

2 5

New Products

- The MicroVAX 78132 Floating Point Chzp

connect. These constraints dictated many of the
design considerations in the FPU chip.

FPU Chip Architecture
The main elements of the FPU chip, shown in
the block diagram in Figure 2, are similar to
those in most floating point devices."hree
separate processors-a 67-bit fraction processor,
a 13-bit exponent processor, and a single-bit
sign processor-operate in parallel. The bus
interface unit handles data transfers over the
external bus to the CPU chip and data move-
ment into and out of the three datapaths. The
microsequencer controls the parallel opera-
tions of the processors.

Each element in the FPU chip operates in
parallel to speed up instruction processing. The
microsequencer steps through the microcode
for an instruction and determines which opera-
tion is to be performed by each processor for
the current cycle. The microsequencer also
takes inputs from each of the processors to
determine which microword is to be executed
next. The datapath of the fraction processor
performs all the arithmetic computations on
the mantissa of a floating point number. This
datapath is designed to be flexible enough to
handle the many different operations required
in a general-purpose FPA. The datapath is also
segmented to handle the F, D, and G data types,
and is optimized to provide the maximum pos-
sible performance from the N-channel MOS
technology.

The datapath of the exponent processor han-
dles only the exponent portion of a floating
point number. The exponent datapath is also
used as a counter during certain operations
such as multiply and divide. This datapath does
all the exception and bounds checking for
operations like addition and subtraction. The
sign processor is incorporated into the expo-

PROCESSOR PROCESSOR PROCESSOR I I
INTERFACE MICROSEQUENCER

Figure 2 Block Diagram of the FPU chip

nent datapath and handles all operations per-
taining to the sign bit. During an addition or
subtraction, the sign bit determines which case
is performed by checking the signs of the two
operands and the opcode of the instruction.

The bus interface unit (BIU) is responsible
for handling all the FPU portions of the bus
traffic between the FPU and CPU chips. The BIU
decodes the opcode sent to the FPU chip and
tells the microsequencer which instruction to
execute. That allows the FPU and CPU chips to
coordinate their actions without a lot of proto-
col or pins. Since many different data types are
processed, the BIU is responsible for unpacking
the operands and steering them to the appropri-
ate datapath. Once the instruction is com-
pleted, the BIU takes the unpacked result from
each datapath and formats the result into the
specified data type. Figure 3 contains a more
detailed block diagram for the entire floating
point unit.

Algorithms
To keep the FPU chip at a size that could be
produced, we decided not to use special-pur-
pose hardware to implement instructions like
addi t ion o r mul t ip l ica t ion . Instead, the
datapaths are designed to be general-purpose
ones to accommodate the needs of a wide vari-
ety of instructions.

Addition and Szlbtraction

The datapaths are under microcode control and
work in parallel. Within each , the s teps
required for either addition or subtraction are
done serially. First, the exponents of the two
operands are compared to see if they are of
equal magnitude. If not, the larger exponent is
stored in a register, and the exponent differ-
ence is used to control the alignment. The
shifter on the output of the fraction arithmetic
logic unit (ALU shifter) allows the fraction with
the smaller exponent to be aligned five bits at a
time. During each alignment step, the exponent
difference is reduced by u p to a magnitude of
five until the exponents are equal. Once equal,
the fractions are added. (In subtraction, the
fraction to be aligned is complemented before
alignment.)

The resulting fraction is then normalized.
The normalize shift is accomplished by a single
left shift in the fraction ALU and two left shifts
in the ALU shifter. If the addition of the

26 Digital Tecbnfcal Journal
No. 2 March 1986

New Products

LATCH 4 I

INSIAUCIION - MAIN SEOUEUCER

t UECOUL IMO X 351

I N I I R F 4 C E CLlhlfiOL t
l t t t t t

Figure 3 Block Diagram oJ the FPU Processor

fractions results in an overflow into the top
guard bit, a single right shift in the ALU shifter
is required to normalize the result. During nor-
malization, a 3-bit code is sent to the exponent
datapath, which determines the amount the
exponent must be adjusted.

After normalization, the fraction is rounded
using a rounding constant appropriate for the
data type of the floating point operation being
performed. If the round results in an overflow
in the fraction datapath, the exponent is
incremented by one and the fraction is normal-
ized. The exponent datapath then checks the
resulting exponent for any error conditions. If
no errors are found, the final fraction and expo-
nent values are loaded into the output register
and the sequencer signals the BIU that the oper-
ation is complete.

Mllltiply

The multiply operation in the FPU chip is based
on a 3-bit retirement algorithm. The 3-bit
retirement, or octal multiply, must generate the
required multiple, 0-7, of the multiplicand to
be added into the partial product for each step.
The multiples must be generated by simply
shifting the multiplicand and adding or sub-
tracting them from the partial product. The
multiples 0 , 2 , 4 , and 8 are easy to generate in
this way. The multiple 6 can be formed by tak-
ing three-quarters of the multiplicand and stor-
ing that in a register at the beginning of the
multiply (34 x 8 = 6). As shown in Table 1, all
the even multiples can be generated. To gener-
ate a11 the odd multiples, a -1 multiple is
added to achieve the final exact multiple for
each retired group of three bits.

Digital Technical Journal
No. 2 March 1986

2 7

The MicroVAX 78132 Floating Point Chip

Table 1 Multiply Operation - Booth Encodings

Multiplier Required Data Multiple Multiple Multiple
Group Multiple Used Shift Added Owed

0 0

1 mult

2 mult
3 mult
4 mult

5 3h mult

6 3h mult

7 mult

The key to making this scheme work is that
this -1 multiple must be generated from the
previous group of three bits. To that group, the
-1 multiple for the next group is equivalent to
a -8 multiple. To know whether or not the next
group will need the -1 multiple, it is sufficient
to examine the least significant bit (Isb) of the
next group of bits. If the Isb is a 1 , then the
g r o u p wi l l be odd and wi l l need the
-1 multiple. This process is started by examin-
ing the Isb of the multiplier and initializing the
partial product register to either zero or minus
the multiplicand. If the Isb is a 0, the -1 multi-
ple will not be needed. The operation always
terminates in the case not requiring compensa-
tion because the numbers are all normalized.
Table 1 shows the Booth encodings for each
multiplier group.

These Booth encodings translate into the frac-
tion datapath controls depicted in Table 2.

A multiplication in the FPU chip is begun by
loading the multiplier into the Q Register (quo-
tient register) and loading the multiplicand
into register 0 in the scratch RAM. Three-
quarters of the multiplicand is then calculated
during two ALU cycles and is stored in register
1 of the scratch RAM. Subsequently, the
A Register is initialized to store the partial
products.

During each cycle of the multiply loop, the
four least significant bits of the Q Register are
latched to control each multiply step. Based on
these four bits, the multiply control loads
either the multiplicand or three-quarters of the
multiplicand from the scratch RAM into the
B Register. The control then adds or subtracts
the B Register from the A Register. The resulting
new partial product is shifted right by the ALU

shifter and relatched in the A Register. The
Q Register is then shifted three bits to the right
to retire the current set of multiplier bits and to
set u p for the next iteration.

The exponent datapath is used to control the
number of iterations that should occur for each
multiply operation and to calculate the result-
ing exponent. The number of iterations that
take place for a multiply depends on the length
of the mantissa. For example, an F format num-
ber with a 23-bi t mantissa requires eight
iterations.

Dir~ision

The floating point unit performs a 1.5-bit, non-
restoring division. This algorithm is similar to a
I-bit, non-restoring division, but takes advan-
tage of the fact that long strings of zeros or ones
in the partial remainder can be skipped over
without doing an addition or subtraction. The
FPU chip handles double precision through jts
normal datapath.

Within the FPU chip, the partial remainders
will always be c +Y'z and > -M because both
floating point numbers are normalized. If the
partial remainder is small relative to the nor-
malized divisor, a 1 will not be shifted into the
quotient over the next few cycles. (The oppo-
site is true i f an addition is performed.) Know-
ing this fact and whether the previous opera-
tion was an addition, subtraction, or a shift will
determine how the quotient bits are developed.
If the previous operation was a shift, the pro-
cess is in the middle of a long string of zeros or
ones and no addition or subtraction has to be
performed. If the partial remainder is not small
relative to the normalized divisor, the quotient
bits are developed as they would be in a I-bit

Digital Tecbnical Journal
N o . 2 March 1986

New Products

Table 2 Multiply Operation - Fraction Datapath Controls

Next Group Actual Present Group Group Multiple ALU
Look Ahead Multiple Group Multiple Multiple Generated Operation

A - A
A - A+B; B=RO
A + A+B; B=RO
A -- A+B; B=RO
A -- A+B; B=RO
A -- A+B; B=R1
A - A+B; B=R1
A -- A+B; B=RO
A +-- A-B; B=RO
A t A-B; B=R1
A -- A-B; B=Rl
A -- A-B; B=RO
A + A-B; B=RO
A - A-B; B=RO
A + A-B; B=RO
A -- A

where: RO contains themultiplicand
R1 contains 3h multiplicand

division algorithm. Table 3 summarizes the
1.5-bit, non-restoring division.

The implementation of this algorithm in the
FPU chip is straightforward. To start, the divisor
is loaded into the B Register and the dividend
into the A Register. The Q Register is initialized
to 0 and will become the location where the
quotient is developed.

During each step of the division, quotient
bits are inserted at the least significant end of
the Q Register. The register contents are then
shifted left either 1 or 2 as required to develop
the new quotient for that step. If necessary, the
divisor is added to or subtracted from the par-
tial remainder. The result is then shifted left by
the appropriate number of places.

When bit 65 in the Q Register becomes a 1 ,
the division is stopped. Since these numbers are
normalized, the result will fall in the range of
greater than 95 but less than 2. The contents of
the Q Register, already normalized, are then
read back into the A Register. However, if the
initial subtraction resulted in a positive partial
remainder, then one must be added to the expo-
nent to account for the fact that the result has a
whole part (i .e. , 2 1) .

Integer Division

The FPU chip also performs a I-bit, non-restor-
ing divide algorithm, which is used to acceler-
ate the execution of the DIVL and EDIV instruc-
tions. In all cases, t he integer divide is
accomplished with a 32-bit divisor and a 64-bit
dividend.

Polynomial Calculations

The polynomial evaluation algorithm, POLY,
uses Horner's Method to calculate all trigono-
metric functions. Because execution time can
be so long, POLY is the only VAX floating point
instruction that can be interrupted by the CPU
chip. The algorithm performs a series of ax+b
operations once during each cycle. In each
operation, x is treated as a constant, the value
of b is provided by the CPU chip, and the value
of ax+b in the current cycle becomes a in the
next cycle.

The FPU chip first multiplies a by x with the
MUL algorithm and then adds b with the ADD
algorithm. The main sequencer tells the 1 /0
controller that the first POLY cycle has been
completed and that the result is ready in the

Dig€tal Tecbnicd Journal
No. 2 March 1986 29

Table 3 1.5-Bit Division Operation

Most Significant Bits
of Partial Remainder Value of Shift ALU Add/Sub Shift

66 65 64 63 bits 66-63 Left Operation Quotient Quotient

2 none
2 subt
1 subt
1 subt
1 add
1 add
2 add
2 none

Add/Sub Quotient: Bits shifted into the quotient if previous operation was an addition or subtraction.
Shift Quotient: Bits shifted into the quotient if the previous operation was a pure shift (no ALU

operation).

1 / 0 registers for transfer to the CPU chip. The
s e q u e n c e r e x e c u t e s t h e s e c o n d MUL,
(ax + b)x, during the time that the CPU chip is
reading the first result, storing it in a register,
and transferring the next value of b to the FPU
c h i p . T h e s e c o n d A D D o p e r a t i o n ,
(ax + b)x + 6 , then takes place to complete the
second cycle, and the process continues. The
CPU chip's register is updated with the new
result at the end of each cycle. This pipelining
allows fast generation of trigonometric and
transcendental functions. Both the CPU and
FPU chips are working to implement the
instruction, and the actual multiply time is
overlapped by the operand fetch time.

The Microsequencer
The microcode for the FPU chip is contained in
a large programmable logic array (PLA), which
is the heart of the microsequencer. Inputs to
the PLA are received from all major sections of
the FPU chip. A microword of 35 bits is all that
is needed to control the rwo main datapaths
(the sign processor is part of the exponent
datapath) and to communicate with the bus
interface unit. Each field in the microword is
encoded to reduce the number of wires routed
to the other sections. Two hundred microwords
are required to implement the sixty-one float-
ing point and nine accelerated integer instruc-
tions executed by the FPU chip. The block dia-
gram for the microsequencer is shown in
Figure 4 .

Inputs to the PLA are comprised of five next-
address bits, three dedicated inputs, and forty
signals from the three major processors on the
chip. Three bits from the next-address field are
used to select five of the forty signals for the
next FPU cycIe. These five multiplexed inputs,
in conjunction with the eight direct inputs, are
used to address the next microword. The thirty-
five outputs, or signals, from the PLG are used
to communicate with the rest of the floating
point unit. These signals determine which
operation is to be performed by each of the
three datapaths (exponent, fraction and sjgn
processor).

Interface Between Chips
Interface Lines
The communication between the CPU and FPU
chips is done through a very limited set of
lines: a write (W) strobe, three cycle status
(CS) Iines, an external processor strobe (EPS),
and the 32-bit data and address lines (DAL).
(This approach was used t o reduce the
pincount on both chips.)

In the MicroVAX I1 processor, the chip proto-
col is designed as a general-purpose one so that
other coprocessors could take the place of the
FPU chip. Each interface line has a specific pur-
pose, as explained below.

The W strobe sends a signal from the CPU
chip to indicate the direction of data flow
over the DAL. For the FPU chip, the write

Digital Technical J o u d
No. 2 March 1986

New Products

40 INPUTS

1.
30 ADDITIONAL
OUTPUTS

A

40:5 NEXT ADDRc9:7>
MUX 4

NEXT ADDRc6:5>
DATAPATH
STATUS

AND PLANE OR PLANE
(200 TERMS) (200 TERMS)

MICROCODE PLA

Figure 4 Block Diagram of the Microsequencer

signal indicates that data is being transferred
from the CPU chip.

The EPS is used by the CPU chip to qualifj
all communication between itself and the
FPU chip or other non-memory device.

The three CS lines provide status about the
current bus cycle. Two of the lines indicate
the type of information being transferred;
they are "valid" when the external processor
strobe is asserted. The third line is an open-
drain output (functionally similar to an open
collector in TTL), which will be active when
the bus cycle is a response enable and the
FPU chip has completed the current com-
manded operation.

The DAL is a 32-bit, bidirectional bus that
exchanges data between the CPU and FPU
chips. The CPU chip is always the bus master
and controls the transfer of operands to the
FPU chip and results back to itself.

The information exchanged between the CPU
and FPU chips could be of different types: write
external processor command, read or write
external processor data, command to other
external processors (not the FPU chip), and
external processor response enable. The exter-
nal processor strobe (EPS) is used by the CPU
chip to qualify all communication between
itself and the FPU chip.

Figure 5 illustrates all the interface lines
between the rwo chips.

Communications Protocol
The communications protocol permits the FPU
and CPU chips to communicate efficiently.

Every interchip operation will be associated
with the following sequence of bus activities:

1. The CPU chip initiates an interaction by
placing a command onto the DAL bus, a
status code on two CS lines, a write sig-
nal of "low," and an EPS of "low." The
FPU chip recognizes this sequence as a
command-write cycle and aborts any
instruction being executed. The FPU
chip then decomposes the command to
determine the required operation and
the number and size of the operands.

2. The CPU chip fetches the required oper-
ands and executes one or more data-
write cycles to transfer them to the FPU
chip.

3 . After transferring the last operand, the
CPU chip asserts a response-enable sig-
nal on the CS lines and pulses the EPS
"low." The chip does that once for each
microcycle that it has control of the bus
in order to determine if the FPU chip has
finished processing the data.

4 . To signal the completion of operations,
the FPU chip asserts the CS<2> line
"low" when the response-enable signal
is on the two CS lines and the EPS is
"low." At the same time, the FPU chip
asserts the status of the just-completed
operation.

5 . The CPU chip recognizes the "low" sig-
nal from the FPU chip and reads the sta-
tus information. The CPU chip will
repeat this transaction to compensate for

Digital Technical Journal
No. 2 March 1985 3 1

The MicroVAX 78132 Floating Point Chip

CLKl

vBB 1 I r- GND, Vcc

INTTlM L

DMR L

DMG L - 1
BM<3:0> L MICROVAX

CPU CHIP

DS L

PWRFL L -4
HALT L -4
ERR L 2
RDY L -4

LATCH BA<29:00>

DBE L *

L-T-l-- FLOATING

RESET L
cs<2:0>

t

WR L

DBE L

CLKl

VBB

GND, Vcc . cs<2:0>

Figure 5 Interfaces Between the CPU a n d FPU Chips

its microcoded pipeline, capturing the
status information the second time.

6. The CPU ch ip executes zero o r more
data-read cycles to read the results, if
there are any, from the FPU chip. Both
chips are now free to perform the next
transaction in the instruction stream.

(The FPU chip will respond unpredictably to
other nonstandard protocols and relies on the
sequence of interactions described above for
proper operation.)

Performance Analysis
The performance of the FPU chip is very sensi-
tive to the 1 / 0 bandwidth. Every floating point
opera t ion is associated w i t h a s p e c i f i e d
sequence of events that must occur between
the chips before the execution can start. There
is another sequence of events that must take
place when the computation is completed.
These sequences happen without any parallel-
ism or pipelining.

The protocol affects the performance of the
FPU chip because cycles must be expended for
sending and reading status signals, and transfer-
ring data. Table 4 illustrates the individual
steps that occur for three types of operations:
ADDF, MULF, and MULD. For these examples,
assume that no time is spent o n instruction
fetch and decode, and that the memory subsys-
tem has an unlimited bandwidth and buffering
capability for reads and outstanding writes. The
performance is measured from the completion
of the initial instruction decode to the final
result store in the memory (or a register).

The total execution time for other instruc-
tions can be derived in the same manner using
the following internal execution times:

Add in D format - 7 0 0 ns

Division in F format - 2200 ns

Division in D format - 4400 ns

Digital Technical Journal
N o . 2 March 1986

New Products

Table 4 Steps for Add and Multiply Operations

Instruction: ADDF
Register Mode Byte Displacement

Protocol Execute
Time Time

(nanoseconds)

Protocol Execute
Time Time

(nanoseconds)
Specifier decode and data
transfer for first operand

Specifier decode and data
transfer for second operand

Internal transfer (first operand)

Execution
Status read
Status read
Result transfer on DAL bus

200
200
400

1800 700

2.5 microseconds

Total

Total Execution Time: 1.8 microseconds

Instruction: MULF
Byte Displacement Register Mode

Protocol Execute
Time Time

(nanoseconds)

300

200

Protocol Execute
Time Time

(nanoseconds)
Specifier decode and data
transfer for first operand

Specifier decode and data
transfer for second operand

Internal transfer (first operand)

Execution
Status read
Status read
Result transfer on DAL bus

Total

Total Execution Time: 3.1 microseconds 3.8 microseconds

Instruction: MULD
Register Mode Byte Displacement

Protocol Execute
Time Time

(nanoseconds)

Protocol Execute
Time Time

(nanoseconds)
Specifier decode and data
transfer for first operand

Specifier decode and data
transfer for second operand

Internal transfer (first operand)

Execution
Status read
Status read
Result transfer on DAL bus

Total

Total Execution Time: 4.3 microseconds 5.2 microseconds

Digital Technical Journal
No 2 iWclrc.h I986 3 3

The MicroVAX 78132 Floating Point Chip

Wiring and Signal Integm'ty in the
FPU
Signal integrity in a large VLSI chip such as
the 78132 is fundamental to ensure correct
functionality and good yield, given the varia-
tions in manufacturing. The one- to two-micron
proximity of signal lines on an integrated cir-
c u i t (IC) can cause s ignif icant c o u p l i n g
problems. Moreover, there are problems in
terms of clock distribution and power-supply
noise. The design of the logic must allow suffi-
cient noise margin to permit correct operation
in spite of the noise present in the system. The
use of charge as the signal (used in many cir-
cuits in an NMOS design), rather than voltage
o r c u r r e n t , c rea ted s o m e s p e c i a l des ign
problems for the FPU chip team.

IC Wiring Characteristics
The FPU chip has four layers-two of metal, one
of polysilicon, and one of diffusion-that are
used to interconnect and form devices. The wir-
ing in an IC is conceptually similar to the wir-
ing on a printed circuit board. Although the
total wiring length on the FPU chip is only
about four meters, the interconnected nodes
and elements number in the tens of thousands.
Placing and routing the logic functions inevita-
bly affects the estimates of loading and system
performance. Thus an iterative process of first
routing a design, then simulating the subse-
quen t performance is needed to identify a
workable routing plan. Once this workable
routing-performance trade-off is identified, the
final routing and loadings can be made.

The wiring considerations for a VLSl design
are different from those for conventional sys-
tems in several ways. First, the dimensions are
smaller. In the NMOS process the horizontal
metal separation is about three microns and the
vertical separation is from one to two microns.
Even with the smaller size of the wiring in the
MicroVAX I1 chips, crosstalk can become a seri-
o u s p r o b l e m . O n a MOS c h i p , crossta lk
between poorly designed nodes can approach
fifty percent. The capacitance o n many of the
critical nodes in the FPU ch ip is only about 100
femtofarads (0.1 picofarad). Any coupling at all
on these nodes becomes quite significant. The
largest capacitance on the chip is the clock
lines at around 1 1 0 picofarads. On dynamic
nodes, which rely o n a charge stored on a

capacitor to represent a logic level, this coup-
ling is particularly troublesome.

To eliminate this problem on the FPU chip,
the design team checked each of the over
12 ,500 nodes for crosstalk from all other nodes
in the chip. This data was then used to change
the layout, where appropriate, to minimize or
in some critical cases, eliminate intolerable
levels of crosstalk. These checks took about
three man-months to complete.

Another difference in the wiring of a VLSI
chip is the resistivity of the wiring. The metal
layers in the FPU chip have resistivities on the
order of 100 milliohms per square. However,
the resistivities of the polysilicon and diffusion
interconnect layers are about 4 0 ohms per
square, or 400 times that of the metal layers.
The interaction of this parasitic resistance with
the on-chip capacitive loads can cause serious
p e r f o r m a n c e l imi ta t ions if no t ca re fu l ly
monitored.

In fact, these two layers are so resistive that
they were unusable for unconditional routing
of either signals or power; they could be used
only for very local routing. As a special precau-
tion, a hand-check of those layers was made at
pattern generation time to verify that no long,
speed-critical paths utilized these layers as part
of the routing network.

Power a n d Signal Routing
A minimum-width wire routed the length of the
FPU ch ip has a resistance of about 200 ohms.
The use of metal layers with noticeable resis-
tance therefore begins to set system perform-
ance Limits through RC delays as well as IR
drops, which happens in larger systems. The
clock distribution introduces a delay of about
one nanosecond across the FPU chip, due solely
to the resistance of the metal interconnect and
the distributed load capacitance. This delay
amounts to about four percent of the length of a
single phase in the ch ip . A well-monitored
clock distribution system is a requirement in
any semiconductor chip. The problem is that
the performance of the underlying semiconduc-
tor device is beginning to outstrip the capabil-
ity of the ch ip wiring to distribute the clock.
RC delays become the limiting speed factor of
the wiring in an IC, while the speed of light
across transmission lines is the limiting factor
in a larger system. These resistances can also

Digital Technical Journal
N o . 2 March 1986

1 New Products

seriously affect the power and ground supply as
i t is distributed throughout the FPU chip.

We used several techniques to keep the sup-
ply noise under 200 mV as power is distributed
throughout the chip. First, the total dc current
was calculated by summing the current used in
each power and ground line as it joined other
branches on the route to the actual supply pad.
At this point in the net, two factors had to be
analyzed so that the width of the power bus
could be sized correctly. That sizing kept the
equivalent resistance low enough so that the
overall drop from a pad to the most remote
logic could be kept under 200 mV. Unfortu-
nately, that sometimes required large (on an IC
scale) power buses in which a significant frac-
tion of an ampere must be provided by one
supply line.

The second problem, and the more difficult
one, associated with the power and ground wir-
ing is the large ac voltage transients that can
occur when large portions of the system switch
at the same time. That problem is especially
significant with the V,, lines. And it is particu-
larly difficult when driving wide buses or large
datapaths as wide as the 81 bits in the FPU chip.
In these cases, large transients (one ampere or
more) flow in ground and power lines for a few
nanoseconds. In a large system environment,
decoupling capacitors can be used to supply
these currents locally. Unfortunately, that is not
possible in an IC environment where such large
capacitors are not practical. As a result certain
ground lines in the FPU chip are allowed to
have significant noise on them. In some cases
this noise spike can be as much as two volts.
This noise is handled by rxnning these "dirty"
grounds in a separate metal line all the way
back to the pad on the chip.

However, even when the line is taken back to
the pad to prevent local IR drops from upset-
ting the logic, parasitic inductance in the pack-
aging can still cause problems. The most strik-
ing example is that of off-chip bus drivers. Here
a typical 32-bit bus is driven over 4- or 5-volt
swings in as little as four or five nanoseconds.
With each bus load being on the order of 100
pf, the large dI/dt that the chip imposes on the
power pins causes inductive ringing. Solving
this problem by placing a decoupling capacitor
on the external pins is of little value since the
package inductance effectively isolates the
capacitor from the actual nodes i t must

decouple inside the chip. Therefore, the FPU
chip, like most chips that drive wide buses, has
separate power pins going only to the output
transistors. The subsequent ringing is tolerated
since it does not affect any internal logic. (The
ringing can become even more of a problem on
chips with several buses with different timings,
since separate supplies must be used for
each bus. That drastically increases the number
of supply pins required on the chip.) The FPU
chip devotes 19 of its 68 pins to Vss and VDD
distribution.

Electromigration
A final wiring consideration in designing the
FPU chip was electromigration. Electromigra-
tion is a reliability issue in IC wiring because
high current density in the metal interconnect
can cause the metal to migrate, thinning sec-
tions of wiring until they finally fail. Current
densities much higher than lo5 amperes per
square centimeter can cause increases in wiring
resistance and eventually, open circuits or
increased interlevel leakage, and short circuits.
Clock lines, power and ground buses, as well as
some global wiring, are susceptible to this fail-
ure mechanism. As a result, all lines on the FPU
chip have an additional current constraint
imposed by electromigration. When the chip
was designed, these lines all had to be checked
to eliminate the problem.

Wiring Integrity
Considerable time was spent checking the elec-
trical integrity of the wiring in the FPU chip.
The following list contains the most important
wiring integrity checks made of the intercon-
nect on the chip:

1. Transistor Source/Drain Integrity - This
check assured that the silicon intercon-
nect resistance caused less than five per-
cent degradation.

2. RC Delays - All RC delays greater than
one nanosecond were analyzed.

3. Coupling - All internodal coupling
capacitors were checked to verify that
there would be less than 200 mV of noise
injected into the node.

4 . VDD and Vss Nets - Three checks were
performed. First, all IR drops were mea-
sured to ensure that ac and dc voltage

Dfgftal Technical Journal
No. 2 March 1986 3 5

The Micro VAX 78132 Floating Point Chip

sources were kept under 200 mV. Sec-
ond, all buses were sized to verify their
reliability for electromigration resis-
tance. This check included contact elec-
tromigration. Third, a check ensured that
sufficient isolated power pins existed to
guarantee that clean and dirty grounds
were isolated.

