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Editor's Introduction 

Richard W. Beane 
Edilov 

This issue of the journal is the second pub- 
lished by Digital's engineering organization. 
Our  first issue (August 1985)  featured 
papers about the technologies used in 
designing the VAX 8600 processor. The jour- 
nal presents papers written by the technical 
contributors who design Digital's products. 
The information is directed at engineering 
faculty members, Digital's own engineers, 
and customers. 

This issue features the 1MicroVA.X I1 system, 
which implements the VAX architecture on a 
single CPU chip, the 78032. Another chip, 
the 78132, executes fast floating point oper- 
ations; a single board holds both those chips, 
plus one megabyte of memory. New per- 
ipherals have been designed, and the VMS 
and ULTRIX sof tware  adap ted  t o  t he  
MicroVAX I1 system. This collection of 
papers, by authors from different engineer- 
ing groups, presents a wide spectrum of the 
MicroVAX I1 hardware and software. 

The first paper, by Dan Dobberpuhl, Bob 
Supnik, and Rich Witek, is a description of 
the 78032 CPU chip, which implements a 
subset of the full VAX instruction set. The 
decisions about  wh ich  instruct ions to  
microcode are discussed, along with hard- 
ware simplifications needed to fit functions 
on one chip. The chip's various operations 
are explained, with emphasis on parallel 
execution. 

The CPU chip can use a coprocessor, the 
78132 FPU chip, to perform fast floating 
po in t  ope ra t ions .  T h e  pape r  by Bill 
Bidermann, Amnon Fisher, Mike Leary, Bob 
Simcoe, and Bill Wheeler relates the 78132's 
architecture and algorithms. The protocol 
between the two chips is discussed and a 

description is given of the wiring and signal 
i n t eg r i t y  i ssues  and  h o w  t h e y  w e r e  
addressed. 

Both chips are mounted on a single board 
containing one megabyte of memory. Barry 
Maskas' paper explains how the CPU board 
had to be designed as a linked sequential 
machine with dual ports. The development 
process is interesting because the board and 
the chips were designed in parallel. 

The paper on CAD tools, by Tony Hutch- 
ings, relates the large role they played in the 
chip and board designs. The various levels of 
CAD support,  from behavioral modeling, 
through logic and circuit simulation, to 
wirelist generation is described. 

The software graphics  that tu rn  t he  
MicroVAX I1 system into a single-user work- 
station are reported in the paper by Rick 
Spitz, Peter George, and Steve Zalewski. The 
control of windowing software and virtual 
displays is discussed, as are the implementa- 
tion details. 

The RQDX3 disk controller provides fast 
data transfers between a CPU and disk stor- 
age devices. Nick Warchol and Stephen Shir- 
ron explain the top-down development pro- 
cess that lead to unique solutions to difficult 
problems. Their description of the final 
architecture shows how the original goals 
were met in the eventual design. 

With a subset architecture, those instruc- 
tions not in the set have to be executed 
another way. The paper by Kathy Morse and 
Larry Kenah describes the macrocode emula- 
tion of the VMS changes required to do  that. 
The testing techniques are interesting since 
they were done without MicroVAX hardware. 

The paper by Steve Boone and Guenter 
Schneider describes the TK50, a streaming 
cartridge tape drive providing fast data trans- 
fer. The authors discuss the unique cartridge, 
tape transport, and controller designs, high- 
lighting the self-threading technique and the 
serpentine read/write process. 

The final paper, by Ray Lanza, describes 
porting the ULTRIX-32 software to  the 
~ i c r o k  processor. Ray explains the cross- 
development environment and the mapping 
techniques that allowed the heart of the 
ULTRIX software to fit on a small system. 



Biographies 

1 
William R. Bidermann Bill Bidermann is the engineering manager of 
the Advanced Development Memory Group. He consulted on the float- 
ing point chips for both the VAX 8200 and MicroVAX I1  processors. 
Before joining Digital in 1984, he was a consultant for Tenex and 

1~ * / \ -  / b l  Rampower. Previously, he worked as a project manager at Hewlett 
/* 

I Packard Laboratories in Palo Alto, California, and as a design engineer at - Texas Instruments Central Research Labs. Bill received his S.B. and S.M. 
degrees in electrical engineering and computer science from M.I .T.  in 
1978. 

Steven E. Boone Steve Boone graduated from Michigan State Univer- 
sity (B.S.E.E., 1974) and the University of Michigan (M.S.E.C.E., 1975). 
He has also done advanced graduate work at Southern Methodist Univer- 
sity. Before joining Digital in 1984,  Steve worked as a principal hard- 
ware engineer for Sequoia Systems, and as a senior design engineer at 
Prime and Raytheon. For taro years, he was an engineering supervisor 
working on the TK50 controller design. Steve is currently the technical 
engineering manager for TK Cartridge Tape Subsystem Engineering. 

Daniel W. Dobberpuhl Dan Dobberpuhl is a senior consulting engi- 
neer and manager of the Processor Advanced Development Group. On 
the MicroVAX I1 project, he led the implementation of the 78032 CPU 

> chip. Previously, he consulted on CMOS, ZMOS, and TIP1 technology 
development, and worked on the T11 and F11 projects. Dan joined 

- .  
# 

: Dig~tal in 1976 from General Electric Company He received a B.S.E.E. 
degree from the University of ILlinois in 1967 A member of IEEE,  he - 
holds four patents and is the coauthor of The Design and Analysis of 
VLSI Circuits. 

Amnon Fisher Educated at lsrael Institute of Technology (B.S.E.E., 
1973) and City College of New York (M.S.E.E., 1975),  Amnon Fisher 
worked as both a contributor and project leader on the 32016 CPU at 
National Semiconductor. Joining Digital in 1983, he was a project 
leader of the V1 l/SCORPIO floating point chip (VAX 8200 system), 
and a contributor to the MicroVAX I1 78132 chip. Amnon is currently 
an engineering manager in the Semiconductor Engineering Group, 
working on the design and development of a four-chip set VAX 
implementation. 

Peter C. George Earning his bachelors and masters degrees in com- 
puter science and engineering from M.I.T. in 1980, Peter George joined 
the VMS Development Group in that year. He first worked on VMS user 
interfaces, then on the workstation sofnvare as a principal engineer on 
the VAXstation project. Peter is currently a project leader, working on 
advanced workstation software projects. Peter is a member of ACM, and 
the national honor societies Tau Beta Pi, and Eta Kappa Nu. 



Anthony F. Hutchings Tony Hutchings received his B.S. degree 
from the University of Newcastle On Tyne in 1965. At ICL in the U.K. 
for 1 6  years, he designed operating systems and was one of the VME- 
system architects on the 2900 series. He later became corporate man- 
ager of CAD. Tony joined Digital in 1982 as the project manager for the 
proprietary DECSIM software and then became manager of the VLSI CAD 
Group. Tony, a member of IEEE and the British Computer Society, is 
currently chairman of the CAD section of the ICCD. 

Lawrence J. Kenah Larry Kenah, a consulting software engineer in 
the VMS Development Group, wrote the decimal/string emulator for 
the MicroVAX project. Since joining engineering in 1980, Larry has 
worked on the VMS nucleus in the areas of memory management, pro- 
cess scheduling, and image activation. He came to Digital in 1975 as an 
instructor and course developer in Educational Services. Larry received 
his B.S. degree (1968) from Boston College and his M.S. (1970) and 
Ph.D. (1977) degrees in high-energy physics from Northwestern Uni- 
versity. He is coauthor of VAX/VMS Znternals and Data Structures. 

Raymond J. Lanza Ray Lanza is currently the project leader for the 
ULTRIX-32 system. After joining Digital in 1983, he ported the ULTRIX 
system to the MicroVAX I processor. As project leader, he ported the 
system to the MicroVAX I1 processor in 1984.  Ray received his 
B.S.E.E./C.E. degree from the University of New Hampshire in 1980, 
then became the lead engineer in a UNIX group at AT&T. Later he was a 
senior software engineer at Wang Laboratories, Inc., researching 
windowing systems and UNIX distributed systems. 

Burton M. Leary In 1980, Mike Leary joined Digital after receiving 
his B.S. degree in electrical engineering from the University of Massa- 
chusetts. In semiconductor engineering, he worked on chip designs and 
helped to develop the floating point chip for the MicroVAX I1 system. 
Mike did behavioral modeling, wrote microcode, and designed the 
main sequencer for that chip. He is now a senior engineer in the 
Advanced Development Memory Group, designing the internal cache 
for an advanced chip project. 

Barry A. Maskas Barry Maskas is a principal engineer currently speci- 
fying and designing an integrated circuit, and fiber-optic boards for 
future systems. As a senior engineer on the MicroVAX I1 project, he was 
co-designer of the CPU board and the memory boards. Barry came to 
Digital in 1979 after receiving his B.S.E.E. degree from Pennsylvania 
State University. He also holds an associate's degree from the Commu- 
nity College of Allegheny County and did undergraduate work at LSU. 
Barry is a member of Eta Kappa Nu; he has a patent pending for a self- 
configurable memory subsystem. 



Biographies 

Kathleen D. Morse As a consulting software engineer, Kathy Morse is 
responsible for VMS support on all low-end CPUs and peripherals. Ear- 
lier, she did the VMS support for both MicroVAX systems, the VAX 
11/782 system, and the MA780 multiport memory. Kathy joined Digital 
in 1976 after receiving her B.S.C.S. degree from Worcester Polytechnic 
Institute, where she also earned her M.S.C.S. degree in 1985.  Kathy is a 
member of IEEE, the Professional Council, and ACM, as well as Tau Beta 
Pi and Upsilon Phi Epsilon. She has published in the Computer Mea- 
surement Group's 1985 Conference Proceedings, and Datamation. 

Guenter E. Schneider Guenter Schneider joined the Mass Storage 
Group in 1970 ,  when it had only about 25 people.  He has worked on 
the designs for the RX05, RLOI, RX02, TU58, RX50, and RD50/51 
storage devices. As a consulting engineer, he helped to design the TK50 
cartridge tape drive. Guenter received a Diplom lngenieur from the 
Technische Hochschule Aachen in West Germany and his M.S.M.E. 
degree from M.I.T. in 1969.  He holds two patents, with a third pending, 
and is a member  of the  engineer ing society  Verein Deutscher  
Ingenieure. 

l Stephen F. Shirron Educated at Catholic University of America (B.S., 
1980  and M.S., 1981) ,  Stephen Shirron came to Digital after graduating 
Summa Cum Laude. As a senior software engineer, he developed an 
interpreter for VAX/Smalltalk-80 and designed the VkYstation 100  
firmware. Currently a principal software engineer, Stephen designed 
and implemented the firmware for the RQDX3 disk controller. He is a 
member of Phi Beta Kappa and has written a chapter in Smalltalk-80: 
Bits of History, Words of A d ~ ~ i c e .  

Robert J. Simcoe Bob Simcoe is a technical manager currently work- 
ing on serial interconnect products. He was the technical manager for 
the floating point chips in both the MicroVAX 11 and VAX 8 2 0 0  systems. 
Before joining Digital in 1982 ,  Bob worked for the Department of 
Defense and General Electric Company. His duties involved MOS 
design, process development, and product design using custom ICs. 
Bob holds seven patents on IC circuitry and systems. He graduated from 
the University of lllinois (B.S.E.E., 1966) .  

Rick Spitz Rick Spitz manages VAX/VMS software development for 
CPUs and peripherals. As a consulting software engineer, he was a 
primary member of the architectural design team on the MicroVAX 
workstation project. Rick designed the VMS graphics hardware interface 
architecture and, for six years, has specialized in VAX/VMS hardware- 
software interfaces. He joined Digital in 1977 as a senior software 
specialist and received Digital's Software Excellence Award. Previously, 
Rick developed microprocessor software for Inco, Inc. He earned a 
B.S.E.E. degree from Clemson University in 1974 and his M.S.C.E. 
degree from the University of Lowell in 1983.  



Robert M. Supnik Bob Supnik is a corporate consultant and group 
manager in semiconductor engineering. On the MicroVAX CPU chip 
project, he was project leader and lead microprogrammer. Bob was the 
project manager for the J11, a contributor to the F11, and supervised 
advanced development on the HSC5O and UDA5O. Before joining 
Digital in 1977, he worked at Applied Data Research. Bob received his 
S.B. degrees (1967) in math and history from M.I.T. and his M.A. degree 
(1972) in history from Brandeis University. He received Science 
Digest's "100 Top Innovators of 1985" award. 

Nicholas A. Warchol In 1977, Nick Warchol joined Digital after 
receiving his B.S.E.E. degree (cum laude) from the New Jersey Institute 
of Technology. Later he earned his M.S.E.E. degree from Worcester 
Polytechnic Institute in 1984.  He is a member of Tau Beta Pi and Eta 
Kappa Nu. Nick has worked on the advanced development of charged- 
couple device memories, bubble memories, and laser video disks. In 
his present position as a principal engineer, he worked on the design of 
the RQDX3 disk controller. 

William R. Wheeler After earning his B.S.E.E. degree in 1982 and his 
M.S.E.E. degree in 1983 from Cornell University, Bill Wheeler came to 
Digital as a junior engineer. On the MicroVAX I1 project, he designed 
the exponent datapath and control for the 78132 floating point chip. 
Later he designed the exponent section of the floating point chip in the 
VAX 8200 system. Bill is currently working on the instruction box 
and bus interface unit for a new microprocessor chip. 

Richard T. Witek Rich Witek is a consulting engineer working on the 
architecture and implementation of new microprocessors. He helped to 
develop and debug the MicroVAX 78032 CPU chip. Rich also worked 
on implementing DECnet/E and on the DECnet Architecture Review 
Group during Phases 2 and 3 .  He also worked in the VLSI CAD group. 
Before joining Digital in 1977,  Rich was a senior technical associate at 
AT&T Bell Laboratories and an engineering assistant at Argonne National 
Laboratory. He received his B.A. degree in computer science from 
Aurora College, and is a member of ACM and IEEE. 

Stephen H. Zalewski Steve Zalewski is a senior software engineer 
working on the graphics execution routines for the VAXstation II/GPX 
system. He joined Digital in 1981 after receiving his B.S. degree in 
computer engineering from 'Worcester Polytechnic Institute. Steve 
developed the graphics device driver for the VAXstation I and I1 sys- 
tems. His earlier work involved writing RMS file-sharing internals and 
implementing RMS file sharing and global buffers for VAXcluster 
software. 



Foreword 

Jeffrey C .  Kalb  
Vice Presidenl 
and Croup Manager 
Large Scale Integralion 

The roots of the MicroVAX program go back to 
the summer of 1981. To understand why this 
program was initiated and the thinking behind 
it, one has to look at the events of that time. 
Many developments were taking place, sug- 
gesting that a whole new class of systems capa- 
bilities could emerge before long. 

The VAX-11/780 system was in its heyday. It 
was recognized as the standard against which 
all o ther  computers  were  compared and 
benchmarked. And true to fashion, everyone 
seemed to find some way to benchmark his 
machine in some particular niche against the 
11/780's capabilities. That was particularly 
t r u e  of t h e  u p c o m i n g  g e n e r a t i o n  of 
microprocessors and microprocessor-based sys- 
tems. The universities were busily benchmark- 
ing Intel Corporation's latest generations of 
8086s, 80186s, and the early 80286s on spe- 
cific jobs. The same was true of the 68000- 
based system. Many companies were starting to 
come to market with engineering workstations 
a n d  s i m i l a r  p r o d u c t s  based  o n  t h e s e  
microprocessor chips. In fact if one believed 
the trade press, the VAX-11/780 system had 
actually been eclipsed in performance and 
capabilities by these "upstarts." 

Needless to say, these events caused some 
degree of consternation and soul-searching 
within Digital Equipment Corporation. More- 
over, another factor was becoming painfully 
obvious: the emergence of the independent 
software vendors. Hoards of small companies 
were springing u p  everywhere to  generate 
software for various personal computers that 
either had already been introduced to the mar- 
ketplace, like the Apple 11, or shortly would be, 
like the IBM PC. These small vendors wanted to 
write software for the systems that had the high- 
est market volume. Their reasoning was clear. 
To sell as many of their software packages as 
possible required implementing their ideas on 
the highest volume hardware. It was also clear 
that the highest volume hardware was going to 
b e  m i c r o p r o c e s s o r  based  a n d  q u i t e  
inexpensive. 



Meanwhile, within Digital, the Semiconduc- 
tor Engineering Group (SEG) was busy devel- 
oping a multichip implementation of the VAX 
architecture. Built with a midrange, multiuser, 
high-performance system in mind, this chip set 
and its attendant system implementations were 
aimed at the marketplace for systems above $50 
thousand. CAD tools were being developed and 
manufac tur ing  processes  deve loped  and  
refined. The module and system concepts were 
then in the definition stage. 

Discussions began a t  this time, centered 
around what was later known as the MicroVAX 
system. There was a perceived need to counter 
the rising tide of encroachment on our systems 
business by microprocessors. We wanted to cre- 
ate systems with volumes high enough to war- 
rant the attention of the independent software 
vendors. In general, we wanted to establish the 
VAX architecture as one of the preferred archi- 
tectures at all potential price levels in the 
entire industry. 

These discussions and strategic thinking con- 
verged after receiving an unsolicited proposal 
from a semiconductor manufacturer. This firm 
had approached us during that summer, want- 
ing to implement the VAX architecture in one 
or  two high-performance chips. This set of 
chips could be used in our systems and sold as 
standalone products. The firm wanted to use 
the VAX/VMS architecture (and primarily the 
software associated with it) to get a jump in the 
marketplace by establishing a high-volume 
architectural standard at the 32-bit level. We 
were concerned from the beginning that the 
capabilities and resources of this smaller firm 
would not be sufficient to execute such a for- 
midable program. But the notion that building a 
single-chip VAX implementation and using it to 
counter-attack the emerging microprocessor- 
based systems had struck a responsive chord. 
Until that time, our thinking had been in terms 
of our traditional price/performance learning 
curves. Our strategies did not include extraor- 
dinarily low-priced VAX systems. 

As indicated above, the Semiconductor Engi- 
neering Group in Hudson, Massachusetts, was 
already heavily committed to the multichip 

VAX system. A number of other major chip 
projects were in development as well. There- 
fore, we searched for a larger semiconductor 
vendor who could bring additional design and 
manufacturing resources to bear on this con- 
cept. Such a vendor could also make available 
additional distribution channels for sales of 
high-volume chips to the general marketplace. 
This line of thinking was pursued with various 
vendors throughout the fall and winter of 198 1, 
until April 1982. 

Interestingly enough, there was less than 
wholehearted enthusiasm on the part of the 
various vendors who were approached. Each of 
them had already decided on an approach to 
the problem and were unwilling to make the 
development of the MicroVAX chip a priority 
i tem. That commitment was an extremely 
important issue to us. Experience had shown 
that complex projects of this nature always 
exceeded the schedules and the budgets antici- 
pated when they received second-class atten- 
tion within the merchant semiconductor indus- 
try. Thus one criteria for working with a vendor 
was that he commit to the MicroVAX architec- 
ture as a primary market thrust. No one was 
willing to do that. 

At the same time, other issues had to be 
worked. It was clear that the full VAX architec- 
ture as implemented in the multichip set could 
not easily be put on a single chip. That would 
have taken over 1 million transistors, a capabil- 
ity that would not be available until the end of 
the decade. Therefore, early in the project, we 
recognized that there was a need to subset the 
architecture to make it implementable on  a sin- 
gle chip. By December 1981, the idea of devel- 
oping a single-chip VAX implementation was 
beginning to get some positive re-enforcement 
within Digital. As a result, in that month, 
Gordon Bell, then vice-president of Engineer- 
ing, chartered a subcommittee to investigate 
what  should  be  included in a MicroVAX 
architecture. 

The key people involved were Roy Moffa, 
who had been leading the strategic thinking 
about a single-chip VAX system; Bob Supnik, 
representing semiconductor technology; Dick 
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Hustved t  a n d  Dave C u t l e r ,  r e p r e s e n t i n g  
software technology; and Bill Strecker, repre- 
senting VAX architecture technology. After a 
few intensive meetings, they proposed a subset 
of the VAX architecture in January 1982 .  Bob 
Supnik and the semiconductor technologists 
thought that this subset could be implemented 
in a single chip.  This new architecture would 
be modified slightly later in the year, but i t  is 
essentially the architecture that exists today. 
The only significant modification was in the 
memory management capability, and in some 
sense, this change actually simplified the devel- 
opment of the  chip.  

In parallel with these other activities, Bob 
Supnik and other members of SEG had been 
studying ways to get the chip developed inter- 
nally.  They w e r e  h o p i n g  t o  leverage t h e  
existing investments in process technology, 
ch ip  modeling, CAD tools, and the various 
other elements that were necessary. Further- 
more, and highly significant to the whole pro- 
gram, they developed ways of re-using some of 
the investments being made in the multichip 
VAX implementa t ion  a n d  o t h e r  p rograms  
already in  progress. As a result the  floating 
point  c h i p  being developed for a PDP-11 
microprocessor was used as the building block 
for the  MicroVAX implementation. Not only 
that but the ch ip  was also retrofitted back into 
the  existing mult ichip set  to  minimize the  
workload. Moreover, the datapath was lifted 
from the instruction/execution unit of the mul- 
t i c h i p  s e t  t o  fo rm t h e  b a c k b o n e  of t h e  
MicroVAX CPU. Tools and techniques were bor- 
rowed whenever it was possible. 

In this sense the  MicroVAX program was 
unique.  There were almost nine months of 
strategy discussion and evaluations of various 
ways of implementing and executing before any 
real design actually started. While many of the 
p r o p o s e d  bus iness  s t ra teg ies  w e r e  never  
adopted, they at  least received a hearing. In any 
case the die was cast. 

The real implementation of the  MicroVAX 
ch ip  did not get started until June 1982 ,  the 
official start date being July 6, 1982.  (Some 
work had been done prior to that for recruiting 

and staffing.) I t  was soon evident that there 
w e r e  s o m e  key e l e m e n t s  that  had to  b e  
addressed. The first was CAD tools. There was 
no  question that this device had to  be simulated 
extensively at all levels of implementation. 
There was no other way to get the quality of 
design and performance levels being planned. 
At the time the program started, these tools 
were mostly experimental.  Some techniques 
had been tested, but the  reality was that CAD 
tools "broke" on numerous occasions during 
the development of the system. Crisis-oriented 
SWAT teams had to be pu t  in place to bridge 
over o r  break through barriers that threatened 
to bring the entire program to a halt. 

There was another equally important ele- 
ment.  The entire program was an extremely 
complicated one,  with many elements on paral- 
lel paths. Process technology had to be devel- 
oped,  CAD tools developed and refined, chip 
designs done ,  systems implementations exe- 
cu ted ,  and test techniques  and equ ipment  
developed Each of those elements was inti- 
mately entwined with the others. Therefore the 
possibility clearly existed that, upon reaching 
the end of the design, w e  would b e  faced with 
debugging a new process technology, a new 
manufacturing line, new testers, a new ch ip  
design, new packages, and a new system, all 
simultaneously. A real possibility existed that 
w e  couldn't separate the variables in a suffi- 
ciently clear and timely manner to allow the 
chip debugging and system evaluation to take 
place This phase could last for months or per- 
haps even years, something that has happened 
before on many such programs in the merchant 
industry. 

'To avoid that, w e  segmented the major risks 
in the program and put  plans in place to  mini- 
mize as many of those as possible in parallel 
before the  new ch ip  arrived. For instance, 
rather than debugging an entirely new manufac- 
turing line while trying to build this new chip, 
w e  combined the existing two wafer fabrication 
lines into o n e .  'The smaller l ine was then 

retrofitted to provide a pilot line capability. 
That gave us a trained staff, a debugged facility, 
and all the other elements necessary to mini- 



mize the interaction of the process and facility. 
Additionally, a test vehicle was designed so that 
manufacturing could run wafers, debug process 
steps, and improve the basic yields of the pro- 
cess well before the new chip arrived. In the 
test area, test programs were implemented on 
older, proven testers on which the engineers 
had experience. That worked even though we 
knew that, for the eventual production, an 
entirely new generation of testers would be 
necessary to precisely test such a complicated 
device at its full speed. 

Similarly, other areas, such as packaging, 
CAD tool development, and parts of the system 
evaluation, were examined and improved in 
parallel long before they had to work together. 
A major program was put in place to uncouple 
risks and to hire and train the workforce well in 
advance of the completion of the MicroVAX 
chip design. This effort was quite expensive; 
some people thought that much of the money 
was being thrown out with the materials that 
were made experimentally. But the end result 
was one of the smoothest debugs and introduc- 
tions into chip manufacturing that I have ever 
witnessed for a complex device. While there 
were problems and although things didn't  
always work right, there were almost always 
independent ways of separating the variables in 
the problem. In that way i t  could be properly 
analyzed and corrections put in place. This 
example should serve us well with complex 
development programs in the future. 

One other thing done to enhance the debug 
and ensure the quality at the system level was 
to co-locate the CPU module designers with the 
chip designers. In that way their interaction 
was enhanced and the rate of problem resolu- 
tion greatly accelerated. The module team itself 
was exceptionally small for such a major pro- 
gram, consisting of only three primary engi- 
neering people. But this unique program envi- 
ronment featured a high degree of simulation, 
close proximity of the engineers (the MicroVAX 
chip team had only 20 people), and heavy reli- 
ance on thorough evaluation at every step. 

The end result was very, very few bugs in 
either the chip or the system. In fact there were 

fewer than 20 bugs that had to be corrected 
before the integrated chip and system were able 
to boot the operating system. It should be noted 
that this quality has continued to manifest itself 
in the rapid manufacturing ramp-up and the 
quality of the systems that have been generated. 
There were more engineering changes to the 
parts and the system to enhance our margin and 
ease of manufacture than there were to make 
the system functional in the first place. That is 
evidence of a fundamentally different approach 
to building systems. 

As noted above, the MicroVAX program is 
quite unique, from its initial conception to the 
continuing efforts to enhance quality and pro- 
ductivity. From the initial conception of the 
strategy, through the organization of the people 
and problems, to  the ongoing engineering 
activity around quality and ease of manufac- 
ture, this program has provided a new paradigm 
for program execution and management. Our 
hope is that, with this knowledge, people can 
emulate the success of this program while elim- 
inating the errors. In so  doing, Digital can 
greatly enhance its ability to build and manu- 
facture high-quality systems in increasingly 
shorter periods of time. 
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me MicroVAX 78032 Chip, 
A 32-Bit Microprocessor 

The MicroVM 78032 implements the VAX architecture on one chip. To do 
that, the instruction set was repartitioned to reduce the number of tran- 
sistors. The instructions used most frequently are in microcode; others, 
notably floating point, are emulated in macrocode. Hardware was sim- 
plzj?ed by having a small address translation cache and no memory 
cache; however, full VAX memory management is supported. A fast 200- 
nanosecond microcycle allows instructions to execute in parallel. The 
CPU chip is made using a 3-micron, double-metal NMOS process. The 
control store ROM has X-shaped cells, which help to reduce its size. 

The MicroVAX 78032 chip is the latest exten- tionality, but the basic VAX functions 
sion of the VAX architecture and the first in the had to be incorporated in the base CPU 
form of a single-chip microprocessor. As the design. 
CPU of the MicroVAX I1 computer system, the 

2.  The chip had to be compatible with all 
7 8 0 3 2  pe r fo rms  nea r ly  as fast as  t h e  

\'AX application programs. It had to exe- 
VAX-11/780 superminicomputer ,  bu t  in a cute any application program, whatever 
microcomputer package. its size or complexity, written for any 

Origins and Goals 
Digital began the MicroVAX CPU chip project 
in late 1981 in anticipation of increasing com- 
petitive pressures from industry-standard 
microprocessors. The original intent of the pro- 
gram was to license a semiconductor vendor to 
design and manufacture a MicroVAX single-chip 
microprocessor. However, the leading semicon- 
ductor companies were unable to meet the 
high-performance requirements  and tight 
schedules that the project required. In May 
1982,  an internal development project was 
chartered to design the MicroVAX CPU chip. 

From a designer's viewpoint, the develop- 
ment of this CPU was a challenging exercise in 
shrinking the VAX computer architecture with- 
out changing its function. There were five 
major goals that governed the design. 

computer in t he  VAX family. And it had 
to execute without alterations to the pro- 
gram code. That meant that the chip had 
to run the MicroVMS and ULTRIX-32m 
(Digital's enhanced UNIX software) 
operating systems, and the VAXELN real- 
time kernel. 

3. The chip had to perform at or near the 
speed of the VAX-11/780 processor. This 
goal implied that the chip had to have a 
highly parallel internal implementation, 
a high-performance external interface, 
and a fast microcycle. Accordingly, the 
internal microcycle of the chip was set at 
the same 200 nanoseconds (ns) as the 
1 1/780's microcycle. 

4 .  The price of the chip had to be competi- 
t i ve  w i t h  c o m m e r c i a l  3 2 - b i t  

1 .  The kernel architecture was to be imple- microprocessors of comparable com- 
mented on a single chip. Other chips or plexitp. This required a relatively con- 
hardware could be used to improve per- servative die size and an inexpensive 
formance or to provide additional func- package. It also required the implemen- 
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tation of an external interface that was 
compatible with standard VLSI periph- 
eral chips and demanded minimal sup- 
port from the hardware on the CPU 
board. 

5. The chip had to be designed and built 
quickly. To meet or  beat competitive 
products, the chip had to be in produc- 
tion less than 2 Yi years after the start of 
development. 

With these goals guiding the chip design 
team, the major problem was quickly identi- 
fied: to reduce the number of transistors. That, 
in turn ,  required repart i t ioning the  VAX 
instruction set and simplifying hardware func- 
tions wherever possible. 

Reducing the Number of Transistors 
The principal problem in designing the 78032 
was how to implement the complexity of the 
VAX architecture on a single chip. There are 
304 instructions in the full instruction set, with 
14 data types and 2 1 addressing modes. Instruc- 
tions vary in length from 1 byte to 54 bytes.' 
Demand-paged virtual memory suppor t  is 
required to guarantee compatibility with the 
operating system software. To accommodate 
this complexity in a full-scale VLSI VAX imple- 
mentation requires about 1 .25  million transis- 
tor sites.' However, the semiconductor tech- 
nologies available at the time of design could 
support only about one-tenth that number in a 
single-chip microprocessor." 

The architectural functions in all VAX sys- 
t ems  a r e  pa r t i t i oned  a m o n g  ha rdware ,  
microcode, and the operating system. All previ- 
ous VAX implementations have similar bounda- 
ries between these three. The hardware pro- 
vides the registers and memory, the microcode 
provides the instruction set, and the operating 
system provides the program services. A large 
control store-a minimum of 400 kilobits (Kb)- 
is r equ i r ed  t o  con ta in  t h e  i n s t ruc t ion  
microcode. The console function is handled in 
either microcode or a support processor. More- 
over, the control logic needed to support mem- 
ory management and the variable instruc- 
tion format is quite complex.4 

Two different approaches were taken to  
reduce the transistor count in the microproces- 
sor chip. First, the VAX instruction set was 
repartitioned to cut the size of the control store 

to 62Kb. Second, the amount of on-chip hard- 
ware was reduced by simplifying some func- 
tions, placing others elsewhere, or omitting 
some altogether. 

Repartitioning the Instruction Set 
As the first repartitioning step, the design team 
assumed that all VAX instructions had to be 
implemented in order to execute all VAX appli- 
cation software. However, there are several 
classes of instructions that involve a good deal 
of microcode and yet are infrequently exe- 
cuted. For example, a typical timesharing work- 
load is handled by base instructions, scientifi- 
cally oriented instructions, and commercially 
oriented instructions. Analyses of more than 70 
million executed instructions showed that the 
commercially oriented ones represented less 
than 0.2 percent of the total e x e ~ u t e d . ~ , ~  Stud- 
ies of scientific and engineering workloads 
showed even lower percentages. Even in com- 
mercial applications, the commercially ori- 
ented instructions represented less than 4 per- 
cent of the total executed, the majority being 
base instructions. Therefore, emulating the 
commercially oriented instructions in the oper- 
ating system rather than using microcode 
would significantly reduce the size of the con- 
trol store, but would have little effect on over- 
all performance because these instructions 
were seldom executed. 

On the other hand, floating point instructions 
require a good deal of microcode and are exe- 
cuted more frequently. Even with microcode, 
instruction execution is relatively slow unless a 
separate floating point accelerator (FPA) is 
used. Therefore, although existing VAX imple- 
mentations offered both microcoded (warm) 
and hardware (hot) floating point, the design 
team decided not to implement these instruc- 
tions in microcode. Instead, floating point 
instructions would be executed in an optional 
floating point chip,  o r  by emulation using 
macrocode. 

In total, 175 of the 304 VAx instructions and 
6 of the 14 data types are implemented in on- 
chip microcode. Those include integer and log- 
ical instructions, variable-bit field, control, 
queue, procedure calls, character string moves, 
and operating system support. This microcoded 
subset comprises over 9 8  percent  of the 
instructions that are used to execute a typical 
program. However, the required microcode 
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occupies only one-fifth the control  store space  
of a full VAX implementation.  Seventy floating 
point  instructions and three data types (F. D ,  
and G floating) are  implemented in the  floating 
point  ch ip ,  when  i t  is present. If that c h i p  is 
a b s e n t ,  t h e  i n s t r u c t i o n s  a r e  e m u l a t e d  i n  
macrocode.  The remaining 59 instructions and 
5 data types are always emulated in macrocode.  
Those a re  mainly decimal  s t r ing ,  character  
string, and H floating point  operations.  The  
CPU c h i p  provides some  microcode suppor t  for 
the  emulated instructions. Table 1 summarizes 
the instruction se t  architecture of the  78032 
ch ip .  

The  dec i s ion  t o  e m u l a t e  ins t ruc t ions  i n  
macrocode has an  effect o n  speed because e m u -  
lated instructions take three to ten  t imes longer 
to  execute  than microcoded instructions. How- 
ever,  t he  instructions in  this g roup  of 59 are  

normally used s o  infrequently that the  execu-  
tion speed of a typical program is reduced by 
n o  more than four percent .  Table 2 illustrates 
the  division of instructions between the  CI'U 
ch ip ,  t he  FPU ch ip ,  and  the  macrocode.  All in 
all. t he  fivefold reduction in the  size of the  
control  s tore  halved what  wou ld  have been the  
active area of the  ch ip .  

Simplifying the Hardware Functions 
The  principal  hardware simplifications in the 
78032 are  the  reduced size of the  address trans- 
lation cache (translation buffer) ,  and  the  el imi- 
nation of a memory cache in favor of tightly 
coupled local memory.  

As mentioned earlier, demand-paged virtual 
memory management was required for compati-  
bility wi th  the  VAX architecture.  Consequently,  
t he  design team decided that the  78032 would  

Table 1 Instruction Set Architecture 

Implemented in 
CPU Chip 

Implemented in 
Floating Point Chip 

- 

Implemented in 
Macrocode 

Instructions: 

lnteger and 
Logical 

Address 
Variable Bit 

Field 

Control 
Procedure Call 

Miscellaneous 

Queue 
Operating System 
Support 

F floating 
D floating 
G floating 

H floating 
Octaword 
Character 
String 

Decimal String 
Edit 

CRC 

Character Move 2 

Total 175 7 0 59 

Data Types: 
Byte lnteger 
Word lnteger 

Longword lnteger 

Quadword lnteger 
Variable Bit Field 

F floating 

D floating 

G floating 

H floating 

Octaword 
Leading Separate 
Numeric String 

Trailing Numeric String 

Packed Decimal 

Variable Character 
String 
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Table 2 Division of lnstructions 

Instructions Instructions Instructions 
Implemented in Implemented in Implemented in 
CPU Chip Floating Point Chip Macrocode 

Percent by Instruction 
Count 
Percent by M~croword 
Count 

Percent by Typical 
Execution Frequency 

be the first single-chip CPU with full demand- 
paged virtual memory support  right on the 
chip.  At first the design team proposed to use a 
simplified version of VAX memory manage- 
ment. During the course of the design, how- 
ever, the software engineers reported that not 
providing full memory management was quite 
expensive in terms of the use of physical mem- 
ory. Therefore, the design team implemented 
full VAX double-mapped compatibility in the 
chip.  As the design progressed, it became evi- 
dent that the incremental cost of providing this 
capabili ty was much  lower than originally 
anticipated. 

All existing VAX processors implement mem- 
ory management with a large address transla- 
tion cache (at least 1 2 8  entries), with system 
and process addresses in separate halves. A 
translation cache must have a high hit rate to be 
effective. Since most caches are direct mapped, 
many entries are required to achieve a high 
cache rate.'.' Implementing a comparable num- 
ber of translation cache entries in the 78032 
was out of the question, due  to die size con- 
straints. However, the VLSI technology in the 
78032 is very amenable to using a fully associa- 
tive translation cache with least-recently-used 
(LRIJ) replacement. 

Such a cache needs many fewer entries to 
achieve the same hit rate as the direct-mapped 
version. In addition, the tight coupling to local 
memory, as explained in the next paragraph, 
made i t  possible to  reduce drastically the  
amount of time required to process a transla- 
tion cache miss. Thus the translation cache in 
the chip has only eight entries, but the cache is 
fully associative, uses true LRU replacement, 
a n d  is s u p p o r t e d  by  h i g h l y  o p t i m i z e d  
microcode for fast processing of misses. More- 

over, simulation studies showed that the best 
use of the eight entries was with a homogene- 
ous structure. Therefore, the system and pro- 
cess addresses are cached together. 

The team also decided to forgo the use of an 
external memory cache, which required a com- 
plex external interface. Use of an internal mem- 
ory cache had already been ruled out  due to die 
size constraints. Accordingly, the  speed  of 
memory access is 400  ns, or two microcycles, 
which is the speed of local memory. Thus the 
chip encounters no  wait states, and its average 
time to access memory is approximately the 
same as the 11/780's.  In a typical program, 
there is little difference between the integer 
instruction performance of the two CPUs. 

Additional simplifications included the elim- 
ination of warm (microcoded) floating point in 
favor of a floating point accelerator, elimina- 
tion of writable control store capability, and 
elimination of on-chip console support.  

Design Narrative 
The starting point for the chip design was the 
instruction execution chip of a multichip VLSI 
VAX processor already in design. This ch ip  
would provide a general floorplan and a base 
microarchitecture,  and might even provide 
complete design sections that could be used for 
t h e  MicroVAX 7 8 0 3 2 .  As t h e  p r o j e c t  
progressed, the designs of the VLSI VAX proces- 
sor and the MicroVAX 78032 tended to diverge 
under the pressure of differing constraints: chip 
set and system functionality for the former; die 
size, power,  and time to market for the latter. 
Ultimately, only part of the main datapath was 
shared be tween  t h e  t w o ;  t h e  rest of the  
MicroVAX 7 8 0 3 2  design and its microcode 
were unique. 
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The MicroVAX 78032 project took 2 0  months 
from start to first-pass mask generat ion:  6 
months for specification and general design, 
and 14 months for physical implemcntation. 
Eighteen people worked o n  the design team. 

Project Design Tools 
The design team was aided by a hierarchical 
CAD tool suite that ran o n  a VAX system. The 
use of these tools was one  of the primary rea- 
sons that the project was completed o n  sched- 
ule. The principal components of this tool suite 
are as follows: 

1 .  A proprietary chip-database manager and 
tool interface called the CHAS system 

2. A schematic capture program, QUICK- 
DRAW, that uses simple terminals 

3 .  A proprie tary hierarchical  s imula to r  
cal led t h e  DECSIM system, used for 
behavioral simulation 

4 .  A switch- level  MOS logic s imulator ,  
RSIM, used for unit-delay logic simula- 
tion 

5 .  A modified version of the standard SPICE 
circuit simulator that incorporates new 
analytical, rather than empirical, MOS 
transistor models 

6 .  Design-rule checking programs, DRC and 
DRACULA 11 

7 .  An in terconnect  verification program 
called the  1V system, which performs 
both layout extraction and wiring verifi- 
cationY 

8. A cross-reference program, XREF, that 
analyzes c o u p l i n g ,  boots t rap ra t ios ,  
dynamic node stability, and other circuit 
problems 

The ch ip  layout was done on Calma GDS 11 
systems. Three dedicated VAX-11/780 systems 
and five Calma stations were used throughout 
the project. The back-end verification of cir- 
cuits and the layout required as many as eight 
VAX systems. 

Final Chip Design 
The final product of this design process is a 
microprocessor that contains 125 ,000  transis- 
tor sites in a 3-micron, double-metal NMOS 
chip that measures 8 . 7  by 8 . 6  mm. It requires 

only 5 Vdc and a maximum of 3 watts of power; 
i t  is packaged in a 68-pin,  surface-mounted 
leaded chip carrier. The ch ip  operates at 2 0  
MHz and has full 32-bit internal and external 
d ~ t a p a t h s .  The 78032 is mounted on a single- 
board. quad-sized ( 8 . 5  by 10.5 in.)  CPIJ mod- 
ule having a 4 2 2  1 / 0  bus and 1 megabyte (MB) 
of loca l  m e m o r y .  An o p t i o n a l  FPA,  t h e  
MicroVAX 781 3 2  chip, can also be mounted on 
the CPU board. 

The measured speeds of integer and floating 
point  operations of the  7 8 0 3 2  represent a 
breakthrough in 32-bit microprocessors. System 
evaluations of MicroVAX 78032  modules indi- 
cate that their performance in processing inte- 
gers is approximately equal  t o  that of the  
VAX'-1 1/780 system. With the floating point 
chip.  the performance is between those of the 
VAX-11/750 and VAX-11/780 systems with  
FPAs . 

The remainder of this paper  explains the 
functional organization of the ch ip  and its phys- 
ical implemcntation in silicon. 

Functional Organization 
The diagram in Figure 1 and the photomicro- 
graph in Figure 2 outline the  various subsec- 
tions, o r  functional boxes, of the MicroVAX 
78032 chip.  They are organized into three sec- 
tions. At the left of Figure 2 are the datapaths 
for decoding and executing instructions and for 
memory management. At the center is the con- 
trol logic for internal operations and the proto- 
col signal logic for external operations. At the 
right is the sequencing logic for both internal 
and external operations. 

The  left sect ion in  t h e  photomicrograph 
(Figure 2) ,  comprising the datapaths, consists 
of the  I Box, the E Box, and the M Box. 

The 1 Box prefetches and decodes instruc- 
tions. Its main function is to parse the cur- 
rent macroinstruction in the  instruction 
stream and work in conjunction with the 
microsequencer to generate the  microad- 
dress for the  next microinstruction. This 
microaddress is a function of the  current 
macroinstruction. A prefetcher, which works 
in  paral le l  wi th  o t h e r  c h i p  operat ions ,  
accesses and stores instruction data in an 
eight-byte prefetch queue .  The prefetcher 
acts autonomously by attempting to  keep 
that queue  full at all times, using any free 
I/O-bus cycles to  access the  instruction 
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stream. Even if the  q u e u e  is ful l ,  the  
prefetcher will start to read data if the queue 
will be at least half-empty after the current 
microcycle. 

The I Box also decodes instructions and vari- 
able-length operand specifiers in parallel 
with other chip operations. That avoids 
requiring explicit decode cycles to execute 
successive macroinstructions. Due to  the 
constraints on the size of the control store, 
most of the address-specific microcode had 
to be shared among all instructions. The 

CONTROL STORE 

instruction-decode PLA (IPLA) generates 19 
bits of opcode-specific data for controlling 
other chip operations related to a given 
instruction. That allows many microcode 
sequences to be table driven and shared. 

The E Box is the instruction execution unit 
and contains the main datapath of the chip. 
This box holds 16 VAX-specified general 
purpose registers (GPRs), 20 microcode reg- 
isters, a 32-bit arithmetic logic unit (ALU), 
and a 32-bit barrel shifter. The E Box also 
maintains condition codes for the process 
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Figure 2 Photomicrograph of the CPU Chip 

status longword (PSL) and determines VAX 
branch conditions at the macrocode level. In 
a 200-11s cycle, the E Box can read two regis- 
ters, perform an ALU operation or shift, and 
write the result into a register. Since reading 
and writing to  registers are performed 
sequentially, the ALU result bus is mul- 
tiplexed with an input bus, thus saving verti- 
cal interconnect. The ALU employs a 4-bit 
lookahead carry scheme, with ripple carries 
across the nibbles. The carry chain uses dual- 
rail logic for maximum speed. The barrel 
shifter is a pass-transistor network, which is 
very compact and fast enough for this task. 

The M Box serves as the memory manage- 
ment unit and translates virtual addresses to 
physical addresses. The address translation 
cache, which is fi~lly associative, stores the 
most recently referenced address transla- 
tions. The M Box maintains three virtual 
address registers, one for instruction data and 
two for program data. This unit also detects 
cross-page accesses and includes a separate 
comparator for length checking. A dedicated 
adder generates the next virtual address for 
sequential data and instruction addresses. 
The time to perform an address translation is 
less than 25 ns when the virtual address is in 
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the translation cache. This short translation 
time allows memory management to be trans- 
parent to the external chip timing. 

The center section of the photomicrograph is 
composed mostly of random control logic. That 
logic translates the highly vertical (39-bit) 
microcode into the many discrete control sig- 
nals required to operate the datapath. 

The right section of the photomicrograph, 
comprising the sequencing and clocking logic, 
consists of the interrupt logic, the control 
s tore ,  the  DAL interface,  and the  clock 
generator. 

The interrupt logic accepts, synchronizes, 
and prioritizes external interrupt requests, 
compares them with the current interrupt 
priority level (IPL), and determines if the 
request will  be serviced. The interrupt 
requests are checked at the beginning of 
each microcycle and the interrupt update is 
forwarded to the I Box. That all happens 
through the central control logic before the 
next microcycle begins. 

External interrupt  processing has been 
implemented on-chip in the 78032 to avoid 
the complexity that results from having the 
interrupt priorities arbitrated outside the 
chip. Since these priorities are an integral 
part of the processor state, an off-chip design 
would involve broadcasting the interrupt 
priority level each time it changed. More- 
over, off-chip interrupt processing would 
also require additional hardware on the CPU 
board. 

The microsequencer accepts inputs from 
various points on the chip and generates the 
next microaddress t o  access the control 
store. The microsequencer logic performs 
such operations as microsubroutine calls and 
returns, microcode traps, n-way (or case) 
branches, and signed offset conditional 
branches. Implemented in the microse- 
quencer  is an eight-level microprogram 
stack. 

The control store is a 39-bit ROM with 1600 
entries. It  receives microaddresses and status 
signals and generates the next set of microin- 
structions. The control store transfers those 
microinstructions to the control section in 
the center area. That section, in turn, gener- 
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ates control signals for the three principal 
functions in the main datapath: the I Box, the 
E Box, and the M Box. The access time of the 
control store is less than 100 ns. 

The DAL interface handles all control signals 
and transfers data and addresses between the 
chip and local memory, peripherals, and 
other devices outside the chip. The DAL 
interface transparently processes variable- 
length operands and aligns data references 
that cross natural 32-bit memory boundaries. 
I t  also causes the microprocessor to stall dur- 
ing 1 / 0  references,  so  that additional 
microcode is not needed to test for 1 / 0  com- 
pletion. The DAL interface controls transac- 
tions involving the CPU chip, the FPU chip, 
and external devices. I t  also arbitrates direct 
memory access (DMA) requests. 