5 . Clock - An analysis identical to that for
V,, and V,, nets was done on all eight
clock lines.

Although there were significant CAD tools to
perform most of the checking, this task alone
required approximately ten percent of the total
engineering time for the entire project.

Summary
The VLSI chips we are now designing are as
complex as several boards of TTL used in past
implementations of the VAX architecture. The
FPU chip performs the same functions at about
the same speed as five boards containing ICs in
the VAX-11/780 system. The designs of these
complex systems on chips present a set of con-
straints and considerations similar to and yet
different from those encountered by board-
level system designers. We hope that this paper
captures the complexi ty and uniqueness
involved in the MicroVAX FPU chip.

Acknowledgements
The FPU chip team completed the design of
two VAX floating point chips, the MicroVAX
FPU and the 8200 chip, in eighteen months.
That was possible only because another design
team working on the J-11 FPA had established
the basic architecture and took the time to help
our team to understand that work. This close
working relationship allowed us to complete
the MicroVAX FPU design in step with the CPU
chip team, which was our major challenge.

References
1. D.W. Dobberpuhl et al, "The MicroVAX

78032 Chip, A 32-bit Microprocessor,"
Digital Technical Journal (March 1986,
this issue): 12-23.

2. R.J. Simcoe et al, "A Floating Point Unit
for a 3 2-bit Microprocessor System,"
Proceedings of the 1984 IEEE Custom
Integrated Circuit Conference (May
1984): 478-481.

3. G. Wolrich et al, "A High Performance
Floating Point Coprocessor," ZEEEJour-
nal of Solid State Circuits, vol. SC-19,
no. 5 (October 1984): 690-696.

36 Digital Technical Journal
No. 2 March 1986

Barry A. M a s k a s (

Developing the
Micro VAX 11
CPU Board

Within the MicroVAX II system, the CPU board provides an environment
to optimize the performance of the CPU andjloating point processor
chips. The board is designed as a linked sequential machine to accom-
modate the sequential control of the CPU chip. A Q-bus handles I / O for
the system. Tbe memory access path is dualported, allowing the memory
and the CPU chip to run synchronously witbout wait states. A scatter-
gather map provides Q-bus address translations. To minimize product
delivery time, the CPU board was developed in parallel with the chips.
Using CAD tools helped to go from first-pass chips to running the
MicroVMS system in only two weeks.

The CPU board in the MicroVAX I1 system
(Figure 1) holds two chips: a microprocessor,
called the CPU chip, and a floating point
coprocessor, called the FPU chip. The board
also integrates a synchronous memory subsys-
tem, a synchronous I/O-bus controller, and a
synchronous on-board 1 /0 subsystem. The pro-
ject to develop the CPU board was governed
primarily by time-to-market considerations.

1 1 1 1 1 1 1 1 1 1 1 1 1 ~ U ~

Figure I The Micro VAX I1 CPU Board

Other factors, such as VMS and ULTRIX compat-
ibility, performance, reliability, cost, and ease
of high-volume production were also important
criteria. The end result is a successful balance
between all these factors.

Development Goals
The importance of the primary goal governed
how the project team organized itself to make
decisions and to execute tasks. Rapid decision-
making, and parallel and overlapping activities
were the norms for this development effort.
Unfortunately, parallel activities can cause
communication problems, thus increasing the
risks of product fai lure. However, these
problems were anticipated and mechanisms put
in place to reduce the risks to an acceptable
level.

The CPU board was designed around the
specifications of the CPU and FPU chips, which
were being developed at the same time. There-
fore, one development goal was to minimize
the dependency of the board design and layout
on the first-pass designs for these chips. The
team aimed at providing a fully functional sys-
tem environment into which the first-pass chips
could drop. This aggressive approach lead the
team to leap-frog over events rather than to take
a conventional stepping-stone progression. The
overall project manager encouraged the taking

Digital Technical Journal
No. 2 March 1986 3 7

- Developing the MicroVAX II CPU Board

of prudent risks because he was responsible for
meeting the development schedule . The
acceptance of these risks eventually paid off in
an on-time delivery of the CPU-board design.

Single- board Design
Developing the CPU board around the two
chips required us to provide a specific system
environment. That environment had to balance
the memory bandwidth of the CPU chip against
its 1 /0 bandwidth requirements. The realiza-
tion of that balance is the key to the board's
success. Having either a slower memory or a
slower 1 /0 subsystem would degrade system
performance by at least twenty-five percent.
The environment also had to support the
MicroVMS, ULTRIX, and VAXELN operating
systems.

Our goal was to provide the hardware speci-
fied by the three operating systems on one
Digital-standard quad-sized board (8-'/2 by 10-'/z
inch). The single-board goal was a consequence
of technology improvements balanced by the
costs of replacing the unit in the field. In this
case, needing fewer pieces to build the system
would reduce manufacturing costs, improve
reliability, and ease maintainability costs. The
objective of operating at the full bandwidths of
the chip and the 1 /0 bus was especially chal-
lenging when so little board space was availa-
ble for the necessary functions.

Most new chips do not run at their full speed
immediately; they take some time to debug.
Our design objective was to run the CPU chip at
an operating frequency lower than its maxi-
mum during the first-pass debug. Of course,
running at a slower clock rate was never an
acceptable compromise for the final product.
(Two versions of the CPU board were devel-
oped with minimal component differences, one
running at the full 200-nanosecond (ns) micro-
cycle speed and the other at a slower 242-ns
microcycle speed.) However, if the first-pass
chip had missed its performance target, the
development of the CPU board could still have
continued. It is a tribute to the chip designers
that the first-pass chips did run at full speed,
which was quite unusual in so complicated a
product.

The bus chosen to meet the 1 /0 needs of the
system was the Q22-bus. This 22-bit bus has
sufficient bandwidth to handle traffic from the
system disk, the Ethernet LAN, and other 1 /0

sources, such as other processors. The risk of
using this bus was low due to its proven design,
and the development cost for this application
was reasonable. The Q22-bus is also supported
by many disk, tape, and other 1 /0 products
from both Digital and third-party add-on
manufacturers.

CPU Board Functions
We ruled out using the Q22-bus for accessing
memory directly, since the bus could not meet
the memory cycle time of 400 nanoseconds for
the CPU chip. ' Therefore, a new memory archi-
tecture had to be developed. We investigated
two alternative schemes, the first being the
widely used direct memory access (DMA) with
a s ingle port . Unfortunately, DMA forces
addresses and data to cross the microproces-
sor bus on their way to memory. The usual pro-
cedure is to halt the microprocessor with a
DMA request or grant while the DMA device
uses the microprocessor's data and address
paths. In this case the CPU chip, having no
cache, would waste time by exercising the
memory request and memory grant signals.
Therefore, we chose the second scheme, a dual-
ported memory controller. Figure 2 depicts the
single- and dual-ported memory controllers that
were considered.

This dual-ported controller requires that the
CPU chip have different address and datapaths
for the Q22-bus and the memory controller.
While a DMA access is taking place, the CPU
chip can continue operating on its 32-bit exter-
nal datapath, primarily communicating with
memory and the FPU chip. In this context,
memory cycles can be pictured as strings of
400-11s time slots controlled by a central arbi-
ter. This memory controller minimizes the
impact on the CPU chip's performance by DMA
accesses to memory on the Q22-bus. This
organization is not locked u p by asynchronous
Q22-bus cycles, whose transactions are three to
four times slower than the CPU chip's memory
cycles. It also allows the Q22-bus protocol to
operate autonomously with the CPU chip and
memory, except when the buffered bus proto-
col and the memory system exchange buffered
data.

The memory controller also serves as an alter-
native to one based on a cache. The CPU chip
does not implement an internal cache due to
power and chip-size constraints.' Cycles for

3 8 Digital Technical Journal
No. 2 March 1986

New Products

SINGLE-PORTED ORGANIZATION

CPU
CHlP

FPU
CHlP

DUAL-PORTED ORGANIZATION

Figure 2 Block Diagrams of the Proposed Controllers

DMA, refreshing memory, and CPU-chip access
are interleaved in time.

The MicroVAX I1 system is designed to be
used in a multicomputing environment. There-
fore, the bus interface logic has to accommo-
date the role of either bus arbiter or auxiliary
processor. To that end, a doorbell register facil-
itates an interprocessor interrupt mechanism.
The datapath of the Q22-bus interface has to
provide the address translations from the virtual

-

10

MEMORY

-

memory space of the bus to the address space of
memory.

We defined several other elements as being
essential for supporting an operating system on
a single board. Those are the time-of-year
(TOY) clock, the console serial line, the VAX
console command program, and the console-
interface-boot and self-test R O M . These ele-
ments, along with some status and error regis-
ters, comprise the on-board 1/0 subsystem.

MULTIPLEXER

V)
3

-

Digital Technical Journal
No. 2 March 1986

LATCH
/

'32

LATCH

SCATTER/
GATHER
MAP LATCH

ARRAY

24

LATCH

SCATTER1
GATHER
MAP

-

-

24

DATA DATA
TRANSCEIVER TRANSCEIVER

MULTIPLEXER

10

MEMORY
ARRAY

CPU
CHIP

FPU
CHIP

-2

?

-'32
V)
3

8

32

'16

DATA
TRANSCEIVER

2
0

-

Developing the Micro VAX II CPU Board

The functional organization of the CPU board
is depicted in Figure 3 .

Linked Sequential Machines
Optimizing the overall computer performance
means that data transfers between the CPU chip
and memory have to be as fast as the chip can
operate. Without a cache memory, the CPU
chip has a relatively long memory cycle time of
400 ns (two microcycles). Thus CPU chip-to-
memory data transfers can take place without
wait states.

The 400-11s 1 / 0 cycle is nevertheless fast
enough that the CPU board had to be designed
as a linked sequential machine rather than as
flow-through logic. The control function in the
MicroVAX I 1 system receives signals, interprets
them, and generates control outputs, all in a
defined sequence. This mode of control cannot
be satisfied using a combinational logic system.

In addition to permitting 400-11s memory
cycles without wait states, sequential machine
design requires less random logic and board

space than a flow-through design. The design
process is simplified because the machines are
implemented in easily changeable FPLS (fuse
programmable logic sequencer) logic. Moreo-
ver, design changes can be readily documented
and less time is needed for debugging and trac-
ing events. Sequential circuitry is more easily
simulated than random logic, in which all
events must be sampled. And, since the CPU
board's logic components run on the same
clock, it is possible to debug them at faster or
slower operating speeds.

When the CPU-board project started, this
sequential machine approach had not been
widely used in microcomputer design. Off-the-
shelf hardware and adequate CAD tools were
not available. This project shows that designing
with commercial PALS and FPLS logic can
reduce the chip count, as well as cost and
development time.

The overall control logic of this linked
sequential machine is divided into partitions.
The events inside individual partitions are gov-

CONSOLE
SERIAL LINE

CONNECTOR/
ARRAY INTERFACE DISTRIBUTION PANEL

1 MB OR
256 KB DRAM 1 MICROVAX 78032 I GATE I INTERFACE

I ARRAY

&%OSTlC L S 1
MICROVAX 78032
MICROPROCESSOR

n MICROVAX 78132
FLOATING POINT UNIT

C/D INTERCONNECT
EXPANSION MEMORY
CONTROL PATH

Figure 3 Functional Partitions of the CPU Board

40 Digild Technical Journal
No. 2 March I986

New Products

erned by independent sequential machines,
called controllers. The logic within a partition
goes through a fixed, repetitive sequence of
operations, or states, during the four quarters,
or phases, of a microcycle. The operations of
the various partitions are coordinated in two
ways. First, all sequential machines run from
the same clock so that their timing is based on
the same stream of clock edges. Second, the
sequential machines are constantly exchanging
signals, providing each other with the protocol
information needed for coordinating their flow
sequences.

The sequential machines can be classified as
modified Mealy m a ~ h i n e s . ~ The outputs are
determined by the present input conditions and
the present state of the machine. However, the
state register is separated from the output regis-
ter, with the AND programmable logic array fed
by both the state register and the inputs to gen-
erate OR plane terms for the clocked SR
latches. The advantage of clocked SR latches is
that the past state need not be regenerated by
every clock edge; only changes need activate an
OR term. Using D-type latches would require
that regeneration.

The block diagram in Figure 4 depicts a
sequential machine representation of the CPU
board's functional configuration in Figure 3.
Under the on-board control partition at the left,
the control function for the memory subsystem
is distributed among three sequential devices:
the memory sequencer, the memory arbiter,
and the auxiliary device controller. Under Q22-
bus control, there are also three sequential
devices: the slave, arbitration, and master
machines. These machines exchange request,
acknowledge, and status signals to control
operations.

Memory Subsystem
Our market research data suggested that the on-
board memory should be either 256 kilobytes
(KB) or 1 megabyte (MB). The amount depends
on whether 64K DRAMS or 256K DRAMS are
used. At the time the design was started, 256K
parts were in short supply. Therefore, using
64K DRAMS was a strategy to counter that
shortage.

The function of the memory controller is to
carry out 400-11s read and write operations and
to refresh its RAM chips. This controller con-

Figure 4 Block Diagram of the Control Architecture

k- ON-BOARD CONTROL ---- 021-BUS CONTROL

I

1 I

Digital Tecbnical Journal
No. 2 March 1986 4 1

I
I

)
MEMORY
SEQUENCER 1

I +-I I

SLAVE

T

8
V)
V)
W

gu$
uoa

MACHINE

ARBITRATION
MEMORY
ARBITER

8uw
u,?+
5 ~ 5

1 ,
I

(0 u
w
kJ
z

w

I

BUS
INTERFACE

4 I I
I

1 I
MASTER

GATE ARRAY

U z > 0)

MACH'NE

MACHINE

g

AUXILIARY DEVICE
CONTROLLER

A I
I
I
I
I

Developing the MicroVAX II CPU Board

tains a Q22-bus scatter-gather map that handles
transfers between the Q22-bus virtual memory
and on-board physical memory.

Memory access is controlled by the memory
arbiter. This arbiter checks for outstanding
memory access requests in a fixed-priority
sequence at the ends of 200-1-1s idle cycles and
400-11s memory cycles. It also checks for
requests from the Q22-bus slave machine, the
memory-refresh counter, and the CPU chip, in
that order. The fixed-priority sequence resolves
collision requests for memory usage. If the arbi-
ter requires exclusive control of the memory
subsystem, a locking mechanism built into the
subsystem prevents contention.

When the CPU chip requires a memory-read
lock, the memory arbiter will stall the chip and
direct the Q22-bus arbitration machine to sus-
pend other bus activity. Those actions will hap-
pen only after any pending memory cycles of
the slave machine have been completed. The
arbitration machine will retain Q22-bus master-
ship until the write/unlock cycle of the CPU
ch ip frees t he bus. Until t he arbitration
machine becomes Q22-bus master and while
the CPU chip is stalled, the memory arbiter will
perform the demand-driven refresh cycles and
resolve slave-deadlock cycles from the Q22-
bus. As each memory cycle is completed, the
memory arbiter checks these requests again,
and either the Q22-bus or the refresh-memory
cycle can begin at the next clock edge. If no
Q22-bus or refresh requests are pending, the
arbiter anticipates that a CPU-chip cycle will be
next.

That anticipation and the fixed-priority
sequence save a lot of program execution time.
The CPU chip makes about seventy percent of
all memory references. Slave machine accesses
by the 1 /0 bus devices occur twenty percent of
the time (a maximum burst rate, not the aver-
age rate), and those by the refresh counter, two
percent. (The remainder are idle cycles.)
Therefore the controller, by anticipating that
the CPU chip-rather than the 1 /0 bus or the
memory-refresh counter-will make the next
memory access, allows a memory cycle of 400
ns, instead of 600 ns. (The 600-11s cycle would
be necessary because the address strobe of the
CPU chip would have to assert before the mem-
ory cycle cou ld s tar t , thus wast ing one
microcycle.)

When timing microcycles, the memory arbi-
ter enables the memory sequencer at phases

coincident with the CPU chip's entry to a new
microcycle. This enabling happens even though
the sequencer does not yet know whether or
not there will actually be a memory access by
the CPU chip. Not until three phases later can
the sequencer determine whether or not the
address strobe has been asserted for a memory
reference. If so, the sequencer enables the con-
tinuation of the anticipated memory access.
After that cycle completes, the next memory
access will be enabled, and the procedure
repeated. If not, the sequencer "kills" the
cycle and runs another poll loop after checking
for Q22-bus slave or refresh requests. Not antic-
ipating a memory access would reduce per-
formance by app rox ima te ly t h i r t y - th ree
percent.

The memory sequencer generates the row
and column address strobes, sets u p reads and
writes on each byte, and handles parity genera-
tion and detection. The auxiliary device con-
troller can "stretch" the memory cycle of the
CPU chip to synchronize its timing with slower
devices, such as the TOY clock and the boot
ROM.

The scatter-gather map converts between the
22-bit virtual addresses of the Q22-bus (4MB
addressable) and the 24-bit physical addresses
of the memory (up to l6MB addressable). As
defined by VAX memory management, the 4MB
is divided into 8192 pages of 51 2 bytes each.
The 22-bit virtual address consists of a 13-bit
page number and a 9-bit offset to the addressed
byte in that page. The 24-bit physical address
consists of a 15-bit page number and a 9-bit
offset. An entry in the map for each 512-byte
page and offset points to a location in physical
memory. Each physical address has four byte
masks that select which bytes are inactive on
any memory reference.

There are, of course, other ways to map
addresses between the 1/0 bus and memory.
One way is one-to-one address translation,
which in this case would have restricted physi-
cal memory to 4MB. Another way is first to map
one-to-one into the lowest 4MB of memory.
Then, the CPU chip can perform the transla-
tions and data transfers to the proper pages in
the address space of the remaining memory.
Unfortunately, this approach is unacceptable
due to its effect on performance. A third way is
to have fewer than 8192 mapped pages. In this
case, programmers might have to provide their
own mapping software for many real-time 1 /0

Digital T e c h i c a l journal
No. 2 March 1986

New Products

applications. That typically involves DMA
access to large numbers of RAM locations. None
of these methods proved as satisfactory as the
use of the scatter-gather map.

Interface Control Signals
The interface control signals to the CPU chip
include the following:

Clock-in (40 MHz), clock-out (20 MHz; used
to time the sequential machines), and reset
signals

Address, data, external-processor, and tim-
ing-strobes-out signals

Three chip-status, four byte-mask, and the
read/write signals

DMA-request and DMA-grant signals

Four interrupt-line signals and one HALT
signal

Ready and error signals

The pulse of the design is a four-state grey-
code binary counter, which is clocked from the
synchronous clock-out signal of the CPU chip.
The first edge assertion of the clock-out signal
after power-up puts the CPU chip in the first
50-11s phase of the four-phase microcycle. The
grey code allows the memory arbiter and auxil-
iary device controller to track the state of the
microcycles. The 28-bit address of the CPU
chip is decoded to select the accessed device
and then encoded into a series of 3-bit cycle
codes. The auxiliary device controller, the
memory arbi ter , and the master machine
decode those cycle codes to identify what type
of timing cycles to sequence through. The two
key signals, apart from the cycle codes, are
those for the address strobe and the read/write.
They direct the auxiliary device controller, the
memory sequencer, and the master machine to
perform the read or write operations with the
device specified in the cycle codes.

Those three elements control the CPU chip's
cycles and any system exceptions via the ready
and error signals. The DlMA request signal is
used only during a reset operation to delay the
CPU chip until the system has finished reset-
ting. The byte-mask signals simply direct the
control logic to perform certain operations.
Those include masked (byte or word) or
unmasked (longword) memory cycles and data

funneling operations on the Q22-bus. (Data
funneling converts 32-bit longwords to 16-bit
words and vice-versa.) The unmasked cycles are
required since the Q22-bus is 16 bits wide,
whereas the memory and CPU-chip buses are
32 bits wide. The on-board 1 /0 time can be
extended to accommodate slower external
devices. The memory controller allows the
memory cycle to end only when a device has
asserted a ready (RDY) signal, indicating the
completion of its task.

Add-on Memor-y
The system's memory can be expanded with
one or two memory boards, each containing
either 1, 2, 4 or 8 megabytes. Thus total mem-
ory can be as large as 1 6 ~ ~ and still offer a
fixed 400-ns access time with no wait-states.
Each board is linked to the CPU board by means
of a local interconnect. This interconnect con-
sists of special control signals on the C and D
rows of the Q22 backplane and a 50-pin mod-
ule-header and ribbon cable for data. Each
interconnect links a board directly to the one
just below it in the board cage of the system
enclosure. Thus control signals and addresses
can pass directly between the chips and mem-
ory without using the Q22-bus. The diagram in
Figure 5 shows the functional organization of
the memory boards.

For ease of installation and maintainability,
the add-on memory boards are self-con-
figurable; there are no user-settable switches or
jumpers on the CPU board or memory boards.
This design requires a logic function that com-
bines active addresses with static configuration
data to generate the proper control strobes
according to the configuration. Therefore,
although the add-on memory.boards are posi-
tion independent, they "recognize" which
expansion slots they occupy. (To get the full
l 6 M B configuration, the memory controller
design supports 1 MB-by-1 DRAM chips.)

On- board I /O Subs-ystern
The serial line interface in the on-board 1/0
subsystem provides the CPU board with a full-
duplex, RS-423 ELA console terminal interface.
The console interface program is implemented
in macrocode in the boot ROM. The console-
mode functions include general booting, user-
computer interface, self-test and HALT. The
boot ROM also includes special support func-

Digital Technical Journal
No. 2 March I986 4 3

I Developing the Micro VAX II CPU Board

MEMORY DATAPATH
(10 MB/S)

PRIVATE MEMORY 1

MEMORY 2

STORAGE

BLOCKMODE DMA
(3.3 MB/S)

Figure 5 Functional Partitions of Memory Modules

tions for the software in the MicroVMS, ULTRIX
and VAXELN systems.

As the boot ROM goes through a self-test
sequence, programmable LEDs display the test
status, identifying any board subsystem that
contains a failure. By analyzing this sequence
for effectiveness, we found that it provided a
confidence level of eighty-six percent in the
functional integrity of the CPU board and add-
on memory boards. Although some Q22-bus
logic functions could not be tested with this
method, it helped to reduce significantly the
times to do manufacturing and field service
tests.

To emulate a CPU-halted condition, the CPU
chip can be directed by either software or hard-
ware switches to transfer program control to a
firmware routine at a fixed PROM address. The
HALT function retains the board state. The CPU
chip traps to the boot ROM when there is a
HALT, masking i t until there is an instruction
fetch outside the ROM. While in this emulated
HALT, the firmware will perform the specified
operations only after receiving either console
commands or a signal from the AUTO-REBOOT
switch.

The CPU chip does not have a RESET instruc-
tion; the chip simply sets a RESET request flag.
The UNJAM command in the console mode ini-

tializes the bus by forcing the CPU chip to the
DMA grant state. UNJAM then transfers control
to RESET in the interface gate array of the CPU
chip. After that, the logic resets the board's
functions and the arbitration machine resets the
Q22-bus. Any auxiliary processors are reset
from the Q22-bus reset signal.

Exceptions, which may originate in the con-
sole, the on-board I/O, the Q22-bus, or the
memory subsystem, are reported to the CPU
chip for a machine check. This process involves
setting an error-register flag in the interface
gate array of the CPU chip. The chip then treats
the exception as either fatal (HALT or AUTO-
REBOOT) or non-fatal (abort the process).

Board Components
Logic hardware for the CPU board was selected
by balancing the need for minimum power and
board space against the use of low-cost, off-the-
shelf components. The gate arrays for the CPLI
board and the bus interface, for instance, are
more expensive than discrete logic; however,
they are necessary to fit all support functions
on one quad-sized board. Due to a conductivity
connectivity limitation through the board's
edge fingers, the maximum allowable power
consumption is 4 5 watts for a 1MB on-board
memory configuration. We were also con-

4 4 Digital Technical Journal
No. 2 March 1986

strained by the watts per square inch that had to
be conducted from the board surface to the
environment. That was important given that the
enclosure is cooled by the flow of forced air.

The gate array for the CPU-chip interface
decodes addresses and latches boot-ROM
words. This gate array also contains registers for
booting, diagnostics, and memory subsystem
errors; the on-board 1 /0 datapath; and the inter-
rupt-acknowledge decode and control.

The gate array for the bus interface includes
such components as the doorbell register, the
memory-refresh counter, the holding latches
for byte and word packing and unpacking, and
timeout counters. This gate array also generates
the bus addresses.

The memory subsystem includes a number of
discrete components. The memory arbiter and
auxiliary device controller are both commer-
cial programmable sequencers. The memory
sequencer consists of 12 discrete logic chips.
However, we had to design our own memory
controllers. The available commercial ones
could not handle both the speed and the
higher-level arbitration function required to
anticipate memory accesses.

Previous board designs used an eight-layer
construction technology (two power, four sig-
nal, two covers, and top and bottom solder
masks). However, to reduce the board's cost, a
six-layer technology had to be developed (two
power, four signal, and top and bottom dry-film
solder masks). Six-layer construction costs less
than eight-layer due to alignment and drilling
problems with the stacked layers of the latter.
We used a CAD system to evaluate the chip
interconnects on the board layout. The system
showed that the signals could not be routed on
two signal layers, but could on four. The two
additional layers provide the 5V power and
ground planes. Digital's Computer-Aided
Design (CAD) Group in Maynard, Massachu-
setts, designed a custom software tool to help
in developing the board layout. With this tool,
it was possible to f i t all functions on the board
with 8-mil lines and spaces, and 60-mil pads.
Having the lines and pads as wide as possible
offers satisfactory yield in production and good
signal quality due to strip-line characteristics.

Enclosures
Two enclosures were considered to house the
boards, the BA23 and the BA123 boxes. At the
time, the BA23 box was an active product; only

minor modifications were needed to accommo-
date it to the MicroVAX I1 system, a nice, low-
risk plan. In contrast, the BA123 box was still
being developed. Using it represented a greater
risk; however, i t could support more mass stor-
age. The backplane cages of either box could
accept add-on memory and peripheral device
interfaces on either quad-sized or dual-sized
(5-!4 by 8-L/z inch) boards. However, the BA123
box accepted more quad-sized and dual-sized
boards. That was a distinct advantage because
there would be different numbers of board slots
in the board cages in different packages of the
MicroVAX I1 system. Moreover, each enclosure
had a different thermal environment that had to
be considered in the layout of the CPU and
memory boards. Based on these considerations,
we chose to use both the BA23 and BA123
boxes as the enclosures for the boards.

CAD Tools
The tight schedule dictated that separate design
teams had to develop each of the chips and the
CPU board as parallel projects. These separate
efforts were made possible by the extensive use
of CAD tools and computer simulation. Simula-
tion was used extensively to design the CPU
and FPU chips, the on-board memory and 1 /0
subsystems, the gate arrays, the sequential
machine controllers, and the Q22-bus. A board-
development tool set was selected from CAD
packages available in the industry. Since these
packages were generally incompatible, w e
developed a process that transported wire lists
between these various CAD tools. The process
linked inputs and outputs between the sche-
matic-capture work stations, the PC-board lay-
out system, the simulator, the gate-array ven-
dor, and the documentation control group. One
key to the rapid development of schematics was
to let the designers retain control by perform-
ing their own drawings and edits.