The clock generator receives an external 40- 
MHz clock reference and produces the eight 
25-ns clock phases that time functions on the 
chip. The control logic of the chip makes 
extensive use of bootstrapped drivers. For 
that reason, certain clock phases have to 
drive very high capacitances, as much as 250 
picofarads. To assist in that task, a special 
driver circuit with current-limiting resistors 
is used to provide fast edges without using 
excessive power or silicon area. These resis- 
tors control the overlap current drawn dur- 
ing bootstrapping and provide a voltage drop 
during the overlap. 

External Interface 
A principal goal in designing the chip's exter- 
nal interface (Figure 3) was to demand as few 
support functions as possible from the CPU 
board. The 78032 chip provides seven hard- 
ware interrupt inputs. Four of these inputs 
(IRQ<3:O> L) correspond to standard VAX 1/0 
interrupts and result in vectored interrupt 
transactions. Three others (INTTIM L, PWRFL L, 
HALT L) have preassigned interpretations and 
the corresponding vectors are generated inside 
the chip. The 78032 takes in a double-fre- 
quency clock input from a standard oscillator. 
The chip produces a normal-frequency clock 
output, which can be used to drive or synchro- 
nize external logic. The functions between the 
chip and the Q-bus can be implemented in off- 
the-shelf discrete logic. 
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Except for the 32-bit DAL bus, the external 
interface closely resembles those for existing 
16-bit microprocessors. Specifically, its timing 
and signal complement are quite similar to 
those in current machines. The addresses and 
data on the DAL are time division multiplexed, 
with separate timing strobes (AS and DS, respec- 
tively, in Figure 3). The data direction and the 
data buffer signals (WR and DBE in Figure 3) 
are used to  control  external transceivers 
directly. The cycle status signals differentiate 
among the various types of bus transactions. 
Four-byte mask signals, one for each group 
of eight bits on the DAL bus, allow straightfor- 
ward manipulation of bytes within longwords 
(four bytes). 

The RDY signal allows slower peripheral 
devices on the 1 / 0  bus to stretch the memory 
access time beyond 400 ns until they are ready 
to respond. 
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Besides giving the 78032 optimized microcode 
and a fast microcycle time, the design team 
enhanced the chip's performance by allowing 
parallel operations between and within func- 
tional subsections. This parallel flow is actually 
a form of pipelining in which the operations 
happen independently and concurrently. For 
example,  while  the E Box is executing a 
datapath operation, the control store can access 
the next microinstruction. At the same time, the 
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microsequencer can be calculating the address 
of the microinstruction after that one, and the 
M Box can be translating a virtual address. 
Meanwhile, the 1 Box can be decoding an 
instruction or operand specifier and prefetch- 
ing more instruction data. And the DAL inter- 
face can b e  ini t ia t ing o r  comple t ing  an 
external bus operation. 

For example, assume that the chip is to exe- 
cu t e  the  fol lowing two three-microcycle 
macroinstructions in sequence: 

ADDL3 RO, R1,  R2 

Within the third 200-13s microcycle, some 
operations associated with these two macroin- 
structions are performed in parallel by several 
subsections. The E Box will write the result of 
ADDL3 into R2 in the register file, set the PSL 
condition codes, and check for arithmetic 
exceptions, such as an overflow trap. Mean- 
while, the I Box will decode the next macroin- 
struction, SUBL3, and its first specifier, R4 .  
Concurrently, the prefetcher in the I Box will 
determine if the decode of the instruction and 
specifier will  c lear  enough space in the  
prefetch stack to warrant another longword 
transfer. If so, the I Box will then initiate the 
transfer and fetch another macroinstruction, 
which also involves the DAL interface. 

Within each subsection, there are also a num- 
ber of parallel operations that reduce the over- 
all execution speed significantly. In addition to 
simultaneous prefetch and decode actions in 
the I Box (as described above), the microcode 
access in the control store is pipelined: The 
next microaddress is accessed while the current 
microinstruction at the current microaddress is 
being executed. In the M Box, length checks 
against referenced addresses take place simulta- 
neously with the translation cache lookups. If a 
lookup misses, therefore, the length check will 
have already determined whether or not the ref- 
erenced page is within range. In the E Box, a 
separate program counter (PC) adder maintains 
the PC so that the ALU can be dedicated to its 
primary task. 

Some typical execution times for instructions 
under normal operating conditions (aligned 
operands, no memory management exceptions) 
are as follows: 

Typical 
Execution Time 

Instruction Operands (Nanoseconds) 

MOVL 

ADDL2 

MOVL 

Reg, Reg 

Reg, Reg 
Mem, Reg 

ADDL2 Mem, Reg 

MOVL Reg, Mem 

ADDL2 Reg, Mem 

Conditional 
Branch, 
not taken 

Conditional 
Branch, 
taken 

Physical Implementation 
The MicroVAX 78032 chip is made using a 
3-micron, double-metal NMOS process that 
allows power savings and superior circuit flexi- 
bility. Until the MicroVAX 78032 chip design, 
single metal was a standard for NMOS technol- 
ogy. The use of a second layer on the 78032 
chip was a significant departure for NMOS 
design. There are two main advantages of a 
double-metal implementation. First, it is easier 
to place logic circuits in the interconnect layer, 
where there are more circuits per unit area of 
silicon. Second, the metal interconnect has 
lower resistance than polysilicon, thus avoiding 
wire delays that are difficult to eliminate in 
design. 

The double-metal process provided the chip 
design team with two layers of aluminum inter- 
connect and four types of devices (N,  E,  L, and 
D). The four types allow some savings in power 
and a substantial increase in circuit flexibility. 
However, the E device (light enhancement) is 
typically used only in source-follower circuits, 
and the L device (light depletion) only in 
latches and static memories. The second layer 
of aluminum interconnect manages the com- 
plexity associated with 32-bit microprocessors. 
That permits  global communicat ions and 
allows local control or routing to share the 
same chip area. However, second metal can 
only contact first metal, and then only through 
an offset, or staggered, contact. 
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Figure 4 X-shaped Cells 

The control store is a 1600-entry by 39-bit 
ROM. Although its size was decreased mostly 
t h r o u g h  r e p a r t i t i o n i n g  a n d  o p t i m i z e d  
microcode, about ten percent of the reduction 
was gained through the cell structure chosen. 
X-shaped cells with a virtual-ground design 
were used (Figure 4). This ROM has no physi- 
cal ground,  whereas standard ROMs with 
H-shaped cells have one ground line for every 
two data lines. The X-shaped cell, which is 9 5  
microns square, is also more dense than the 
standard cell. Moreover, in the X-shaped cells, 
second metal is strapped across the top of the 
array to minimize the row propagation time. 
The cell access time is 100 ns. 

The ROM bit lines are precharged to V,,; 
using depletion pullups. Sensing is done with a 
cross-coupled stage using local deplet ion 
divider voltage references set at 0 .6  X V,,. Col- 
umn access occurs in 25 ns. 

The cont ro l  circui ts  ( a t  the  center  in  
Figure 1) are implemented in dynamic logic so 
that the total power dissipation is kept below 
three watts. That also allows a low-cost packag- 
ing design. The eight clock phases provide 
refresh timing references to the dynamic logic. 

Due to tight silicon constraints, the test fea- 
tures built into the design had to be limited in 
scope. The principal. ones used are as follows: 

Serial shift  registers with feedback for 
observing the control store, IPLA, and micro- 
sequencer outputs 

Special test mode for overriding normal 
sequencing with external microaddresses 

Dedicated microcode for optimizing state 
observations in the special test mode 

Summary 
The MicroVAX 78032 represents a major break- 
through both in semiconductor technology and 
in the VAX family. From a technology perspec- 
tive, it is the first implementation of a success- 
ful 32-bit superminicomputer on a single chip. 
It is the first chip to provide integral demand- 
paged virtual memory management. And it is 
the first chip to provide system performance 
comparable to the 11/780. From a VAX per- 
spective, the 78032 is the key to the downward 
extension of the industry-standard VAX family 
into the realm of small systems and worksta- 
tions. 
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Floating Point Chip 
A separate chip, the 78132, in the MicroVAX ZI system pelforms fast 
floating point calculations. Three datapaths, each controlled by 
microcode, work in parallel to yield a 100-nanosecond microcycle. The 
wide datapaths accommodate a large variety of instructions, using 
microwords of only 35 bits for control. The 78132 is a 3-micron NMOS 
chip connecting to the CPU chip of the MicroVAX IZ system uia a general- 
purpose protocol and a limited set of lines. Crosstalk and resistivity 
posed particular design problems, as did the routing of signals and 
power. The 78132's electrical integrity was carefully checked to ensure 
bigh reliability. 

Scientific and engineering applications rcquire 
strong floating point support from their com- 
puters. All VAX implementations offer both 
microcoded (warm) and hardware (hot) capa- 
bilities to execute the 95 floating point instruc- 
t ions in t h e  full  VAX instruction se t .  The 
MicroVAX I1 processor also supports floating 
point instructions, but in a slightly different 
fash ion .  S ince  t h e  c o n t r o l  s t o r e  i n  t h e  
microprocessor, the CPU chip, has a limited 
size, these instructions are not executed in 
microcode ;  instead they  a r e  e m u l a t e d  in  
macrocode.' Emulation is relatively slow and 
does not provide the fast speeds required for 
intensive mathematical applications. Therefore, 
a separate floating point accelerator (FPA), the 
MicroVAX 781 3 2  chip,  has been developed as a 
companion to  the  CPU chip,  the  MicroVAX 
78032 chip.  

The 78132 ,  o r  FPU chip, is designed to pro- 
vide fast floating point calculations on a single 
chip.  It executes 6 1  of the 7 0  floating point 
instructions in  the MicroVAX instruction set. 
Nine of the 70  instructions simply move data, 
and the CPU ch ip  does not need the FPU ch ip  to 
handle them. The FPU ch ip  also accelerates cal- 
culations for 9 integer instructions, which are 
associated with integer multiplies and divides. 
The FPU chip executes instructions about 1 0 0  
times faster than macrocoded emulation. 

The FPU ch ip  (Figure 1) contains 3 2 , 1 4  1 
transistors in a 3-micron, double-metal NMOS 
ch ip ,  which requires just under  2 watts of 
power at  5 Vdc. It measures 8 .4  by 6.6 mm and 
is packaged in a 68-pin leaded ch ip  carrier. The 
chip has a 100-nanosecond (ns) microcycle, 
divided into four 25-ns clock phases generated 
from a 40-MHz input  clock. The CPU chip,  
which also operates on a 40-MHz input clock, 
has a microcycle of 200  ns. The faster micro- 
cycle and wide datapaths enable the FPU chip 
to  perform floating point  operations much 
faster than the  CPU c h i p  with  its general 
datapath. 

This paper discusses the  implementation of 
floating point in the MicroVAX 11's FPU ch ip  
and the unique constraints of a single-chip 
floating point accelerator. These constraints are 
not limited only to architecture but  include 
interface design, wiring, and signal integrity, all 
areas where design trade-offs are important. 

At the highest level, the FPU ch ip  imple- 
ments the F, D, and G floating point instruc- 
tions in the VAX instruction set. The chip is 
constrained by the requirements of the VAX 
architecture-data formats, accuracj7 require- 
ments,  and instruction vagaries-and by the  
characteristics of the technology-limited num- 
ber of pins, limited die  size, and limited inter- 
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Figure I Photomicrograph of the FPU chip 
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- The MicroVAX 78132 Floating Point Chzp 

connect. These constraints dictated many of the 
design considerations in the FPU chip. 

FPU Chip Architecture 
The main elements of the FPU chip, shown in 
the block diagram in Figure 2,  are similar to 
those in most floating point devices."hree 
separate processors-a 67-bit fraction processor, 
a 13-bit exponent processor, and a single-bit 
sign processor-operate in parallel. The bus 
interface unit handles data transfers over the 
external bus to the CPU chip and data move- 
ment into and out of the three datapaths. The 
microsequencer controls the parallel opera- 
tions of the processors. 

Each element in the FPU chip operates in 
parallel to speed up  instruction processing. The 
microsequencer steps through the microcode 
for an instruction and determines which opera- 
tion is to be performed by each processor for 
the current cycle. The microsequencer also 
takes inputs from each of the processors to 
determine which microword is to be executed 
next. The datapath of the fraction processor 
performs all the arithmetic computations on 
the mantissa of a floating point number. This 
datapath is designed to be flexible enough to 
handle the many different operations required 
in a general-purpose FPA. The datapath is also 
segmented to handle the F, D, and G data types, 
and is optimized to provide the maximum pos- 
sible performance from the N-channel MOS 
technology. 

The datapath of the exponent processor han- 
dles only the exponent portion of a floating 
point number. The exponent datapath is also 
used as a counter during certain operations 
such as multiply and divide. This datapath does 
all the exception and bounds checking for 
operations like addition and subtraction. The 
sign processor is incorporated into the expo- 

PROCESSOR PROCESSOR PROCESSOR I I 
INTERFACE MICROSEQUENCER 

Figure 2 Block Diagram of the FPU chip 

nent datapath and handles all operations per- 
taining to the sign bit. During an addition or 
subtraction, the sign bit determines which case 
is performed by checking the signs of the two 
operands and the opcode of the instruction. 

The bus interface unit (BIU) is responsible 
for handling all the FPU portions of the bus 
traffic between the FPU and CPU chips. The BIU 
decodes the opcode sent to the FPU chip and 
tells the microsequencer which instruction to 
execute. That allows the FPU and CPU chips to 
coordinate their actions without a lot of proto- 
col or pins. Since many different data types are 
processed, the BIU is responsible for unpacking 
the operands and steering them to the appropri- 
ate datapath. Once the instruction is com- 
pleted, the BIU takes the unpacked result from 
each datapath and formats the result into the 
specified data type. Figure 3 contains a more 
detailed block diagram for the entire floating 
point unit. 

Algorithms 
To keep the FPU chip at a size that could be 
produced, we  decided not to use special-pur- 
pose hardware to implement instructions like 
addi t ion  o r  mul t ip l ica t ion .  Instead,  the  
datapaths are designed to be general-purpose 
ones to accommodate the needs of a wide vari- 
ety of instructions. 

Addition and Szlbtraction 

The datapaths are under microcode control and 
work in  parallel.  Within each ,  the  s teps 
required for either addition or  subtraction are 
done serially. First, the exponents of the two 
operands are compared to see if they are of 
equal magnitude. If not, the larger exponent is 
stored in a register, and the exponent differ- 
ence is used to control the alignment. The 
shifter on the output of the fraction arithmetic 
logic unit (ALU shifter) allows the fraction with 
the smaller exponent to be aligned five bits at a 
time. During each alignment step, the exponent 
difference is reduced by u p  to a magnitude of 
five until the exponents are equal. Once equal, 
the fractions are added. (In subtraction, the 
fraction to be aligned is complemented before 
alignment.) 

The resulting fraction is then normalized. 
The normalize shift is accomplished by a single 
left shift in the fraction ALU and two left shifts 
in the ALU shifter.  If the addition of the 
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fractions results in an overflow into the top 
guard bit, a single right shift in the ALU shifter 
is required to normalize the result. During nor- 
malization, a 3-bit code is sent to the exponent 
datapath, which determines the amount the 
exponent must be adjusted. 

After normalization, the fraction is rounded 
using a rounding constant appropriate for the 
data type of the floating point operation being 
performed. If the round results in an overflow 
in the fraction datapath, the exponent  is 
incremented by one and the fraction is normal- 
ized. The exponent datapath then checks the 
resulting exponent for any error conditions. If 
no errors are found, the final fraction and expo- 
nent values are loaded into the output register 
and the sequencer signals the BIU that the oper- 
ation is complete. 

Mllltiply 

The multiply operation in the FPU chip is based 
on a 3-bit retirement algorithm. The 3-bit 
retirement, or octal multiply, must generate the 
required multiple, 0-7, of the multiplicand to 
be added into the partial product for each step. 
The multiples must be generated by simply 
shifting the multiplicand and adding or sub- 
tracting them from the partial product. The 
multiples 0 ,  2 ,  4 ,  and 8 are easy to generate in 
this way. The multiple 6 can be formed by tak- 
ing three-quarters of the multiplicand and stor- 
ing that in a register at the beginning of the 
multiply (34 x 8 = 6). As shown in Table 1, all 
the even multiples can be generated. To gener- 
ate a11 the odd multiples, a -1 multiple is 
added to achieve the final exact multiple for 
each retired group of three bits. 
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Table 1 Multiply Operation - Booth Encodings 

Multiplier Required Data Multiple Multiple Multiple 
Group Multiple Used Shift Added Owed 

0 0 

1 mult 

2 mult 
3 mult 
4 mult 

5 3h mult 

6 3h mult 

7 mult 

The key to making this scheme work is that 
this -1 multiple must be generated from the 
previous group of three bits. To that group, the 
-1 multiple for the next group is equivalent to 
a -8 multiple. To know whether or not the next 
group will need the -1 multiple, it is sufficient 
to examine the least significant bit (Isb) of the 
next group of bits. If the Isb is a 1 ,  then the 
g r o u p  wi l l  be odd  and  wi l l  need  the  
-1 multiple. This process is started by examin- 
ing the Isb of the multiplier and initializing the 
partial product register to either zero or minus 
the multiplicand. If the Isb is a 0, the -1 multi- 
ple will not be needed. The operation always 
terminates in the case not requiring compensa- 
tion because the numbers are all normalized. 
Table 1 shows the Booth encodings for each 
multiplier group. 

These Booth encodings translate into the frac- 
tion datapath controls depicted in Table 2. 

A multiplication in the FPU chip is begun by 
loading the multiplier into the Q Register (quo- 
tient register) and loading the multiplicand 
into register 0 in the scratch RAM. Three- 
quarters of the multiplicand is then calculated 
during two ALU cycles and is stored in register 
1 of the  scratch RAM. Subsequently, the 
A Register is initialized to store the partial 
products. 

During each cycle of the multiply loop, the 
four least significant bits of the Q Register are 
latched to control each multiply step. Based on 
these four bits, the multiply control loads 
either the multiplicand or three-quarters of the 
multiplicand from the scratch RAM into the 
B Register. The control then adds or subtracts 
the B Register from the A Register. The resulting 
new partial product is shifted right by the ALU 

shifter and relatched in the A Register. The 
Q Register is then shifted three bits to the right 
to retire the current set of multiplier bits and to 
set u p  for the next iteration. 

The exponent datapath is used to control the 
number of iterations that should occur for each 
multiply operation and to calculate the result- 
ing exponent. The number of iterations that 
take place for a multiply depends on the length 
of the mantissa. For example, an F format num- 
ber with a 23-bi t  mantissa requires eight 
iterations. 

Dir~ision 

The floating point unit performs a 1.5-bit, non- 
restoring division. This algorithm is similar to a 
I-bit, non-restoring division, but takes advan- 
tage of the fact that long strings of zeros or ones 
in the partial remainder can be skipped over 
without doing an addition or subtraction. The 
FPU chip handles double precision through jts 
normal datapath. 

Within the FPU chip, the partial remainders 
will always be c +Y'z and > -M because both 
floating point numbers are normalized. If the 
partial remainder is small relative to the nor- 
malized divisor, a 1 will not be shifted into the 
quotient over the next few cycles. (The oppo- 
site is true i f  an addition is performed.) Know- 
ing this fact and whether the previous opera- 
tion was an addition, subtraction, or a shift will 
determine how the quotient bits are developed. 
If the previous operation was a shift, the pro- 
cess is in the middle of a long string of zeros or 
ones and no addition or subtraction has to be 
performed. If the partial remainder is not small 
relative to the normalized divisor, the quotient 
bits are developed as they would be in a I-bit 

Digital Tecbnical Journal 
N o .  2 March 1986 



New Products 

Table 2 Multiply Operation - Fraction Datapath Controls 

Next Group Actual Present Group Group Multiple ALU 
Look Ahead Multiple Group Multiple Multiple Generated Operation 

A - A  
A - A+B; B=RO 
A + A+B; B=RO 
A -- A+B; B=RO 
A -- A+B; B=RO 
A -- A+B; B=R1 
A - A+B; B=R1 
A -- A+B; B=RO 
A +-- A-B; B=RO 
A t A-B; B=R1 
A -- A-B; B=Rl 
A -- A-B; B=RO 
A + A-B; B=RO 
A - A-B; B=RO 
A + A-B; B=RO 
A -- A 

where: RO contains themultiplicand 
R1 contains 3h multiplicand 

division algorithm. Table 3 summarizes the 
1.5-bit, non-restoring division. 

The implementation of this algorithm in the 
FPU chip is straightforward. To start, the divisor 
is loaded into the B Register and the dividend 
into the A Register. The Q Register is initialized 
to 0 and will become the location where the 
quotient is developed. 

During each step of the division, quotient 
bits are inserted at the least significant end of 
the Q Register. The register contents are then 
shifted left either 1 or 2 as required to develop 
the new quotient for that step. If necessary, the 
divisor is added to or subtracted from the par- 
tial remainder. The result is then shifted left by 
the appropriate number of places. 

When bit 65 in the Q Register becomes a 1 ,  
the division is stopped. Since these numbers are 
normalized, the result will fall in the range of 
greater than 95 but less than 2.  The contents of 
the Q Register, already normalized, are then 
read back into the A Register. However, if the 
initial subtraction resulted in a positive partial 
remainder, then one must be added to the expo- 
nent to account for the fact that the result has a 
whole part (i .e. ,  2 1) .  

Integer Division 

The FPU chip also performs a I-bit, non-restor- 
ing divide algorithm, which is used to acceler- 
ate the execution of the DIVL and EDIV instruc- 
tions. In all  cases, t he  integer  divide is 
accomplished with a 32-bit divisor and a 64-bit 
dividend. 

Polynomial Calculations 

The polynomial evaluation algorithm, POLY, 
uses Horner's Method to calculate all trigono- 
metric functions. Because execution time can 
be so long, POLY is the only VAX floating point 
instruction that can be interrupted by the CPU 
chip. The algorithm performs a series of ax+b 
operations once during each cycle. In each 
operation, x is treated as a constant, the value 
of b is provided by the CPU chip, and the value 
of ax+b in the current cycle becomes a in the 
next cycle. 

The FPU chip first multiplies a by x with the 
MUL algorithm and then adds b with the ADD 
algorithm. The main sequencer tells the 1 /0  
controller that the first POLY cycle has been 
completed and that the result is ready in the 
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Table 3 1.5-Bit Division Operation 

Most Significant Bits 
of Partial Remainder Value of Shift ALU Add/Sub Shift 

66 65 64 63 bits 66-63 Left Operation Quotient Quotient 

2 none 
2 subt 
1 subt 
1 subt 
1 add 
1 add 
2 add 
2 none 

Add/Sub Quotient: Bits shifted into the quotient if previous operation was an addition or subtraction. 
Shift Quotient: Bits shifted into the quotient if the previous operation was a pure shift (no ALU 

operation). 

1 / 0  registers for transfer to the CPU chip. The 
s e q u e n c e r  e x e c u t e s  t h e  s e c o n d  MUL, 
(ax + b)x, during the time that the CPU chip is 
reading the first result, storing it in a register, 
and transferring the next value of b to the FPU 
c h i p .  T h e  s e c o n d  A D D  o p e r a t i o n ,  
(ax + b)x + 6 ,  then takes place to complete the 
second cycle, and the process continues. The 
CPU chip's register is updated with the new 
result at the end of each cycle. This pipelining 
allows fast generation of trigonometric and 
transcendental functions. Both the CPU and 
FPU chips are working to implement  the 
instruction, and the actual multiply time is 
overlapped by the operand fetch time. 

The Microsequencer 
The microcode for the FPU chip is contained in 
a large programmable logic array (PLA), which 
is the heart of the microsequencer. Inputs to 
the PLA are received from all major sections of 
the FPU chip. A microword of 35 bits is all that 
is needed to control the rwo main datapaths 
(the sign processor is part of the exponent 
datapath) and to  communicate with the bus 
interface unit. Each field in the microword is 
encoded to reduce the number of wires routed 
to the other sections. Two hundred microwords 
are required to implement the sixty-one float- 
ing point and nine accelerated integer instruc- 
tions executed by the FPU chip. The block dia- 
gram for the microsequencer is shown in 
Figure 4 .  

Inputs to the PLA are comprised of five next- 
address bits, three dedicated inputs, and forty 
signals from the three major processors on the 
chip. Three bits from the next-address field are 
used to select five of the forty signals for the 
next FPU cycIe. These five multiplexed inputs, 
in conjunction with the eight direct inputs, are 
used to address the next microword. The thirty- 
five outputs, or signals, from the PLG are used 
to communicate with the rest of the floating 
point unit.  These signals determine which 
operation is to be performed by each of the 
three datapaths (exponent, fraction and sjgn 
processor). 

Interface Between Chips 
Interface Lines 
The communication between the CPU and FPU 
chips is done through a very limited set of 
lines: a write (W) strobe, three cycle status 
(CS) Iines, an external processor strobe (EPS), 
and the 32-bit data and address lines (DAL). 
(This approach  was used t o  reduce  the  
pincount on both chips.) 

In the MicroVAX I1 processor, the chip proto- 
col is designed as a general-purpose one so that 
other coprocessors could take the place of the 
FPU chip. Each interface line has a specific pur- 
pose, as explained below. 

The W strobe sends a signal from the CPU 
chip to indicate the direction of data flow 
over the DAL. For the FPU chip, the write 
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40 INPUTS 

1. 
30 ADDITIONAL 
OUTPUTS 

A 

40:5 NEXT ADDRc9:7> 
MUX 4 

NEXT ADDRc6:5> 
DATAPATH 
STATUS 

AND PLANE OR PLANE 
(200 TERMS) (200 TERMS) 

MICROCODE PLA 

Figure 4 Block Diagram of the Microsequencer 

signal indicates that data is being transferred 
from the CPU chip. 

The EPS is used by the CPU chip to qualifj  
all communication between itself and the 
FPU chip or other non-memory device. 

The three CS lines provide status about the 
current bus cycle. Two of the lines indicate 
the type of information being transferred; 
they are "valid" when the external processor 
strobe is asserted. The third line is an open- 
drain output (functionally similar to an open 
collector in TTL), which will be active when 
the bus cycle is a response enable and the 
FPU chip has completed the current com- 
manded operation. 

The DAL is a 32-bit, bidirectional bus that 
exchanges data between the CPU and FPU 
chips. The CPU chip is always the bus master 
and controls the transfer of operands to the 
FPU chip and results back to itself. 

The information exchanged between the CPU 
and FPU chips could be of different types: write 
external processor command, read or  write 
external processor data, command to other 
external processors (not the FPU chip),  and 
external processor response enable. The exter- 
nal processor strobe (EPS) is used by the CPU 
chip to qualify all communication between 
itself and the FPU chip. 

Figure 5 illustrates all the interface lines 
between the rwo chips. 

Communications Protocol 
The communications protocol permits the FPU 
and CPU chips to communicate efficiently. 

Every interchip operation will be associated 
with the following sequence of bus activities: 

1. The CPU chip initiates an interaction by 
placing a command onto the DAL bus, a 
status code on two CS lines, a write sig- 
nal of "low," and an EPS of "low." The 
FPU chip recognizes this sequence as a 
command-write cycle and aborts any 
instruction being executed. The FPU 
chip then decomposes the command to 
determine the required operation and 
the number and size of the operands. 

2.  The CPU chip fetches the required oper- 
ands and executes one or more data- 
write cycles to transfer them to the FPU 
chip. 

3 .  After transferring the last operand, the 
CPU chip asserts a response-enable sig- 
nal on the CS lines and pulses the EPS 
"low." The chip does that once for each 
microcycle that it has control of the bus 
in order to determine if the FPU chip has 
finished processing the data. 

4 .  To signal the completion of operations, 
the FPU chip asserts the CS<2> line 
"low" when the response-enable signal 
is on the two CS lines and the EPS is 
"low." At the same time, the FPU chip 
asserts the status of the just-completed 
operation. 

5 .  The CPU chip recognizes the "low" sig- 
nal from the FPU chip and reads the sta- 
tus information. The CPU chip  will 
repeat this transaction to compensate for 
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vBB 1 I r- GND, Vcc 

INTTlM L 
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DMG L - 1  
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PWRFL L -4 
HALT L -4 
ERR L 2 
RDY L -4 

LATCH BA<29:00> 

DBE L * 

L-T-l-- FLOATING 

RESET L 
cs<2:0> 

t 

WR L 

DBE L 

CLKl 

VBB 

GND, Vcc . cs<2:0> 

Figure 5 Interfaces Between the CPU a n d  FPU Chips 

its microcoded pipeline,  capturing the 
status information the second time. 

6. The CPU ch ip  executes zero o r  more 
data-read cycles to read the results, if 
there are any, from the FPU chip. Both 
chips are now free to perform the next 
transaction in the instruction stream. 

(The FPU chip will respond unpredictably to 
other nonstandard protocols and relies on the 
sequence of interactions described above for 
proper operation.) 

Performance Analysis 
The performance of the FPU chip is very sensi- 
tive to the 1 / 0  bandwidth. Every floating point 
opera t ion  is associated w i t h  a s p e c i f i e d  
sequence of events that must occur between 
the chips before the execution can start. There 
is another sequence of events that must take 
place when the computation is completed.  
These sequences happen without any parallel- 
ism or pipelining. 

The protocol affects the performance of the 
FPU chip because cycles must be  expended for 
sending and reading status signals, and transfer- 
ring data. Table 4 illustrates the  individual 
steps that occur for three types of operations: 
ADDF, MULF, and MULD. For these examples, 
assume that no time is spent o n  instruction 
fetch and decode, and that the memory subsys- 
tem has an unlimited bandwidth and buffering 
capability for reads and outstanding writes. The 
performance is measured from the completion 
of the initial instruction decode to the final 
result store in the memory (or a register). 

The total execution time for other instruc- 
tions can be derived in the same manner using 
the following internal execution times: 

Add in D format - 7 0 0  ns 

Division in F format - 2200 ns 

Division in D format - 4400 ns 
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Table 4 Steps for Add and Multiply Operations 

Instruction: ADDF 
Register Mode Byte Displacement 

Protocol Execute 
Time Time 

(nanoseconds) 

Protocol Execute 
Time Time 

(nanoseconds) 
Specifier decode and data 
transfer for first operand 

Specifier decode and data 
transfer for second operand 

Internal transfer (first operand) 

Execution 
Status read 
Status read 
Result transfer on DAL bus 

200 
200 
400 

1800 700 

2.5 microseconds 

Total 

Total Execution Time: 1.8 microseconds 

Instruction: MULF 
Byte Displacement Register Mode 

Protocol Execute 
Time Time 

(nanoseconds) 

300 

200 

Protocol Execute 
Time Time 

(nanoseconds) 
Specifier decode and data 
transfer for first operand 

Specifier decode and data 
transfer for second operand 

Internal transfer (first operand) 

Execution 
Status read 
Status read 
Result transfer on DAL bus 

Total 

Total Execution Time: 3.1 microseconds 3.8 microseconds 

Instruction: MULD 
Register Mode Byte Displacement 

Protocol Execute 
Time Time 

(nanoseconds) 

Protocol Execute 
Time Time 

(nanoseconds) 
Specifier decode and data 
transfer for first operand 

Specifier decode and data 
transfer for second operand 

Internal transfer (first operand) 

Execution 
Status read 
Status read 
Result transfer on DAL bus 

Total 

Total Execution Time: 4.3 microseconds 5.2 microseconds 
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Wiring and Signal Integm'ty in  the 
FPU 
Signal integrity in a large VLSI chip such as 
the  78132  is fundamental to ensure correct 
functionality and good yield, given the varia- 
tions in manufacturing. The one- to two-micron 
proximity of signal lines on an integrated cir- 
c u i t  ( IC)  can cause  s ignif icant  c o u p l i n g  
problems. Moreover, there are problems in 
terms of clock distribution and power-supply 
noise. The design of the logic must allow suffi- 
cient noise margin to permit correct operation 
in spite of the noise present in the system. The 
use of charge as the signal (used in many cir- 
cuits in an NMOS design), rather than voltage 
o r  c u r r e n t ,  c rea ted  s o m e  s p e c i a l  des ign  
problems for the FPU chip team. 

IC Wiring Characteristics 
The FPU chip has four layers-two of metal, one 
of polysilicon, and one of diffusion-that are 
used to interconnect and form devices. The wir- 
ing in an IC is conceptually similar to the wir- 
ing on a printed circuit board. Although the 
total wiring length on the FPU chip is only 
about four meters, the interconnected nodes 
and elements number in the tens of thousands. 
Placing and routing the logic functions inevita- 
bly affects the estimates of loading and system 
performance. Thus an iterative process of first 
routing a design, then simulating the subse- 
quen t  performance is needed to  identify a 
workable routing plan. Once this workable 
routing-performance trade-off is identified, the 
final routing and loadings can be made. 

The wiring considerations for a VLSl design 
are different from those for conventional sys- 
tems in several ways. First, the dimensions are 
smaller. In the NMOS process the horizontal 
metal separation is about three microns and the 
vertical separation is from one  to two microns. 
Even with the smaller size of the wiring in the 
MicroVAX I1 chips, crosstalk can become a seri- 
o u s  p r o b l e m .  O n  a MOS c h i p ,  crossta lk  
between poorly designed nodes can approach 
fifty percent. The capacitance o n  many of the 
critical nodes in the FPU ch ip  is only about 100  
femtofarads (0.1 picofarad). Any coupling at all 
on these nodes becomes quite significant. The 
largest capacitance on the chip is the  clock 
lines at around 1 1 0  picofarads. On dynamic 
nodes, which rely o n  a charge stored on a 

capacitor to represent a logic level, this coup-  
ling is particularly troublesome. 

To eliminate this problem on the FPU chip,  
the  design team checked each of the  over 
12 ,500  nodes for crosstalk from all other nodes 
in the chip.  This data was then used to change 
the layout, where appropriate, to  minimize or 
in some critical cases, eliminate intolerable 
levels of crosstalk. These checks took about 
three man-months to complete.  

Another difference in the wiring of a VLSI 
chip is the resistivity of the wiring. The metal 
layers in the FPU chip have resistivities on the 
order of 100  milliohms per  square. However, 
the resistivities of the polysilicon and diffusion 
interconnect layers are about  4 0  ohms per  
square, or 400  times that of the metal layers. 
The interaction of this parasitic resistance with 
the on-chip capacitive loads can cause serious 
p e r f o r m a n c e  l imi ta t ions  if no t  ca re fu l ly  
monitored. 

In fact, these two layers are so resistive that 
they were unusable for unconditional routing 
of either signals or power; they could be used 
only for very local routing. As a special precau- 
tion, a hand-check of those layers was made at 
pattern generation time to verify that no long, 
speed-critical paths utilized these layers as part 
of the routing network. 

Power a n d  Signal Routing 
A minimum-width wire routed the length of the 
FPU ch ip  has a resistance of about 200  ohms. 
The use of metal layers with noticeable resis- 
tance therefore begins to set system perform- 
ance Limits through RC delays as well as IR 
drops, which happens in larger systems. The 
clock distribution introduces a delay of about 
one nanosecond across the FPU chip,  due  solely 
to the resistance of the metal interconnect and 
the distributed load capacitance. This delay 
amounts to about four percent of the  length of a 
single phase in the  ch ip .  A well-monitored 
clock distribution system is a requirement in 
any semiconductor chip.  The problem is that 
the performance of the underlying semiconduc- 
tor device is beginning to outstrip the capabil- 
ity of the ch ip  wiring to distribute the clock. 
RC delays become the limiting speed factor of 
the wiring in an IC, while the  speed of light 
across transmission lines is the limiting factor 
in a larger system. These resistances can also 
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seriously affect the power and ground supply as 
i t  is distributed throughout the FPU chip. 

We used several techniques to keep the sup- 
ply noise under 200 mV as power is distributed 
throughout the chip. First, the total dc  current 
was calculated by summing the current used in 
each power and ground line as it joined other 
branches on the route to the actual supply pad. 
At this point in the net, two factors had to be 
analyzed so that the width of the power bus 
could be sized correctly. That sizing kept the 
equivalent resistance low enough so that the 
overall drop from a pad to the most remote 
logic could be kept under 200 mV. Unfortu- 
nately, that sometimes required large (on an IC 
scale) power buses in which a significant frac- 
tion of an ampere must be provided by one 
supply line. 

The second problem, and the more difficult 
one, associated with the power and ground wir- 
ing is the large ac voltage transients that can 
occur when large portions of the system switch 
at the same time. That problem is especially 
significant with the V,, lines. And it is particu- 
larly difficult when driving wide buses or large 
datapaths as wide as the 81 bits in the FPU chip. 
In these cases, large transients (one ampere or 
more) flow in ground and power lines for a few 
nanoseconds. In a large system environment, 
decoupling capacitors can be used to supply 
these currents locally. Unfortunately, that is not 
possible in an IC environment where such large 
capacitors are not practical. As a result certain 
ground lines in the FPU chip are allowed to 
have significant noise on them. In some cases 
this noise spike can be as much as two volts. 
This noise is handled by rxnning these "dirty" 
grounds in a separate metal line all the way 
back to the pad on the chip. 

However, even when the line is taken back to 
the pad to prevent local IR drops from upset- 
ting the logic, parasitic inductance in the pack- 
aging can still cause problems. The most strik- 
ing example is that of off-chip bus drivers. Here 
a typical 32-bit bus is driven over 4- or 5-volt 
swings in as little as four or five nanoseconds. 
With each bus load being on the order of 100 
pf, the large dI/dt that the chip imposes on the 
power pins causes inductive ringing. Solving 
this problem by placing a decoupling capacitor 
on the external pins is of little value since the 
package inductance effectively isolates the 
capacitor from the  actual  nodes i t  must 

decouple inside the chip. Therefore, the FPU 
chip, like most chips that drive wide buses, has 
separate power pins going only to the output 
transistors. The subsequent ringing is tolerated 
since it does not affect any internal logic. (The 
ringing can become even more of a problem on 
chips with several buses with different timings, 
since separate supplies  must be used for 
each bus. That drastically increases the number 
of supply pins required on the chip.) The FPU 
chip devotes 19  of its 68 pins to Vss and VDD 
distribution. 

Electromigration 
A final wiring consideration in designing the 
FPU chip was electromigration. Electromigra- 
tion is a reliability issue in IC wiring because 
high current density in the metal interconnect 
can cause the metal to migrate, thinning sec- 
tions of wiring until they finally fail. Current 
densities much higher than lo5 amperes per 
square centimeter can cause increases in wiring 
resistance and eventually, open circuits or 
increased interlevel leakage, and short circuits. 
Clock lines, power and ground buses, as well as 
some global wiring, are susceptible to  this fail- 
ure mechanism. As a result, all lines on the FPU 
chip have an additional current constraint 
imposed by electromigration. When the chip 
was designed, these lines all had to be checked 
to eliminate the problem. 

Wiring Integrity 
Considerable time was spent checking the elec- 
trical integrity of the wiring in the FPU chip. 
The following list contains the most important 
wiring integrity checks made of the intercon- 
nect on the chip: 

1. Transistor Source/Drain Integrity - This 
check assured that the silicon intercon- 
nect resistance caused less than five per- 
cent degradation. 

2. RC Delays - All RC delays greater than 
one nanosecond were analyzed. 

3. Coupling - All internodal coupling 
capacitors were checked to verify that 
there would be less than 200 mV of noise 
injected into the node. 

4 .  VDD and Vss Nets - Three checks were 
performed. First, all IR drops were mea- 
sured to ensure that ac and dc  voltage 
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sources were kept under 200 mV. Sec- 
ond, all buses were sized to verify their 
reliability for electromigration resis- 
tance. This check included contact elec- 
tromigration. Third, a check ensured that 
sufficient isolated power pins existed to 
guarantee that clean and dirty grounds 
were isolated. 

5 .  Clock - An analysis identical to that for 
V,, and V,, nets was done on all eight 
clock lines. 

Although there were significant CAD tools to 
perform most of the checking, this task alone 
required approximately ten percent of the total 
engineering time for the entire project. 

Summary 
The VLSI chips we are now designing are as 
complex as several boards of TTL used in past 
implementations of the VAX architecture. The 
FPU chip performs the same functions at about 
the same speed as five boards containing ICs in 
the VAX-11/780 system. The designs of these 
complex systems on chips present a set of con- 
straints and considerations similar to and yet 
different from those encountered by board- 
level system designers. We hope that this paper 
captures  the  complexi ty  and uniqueness 
involved in the MicroVAX FPU chip. 
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Developing the 
Micro  VAX 11 
CPU Board 

Within the MicroVAX II system, the CPU board provides an environment 
to optimize the performance of the CPU andjloating point processor 
chips. The board is designed as a linked sequential machine to accom- 
modate the sequential control of the CPU chip. A Q-bus handles I / O  for 
the system. Tbe memory access path is dualported, allowing the memory 
and the CPU chip to run synchronously witbout wait states. A scatter- 
gather map provides Q-bus address translations. To minimize product 
delivery time, the CPU board was developed in parallel with the chips. 
Using CAD tools helped to go from first-pass chips to running the 
MicroVMS system in only two weeks. 

The CPU board in the MicroVAX I1 system 
(Figure 1) holds two chips: a microprocessor, 
called the CPU chip,  and a floating point 
coprocessor, called the FPU chip. The board 
also integrates a synchronous memory subsys- 
tem, a synchronous I/O-bus controller, and a 
synchronous on-board 1 /0  subsystem. The pro- 
ject to develop the CPU board was governed 
primarily by time-to-market considerations. 

1 1 1 1 1 1 1 1 1 1 1 1 1 ~ U ~  

Figure I The Micro VAX I1 CPU Board 

Other factors, such as VMS and ULTRIX compat- 
ibility, performance, reliability, cost, and ease 
of high-volume production were also important 
criteria. The end result is a successful balance 
between all these factors. 

Development Goals 
The importance of the primary goal governed 
how the project team organized itself to make 
decisions and to execute tasks. Rapid decision- 
making, and parallel and overlapping activities 
were the norms for this development effort. 
Unfortunately, parallel activities can cause 
communication problems, thus increasing the 
risks of product  fai lure.  However, these 
problems were anticipated and mechanisms put 
in place to reduce the risks to an acceptable 
level. 

The CPU board was designed around the 
specifications of the CPU and FPU chips, which 
were being developed at the same time. There- 
fore, one development goal was to minimize 
the dependency of the board design and layout 
on the first-pass designs for these chips. The 
team aimed at providing a fully functional sys- 
tem environment into which the first-pass chips 
could drop. This aggressive approach lead the 
team to leap-frog over events rather than to take 
a conventional stepping-stone progression. The 
overall project manager encouraged the taking 
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of prudent risks because he was responsible for 
meeting the  development  schedule .  The 
acceptance of these risks eventually paid off in 
an on-time delivery of the CPU-board design. 

Single- board Design 
Developing the CPU board around the two 
chips required us to provide a specific system 
environment. That environment had to balance 
the memory bandwidth of the CPU chip against 
its 1 /0  bandwidth requirements. The realiza- 
tion of that balance is the key to the board's 
success. Having either a slower memory or a 
slower 1 /0  subsystem would degrade system 
performance by at least twenty-five percent. 
The environment also had to  support  the 
MicroVMS, ULTRIX, and VAXELN operating 
systems. 

Our goal was to provide the hardware speci- 
fied by the three operating systems on one 
Digital-standard quad-sized board (8-'/2 by 10-'/z 
inch). The single-board goal was a consequence 
of technology improvements balanced by the 
costs of replacing the unit in the field. In this 
case, needing fewer pieces to  build the system 
would reduce manufacturing costs, improve 
reliability, and ease maintainability costs. The 
objective of operating at the full bandwidths of 
the chip and the 1 /0  bus was especially chal- 
lenging when so  little board space was availa- 
ble for the necessary functions. 

Most new chips do  not run at their full speed 
immediately; they take some time to debug. 
Our design objective was to run the CPU chip at 
an operating frequency lower than its maxi- 
mum during the first-pass debug. Of course, 
running at a slower clock rate was never an 
acceptable compromise for the final product. 
(Two versions of the CPU board were devel- 
oped with minimal component differences, one 
running at the full 200-nanosecond (ns) micro- 
cycle speed and the other at a slower 242-ns 
microcycle speed.) However, if the first-pass 
chip had missed its performance target, the 
development of the CPU board could still have 
continued. It is a tribute to the chip designers 
that the first-pass chips did run at full speed, 
which was quite unusual in so  complicated a 
product. 

The bus chosen to meet the 1 /0  needs of the 
system was the Q22-bus. This 22-bit bus has 
sufficient bandwidth to handle traffic from the 
system disk, the Ethernet LAN, and other 1 /0  

sources, such as other processors. The risk of 
using this bus was low due to its proven design, 
and the development cost for this application 
was reasonable. The Q22-bus is also supported 
by many disk, tape, and other 1 /0  products 
from both Digital and third-party add-on 
manufacturers. 

CPU Board Functions 
We ruled out using the Q22-bus for accessing 
memory directly, since the bus could not meet 
the memory cycle time of 400 nanoseconds for 
the CPU chip. '  Therefore, a new memory archi- 
tecture had to be developed. We investigated 
two alternative schemes, the first being the 
widely used direct memory access (DMA) with 
a s ingle port .  Unfortunately, DMA forces 
addresses and data to cross the microproces- 
sor bus on their way to memory. The usual pro- 
cedure is to halt the microprocessor with a 
DMA request or  grant while the DMA device 
uses the microprocessor's data and address 
paths. In this case the CPU chip, having no 
cache, would waste time by exercising the 
memory request and memory grant signals. 
Therefore, we  chose the second scheme, a dual- 
ported memory controller. Figure 2 depicts the 
single- and dual-ported memory controllers that 
were considered. 

This dual-ported controller requires that the 
CPU chip have different address and datapaths 
for the Q22-bus and the memory controller. 
While a DMA access is taking place, the CPU 
chip can continue operating on its 32-bit exter- 
nal datapath, primarily communicating with 
memory and the FPU chip. In this context, 
memory cycles can be pictured as strings of 
400-11s time slots controlled by a central arbi- 
ter.  This memory controller minimizes the 
impact on the CPU chip's performance by DMA 
accesses to  memory on the Q22-bus. This 
organization is not locked u p  by asynchronous 
Q22-bus cycles, whose transactions are three to 
four times slower than the CPU chip's memory 
cycles. It also allows the Q22-bus protocol to 
operate autonomously with the CPU chip and 
memory, except when the buffered bus proto- 
col and the memory system exchange buffered 
data. 

The memory controller also serves as an alter- 
native to one based on a cache. The CPU chip 
does not implement an internal cache due to 
power and chip-size constraints.' Cycles for 
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SINGLE-PORTED ORGANIZATION 

CPU 
CHlP 

FPU 
CHlP 

DUAL-PORTED ORGANIZATION 

Figure 2 Block Diagrams of the Proposed Controllers 

DMA, refreshing memory, and CPU-chip access 
are interleaved in time. 