We planned to use gate arrays right from the
start of the project. Therefore, a hierarchical
schematic-capture system was needed to facili-
tate the representation of devices at a number
of levels. To verify the schematics, we selected
a mixed-mode logic simulator that had library
support for most of the off-the-shelf devices
used in PC-board design. That minimized the
development time to construct the simulation
libraries. A complete simulation model of the
CPU board was also constructed to expedite the

Digilal Technical Journal
No. 2 March 1986

4 5

New Products

I
I Developing the Micro VAX ZI CPU Board
I

design verification process. This model pro-
vided a "soft" test bed for design changes
before they were committed to hardware.
Behavioral models were used to simulate the
signals from the CPU chip, as well as any device
attached to the Q22-bus. No attempt was made
to emulate the VAX instruction set. Instead, the
goal was to verify the sequences for reads,

writes, interrupt acknowledgements, and the
cycle flows for the block and non-block modes
of the Q22-bus.

Several CAD packages developed by Digital
were also employed to expedite the board
design process. Figure 6 shows the CAD flow
process that was assembled. (For more details
on the CAD tool suite, see reference 3.)

Figure 6 CAD Tools Used in the CPU Board Development Process

USER
P'

T

46 Digital Technical Journal
No . 2 March 1986

SCHEMATIC CAPTURE
(VALID)

HAND-DRAWN
CONTROL FLOW
DIAGRAMS

I
WIRE LISTS: . SBC
- 2 GATE ARRAYS

2 MEM BOARDS

1 I 1

PC BOARD DESIGN
(SCl-CARDS)

GATE ARRAY DESIGN SEQUENCER DESIGN
(SPIDER) (FPLS)

C 1
FUNCTIONAL
SIMULATION OPTIMIZATlON
(HILO) ISOCRATES)

FAULT GRADING
(LASAR)

PRODUCTION
DESIGN
FILE

GATE ARRAY
FABRICATION
(LDS-II)

C
FABRICATION
DATABASE

C
CONVERSION
(SNAPLINE)

I
L- - - -

1
I

i I
I T T 1

7 I
(JDC167)

TIMING
DIAGRAMS

FAULT
REPORTS

PHOTOPLO?TER
CONTROL

FUSE
PATTERN
FlLE

I

I USER I USER

I I
I 7 'T I T T T C

CATS
TESTING I I

MODIFY 1 I
I

PROM BLASTER
INTERFACE

C
SEQUENCERS

I I I I I I I
I 'I I I I I I
I I I I I I

t
I
t t t

MODIFY

1
I

I

CONVERSION

DISCRETE
DEVICES

DYNAMIC
RAMS

PALS GATE
ARRAYS

LOGIC
ANALYZER

TIME-OF-YEAR
CHIP

PC
BOARD

w
MICROPROCESSOR
HARDWARE
SIMULATORS

BOOT
ROM

PROTOTYPE
SINGLE BOARD
COMPUTER

New Products

Two CAD tools were used to help in the deci-
sion process for selecting reliable components.
The CPU board was modeled with the reliabil-
ity prediction program PREDIC, which is based
on MIL STD 21 7 . PREDIC utilizes component
thermal data from the second tool, the THUDS
analysis program. Using these tools helped us to
avoid the creation of hot spots on the board
layout and the use of low-reliability compo-
nents.

These CAD tools were so successful that the
CPU board was ready by the time the first-pass
CPU and FPU chips were ready. It then took
only two weeks of debug to go from the func-
tional chips to running the MicroVMS operating
system. In all, the development of the CPU
board took less than one year from initial speci-
fication to operational prototypes.

Summary
The CPU board was designed as part of a larger
project with formidable time constraints. Such
an environment demanded that the design of
any one component rely on the proposed speci-
fications for other, interlocking components,
rather than on actual pieces of developed hard-
ware. That environment required a cooperative
team spirit that was goal oriented and fostered
the assumption of rational risks. Both inter-
group and intra-group communication became
extremely important. The achievement of these
factors was largely responsible for the success
of the MicroVAX I1 project.

Especially important was the fact that com-
munication was aided by the CAD tool suite
used to support the overall project. In the case
of the MicroVAX I1 system, we started from a
well organized datapath and employed sequen-
tial machine architectures for controlling it. In
that way, the design documentation, simula-
tion, verification, and support were all made
more manageable. In future projects these tool
suites will mature and behavioral component
models will begin to serve as design specifica-
tions. The ability to solidify the design early in
a project means that board designers can fash-
ion silicon systems on boards that are func-
tional on the first pass.

References
1. D.W. Dobberpuhl e t al, "The MicroVAX

78032 Chip, A 32-Bit Microprocessor,"
Digital Technical Journal (March 1986,
this issue): 12-23.

2. W.1. Fletcher, An Engineering Approach
to Digital Design (Englewood Cliffs:
Prentice-Hall, Inc., 1980).

3. A.F. Hutchings, "The Evolution of the
C u s t o m CAD S u i t e Used o n - t h e
MicroVAX 11 System," Digital Technical
Journal (March 1986, this issue): 48-55.

Digrgrtal Technical Journal
No. 2 March 1986 4 7

Anthony F. Hutchings I

me Evolution of the
Custom CAD Suite Used
on the MicroVM N System

The Micro VAX 11 chips were designed in only 20 months, due in part to
simulation on GFD systems. Digital has a long history of using CAD.
Much of the MicroVAX It's CAD suite evolved from tools used on an
earlier VLSI VAX design. The higher-he1 chip functions were debugged
using behavioral simulation, aper which the circuits were modeled using
the reliable SPICE and GRAPES systems. The IV system verified all inter-
connects and extracted wirelists, while other tools controlled the
databases and checked design rules. The next generation of GFD tools
must deal with a threefold increase in chip complexity.

The factors that must be considered when initi-
ating and committing to a new VLSI design are
quite complex. They are related in the follow-
ing way:

Market Requirements/Chip Definition
+

Technology Status
+

CAD Status
+

Engineering Talent Available

Products with long lead-times can accept
higher risks in the process chosen for chip
fabrication and CAD technology. However,
products with short lead-times, such as the
MicroVAX 78032 chip, can tolerate virtually no
risk in this domain.

One way to reduce these risks is to test the
chip designs by simulating their performance
before fabrication; another way is to check for
all possible, known fabrication process viola-
tions before submitting the mask data for manu-
facture. CAD systems and tools have been devel-
oped for this purpose: to discover problems so
they can be corrected at minimal cost, both in
time and resources. Digital Equipment Corpora-
tion was an early user of CAD to decrease the
time-to-market for its VLSI products.

The MicroVAX I1 project needed to rely on a
stable CAD system and set of tools while design-
ing the 78032 CPU chip (and its companion
floating point coprocessor, the 78132 FPU
chip). Much of the stability of the CAD system
was derived from work done to develop a mul-
tichip set for another VAX microprocessor.' We
were able to both rationalize and simplify the
results of this pioneering effort to suit the
needs of the MicroVAX project. Let's begin by
discussing this earlier CAD system to see how
its use affected decisions made on the 78032
and 781 32 projects.

CAD System f o r Earlier VLSI VXX
Design
In many ways, the design process for the earlier
VLSI VAX microcomputer set the tone for all
subsequent VLSI designs at Digital Equipment
Corporation. This process was characterized by
the extensive use of simulation, especially high
level, or behavioral, simulation. The commit-
ment to high-level simulation was particularly
innovative at that time.

Two types of simulation models were used
for this earlier microcomputer. The first type
was des igned as a h igh - l eve l so f tware
breadboard used to develop and check out the

LMgital Technical Journal
No. 2 March 1986

New Products

microcode before the chip hardware was availa-
ble. The second type was developed as a rela-
tively detailed register transfer level (RTL)
model of the actual physical partitions and
design concepts of the chips themselves. This
model was used directly by the logic and cir-
cuit designers to develop the switch and cir-
cuit-level representations of the design.

One problem with using two models is that
the output test vectors have to be checked con-
tinually to ensure compatibility between the
microcode and chip designs. Thus, although
each was optimized to a specific task, the mod-
els proved to be somewhat cumbersome to use.

The hub, or kernel, of the data management
system was called c H A S . ~ ~ ~ This proprietary sys-
tem was developed at Digital's semiconductor
facility in Hudson, Massachusetts, expressly to
form the nucleus of an integrated MOS custom-
design suite. The CHAS system performs the
necessary data management functions on chip
design databases and was originally intended to
control all the design activities of a chip pro-
ject. The system embodies many of the "struc-
tured top-down design" principles of Carver
~ e a d . ~

The CHAS system manages the data collected
from circui t and logic simulations, layout
designs and syntheses, layout verifications, and
schematics entry. This central system also pro-
vides data protection and conversion functions,
as well as generating simulation wire lists.

Decisions Derived from the Earlier
Project
From the outset, the CPU and FPU design teams
made a number of important decisions based on
the experience gained from the earlier project.
One driving factor in these decisions was the
short time-to-market, which dictated that sim-
plifying the design process was a primary goal.

The first decision was that there would be
only one behavioral, o r functional, high-
level simulation model of the chip rather
than the two used earlier. Thus the func-
tional model was more complicated than the
earlier one, but avoided the very time-con-
suming task of checking the output test vec-
tors. Using one model guaranteed that the
microcode development would be in step
with the chip design, since both teams had to
use the same model.

The next decision was to carefully control
the evolution of the CAD system that was
used. Any experimentation with enhance-
ments to existing CAD tools or with brand-
new CAD tools would be done only in a con-
trolled environment. One project engineer,
trained in software and with CAD experi-
ence, was to be responsible for re-verifying
the new functionality and "robustness" of all
new CAD releases. This approach enabled
the team to acquire a vastly superior design
rule checker (DRC), which considerably
enhanced productivity during the physical
design phase of the project.

This approach also differed greatly from that
of the earlier project, although the lessons
learned from that project considerably
shaped the team's attitudes. For example, the
earlier project suffered-for a while-from
attempting to use a first-generation layout
editor that had too many bugs. (This tool was
not in fact used on any part of the final
design.) It also experimented with early ver-
sions of the CHAS system. These versions did
not perform as well as desired for some func-
tions (e.g., the Assembled Block Wirelister).
In contrast, the MicroVAX design teams
decided to perform all layout on the indus-
try-standard CALMA GDSII layout system, a
robust and proven tool.

The third decision involved the data manage-
ment of the design database. Rather than use
all the features of the CHAS system, we
decided to manipulate the design data using
the simpler VMS file-management system
with its loose but adequate version-control
mechanisms. The CHAS system was used, but
in the role of tool integrator, linking, for
example, the QUICKDRAW schematic editor
to the SPICE circuit s i m u ~ a t o r . ~ The CHAS
system also provided a variety of valu-
able format conversion utilities.

The final decision was to use one proven tool
for interconnection verification. This layout
extraction/ verification tool, called IV, per-
formed all the electrical connectivity check-
ing in a very efficient manner.6 The earlier
project had used a combination of bought-
out tools and although that verification was
very thorough, it was more costly than the
s ingle- tool process (IV) used o n t h e
MicroVAX project.

Digital Tecbnical Journal
No. 2 March 1986 4 9

The Evolution of the Custom CAD Suite Used on the MicroVAX II System

m e Design Methodology and CAD A number of very important paradigms
Tool System should be noted.

Having made these simplifications, the design 1. The behavioral model of the design was
team established a fixed definition of their kept current with the logic design of the
design methodology and CAD tool mapping. chip to guarantee the accuracy of the
This definition was followed faithfully through- microcode with the chi^ design.
out the life of the project.

Figure 1 shows all the activities in the design
phase that were supported by CAD tools. The
middle column lists each activity; the left col-
umn shows the type of data used in this activity
and manipulated by the CAD tools which are
shown in the right-hand column alongside the
actual activity and data they support/use.

The arrows indicate iteration paths where
feedback is sent to a higher level. That is, where
results are obtained from a checking or verifica-
tion activity, it may be necessary to go back and
modify an earlier set of assumptions and design
decisions. For example, in running the DRC, it
is highly likely that we will find d'esign rule
violations that require us to correct the physi-
cal chip layout.

The critical hurdle for the functional
correctness of the design was the correct
execution of a certain number of VAX
macroinstructions under an automated
checking process. (The tool used for this
process was called AXE, an architectural
test-case generator and execution tool,
working in conjunction with the DECSIM
system, Digital's proprietary multi-level,
mixed-mode simulation system). The
minimum number of cases was 100,000
tests for each VAX instruction group. In
all, more than 1 million tests were exe-
cuted before the chip was fabricated.

3 . The number of iterations during the lay-
ou t -des ign phase was min imized .

DESIGN REPRESENTATION USED DESIGN PHASE CADTOOLUSED

DECSIM Behavioral Modeling
Language [BDS]

Schematrcs

Switch Level Clrcult Wirelist

Outout Test Vectors

Circuit Netlist

Ch~p Floorplan

Sized Chip Schernattc/
CALMA GDSll
Stream Format

CCF [Layout Format]

CCF [Layout Format]

CCF [Layout Formal]

Fairchild Sentry/Tektronix
Tester Input Format

CALMA GDSII-E Beam Format
[MEBES]

Logic Design Capture

Log~c Des~gn Verification

Ver~f~cat~on of Funct~onal Equ~valence

L Circuit Deslgn Verilication

t
Layout Floorplanning

t
Ch~p Cell Layoul/ASSembly

I
C

Electrical Connectivity Checking/
Parasittc Capacitance Extraction
lor Cells ,

f
Des~gn Rule Checking for Cells

C
Electr~cal Connect~vily Checklngl

Sub Chips and Full Chip

t
Test Vector Preparation

Parasit~c Capacitance Extractron for

I
Mask Data ~ r e p a r a t ~ o n d

[output pattern compar~son]

SPICE-GRAPES

CALMA GDSll

CALMA GDSll

DRC

IVjXREF

Ad hoc Project Tools Plus DECSIM

MDP

Figure 1 (X D Tools Used in the Design Phase

5 0 Digital Tecbnfcal J o u d
No. 2 March 1986

Changes during this phase are very
expensive and the number was kept
small by having the design team submit
only sized schematics (i .e. , ones with
transistor width and length specifica-
tions that were verified using the logic
and circuit simulators) to the layout
design team.

4 . The mask data was not submitted to the
mask shop (or even generated) until all
sections on the whole chip were free of
design-rule and electrical-connectivity
errors.

Zbe Value of the NMOS CAD Suite on
tbe MicroVAX 11 Project
Figure 2 illustrates the entire CAD suite used on
the 78032 and 781 32 chip designs.

Use of the CHAS System
As mentioned earlier, the final use of the CHAS
system was pared down considerably by the

New Products

I1
MicroVAX project as compared with its use in
the earlier project. The functions used most fre-
quently were

Schematic wirelisting

Layout format conversion

Copying files out of the CHAS database

Plotting

Invoking the SPICE circuit simulator and the
GRAPES graphical post-processor

Behavioral Modeling and Simulation
A simulation system called DECSIM was used to
simulate the behavioral definition of the chip

The DECSIM system works interac-
tively and was used to debug the high-level
functional design. This system is very reliable
and proved to be a vital ingredient in achieving
the high degree of accuracy of the microcode.

ROM/PLA PLA
LAYOUT ENTRY LAYOUT ASSEMBLY LAYOUT OPTIMIZATION

CALMA

DESIGN RULE CHECKING
DATA MANAGEMENT
DATA PROTECTION
DATA CONVERSIONS
WIRELISTING

SCHEMATICS EDITOR

LOGIC SIMULATION

Figure 2 CAD Suite Used on the Micro VAX II VLSI Design

OJgitul Technical Journal
No. 2 Marcb 1986 5 1

The Evolution of the Custom CAD Suite Used on the MicroVAX I1 System

Schematic Capture
A drawing system called QUICKDRAW was used
as a schematic editor. QUICKDRAW'S greatest
assets were its architectural simplicity, reliabil-
ity, and ease of use. The system permitted sche-
matic entry on low-performance graphics ter-
minals (VT125s). Of course, keyboard entry is
not always totally practical for bulk schematics
entry, o r even good for small schematic
changes. However, QUICKDRAW could be
accessed from any terminal, was easy to learn in
a few hours, and could be used by the whole
chip team.

Logic Simulation
As in the earlier project, the MicroVAX team
decided that they needed the accuracy of
switch-level logic simulation. At this level of
representation, the transistors are literally
treated as "switches," but with resistance and
capacitance attributes. The models can also
represent both bidirectionality and charge shar-
ing. At the time, the MOS (switch-level) capa-
bility of the DECSIM software was still matur-
ing; therefore, the team decided to use a
switch-level simulator called RSIM, developed
at the Massachusetts Institute of Technology.
RSIM was sufficiently accurate to enable the
complete design to be simulated at this level,
although its timing aspects could not be used.
RSIM's usage, therefore, resembled that of a
logic simulation system. The prime role of this
stage of the process was to prove equivalence
with the higher-level behavioral model, thus
gaining functional completeness at a lower,
more accurate level of representation. That
equivalence was achieved by supplying the
same test vectors used in the behavioral phase
to the RSIM runs.

Circuit Simulation
An industry-standard system, SPICE, was used
for circuit simulation. SPICE was the most accu-
rate mechanism of its kind available for simulat-
ing the electrical performance of circuits on
the chips. This simulator was used extensively
for circuits containing up to 1000 transistors.
There were two major advantages of Digital's
version of the SPICE system.

1. The device models encoded into SPICE
were a very accurate representation of
the devices made in Digital's NMOS pro-
cess. The device equations built into

these models were derived in two ways:
first, by extracting the operating charac-
t e r i s t i c s o f NMOS d e v i c e s f r o m
fabricated test chips; and second, from
the results of experiments performed by
another team at Digital. That team cre-
ated models for devices and processes by
using a battery of sophisticated simula-
tors, such as MINIMOS, SUPREM, and
SEDAN.

2. Throughout the pre- and post-processing
stages, all voltage values over time from
a SPICE run could be saved and later
graphically analyzed by the designers in
a proprietary graphical post-processing
system called GRAPES. Using this system
avoided having to make multiple runs of
SPICE and permitted much easier inter-
pretat ion of t he ou tpu t waveforms.
Figure 3 is a sample circuit simulation
waveform from the GRAPES system.

Interconnect Verification and
Wirelist Extraction
The IV system, partially proven on previous
chip design projects, was a major boon to this
design team. The system performed several
functions.

1. It extracted a wirelist (in SPICE format)
from the actual layout database.

2 . It calculated the parasitic capacitances
for devices and nodes and fed those into
the extracted wirelist. That automatic
input permitted the final simulations in
SPICE to be very accurate.

3. It detected any open and short circuits in
the electrical network of the wirelist.

4 . It compared the extracted wirelist with
the original wirelist (created via the
schematics editor, QUICKDRAW) and
reported any mismatches in signal o r
node names, device sizes, and other ele-
ments.

This verification and extraction tool per-
formed all these functions much faster and
more accurately than any of the connectivity
checkers or extractors that were available com-
mercially. The IV system is generally recog-
nized as one of the best in the industry for this
purpose.

5 2 Digital Technical Journal
No. 2 march 1986

New Products

FOO 551 1-• A = V l J) 2-• R . V l 3) 3-> C l V I 5)
1 - > 1 - 2 5 . , , ~ A , , , , , , , . , 1 ~ ~ 7 5 ~ 5 5 5 ~ . ~ 5 5 ~ 5 5 5 5 2 ~ 5 5 5 1 2 5 S 3 . 7 5 I v)
2 - > ~A,,,,,,,,,,.,,,,.,A2.3~5,,,,.,,.,,,,5~5,~.2~~~,~,.,,,,,,,,,,,3.125,,,,,,,~3.5 I V)

(n s) 3- ' P,,,,,,,,,,.,,.,.,,,,I.25,,,,,A,,,.,,r,Au~~-Z~~~SSSS~S~SSSSS3.75YIYIIYYYYL~Y,I5 I V)
A.RRM;'PI : I !I X 1 I
I.RC.O*(I I : I c R A I I
~ . c) n r u u I I I A 8 I j
3 . 0 @ 0 : 1 0 I I C I A B
U.ARROR : I I C I X
s . ~ r e ~ ~ a I I I c I x
b . 0 @ ¶ 0 P I I I C I X
7.CILBCI0 I I I C I A B
I I .BC"(I0A I I I c I A 8 I
P . 0 A 0 0 0 I I I c R A I I
l Q . p R 0 0 I - - - - - - - - - - - - - - -"- - - - - - -+-- - - - - -BBB~BBB--- - - - - - - -X-- -+-- l
l l . @ Q * @ I B I A C I I I
1 2 . F 0 0 0 B A I C I I I
1 3 . C I 0 0 0 B A I C I I I
l u . a w 8 w x I c I I I
1 5 . 0 0 0 0 X I C I I I
1 b . R Q m 0 K I C I I I
17.RBCJB 8 4 I C I I I
1 8 . 8 A M B B I C I I I
l P . R B A 0 I B I A C I I I

Figure 3 Sample Output from the GRAPES System

The system has some unique data structures
and algorithms.

1. It simplifies circuit extraction by con-
verting all shapes into trapezoids. These
are very convenient representations that
permit IV to thoroughly analyze lateral-
node and vertical-device connections.

2 . It calculates the parasitic capacitances
for both area and periphery, taking into
account cell-capacitance effects coming
from ever-shrinking device geometries.
The system also calculates coupling
ca~aci tances.

on non-prime shifts. Then the team activated
AXE on those systems, which generated a tre-
mendous number of test cases. This same
approach was used (and continues to be used
today on subsequent projects) for running CPU-
intensive SPICE circuit simulations on many
processors in remote locations.

VLSI CAD B e y o n d the MicroVAX 11
Project
Digital's use of the NMOS VLSI CAD suite
reached a peak of maturity with the 78032 and
78132 projects. We have been able to make a

3- ~t performs very fast wirelist compari- major ~rocess- technolog~ step to CMOS' with

sons (layout to logical), using a unique little cost by exploiting the same basic set of

graph-isomorphism algorithm that iso- tools. That has enabled us to develop a whole

lates errors rather than propagating new set of VLSI chip products in very quick

them. succession.
However, following Moore's Law, it is time to

System Verzyication face the challenge of a two- to threefold
The final system-level verification of the
MicroVAX chips was performed using the AXE
test-case generator in conjunction with the
DECSIM behavioral models. In this way, test
cases (which were in fact VAX macroinstruc-
tions generated by AXE) were passed to the sim-
ulation model for execution. The execution
results were then compared automatically with
those obtained from running the same test cases
on an operational VAX system. The MicroVAX
team used AXE in a particularly novel way. Via
Digital's Ethernet network, they searched for in-
house VAX-11/780 systems with spare capacity

increase in complexity for the next generation
of chip designs. This complexity means that
design teams for new custom chips must be
able to design parts with twice the transistor
count as the 78032, yet take the same or less
time to do i t . Figure 4 illustrates the complex-
ity that will be experienced in future chip
design projects.

Major productivity improvements in CAD sys-
tems must be made to accomplish this doubling
of the transistor count . Digital's VLSI CAD
Group is now making the following improve-
ments in its custom tool suite:

Digital Tecbnical Journal
No. 2 /March 1986 53

The Evolution of the Custom CAD Suite Used on the MicroVAX II System

IOK / / (~ 1 1 chip) I I I I I I , ,
1980 1982' 983 1984 1986' 987 1988

Year

Figure 4 Chip Complexity Projections

A new system for tool integration and data
base management, called KATIE, is being
developed to replace the CHAS system. The
KATIE system has a simpler, more modular
CAD kernel than has the CHAS system, but
with much higher performance.

The DECSIM software is being improved to
provide true mixed-mode modeling and sim-
ulation (behavioral-gate-switch) . Initial
results indicate a doubling of simulation pro-
ductivity, and our aim is to gain equivalent
performance in the separate switch and
behavioral areas.

A variety of techniques is now providing up
to ten times the performance of the tradi-
tional SPICE system for circuit simulation.
For example:

1. An event-driven circuit simulation sys-
tem called SAM SON,^ which exploits the
temporal sparseness of digital networks,
has been developed. SAMSON offers from
five to fifty times the performance of
SPICE for direct current and transient
analyses.

2 . SPICE can be made to run much faster on
vector processors and multiprocessors.

3 . A timing verification system called TV
can analyze critical paths at the rate of
1000 transistors per minute of CPU

time.'' T V performs within fifteen per-
cent of the accuracy of SPICE, but its
speed is several orders of magnitude
faster.

Schematic entry can be improved by running
QUICKDRAW on high-performance, high-
resolution graphics workstations. The system
will support multiwindowing, menus, and
pointing devices, as well as provide high-
performance wirelisting, with at least a
doubling of speed over the version used on
the 78032 chip design.

High-resolution, VAX-based graphics work-
stations will also be used for custom layout
editing, using the in-house developed editor,
MEGAN.

Summary and Conclusions
The MicroVAX I1 project demonstrated a num-
ber of valuable Lessons about CAD in general
and VLSI CAD in particular.

1. The second and subsequent projects that
use a particular CAD technology benefit
enormously from the experience gained
during the first use.

2 . As a corollary to the point above, it is
imperative that CAD tools and systems be
built to endure at least two generations
of projects. Otherwise, the cost and diffi-
culties of using these tools will far out-
weigh the benefits.

3. The CAD teams should use the period of
stability during these later uses of the
tools to develop the next generation of
more powerful tools.

4 . Much conservatism exists in the IC
industry around the need to archive com-
plete images of all tools (layered prod-
ucts, operating systems, etc.) used in the
design of an IC, along with its final mask
database. Future ch ip teams plan to
migrate their mask databases to contem-
porary CAD systems. This process will
use the same exhaustive checks and tools
used on the original design to ensure that
the conversion is thorough. In this way,
there will be no need to revert to old
copies of outdated systems and tools
when making engineering change orders
late in the product's life cycle.

LMgffd Technical Journal
No . 2 March 1386

5. The close coupling between chip design
teams and CAD developers is an invalua-
ble ingredient in the successful comple-
tion of chip projects.

References
1. W.N. Johnson, "A VLSI Superminicom-

puter CPU," IEEE International Solid-
State Circuits Conference Digest of
Technical Papers (1984): 174-175.

2. J.C. Mudge, C. Peters, and G.M. Tarolli,
"A VLSI Chip Assembler," in Design
Methodologies for VLSI Circuits, ed.
P.G. Jespers (Rockville: Sijthoff and
Noordhoff, 1982), 329-356.

3 . A.F. Hutchings, R.J. Bonneau, and W.M.
Fisher, "Integrated VLSI CAD Systems At
Digital Equipment Corporation," Pro-
ceedings of the 22nd ACM/IEEE Design
Automation Conference (1985) : 543-
548.

4 . C. Mead and L. Conway, Introduction To
VLSI Systems (Reading: Addison-Wesley,
1980).

5. SPICE was developed by Lawrence Nagel
and Ellis Cohen of the Department of
Electrical Engineering and Computer Sci-
ences, University of California, Berkeley.

6 . W.J. Herman and G.M. Tarolli, "Hierar-
chical Circuit Extraction With Detailed
Parasitic Capacitance," ACM IEEE 20th
Design Automation Conference Pro-
ceedings (1983): 337-345.

7. M.A. Kearney, "DECSIM: A Multi-level
Simulation System For Digital Design,"
Proceedings of the ICCD Conference o n
Computer Design (1 984): 206-209.

8. R.R. Rezac and L.T. Smith, "Methodology
for and Results from the Use of a Hard-
ware Logic Simulation Engine," Proceed-
ings of the ICCD Conference on Com-
puter Design (1984): 457-461.