The MicroVAX I1 system is designed to be 
used in a multicomputing environment. There- 
fore, the bus interface logic has to accommo- 
date the role of either bus arbiter or auxiliary 
processor. To that end, a doorbell register facil- 
itates an interprocessor interrupt mechanism. 
The datapath of the Q22-bus interface has to 
provide the address translations from the virtual 

- 

10 

MEMORY 

- 

memory space of the bus to the address space of 
memory. 

We defined several other elements as being 
essential for supporting an operating system on 
a single board. Those are the time-of-year 
(TOY) clock, the console serial line, the VAX 
console command program, and the console- 
interface-boot and self-test R O M .  These ele- 
ments, along with some status and error regis- 
ters, comprise the on-board 1/0 subsystem. 
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The functional organization of the CPU board 
is depicted in Figure 3 .  

Linked Sequential Machines 
Optimizing the overall computer performance 
means that data transfers between the CPU chip 
and memory have to be as fast as the chip can 
operate. Without a cache memory, the CPU 
chip has a relatively long memory cycle time of 
400 ns (two microcycles). Thus CPU chip-to- 
memory data transfers can take place without 
wait states. 

The 400-11s 1 / 0  cycle is nevertheless fast 
enough that the CPU board had to be designed 
as a linked sequential machine rather than as 
flow-through logic. The control function in the 
MicroVAX I 1  system receives signals, interprets 
them, and generates control outputs, all in a 
defined sequence. This mode of control cannot 
be satisfied using a combinational logic system. 

In addition to permitting 400-11s memory 
cycles without wait states, sequential machine 
design requires less random logic and board 

space than a flow-through design. The design 
process is simplified because the machines are 
implemented in easily changeable FPLS (fuse 
programmable logic sequencer) logic. Moreo- 
ver, design changes can be readily documented 
and less time is needed for debugging and trac- 
ing events. Sequential circuitry is more easily 
simulated than random logic, in  which all 
events must be sampled. And, since the CPU 
board's logic components run on the same 
clock, it is possible to debug them at faster or 
slower operating speeds. 

When the CPU-board project started, this 
sequential machine approach had not been 
widely used in microcomputer design. Off-the- 
shelf hardware and adequate CAD tools were 
not available. This project shows that designing 
with commercial PALS and FPLS logic can 
reduce the chip count,  as well as cost and 
development time. 

The overall control logic of this linked 
sequential machine is divided into partitions. 
The events inside individual partitions are gov- 
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Figure 3 Functional Partitions of the CPU Board 
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erned by independent sequential machines, 
called controllers. The logic within a partition 
goes through a fixed, repetitive sequence of 
operations, or states, during the four quarters, 
or phases, of a microcycle. The operations of 
the various partitions are coordinated in two 
ways. First, all sequential machines run from 
the same clock so that their timing is based on 
the same stream of clock edges. Second, the 
sequential machines are constantly exchanging 
signals, providing each other with the protocol 
information needed for coordinating their flow 
sequences. 

The sequential machines can be classified as 
modified Mealy m a ~ h i n e s . ~  The outputs are 
determined by the present input conditions and 
the present state of the machine. However, the 
state register is separated from the output regis- 
ter, with the AND programmable logic array fed 
by both the state register and the inputs to gen- 
erate OR plane terms for the clocked SR 
latches. The advantage of clocked SR latches is 
that the past state need not be regenerated by 
every clock edge; only changes need activate an 
OR term. Using D-type latches would require 
that regeneration. 

The block diagram in Figure 4 depicts a 
sequential machine representation of the CPU 
board's functional configuration in Figure 3. 
Under the on-board control partition at the left, 
the control function for the memory subsystem 
is distributed among three sequential devices: 
the memory sequencer, the memory arbiter, 
and the auxiliary device controller. Under Q22- 
bus control, there are also three sequential 
devices: the  slave, arbitration, and master 
machines. These machines exchange request, 
acknowledge, and status signals to control 
operations. 

Memory Subsystem 
Our market research data suggested that the on- 
board memory should be either 256  kilobytes 
(KB) or 1 megabyte (MB). The amount depends 
on  whether 64K DRAMS or  256K DRAMS are 
used. At the time the design was started, 256K 
parts were in short supply. Therefore, using 
64K DRAMS was a strategy to  counter that 
shortage. 

The function of the memory controller is to 
carry out 400-11s read and write operations and 
to refresh its RAM chips. This controller con- 

Figure 4 Block Diagram of the Control Architecture 
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tains a Q22-bus scatter-gather map that handles 
transfers between the Q22-bus virtual memory 
and on-board physical memory. 

Memory access is controlled by the memory 
arbiter. This arbiter checks for outstanding 
memory access requests in a fixed-priority 
sequence at the ends of 200-1-1s idle cycles and 
400-11s memory cycles. It also checks for 
requests from the Q22-bus slave machine, the 
memory-refresh counter, and the CPU chip, in 
that order. The fixed-priority sequence resolves 
collision requests for memory usage. If the arbi- 
ter requires exclusive control of the memory 
subsystem, a locking mechanism built into the 
subsystem prevents contention. 

When the CPU chip requires a memory-read 
lock, the memory arbiter will stall the chip and 
direct the Q22-bus arbitration machine to sus- 
pend other bus activity. Those actions will hap- 
pen only after any pending memory cycles of 
the slave machine have been completed. The 
arbitration machine will retain Q22-bus master- 
ship until the write/unlock cycle of the CPU 
ch ip  frees t he  bus.  Until t he  arbitration 
machine becomes Q22-bus master and while 
the CPU chip is stalled, the memory arbiter will 
perform the demand-driven refresh cycles and 
resolve slave-deadlock cycles from the Q22- 
bus. As each memory cycle is completed, the 
memory arbiter checks these requests again, 
and either the Q22-bus or the refresh-memory 
cycle can begin at the next clock edge. If no 
Q22-bus or refresh requests are pending, the 
arbiter anticipates that a CPU-chip cycle will be 
next. 

That anticipation and the  fixed-priority 
sequence save a lot of program execution time. 
The CPU chip makes about seventy percent of 
all memory references. Slave machine accesses 
by the 1 /0  bus devices occur twenty percent of 
the time (a maximum burst rate, not the aver- 
age rate), and those by the refresh counter, two 
percent.  (The remainder are idle cycles.) 
Therefore the controller, by anticipating that 
the CPU chip-rather than the 1 /0  bus or the 
memory-refresh counter-will make the next 
memory access, allows a memory cycle of 400 
ns, instead of 600  ns. (The 600-11s cycle would 
be necessary because the address strobe of the 
CPU chip would have to assert before the mem- 
ory cycle cou ld  s tar t ,  thus  wast ing one  
microcycle.) 

When timing microcycles, the memory arbi- 
ter enables the memory sequencer at phases 

coincident with the CPU chip's entry to a new 
microcycle. This enabling happens even though 
the sequencer does not yet know whether or 
not there will actually be a memory access by 
the CPU chip. Not until three phases later can 
the sequencer determine whether or not the 
address strobe has been asserted for a memory 
reference. If so, the sequencer enables the con- 
tinuation of the anticipated memory access. 
After that cycle completes, the next memory 
access will be enabled, and the procedure 
repeated. If not, the sequencer "kills" the 
cycle and runs another poll loop after checking 
for Q22-bus slave or refresh requests. Not antic- 
ipating a memory access would reduce per- 
formance  by app rox ima te ly  t h i r t y - th ree  
percent. 

The memory sequencer generates the row 
and column address strobes, sets u p  reads and 
writes on each byte, and handles parity genera- 
tion and detection. The auxiliary device con- 
troller can "stretch" the memory cycle of the 
CPU chip to synchronize its timing with slower 
devices, such as the TOY clock and the boot 
ROM. 

The scatter-gather map converts between the 
22-bit virtual addresses of the Q22-bus (4MB 
addressable) and the 24-bit physical addresses 
of the memory (up  to l6MB addressable). As 
defined by VAX memory management, the 4MB 
is divided into 8192 pages of 51  2 bytes each. 
The 22-bit virtual address consists of a 13-bit 
page number and a 9-bit offset to the addressed 
byte in that page. The 24-bit physical address 
consists of a 15-bit page number and a 9-bit 
offset. An entry in the map for each 512-byte 
page and offset points to a location in physical 
memory. Each physical address has four byte 
masks that select which bytes are inactive on 
any memory reference. 

There are, of course, other ways to map 
addresses between the 1/0 bus and memory. 
One way is one-to-one address translation, 
which in this case would have restricted physi- 
cal memory to 4MB. Another way is first to map 
one-to-one into the lowest 4MB of memory. 
Then, the CPU chip can perform the transla- 
tions and data transfers to the proper pages in 
the address space of the remaining memory. 
Unfortunately, this approach is unacceptable 
due to its effect on performance. A third way is 
to have fewer than 8192 mapped pages. In this 
case, programmers might have to provide their 
own mapping software for many real-time 1 /0  
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applications. That typically involves DMA 
access to large numbers of RAM locations. None 
of these methods proved as satisfactory as the 
use of the scatter-gather map. 

Interface Control Signals 
The interface control signals to the CPU chip 
include the following: 

Clock-in (40 MHz), clock-out (20 MHz; used 
to time the sequential machines), and reset 
signals 

Address, data, external-processor, and tim- 
ing-strobes-out signals 

Three chip-status, four byte-mask, and the 
read/write signals 

DMA-request and DMA-grant signals 

Four interrupt-line signals and one HALT 
signal 

Ready and error signals 

The pulse of the design is a four-state grey- 
code binary counter, which is clocked from the 
synchronous clock-out signal of the CPU chip. 
The first edge assertion of the clock-out signal 
after power-up puts the CPU chip in the first 
50-11s phase of the four-phase microcycle. The 
grey code allows the memory arbiter and auxil- 
iary device controller to track the state of the 
microcycles. The 28-bit address of the CPU 
chip is decoded to select the accessed device 
and then encoded into a series of 3-bit cycle 
codes. The auxiliary device controller, the 
memory arbi ter ,  and the master machine 
decode those cycle codes to identify what type 
of timing cycles to sequence through. The two 
key signals, apart from the cycle codes, are 
those for the address strobe and the read/write. 
They direct the auxiliary device controller, the 
memory sequencer, and the master machine to 
perform the read or write operations with the 
device specified in the cycle codes. 

Those three elements control the CPU chip's 
cycles and any system exceptions via the ready 
and error signals. The DlMA request signal is 
used only during a reset operation to delay the 
CPU chip until the system has finished reset- 
ting. The byte-mask signals simply direct the 
control logic to perform certain operations. 
Those include masked (byte or  word)  or 
unmasked (longword) memory cycles and data 

funneling operations on the Q22-bus. (Data 
funneling converts 32-bit longwords to 16-bit 
words and vice-versa.) The unmasked cycles are 
required since the Q22-bus is 16 bits wide, 
whereas the memory and CPU-chip buses are 
32 bits wide. The on-board 1 /0  time can be 
extended to  accommodate slower external 
devices. The memory controller allows the 
memory cycle to end only when a device has 
asserted a ready (RDY) signal, indicating the 
completion of its task. 

Add-on Memor-y 
The system's memory can be expanded with 
one or two memory boards, each containing 
either 1, 2, 4 or 8 megabytes. Thus total mem- 
ory can be as large as 1 6 ~ ~  and still offer a 
fixed 400-ns access time with no wait-states. 
Each board is linked to the CPU board by means 
of a local interconnect. This interconnect con- 
sists of special control signals on the C and D 
rows of the Q22 backplane and a 50-pin mod- 
ule-header and ribbon cable for data. Each 
interconnect links a board directly to the one 
just below it in the board cage of the system 
enclosure. Thus control signals and addresses 
can pass directly between the chips and mem- 
ory without using the Q22-bus. The diagram in 
Figure 5 shows the functional organization of 
the memory boards. 

For ease of installation and maintainability, 
the  add-on  memory boards are self-con- 
figurable; there are no user-settable switches or 
jumpers on the CPU board or memory boards. 
This design requires a logic function that com- 
bines active addresses with static configuration 
data to generate the proper control strobes 
according to the configuration. Therefore, 
although the add-on memory.boards are posi- 
tion independent,  they "recognize" which 
expansion slots they occupy. (To get the full 
l 6 M B  configuration, the memory controller 
design supports 1 MB-by-1 DRAM chips.) 

On- board I /O  Subs-ystern 
The serial line interface in the on-board 1/0 
subsystem provides the CPU board with a full- 
duplex, RS-423 ELA console terminal interface. 
The console interface program is implemented 
in macrocode in the boot ROM. The console- 
mode functions include general booting, user- 
computer interface, self-test and HALT. The 
boot ROM also includes special support func- 

Digital Technical Journal 
No. 2 March I986 4 3 



I Developing the Micro VAX II CPU Board 

MEMORY DATAPATH 
(10 MB/S) 

PRIVATE MEMORY 1 

MEMORY 2 

STORAGE 

BLOCKMODE DMA 
(3.3 MB/S) 

Figure 5 Functional Partitions of Memory Modules 

tions for the software in the MicroVMS, ULTRIX 
and VAXELN systems. 

As the boot ROM goes through a self-test 
sequence, programmable LEDs display the test 
status, identifying any board subsystem that 
contains a failure. By analyzing this sequence 
for effectiveness, we found that it provided a 
confidence level of eighty-six percent in the 
functional integrity of the CPU board and add- 
on memory boards. Although some Q22-bus 
logic functions could not be tested with this 
method, it helped to reduce significantly the 
times to do  manufacturing and field service 
tests. 

To emulate a CPU-halted condition, the CPU 
chip can be directed by either software or hard- 
ware switches to transfer program control to a 
firmware routine at a fixed PROM address. The 
HALT function retains the board state. The CPU 
chip traps to the boot ROM when there is a 
HALT, masking i t  until there is an instruction 
fetch outside the ROM. While in this emulated 
HALT, the firmware will perform the specified 
operations only after receiving either console 
commands or a signal from the AUTO-REBOOT 
switch. 

The CPU chip does not have a RESET instruc- 
tion; the chip simply sets a RESET request flag. 
The UNJAM command in the console mode ini- 

tializes the bus by forcing the CPU chip to the 
DMA grant state. UNJAM then transfers control 
to RESET in the interface gate array of the CPU 
chip. After that, the logic resets the board's 
functions and the arbitration machine resets the 
Q22-bus. Any auxiliary processors are reset 
from the Q22-bus reset signal. 

Exceptions, which may originate in the con- 
sole, the on-board I/O, the Q22-bus, or the 
memory subsystem, are reported to the CPU 
chip for a machine check. This process involves 
setting an error-register flag in the interface 
gate array of the CPU chip. The chip then treats 
the exception as either fatal (HALT or AUTO- 
REBOOT) or non-fatal (abort the process). 

Board Components 
Logic hardware for the CPU board was selected 
by balancing the need for minimum power and 
board space against the use of low-cost, off-the- 
shelf components. The gate arrays for the CPLI 
board and the bus interface, for instance, are 
more expensive than discrete logic; however, 
they are necessary to fit all support functions 
on one quad-sized board. Due to a conductivity 
connectivity limitation through the board's 
edge fingers, the maximum allowable power 
consumption is 4 5  watts for a 1MB on-board 
memory configuration. We were also con- 
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strained by the watts per square inch that had to 
be conducted from the board surface to the 
environment. That was important given that the 
enclosure is cooled by the flow of forced air. 

The gate array for the CPU-chip interface 
decodes addresses and  latches boot-ROM 
words. This gate array also contains registers for 
booting, diagnostics, and memory subsystem 
errors; the on-board 1 /0  datapath; and the inter- 
rupt-acknowledge decode and control. 

The gate array for the bus interface includes 
such components as the doorbell register, the 
memory-refresh counter, the holding latches 
for byte and word packing and unpacking, and 
timeout counters. This gate array also generates 
the bus addresses. 

The memory subsystem includes a number of 
discrete components. The memory arbiter and 
auxiliary device controller are both commer- 
cial programmable sequencers. The memory 
sequencer consists of 12 discrete logic chips. 
However, we  had to design our own memory 
controllers. The available commercial ones 
could not handle both the speed and the 
higher-level arbitration function required to  
anticipate memory accesses. 

Previous board designs used an eight-layer 
construction technology (two power, four sig- 
nal, two covers, and top and bottom solder 
masks). However, to reduce the board's cost, a 
six-layer technology had to be developed (two 
power, four signal, and top and bottom dry-film 
solder masks). Six-layer construction costs less 
than eight-layer due to alignment and drilling 
problems with the stacked layers of the latter. 
We used a CAD system to evaluate the chip 
interconnects on the board layout. The system 
showed that the signals could not be routed on 
two signal layers, but could on four. The two 
additional layers provide the 5V power and 
ground planes.  Digital's Computer-Aided 
Design (CAD) Group in Maynard, Massachu- 
setts, designed a custom software tool to help 
in developing the board layout. With this tool, 
it was possible to f i t  all functions on the board 
with 8-mil lines and spaces, and 60-mil pads. 
Having the lines and pads as wide as possible 
offers satisfactory yield in production and good 
signal quality due to strip-line characteristics. 

Enclosures 
Two enclosures were considered to house the 
boards, the BA23 and the BA123 boxes. At the 
time, the BA23 box was an active product; only 

minor modifications were needed to accommo- 
date it to the MicroVAX I1 system, a nice, low- 
risk plan. In contrast, the BA123 box was still 
being developed. Using it represented a greater 
risk; however, i t  could support more mass stor- 
age. The backplane cages of either box could 
accept add-on memory and peripheral device 
interfaces on either quad-sized or dual-sized 
(5-!4 by 8-L/z inch) boards. However, the BA123 
box accepted more quad-sized and dual-sized 
boards. That was a distinct advantage because 
there would be different numbers of board slots 
in the board cages in different packages of the 
MicroVAX I1 system. Moreover, each enclosure 
had a different thermal environment that had to 
be considered in the layout of the CPU and 
memory boards. Based on these considerations, 
we  chose to use both the BA23 and BA123 
boxes as the enclosures for the boards. 

CAD Tools 
The tight schedule dictated that separate design 
teams had to develop each of the chips and the 
CPU board as parallel projects. These separate 
efforts were made possible by the extensive use 
of CAD tools and computer simulation. Simula- 
tion was used extensively to design the CPU 
and FPU chips, the on-board memory and 1 /0  
subsystems, the gate arrays, the sequential 
machine controllers, and the Q22-bus. A board- 
development tool set was selected from CAD 
packages available in the industry. Since these 
packages were generally incompatible, w e  
developed a process that transported wire lists 
between these various CAD tools. The process 
linked inputs and outputs between the sche- 
matic-capture work stations, the PC-board lay- 
out system, the simulator, the gate-array ven- 
dor, and the documentation control group. One 
key to the rapid development of schematics was 
to let the designers retain control by perform- 
ing their own drawings and edits. 

We planned to use gate arrays right from the 
start of the project. Therefore, a hierarchical 
schematic-capture system was needed to facili- 
tate the representation of devices at a number 
of levels. To verify the schematics, we selected 
a mixed-mode logic simulator that had library 
support for most of the off-the-shelf devices 
used in PC-board design. That minimized the 
development time to construct the simulation 
libraries. A complete simulation model of the 
CPU board was also constructed to expedite the 
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design verification process. This model pro- 
vided a "soft" test bed for design changes 
before they were committed to hardware. 
Behavioral models were used to simulate the 
signals from the CPU chip, as well as any device 
attached to the Q22-bus. No attempt was made 
to emulate the VAX instruction set. Instead, the 
goal was to verify the sequences for reads, 

writes, interrupt acknowledgements, and the 
cycle flows for the block and non-block modes 
of the Q22-bus. 

Several CAD packages developed by Digital 
were also employed to  expedite the board 
design process. Figure 6 shows the CAD flow 
process that was assembled. (For more details 
on the CAD tool suite, see reference 3.) 

Figure 6 CAD Tools Used in the CPU Board Development Process 
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Two CAD tools were used to help in the deci- 
sion process for selecting reliable components. 
The CPU board was modeled with the reliabil- 
ity prediction program PREDIC, which is based 
on MIL STD 21 7 .  PREDIC utilizes component 
thermal data from the second tool, the THUDS 
analysis program. Using these tools helped us to 
avoid the creation of hot spots on the board 
layout and the use of low-reliability compo- 
nents. 

These CAD tools were so  successful that the 
CPU board was ready by the time the first-pass 
CPU and FPU chips were ready. It then took 
only two weeks of debug to go from the func- 
tional chips to running the MicroVMS operating 
system. In all, the development of the CPU 
board took less than one year from initial speci- 
fication to operational prototypes. 

Summary 
The CPU board was designed as part of a larger 
project with formidable time constraints. Such 
an environment demanded that the design of 
any one component rely on the proposed speci- 
fications for other, interlocking components, 
rather than on actual pieces of developed hard- 
ware. That environment required a cooperative 
team spirit that was goal oriented and fostered 
the assumption of rational risks. Both inter- 
group and intra-group communication became 
extremely important. The achievement of these 
factors was largely responsible for the success 
of the MicroVAX I1 project. 

Especially important was the fact that com- 
munication was aided by the CAD tool suite 
used to support the overall project. In the case 
of the MicroVAX I1 system, we started from a 
well organized datapath and employed sequen- 
tial machine architectures for controlling it. In 
that way, the design documentation, simula- 
tion, verification, and support were all made 
more manageable. In future projects these tool 
suites will mature and behavioral component 
models will begin to serve as design specifica- 
tions. The ability to solidify the design early in 
a project means that board designers can fash- 
ion silicon systems on boards that are func- 
tional on the first pass. 
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me Evolution of the 
Custom CAD Suite Used 
on the MicroVM N System 

The Micro VAX 11 chips were designed in only 20 months, due in part to 
simulation on GFD systems. Digital has a long history of using CAD. 
Much of the MicroVAX It's CAD suite evolved from tools used on an 
earlier VLSI VAX design. The higher-he1 chip functions were debugged 
using behavioral simulation, aper which the circuits were modeled using 
the reliable SPICE and GRAPES systems. The IV system verified all inter- 
connects and extracted wirelists, while other tools controlled the 
databases and checked design rules. The next generation of GFD tools 
must deal with a threefold increase in chip complexity. 

The factors that must be considered when initi- 
ating and committing to a new VLSI design are 
quite complex. They are related in the follow- 
ing way: 

Market Requirements/Chip Definition 
+ 

Technology Status 
+ 

CAD Status 
+ 

Engineering Talent Available 

Products with long lead-times can accept 
higher risks in the process chosen for chip 
fabrication and CAD technology. However, 
products with short lead-times, such as the 
MicroVAX 78032 chip, can tolerate virtually no 
risk in this domain. 

One way to reduce these risks is to test the 
chip designs by simulating their performance 
before fabrication; another way is to check for 
all possible, known fabrication process viola- 
tions before submitting the mask data for manu- 
facture. CAD systems and tools have been devel- 
oped for this purpose: to discover problems so 
they can be corrected at minimal cost, both in 
time and resources. Digital Equipment Corpora- 
tion was an early user of CAD to decrease the 
time-to-market for its VLSI products. 

The MicroVAX I1 project needed to rely on a 
stable CAD system and set of tools while design- 
ing the 78032 CPU chip (and its companion 
floating point coprocessor, the 78132 FPU 
chip).  Much of the stability of the CAD system 
was derived from work done to develop a mul- 
tichip set for another VAX microprocessor.' We 
were able to both rationalize and simplify the 
results of this pioneering effort to suit the 
needs of the MicroVAX project. Let's begin by 
discussing this earlier CAD system to see how 
its use affected decisions made on the 78032 
and 781 32 projects. 

CAD System f o r  Earlier VLSI VXX 
Design 
In many ways, the design process for the earlier 
VLSI VAX microcomputer set the tone for all 
subsequent VLSI designs at Digital Equipment 
Corporation. This process was characterized by 
the extensive use of simulation, especially high 
level, or behavioral, simulation. The commit- 
ment to high-level simulation was particularly 
innovative at that time. 

Two types of simulation models were used 
for this earlier microcomputer. The first type 
was  des igned  as  a h igh - l eve l  so f tware  
breadboard used to develop and check out the 
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microcode before the chip hardware was availa- 
ble. The second type was developed as a rela- 
tively detailed register transfer level (RTL) 
model of the actual physical partitions and 
design concepts of the chips themselves. This 
model was used directly by the logic and cir- 
cuit designers to develop the switch and cir- 
cuit-level representations of the design. 

One problem with using two models is that 
the output test vectors have to be checked con- 
tinually to ensure compatibility between the 
microcode and chip designs. Thus, although 
each was optimized to a specific task, the mod- 
els proved to be somewhat cumbersome to use. 

The hub, or kernel, of the data management 
system was called c H A S . ~ ~ ~  This proprietary sys- 
tem was developed at Digital's semiconductor 
facility in Hudson, Massachusetts, expressly to 
form the nucleus of an integrated MOS custom- 
design suite. The CHAS system performs the 
necessary data management functions on chip 
design databases and was originally intended to 
control all the design activities of a chip pro- 
ject. The system embodies many of the "struc- 
tured top-down design" principles of Carver 
~ e a d . ~  

The CHAS system manages the data collected 
from circui t  and logic simulations, layout 
designs and syntheses, layout verifications, and 
schematics entry. This central system also pro- 
vides data protection and conversion functions, 
as well as generating simulation wire lists. 

Decisions Derived from the Earlier 
Project 
From the outset, the CPU and FPU design teams 
made a number of important decisions based on  
the experience gained from the earlier project. 
One driving factor in these decisions was the 
short time-to-market, which dictated that sim- 
plifying the design process was a primary goal. 

The first decision was that there would be 
only one behavioral, o r  functional, high- 
level simulation model of the chip rather 
than the two used earlier. Thus the func- 
tional model was more complicated than the 
earlier one, but avoided the very time-con- 
suming task of checking the output test vec- 
tors. Using one model guaranteed that the 
microcode development would be in step 
with the chip design, since both teams had to 
use the same model. 

The next decision was to carefully control 
the evolution of the CAD system that was 
used. Any experimentation with enhance- 
ments to existing CAD tools or with brand- 
new CAD tools would be done only in a con- 
trolled environment. One project engineer, 
trained in software and with CAD experi- 
ence, was to be responsible for re-verifying 
the new functionality and "robustness" of all 
new CAD releases. This approach enabled 
the team to acquire a vastly superior design 
rule checker (DRC), which considerably 
enhanced productivity during the physical 
design phase of the project. 

This approach also differed greatly from that 
of the earlier project, although the lessons 
learned from that  project considerably 
shaped the team's attitudes. For example, the 
earlier project suffered-for a while-from 
attempting to use a first-generation layout 
editor that had too many bugs. (This tool was 
not in fact used on any part of the final 
design.) It also experimented with early ver- 
sions of the CHAS system. These versions did 
not perform as well as desired for some func- 
tions (e.g., the Assembled Block Wirelister). 
In contrast, the  MicroVAX design teams 
decided to perform all layout on the indus- 
try-standard CALMA GDSII layout system, a 
robust and proven tool. 

The third decision involved the data manage- 
ment of the design database. Rather than use 
all  the features of the CHAS system, we 
decided to  manipulate the design data using 
the simpler VMS file-management system 
with its loose but adequate version-control 
mechanisms. The CHAS system was used, but 
in the role of tool integrator, linking, for 
example, the QUICKDRAW schematic editor 
to the SPICE circuit s i m u ~ a t o r . ~  The CHAS 
system also provided a variety of valu- 
able format conversion utilities. 

The final decision was to  use one proven tool 
for interconnection verification. This layout 
extraction/ verification tool, called IV, per- 
formed all the electrical connectivity check- 
ing in a very efficient manner.6 The earlier 
project had used a combination of bought- 
out tools and although that verification was 
very thorough, it was more costly than the 
s ingle- tool  process  (IV) used  o n  t h e  
MicroVAX project. 
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m e  Design Methodology and CAD A number  of very important paradigms 
Tool System should be noted. 

Having made these simplifications, the design 1. The behavioral model of the design was 
team established a fixed definition of their kept current with the logic design of the 
design methodology and CAD tool mapping. chip to guarantee the accuracy of the 
This definition was followed faithfully through- microcode with the  chi^ design. 
out the life of the project. 

Figure 1 shows all the activities in the design 
phase that were supported by CAD tools. The 
middle column lists each activity; the left col- 
umn shows the type of data used in this activity 
and manipulated by the CAD tools which are 
shown in the right-hand column alongside the 
actual activity and data they support/use. 

The arrows indicate iteration paths where 
feedback is sent to a higher level. That is, where 
results are obtained from a checking or verifica- 
tion activity, it may be necessary to go back and 
modify an earlier set of assumptions and design 
decisions. For example, in running the DRC, it 
is highly likely that we will find d'esign rule 
violations that require us to correct the physi- 
cal chip layout. 

The critical hurdle for the functional 
correctness of the design was the correct 
execution of a certain number of VAX 
macroinstructions under an automated 
checking process. (The tool used for this 
process was called AXE, an architectural 
test-case generator and execution tool, 
working in conjunction with the DECSIM 
system, Digital's proprietary multi-level, 
mixed-mode simulation system). The 
minimum number of cases was 100,000 
tests for each VAX instruction group. In 
all, more than 1 million tests were exe- 
cuted before the chip was fabricated. 

3 .  The number of iterations during the lay- 
ou t -des ign  phase  was  min imized .  

DESIGN REPRESENTATION USED DESIGN PHASE CADTOOLUSED 

DECSIM Behavioral Modeling 
Language [BDS] 

Schematrcs 

Switch Level Clrcult Wirelist 

Outout Test Vectors 

Circuit Netlist 

Ch~p Floorplan 

Sized Chip Schernattc/ 
CALMA GDSll 
Stream Format 

CCF [Layout Format] 

CCF [Layout Format] 

CCF [Layout Formal] 

Fairchild Sentry/Tektronix 
Tester Input Format 

CALMA GDSII-E Beam Format 
[MEBES] 

Logic Design Capture 

Log~c Des~gn Verification 

Ver~f~cat~on of Funct~onal Equ~valence 

L Circuit Deslgn Verilication 

t 
Layout Floorplanning 

t 
Ch~p Cell Layoul/ASSembly 

I 
C 

Electrical Connectivity Checking/ 
Parasittc Capacitance Extraction 
lor Cells , 

f 
Des~gn Rule Checking for Cells 

C 
Electr~cal Connect~vily Checklngl 

Sub Chips and Full Chip 

t 
Test Vector Preparation 

Parasit~c Capacitance Extractron for 

I 
Mask Data ~ r e p a r a t ~ o n d  

[output pattern compar~son] 

SPICE-GRAPES 

CALMA GDSll 

CALMA GDSll 

DRC 

IVjXREF 

Ad hoc Project Tools Plus DECSIM 

MDP 

Figure 1 ( X D  Tools Used in the Design Phase 
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Changes during this phase are very 
expensive and the number was kept 
small by having the design team submit 
only sized schematics (i .e. ,  ones with 
transistor width and length specifica- 
tions that were verified using the logic 
and circuit simulators) to the layout 
design team. 

4 .  The mask data was not submitted to the 
mask shop (or even generated) until all 
sections on the whole chip were free of 
design-rule and electrical-connectivity 
errors. 

Zbe Value of the NMOS CAD Suite on 
tbe MicroVAX 11 Project 
Figure 2 illustrates the entire CAD suite used on 
the 78032 and 781 32 chip designs. 

Use of the CHAS System 
As mentioned earlier, the final use of the CHAS 
system was pared down considerably by the 

New Products  

I1 
MicroVAX project as compared with its use in 
the earlier project. The functions used most fre- 
quently were 

Schematic wirelisting 

Layout format conversion 

Copying files out of the CHAS database 

Plotting 

Invoking the SPICE circuit simulator and the 
GRAPES graphical post-processor 

Behavioral Modeling and Simulation 
A simulation system called DECSIM was used to 
simulate the behavioral definition of the chip 

The DECSIM system works interac- 
tively and was used to debug the high-level 
functional design. This system is very reliable 
and proved to be a vital ingredient in achieving 
the high degree of accuracy of the microcode. 

ROM/PLA PLA 
LAYOUT ENTRY LAYOUT ASSEMBLY LAYOUT OPTIMIZATION 

CALMA 

DESIGN RULE CHECKING 
DATA MANAGEMENT 
DATA PROTECTION 
DATA CONVERSIONS 
WIRELISTING 

SCHEMATICS EDITOR 

LOGIC SIMULATION 

Figure 2 CAD Suite Used on  the Micro VAX II VLSI Design 
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Schematic Capture 
A drawing system called QUICKDRAW was used 
as a schematic editor. QUICKDRAW'S greatest 
assets were its architectural simplicity, reliabil- 
ity, and ease of use. The system permitted sche- 
matic entry on low-performance graphics ter- 
minals (VT125s). Of course, keyboard entry is 
not always totally practical for bulk schematics 
entry,  o r  even good for small schematic  
changes. However, QUICKDRAW could be  
accessed from any terminal, was easy to learn in 
a few hours, and could be used by the whole 
chip team. 

Logic Simulation 
As in the earlier project, the MicroVAX team 
decided that they needed the accuracy of 
switch-level logic simulation. At this level of 
representation, the  transistors are  literally 
treated as "switches," but with resistance and 
capacitance attributes. The models can also 
represent both bidirectionality and charge shar- 
ing. At the time, the MOS (switch-level) capa- 
bility of the DECSIM software was still matur- 
ing; therefore, the team decided to  use a 
switch-level simulator called RSIM, developed 
at the Massachusetts Institute of Technology. 
RSIM was sufficiently accurate to enable the 
complete design to be simulated at this level, 
although its timing aspects could not be used. 
RSIM's usage, therefore, resembled that of a 
logic simulation system. The prime role of this 
stage of the process was to prove equivalence 
with the higher-level behavioral model, thus 
gaining functional completeness at a lower, 
more accurate level of representation. That 
equivalence was achieved by supplying the 
same test vectors used in the behavioral phase 
to  the RSIM runs. 

Circuit Simulation 
An industry-standard system, SPICE, was used 
for circuit simulation. SPICE was the most accu- 
rate mechanism of its kind available for simulat- 
ing the electrical performance of circuits on 
the chips. This simulator was used extensively 
for circuits containing up  to 1000 transistors. 
There were two major advantages of Digital's 
version of the SPICE system. 

1.  The device models encoded into SPICE 
were a very accurate representation of 
the devices made in Digital's NMOS pro- 
cess. The device equations built into 

these models were derived in two ways: 
first, by extracting the operating charac- 
t e r i s t i c s  o f  NMOS d e v i c e s  f r o m  
fabricated test chips; and second, from 
the results of experiments performed by 
another team at Digital. That team cre- 
ated models for devices and processes by 
using a battery of sophisticated simula- 
tors, such as MINIMOS, SUPREM, and 
SEDAN. 

2. Throughout the pre- and post-processing 
stages, all voltage values over time from 
a SPICE run could be saved and later 
graphically analyzed by the designers in 
a proprietary graphical post-processing 
system called GRAPES. Using this system 
avoided having to make multiple runs of 
SPICE and permitted much easier inter- 
pretat ion of t he  ou tpu t  waveforms. 
Figure 3 is a sample circuit simulation 
waveform from the GRAPES system. 

Interconnect Verification and 
Wirelist Extraction 
The IV system, partially proven on previous 
chip design projects, was a major boon to this 
design team. The system performed several 
functions. 

1.  It extracted a wirelist (in SPICE format) 
from the actual layout database. 

2 .  It calculated the parasitic capacitances 
for devices and nodes and fed those into 
the extracted wirelist. That automatic 
input permitted the final simulations in 
SPICE to be very accurate. 

3. It detected any open and short circuits in 
the electrical network of the wirelist. 

4 .  It compared the extracted wirelist with 
the original wirelist (created via the 
schematics editor, QUICKDRAW) and 
reported any mismatches in signal o r  
node names, device sizes, and other ele- 
ments. 

This verification and extraction tool per- 
formed all these functions much faster and 
more accurately than any of the connectivity 
checkers or extractors that were available com- 
mercially. The IV system is generally recog- 
nized as one of the best in the industry for this 
purpose. 
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Figure 3 Sample Output from the GRAPES System 

The system has some unique data structures 
and algorithms. 

1. It simplifies circuit extraction by con- 
verting all shapes into trapezoids. These 
are very convenient representations that 
permit IV to thoroughly analyze lateral- 
node and vertical-device connections. 

2 .  It calculates the parasitic capacitances 
for both area and periphery, taking into 
account cell-capacitance effects coming 
from ever-shrinking device geometries. 
The system also calculates coupling 
ca~aci tances.  

on non-prime shifts. Then the team activated 
AXE on those systems, which generated a tre- 
mendous number of test cases. This same 
approach was used (and continues to be used 
today on subsequent projects) for running CPU- 
intensive SPICE circuit simulations on many 
processors in remote locations. 

VLSI CAD B e y o n d  the MicroVAX 11 
Project 
Digital's use of the NMOS VLSI CAD suite 
reached a peak of maturity with the 78032 and 
78132 projects. We have been able to make a 

3-  ~t performs very fast wirelist compari- major ~rocess- technolog~ step to CMOS' with 

sons (layout to logical), using a unique little cost by exploiting the same basic set of 

graph-isomorphism algorithm that iso- tools. That has enabled us to develop a whole 

lates errors rather than propagating new set of VLSI chip products in very quick 

them. succession. 
However, following Moore's Law, it is time to 

System Verzyication face the  challenge of a two- to threefold 
The final system-level verification of the  
MicroVAX chips was performed using the AXE 
test-case generator in conjunction with the 
DECSIM behavioral models. In this way, test 
cases (which were in fact VAX macroinstruc- 
tions generated by AXE) were passed to the sim- 
ulation model for execution. The execution 
results were then compared automatically with 
those obtained from running the same test cases 
on an operational VAX system. The MicroVAX 
team used AXE in a particularly novel way. Via 
Digital's Ethernet network, they searched for in- 
house VAX-11/780 systems with spare capacity 

increase in complexity for the next generation 
of chip designs. This complexity means that 
design teams for new custom chips must be 
able to design parts with twice the transistor 
count as the 78032,  yet take the same or less 
time to do i t .  Figure 4 illustrates the complex- 
ity that will be experienced in future chip 
design projects. 

Major productivity improvements in CAD sys- 
tems must be made to accomplish this doubling 
of the transistor count .  Digital's VLSI CAD 
Group is now making the following improve- 
ments in its custom tool suite: 
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Figure 4 Chip Complexity Projections 

A new system for tool integration and data 
base management, called KATIE, is being 
developed to replace the CHAS system. The 
KATIE system has a simpler, more modular 
CAD kernel than has the CHAS system, but 
with much higher performance. 

The DECSIM software is being improved to 
provide true mixed-mode modeling and sim- 
ulation (behavioral-gate-switch) . Initial 
results indicate a doubling of simulation pro- 
ductivity, and our aim is to gain equivalent 
performance in the separate switch and 
behavioral areas. 

A variety of techniques is now providing up  
to ten times the performance of the tradi- 
tional SPICE system for circuit simulation. 
For example: 

1. An event-driven circuit simulation sys- 
tem called SAM SON,^ which exploits the 
temporal sparseness of digital networks, 
has been developed. SAMSON offers from 
five to  fifty times the performance of 
SPICE for direct current and transient 
analyses. 

2 .  SPICE can be made to run much faster on 
vector processors and multiprocessors. 

3 .  A timing verification system called TV 
can analyze critical paths at the rate of 
1000 transistors per  minute of CPU 

time.'' T V  performs within fifteen per- 
cent of the accuracy of SPICE, but its 
speed is several orders of magnitude 
faster. 

Schematic entry can be improved by running 
QUICKDRAW on high-performance, high- 
resolution graphics workstations. The system 
will support multiwindowing, menus, and 
pointing devices, as well as provide high- 
performance wirelisting, with at least a 
doubling of speed over the version used on 
the 78032 chip design. 

High-resolution, VAX-based graphics work- 
stations will also be used for custom layout 
editing, using the in-house developed editor, 
MEGAN. 

Summary and Conclusions 
The MicroVAX I1 project demonstrated a num- 
ber of valuable Lessons about CAD in general 
and VLSI CAD in particular. 

1. The second and subsequent projects that 
use a particular CAD technology benefit 
enormously from the experience gained 
during the first use. 

2 .  As a corollary to the point above, it is 
imperative that CAD tools and systems be 
built to endure at least two generations 
of projects. Otherwise, the cost and diffi- 
culties of using these tools will far out- 
weigh the benefits. 

3. The CAD teams should use the period of 
stability during these later uses of the 
tools to develop the next generation of 
more powerful tools. 

4 .  Much conservatism exists in  the IC 
industry around the need to  archive com- 
plete images of all tools (layered prod- 
ucts, operating systems, etc.) used in the 
design of an IC, along with its final mask 
database. Future ch ip  teams plan to  
migrate their mask databases to contem- 
porary CAD systems. This process will 
use the same exhaustive checks and tools 
used on the original design to ensure that 
the conversion is thorough. In this way, 
there will be no need to revert to old 
copies of outdated systems and tools 
when making engineering change orders 
late in the product's life cycle. 
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5.  The close coupling between chip design 
teams and CAD developers is an invalua- 
ble ingredient in the successful comple- 
tion of chip projects. 

References 
1. W.N. Johnson, "A VLSI Superminicom- 

puter CPU," IEEE International Solid- 
State Circuits Conference Digest of 
Technical Papers (1984): 174-175. 

2. J.C. Mudge, C. Peters, and G.M. Tarolli, 
"A VLSI Chip Assembler," in Design 
Methodologies for VLSI Circuits, ed.  
P.G. Jespers (Rockville: Sijthoff and 
Noordhoff, 1982), 329-356. 

3 .  A.F. Hutchings, R.J. Bonneau, and W.M. 
Fisher, "Integrated VLSI CAD Systems At 
Digital Equipment Corporation," Pro- 
ceedings of the 22nd ACM/IEEE Design 
Automation Conference (1985) : 543- 
548. 

4 .  C. Mead and L. Conway, Introduction To 
VLSI Systems (Reading: Addison-Wesley, 
1980). 

5. SPICE was developed by Lawrence Nagel 
and Ellis Cohen of the Department of 
Electrical Engineering and Computer Sci- 
ences, University of California, Berkeley. 

6 .  W.J. Herman and G.M. Tarolli, "Hierar- 
chical Circuit Extraction With Detailed 
Parasitic Capacitance," ACM IEEE 20th 
Design Automation Conference Pro- 
ceedings (1983): 337-345. 

7. M.A. Kearney, "DECSIM: A Multi-level 
Simulation System For Digital Design," 
Proceedings of the ICCD Conference o n  
Computer Design ( 1  984): 206-209. 

8. R.R. Rezac and L.T. Smith, "Methodology 
for and Results from the Use of a Hard- 
ware Logic Simulation Engine," Proceed- 
ings of the ICCD Conference on Com- 
puter Design (1984): 457-461. 

9.  K.A. Sakallah and S.W. Director, "SAM- 
SON: An Event Driven VLSI Circuit Simu- 
lator," Proceedings of the Custom Inte- 
grated Circuits Conference (1 984)  : 
226-23 1 .  

New Products 

10.  N.P. Jouppi, "TV: An NMOS Timing Veri- 
f ier ,"  (Thesis,  Stanford University, 
1982). 

Other References 
Panel Discussion, R.J. Camoin, Moder- 

ator, "Central DA and its Role: An Execu- 
tive View," ACM IEEE 20th Design 
Automation Conference Proceedings 
(1983): 3-1 1 .  

R.H. Katz, "Managing the Chip Design 
Database," IEEE Computer, vol. 16, no. 
12  (December 1983): 26-35. 

W.M. vanc l eempu t  and H.  Ofek,  
"Design Automation for Systems," IEEE 
Computer, vol. 17 ,  no. 10  (October 
1984): 114-122. 

J.C. Foster, "A Unified CAD System for 
Electronic Design," ACM IEEE 21st 
Design Automation Conference Pro- 
ceedings (1984): 365-369. 

K. Sherhart, M. Vershel, and J. Owen, 
"The Engineering Design Environment," 
ACM IEEE 21st Design Automation 
Conference Proceedings (1 984) : 466- 
472. 

B.W. Lampson, "Hints for Computer 
System Design," IEEE Software, vol. 1 ,  
no. 1 (January 1984): 11-28. 

Digital Technical Journal 
No. 2 March 1986 



Rick Spitz 
Peter George 

Stephen Zalewski I 

f i e  Making of a 
Micro VAX Workstation 

Developing a MicroVYX workstation required that graphics hardware 
and s o p a r e  be designed. Tbe project team kept the bardware simple by 
using VAX instructions for most of the work. Extensive graphics s o p a r e  
bridges the hardware and the graphics applications. The graphics and 
windowing software, UIS, is the key to that process. UIS supports trans- 
parent multitasking with a distributed method for managing regions on 
the screen. A video device driver manages lists of region descriptors, 
keeping track of keyboard and mouse changes. Tbe UIS system normally 
executes in user mode, thus minimizing overhead and utilizing the full 
performance of the VMS system. 

When Digital decided to develop the MicroVAX 
series, we also began to consider how to build 
them into a family of low-cost VAX engineering 
workstations. Experience with the VAXstation 
100 provided us with a great deal of knowledge 
related to workstation requirements. However, 
its architecture required extensive graphics 
hardware. This architectural approach was not 
considered viable for a low-cost, high-volume 
engineering workstation intended for a single 
user. Another approach placing greater empha- 
sis on software was illustrated by Xerox's Star 
workstations, which were in use within Digital. 

We decided that combining the MicroVAX 
processor with a low-cost graphics controller, 
the VMS operating system, and a good human 
interface would result in a powerful worksta- 
t ion .  The  VAX/VMS environment  already 
allowed any VMS application program to run on 
every member of the VAX family. The MicroVAX 
system would extend the family to  include 
lower-cost VAX systems. A MicroVAX worksta- 
tion, in addition to running all existing VMS 
software, would now provide a base for graph- 
ics applications. 

In the spring of 1983, a joint task force of 
hardware and software engineers was formed to  
determine how this workstation should be 
built. Our strategy was to design a product 
based on the MicroVAX I system and evolve i t  to 

a mature workstation using the MicroVAX I1 
system. 

The task force's objective was to set the over- 
all goals of the project and to make sure that the 
graphics hardware and software were well inte- 
grated. Guided by a strong focus on time to 
market, the workstation hardware group had 
the responsibiIity of building an initial graphics 
controller. They were also chartered to initiate 
design work on future hardware graphics con- 
trollers with more features and higher perform- 
ance. The VMS software group took on the role 
of developing the software components. This 
paper is written by members of the VMS DeveI- 
opment Group; therefore, its primary emphasis 
is on the software aspects of this project. 

Our first task was to make sure that the graph- 
ics hardware being defined was suitable for effi- 
cient use by the software. Having limited expe- 
rience with low-cost graphics controllers and 
workstations, we proposed a strategy of using a 
very basic Q-bus controller and doing most of 
the work with VAX instructions. This approach 
was viable because the VAX instruction set is 
rich and versatile in the area of character and 
bit manipulation. I t  also minimized the risk in 
developing hardware and provided maximum 
flexibility for the graphics capabilities. With 
greater freedom in the software design, w e  
could gain experience and provide better direc- 
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tion for hardware features needed in future 
graphics controllers. 