9. K.A. Sakallah and S.W. Director, "SAM-
SON: An Event Driven VLSI Circuit Simu-
lator," Proceedings of the Custom Inte-
grated Circuits Conference (1 984) :
226-23 1 .

New Products

10. N.P. Jouppi, "TV: An NMOS Timing Veri-
f ier ," (Thesis, Stanford University,
1982).

Other References
Panel Discussion, R.J. Camoin, Moder-

ator, "Central DA and its Role: An Execu-
tive View," ACM IEEE 20th Design
Automation Conference Proceedings
(1983): 3-1 1 .

R.H. Katz, "Managing the Chip Design
Database," IEEE Computer, vol. 16, no.
12 (December 1983): 26-35.

W.M. vanc l eempu t and H. Ofek,
"Design Automation for Systems," IEEE
Computer, vol. 17 , no. 10 (October
1984): 114-122.

J.C. Foster, "A Unified CAD System for
Electronic Design," ACM IEEE 21st
Design Automation Conference Pro-
ceedings (1984): 365-369.

K. Sherhart, M. Vershel, and J. Owen,
"The Engineering Design Environment,"
ACM IEEE 21st Design Automation
Conference Proceedings (1 984) : 466-
472.

B.W. Lampson, "Hints for Computer
System Design," IEEE Software, vol. 1 ,
no. 1 (January 1984): 11-28.

Digital Technical Journal
No. 2 March 1986

Rick Spitz
Peter George

Stephen Zalewski I

f i e Making of a
Micro VAX Workstation

Developing a MicroVYX workstation required that graphics hardware
and s o p a r e be designed. Tbe project team kept the bardware simple by
using VAX instructions for most of the work. Extensive graphics s o p a r e
bridges the hardware and the graphics applications. The graphics and
windowing software, UIS, is the key to that process. UIS supports trans-
parent multitasking with a distributed method for managing regions on
the screen. A video device driver manages lists of region descriptors,
keeping track of keyboard and mouse changes. Tbe UIS system normally
executes in user mode, thus minimizing overhead and utilizing the full
performance of the VMS system.

When Digital decided to develop the MicroVAX
series, we also began to consider how to build
them into a family of low-cost VAX engineering
workstations. Experience with the VAXstation
100 provided us with a great deal of knowledge
related to workstation requirements. However,
its architecture required extensive graphics
hardware. This architectural approach was not
considered viable for a low-cost, high-volume
engineering workstation intended for a single
user. Another approach placing greater empha-
sis on software was illustrated by Xerox's Star
workstations, which were in use within Digital.

We decided that combining the MicroVAX
processor with a low-cost graphics controller,
the VMS operating system, and a good human
interface would result in a powerful worksta-
t ion . The VAX/VMS environment already
allowed any VMS application program to run on
every member of the VAX family. The MicroVAX
system would extend the family to include
lower-cost VAX systems. A MicroVAX worksta-
tion, in addition to running all existing VMS
software, would now provide a base for graph-
ics applications.

In the spring of 1983, a joint task force of
hardware and software engineers was formed to
determine how this workstation should be
built. Our strategy was to design a product
based on the MicroVAX I system and evolve i t to

a mature workstation using the MicroVAX I1
system.

The task force's objective was to set the over-
all goals of the project and to make sure that the
graphics hardware and software were well inte-
grated. Guided by a strong focus on time to
market, the workstation hardware group had
the responsibiIity of building an initial graphics
controller. They were also chartered to initiate
design work on future hardware graphics con-
trollers with more features and higher perform-
ance. The VMS software group took on the role
of developing the software components. This
paper is written by members of the VMS DeveI-
opment Group; therefore, its primary emphasis
is on the software aspects of this project.

Our first task was to make sure that the graph-
ics hardware being defined was suitable for effi-
cient use by the software. Having limited expe-
rience with low-cost graphics controllers and
workstations, we proposed a strategy of using a
very basic Q-bus controller and doing most of
the work with VAX instructions. This approach
was viable because the VAX instruction set is
rich and versatile in the area of character and
bit manipulation. I t also minimized the risk in
developing hardware and provided maximum
flexibility for the graphics capabilities. With
greater freedom in the software design, w e
could gain experience and provide better direc-

Digital Tecbnical Journal
No. 2 March 1986

tion for hardware features needed in future
graphics controllers.

Since no MicroVAX CPU had yet been devel-
oped, we built a breadboard hardware configur-
ation to do hardware and software evaluations.
MicroVAX systems execute a subset of the full
VAX instruction set in hardware; however,
software emulation of the other instructions
allows all VAX software to run transparently.
For cost and space reasons, MicroVAX systems
were targeted to use the Q-bus for I/O, while
most existing VAX systems used the UNIBUS for
most peripherals.

The breadboard configuration consisted of a
VAX-11/750 system with a UNIBUS-to-Q-bus
adapter. We obtained some experimental Q-bus
graphics controllers used in the deve.lopment
of the graphics interface for the PRO350 hard-
ware. Using this configuration, we evaluated
the performance of text and graphics by imple-
menting a number of software algorithms.' This
technique treated display memory as standard
VAX program memory, and VAX character and
bit instructions were used to generate text and
graphics. Evaluation of our results showed that
this approach was reasonable and the basic per-
formance was acceptable; however, some
assists were still needed in hardware.

The VCBOI Hardware Graphics
Controller
Taking our results back to the the joint task
force, we settled, after several iterations, on a
hardware design. The hardware graphics con-
troller was named the VCBO 1 , known internally
as the Q-bus video subsystem, or QVSS. Due to
space and power constraints in MicroVAX pack-

ages, the controller had to fit on a single-quad
Q-bus module. It contained 256K of bitmap
memory that was fully addressable by any VAX
instruction. That amount of memory was more
than was needed to fill a full-screen video mon-
itor. The extra memory would allow software
graphics rout ines to operate direct ly on
occluded areas of windows in the video display
memory.

Based on inputs from the software evaluation,
the hardware would also contain a scan-line
map to allow mapping any scan line in display
memory onto the physical screen. This tech-
nique allows much better scrolling perform-
ance, facilitates the management of occluded
window areas, and allows the simultaneous
suppor t of different windowing systems.
A 1 6 x 16-pixel cursor plane, a separate hard-
ware componen t , great ly s impl i f ied t he
software logic required to manage the mouse
cursor. The pattern is programmable to allow
dynamic changes to the cursor pattern, depend-
ing on its screen location and the state of the
workstation. In addition, a mouse interface and
dual UART are provided to connect to a mouse,
a keyboard and an optional tablet. The inherent
simplicity of the hardware allowed the hard-
ware team to produce the first prototype by the
early summer of 1983.

Figure 1 shows a block diagram of the VCBO1
configuration.

Soware Architecture
The software team was chartered to develop a
general software workstation architecture. Our
goal was to allow the evolution of future
MicroVAX workstations that would address

SCAN MAP PHYSICAL SCREEN

u CURSOR

- -

1024
BlTS

2048
LINES

Figure I Block Diagram of the VCBOI

960
BlTS

-

Digital Technical Journal
No. 2 March 1986 57

1024

t
w

ENTRIES
864
LINES

The Making of a Micro VAX Workstation

cost-sensitive markets with basic, inexpensive
hardware. We also wanted to improve perform-
ance and take advantage of features to be pro-
vided by more-intelligent hardware graphics
controllers in the future.

Our performance evaluation of the VAXsta-
tion 100 architecture pointed out that the cen-
tral dispatcher needed to manage the window-
ing activities on the physical screen was a real
bottleneck. Therefore, we elected to pursue an
approach that used a distributed method to
manage regions on the physical screen. In most
cases this approach would allow an individual
job, called a process in the VMS system, to oper-
ate directly on bitmap memory. 'There is much
less overhead than context switching between
processes, as required in a centralized screen-
manager design.

The software architecture that we defined
was implemented by a loadable set of VMS sys-
tem services know as the User Interface Ser-
vices, or UIS.' UIS provides fundamental graph-
ics services and display list capabilit ies.
Application programs, high-level graphics
packages, and VMS's VTlOO and TEK4014 emu-
lation drivers all utilize UIS to construct indi-
vidual windows, as well as for text and graphics
f ~ n c t i o n s . ~ A VCBOl device driver is used to
manage the physical hardware.' The driver is
responsible for controlling the keyboard, the
mouse (pointer), and the scan-line map.

VCBO I Video Device Driver
The video device-driver software has one pri-
mary funct ion: t o manage lists of region
descriptors. In particular, it keeps three main
lists; one each for keyboard input, button tran-
sitions, and pointer (mouse) movement.

To be notified about a particular event, an
application program posts a request to the
driver. The request specifies the type of event
desired and the region on the screen. The driver
then places this request on the appropriate list.
For example, if pointer movement requests are
active and mouse movement occurs, the driver
will search the list for the entry that has speci-
fied a region that the pointer is currently
within. The driver then notifies the application
that was the last one to specify this area. The
notification mechanism used is a software inter-
rupt, known in the VMS system as an asynchro-
nous system trap. This trap interrupts the flow
of the specified user process and invokes a user-

defined action routine. This technique provides
a low-cost, responsive notification to the
application.

The keyboard is connected to the device
driver by a dual UART on the video controller. A
hardware interrupt is delivered to the driver
each time a key is pressed. The driver then
searches the keyboard list and delivers the char-
acter to the process associated with the top
entry on the list. All keys are "soft," which
means that any key on the main keypad can be
defined as any of the possible ASCII character
codes. It is also possible to define rnul-
ticharacter sequences for a given key. The sec-
ond half of the dual UART is used to support a
bit tablet or a serial mouse. These devices need
to send several bytes of data for each pointer or
button transition. The driver buffers this data
until it receives enough to decode an event.
Then it searches the appropriate event list and,
if necessary, delivers a software interrupt to the
application.

The driver supports the capability to specify
cursor patterns for a region. When cursor move-
ment is detected, the driver searches a list to
determine what the cursor pattern should be
for the current location of the pointing device.
Once located, the pattern is loaded into the
hardware. The video controller hardware then
superimposes the pattern onto the appropriate
screen area by merging the pattern with the
video signal from the bitmap memory. This pro-
cedure eliminates the need for a save-and-
restore operation in the physical bitmap each
time the cursor moves or a write to bitmap
memory occurs. The hardware also has the abil-
ity to specify two logical operations, NAND and
XOR, on the cursor pattern. This ability pre-
vents a white cursor from being lost on a white
screen, or a black cursor on a black screen. The
driver tests the physical bitmap location that is
overlaid by the cursor to determine which logi-
cal operation should be used to maximize the
cursor's visibility.

A propor t iona l -acce lera t ion movement
algorithm is used to minimize the desktop area
required for a mouse pointer. The driver accel-
erates the cursor's movement if the mouse's
rate of movement exceeds any of a series of
thresholds in a given screen refresh interval. If
no acceleration were to occur, it would take a
desktop space of approximately 13 by 11
inches to move the mouse both horizontally

5 8 Digital Technical Journal
No. 2 March 1986

New Products

and vertically respectively across the screen.
With acceleration, a mouse movement of only 2
inches is needed to move across. The accelera-
tion values used are as follows: 1 to 2 pixels of
linear mouse movement per screen refresh
interval, no acceleration needed; 3 to 4 pixels,
accelerate by a factor of 2; 5 to 8 pixels, accel-
erate by a factor of 4 ; greater than 8 pixels,
accelerate by a factor of 6 .

The driver provides an optional console win-
dow to allow system-level debugging. The
MicroVAX CPU can communicate directly with
the video controller during booting and debug-
ging. If this feature is enabled, the top 240 scan
lines of video memory will be allocated for the
console window. When the CPU wants to com-
municate with the console, the VMS console
driver will map directly to those 240 scan lines.
Thus, the console driver emulates a "dumb"
terminal in this region. When a function key is
pressed on the keyboard, the video driver will
map this special console memory onto the top
240 entries of the physical scan-line map, and
the operator console will appear. When the key
toggles again, the top 240 entries of the scan-
line map will be restored.

UIS Graphics and Windowing
Software
The decision to use simple hardware meant that
software had to be developed to bridge the gap
between that hardware and the applications.
This software was of critical importance
because the hardware designers assumed that a
software layer would be needed to support
even the most basic graphics functions.

Early in the design process, we decided that
this software would provide more than just
basic 1/0 support through the video controller.
Like the VMS operating system it was built on,
the workstation graphics and windowing
software, UIS, would support transparent mul-
titasking. That meant being able to handle
simultaneous demands by multiple indepen-
dent applications on the shared VCBOl hard-
ware resources. Therefore, UIS should be
designed to provide two capabilities. First, it
should have a library of general-purpose proce-
dures that applications could use to easily
access the hardware resources. Second, UIS
should contain transparent management and
synchronization mechanisms. In that way,
independent applications could share both

screen space and the use of the system's input
devices. This design would also allow the
development of UIS application programs on
any VAX system, whether it was a workstation
or not.

For the initial release of the MicroVMS work-
station on the VAXstation I, these objectives
were broken down into the following specific
design goals:

Provide routines for creating and manipulat-
ing viewports on the video display.

Support multiple overlapping viewports and
manage viewport occlusion transparently for
applications.

Allow simultaneous graphics operations into
all viewports.

Provide a user interface for viewport
manipulations.

Provide rout ines for creat ing graphics
objects.

Provide display-list backup for graphics
operations so that applications can easily
perform operations like "pan" and "zoom."

Support shared access to the mouse and key-
board and provide routines to notify applica-
tions of input events occurring on these
devices.

The following sections describe the architec-
ture of UIS and the mechanisms that were used
to realize these goals. Figure 2 is a block dia-
gram showing the functions of UIS.

Virtual Displays
The fundamental presentation object manipu-
lated by applications to construct images is the
virtual display. All UIS output functions are per-
formed within a virtual display.

The coordinate system of a virtual display is
defined in "world coordinates." The world-
coordinate system uses the coordinate system of
an application as a means of expressing display
locations. For example, an application that
draws a graph showing population growth
versus time may find i t convenient to use
"Time" and "Number of People" as x and y
coordinates. The range of world-coordinate val-
ues is specified to the graphics subsystem when
the virtual display is created. The coordinates
are specified as signed F-floating VAX data types

Digital Technical Journal
No. 2 ~Vnrch 1986

The Making of a MicroVAX Workstation

USER APPLICATION PROGRAM

I

UIS SHAREABLE IMAGE

I (BINARY ENCODING)
I I

UIS
GRAPHICS/WINDOWING
SYSTEM SERVICES

I I ENCODING DISPATCHER I I

-

I I GRAPHICS EXECUTION ROUTINES &
ROUTINES TO UPDATE DISPLAY LIST I I

I I

I
DISPLAY MEMORY (VCBOI OR VAX)

BITMAP
GRAPHICS ROUTINES
(GER)

VCB01 I DEVICE 1
DRIVER

Figure 2 UIS Functional Block Diagram

DISPLAY VIEWPORT
SERVICES
(VPS)

for reasons of precision and ease of calculation
in high-level languages.

A display list is an encoding of the exact con-
tents of a virtual display, independent of the
device. Display lists are maintained and used by

A

UIS to achieve the following short- and long-
term goals:

Allow the automatic management of pan-
ning, zooming, resizing, and duplicating dis-
play windows

Allow high-resolution printing of virtual
displays

Allow the structuring and manipulation of
virtual-display objects

Allow an application to select an arbitrary
output from a virtual display, give it to an
"intelligent" cooperating application, or
simply store it in a file as generic encoding,
and then later replay the generic encoding
into a new virtual display

Display lists consist of the following basic
objects:

Output primitives

Attribute primitives

Structural primitives

Output primitives map directly onto the UIS
output operations (e.g., plot some lines, write a
text, draw a circle) and the modifications that
they make to a virtual display.

Attribute primitives change the current value
of an attribute in an attribute block in order to
affect subsequent output primitives. Attribute
blocks are used by UIS to specify a set of attri-
bute values for all UIS graphics objects (lines,
text, circles). Typical attributes include the
writing mode (replace, complement, erase),
line style (solid, dashed), and font to use when
writing text.

There may be up to 256 attribute blocks
addressable a t one t ime. Attribute block

Digital Tecbnical Journal
No . 2 March 1986

New Products

numbers are used and assigned only by the
application, except for attribute block 0. This
block is a special one that cannot be modified.
It provides a set of attributes used as a standard
default for text and graphics. Block 0 also pro-
vides a template for creating alternate attribute
blocks.

Structural primitives allow the hierarchical
grouping of attribute and output primitives into
graphical begin and end blocks, called seg-
ments. Segments allow applications to have
access to many more than 256 attribute blocks.
While segments inherit current attribute blocks
from higher-level segments, modifications to
attribute blocks from within a segment cause
local copies of the modified attribute blocks to
be created. For example, if a particular attri-
bute block is referenced within a segment, then
that segment is first searched for the block. If
the block isn't found, the search is made in
successive outer segments.

The coordinate system, called normalized
coordinates, is used both within the display list
and when creating generic encoding. Normal-
ized coordinates are used to defer the mapping
of a set of world coordinates to specific device
coordinates until the actual output device is
known. As described in the following section,
this mapping to the physical device does not
occur until a display viewport is created. This
delay is important since output devices have
different resolutions. For example, printers typ-
ically have much higher resolutions than video
monitors.

Since floating point calculations are typically
slower than integer ones, normalized coordi-
na t e s a r e e x p r e s s e d in u n i t s c a l l e d
"Gutenbergs," which are stored as 32-bit inte-
gers. A Gutenberg, the same unit used in UIS
font definitions, is defined to be 1/7200 inch
(.01 points). Their use as normalized coordi-
nates is well suited because they minimize the
number of coordinate transformations that must
be performed when writing text. Gutenbergs
have the desirable characteristics of being both
reasonably small-and therefore amenable to
good graphics resolution-and very efficient for
text operations.

The conversion between world and normal-
ized coordinates is based on the desired physi-
cal size and world-coordinate size of the virtual
display as specified by the application. When a
virtual display is created, the application

expresses the desired size of the virtual display
in both physical and virtual units. That estab-
lishes the relationship between the physical
size of the fonts and the arbitrary size of a vir-
tual display's world-coordinate system.

Displa-y Windows and Viewports
A display window is the object used by applica-
tions to control how much of a virtual display is
available for viewing by the user. This control
is accomplished by defining a rectangle speci-
fying the viewable portion of the virtual
display.

A display viewport is the area of the physical
screen into which a display window is mapped.
Display viewports vary in size and may be
placed anywhere in the physical screen area.
Display viewports always occlude when they
overlap. The order of occlusion usually
depends on the order in which the display
viewports were created. However, the order
may be altered by the user through the UIS user
interface or by applications using the UIS
windowing services.

A display window is created, mapped, and
automatically scaled t o a display viewport
when the application makes a single, routine
call to UIS. Note that at the time of the call, the
output of the UIS application is directed to a
specific physical output device, usually the
screen. Scaling can be avoided if the applica-
tion directs UIS to use the physical size sup-
plied by the application when the virtual dis-
play was created. That allows text and graphics
to appear in exactly the size and aspect ratio
that an application considers ideal.

The amount and size of the image that
appears in a display viewport can be controlled
by altering the size and position of the display
window or the size of the display viewport. The
image can be managed by either the applica-
tion, through UIS, or the user, through the user-
interface functions. The following rules govern
the image:

To magnify the image, either the size of the
window is decreased without altering the
viewport, o r the size of the viewport is
increased without altering the window.

To reduce the image, either the size of the
window is increased without altering the
viewport, or the size of the viewport is
decreased without altering the window.

Digital Technical Journal
No. 2 ~Wurc'h 1986 6 1

The Making of a MicroVAX Workstation

To change the amount of the virtual display can be received in either of two forms. First,
being viewed without scaling, both the win- applications can specify that they be delivered
dow and the viewport size are expanded or a software interrupt whenever keyboard input
contracted by the same amount. occurs. Second, they can periodically poll the

To pan the image, the window around the
virtual display is moved without altering the
viewport size or location.

Figure 3 illustrates the mapping that takes
place when going directly from a virtual display
to a physical display. The left column shows the
transformations between the coordinate spaces.
The two columns on the right show the way the
virtual display is scaled to the final output
device.

Virtual Keyboards
Applications use a concept called virtual key-
boards to share and individually manipulate the
physical workstation keyboard. Virtual key-
boards allow an application to get input from
the physical keyboard and to modify its charac-
teristics, both in a synchronized manner. Input

I
(WORLD COORDINATES)

I

ROUTINES

I
DISPLAY LIST ENCODING IN
NORMALIZED

OUTPUT
PRIMITIVE
EXECUTION
ROUTINES

virtual keyboard to see if new input has
occurred. Certain characteristics can be man-
aged for each virtual keyboard, such as keyclick
volumes and keyboard key mappings.

The connection between the physical key-
board and the various virtual keyboards availa-
ble on the workstation is generally managed by
the user. An application could force the physi-
cal keyboard to be bound to a virtual keyboard.
Typically, however, the application will associ-
ate the keyboard with some display viewport
and allow the user to manage that connection
through the user interface.

Mouse Input
Applications can both solicit and manage input
from a mouse with respect to rectangles within
display viewports. To d o that, an application
must specify a world-coordinate rectangle and

(WORLD COORDINATES) WORLD COORDINATES

I
VIRTUAL DISPLAY

I DISPLAY VIEWPORT DISPLAY VIEWPORT

(DEVICE SPECIFIC COORDINATES) \ (WRITTEN TO ...) (WRITTEN / TO...)

\ /
PHYSICAL DISPLAY

Figure 3 Mapping from Virtual-to-Physical Displa-y

62 Digital Technical Journal
No. 2 March 1986

New Products

the display viewport to which the rectangle
applies. The application then directs the UIS to

Change the cursor pattern or position when
the cursor moves within the rectangle

Send a software interrupt whenever the cur-
sor moves within or out of the rectangle

Send a software interrupt whenever a mouse
button is depressed or released within the
rectangle

Applications can also check the current
mouse position or button state at any time.

Implementation Details
UIS was designed with two primary implemen-
tation goals in mind. Of course, the first goal
was to implement the architecture described in
the previous sections. Just as important was the
belief that the cost of using UIS had to be as
small as possible. The overhead associated with
a routine call had to be minimized, and the
algorithms and architecture employed by UIS
had to be as efficient as possible. UIS also had
to be fast because the simple graphics hardware
relied upon UIS software to take the place of
sophisticated graphics hardware. To meet these
goals, the software team made some basic
design decisions right at the start. The effect of
these decisions on how the design operates are
discussed in the following section.

UIS operates in the caller's mode (usually
user mode) because the cost involved in chang-
ing to kernel mode would be prohibitive.
Because UIS operates in user mode, all data
structures used by UIS are given user-write pro-
tect ion. This design decision means that
timesharing use of the graphics package is pos-
sible, but without any security considerations.

Most of the UIS code resides in system space,
and UIS routines exist as system services within
the VMS operating system. That gives UIS all the
desirable performance characteristics of oper-
ating system code (i.e., minimal image activa-
tion cost, maximum shareability, separately
managed paging, etc.) .

Fonts are stored in files and treated as system
resources. Since several applications are likely
to use the same fonts at the same time, UIS font
management was designed to optimize font
sharing. Fonts currently in use are kept in a font
pool in system memory. Upon beginning a text-
drawing operation, a process accesses the sys-
tem font pool to find the required font. If not
found in the pool, a font can be loaded into the

font pool by searching the disk for the proper
font file and then reading it into system mem-
ory. Similarly, fonts can be removed from the
font pool because they can always be retrieved
from disk.

Each virtual display is managed by only one
process. That synchronizes the access to virtual
displays and display lists and minimizes the
effect that graphics applications have on each
other. If a second process wants to manipulate
the virtual display of another process, then the
applications running in the two processes must
communicate. The process that created the vir-
tual display must then make modifications to i t .
This concept is enforced by the fact that the
contexts for all virtual displays reside in pro-
cess address space.

Data structures for display viewports, on the
other hand, are kept in system space. That
allows a process to change the topology of the
viewports on the video display. For example, a
viewport bound to a display window that it
owns can be "popped" without having to
notify every other process of the necessary
screen changes. The storage for viewport data
structures is allocated from paged pool. How-
ever, the storage protection must be changed to
user write to allow access by the process-based
graphics routines.

Access to those data structures by UIS rou-
tines is synchronized using the VMS lock man-
ager. Multiple processes are granted shared
read/write access to the physical display as
long as they are simply reading from or writing
to their own viewports. If a process needs to
change the relationships between the display
viewports on the screen (e.g., create a new
viewport or pop an existing viewport), it must
request exclusive read/write access to the phys-
ical display. Thus, no synchronization overhead
is incurred in the steady state.

Figure 4 depicts the basic use of storage by
UIS.

As shown in Figure 4 , UIS software is organ-
ized into five basic parts.

The first piece of UIS that appli'cations
encounter is the UIS shareable image. UIS rou-
tines are accessed by applications through
transfer vectors in a VMS-protected shareable
image. That allows UIS code to increase in size
and to change location within the operating sys-
tem without affecting the applications that use
the code. Also, UIS application development
can occur on machines where UIS has not been

Digital Technical Journal
N o . 2 March 1986

6 3

The Making o f a MicroVAX Worksta t ion

SYSTEM
SPACE

PROCESS (P I)
SPACE

MAPPED VCBOl M E M O R Y
I N C L U D I N G PHYSICAL BITMAP

PAGED POOL
BACKUP VIEWPORT BITMAPS
VIEWPORT DATA STRUCTURES
FONTS

PROCESS-PERMANENT
DISPLAY CONTEXT
(DELETED AT PROCESS RUNDOWN)

NON-PROCESS-PERMANENT
DISPLAY CONTEXT
(DELETED AT IMAGE RUNDOWN)

Figure 4 UIS' Storage

installed. The UIS shareable image can be used
to resolve UIS references at link and image acti-
vation time, even if the UIS system services are
not present on the system. Finally, because the
shareable image is protected, UIS can get con-
trol during image rundown and perform some
necessary clean-up activities.

The shareable image performs the requested
operation by calling the sppropriate UIS system
service. At this point, user requests are trans-
lated into calls to internal UIS routines, and the
relevant internal data structures are located. For
example, for a typical keyboard operation, UIS
would locate the right virtual keyboard and
make the appropriate calls to the VCBO1 device
driver.

For a typical output operation, such as draw-
ing a line, UIS first creates a display list entry.
UIS then calls the display list management rou-
tines to update the display list and all windows
into the virtual display. These routines, in turn,
will check with the viewport service routines
(VPS) to find the right area of the physical
screen in which to draw. Finally, the manage-
ment routines direct the bitmap graphics exe-
cution routines (GER) to draw to those areas.

VPS is more than a simple screen rectangle
manager. Its tasks are

To present the rest of UIS with the "illusion"
that viewports are always unoccluded and
are contiguous pieces of hardware video
controller memory

To take advantage of VCBO1 scan-line scroll-
ing whenever possible

To provide bitmap backup for occluded win-
dows so that applications are free from the
complexities of occlusion management

VPS does this by judiciously using and mixing
three different types of video memory: on-
screen VCBOl memory, off-screen VCBO 1 mem-
ory, and off-screen VAX memory. VPS also
manipulates the entries in the VCBOl video
scan-line map to present UIS with a virtual scan-
line map, or virtual viewport, for each physical
display viewport.