Since no MicroVAX CPU had yet been devel- 
oped, we built a breadboard hardware configur- 
ation to do hardware and software evaluations. 
MicroVAX systems execute a subset of the full 
VAX instruction set in hardware; however, 
software emulation of the other instructions 
allows all VAX software to run transparently. 
For cost and space reasons, MicroVAX systems 
were targeted to use the Q-bus for I/O, while 
most existing VAX systems used the UNIBUS for 
most peripherals. 

The breadboard configuration consisted of a 
VAX-11/750 system with a UNIBUS-to-Q-bus 
adapter. We obtained some experimental Q-bus 
graphics controllers used in the deve.lopment 
of the graphics interface for the PRO350 hard- 
ware. Using this configuration, we  evaluated 
the performance of text and graphics by imple- 
menting a number of software algorithms.' This 
technique treated display memory as standard 
VAX program memory, and VAX character and 
bit instructions were used to generate text and 
graphics. Evaluation of our results showed that 
this approach was reasonable and the basic per- 
formance was acceptable;  however, some 
assists were still needed in hardware. 

The VCBOI Hardware Graphics 
Controller 
Taking our results back to the the joint task 
force, we settled, after several iterations, on a 
hardware design. The hardware graphics con- 
troller was named the VCBO 1 ,  known internally 
as the Q-bus video subsystem, or QVSS. Due to 
space and power constraints in MicroVAX pack- 

ages, the controller had to fit on a single-quad 
Q-bus module. It contained 256K of bitmap 
memory that was fully addressable by any VAX 
instruction. That amount of memory was more 
than was needed to fill a full-screen video mon- 
itor. The extra memory would allow software 
graphics rout ines to  operate  direct ly on  
occluded areas of windows in the video display 
memory. 

Based on inputs from the software evaluation, 
the hardware would also contain a scan-line 
map to allow mapping any scan line in display 
memory onto the physical screen. This tech- 
nique allows much better scrolling perform- 
ance, facilitates the management of occluded 
window areas, and allows the simultaneous 
suppor t  of different windowing systems. 
A 1 6  x 16-pixel cursor plane, a separate hard- 
ware  componen t ,  great ly s impl i f ied  t he  
software logic required to manage the mouse 
cursor. The pattern is programmable to allow 
dynamic changes to the cursor pattern, depend- 
ing on its screen location and the state of the 
workstation. In addition, a mouse interface and 
dual UART are provided to connect to a mouse, 
a keyboard and an optional tablet. The inherent 
simplicity of the hardware allowed the hard- 
ware team to produce the first prototype by the 
early summer of 1983. 

Figure 1 shows a block diagram of the VCBO1 
configuration. 

Soware Architecture 
The software team was chartered to develop a 
general software workstation architecture. Our 
goal was to allow the evolution of future 
MicroVAX workstations that would address 
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cost-sensitive markets with basic, inexpensive 
hardware. We also wanted to improve perform- 
ance and take advantage of features to be pro- 
vided by more-intelligent hardware graphics 
controllers in the future. 

Our performance evaluation of the VAXsta- 
tion 100 architecture pointed out that the cen- 
tral dispatcher needed to manage the window- 
ing activities on the physical screen was a real 
bottleneck. Therefore, we  elected to pursue an 
approach that used a distributed method to 
manage regions on the physical screen. In most 
cases this approach would allow an individual 
job, called a process in the VMS system, to oper- 
ate directly on bitmap memory. 'There is much 
less overhead than context switching between 
processes, as required in a centralized screen- 
manager design. 

The software architecture that we defined 
was implemented by a loadable set of VMS sys- 
tem services know as the User Interface Ser- 
vices, or UIS.' UIS provides fundamental graph- 
ics services and display list capabilit ies.  
Application programs, high-level graphics 
packages, and VMS's VTlOO and TEK4014 emu- 
lation drivers all utilize UIS to construct indi- 
vidual windows, as well as for text and graphics 
f ~ n c t i o n s . ~  A VCBOl device driver is used to 
manage the physical hardware.' The driver is 
responsible for controlling the keyboard, the 
mouse (pointer), and the scan-line map. 

VCBO I Video Device Driver 
The video device-driver software has one pri- 
mary funct ion:  t o  manage lists of region 
descriptors. In particular, it keeps three main 
lists; one each for keyboard input, button tran- 
sitions, and pointer (mouse) movement. 

To be notified about a particular event, an 
application program posts a request to the 
driver. The request specifies the type of event 
desired and the region on the screen. The driver 
then places this request on the appropriate list. 
For example, if pointer movement requests are 
active and mouse movement occurs, the driver 
will search the list for the entry that has speci- 
fied a region that the pointer is currently 
within. The driver then notifies the application 
that was the last one to specify this area. The 
notification mechanism used is a software inter- 
rupt, known in the VMS system as an asynchro- 
nous system trap. This trap interrupts the flow 
of the specified user process and invokes a user- 

defined action routine. This technique provides 
a low-cost,  responsive notification to the 
application. 

The keyboard is connected to the device 
driver by a dual UART on the video controller. A 
hardware interrupt is delivered to the driver 
each time a key is pressed. The driver then 
searches the keyboard list and delivers the char- 
acter to the process associated with the top 
entry on the list. All keys are "soft," which 
means that any key on the main keypad can be 
defined as any of the possible ASCII character 
codes.  It is also possible to define rnul- 
ticharacter sequences for a given key. The sec- 
ond half of the dual UART is used to support a 
bit tablet or a serial mouse. These devices need 
to send several bytes of data for each pointer or 
button transition. The driver buffers this data 
until it receives enough to decode an event. 
Then it searches the appropriate event list and, 
if necessary, delivers a software interrupt to the 
application. 

The driver supports the capability to specify 
cursor patterns for a region. When cursor move- 
ment is detected, the driver searches a list to 
determine what the cursor pattern should be 
for the current location of the pointing device. 
Once located, the pattern is loaded into the 
hardware. The video controller hardware then 
superimposes the pattern onto the appropriate 
screen area by merging the pattern with the 
video signal from the bitmap memory. This pro- 
cedure eliminates the need for a save-and- 
restore operation in the physical bitmap each 
time the cursor moves or a write to bitmap 
memory occurs. The hardware also has the abil- 
ity to specify two logical operations, NAND and 
XOR, on the cursor pattern. This ability pre- 
vents a white cursor from being lost on a white 
screen, or a black cursor on a black screen. The 
driver tests the physical bitmap location that is 
overlaid by the cursor to determine which logi- 
cal operation should be used to maximize the 
cursor's visibility. 

A propor t iona l -acce lera t ion  movement  
algorithm is used to minimize the desktop area 
required for a mouse pointer. The driver accel- 
erates the cursor's movement if the mouse's 
rate of movement exceeds any of a series of 
thresholds in a given screen refresh interval. If 
no acceleration were to occur, it would take a 
desktop space of approximately 13  by 11  
inches to move the mouse both horizontally 
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and vertically respectively across the screen. 
With acceleration, a mouse movement of only 2 
inches is needed to move across. The accelera- 
tion values used are as follows: 1 to 2 pixels of 
linear mouse movement per screen refresh 
interval, no acceleration needed; 3 to 4 pixels, 
accelerate by a factor of 2; 5 to 8 pixels, accel- 
erate by a factor of 4 ;  greater than 8 pixels, 
accelerate by a factor of 6 .  

The driver provides an optional console win- 
dow to allow system-level debugging. The 
MicroVAX CPU can communicate directly with 
the video controller during booting and debug- 
ging. If this feature is enabled, the top 240 scan 
lines of video memory will be allocated for the 
console window. When the CPU wants to com- 
municate with the console, the VMS console 
driver will map directly to those 240 scan lines. 
Thus, the console driver emulates a "dumb" 
terminal in this region. When a function key is 
pressed on the keyboard, the video driver will 
map this special console memory onto the top 
240 entries of the physical scan-line map, and 
the operator console will appear. When the key 
toggles again, the top 240 entries of the scan- 
line map will be restored. 

UIS Graphics and Windowing 
Software 
The decision to use simple hardware meant that 
software had to be developed to bridge the gap 
between that hardware and the applications. 
This software was of critical importance 
because the hardware designers assumed that a 
software layer would be needed to support 
even the most basic graphics functions. 

Early in the design process, we decided that 
this software would provide more than just 
basic 1/0 support through the video controller. 
Like the VMS operating system it was built on,  
the workstation graphics and windowing 
software, UIS, would support transparent mul- 
titasking. That meant being able to handle 
simultaneous demands by multiple indepen- 
dent applications on the shared VCBOl hard- 
ware resources. Therefore, UIS should be 
designed to provide two capabilities. First, it 
should have a library of general-purpose proce- 
dures that applications could use to easily 
access the hardware resources. Second, UIS 
should contain transparent management and 
synchronization mechanisms. In that way, 
independent applications could share both 

screen space and the use of the system's input 
devices. This design would also allow the 
development of UIS application programs on 
any VAX system, whether it was a workstation 
or not. 

For the initial release of the MicroVMS work- 
station on the VAXstation I,  these objectives 
were broken down into the following specific 
design goals: 

Provide routines for creating and manipulat- 
ing viewports on the video display. 

Support multiple overlapping viewports and 
manage viewport occlusion transparently for 
applications. 

Allow simultaneous graphics operations into 
all viewports. 

Provide a user  interface for  viewport  
manipulations. 

Provide rout ines for creat ing graphics  
objects. 

Provide display-list backup for graphics 
operations so that applications can easily 
perform operations like "pan" and "zoom." 

Support shared access to the mouse and key- 
board and provide routines to notify applica- 
tions of input events occurring on these 
devices. 

The following sections describe the architec- 
ture of UIS and the mechanisms that were used 
to realize these goals. Figure 2 is a block dia- 
gram showing the functions of UIS. 

Virtual Displays 
The fundamental presentation object manipu- 
lated by applications to construct images is the 
virtual display. All UIS output functions are per- 
formed within a virtual display. 

The coordinate system of a virtual display is 
defined in "world coordinates." The world- 
coordinate system uses the coordinate system of 
an application as a means of expressing display 
locations. For example, an application that 
draws a graph showing population growth 
versus time may find i t  convenient to use 
"Time" and "Number of People" as x and y 
coordinates. The range of world-coordinate val- 
ues is specified to the graphics subsystem when 
the virtual display is created. The coordinates 
are specified as signed F-floating VAX data types 
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for reasons of precision and ease of calculation 
in high-level languages. 

A display list is an encoding of the exact con- 
tents of a virtual display, independent of the 
device. Display lists are maintained and used by 

A 

UIS to achieve the following short- and long- 
term goals: 

Allow the automatic management of pan- 
ning, zooming, resizing, and duplicating dis- 
play windows 

Allow high-resolution printing of virtual 
displays 

Allow the structuring and manipulation of 
virtual-display objects 

Allow an application to select an arbitrary 
output from a virtual display, give it to an 
"intelligent" cooperating application, or 
simply store it in a file as generic encoding, 
and then later replay the generic encoding 
into a new virtual display 

Display lists consist of the following basic 
objects: 

Output primitives 

Attribute primitives 

Structural primitives 

Output primitives map directly onto the UIS 
output operations (e.g., plot some lines, write a 
text, draw a circle) and the modifications that 
they make to a virtual display. 

Attribute primitives change the current value 
of an attribute in an attribute block in order to 
affect subsequent output primitives. Attribute 
blocks are used by UIS to specify a set of attri- 
bute values for all UIS graphics objects (lines, 
text, circles). Typical attributes include the 
writing mode (replace, complement, erase), 
line style (solid, dashed), and font to use when 
writing text. 

There may be up  to 256 attribute blocks 
addressable a t  one  t ime.  Attribute block 
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numbers are used and assigned only by the 
application, except for attribute block 0. This 
block is a special one that cannot be modified. 
It provides a set of attributes used as a standard 
default for text and graphics. Block 0 also pro- 
vides a template for creating alternate attribute 
blocks. 

Structural primitives allow the hierarchical 
grouping of attribute and output primitives into 
graphical begin and end blocks, called seg- 
ments. Segments allow applications to have 
access to many more than 256 attribute blocks. 
While segments inherit current attribute blocks 
from higher-level segments, modifications to 
attribute blocks from within a segment cause 
local copies of the modified attribute blocks to 
be created. For example, if a particular attri- 
bute block is referenced within a segment, then 
that segment is first searched for the block. If 
the block isn't found, the search is made in 
successive outer segments. 

The coordinate system, called normalized 
coordinates, is used both within the display list 
and when creating generic encoding. Normal- 
ized coordinates are used to defer the mapping 
of a set of world coordinates to specific device 
coordinates until the actual output device is 
known. As described in the following section, 
this mapping to the physical device does not 
occur until a display viewport is created. This 
delay is important since output devices have 
different resolutions. For example, printers typ- 
ically have much higher resolutions than video 
monitors. 

Since floating point calculations are typically 
slower than integer ones, normalized coordi- 
na t e s  a r e  e x p r e s s e d  in  u n i t s  c a l l e d  
"Gutenbergs," which are stored as 32-bit inte- 
gers. A Gutenberg, the same unit used in UIS 
font definitions, is defined to be 1/7200 inch 
(.01 points). Their use as normalized coordi- 
nates is well suited because they minimize the 
number of coordinate transformations that must 
be performed when writing text. Gutenbergs 
have the desirable characteristics of being both 
reasonably small-and therefore amenable to 
good graphics resolution-and very efficient for 
text operations. 

The conversion between world and normal- 
ized coordinates is based on the desired physi- 
cal size and world-coordinate size of the virtual 
display as specified by the application. When a 
virtual display is created, the application 

expresses the desired size of the virtual display 
in both physical and virtual units. That estab- 
lishes the relationship between the physical 
size of the fonts and the arbitrary size of a vir- 
tual display's world-coordinate system. 

Displa-y Windows and Viewports 
A display window is the object used by applica- 
tions to control how much of a virtual display is 
available for viewing by the user. This control 
is accomplished by defining a rectangle speci- 
fying the viewable portion of the virtual 
display. 

A display viewport is the area of the physical 
screen into which a display window is mapped. 
Display viewports vary in size and may be 
placed anywhere in the physical screen area. 
Display viewports always occlude when they 
overlap.  The  order  of occlusion usually 
depends on the order in which the display 
viewports were created. However, the order 
may be altered by the user through the UIS user 
interface or  by applications using the UIS 
windowing services. 

A display window is created, mapped, and 
automatically scaled t o  a display viewport 
when the application makes a single, routine 
call to UIS. Note that at the time of the call, the 
output of the UIS application is directed to a 
specific physical output device, usually the 
screen. Scaling can be avoided if the applica- 
tion directs UIS to use the physical size sup- 
plied by the application when the virtual dis- 
play was created. That allows text and graphics 
to appear in exactly the size and aspect ratio 
that an application considers ideal. 

The amount  and size of the image that 
appears in a display viewport can be controlled 
by altering the size and position of the display 
window or the size of the display viewport. The 
image can be managed by either the applica- 
tion, through UIS, or the user, through the user- 
interface functions. The following rules govern 
the image: 

To magnify the image, either the size of the 
window is decreased without altering the 
viewport, o r  the size of the viewport is 
increased without altering the window. 

To reduce the image, either the size of the 
window is increased without altering the 
viewport, or the size of the viewport is 
decreased without altering the window. 
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To change the amount of the virtual display can be received in either of two forms. First, 
being viewed without scaling, both the win- applications can specify that they be delivered 
dow and the viewport size are expanded or  a software interrupt whenever keyboard input 
contracted by the same amount. occurs. Second, they can periodically poll the 

To pan the image, the window around the 
virtual display is moved without altering the 
viewport size or  location. 

Figure 3 illustrates the mapping that takes 
place when going directly from a virtual display 
to  a physical display. The left column shows the 
transformations between the coordinate spaces. 
The two columns on the right show the way the 
virtual display is scaled to  the final output 
device. 

Virtual Keyboards 
Applications use a concept called virtual key- 
boards to share and individually manipulate the 
physical workstation keyboard. Virtual key- 
boards allow an application to get input from 
the physical keyboard and to modify its charac- 
teristics, both in a synchronized manner. Input 
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virtual keyboard to  see if new input  has 
occurred. Certain characteristics can be man- 
aged for each virtual keyboard, such as keyclick 
volumes and keyboard key mappings. 

The connection between the physical key- 
board and the various virtual keyboards availa- 
ble on the workstation is generally managed by 
the user. An application could force the physi- 
cal keyboard to  be bound to a virtual keyboard. 
Typically, however, the application will associ- 
ate the keyboard with some display viewport 
and allow the user to  manage that connection 
through the user interface. 

Mouse Input 
Applications can both solicit and manage input 
from a mouse with respect to  rectangles within 
display viewports. To d o  that, an application 
must specify a world-coordinate rectangle and 
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Figure 3 Mapping from Virtual-to-Physical Displa-y 
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the display viewport to which the rectangle 
applies. The application then directs the UIS to 

Change the cursor pattern or position when 
the cursor moves within the rectangle 

Send a software interrupt whenever the cur- 
sor moves within or out of the rectangle 

Send a software interrupt whenever a mouse 
button is depressed or released within the 
rectangle 

Applications can also check the current 
mouse position or button state at any time. 

Implementation Details 
UIS was designed with two primary implemen- 
tation goals in mind. Of course, the first goal 
was to implement the architecture described in 
the previous sections. Just as important was the 
belief that the cost of using UIS had to be as 
small as possible. The overhead associated with 
a routine call had to be minimized, and the 
algorithms and architecture employed by UIS 
had to be as efficient as possible. UIS also had 
to be fast because the simple graphics hardware 
relied upon UIS software to take the place of 
sophisticated graphics hardware. To meet these 
goals, the software team made some basic 
design decisions right at the start. The effect of 
these decisions on how the design operates are 
discussed in the following section. 

UIS operates in the caller's mode (usually 
user mode) because the cost involved in chang- 
ing to kernel mode would be prohibitive. 
Because UIS operates in user mode, all data 
structures used by UIS are given user-write pro- 
tect ion.  This design decision means that 
timesharing use of the graphics package is pos- 
sible, but without any security considerations. 

Most of the UIS code resides in system space, 
and UIS routines exist as system services within 
the VMS operating system. That gives UIS all the 
desirable performance characteristics of oper- 
ating system code (i.e., minimal image activa- 
tion cost, maximum shareability, separately 
managed paging, etc.) . 

Fonts are stored in files and treated as system 
resources. Since several applications are likely 
to use the same fonts at the same time, UIS font 
management was designed to optimize font 
sharing. Fonts currently in use are kept in a font 
pool in system memory. Upon beginning a text- 
drawing operation, a process accesses the sys- 
tem font pool to find the required font. If not 
found in the pool, a font can be loaded into the 

font pool by searching the disk for the proper 
font file and then reading it into system mem- 
ory. Similarly, fonts can be removed from the 
font pool because they can always be retrieved 
from disk. 

Each virtual display is managed by only one 
process. That synchronizes the access to virtual 
displays and display lists and minimizes the 
effect that graphics applications have on each 
other. If a second process wants to manipulate 
the virtual display of another process, then the 
applications running in the two processes must 
communicate. The process that created the vir- 
tual display must then make modifications to i t .  
This concept is enforced by the fact that the 
contexts for all virtual displays reside in pro- 
cess address space. 

Data structures for display viewports, on the 
other hand, are kept in system space. That 
allows a process to change the topology of the 
viewports on the video display. For example, a 
viewport bound to a display window that it 
owns can be "popped" without having to 
notify every other process of the necessary 
screen changes. The storage for viewport data 
structures is allocated from paged pool. How- 
ever, the storage protection must be changed to  
user write to allow access by the process-based 
graphics routines. 

Access to those data structures by UIS rou- 
tines is synchronized using the VMS lock man- 
ager. Multiple processes are granted shared 
read/write access to the physical display as 
long as they are simply reading from or writing 
to their own viewports. If a process needs to 
change the relationships between the display 
viewports on the screen (e.g., create a new 
viewport or pop an existing viewport), it must 
request exclusive read/write access to the phys- 
ical display. Thus, no synchronization overhead 
is incurred in the steady state. 

Figure 4 depicts the basic use of storage by 
UIS. 

As shown in Figure 4 ,  UIS software is organ- 
ized into five basic parts. 

The first piece of UIS that appli'cations 
encounter is the UIS shareable image. UIS rou- 
tines are accessed by applications through 
transfer vectors in a VMS-protected shareable 
image. That allows UIS code to increase in size 
and to change location within the operating sys- 
tem without affecting the applications that use 
the code. Also, UIS application development 
can occur on machines where UIS has not been 
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installed. The UIS shareable image can be used 
to resolve UIS references at link and image acti- 
vation time, even if the UIS system services are 
not present on the system. Finally, because the 
shareable image is protected, UIS can get con- 
trol during image rundown and perform some 
necessary clean-up activities. 

The shareable image performs the requested 
operation by calling the sppropriate UIS system 
service. At this point, user requests are trans- 
lated into calls to internal UIS routines, and the 
relevant internal data structures are located. For 
example, for a typical keyboard operation, UIS 
would locate the right virtual keyboard and 
make the appropriate calls to the VCBO1 device 
driver. 

For a typical output operation, such as draw- 
ing a line, UIS first creates a display list entry. 
UIS then calls the display list management rou- 
tines to update the display list and all windows 
into the virtual display. These routines, in turn, 
will check with the viewport service routines 
(VPS) to find the right area of the physical 
screen in which to draw. Finally, the manage- 
ment routines direct the bitmap graphics exe- 
cution routines (GER) to draw to those areas. 

VPS is more than a simple screen rectangle 
manager. Its tasks are 

To present the rest of UIS with the "illusion" 
that viewports are always unoccluded and 
are contiguous pieces of hardware video 
controller memory 

To take advantage of VCBO1 scan-line scroll- 
ing whenever possible 

To provide bitmap backup for occluded win- 
dows so that applications are free from the 
complexities of occlusion management 

VPS does this by judiciously using and mixing 
three different types of video memory: on- 
screen VCBOl memory, off-screen VCBO 1 mem- 
ory, and off-screen VAX memory. VPS also 
manipulates the entries in the VCBOl video 
scan-line map to present UIS with a virtual scan- 
line map, or virtual viewport, for each physical 
display viewport. 

If the physical display has only one viewport, 
VPS will simply allocate a set of physical VCBO 1 
scan lines and set u p  the viewport data struc- 
tures to direct GER to that set. In this case, the 
physical and virtual viewports will be the same. 
However ,  if t h e  d i sp l ay  has occ lud ing  
viewports, VPS will create a virtual viewport in 
off-screen memory for each physical viewport. 
Then, at 80-millisecond intervals, VPS will 
copy the modified contents of the virtual 
viewports to the physical viewports. 

If changes must be made to the VCBO 1 video 
scan-line map, then VPS will update them. 
These changes could be caused by either a 
viewport that needs to be hardware scrolled or 
a change in the layout of the viewports on the 
physical screen. VPS then merges all the virtual 
scan-line maps and requests an update of the 
physical scan-line map. Those actions are done 
in synchronization with the 60-Hz video verti- 
cal-retrace interval. 
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Summary 
Our initial goals were to design a workstation 
product with the MicroVAX I system, thus pro- 
viding a stable, mature product available for the 
MicroVAX 11 system. The joint engineering task 
force was initiated in the spring of 1983; proto- 
type graphics hardware was available in the 
early summer. Once that preliminary hardware 
was ready, the VMS team entered into full-scale 
development. The VAX/VMS workstation (VWS) 
product was developed during the fall and win- 
ter of 1983, and into the spring of 1984. W S  
underwent customer field test with the VCBOl 
graphics controller, the MicroVMS system, and 
the MicroVAX I system in the summer and early 
fa l l  of 1 9 8 4 .  T h e  f i rs t  r e l ea se  of t h e  
VAXstation I was available in late 1984.  'This 
initial p roduc t  a l lowed th i rd-par ty  VAX 
software vendors to take advantage of the W S  
architecture. 