If the physical display has only one viewport,
VPS will simply allocate a set of physical VCBO 1
scan lines and set u p the viewport data struc-
tures to direct GER to that set. In this case, the
physical and virtual viewports will be the same.
However , if t h e d i sp l ay has occ lud ing
viewports, VPS will create a virtual viewport in
off-screen memory for each physical viewport.
Then, at 80-millisecond intervals, VPS will
copy the modified contents of the virtual
viewports to the physical viewports.

If changes must be made to the VCBO 1 video
scan-line map, then VPS will update them.
These changes could be caused by either a
viewport that needs to be hardware scrolled or
a change in the layout of the viewports on the
physical screen. VPS then merges all the virtual
scan-line maps and requests an update of the
physical scan-line map. Those actions are done
in synchronization with the 60-Hz video verti-
cal-retrace interval.

Digital Tecbnical Journal
No. 2 March 1986

1 New Products

Summary
Our initial goals were to design a workstation
product with the MicroVAX I system, thus pro-
viding a stable, mature product available for the
MicroVAX 11 system. The joint engineering task
force was initiated in the spring of 1983; proto-
type graphics hardware was available in the
early summer. Once that preliminary hardware
was ready, the VMS team entered into full-scale
development. The VAX/VMS workstation (VWS)
product was developed during the fall and win-
ter of 1983, and into the spring of 1984. W S
underwent customer field test with the VCBOl
graphics controller, the MicroVMS system, and
the MicroVAX I system in the summer and early
fa l l of 1 9 8 4 . T h e f i rs t r e l ea se of t h e
VAXstation I was available in late 1984. 'This
initial p roduc t a l lowed th i rd-par ty VAX
software vendors to take advantage of the W S
architecture.

Later, t he VAXstation I1 rep laced the
MicroVAX I CPU with a MicroVAX I1 engine,
thus gaining much higher performance. The
MicroVAX I1 processor entered customer field
test in the early spring of 1985, with shipments
to customers by early summer. A new VWS
s o f t w a r e r e l e a s e t h a t s u p p o r t e d t h e
VAXstation 11 was made available shortly after-
wards. That VMS software was the fulfillment of
this project's long-term goal.

Acknowledgements
We would like to acknowledge the contribu-
tion made by Dick Hustvedt to the MicroVAX
workstation effort. Dick was instrumental in
spearheading this undertaking. The contribu-
tions of Cathy Learoyd, Tom Furlong, Rob Scott,
John DiMack, Mike Rosenblum, Jake Vannoy,
and the rest of the VMS workstation team were
also invaluable.

References
1 . J.D. Foley and A. van Dam, Fundamen-

tals of Interactive Computer Graphics
(Reading: Addison-Wesley, 1982).

2. MicroVMS Workstation Graphics Pro-
gramming Guide (Maynard: Digital
Equipment Corporation, Order No. AA-
G11 OB-TN, 1985).

3. Micro VMS Workstation User's Guide
(Maynard: Digital Equipment Corpora-
tion, Order No. AA-EZ24C-TN, 1985).

4 . Micro VMS Workstation Video Device
Driver Manual (Maynard: Digital Equip-
ment Corporation, Order No. AA-DY65C-
TE, 1985).

Digiial Technical Journal
Na. 2 March 1986 6 5

Nicbolas A. Warcbol
Stephen F. Shirron 1

Design Project
The RQDB is a Winchester andfloppy disk controller aimed speczj?cally

for use on MicroVAX 11 systems. The des igws followed a top-down
development process to meet their goals. Trade-ofis, some requiring
hardware andfirmware to be built and tested for reliability, were identi-
fied and evaluated early in the project. The RQDB has a three-port data
bufler to smooth data transfers between the host processor, the control-
ler's microprocessor, and the disks. Four internal subsystems work in
parallel to allow maximum system performance.

Design Goals
The project team set a number of specific goals
at the start of the RQDX3 design. The greatest
need was to improve the performance of the
MicroVAX I1 system over that available with
existing controllers, yet greatly reduce the man-
ufacturing costs of the disk subsystem. The fol-
lowing list contains the goals that governed the
design of the module:

phase-out of the higher cost and lower per-
formance RQDXl and RQDX2 modules.

Testable Design-A high percentage of this
module would be testable by providing extra
hardware, microprocessor code, and test
strategies. This design would help to reduce
both manufacturing and maintenance costs.

m e Design Philosophy
The team members decided that a top-down

Cost-Obtain a manufacturing cost less than approach to the problem was the only way that
half of the best current disk controller, the the design goals could be met. A well strut-
RQDX2. tured, well documented design would allow

the maximum communication between team
Performance-'The control ler should not

members, and it would allow trade-offs to be force an interleave of data sectors on the sur-
made early in the design cycle. face of the hard disk drives or limit the per-

formance of the Winchester disk drives. The The design process used in the project
adhered to the following form:

controller should also avoid wasting system-
bus bandwidth on the Q-bus. The controller = Set the goals and assign priorities to deter-
architecture had therefore to be chosen to mine how flexible each one is; that will
allow the highest performance possible allow tradeoffs to be made if a goal is not
while meeting the other design goals. attainable.

Dual Module-The control ler should be Collect and study any overall system specifi-

designed so that it will fit on one Q-bus dual cations and requirements that apply. This is

module. This form factor will allow the most the time to write the preliminary engineer-

flexible system configurations. ing specification and define the interfaces
(both hardware and software) that must be

Schedule-First customer shipment would be adhered to. Any impulse to go back and
approximately one year from the project change these specifications should be vehe-
start. Meeting this goal would allow the mently resisted.

Digital Technical Journal
No. 2 march 1986

New Products

Analyze the problem and determine the sys-
tem architecture based on the flow of infor-
mation and the complexity of the required
control functions. If the problem appears too
large or is not easy to document or describe,
then it should be divided into smaller, more
manageable functions. During this phase,
operational descriptions are created. Those
can be flow diagrams, timing diagrams, state-
transition diagrams, or anything that will
help to explain how the controller should
work. These descriptions should be included
as part of the documentation package.

Look for the solution to each problem while
weighing it against the design goals. Itera-
tions between this step and the previous one
can be expected in order to meet the goals.

This part of the process involves looking at
the available technologies and other designs
to determine what is or is not usable. If other
designs have followed the same documenta-
tion strategy, then this task is much easier; if
they have not, then do not waste too much
time trying to "reverse engineer" those
designs. The risk of using new technologies
must be assessed to determine what impact
they would have on the design's cost and
schedule.

The hardware design is documented using
drawings called functional partitions. These
drawings are a hierarchy showing the inter-
connection of functional, not physical,
pieces of the design. All datapaths and con-
trol signals are named at this time. The draw-
ings will be the reference point of the design
team and make up a major portion of the
design package. Because of the functional
nature of these drawings, simulation of the
design can be accomplished in a structured
form.

At this time, a technical description docu-
ment is written to allow others outside the
design team to understand the operation of
the design. This document is especially use-
ful in training new groups about the design
as i t progresses from the design phase to the
manufacturing phase.

"Paper debug" the design. This is an in-
depth review by the design team before any
hardware is built. The process begins with
the operational descriptions and follows the

documentation hierarchy down to the lowest
level of the design. Normal operations and
error conditions are checked, and each ele-
ment is analyzed for test and diagnostic
coverage.

Mistakes found at this stage are much easier
to fix on paper than in circuit boards, gate
arrays, or software debugging.

Build a prototype. This process includes the
drawing of schematics to show the intercon-
nection of the physical pieces, the layout of
circuit boards, the development of gate
arrays, and the writing of software routines
that interface to the hardware.

Debug the prototype. If the paper debug was
done correctly, this stage should not uncover
any disasters. The individual functional
pieces of the design can be tested and
checked off using the functional partitions as
a guide. That systematic method will ensure
that the entire design is tested.

The design process is the solution to a mul-
tidimensional problem. Therefore, there is
probably more than one design that will meet
the goals. There is also the probability that it
may be impossible to meet all the goals. In this
case, some compromise in the goals must be
made in order to make a solution possible.

This design problem is like those encoun-
tered in most other designs: Make it fast, cheap,
small, reliable, and don't take too much time.
With each goal being constrained by others, the
need for a structured method of finding a solu-
tion becomes more important. The way to solve
a set of simultaneous equations is not to try a
solution and see if it fits, but to use some
proven techniques to determine the correct
solution. Dividing the overall problem into
smaller ones and then determining a solution is
probably the most powerful technique that can
be applied.

Design Implementation and Testing
Attacking the Goals
Each goal placed some unique restrictions on
the design. Thus, it was important to under-
stand the effect of each goal and how flexible
the achievement of that goal was. By keeping a
constant watch on how the goals were being
met, trade-offs could be made very quickly.

D i m Technical Journal
iVo. 2 March 1986

The Design Project

The following discussion details each goal and
how it was handled:

Cost-This was the original goal that caused
the creation of the RQDX3 project. The
cost/performance relationship was higher
than desirable for the current disk control-
lers. A project like the MicroVAX I1 system,
in order to obtain a good market share,
needed to improve this relationship by
reducing the cost of the disk subsystem.
Therefore, it was very important for us to
attain our cost goal. To do that we placed a
restriction on which components or technol-
ogies could be used, and what the assembly
cost of the module could be. Maximizing the
number of machine-insertable parts there-
fore became an important consideration.

Performance-The MicroVAX I1 system would
support the full VAX/VMS operating system.
Since it supports virtual memory, the VMS
system uses large data transfers in the disk
subsystem. We therefore chose to optimize
the performance of the controller around
these large transfers to improve total system
performance. By making the physical disk
drive the limiting factor, we evolved an
architecture that would allow simultaneous
operations in the controller. In contrast, the
current RQDXl and RQDX2 disk controllers
limit the data transfer rate between the host
memory and the disk drive because of their
architecture. The single thread of control in
these modules, though adequate for PDP-11
systems, forced an interleave of logical data
blocks on the disk surface. That interleaving
would hinder the performance of the
MicroVAX I1 system.

There are also many techniques for reducing
the average seek time of the disk drives.
These methods include overlapped seeking
on multiple drives, rotational optimizations,
improved seek algorithms, and various data
buffering techniques. We wanted to include
as many of these optimizations as possible
and, since the goals were driven by the
design team, the trade-offs were a little more
flexible.

Dual module-This goal more than any other
caused the most problems in the design of
the hardware. Many times a solution seemed
to meet all the goals but, when a detailed

parts count and mock-up were created, there
were a few components that just didn't fit on
the board. Meeting this goal led to the exten-
sive use of CMOS gate-array technology to
meet this size restriction.

Schedule-We did not have the luxury of set-
ting the date for the project's completion.
Because the disk controller was so important
to the overall MicroVAX I1 project, we were
given a completion date based on the availa-
bility of the MicroVAX I 1 hardware. Of
course, this procedure involved a manage-
ment factor that certainly kept the design
team on its toes by being told to see if we
could do it. In response, we developed a
schedule that would maximize the work that
could be done in parallel while keeping the
risks at an acceptable level.

Testable Design-This goal became more
important as the details of the design were
completed. The module, being driven by an
onboard microprocessor, would be capable
of self-diagnosis. Therefore, where possible,
all internally addressable registers were
made to be write/read registers and extra
datapaths were added to maximize the
a m o u n t of l o g i c a v a i l a b l e t o t h e
microprocessor for testing. This goal had to
be weighed against the need for limiting the
design complexity, cost, and size.

Task Partitioning
The short project schedule forced us to adopt a
development strategy that would maximize par-
allelism in the development of the RQDX3. The
first division was made between the hardware
development and the microprocessor firmware
development. Each major task was further
reduced to smaller design functions. In many
cases we had to create a model or emulator of
some other undeveloped part of the design in
order to allow tasks to continue.

Hardware Development
Once the functional partition drawings were
created, we had a solution that met the per-
formance and functionality that were required.
However, we still did not know if the cost and
board area requirements would be met. The
design team quickly determined that some cus-
tom integrated circuits would be needed to
help us meet these goals. Previous experience,

68 Digital Tecbnfcal Journal
No . 2 March 1986

New Products

a known process, and quick turnaround made
CMOS gate array technology the key to our
solution.

Two gate-array devices would be needed, but
we had only one gate-array design team on our
project. We decided that one gate array would
be developed first and a TTL emulator of the
second device would be created and used for
the module-level testing. In that way, the inte-
gration of the firmware under development
with the hardware could begin early in the
schedule.

The key area in almost any disk controller
centers around the design of the phase locked
loop and the data separator logic used in recov-
ering the encoded data from the disk surface.
We knew at the beginning of this project that
our team did not have the experience to design
this section. Therefore, we employed the ser-
vices of outside consultants to this project.
They contributed not only their previous expe-
rience in data separator design, but also rein-
forcement and management of the design phi-
losophy taught to us in the past.

Firmware Development
To meet our schedule goal, it was necessary to
begin development and testing of the firmware
for the onboard microprocessor well before any
hardware was ready. The firmware consisted of
many modules, the majority of which were
independent of the hardware. These modules
could be designed, coded, debugged, and
tested in parallel with the design, implementa-
tion, and debugging of the hardware. Then at a
later date, the few remaining hardware-depen-
dent modules could be developed and inte-
grated to form the complete RQDX3 firmware.

Thus, the target system first used for develop-
ing the firmware was not the prototype RQDX3
wi th i ts onboard microprocessor , b u t a
VAX/VMS system with two software emulators
(one for the Q-bus subsystem and one for the
disk subsystem). The VMS system was chosen
for several reasons: first, it has an extremely
nice set of program development tools; second,
the VMS disk driver could be adapted to pro-
duce a steady stream of stimuli (disk 1 / 0
requests) to verify the correctness of the
firmware's responses. With only a small amount
of "trickery," the VMS system could be "con-
vinced" to use a disk controller built not out of
hardware, but out of software; the two emula-

tors mentioned above provided the necessary
glue. The emerging RQDX3 firmware could be
developed in the context of a normal VMS
process, taking full advantage of VMS compil-
ers, linkers, and debuggers. Although it took a
lot of time (and many system crashes) to get
this technique to work, it greatly speeded up
the job of building all the hardware-indepen-
dent modules. This stage took about fifty per-
cent of the total time spent to develop the
firmware.

The next target system was the actual proto-
type RQDX3 with an in-circuit emulator (ICE)
for the microprocessor and a T T L emulator for
one of the gate arrays. Hardware debugging was
accomplished first by special code written to
perform repetitive actions on particular por-
t ions of t he hardware. Then , the actual
firmware, which had been previously devel-
oped and was, in a sense, known to work, was
loaded into the hardware. The ICE was a great
help here since it allowed RAM to be substi-
tuted for ROM; that allowed a level of symbolic
debugging. At this point in the process, the
hardware-dependent modules were built. This
stage took about thirty percent of the total
firmware development time.

The final target system was the "bare"
RQDX3, with no emulators and real ROM. This
configuration proved to be identical to the pre-
vious one (i.e., no problems were found in
replacing the emulators with real devices), but
allowed prototype boards to be shipped inter-
nally. The firmware of the RQDX3 could now
be tested by different operating system groups,
and bugs appropriately located and fixed. This
stage took about twenty percent of the total
firmware development time.

Design Verification Testing
The purpose of design verification testing
(DVT) is to assess at an early stage whether a
design has any particular implementation
problems. To do that, the board is tested against
all Digital's applicable standards. First, the lay-
out of the board (the etch) is checked by look-
ing for noise radiation and pickup, and for
undershoot or overshoot on clock lines. Then,
the board is checked thermally to see if i t can
withstand both operating and nonoperating
environmental stresses. Next, FCC testing is
done t o measure the radiated frequency
spectrum. Finally, the module is shaken and

Digital Technical Journal
No. 2 March 1986 6 9

dropped to ensure that no chip falls out of its
socket under normal handling conditions. Feed-
back from D W can result in physical changes to
the module, perhaps as severe as a new etch
layout.

In the case of the RQDX3, a recommendation
was made to add resistors to a pair of clock
lines in order to dampen undershoot. Fortu-
nately, this alteration did not have much impact
on the schedule.

Reliability and Quality Testing
The purpose of reliability and quality testing
(RQT) is to demonstrate that the product meets
certain minimum reliability standards, mea-
sured as mean time between failures (MTBF).
The design team specifies the MTBF and also
other measures of quality, such as hard and soft
error rates, both of which affect the perceived
quality of a disk controller product. Then, the
RQT team designs a test that will demonstrate
whether or not the product meets or exceeds
these measurable quanti t ies . Usually that
involves building a system (CPU, memory,
serial line interface) that includes the product
under test. The system runs some level of host
software that exercises the product for a large
number of hours under various temperature
and humidity extremes. Designing these tests is
not an easy task, and indeed the RQDX3 had
major problems during RQT because of this dif-
ficulty. Feedback from RQT can result in hard-
ware changes, or firmware changes, or both.
Ideally, if the product is changed, RQT should
start again from the beginning. However, sched-
ules will often not allow that and compromises
must be made.

A decision affecting all of RQT must be made
near the beginning: whether to test the product
at the system level or at the module level. Test-
ing at the system level implies that the system
MTBF and error rates must be met, and all fail-
ures, whether related to the product under test
or not, should be counted. Testing at the mod-
ule level implies that the module MTBF and
error rates must be met, and only failures that
can be attributed to components under test
should be counted. Clearly, module-level test-
ing is preferred since it gives the most informa-
tion about the new product. However, module-
level testing is more difficult because each
error has to be investigated to determine its
cause and whether or not it should be counted.
Furthermore, the burden of proof is on the

design team to verify that the error was not
caused by their module. (Guilty until proven
innocent!)

Weighing all these factors, we decided to test
the RQDX3 at the module level; that caused
most of our RQT problems. A sealed chamber
was used to control the tests of cycling over
temperature and humidity extremes. The
RQDX3 modules were placed in this chamber,
along with the systems into which the modules
were plugged. Part of the testing included read-
ing and writing from both floppy disks and
Winchester disks. Since these disks could not
withstand the environmental extremes inside
the chamber, they were placed outside. Early
testing showed that this setup did not work,
since the disk drives had to be connected to the
controllers with lengthy cables, which were
susceptible to noise pickup. This configuration
was modified to bring the disk drives inside the
chamber where they were connected to the
controllers with normal cables. That eliminated
the noise problem, but now dictated a reduced
environmental stress on the RQDX3 module
(from class C to class A).

At first, we encountered a higher-than-normal
rate of soft errors on the floppy disks. A search
for the cause of this problem showed that a
combination of two separate but contributing
problems were responsible. First, a rare combi-
nation of events could cause the data separator
for the tloppy disk to temporarily fail to lock to
the data stream. Second, most if not all the
floppy disk drives themselves were not per-
forming correctly. The former problem was
fixed by a component change to the data
separator; the latter, by testing and repairing
those drives that showed the greatest number of
soft errors. These two changes reduced the soft
error rate for the floppy disks to a level well
within the range specified by the design team.

The extensive, and lengthy, RQT also uncov-
ered one bug in the error handling of the
RQDX3 firmware that had never been seen in
our development lab. The problem could only
have been experienced by running many, many
modules in parallel. Of course, the purpose of
RQT is to catch such problems then instead of
at customers' sites.

The mass storage controller protocol (MSCP)
defines the communication between the host
processor and the disk controller. Communica-

Digital Tecbnfcal Journal
No. 2 March 1986

New Products

tion occurs using sequences of command pack-
ets, generated by the host, and response pack-
e t s , g e n e r a t e d by t h e c o n t r o l l e r . T h e
transmission of the packets and logical data
blocks that are to move between the host and
the controller is defined in the U/Q Storage
Systems Port (UQSSP) specification. These two
specifications place the following require-
ments on the controller:

Two sequential-word register locations on
the Q-bus are required. Those are referred to
as the status and address (SA) register and the
initialization and poll (IP) register. These
registers must be able to be assigned at any
longword boundary within the Q-bus 1 / 0

page.
The controller must have the ability to inter-
rupt the host processor using a previously
loaded vector address.

The controller must contain enough intelli-
gence to initialize itself, perform internal
diagnostics, decode command packets, per-
form all disk control functions, transfer data,
and encode response packets. These tasks are
accomplished on the RQDX3 through the
use of a DCT11 microprocessor.

The controller must be able to perform DMA
data transfers on the Q-bus. These transfers
will be for command and response packets,
as well as for disk data.

The diagram in Figure 1 shows the flow of
information in an MSCP controller. MSCP com-
mand and response packets flow between the
memory in the host processor and the on-board
microprocessor. Disk data flows between the
memory of the host processor and the disk sur-
face. Information dealing with the format of

1 " ' T R Y 1

;OR K-1 DATA BU

REVECTOR/FORMAT

DISK DRIVE

Figure I Information Flow in the RQDX3

Digital Technical Journal
No. 2 March I986 7 1

The Design Project

data on the disk surface (revector tables, format
tables, etc.) must be transferred between the
disk surface and the microprocessor.

Figure 1 shows a centralized data buffer ele-
ment. It is used for temporary storage and as a
means for smoothing the differences in data
transfer rates between the host memory, the
microprocessor, and the disk surface.

It was decided to implement this centralized
data buffer as a three-port memory system.
Three control elements are provided for the
transfer of data between each memory port and
the appropriate source or destination. These
elements are the Q-bus DMA controller, the
microprocessor with its internal bus-interface
controller, and a VLSI disk controller with an

internal D M . interface. The interconnection of
these subsystems is shown in Figure 2. Each
control element assumes that it has the memory
system for its own dedicated use. The arbitra-
tion between these elements for access to the
memory devices is handled within the memory
subsystem.

The Memory Subs-ystem
The memory subsystem contains a f ini te
sequential-state machine that receives requests
for memory cycles from the three ports and per-
forms the memory cycle for the highest-priority
requesting port. It is required that any port
requesting a memory cycle must have its
address and any required data available before

I

FRONT PANEL BUS

Q-BUS
INTERFACE
SUBSYSTEM t

-
/ TO DISTRIBUTION BOARD \

t A
D9",

Figure 2 RQDX3 Szrbsystems

CONTROL
INFORMATION

I

7 2 Digital Tecbnical Journal
No. 2 March 1986

MULTIPORT

b / [

MICROPROCESSOR
SUBSYSTEM

MSCP PACKETS
AND WORKSPACE

A t CONTROL t
INFORMATION

INTERFACE
SUBSYSTEM

New Products

posting the request to the memory controller
state machine. The principle function of the
memory system is twofold: first, it allows the
controller attached to a specific port to deposit
data to be written to the memory in a holding
register; second, it allows the memory control-
ler to write that data to the RAii devices some-
time later. For most read requests, the memory
controller performs a prefetch operation when
there is an empty output register in one of the
ports. This operation is possible because the
accesses by both the disk and Q-bus controllers
are known to be sequential, with the next
address always available to t he memory
controller.

The port of the microprocessor is an excep-
tion to this prefetch operation. The memory
controller cannot prefetch the data since mem-
ory accesses by a microprocessor are not always
sequential. When requesting a cycle from the
memory, the microprocessor will be "cycle-
slipped" (i.e., wait states added to its micro-
cycle) until the memory controller determines
that the microprocessor is the highest-priority
requesting device.

The highest priority for memory cycles is
given to the disk controller port. Failure to ser-
vice this port first will cause overrun or under-
run errors in the disk controller chip, which
has little buffering. These error conditions
would cause serious degradation of system per-
formance, since full disk revolutions would be
wasted retrying the operations.

The middle priority is given to the Q-bus
DMA controller port. This port requires the
highest service rate from the system (approxi-
mately 700 nanoseconds per request). How-
ever, the port is capable of slowing itself if i t
cannot be serviced in time by the memory con-
troller. Of course, to achieve the highest system
performance and most efficient use of the
Q-bus, it is desirable that the Q-bus controller
never slow down.

The microprocessor is given the lowest prior-
ity for memory cycles. That allows the normal
.operation of data transfer between the disk and
host (both disk controller and Q-bus DMA con-
troller active) to be completed as fast as possi-
ble. The microprocessor can use any remaining
memory bandwidth for its operat ion. The
microprocessor uses the shared memory for
both temporary storage and its operational

stack. Since its use of that memory will be infre-
quent, the microprocessor will not be affected
by any loss in memory response.

A prototype of the memory subsystem was
built to measure the amount of bandwidth
available to the individual ports and to deter-
mine the effect of arbitration between the
ports. A worst-case condition of requests from
all ports was created and the bandwidth used by
each was measured. With any two ports oper-
ating at their full speed, there was no measura-
ble reduction in service rate from that of the
ports running independently. When all three
ports were operating, the disk port lost no
memory bandwidth, the Q-bus port lost only
one percent of its requested bandwidth, and the
microprocessor lost e ight percent of its
requested bandwidth.

These observations during worst-case condi-
tions indicated that all three ports are capable
of operating at full speed with their normal
request patterns. This feature of the RQDX3
allows it to overlap disk data transfers, Q-bus
DMA transfers, and microprocessor operations
to achieve maximum performance.

The memory controller is implemented using
a field programmable logic sequencer (FPLS)
and an external input sychronizer. Even though
gate-array technology was used for the majority
of the datapath on this module, it was felt that
building the state machine in the gate array was
too risky for the project schedule. The state
machine was therefore placed outside the gate
array. Only a few gate array pins connect it to
the datapath elements that it controls.

The memory controller also incorporates
some features to aid in the test and repair of the
module. After module initialization, an input
signal is asserted to force the memory control-
ler to honor only those requests coming from
the microprocessor. Without that, a hardware
failure in either the disk controller or the Q-bus
DMA controller could constantly request mem-
ory cycles and cause the microprocessor to
"hang" on its first access to memory. With this
signal asserted, the microprocessor can initiate
the module diagnostics in a small, isolated envi-
ronment that enables the microprocessor, R O M
and RAM devices, and 1 /0 page registers to be
tested. The microprocessor can then clear the
signal later in its diagnostics, thus completing
the module testing.

Digital Technical Jout-nal
No. 2 March 1986

73

The RQDX3 Design Project

The Microprocessor Subsystem
The microprocessor subsystem of the RQDX3
module is made up of a DCTl1 microprocessor,
l 6 K words of EPROM memory, a front-panel
interface, and a prioritizing interrupt circuit.

Although many different microprocessors
could have been used, the choice of the DCTl1
was made with the following criteria in mind:

A 16-bit microprocessor could handle the
MSCP requirements adequately, while an
8-bit microprocessor would be strained and a
32-bit microprocessor might be an overkill.

A multiplexed address-and-data bus would
reduce the number o f gate array pins
required.

A rich, orthogonal instruction set (PDP-11
system) that could be easily understood
should be used.

The microprocessor should be able to be
programmed in a high-level language. Much
of the code for this module would be written
in the C programming language.

Full, efficient implementation of Q-bus
block-mode transfers

A programmable holdoff timer to regulate
the Q-bus activity

The Disk Controller Subsystem
The disk controller subsystem had to provide
the control and datapath functions for both
floppy and hard disk drives in the smallest
space and for the least cost. This requirement
was satisfied by using a VLSI disk controller
device.

The RQDX3 data separator is designed to
receive the encoded data stream from the disk
and convert it into a binary data stream and
clock, both of which are then fed to the disk
controller chip. The data separator is designed
to operate at three different data frequencies to
be compatible with the available range of
Winchester and floppy disk drives. The fre-
quencies for each type of drive are as follows:

5-MHz MFM encoded data recovery from
ST4 1 2 Winchester disks (RD5X type)

= 500-KHz MFM encoded data from high-
Relatively fast execution speed is desired. speed , high-density floppy disks (RX33
Available hardware and software develop-
ment tools should be used.

Our past design exper ience should be
exploited to improve the product's time to
market.

The Q- bus Subsystem
The Q-bus subsystem of this module is made u p
of the programmed 1 /0 section, the Q-bus DMA
controller section and the Q-bus interrupt sec-
tion. The Q-bus DMA controller is composed of
a finite sequential-state machine and associated
datapath elements that are used to perform both
block-mode and nonblock-mode Q-bus cycles.
The state machine is implemented in a field-
programmable logic sequencer rather than a
gate array to eliminate the risk of schedule
delays due to coding errors. However, the
datapath elements needed to support the state
machine are contained within the gate array
devices. Some of the features of this controller
are

Full 22-bit Q-bus addressing

A 16-bit DMA word counter

250-KHz MFM encoded data from standard
double-density floppy disks (RX50 type)

The data recovery system for the RQDX3 is a
unique MFM data recovery circuit that is very
close to ideal. In short, with proper matching
of the device delays, the recovery window is
+50 nanoseconds, or one hundred percent of
the window. This almost ideal data recovery is
made possible by the following conditions:

A solid and precise phase locked loop is
used.

The MFM encoding rules specify a 100-
nanosecond "null" period after each flux
transition. This period is used to reset the
edge store and compensation flip-flops of the
circuit.

The VCO output has a fifty percent duty
cycle.

The logic delay paths in the data separator
circuits are carefully matched. This matching
was accomplished by device matching
within the gate array that implements this
function. Careful simulation of this logic was

Q-bus memory parity detection carried out to prove this operation.

74 Digital Technical J o u d
No. 2 March 1986

New Products

The Structzire of the Firmware
The firmware had to be designed to take full
advantage of the parallelism provided by the
chosen hardware architecture. Therefore, the
RQDX3 firmware consists of a set of cooperat-
ing routines, or jobs, each of which performs a
dedicated function. Each job has its own stack
and thus its own context and state information.
Any operations that could possibly run in paral-
lel have been separated and are controlled by
separate jobs. A small operating system kernel
provides facilities for creating new jobs, sus-
pending and resuming execution of a given job,
acquiring exclusive access to shared resources
and later releasing those resources, and sched-
uling jobs to run based upon priority and
resource contention criteria. This kernel pro-
vides a controlled way of overlapping opera-
tions. That effectively means that the RQDX3
can be simultaneously seeking on one or more
drives, reading or writing from another drive,
and transferring data to or from the host, all
while performing calculations relating either to
the current transfer or to a pending transfer.

Performance Tests
The main performance goal was to be able to
sustain a high data-transfer rate for large trans-
fers. In a typical situation, the VMS system uses
the disk to swap, page, and load images. The
RQDX3 is tuned so that these operations are
completed as rapidly as possible. Maximum sus-
tained data transfer rates of 420KB per second
have been measured, compared to 170KB per
second on the RQDX2. Such workloads are
atypical, though, and do not give a good indica-
tion of overall system performance. When
tested with a workload of from one to fifteen
users on a MicroVAX I1 system, the RQDX3 is
faster than the RQDX2, but slightly slower than
the KDA5O. This relationship is more in line
with the performance based on theoretical cal-
culations. A user workload generates a lot of
seeking, and the RD-class disks controlled by
the RQDX2 and RQDX3 seek more slowly than
the RA-class disks controlled by the KDASO.

Higher performance can be gained by split-
ting the disk activity among two, three, or even
four disks. The RQDX3 has the ability to keep
all four drives seeking at the same time. For
small transfers, seek time dominates, and an
increase in system throughput of thirty-five to

forty percent can be realized. For large trans-
fers, seek time is still important but decreases
in s igni f icance ; t h e increase in system
throughput may only be twenty percent. The
RQDX2 does not take advantage of separate sys-
tem and user disks; however, the RQDX3 will.

Higher performance on a single drive can be
achieved by queuing multiple requests to the
RQDX3. The MSCP protocol allows these multi-
ple requests to be automatically reordered by
the controller to reduce the average seek time.
For example, the controller could always
choose the request with the shortest seek time
instead of the first request in its queue. An
increase in system throughput of thirty to forty
percent occurs when the number of outstand-
ing 1 /0 requests increases from one to twelve.

Summary
The RQDX3 design project came close to meet-
ing all its design goals. There were 40 working
units exactly one year after the project began.
However, problems in the reliability test setup,
which delayed the manufacturing s tar tup,
caused our first customer shipment to slip. The
cost, performance, and module-size goals were
all met to the satisfaction of the design team.
The high yields in manufacturing can be attrib-
uted to the quality of both the design and the
manufacturing process. Without the structured
design process and the team's adherence to it,
this project would not have been successful.

References
1. W.I. Fletcher, An Engineering Approach

to Digital Design (Englewood Cliffs:
Prentice-Hall, 1980).

Digital Technical Journal
N o . 2 Marrh 1986

7 5

Kathleen D. Morse
Lawrence J. Kenah I

me Evolution of
Instruction Emulation
for the Micro VAX Systems

The MicroVAX CPU, the 78032 chip, implements a subset of the VAX
instruction set, yet the operating system must support the full set. To
accomplish that, the MicroVMS developers decided to emulate the miss-
ing instructions-floating point, packed decimal, and character string
instructions-in software. Since hardware and sopware were developed
in parallel, a VAX-11/730 system, with its microcode rewritten to make it
act like MicroVAX hardware, was used as a test vehicle. The performance
measurements indicated excessively long execution times. The hardware
design was extended to assist the sopware emulation task. The final
emulator was also wed in the ULTW-32 and V'AXELN systems.

When Digital Equipment Corporation decided
to implement the VAX architecture' in silicon,
it was clear that the entire instruction set could
not be implemented on a single chip. To deter-
mine what could be implemented, a team of
software and hardware engineers was formed to
identify the best subset of the VAX instructions
that would fit. As a consequence, the software
engineers had to find ways to provide support
in the operating system for those instructions
removed from the base machine. This paper dis-
cusses how that emula t ion suppor t was
provided.

Micro VAX Architecture
The amount of microcode needed to implement
an instruction is a good measure of the amount
of space needed on a chip to implement the
same instruction. Microcode size thus became
one measure used in determining which
instructions to move off the chip. A second cri-
terion was the frequency with which particular
instructions are used. For example, integer and
logical instructions are used very heavily and
their frequency of use is independent of the
application area. Floating point instructions
appear most frequently in scientific and engi-
neering computations. Packed decimal instruc-
tions are more common in certain commercial
applications. Eventually, by balancing these

considerations, the engineers jdentified a sub-
set of the VAX instruction set that would fit on
one chip. That subset became the definition of
the MicroVAX architecture. (The subset archi-
tecture also differed from the full VAX architec-
ture in such areas as the console subsystem.)

Once the MicroVAX architecture was com-
pleted, the hardware and software teams began
independent development efforts. Since a major
project goal was to minimize the time to mar-
ke t , o n e hardware team inves t iga ted a
MicroVAX implementation (the MicroVAX I sys-
tem) that used semicustom logic instead of a
single chip. A second hardware team started the
design of the MicroVAX chip itself2, and a third
team initiated the design of the implementation
(the MicroVAX I1 system) that would incorpo-
rate that chip. At the same time, the software
teams began their investigations of how to
enhance the VMS, ULTRIX-32, and VAXELN
operating systems in order to run these new
machines. The software designs were influ-
enced in part by the need to implement and test
the missing-instruction software emulation
before any hardware was available.

Operating System Support
The major difference between the software
architectures of the MicroVAX and the full VAX
systems is the group of instructions that were

76 Digital Tecbnicd Journal
No. 2 March 1986

New Products

not implemented in the chip hardware. This
group consists of

Floating point instructions

Packed decimal instructions

Character string instructions

(The MicroVAX architecture included the
MOVC3 and MOVC5 instructions because they
were heavily used in fundamental routines,
such as copying or filling memory arrays.)

Each of the three operating systems was sup-
ported by a different design group. These
groups had to decide which course of action to
take to accommodate the reduced number of
instructions that would be implemented in
microcode. The following alternatives were the
most realistic courses to take:

1. All compilers and assemblers could be
changed to eliminate all uses of the miss-
ing instructions.

2. Emulation subroutines that applications
could link into their programs could be
supplied. (VMS used this method on
early VAX models that did not include
ha rdware s u p p o r t fo r t h e G and
H floating point data types.)

3. The emulation subroutines could be
implemented so that their use would be
invisible to application programs and
even to most of the operating system.

The VMS Decision Process
The VMS design team began a study to deter-
mine the extent to which the missing instruc-
tions were used in the operating system code,
including all the various VMS utility programs.
As expected, the character string instructions
were used most frequently and, in fact, were
more widely used than expected. The CMPC3,
CMPCS, and LOCC instructions were the most
frequently used string instructions, occurring
almost everywhere that tZSCII text was manipu-
lated (for example, in device names, file
names, and DCL commands). All software that
included some kind of bitmap (about six to ten
different areas, ranging from the file system to
memory management) used the SCANC and
SPANC instructions. A large number of table-
lookup designs (including DCL and utility com-
mand parsers) used the MATCHC, MOWC, and
MOVTUC instructions. Finally, the CRC instruc-

tion was used by the BACKUP utility and by the
DECnet code.

Very few data types were used outside their
realms and only a few unexpected sequences
were found that used the missing instructions.
One example was the use of the CVTLF instruc-
tion in the VMS kernel to determine the small-
est power of 2 larger than a given integer. A
second example was the use of the CVTLP
instruction in the FORTRAN run-time support
library as a quick method for converting binary
representations to text.

Once the extent of the missing instruction
usage was determined, the design team consid-
ered the number of compilers that were sup-
ported by the VMS operating system. In all, over
fifteen different languages are supported.3 The
first alternative, changing the compilers and
assemblers, would require that the code gener-
ators for each product be changed. Moreover,
new versions of the VMS operating system and
all its layered products would have to be gener-
ated using these new compilers. That would
involve a significant investment of manpower,
not just to enhance the compilers, but to pro-
vide ongoing support to maintain each product.
In addition, two variants of each new version of
each product would have to be produced. A
likely side effect was that these changes would
probably cause other development groups to
limit most layered products to the MicroVAX
subset on all VAX machines. In that way, each
group would have to maintain only one version
of their product.

Another consideration was the effect that the
first or second alternatives would have on the
marketing of MicroVAX systems. Customers and
Digital's software engineers had become accus-
tomed to developing software on one machine
and executing it transparently on any other
machine in the VAX family. That would not
have been possible under either of the first two
alternatives.

Through this reasoning process, it became
obvious that the correct choice was the third
alternative, to design for software emulation
and make it transparent to both applications
and operating system code. While requiring a
concentrated effort to write the emulation sup-
port, the overall effort for software emulation
was much smaller than removing the use of the
missing instructions from existing software and
compiler code generators. The effort was also

Digital Technical Journal
No. 2 March 1986

77

The Evolution of Instruction Emulation for the MicroVAX Systems

isolated. While some new code was needed, the
number of changes to existing components was
minimized. These changes were confined to the
exception handler and the startup routines for
the operating system. Finally, transparent emu-
lation of all missing instructions would guaran-
tee that systems implementing the MicroVAX
architecture would be fully compatible with
the VAX family of machines.

Implementation
As mentioned earlier, the MicroVAX program
was geared to a tight time-to-market schedule.
That made it highly desirable to develop the
hardware and software in parallel as much as
possible. The VMS design team decided to
implement the emulation code and debug it
long before the hardware design specifications
for a particular MicroVAX implementation were
written. In this way, the emulation code would
be finished and working by the time the first
MicroVAX hardware was ready to be debugged.

Design of the Emulator
At this point in the project, several decisions
were made relating to the design and imple-
mentation of the MicroVMS instruction emula-
tor. The emulation routines would be devel-
oped and tested by the VMS Development
Group. These routines would attempt to avoid
features or coding techniques specific to the
VMS operating system. Thus the same emulation
source code for the instructions could be used
later by the ULTRIX-32 and VAXELN Develop-
ment Groups.

The emulation support was divided into two
pieces. The first supported character string and
packed decimal instructions (including CRC
and EDITPC); the other, floating point data
types. From the beginning of the MicroVAX
effort, system configurations would be offered
that provided some sort of floating point sup-
port in h a r d ~ a r e . ~ That fact influenced the
design of the two pieces in the emulator.

Software support for floating point was
viewed as a technique for running programs
that contained small amounts of floating point
computation. Applications that depended heav-
ily on floating point operations would likely be
run on systems that had floating point support
in the hardware. Conversely, applications that
depended heavily on packed decimal or charac-
ter operations did not have a hardware option at
their disposal. The decimal/string emulator

reflects that in several places where space is
sacrificed in an effort to speed up the emula-
tion subroutines.

Structure of the Emulator

Once the two pieces were designed, the actual
coding began. Each of the two emulation com-
ponents was further divided into an operand
decode piece and an instruction execution
piece.

The operand decoder was a straightforward
finite-state machine. It parsed the instruction
stream one operand at a time, placing results
into registers "appropriate" to each instruc-
tion. The register assignments were usually
made by examining the expected register con-
tents after each instruction had completed its
execution. For example, the final state of a
CMPCS instruction suggests that R1 and R3 be
used as pointers to the two character strings,
while RO and R2 contain the initial sizes of the
strings.

The instruction execution routines were sim-
ple subroutines that accepted input parameters
in registers and produced output conforming to
the architectural specification of the instruc-
tions. For example, after the execution of an
ADDP4 instruction, RO and R2 contain zero, R1
and R3 locate the addend and sum strings, and
the other registers are preserved.

At the outset, several other decisions were
made that simplified the design and implemen-
tation of the emulator.

Emulation support was provided transpar-
ently by being implemented at a very low
level in the operating system.

Emulation subroutines were executed in the
access mode of the missing instruction.

The existing emulation support for G and
H floating point data types would serve as a
base for fu l l floating poin t emulat ion
support.

Transparent Support
To emulate the missing instructions transpar-
ently, the emulators had to become an integral
part of the operating system. They were loaded
into system space during the system bootstrap
and connected directly to the reserved-opcode
exception vector in the system control block.
Whenever a reserved-opcode e x c e p t i o n
occurred, the emulator would distinguish the

Digital Tecbnkal Journal
No. 2 March 1986

New Products

execution of a missing instruction from other
illegal opcodes. Missing instructions would
cause a control transfer to the appropriate emu-
lation subroutines. Other illegal opcodes were
passed on to the operating system as excep-
tions. Since the host operating system provided
support in a transparent fashion, existing pro-
grams could execute on a MicroVAX system
without being changed.

Access Mode of Execution
The reserved-opcode exception handler had to
begin its execution in kernel mode, as defined
by the VAX architecture. However, if the emula-
tor routines continued in that mode, the
address validation rules demanded that not only
each operand but also each byte in a character
string be probed for read or write access before
that operand could be used. Because of the
excessive cost of these operations, w e decided
that the emulator routines would execute in the
access mode in which the missing instruction
was used. If an operand or string was not acces-
sible, an access violation exception would
occur, which could be intercepted for special
processing by the emulator.

The IJse of Existing Rotttines

An emulator for G and H floating point data
types already existed. Instead of completely
rewriting this emulator to accommodate all
four data types, it was restructured to separate
its operand packing and unpacking routines
from the arithmetic and conversion operations.
Then, additional packing and unpacking rou-
tines were added for F and D floating point data
types. Also, the overall structure of the floating
point emulator was changed from a condition
handler to an integral piece of the operating
system. (A condition handler executes only
within user programs, while an integral compo-
nent would receive control whenever a missing
floating point instruction is executed.)

Initial Testing
It was obvious that a testbed was needed to
enable the design team to debug the emulation
software. Some method was needed to force the
emulation software to gain control in order to
execute the missing instructions. Since the VMS
macro assembler can substitute a macro for an
instruction opcode, macros could be used to
cause the assembler to take special action

whenever i t encountered any of the missing
instructions.

A set of macros was written that caused spe-
cial object code to be generated whenever any
of the missing instructions was encountered.
This special object code consisted of a byte
containing the illegal opcode FE(hex), the
opcode for the instruction, and all the operand
specifiers. When one of these instructions was
executed, a reserved-opcode exception was
generated. A special exception handler would
then advance the PC from the byte containing
the FE opcode to the actual opcode. Control
was then passed to the instruction emulator.
One of these macros is listed in Figure 1.

Using these macros, programs written in
assembly language could be reassembled and
executed using software emulation for the miss-
ing instructions. Thus any existing VAX proces-
sor, such as a VAX-11/730 system, could be
used as a testbed for the software emulation.

Results of Initial Tests
One key factor to determine was the increase in
execution time required by software emulation
for different parts of the operating system and
for application programs. To determine these
differences, the VMS Performance Group at
Digital ran standard instruction-timing tests
against the emulation code. Because these tests
were run on an existing VAX processor, the exe-
cution times for emulated instructions could be
compared to those done in hardware on the
same VAX processor. These test results showed
that it took about ten times longer to emulate
character string instructions than to execute
them in hardware.

To determine the reasons for this disparity,
the design team performed a close inspection
of the emulation code. Quite quickly it became
obvious that, for the simpler string instructions,
the operand decode required as much time as
the instruction execution. To speed u p the
emulated instructions, hardware support was
requested by the MicroVMS team.

To support this request, we made a list of the
operand types for the missing character string
and packed decimal instructions. There were
only 5 operand types in all 27 instructions.
These operand types were already being used
by instruct ions that we re a part of the
MicroVU subset, such as MOVC3 and MOVC5.
A meeting of the hardware and software teams

Digital Technical Journal
No. 2 March 1986

The Evolution of Instruction Emulation for the MicroVAX Systems

.title locctst
Sopdef

; Redefine the LOCC opcode with a new LOCC macro

.macro locc char.rb.len.rw,addr.ab
locc-f e char.rb,len.rw,addr.ab
.endm locc

desc: .ascid "This is a test" ;Test data for LOCC

; Test program to try a LOCC instruction.

.entry start-here,O ; Entry point for test program
locc <Umamm ">,desc,@desc+4 ; Generate a n emulated LOCC
movzwl tl,t-0 ; Standard exit status code
ret ; Exit from program
.end start-here ; End of test program

Figure I Test Program with Macro for LOCC Instruction

concluded that there would be little cost to the
underlying hardware if these operands were
decoded before a missing instruction exception
was signaled.

Design of New Emulation Exceptions
The result of that meeting was that two new
exceptions were added to the MicroVAX archi-
tecture as emulation assists. Since the hardware
could easily decode the operands for the char-
acter string and decimal string instructions,
they were defined as the ones that the new
exceptions would support. Thus, two of the
three instruction types not implemented in
hardware could now be handled effectively.
The third type, floating point instructions,
would continue to cause reserved-opcode
exceptions, since their operands could not be
decoded without significant additional hard-
ware support. (A separate floating point unit,
the MicroVAX 78132 chip, provides this hard-
ware support for three of the four floating point
data types.)*

The first exception is generated whenever a
character string or decimal string instruction
that is not in the hardware subset is executed.
The process causes the hardware to decode the
operands and push the exception parameters
onto the current stack. The exception parame-
ters are depicted in Figure 2.

The second exception occurs only when one
of the emulated instructions is executed and
the first-part-done (FPD) bit is set in the pro-

gram status longword (PSL). The VAX architec-
ture allows many instructions (including all the
decimal and character string instructions) to be
interrupted after partial execution. The original
operand specifiers cannot be decoded again
because the register contents may have been
altered to store the intermediate results. When
this second exception occurs, the exception
handler unpacks the intermediate results and
resumes execution at the point where the
instruction was interrupted.

PC OF INSTRUCTION

DECODED FIRST OPERAND t -4
OTHER
DECODED
OPERANDS

UPDATED PC

PSL OF EXCEPTION

Figure 2 Exception Parameters for
Emulation Assist Exception

Digital Technical Journal
No. 2 March 1986

I

New Products

Note that this second exception can occur
only when an access violation has already
occurred during instruction emulation. In that
case, the operating system's access violation
handler transfers control to the emulator.
Enough intermediate state is stored in the regis-
ters to allow restarting the instruction, at which
time the stack is restored to its state when the
instruction began execution. Then the excep-
tion PC is changed from a PC inside the emula-
tor to the PC of the original instruction that
triggered emulation. Finally, control is passed
back to the operat ing system's exception
reporting mechanism. (Page faults, device
interrupts, and the like are invisible to the user
and require no special handling. That is, there
is no need to pack the state into the registers
and alter the saved PC.)

Final Design of the Instruction
Emulators
The final design produced emulation support
in two pieces: one for the missing floating point
instructions; the other for packed decimal and
character string instructions. Although the two
emulator programs supported different data
types, their overall design contained many com-
mon threads. This section describes the com-
mon design philosophy, as well as the step-by-
step operation of each emulator.

Common Design Philosophy
Nearly all the emulation code executes in the
access mode in which each missing instruction
was originally executed. The stack associated
with that access mode is used as a working stor-
age area for the emulation routines.

The emulation of missing instructions is
nearly invisible to programs in the sense that
memory and register contents are identical to
those obtained on full VAX implementations.
The only difference between the emulated and
hardware implementations is in the time
required to complete an instruction and in the
stack remnants from the emulator's temporary
storage area. (Memory locations at small nega-
tive offsets from the top of the stack are speci-
f i e d a s UNPREDICTABLE i n t h e VAX
architecture .)

The two emulator pieces share a common
philosophy, if not common code, in regards to
the two memory management faults. One fault

is made in response to an invalid page and the
other when a reference is made to a page that is
not readable or writable as required.

No special treatment is required for page
faults (translation-not-valid faults). If an invalid
page is referenced by the emulator, a page-fault
exception is reported to the operating system.
The PC in the page-fault frame points at the
instruction within the emulator that referenced
the invalid page. After the operating system
makes the page valid, execution resumes with
the faulting instruction.

References to pages that are not accessible
(access-violation faults) are more complicated
than the page faults. Access-violation faults,
unlike references to invalid pages, are visible at
t h e program leve l . When t h e emula to r
intercepts the exception, the faulting PC points
at the emulator instruction that references the
inaccessible page. The stack contains working
storage that must be removed and saved regis-
ters that must be restored. In that way, the
exception looks like an access violation gener-
ated on a full VAX implementation. For most
floating point instructions, an access violation
implies that the state of the machine will be
reset to its state when the instruction began. For
the decimal, string, and POLYx instructions,
the instruction can be left in a partially com-
pleted state. The intermediate context is stored
in the registers and the FPD bit is set in the
saved PSL. This bit allows the emulator to
resume these instructions at the point where
they left off, rather than restarting them from
the beginning (assuming that the access viola-
tion can be resolved).

Floating Point Emtrlation Support
The program that emulates the missing floating
point instructions in software differs in several
details from the decimal/string emulation rou-
tines. In floating point emulation, the functions
are performed in the following order:

1. Execution begins in kernel mode as a
result of a reserved-opcode exception.

2 . If the exception occurs in a mode other
than kernel, the exception parameters
are copied to the stack of that access
mode. Further emulation takes place in
that access mode.

3. Each operand is decoded.

Digital Technical Journal
No. 2 March 1986 8 1

The Evolution of Instruction Emulation for [he MicroVAX Systems

4 . Floating point operands are unpacked
into exponent and mantissa.

5. The operation (arithmetic or conver-
sion) is performed.

6. If the result is a floating point number,
the resulting exponent and mantissa are
packed into a single number.

7. The result is stored and the exception
dismissed.

Before the exception is dismissed, the float-
ing point emulator examines the opcode of the
next instruction. If it is also a floating point
instruction, then control is passed back to the
beginning of the emulator to begin the operand
decode for the next instruction. This technique
saves the overhead of dismissing one exception
and immediately generat ing an ident ical
reserved-opcode exception.

The nature of floating point operations
allows many instructions to accomplish their
results by sharing different routines. There are
routines that can unpack and pack each of the
four floating point data types. There are also
routines that perform the various arithmetic
and conversion operations. Because these rou-
tines operate on unpacked numbers, the rou-
tines are independent of the initial data type.

The floating point emulation routines sup-
port all four floating point data types. Thus the
routines can be used with all MicroVAX systems
and other VAX systems that do not implement
all four floating point data types in firmware or
hardware.

Decimafitring Emzllation Szrpport
The emulation of a character string or packed
decimal instruction proceeds as follows:

1. Execution begins in the access mode in
which the missing instruction was origi-
nally used.

2 . Operands are moved from the stack into
registers and control is passed to an
instruction-specific routine.

3. Some instruction results (for example,
from MOVTC, MOVTUC, and packed
decimal arithmetic and conversions) are
s t o r e d w h i l e t h e s e r o u t i n e s a r e
executing.

4 . The routine executes i~nt i l an input or
output string is used up, at which time i t
completes the storage of results. Execu-
t i o n i s r e s u m e d w i t h t h e n e x t
instruction.

Because the decimal/string emulator relies
on hardware for its operand decode stage, the
lookahead technique used by the floating point
emulator cannot be used for decimal and string
instructions. If the instruction following an
emulated instruction also requires emulation
support, the following sequence takes place:

1. The first exception is dismissed.

2 . The next instruction is executed.

3. The operands of that instruction are
decoded and stored on the stack.

4 . The decimal/string emulator regains
control.

Since these instructions perform many unre-
lated operations, there is little code that can be
shared between their emulation routines.

Testing and Debugging
The main problem in testing the emulation
software initially was that there was n o
MicroVAX hardware available during most of
the implementation cycle. Thus we had to
develop techniques to simulate the hardware in
order to begin the tests. There were two chief
techniques used to test and debug the emula-
tor. First, instruction-specific routines were
tested as user-mode programs in a normal pro-
gram development environment. Second, the
exception handler front-end was tested on a
VAX-1 1/730 system that was modified, by
rewriting some of the 11/730 microcode, to act
like a MicroVAX system.

Instruction-Specific Testing
Microcode written for a particular implementa-
tion (both VAX and MicroVAX systems) can be
used only on that particular machine or a simu-
lation of that machine. However, macro-level
code can be executed on any VAX processor.
Therefore, since the emulation routines were
written in macro-level code that executes on
any VAX processor , "normal" debugging

Digital Tecbnical Journal
No. 2 March 1986

N e w Products

techniques could be used for part of the debug
effort.

A set of test programs was constructed that
would run on other VAX processors (1 1/730,
11/750, and 11/780). These test programs
would call each instruction-specific subroutine
and compare the results (memory contents, reg-
ister contents, and settings of the condition
codes) with the output from the corresponding
instructions executed on those processors.
These tests allowed the basic algorithms to be
debugged even before they were plugged into
the emulator. The set of tests was limited only
by the choice of input data for each instruction.

The first set of tests uncovered most
algorithmic problems but did not exercise the
error paths (such as inaccessible source or des-
tination strings). The code to handle these error
conditions was written later in the develop-
ment cycle. Neither the absence of these error
paths nor errors in edge conditions (such as
zero-length strings) prevented the VMS system
from executing.

Another benefit of a macrocode implementa-
tion was seen during the debug of the edge-
condition problems. Since the instruction emu-
lation routines were just an extension of the
operating system, the debugging tools used for
other operating system code could be used to
debug the emulator.

Testing the VAX- 11/730 Breadboard
Implementation
The availability of the two new emulation
exceptions changed the strategy for debugging
the emulation code. The software solution used
to obtain preliminary results was unable to
mimic the new exceptions invented to assist
the emulation. Therefore, a new testbed was
needed to accommodate the debugging pro-
cess. The testbed had to decode the operands
and generate the appropriate exceptions to pass
control to the software emulation code. One
way to perform these functions was to alter an
existing VAX system, such as the VAX-11/730
processor.

The 11/730 is an entirely "soft" machine;
that is, all its microcode is loaded at powerup
rather than being resident in ROM. By altering
that microcode, the design team could make
the 11/730 look like the architecture in a
MicroVAX system. The required changes were
simply a matter of removing the microcode for

instruction execution while leaving that for
operand decode. To finish the alterations, the
design team had to write a new "exception gen-
erator" to create the emulation exceptions.

At this time in the project, the first real
MicroVAX hardware would still not be available
for nine months. Therefore, the VMS design
team decided to undertake the modifications to
the 11/730's microcode and to build the
testbed. We estimated that this effort would
take one to two months, since the VMS devel-
oper had to learn to write microcode. That
meant that the software emulation code would
still be completed long before the first
MicroVAX hardware was ready.

The microcode source programs were
acquired from the 11/730 microcode team and
assembled using the latest version of the
microcode assembler. The 1 1/730 microcode
was structured as separate modules for different
functions (for example, floating point, compat-
ibility mode, exceptions, memory management,
and so on). Due to the lack of a "linker," label
files that allowed routines to be called across
modules had to be created. To speed the devel-
opment, the design team wrote several FOR-
TRAN tools that automatically generated new
label files. In addition, command files were
built that correctly created a new set of binary
microcode files from a set of modified sources.

The next step was to change the 11/7301s
microcode. Since it had to exist in a limited
amount of RAM space, the new code could not
be added without removing some existing
code. Therefore, we decided to replace the
compatibility mode microcode with a new rou-
tine to generate the emulation exception. Some
new flags were added that, at the developer's
choice, would allow different classes of
instructions to be emulated (i .e . , decimal
string, character string, or floating point).
Finally, to boot the VMS system on this
MicroVAX version of an 11/730, we had to
enhance the VMS bootstrap code to load the
emulation exception handlers and connect
them to the appropriate exception vectors.

Now the software emulation code, from the
exception handler all the way down to instruc-
tion execution, could be debugged. The best
measure of the success of this venture was
made when MicroVAX hardware was finally
available. The customized VAX-11/730 system
was such a good testbed, not only for the

Digital Technical Journal
No. 2 Marcb 1986

The Evolution of Instruction Emulation for the MicroVAX Systems

instruction emulator but also the rest of the
MicroVAX I support, that it took a mere four
days to get the VMS system running.

Other Test Mechanisms
The initial testing of the instruction emulator
consisted of a set of programs and sample input
data for each of the missing instructions. While
providing routines that worked in almost all
cases, these tests did not exercise some of the
more exotic edge conditions. Those included
very long or very short strings, illegal operands,
or strings that were not readable or writable.
Once MicroVAX hardware was available, several
new testing techniques could be used to exer-
cise the emulator.

Operating System Code
More testing was provided by running the oper-
ating system code with the emulator providing
character-string and packed-decimal support.
The VMS Development Group has a large set of
regression tests that exercise most success and
error paths within the operating system. These
tests plus normal daily use by the VMS develop-
ment community ensured that extensive testing
of the instructions used by the VMS operating
system was performed.

Once the VMS system was running, the
ULTRIX-32 and VAXELN Development Groups
requested the source code for incorporation
into their systems. These systems exercised
parts of the emulator that the VMS system did
not use. The ULTRIX kernel uses a small num-
ber of packed decimal instructions (ASHP,
ADDP4, SUBP4, and EDITPC) for some of its
arithmetic and formatting support. When the
ULTR1X-32 operating system first exercised the
emulator, several bugs were detected and
corrected.

Compiler-Generated Code and Associated
Tests
The base operating systems used packed-deci-
ma1 and floating point instructions in a small
number of cases. These instructions received
better testing using programs written in COBOL
and FORTRAN. The compilers and their valida-
tion tests were used to test the emulator rou-
tines from the time they were first written until
they finally shipped.

Architectural Conformance
Even such continual testing is no guarantee that
each instruction executes according to the VAX
architecture specification. Most of the testing
described so far exercised the success paths of
the emulation subroutines. The error paths,
especially the code that intercepted and modi-
fied access violations, required a different set of
tests.

CPU Diagnostics
For each CPU designed by Digital, a set of CPU
diagnostics is written that exercises as much of
the central processor as possible. Included in
these diagnostics is an instruction-set exerciser
that tests for proper behavior in at least some of
the interesting error cases. The CPU diagnostics
for the MicroVAX I served as the primary test
for the access violation handler in the deci-
mal/string emulator.

AXE Ver@cation Program
All new VAX computers at Digital are tested
with an architectural verification tool known as
AXE. AXE programs are used to determine
whether or not the machine conforms to the
VAX architectural specification. AXE accom-
plishes this testing by subjecting each VAX
instruction, with many combinations of oper-
ands, to a variety of error conditions. These
conditions include inaccessible operands,
instructions or operands that cross page bound-
aries, and unusual operands.

When the MicroVAX instruction emulator
was subjected to AXE testing, the only bugs that
remained involved an instruction restart follow-
ing an access violation.

Results
As a result of this strategy, the software emula-
tion code was completed and fully debugged
before the first real MicroVAX hardware was
finished. The ULTRIX-32 and VAXELN oper-
ating system groups were able to take the VMS
emulation code and convert it to work under
their operating systems. That took much less
effort than was required for the VMS develop-
ment team to implement that code. With this
technique, bugs found in the instruction-execu-
tion logic in one system could be corrected in
all three operating systems.

Digital Technical J o u d
No. 2 March 1986

1 New Products

A second benefit of this engineering effort
was seen by the hardware designers. The
revised VAX-11/730 microcode sources and
microcode tools were further modified to cre-
ate a MicroVAX CPU chip simulator. The simu-
lator allowed the MicroVAX CPU boards to be
tested before any MicroVAX chips were actually
available.

The biggest gain of all was that no applica-
tion software, compilers, or operating system
code had to be rewritten to avoid the use of the
missing instructions.

References
1. VAX Architecture Reference Manual

(Bedford: Digital Equipment Corpora-
t ion , Order No. EK-VAXAR-RM-002,
1983).

2. D.W. Dobberpuhl e t al, "The MicroVAX
78032 Chip: A 32-bit Microprocessor,"
Digital Technical journal (March 1986,
this issue): 12-23.

3. VAX Software, Languages and Tools
Handbook (Maynard: Digital Equipment
Corporation, Order No. EB-27240-48,
1985).

4. W.R. Bidermann e t al, "The MicroVAX
781 3 2 Floating Point Chip," Digital
Technical journal (March 1 986 , this
issue): 24-36.

Digital Technical Journul
No. 2 March 1986 8 5

Steven E. Boone
Gzcenter E. Schneider I

Tibe TK5O Cartridge
Tape Drive

A streaming tape drive, the TK5O subsystem, prouides f a t backup and
data transfer for small computers like the MicroVAX I1 system. A single-
reel cartridge, using half-inch magnetic tape, stores 100 megabytes of
data. A unique tape transport system automatically threads the tape
when the cartridge is inserted. The drive reads and writes data in a
selpentine manner, going the entire tape length first on one track, then
another. For high data integrity, the TK5O subsystem employs a sophisti-
cated error-recovery algorithm, reading data afler writing it and rewrit-
ing any corrected data farther down on the tape. The Q-bus controller,
the TQK50, contains complex firmware conforming to Digital's Storage
Architecture and controlling data transfers between the CPU and the
tape.

As the performance of computer systems
expands while their size shrinks, many factors
demand special attention. One major factor is
storage systems. Over the past few years, disk
drives have made dramatic advances, providing
storage capacity of hundreds of megabytes in
very small and relatively inexpensive packages.
Since the predominant technology for today's
disk drive is based on the fixed-media concept,
some means of providing system backup and
data transfer capabilities is required. Magnetic
tape systems are still the most viable way of
providing these capabilities.

Ease-of-use considerations require that a
backup/transfer device be matched in capacity
to the supported disk systems. It should also be
extremely reliable, fast, and very cost effective.
This paper describes a peripheral subsystem,
the TK50 magnetic cartr idge tape drive
(Figure I) , that meets all these requirements.

Design Goals of the m5O Subsystem
The TK50 cartridge tape subsystem was con-
ceived to meet the needs of the MicroVAX I1
and similar computer systems. A study of tape
products then available indicated that existing
quarter-inch cartridge drives did not provide

either the performance or the capacity required
to back up the large capacity disk drives sup-
ported by these systems. Existing drives also
lacked the rel iabi l i ty and data integri ty
required to complement the designs of our new
microsystems. Therefore, Digital designed the
TK50 cartridge tape subsystem to meet the
needs of the MicroVAX I1 system and other
small to mid-range computers.

A wide variety of factors defined the design
goals of the TK50 subsystem. It had to fit into a
standard 5 %-inch form factor and provide high
capacity with high data integrity. The desire for
mechanical simplicity, reliability, and low cost,
while maintaining good performance, dictated
a streaming tape design. The TK50 subsystem
had to be compatible with the Q-bus, and the
TK50 controller had to support the Tape Mass
Storage Control Protocol (TMSCP) of the
Digital Storage Architecture.

Our investigations led to the concept of an
automatic-threading, single-reel cartridge that
utilized the established medium of instrumen-
tation tape. This tape supports high bit densi-
ties and fast tape speeds, allowing great latitude
in specifying the performance and capacity of
the TK50 subsystem. We also decided to use

Digital Technical Journal
No 2 March 1986

T-'

: I&':

New Products

Figure I The TK50 Tape Drive

half-inch tape, rather than quarter-inch, to max-
imize capacity.

The requirement of the MicroVAX I1 system,
as well as our desire to minimize risks in a first-
generation product, dictated that the tape
capacity should be 100 megabytes (MB) .

System Design
The TK50 cartridge tape subsystem was devel-
oped with three major components:

A tape cartridge, called the CompacTape Car-
tridge, that houses 600 feet of half-inch tape
and supports the auto-threading feature of
the transport mechanism

A unique streaming tape transport featuring
auto-threading and a microprocessor-con-
trolled servo-system

An intelligent, microprocessor-based Q-bus
controller that supports TMSCP

CompacTape Cartridge
The CompacTape Cartridge is unique in many
ways. First, it provides a large amount of data

recording surface for its volume. The cartridge
has approximately two hundred and fifty times
the recording surface area of a single-sided
5 %-inch floppy disk. Moreover, compared to
the only commercial tape product then availa-
ble to fit the 5 %-inch form factor, the Com-
pacTape Cartridge is four times as efficient in
utilizing tape volume in relation to cartridge
volume. The cartridge is designed to maximize
the volume of tape in the standard form factor
of the 5 %-inch drive. The cartridge, shown in
Figure 2, contains a single reel with the tape
occupying forty percent of the cartridge's vol-
ume. The tape is !h inch wide, .001 inch thick,
and 600 feet long.

Second, the CompacTape Cartridge is a com-
pletely enclosed device that never exposes the
media to the environment, thus greatly enhanc-
ing the data reliability of the entire subsystem.

Third, the CompacTape Cartridge allows
automatic tape threading once it is inserted into
the TK50 tape drive. This auto-threading func-
tion is a key feature of the mechanical design of
the tape transport.

Digital Technical Journal
No. 2 March 1986

87

Cartridge Tape Drive

DRIVE HUB

Figure 2 The TK50 Tape Cartridge

Figure 3 Engagement of Drive Leader
to Cartridge Leader

The auto-threading works in the following
way. When a cartridge is inserted into the drive,
the tape must be threaded around the tape
guides, over the read/write head, around the

0 0
take-up reel, and then fastened to the reel hub.
Two leaders are used to accomplish the thread-
ing, as shown in Figure 3 . One, made of ,007-
inch Mylar, is attached to the BOT end of the
tape in the cartridge; the second is attached to
the hub of the take-up reel in the drive. This
second leader has an arrow-shaped t ip that
reaches from the reel, through the tape path,
and into the area that will be occupied by the
tip of the first leader when the cartridge is
inserted. During the insertion process, the
arrow-shaped tip is moved by a cam into the
opening of the cartridge leader. Tension is then
appl ied t o lock t he leaders together. This
"buckle" is now ready to be pulled through the
tape path and wound onto the take-up reel.

This buckling process is accomplished by
two links in the drive, in conjunction with a - TAPE LEADER DRIVE

8 8 Digital Tecbnfcal Journal
No. 2 March 1986

constant tension applied by the motor to the
take-up leader. One link uses a cam to move the
two leader tips into each other. The other link STEP 1 STEP 2 STEP 3

holds the take-up leader in the correct position
and retreats at the right instant, allowing the
motor to cinch the buckle. The entire process

- NC 'Vc

New Products

happens during the last half-inch of insertion as
the cartridge enters the drive. (See Figure 4 .)
This linking takes place without any tape being
spooled out of the cartridge.

When the tape is rewound into the cartridge
for removal from the drive, the two ears on the
cartridge leader come to rest in a pocket in the
cartridge shell. When the cartridge is removed
from the drive, two opposing locks hold the
reel in this position. The toothed locks engage
with rhe teeth on the outer diameter of the reel
flange. Thus locked, the tape stays tightly
wound and the leader tip is kept in the correct
position for a subsequent buckling process.

Tape Transport
The TK50 tape transport (Figure 5) consists of
two major components: the tape drive and a
single printed circuit board assembly.

The tape drive encompasses the mechanical
and electromechanical components to read data
from and write data to the magnetic tape. The
drive's major components include

The magnetic readlwrite head and its linear
positioner

& PROPER LOCATION OF LEADER

LEADER HIDDEN - LEADER DLSPLACED ABOVE LINK

Figure 4 View of Leader Shown in Four
Positions

LEADER. TAKE-UP REEL. TAKE-UP

CONSTRAINT. TAPE

ASSEMBLY
\ / . LEADER

LINK. BUCKLING

BRACKET &
HEAD ASSEMBLY

REEL. DRIVER

BEZEL
ASSEMBLY

Figure 5 TK50 Tape Drive Transport

Digital Techical Journal
No . 2 March 1986

89

The TK50 Cartridge Tape Drive

WRITE READ

HEAD BRACKET

\ \ ISLANDS /

TAPE v / ISLANDS
\

READ WRITE

Figure G TK50 Read/Write Head (Top View)

The cartridge threading mechanism

The take-up reel and its motor

The drive hub mechanism, which interfaces
to the CompacTape Cartridge, and its motor

The tachometer, which provides feedback to
a microprocessor, the 805 1, for tape speed
control

Various sensing devices that monitor and
control the handling of the tape as it passes
over the read/write head

HEAD BRACKET

HEAD

I

Read/Write Head

The read/write head is designed with four
islands that are in contact with the tape
(Figure 6). The tape forms a polygon as it con-
tacts these four areas. Each island bends the
tape by an angle of six degrees. Over its width,
each island is curved by an amount correspond-
ing to the radius of the natural curvature of the
tape under working tension, thus assuring good
surface contact (Figure 7). The narrow islands
limit any temporary liftoff (due to contamina-
tion) to very short sections of tape, and they
clean the tape as well.

HEAD BRACKET

Figure 7 TK50 Read/Write Head (Side View)

90 Digital Tecbnical Journal
No . 2 March I986

New Products

Except for the ferrite cores, the entire head
block is made of ceramic material to ensure
long life. The two inner islands contain the
read/write cores; the two outer ones direct the
tape to the inner ones so that uniform contact
between the tape and the head is provided. On
the upper part of the head assembly are two
gaps, a write gap (.018 inch wide) followed by
a read gap (.008 inch wide), that read and
write data when the tape is moving forward.
Two corresponding lower gaps read and write
data during reverse tape motion. The lower
gaps cover the odd tracks and the upper gaps
cover the even tracks; thus, the head has to
traverse only half the tape width, helping
greatly to keep the height of the drive within
limits. The track spacing is .0 19 inch.

Allto- Ttveading
As the cartridge is inserted, its door opens,
exposing the cartridge leader. Then, as

described earlier, two plastic arms in the drive
act to buckle the cartridge's supply leader to
the drive's take-up leader. The rest of the auto-
threading process is handled by the drive's
motors, sensors and microprocessor.

Tape motion and tension control is accom-
plished through two microprocessor-controlled
brushless direct-current motors. One of these
motors is connected directly to the take-up
hub; the other to a drive hub designed to inter-
face to the CompacTape Cartridge.

The engagement of the cartridge hub with
the drive motor shaft is accomplished by a pair
of gears that transmit torque and simultane-
ously center the reel (Figure 8) . A plastic hub
with one set of teeth is attached to the spindle;
another set of teeth is molded on the underside
of the cartridge reel hub. A clutch gear engages
both sets of teeth to drive the reel. To facilitate
the insertion or removal of the cartridge, the
clutch gear is axially retracted out of engage-

Figure 8 TK5O Door Assembly

Digital Technical Journal
No. 2 March 1986 9 1

The TK50 Cartridge Tape Drive

ment. The clutch gear is activated by the opera-
tor's lowering or raising the handle. When the
handle is lowered, the spring-loaded lower gear
engages the reel and lifts i t slightly into the
cartridge to eliminate contact between the
rotating reel and the stationary shell (Figure 8).

This clutching arrangement has a big advan-
tage because i t allows mechanical simplicity
and easy operation of the drive. The cartridge is
inserted by the opera tor in to a channel
(receiver) that puts the two leaders into a
coplanar relationship. The entire linking pro-
cess is thus accomplished by merely sliding the
cartridge into the receiver slot. A solenoid-acti-
vated interposer locks the cartridge in place
when i t reaches t he end position in the
receiver. When the front handle is then low-
ered, the drive gear rises to mate with the car-
tridge reel. A set of fingers simultaneously
enters the bottom of the cartridge to release the
reel locks, thus allowing the tape to move. The
operator accomplishes all these actions with
one hand.

After a tape cartridge is inserted into the
TK50 drive, the operator presses a button and
the 805 1 microprocessor on the printed circuit
assembly initiates the threading process. The
reel motors, under microprocessor control,
slowly put tension on the tape to accomplish
the process. The buckled leaders and a length
of tape are pulled through the drive and onto
the take-up reel. Auto-threading is complete
when the BOT hole in the tape is detected by a
photo-transistor. When the auto-threading oper-
ation ends, the microprocessor will have
received pulses from a tachometer attached to
one of the rotating tape guides. Through the
information derived from the tachometer, the
microprocessor can maintain proper tension
and tape speed.

After the tape is positioned at BOT, the con-
troller requests a calibration procedure. This
procedure sets u p the drive to ensure that
proper values for the read circuitry gain and
head stepper alignment are obtained. This cali-
bration provides one of the key features of the
TK50 subsystem: the ability of a user to
exchange media between different TK50 tape
drives without the need for adjustments.

Once calibrated and at BOT, the TK50 drive
is ready to read or write data. The drive writes
data in a serpentine fashion over the entire
length of the tape. The upper part of the

read/write head writes data on one track down
the entire length of tape until i t reaches a logi-
cal EOT marker. (The logical EOT marker is a
preset tachometer count; the physical EOT
marker is a hole in the tape.) The tape direction
is then reversed and the other lower write core
will write data in the other direction for the
entire length of the tape until a logical DOT is
reached. The direction of the tape is then
changed to forward, the head is stepped up by
19 mils, and the upper write core is again used
to write data. Figure 9 illustrates the physical
tape configuration.

Dril'e C1rc117tq~

The printed circuit board assembly is built
around an 805 1 microprocessor. The 805 1 and
associated circuitry provide the intelligence to
interpret commands, provide servo control for
the reel motors, perform tape calibration proce-
dures, and monitor various status inputs. The
read/write circuits necessary to translate data to
and from the tape's MFM format also reside on
the board. Figure 1 0 illustrates a simplified
block diagram of the TK50 drive board.

Write data comes into the drive's logic board
via the differential signal cable from the con-
troller board. The data enters the shift register,
which accepts the serial data and outputs a
five-bit parallel data pattern into a program-
mable array logic (PAL) device. The data is
clocked through the shift register by a 500-KHz
clock. (500 KHz is the write pulse rate, or data
rate.)

The PAL first accepts the five parallel bits
from the shift register. Then the PAL generates
the pre-compensation, as required, and trans-
lates the data into the MFM format recorded on
the tape. A constant current source of 15 mil-
liamps is applied alternately to each core of the
active write head, resulting in the flux transi-
tions necessary to write data on the tape.

To enhance data reliability, the TK50 subsys-
tem reads data just after writing it. This tech-
nique uses the read head (positioned immedi-
ately behind the write head) to read the data
from the tape as soon as it has been written.
(See Figure 7.)

The read data is sent back to the controller,
where the communications interface performs
CRC processing. If an error is detected, the con-
troller rewrites the block that contained the
error. The rewritten block is placed farther

Digital Technical Journal
No. 2 iMnrch J 986

N e w Products

LOGICAL
BEGINNING
OF TRACK
(FORWARD)

I
I 914 610 I
I MM I MM 1
1 (3 FT) 1 (2 FT) I
I MIN , MIN

I I

DATA AREA

183 METERS
(600 FEET)
NOMINAL

I C I G
I A 1 U

I ; 1 A R

I B l D
I R I
I A I B

I : I ;
1 0 1
I N I

BOT 1 I
HOLE 1 1

I I
I I
I I

I 1
I I
I I
I I
I I
I I
I I
I I

LEADER
END

REFERENCE EDGE I 1219 HUB
I MM I END
1 (4 FT) I
I MIN

I
LOGICAL
BEGINNING
OF TRACK
(REVERSE)

Figure 9 Ph.ysica1 Tape Configuration

Digital Technical Journal
No. 2 March 1386 9 3

The TK50 Cartridge Tape Drive

MISCELLANEOUS
SENSE
CONTROL c

TACHOMETER

PLS-L

SERIAL COMMAND

GAP

WRITE GATE

MICROPROCESSOR SENSE

(AMPLITUDE, TRACKING) CONTROL

-
8 7 5 1

SERIAL

VCO ENABLE *

READ ENABLE
w

(ECHO)
ENABLE

C

DUAL
DAC

- -
INTI -

8155 -
MICRO- 8 x 2 5 6 600+ FEET

FORWARD
+

BACKWARD
CHANNEL

VCO

+
DATA
SEPARATOR

PROCESSOR

WRITE/ERASE ENABLE

1-'4

NRZ READ DATA
*

READ CLOCK
c

I I I

ENABLE

Figure 1 0 Block Diagram of the Drive Board

R A M OF TAPE

MISCELLANEOUS

Digital Tecbnical Journal
N o . 2 March 1986

I

WHITE CLOCK *

ENCODER

WRITE DATA (NRZ)

ERASE GAP
C

WRITE
COMPEN-
SATION
(PAL'S)

New Products

down on the tape to avoid the performance loss
resulting from the drive's having to move the
tape back and rewrite over the data block con-
taining the error. The controller firmware is
able to detect these rewritten blocks during a
subsequent read pass for data recovery proce-
dures, thereby enhancing system integrity.

Read data signals from the read head are fed
to the differential preamplifier circuit and in
turn to the read amplifier. The gain of the
preamplifier is automatically set during calibra-
tion to maintain an optimum signal level. The
signal from the read amplifier is then passed to
a differentiated, linear-phase, low-pass filter. A
zero-crossing detection circuit produces a
digital signal, consisting of a single pulse for
each detected zero crossing, that represents
data read from the tape.

The digital data is then sent to the phase lock
loop (PLL) circuit where the clock signal is
recovered and the MFM data is decoded. The
PLL consists of two PALS, a voltage-controlled
oscillator, and some analog circuitry.

The read-data pulse from the read amplifier
circuit is used in conjunction with the 500-KHz
write clock to optimize the "lock time" for the
PLL. Whenever there is a gap (no signal) going
into the PLL, i t will lock onto the 500-KHz
clock signal. This locking is done so that the
loop-filter integrating capacitor is kept at a con-
stant voltage. This process minimizes the phase-
lock time during the preamble.

When the READ ENABLE signal is asserted, the
PLL waits for the synchronization (sync) bit.
When the PLL detects the transition, i t clocks
the sync bit and data onto the serial line to the
controller and starts sending back the read
clock. The sync bit signals the communications
processor on the controller to start processing
the following data and the CRC check-word,
and to check for a matching CRC.

Q- bus Controller
The intelligent interface between the TK50
tape transport and the Q-bus is designated as
the TQK5O. Figure 11 is a block diagram of the

T 0
DRIVE

Q-BUS

FROM
DRIVE

r

Digital Technical Journal
No. 2 March 1986 95

M7546 Q-BUS CONTROLLER

r . - T E ~ ~ l
1 Q-BUS

I
INTERFACE

UART

I
I I

----- I
A I

DATA BUFFER I 1 I
I

I I
MICROPROCESSOR RAM ROM I I I I -

I--

Figure 11 Block Diagram of the TQK50

The TK50 Cartridge Tape Drive

TQK5O. The interface is a Q-bus-compatible
dual board based on the 80 186 microprocessor.
In conjunction with 32 kilobytes (KB) of highly
complex firmware, the 8 0 186 and its associ-
ated hardware perform the following functions:

Interface the controller to the Q-bus (via sin-
gle-word and DMA transfers)

Translate and process TMSCP command
packets and responses

Provide data format and error recovery
processing

Control the general operation of the tape
transport mechanism

Support the serial data link between the con-
troller and drive

Hardware
The Q-bus interface is controlled primarily by
an 80186 microprocessor and an 82S105 field
programmed logic sequencer (FPLS), which is a
high-performance LSI device capable of per-
forming complex logic functions. Using the
82S105 FPLS sequencer allowed us to create an
efficient, flexible design in a very small space.
The FPLS and microprocessor are responsible
for maintaining the strict Q-bus protocol during
DMA transfers to and from the controller. The
DMA transfers and interface interrupts are
processed very quickly due to the high per-
formance of the microprocessor and FPLS. This
high performance makes possible the data rates
needed to support tape streaming and lessens
the criticality of the DMA latencies in the host
system.

Assisting the FPLS is an 80186 microproces-
sor operating at 6 MHz. The 801 86 is a highly
complex, 16-bit microprocessor; it is responsi-
ble for all the command, control, and data
processing for the TQK5O. A microprocessor
with the 80186's performance is required due
to the large number of complex tasks that must
be performed within very short time frames
(e.g., ECC processing during inter-block gaps
on tape). The high level of integration available
with the 8 0 186 was a key factor in its selection.
In addition to the CPU, the 80186 contains
three onboard timers, an interrupt controller,
address decoding, and two DMA channels. Also
important in the selection of the 80 186 was the
availability of sophisticated development tools
and efficient software support packages.

The 80186 microprocessor is supported by
numerous components that include SSI, MSI
and PAL devices. Furthermore, the program
store and the workspace/data buffers are pro-
vided by 128-kilobit (Kb) EPROMs and 64Kb
static RAMS. A total of 32KB of program store
and 16- of buffer is available to the 801 86.

Communications between the TQK5O con-
troller and the TK50 tape transport take place
over a pair of full-duplex, differential, serial
Lines. A multiprotocol communications proces-
sor (NEC 7201) is used to process the serial-to-
parallel and parallel-to-serial conversions. One
fu l l -duplex channel , opera t ing a t 1 8 7 . 5
kilobaud, communicates the command/status
information between the controller and the
transport. The other channel provides the data
communications path, supported by data-link
error checking via CRC-16. This second chan-
nel operates synchronously at 500Kb per sec-
ond. The NEC 7201 communications chip sup-
ports DMA transfers to and from the 8 0 186 and
operates in a priority-interrupt mode.

Firm.zi~are
The most complex component of the TK50 sub-
system is its firmware. The 32KB of firmware
contained in EPROM are partitioned into five
major functions:

The PORT/Q22 (Q-bus) for data transfer
control

The SERVER for TMSCP command processing

The TOS for t a p e t r anspor t c o n t r o l
and formatting

The ECC for error detection and correction

The ROD for resident onboard diagnostics

The PORT/Q22 firmware controls data trans-
fers between the controller and CPU, and also
maintains the command queue processing. Up
to four TMSCP commands can be queued,
allowing the host to set up a series of opera-
tions for execution while it continues with
other processing. DMA transfers of up to 64K-1
bytes can be made, allowing an effective, low-
overhead data transfer between the subsystem
and CPU memory space.

The SERVER firmware is responsible for trans-
lating and executing the wide variety of TMSCP
commands. These commands provide a very
structured environment within which control,

--

Digital Tecbnicd Journal
No. 2 March 1986

New Products

status, and data transfers are accomplished.
TMSCP is a packet protocol that uses a com-
mand-response sequence. Each pair of com-
mand-response packets contains information
pertaining to the internal command as well as
various command modifiers, status fields, and
subsystem parameters. A l l levels of information,
from the command sequence number to com-
mand status to hardware and firmware revision
levels, are provided in TMSCP. In addition to
assembling and processing this information, the
SERVER firmware uses values, such as physical
and logical record numbers, to validate infor-
mation being processed from the tape.

SERVER has an additional mode that supports
the Diagnostic Utility Protocol (DUP). DUP
provides a set of commands that allow detailed
tests of the subsystem to be performed. DUP
operates in conjunction with the resident on-
board diagnostic module.

The TOS (tape operation support) firmware
controls the transfer of data between the tape
transport and the buffers allocated by SERVER.
This control is accomplished through format-
ting operations and through physical control of
the tape transport mechanism.

The TK50 subsystem is a streaming tape drive
that was designed to operate in an efficient
block-mode environment. The TK50 subsystem
relies on logical information written on the
tape to determine the tape's physical and logi-
cal positions. The physical and logical contexts
are maintained by the TOS firmware and writ-
ten into special control fields embedded in the
TK50 tape format. Information contained in
these fields includes physical object number,
logical object number, tape-mark number, byte
count, sequence control number, track num-
b e r , and b lock type . This informat ion is
processed by TOS to maintain the physical and
logical contexts between the subsystem and the
data on the tape.

D u r i n g s t r e a m i n g o p e r a t i o n s , c o n t e x t
processing is the primary function of TOS.
However, when the host system is unable to
process data at a sufficient rate to maintain the
streaming operation (4 5KB per second), TOS
must provide complex positioning control .
Whenever the host system falls below the
required data transfer rate, TOS must stop the
tape. Since the TK50 subsystem was mechani-
cally optimized for streaming, any stopping and
starting of the tape is a time-consuming and
imprecise operation. Moreover, the TK50 sub-

system lacks the inter-record gaps that are used
for positional information in traditional 9-track
tape drives. The TK50 subsystem must rely on
data read from the tape to locate its position.

When the host system resumes data process-
i n g , TOS m u s t repos i t ion t h e t ape by a
sequence of reverse, stop, forward, and read.
After locating the last data block processed on
the tape, TOS continues with the host's request.
The host's failure to process data at a sufficient
rate is costly in terms of system throughput.
This situation requires increased complexity in
the subsystem design.

TOS provides a padding function to help
compensate for insufficient host processing
power. With padding, TOS allows data latencies
of u p to 6 3 milliseconds before reverting to the
repositioning mode. During this data latency
period, pad blocks are written to the tape in
9-millisecond increments. That allows the tape
t o c o n t i n u e s t r e a m i n g . T h e t rade-of f is
improved per formance a t t h e e x p e n s e of
slightly reduced tape capacity (5 1 2 bytes per
pad block). If the 63-millisecond period is
exceeded, TOS stops and performs a reposition
to the point of the last data block. When addi-
tional data arrives, TOS overwrites any previ-
ously written pad blocks. In practice, this pad
function enhances performance and seldom
reduces tape capacity by more than ten percent.

The ECC firmware provides the means to
detect and correct errors. To provide a high
level of reliability, the TK50 subsystem is
designed to allow only one unrecoverable error
in every 1 X 1 0 ' ' bits read. This is equivalent to
one unrecoverable error in every 125 cartridge
reads. To achieve this goal, ECC implements
error-detection and error-correction schemes.
Error detection is based on the CRC-16 method,
which is supported by the hardware communi-
cations device. This industry-standard method
has been proven to be very efficient in this
environment.

To implement the error-correction function,
ECC processes serial-formatted data to and from
the tape. Data is written to and read from the
tape in 512-byte blocks. Each block is grouped
into 8-block units, called data entities. Within
an entity, the four even-numbered data blocks
(0 ,2 ,4 ,6) and the four odd-numbered blocks
(1 ,3 ,5 ,7) are protected by longitudinal check-
sum blocks. An entity, therefore, consists of ten
blocks: data blocks 0 through 7 and ECC blocks

Digital Technical Journal
No. 2 iMnrch 1986

The TK50 Cartridge Tape Drive

(5 12 BYTE BLOCKS)

Figure 12 Entity of Ten Blocks

0

8 and 9. Figure 1 2 shows the arrangement of
the ten blocks.

This technique, coupled with record-level
checking by SERVER and the host operating sys-
tem, insures the complete integrity of the user's
data.

The ROD (resident onboard diagnostics)
firmware provides additional support for the
TQK5O. When the subsystem is initialized, the
firmware executes a series of go/no-go tests
that validate the functionality of the controller.
Ninety-eight percent of the TQK5O's function-
ality is covered by these tests, excluding the
Q-bus and drive-interface logic circuits. More
extensive diagnostics that fully test the TK50
subsystem are available under the DUP. Having
the diagnostics resident in firmware allows the
running of integrated tests that interact at levels
not permitted from the system interface. That
avoids the difficulties in supporting down-line
l o a d a b l e c o d e i n v a r i o u s r u n - t i m e
environments.

Summary

t
1

Designing the TK50 cartridge tape subsystem
and turning it into a product was a significant
challenge. The effort proves that good perform-
ance , high rel iabi l i ty , ease of use , and
extraordinary data integrity can be achieved in
a cost-effective manner. These qualities will
continue to be required as computer systems
increase in performance and capacity.

To that end, the TK50 cartridge tape subsys-
tem is but the first of a family of cartridge tape
products. Work is continuing on the develop-
ment of subsystems with higher performance
and greater capacities. Interfaces to computer
systems other than those based on the Q-bus
have been or are being developed to meet the
expanding needs for greater storage capacity.

Achno wledgements
Designing the TK50 cartridge tape subsystem
required a multitude of disciplines involving
scores of individuals. Each member of the TK50
program team contributed time, energy, and
personal commitment to yield a successful
product. The authors wish to acknowledge
those contributions here.

2

9 8 Digital Technical Journal
No. 2 March 1986

3 4 5 6 7 EVEN
ECC

ODD
ECC

Porting ULTRCY
software to the
Micro VAX System

The UL TlUX system, written in the C programming language, was ported
to the MicroVAX ZZprocessor by a multistep process. This involved estab-
lishing a cross-development enuironment, building a bootpath, porting
the ULTRCY kernel, and writing special device drivers. The remaining
soflware was ported afler those steps were completed. To minimize
UL TRCY design changes, the system's Z/O architecture was mapped into
the MicroVAX physical address space so as to mirror the equivalent
mapping on larger VAX system. Some MicroVM instructions must be
emulated in macrocode. The emulator used in the MicroVMS sojbare
was adapted for use in this ULTlUX somare.

The UNIX system came into existence in 1969
at the AT&T Bell Laboratories in Murray Hill,
New Jersey. The initial system was written in
assembler and ran on a PDP-7 system that was
loaded from paper tapes. From late 1970 to
early 1971, the UNIX software was reimple-
mented for the PDP-11 system using a cross-
assembler running on the original PDP-7 sys-
tem. In 1973, the kernel was rewritten in the C
programming language. Since that time the sys-
tem has undergone many changes and is still
the subject of much research.' Today, there are
two major 32-bi t variants of the original
software: 4BSD, developed at the University of
California at Berkeley; and System V, from
AT&T Corporation. Digital Equipment Corpora-
tion's original ULTRIX-32 product is a direct
descendant of 4.2BSD.

In 1983, Digital decided to develop and dis-
tribute a UNIX software product. At that time,
4.2BSD was the only virtual-memory UNIX
operating system running on VAX processors. It
is still the only UNIX software derivative to pro-
vide network support. These features were the
key factors in deciding to use 4.2BSD as the
basis of the ULTRIX-32 system.

Development started in the fall of 1983 on
one of the first 4.2BSD distributions, and the

final product was released in April 1984 as
ULTRIX-32 V1.O. In the current version of the
product, we have combined the two UNIX sys-
tem derivatives by adding the system services of
the AT&T version to the original ULTRIX-32 sys-
tem. To that base we have added reliability and
maintainability features, as well as new-proces-
sor support. The resulting system, one of the
industry's most powerful and versatile UNIX
software versions, spans the full VAX system
price/performance range.

Porting the UNLX System
"Porting" is the process of implementing an
operating system on a new processor. The UNIX
system has been ported to more processors than
any other system in existence. It runs on all
classes of machines, from 8086 microproces-
sors to the CRAY-2. For VMS and RSX systems
and the like, porting normally means a major
rewrite because significant parts of them are
written in low-level languages, usually macro
assembler. Rewriting one of these systems is so
expensive that either the effort would not be
undertaken or the new system would be written
from scratch.

The UNIX system is different. It is written in
a single high-level language, c , ~ and has been

Digital Tecbnical Journal
No. 2 March 1986

Porting UL TRIX Software to the Micro VAX System

structured to be as processor independent as
possible. However, vestiges of its PDP-11 heri-
tage are still apparent.

All 32-bit versions of the ULTRIX-32 system
are built from a common set of source files. The
kernel files are organized into machine-depen-
dent and machine-independent parts. The dif-
ferences between the VAX and MicroVAX ver-
sions of the system are resolved through the use
of conditional compilation and linking. The
present kernel sources for the MicroVAX ver-
sion are as foIlows:

Files Language

209 C headers

C source

Assembler source

The 21 assembler source files can be further
broken down as follows:

Files Purpose

14 MicroVAX subset and
floating point emulator

3 Templates for
rpb,scb,spt

Macro definitions

Initial startup code
(1ocore.s)

The last and most significant file is loco re.^,
which contains the initial startup code and a
few cri t ical rout ines needed for process
management.

Bringing the UNIX system u p on a new
processor is normally done in multiple steps by
a small team. The difficulty and extent of the
work involved is directly related to the archi-
tectural differences between the versions for
the existing and target processors. Our team
consisted of three people, later joined by a
fourth. The first was responsible for the com-
piler and subset emulator. The second did the
software installation and verification for the
first version of the product. Later, he was
responsible for some device drivers. The author
of this paper did the kernel port and other
device drivers. The fourth person assumed
responsibility for installation.

Bringing the ULTRIX-32 system u p on a
processor involves the following steps:

1. Es t ab l i sh a c r o s s - d e v e l o p m e n t
environment.

C language

Native assembler

Linker

Debugger

2 . Build a boot path.

3. Port the kernel and a few key programs.

4. Write special device drivers.

5. Port the rest of the system.

The Cross Development Environment
When porting to a new architecture, i t is neces-
sary to develop a set of tools that produces code
for the target system. These tools constitute a
cross-development system for software genera-
tion and often become the basis for the even-
tuaI native environment. Their construction is
normally the first step in the porting process. In
the MicroVAX case, the cross-development
tools were not necessary, for reasons explained
below.

The MicroVAX system is a subset architecture
with the majority of the string manipulation
instructions m i s ~ i n g . ~ MicroVAX systems can
also be configured without floating point sup-
port in the hardware. Our challenge, which was
also shared by the VMS and VAXELN Develop-
ment Groups, was to provide an execution
environment for user programs that was com-
pletely compatible with larger VAX systems.

By closely examining the instructions pro-
duced by our C compiler, we found that, with
the exception of the floating point instructions,
not one missing string instruction was created.
Further examinations revealed that the only
place where any of the missing instructions
were used was in a handful of output formatting
routines. As an interim solution, the affected
routines were rewritten to eliminate the miss-
ing i n s t r ~ c t i o n s . ~

The Boot Path
MicroVAX systems contain the virtual memory
boot (VMB) program in ROM. Normally this
program loads the VMS system but has been
enhanced to perform an alternate initial pro-
gram load operation, called a boot-block boot.

100 Digital Technical Journal
No. 2 March 1986

This operation is the mechanism used to boot
the ULTRIX system and is based on block num-
ber 0 of the boot disk being in a special format.
Booting is a multistage process.

1. VMB first chec.ks for an ODs-I1 file struc-
t ~ r e . ~ In the default case, VMB will per-
form a "sniffer boot," which consists of
first checking the removable media, then
the fixed disks, and finally the Ethernet.
The system can also be booted from the
TK50 cartridge tape drive and a special
PROM board.

Porting The Kernel
The VAX Architecture Standard (Digital Stan-
dard 032) specifies the VAX instruction set,
memory management, and process environ-
ment. However, the standard leaves many other
areas open for change. These areas are typically
ones that need to be supported on each new
processor. For the MicroVAX system, it was
necessary to address problems in the following
areas:

Startup code

1 /0 architecture
2 . If an ODs-I1 file structure is not present,

VMB looks for a valid boot-block image
in the first block on the disk. This block
contains a table that specifies the size
and location of the secondary boot
image. If the table is valid, VMB reads the
secondary boot image into memory and
transfers control to the image. (If the
table is invalid, control is transferred
back to step 1 above.)

3. The secondary boot image on ULTRIX
systems is a program that locates, reads,
and executes the tertiary boot program
from an ULTRIX file system. The func-
t ional i ty of the secondary boot is
severely constrained because it resides
outside the file system in a fixed-size
(7.5KB) area adjacent to the boot block.

4. The tertiary boot is capable of loading
and running other programs. Unlike the
secondary boot program, it supports
interactive terminal 1 /0 and can prompt
the user for an alternate program to load.
As a default, the tertiary boot loads the
operating system kernel, called v m ~ n i x , ~
from the boot disk.

5. After the steps above have been com-
pleted, the kernel is in memory and
ready to run.

The two boot programs are part of the stand-
alone system, which in itself constitutes a port-
ing problem that is not very different from port-
ing the kernel. The problems encountered are
similar, although simplified, because the stand-
alone system runs with the interrupts and mem-
ory management disabled. The stand-alone sys-
tem is not nearly as flexible as the kernel.

Console support

System clock

Missing instruction emulation

Initial Startup Code
After the kernel is loaded into memory, control
is transferred to the initial startup code. This is
entered with the processor interrupt priority
"raised" to disable the interrupts, and with
memory management turned off. The code sets
up the memory management system and then
"handcrafts" the processor to run the first VAX
process. The majority of this code is located in
a single assembly language file, called 1ocore.s.
In the case of the MicroVAX system, the instruc-
tion emulator and several changes to the 1 /0
system required special mapping support dur-
ing startup. (This support is discussed in the
last section of this paper.)

In addition to the startup code, 1ocore.s con-
tains time-critical routines that use the VAX
process-management instructions. Some of
them contain a case1 instruction based on the
processor type for processor-specific opera-
tions. Those routines had to be extended to
include the MicroVAX processors.

1 / 0 Architecture
VAX processors do not contain 1 /0 instructions;
instead, device and device adapters exist in
various sections of the physical address space of
the processor. The control and data registers for
these adapters appear as memory locations and
are accessed using normal instructions. A key
element of system software for any new proces-
sor is support for these devices and their associ-
ated address spaces. As an example, the physi-
cal address space of the VAX-11/780 system is
pictured in Figure 1.

Digital Technical J o u d
No. 2 March 1986

101

Porting UL TRIX Software the Micro System

PHYSICAL ADDRESS FUNCTION

MEMORY

ADAPTER OR
NEXUS REGISTER
ADDRESSSPACE

1 FFF FFFF
2000 0000

I I 128K RESERVED

TRACK0 8KB

2018 0000 I UNIBUS2 ADDRESS SPACE I
201C 0000 I UNIBUS3 ADDRESS SPACE I

Figure I VAX- 11/780 Physical Address
Space

Each of the UNIBUS spaces can be further
broken down as shown in Figure 2.

T h e p h y s i c a l a d d r e s s s p a c e of t h e
MicroVAX I1 system is somewhat simpler, as
depicted in Figure 3.

With the exception of the memory sections,
the address spaces of the two processors appear
to be very different. In fact there are a surpris-
ing number of similarities, as shown in Table 1.

The NEXUS space is where the adapter con-
trol and status registers reside. In the case of a
UNIBUS adapter, the registers that control the

Figure 2 VAX- 11/780 UNIBUS Space

UNIBUS I/O 8KB

mapping from the bus to main memory are
located in the NEXUS space. The equivalent
MicroVAX area, called local register space, also
contains the mapping registers for the Q-bus to
main memory.

These physical address spaces are eventually
mapped into virtual addresses through entries
in the VAX Page Table. The result is pictured in
Figure 4.

One development goal that w e set for each
new processor support project is to minimize
the changes necessary in the operating system.
In the case of the MicroVAX I1 system, we
examined the differences in the physical
address spaces between that system and larger
VAX systems. Although the names, sizes, and
positions were different, they are functionally
equivalent on both the small and larger sys-
tems. As a result, w e "coerced" the local regis-
ter space into the NEXUS map, and the Q-bus
memory and 1/0 spaces were arranged to look
like a large UNIBUS adapter. With this approach
we were not forced to drastically alter the ker-
nel's view of the machine, thus minimizing
changes to other portions of the kernel.

A similar situation existed with respect to the
Q-bus map. A device installed in a UNIBUS
adapter sees an 18-bit address for a 256KB

DEVICE REGISTERS

PHYSICAL ADDRESS FUNCTION

0000 0000

MEMORY

LOCAL RMISTER SPACE
1256KB)

lFFF FFFF
2000 0000

2000 FFFF
3000 OOW 1

Q-BUS MEMORY SPACE
(4MB)

&BUS I10 8KB

Figure 3 Micro VAX I1 Physical Address
Space

DEVICE REGISTERS

102 Digital Technical Journal
No. 2 March 1986

New Products

Table 1 Comparison of Physical Address Spaces for the VAX-11/780 System
and the MicroVAX II System

Physical Address Spaces

MicroVAX I I
VAX Function Size Function Size Purpose of Function

Memory
NEXUS 8K each

Memory
Local Register

Execute Programs
CPU and Bus Control
Registers

UNIBUS Memory 248K Q-bus Memory 4MB Device Memory

UNIBUS I/O 8K each Q-bus I/O 8K Device Registers

PHYSICAL ADDRESS FUNCTION

8000 0000
VAX MEMORY

Figure 4 Result of Physical-to- Virtual
Mapping

Figure 5 Q-bus Memory Mapping

address space. The adapter has a set of registers
that maps this 256KB space onto the much

BIT POSITION
larger VAX memory space. These registers per-
form the equivalent function that is provided 31 28 27 18 17 o
by VAX Page Table entries. In effect, they "vir-
tualize" the memory that devices access.
Figure 5 depicts this mapping.

The MicroVAX I1 system contains a similar set
of registers with the principal difference being
that it has enough to map all four megabytes of
main memory. Although that appears advanta-
geous, it in fact posed a serious problem. The
ULTRIX system dynamically allocates the bus- tines return a word that is encoded as shown in
mapping registers from a central routine. It Figure 6 .
would have been easy to modify this routine to The upper part contains the number of the
"know" about the extra registers. The problem buffered datapath allocated, the middle is the
encountered here was that these allocation rou- number of registers used, and the lower is

Figure 6 Coding of Allocation Routine
Word

BUFFERED DATAPATH
NUMBER

Digital Technical Journal
No. 2 March 1986 103

NUMBER OF
REGISTERS B ~ S V l ~ T ~ ~ ~ ADDRESS

Porting UL TRIX Software to the Micro VAX System

the bus virtual address. The format of this
32-bit word is known by all device drivers that
do DMA transfers. To change the word to use all
the map registers available meant that the vir-
tual address portion would need 22 bits instead
of 18. That would have required corresponding
changes in each of the device drivers. To deter-
mine the severity of these problems, we did
some tests to see if the 18-bit format would be a
limiting factor. Fortunately, we found that
there were always registers available.

The end result of the mapping and map-regis-
ter allocation scheme was that UNIBUS device
drivers could be left unchanged as long as the
Q-bus hardware was compatible wi th the
UNIBUS versions. We took advantage of that fact
and thus were able to support the TSVO5,
DHVl1, and RL02 disk subsystems without any
impact on the development schedule.'

Console Port
Traditional VAX systems have a separate proces-
sor that performs console functions. This
processor is used to control the main CPU and
replaces the older-style front panel. Instead of
having switches for halt or run, the console
runs a program that provides hal t , r u n ,
examine, and initial program load capabilities.
Programs running in a VAX system can commu-
nicate with the console through an internal
processor register. Commands sent in this regis-
ter are used by the operating system to reboot
and restart the machine.

The MicroVAX system is different: the con-
sole functions are handled by the microproces-
sor, the MicroVAX 78032 chip, which runs a
program resident in ROM. Like the larger VAX
systems, a register is used to communicate with
the console. A code can be placed in this regis-
ter. When a subsequent HALT instruction is exe-
cuted, execution switches to the console pro-
gram in ROM, which then examines the code in
the register.' In fact the register is actually a
memory location in RAM that is backed u p by
batteries.

The ULTRIX system contains a reboot and
halt routine that is accessed by a privileged sys-
tem call. That routine was modified to commu-
nicate with the console program.

System Clock
The ULTRIX system keeps track of the current
time by counting clock interrupts from the
lOms interval timer. The time is kept in mem-

ory as an unsigned integer; i t is initialized from
the time-of-year (TOY) register during system
boot. The time is set by a privileged program
through standard system calls and can be read
by normal user programs. That set procedure is
normally done by the system manager using the
DATE command. DATE converts the time from
a format of year, month, day, hour, minute, and
second to the integer format needed by the sys-
tem call.

User enters: System converts to:
- s e t -

yymmddh hmmss Integer - read -
where yymmddhhmmss = Year, Month, Day,
Hour, Minute, Second

The MicroVAX system does not have a TOY
register; instead, it has a watch chip backed up
by a battery. The chip contains a number of
counters that correspond to the year, month,
day, hour, minute, and second. We could have
modified the system call or added a new one to
explicitly set the MicroVAX TOY clock. That
w o u l d have avoided the convers ion t o
integer format, given that the user has to enter
date and time information in the format needed
by the watch chip. However, it would have
meant that we needed two versions of the DATE
command, one for existing systems and the
other for the MicroVAX system, to use the
new format. To avoid that, we borrowed the
conversion routines from the DATE command
and used them in MicroVAX versions of the sys-
tem time-setting routine. The irony here is that
t h e da t e is n o w conve r t ed t w i c e . The
integer format is present on either side of the
system call.

User enters: System reads:
+ -

yymmddhhmmss integer yymmddhhmmss
C C

 missing Instrrlction Em~lh t ion
As mentioned previously, the MicroVAX hard-
ware implements a subset of the full VAX
instruction set. Most string instructions are
missing and are emulated in macrocode instead
of implemented in hardware. The emulation
code could have been placed in libraries,
where i t could be linked with user-level code.
To do that, however, would mean that linked

Digital Tecbnlcal Journal
No. 2 March 1986

New Products

images from other VAX systems would not run
on a MicroVAX system, thus violating one of its
basic objectives.

Rather than using libraries, we chose to use
an emulator designed by the VMS Development
Group and ported that emulator to the ULTRIX
system." The emulator links with the kernel and
is almost completely invisible to user programs.
I t is supported by new traps in the hardware
that help to decode each missing instruction.
When the kernel or a user program executes
one of the missing instructions, a trap occurs
and the emulation code takes over. That hap-
pens without changing mode; in other words, if
an emulation trap occurs in a user program, the
emulator is entered in user mode, not kernel
mode like other traps. The result is user-mode
execution of code in the kernel address space.
(Unlike the VMS system, the entire ULTRIX ker-
nel is normally unreadable by user programs.)
The startup code now initializes the pages con-
taining the emulator so that they can be read
and executed by user-level code.

As stated earlier, the end result is a combina-
tion of hardware and software that is almost
completely compatible with systems running
the full VAX instruction set. In fact, executable
images from other VAX systems can run without
relinking. 'The only point of incompatibility is
that the emulation code runs on the user stack
when one of the missing instructions is exe-
cuted by user code. (We have seen one cus-
tomer application that was affected by this situ-
ation. The application used knowledge of its
past usage of the stack to do "garbage collec-
tion" and was confused by the intermediate
results of the emulation code. That is normally
not a problem; the ULTRIX-32 and ULTRIX-
32m kits have over 500 user-level programs.
They are compiled and linked once on a fill1
VAX system and then run without modification
on the MicroVAX system.)

Summary
In porting the ULTRIX system to the MicroVAX
processor, we opted to maintain compatibility
with other versions of the system, wherever
possible. We choose not to support hardware
features if they violated internal or external
interfaces. Therefore, we were able to deliver a
broader range of peripheral support with a min-
imum of development. The end result-the
MicroVAX system-combines hardware and

software to provide customers, including devel-
opers of software device-drivers, with a product
that runs all VAX programs for a fraction of the
cost of a larger VAX system.

References
1 . A detailed history of and supplemental

information about the UNIX system can
be found in the ATGT Bell Laboratories
Technical Journal , vol. 5 7 , no. 6
(July/August 1978) and vol. 63 , No. 8
(October 1984).

2. Some programmers consider C to be a
low-level language; in fact, it has proven
to be more than adequate for program-
ming an operating system like the UNIX
system.

3 . D.W. Dobberpuhl et al, "The MicroVAX
78032 Chip, A 32-Bit Microprocessor,"
Digital TechnicnlJournal (March 1986,
this issue): 12-23.

4 . This work was done long before the first
hardware prototype was developed.

5 . ODs-I1 is the VMS on-disk file structure.

6 . The AT&T versions call this file "unix,"
while the Berkeley versions call i t
"vmunix," denoting "virtual unix."

7 . However, we did have to expend time
and energy to do additional configura-
tion testing.

8. The MicroVAX 78032 chip ne17er halts; it
is running either ROM console code or
programs in M I .

9. K.D. Morse and L.J. Kenah, "The Evolu-
tion of Instruction Emulation for the
MicroVAX Systems," Digital Technical
Journal (March 1986, this issue): 76-85.

Digital Tecbnicd Journal
No. 2 March I386 105

	Front cover
	Contents
	Editor's Introduction
	Biographies
	Foreword
	The MicroVAX 78032 Chip, A 32-Bit Microprocessor
	The MicroVAX 78132 Floating Point Chip
	Developing the MicroVAX II CPU Board
	The Evolution of the Custom CAD Suite Used on the MicroVAX II System
	The Making of a MicroVAX Workstation
	The RQDX3 Design Project
	The Evolution of Instruction Emulation for the MicroVAX Systems
	The TK5O Cartridge Tape Drive
	Porting ULTRIX software to the MicroVAX System
	Back cover