Later, t he  VAXstation I1  rep laced  the  
MicroVAX I CPU with a MicroVAX I1 engine, 
thus gaining much higher performance. The 
MicroVAX I1  processor entered customer field 
test in the early spring of 1985, with shipments 
to customers by early summer. A new VWS 
s o f t w a r e  r e l e a s e  t h a t  s u p p o r t e d  t h e  
VAXstation 11 was made available shortly after- 
wards. That VMS software was the fulfillment of 
this project's long-term goal. 
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Design Project 
The RQDB is a Winchester andfloppy disk controller aimed speczj?cally 

for use on MicroVAX 11 systems. The des igws followed a top-down 
development process to meet their goals. Trade-ofis, some requiring 
hardware andfirmware to be built and tested for reliability, were identi- 
fied and evaluated early in the project. The RQDB has a three-port data 
bufler to smooth data transfers between the host processor, the control- 
ler's microprocessor, and the disks. Four internal subsystems work in 
parallel to allow maximum system performance. 

Design Goals 
The project team set a number of specific goals 
at the start of the RQDX3 design. The greatest 
need was to improve the performance of the 
MicroVAX I1 system over that available with 
existing controllers, yet greatly reduce the man- 
ufacturing costs of the disk subsystem. The fol- 
lowing list contains the goals that governed the 
design of the module: 

phase-out of the higher cost and lower per- 
formance RQDXl and RQDX2 modules. 

Testable Design-A high percentage of this 
module would be testable by providing extra 
hardware, microprocessor code,  and test 
strategies. This design would help to reduce 
both manufacturing and maintenance costs. 

m e  Design Philosophy 
The team members decided that a top-down 

Cost-Obtain a manufacturing cost less than approach to the problem was the only way that 
half of the best current disk controller, the the design goals could be met. A well strut- 
RQDX2. tured, well documented design would allow 

the maximum communication between team 
Performance-'The control ler  should not 

members, and it would allow trade-offs to be force an interleave of data sectors on  the sur- 
made early in the design cycle. face of the hard disk drives or  limit the per- 

formance of the Winchester disk drives. The The design process used in the project 
adhered to the following form: 

controller should also avoid wasting system- 
bus bandwidth on the Q-bus. The controller = Set the goals and assign priorities to deter- 
architecture had therefore to be chosen to mine how flexible each one is; that will 
allow the highest performance possible allow tradeoffs to be made if a goal is not 
while meeting the other design goals. attainable. 

Dual Module-The control ler  should be  Collect and study any overall system specifi- 

designed so that it will fit on one Q-bus dual cations and requirements that apply. This is 

module. This form factor will allow the most the time to write the preliminary engineer- 

flexible system configurations. ing specification and define the interfaces 
(both hardware and software) that must be 

Schedule-First customer shipment would be adhered to. Any impulse to go back and 
approximately one year from the project change these specifications should be vehe- 
start. Meeting this goal would allow the mently resisted. 
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Analyze the problem and determine the sys- 
tem architecture based on the flow of infor- 
mation and the complexity of the required 
control functions. If the problem appears too 
large or is not easy to document or describe, 
then it should be divided into smaller, more 
manageable functions. During this phase, 
operational descriptions are created. Those 
can be flow diagrams, timing diagrams, state- 
transition diagrams, or anything that will 
help to explain how the controller should 
work. These descriptions should be included 
as part of the documentation package. 

Look for the solution to each problem while 
weighing it against the design goals. Itera- 
tions between this step and the previous one 
can be expected in order to meet the goals. 

This part of the process involves looking at 
the available technologies and other designs 
to determine what is or is not usable. If other 
designs have followed the same documenta- 
tion strategy, then this task is much easier; if 
they have not, then do  not waste too much 
time trying to "reverse engineer" those 
designs. The risk of using new technologies 
must be assessed to determine what impact 
they would have on the design's cost and 
schedule. 

The hardware design is documented using 
drawings called functional partitions. These 
drawings are a hierarchy showing the inter- 
connection of functional,  not physical, 
pieces of the design. All datapaths and con- 
trol signals are named at this time. The draw- 
ings will be the reference point of the design 
team and make up  a major portion of the 
design package. Because of the functional 
nature of these drawings, simulation of the 
design can be accomplished in a structured 
form. 

At this time, a technical description docu- 
ment is written to allow others outside the 
design team to understand the operation of 
the design. This document is especially use- 
ful in training new groups about the design 
as i t  progresses from the design phase to the 
manufacturing phase. 

"Paper debug" the design. This is an in- 
depth review by the design team before any 
hardware is built. The process begins with 
the operational descriptions and follows the 

documentation hierarchy down to the lowest 
level of the design. Normal operations and 
error conditions are checked, and each ele- 
ment is analyzed for test and diagnostic 
coverage. 

Mistakes found at this stage are much easier 
to fix on paper than in circuit boards, gate 
arrays, or software debugging. 

Build a prototype. This process includes the 
drawing of schematics to show the intercon- 
nection of the physical pieces, the layout of 
circuit boards, the development of gate 
arrays, and the writing of software routines 
that interface to the hardware. 

Debug the prototype. If the paper debug was 
done correctly, this stage should not uncover 
any disasters. The individual functional 
pieces of the  design can be  tested and 
checked off using the functional partitions as 
a guide. That systematic method will ensure 
that the entire design is tested. 

The design process is the solution to a mul- 
tidimensional problem. Therefore, there is 
probably more than one design that will meet 
the goals. There is also the probability that it 
may be impossible to meet all the goals. In this 
case, some compromise in the goals must be 
made in order to make a solution possible. 

This design problem is like those encoun- 
tered in most other designs: Make it fast, cheap, 
small, reliable, and don't take too much time. 
With each goal being constrained by others, the 
need for a structured method of finding a solu- 
tion becomes more important. The way to solve 
a set of simultaneous equations is not to try a 
solution and see if it fits, but to use some 
proven techniques to  determine the correct 
solution. Dividing the overall problem into 
smaller ones and then determining a solution is 
probably the most powerful technique that can 
be applied. 

Design Implementation and Testing 
Attacking the Goals 
Each goal placed some unique restrictions on 
the design. Thus, it was important to under- 
stand the effect of each goal and how flexible 
the achievement of that goal was. By keeping a 
constant watch on how the goals were being 
met, trade-offs could be made very quickly. 
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The following discussion details each goal and 
how it was handled: 

Cost-This was the original goal that caused 
the creation of the RQDX3 project. The 
cost/performance relationship was higher 
than desirable for the current disk control- 
lers. A project like the MicroVAX I1 system, 
in order to obtain a good market share, 
needed to  improve this relationship by 
reducing the cost of the disk subsystem. 
Therefore, it was very important for us to 
attain our cost goal. To do  that we  placed a 
restriction on which components or  technol- 
ogies could be used, and what the assembly 
cost of the module could be. Maximizing the 
number of machine-insertable parts there- 
fore became an important consideration. 

Performance-The MicroVAX I1 system would 
support the full VAX/VMS operating system. 
Since it supports virtual memory, the VMS 
system uses large data transfers in the disk 
subsystem. We therefore chose to optimize 
the performance of the controller around 
these large transfers to improve total system 
performance. By making the physical disk 
drive the limiting factor, we evolved an 
architecture that would allow simultaneous 
operations in the controller. In contrast, the 
current RQDXl and RQDX2 disk controllers 
limit the data transfer rate between the host 
memory and the disk drive because of their 
architecture. The single thread of control in 
these modules, though adequate for PDP-11 
systems, forced an interleave of logical data 
blocks on the disk surface. That interleaving 
would  hinder  the  performance of the  
MicroVAX I1 system. 

There are also many techniques for reducing 
the average seek time of the disk drives. 
These methods include overlapped seeking 
on multiple drives, rotational optimizations, 
improved seek algorithms, and various data 
buffering techniques. We wanted to include 
as many of these optimizations as possible 
and, since the goals were driven by the 
design team, the trade-offs were a little more 
flexible. 

Dual module-This goal more than any other 
caused the most problems in the design of 
the hardware. Many times a solution seemed 
to meet all the goals but, when a detailed 

parts count and mock-up were created, there 
were a few components that just didn't fit on 
the board. Meeting this goal led to the exten- 
sive use of CMOS gate-array technology to 
meet this size restriction. 

Schedule-We did not have the luxury of set- 
ting the date for the project's completion. 
Because the disk controller was so important 
to the overall MicroVAX I1 project, we were 
given a completion date based on the availa- 
bility of the MicroVAX I 1  hardware. Of 
course, this procedure involved a manage- 
ment factor that certainly kept the design 
team on its toes by being told to see if we 
could do it. In response, we developed a 
schedule that would maximize the work that 
could be done in parallel while keeping the 
risks at an acceptable level. 

Testable Design-This goal became more 
important as the details of the design were 
completed. The module, being driven by an 
onboard microprocessor, would be capable 
of self-diagnosis. Therefore, where possible, 
all internally addressable registers were 
made to be write/read registers and extra 
datapaths were  added to maximize the 
a m o u n t  of l o g i c  a v a i l a b l e  t o  t h e  
microprocessor for testing. This goal had to 
be weighed against the need for limiting the 
design complexity, cost, and size. 

Task Partitioning 
The short project schedule forced us to adopt a 
development strategy that would maximize par- 
allelism in the development of the RQDX3. The 
first division was made between the hardware 
development and the microprocessor firmware 
development. Each major task was further 
reduced to smaller design functions. In many 
cases we had to create a model or emulator of 
some other undeveloped part of the design in 
order to allow tasks to continue. 

Hardware Development 
Once the functional partition drawings were 
created, we had a solution that met the per- 
formance and functionality that were required. 
However, we still did not know if the cost and 
board area requirements would be met. The 
design team quickly determined that some cus- 
tom integrated circuits would be needed to 
help us meet these goals. Previous experience, 
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a known process, and quick turnaround made 
CMOS gate array technology the key to our  
solution. 

Two gate-array devices would be needed, but 
we had only one gate-array design team on our 
project. We decided that one gate array would 
be developed first and a TTL emulator of the 
second device would be created and used for 
the module-level testing. In that way, the inte- 
gration of the firmware under development 
with the hardware could begin early in the 
schedule. 

The key area in almost any disk controller 
centers around the design of the phase locked 
loop and the data separator logic used in recov- 
ering the encoded data from the disk surface. 
We knew at the beginning of this project that 
our team did not have the experience to design 
this section. Therefore, we  employed the ser- 
vices of outside consultants to this project. 
They contributed not only their previous expe- 
rience in data separator design, but also rein- 
forcement and management of the design phi- 
losophy taught to us in the past. 

Firmware Development 
To meet our schedule goal, it was necessary to 
begin development and testing of the firmware 
for the onboard microprocessor well before any 
hardware was ready. The firmware consisted of 
many modules, the majority of which were 
independent of the hardware. These modules 
could be designed, coded,  debugged, and 
tested in parallel with the design, implementa- 
tion, and debugging of the hardware. Then at a 
later date, the few remaining hardware-depen- 
dent modules could be developed and inte- 
grated to form the complete RQDX3 firmware. 

Thus, the target system first used for develop- 
ing the firmware was not the prototype RQDX3 
wi th  i ts  onboard  microprocessor ,  b u t  a 
VAX/VMS system with two software emulators 
(one for the Q-bus subsystem and one for the 
disk subsystem). The VMS system was chosen 
for several reasons: first, it has an extremely 
nice set of program development tools; second, 
the VMS disk driver could be adapted to pro- 
duce a steady stream of stimuli (disk 1 / 0  
requests) to verify the correctness of the 
firmware's responses. With only a small amount 
of "trickery," the VMS system could be "con- 
vinced" to use a disk controller built not out of 
hardware, but out of software; the two emula- 

tors mentioned above provided the necessary 
glue. The emerging RQDX3 firmware could be 
developed in the context of a normal VMS 
process, taking full advantage of VMS compil- 
ers, linkers, and debuggers. Although it took a 
lot of time (and many system crashes) to get 
this technique to work, it greatly speeded up  
the job of building all the hardware-indepen- 
dent modules. This stage took about fifty per- 
cent of the total time spent to develop the 
firmware. 

The next target system was the actual proto- 
type RQDX3 with an in-circuit emulator (ICE) 
for the microprocessor and a T T L  emulator for 
one of the gate arrays. Hardware debugging was 
accomplished first by special code written to 
perform repetitive actions on particular por- 
t ions of t he  hardware.  Then ,  the  actual  
firmware, which had been previously devel- 
oped and was, in a sense, known to work, was 
loaded into the hardware. The ICE was a great 
help here since it allowed RAM to be substi- 
tuted for ROM; that allowed a level of symbolic 
debugging. At this point in the process, the 
hardware-dependent modules were built. This 
stage took about thirty percent of the total 
firmware development time. 

The final target system was the "bare" 
RQDX3, with no emulators and real ROM. This 
configuration proved to be identical to the pre- 
vious one (i.e., no problems were found in 
replacing the emulators with real devices), but 
allowed prototype boards to be shipped inter- 
nally. The firmware of the RQDX3 could now 
be tested by different operating system groups, 
and bugs appropriately located and fixed. This 
stage took about twenty percent of the total 
firmware development time. 

Design Verification Testing 
The purpose of design verification testing 
(DVT) is to assess at an early stage whether a 
design has any particular implementation 
problems. To do that, the board is tested against 
all Digital's applicable standards. First, the lay- 
out of the board (the etch) is checked by look- 
ing for noise radiation and pickup, and for 
undershoot or  overshoot on clock lines. Then, 
the board is checked thermally to  see if i t  can 
withstand both operating and nonoperating 
environmental stresses. Next, FCC testing is 
done  t o  measure the  radiated frequency 
spectrum. Finally, the module is shaken and 
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dropped to ensure that no chip falls out of its 
socket under normal handling conditions. Feed- 
back from D W  can result in physical changes to 
the module, perhaps as severe as a new etch 
layout. 

In  the case of the RQDX3, a recommendation 
was made to add resistors to a pair of clock 
lines in order to dampen undershoot. Fortu- 
nately, this alteration did not have much impact 
on the schedule. 

Reliability and Quality Testing 
The purpose of reliability and quality testing 
(RQT) is to demonstrate that the product meets 
certain minimum reliability standards, mea- 
sured as mean time between failures (MTBF). 
The design team specifies the MTBF and also 
other measures of quality, such as hard and soft 
error rates, both of which affect the perceived 
quality of a disk controller product. Then, the 
RQT team designs a test that will demonstrate 
whether or not the product meets or exceeds 
these measurable quanti t ies .  Usually that 
involves building a system (CPU, memory, 
serial line interface) that includes the product 
under test. The system runs some level of host 
software that exercises the product for a large 
number of hours under various temperature 
and humidity extremes. Designing these tests is 
not an easy task, and indeed the RQDX3 had 
major problems during RQT because of this dif- 
ficulty. Feedback from RQT can result in hard- 
ware changes, or firmware changes, or both. 
Ideally, if the product is changed, RQT should 
start again from the beginning. However, sched- 
ules will often not allow that and compromises 
must be made. 

A decision affecting all of RQT must be made 
near the beginning: whether to test the product 
at the system level or at the module level. Test- 
ing at the system level implies that the system 
MTBF and error rates must be met, and all fail- 
ures, whether related to the product under test 
or not, should be counted. Testing at the mod- 
ule level implies that the module MTBF and 
error rates must be met, and only failures that 
can be attributed to components under test 
should be counted. Clearly, module-level test- 
ing is preferred since it gives the most informa- 
tion about the new product. However, module- 
level testing is more difficult because each 
error has to be investigated to determine its 
cause and whether or not it should be counted. 
Furthermore, the burden of proof is on the 

design team to verify that the error was not 
caused by their module. (Guilty until proven 
innocent!) 

Weighing all these factors, we decided to test 
the RQDX3 at the module level; that caused 
most of our RQT problems. A sealed chamber 
was used to control the tests of cycling over 
temperature and humidity extremes.  The  
RQDX3 modules were placed in this chamber, 
along with the systems into which the modules 
were plugged. Part of the testing included read- 
ing and writing from both floppy disks and 
Winchester disks. Since these disks could not 
withstand the environmental extremes inside 
the chamber, they were placed outside. Early 
testing showed that this setup did not work, 
since the disk drives had to be connected to the 
controllers with lengthy cables, which were 
susceptible to noise pickup. This configuration 
was modified to bring the disk drives inside the 
chamber where they were connected to  the 
controllers with normal cables. That eliminated 
the noise problem, but now dictated a reduced 
environmental stress on the RQDX3 module 
(from class C to class A). 

At first, we encountered a higher-than-normal 
rate of soft errors on the floppy disks. A search 
for the cause of this problem showed that a 
combination of two separate but contributing 
problems were responsible. First, a rare combi- 
nation of events could cause the data separator 
for the tloppy disk to temporarily fail to lock to 
the data stream. Second, most if not all the 
floppy disk drives themselves were not per- 
forming correctly. The former problem was 
fixed by a component  change to  the data 
separator; the latter, by testing and repairing 
those drives that showed the greatest number of 
soft errors. These two changes reduced the soft 
error rate for the floppy disks to a level well 
within the range specified by the design team. 

The extensive, and lengthy, RQT also uncov- 
ered one bug in the error handling of the 
RQDX3 firmware that had never been seen in 
our development lab. The problem could only 
have been experienced by running many, many 
modules in parallel. Of course, the purpose of 
RQT is to catch such problems then instead of 
at customers' sites. 

The mass storage controller protocol (MSCP) 
defines the communication between the host 
processor and the disk controller. Communica- 
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tion occurs using sequences of command pack- 
ets, generated by the host, and response pack- 
e t s ,  g e n e r a t e d  by t h e  c o n t r o l l e r .  T h e  
transmission of the packets and logical data 
blocks that are to move between the host and 
the controller is defined in the U/Q Storage 
Systems Port (UQSSP) specification. These two 
specifications place the following require- 
ments on the controller: 

Two sequential-word register locations on 
the Q-bus are required. Those are referred to 
as the status and address (SA) register and the 
initialization and poll (IP) register. These 
registers must be able to be assigned at any 
longword boundary within the Q-bus 1 / 0  

page. 
The controller must have the ability to inter- 
rupt the host processor using a previously 
loaded vector address. 

The controller must contain enough intelli- 
gence to initialize itself, perform internal 
diagnostics, decode command packets, per- 
form all disk control functions, transfer data, 
and encode response packets. These tasks are 
accomplished on the RQDX3 through the 
use of a DCT11 microprocessor. 

The controller must be able to perform DMA 
data transfers on the Q-bus. These transfers 
will be for command and response packets, 
as well as for disk data. 

The diagram in Figure 1 shows the flow of 
information in an MSCP controller. MSCP com- 
mand and response packets flow between the 
memory in the host processor and the on-board 
microprocessor. Disk data flows between the 
memory of the host processor and the disk sur- 
face. Information dealing with the format of 
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Figure I Information Flow in the RQDX3 
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data on the disk surface (revector tables, format 
tables, etc.) must be transferred between the 
disk surface and the microprocessor. 

Figure 1 shows a centralized data buffer ele- 
ment. It is used for temporary storage and as a 
means for smoothing the differences in data 
transfer rates between the host memory, the 
microprocessor, and the disk surface. 

It was decided to implement this centralized 
data buffer as a three-port memory system. 
Three control elements are provided for the 
transfer of data between each memory port and 
the appropriate source or destination. These 
elements are the Q-bus DMA controller, the 
microprocessor with its internal bus-interface 
controller, and a VLSI disk controller with an 

internal D M .  interface. The interconnection of 
these subsystems is shown in Figure 2. Each 
control element assumes that it has the memory 
system for its own dedicated use. The arbitra- 
tion between these elements for access to the 
memory devices is handled within the memory 
subsystem. 

The Memory Subs-ystem 
The memory subsystem contains a f ini te  
sequential-state machine that receives requests 
for memory cycles from the three ports and per- 
forms the memory cycle for the highest-priority 
requesting port. It is required that any port 
requesting a memory cycle must have its 
address and any required data available before 
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posting the request to the memory controller 
state machine. The principle function of the 
memory system is twofold: first, it allows the 
controller attached to a specific port to deposit 
data to be written to the memory in a holding 
register; second, it allows the memory control- 
ler to write that data to the RAii devices some- 
time later. For most read requests, the memory 
controller performs a prefetch operation when 
there is an empty output register in one of the 
ports. This operation is possible because the 
accesses by both the disk and Q-bus controllers 
are known to be sequential, with the next 
address always available to  t he  memory 
controller. 

The port of the microprocessor is an excep- 
tion to this prefetch operation. The memory 
controller cannot prefetch the data since mem- 
ory accesses by a microprocessor are not always 
sequential. When requesting a cycle from the 
memory, the microprocessor will be "cycle- 
slipped" (i.e., wait states added to its micro- 
cycle) until the memory controller determines 
that the microprocessor is the highest-priority 
requesting device. 

The highest priority for memory cycles is 
given to the disk controller port. Failure to ser- 
vice this port first will cause overrun or under- 
run errors in the disk controller chip, which 
has little buffering. These error conditions 
would cause serious degradation of system per- 
formance, since full disk revolutions would be 
wasted retrying the operations. 

The middle priority is given to the Q-bus 
DMA controller port. This port requires the 
highest service rate from the system (approxi- 
mately 700 nanoseconds per request). How- 
ever, the port is capable of slowing itself if i t  
cannot be serviced in time by the memory con- 
troller. Of course, to achieve the highest system 
performance and most efficient use of the 
Q-bus, it is desirable that the Q-bus controller 
never slow down. 

The microprocessor is given the lowest prior- 
ity for memory cycles. That allows the normal 
.operation of data transfer between the disk and 
host (both disk controller and Q-bus DMA con- 
troller active) to be completed as fast as possi- 
ble. The microprocessor can use any remaining 
memory bandwidth for its operat ion.  The 
microprocessor uses the shared memory for 
both temporary storage and its operational 

stack. Since its use of that memory will be infre- 
quent, the microprocessor will not be affected 
by any loss in memory response. 

A prototype of the memory subsystem was 
built to measure the amount of bandwidth 
available to the individual ports and to deter- 
mine the effect of arbitration between the 
ports. A worst-case condition of requests from 
all ports was created and the bandwidth used by 
each was measured. With any two ports oper- 
ating at their full speed, there was no measura- 
ble reduction in service rate from that of the 
ports running independently. When all three 
ports were operating, the disk port lost no 
memory bandwidth, the Q-bus port lost only 
one percent of its requested bandwidth, and the 
microprocessor  lost e ight  percent  of its 
requested bandwidth. 

These observations during worst-case condi- 
tions indicated that all three ports are capable 
of operating at full speed with their normal 
request patterns. This feature of the RQDX3 
allows it to overlap disk data transfers, Q-bus 
DMA transfers, and microprocessor operations 
to achieve maximum performance. 

The memory controller is implemented using 
a field programmable logic sequencer (FPLS) 
and an external input sychronizer. Even though 
gate-array technology was used for the majority 
of the datapath on this module, it was felt that 
building the state machine in the gate array was 
too risky for the project schedule. The state 
machine was therefore placed outside the gate 
array. Only a few gate array pins connect it to 
the datapath elements that it controls. 

The memory controller also incorporates 
some features to aid in the test and repair of the 
module. After module initialization, an input 
signal is asserted to force the memory control- 
ler to honor only those requests coming from 
the microprocessor. Without that, a hardware 
failure in either the disk controller or the Q-bus 
DMA controller could constantly request mem- 
ory cycles and cause the microprocessor to 
"hang" on its first access to memory. With this 
signal asserted, the microprocessor can initiate 
the module diagnostics in a small, isolated envi- 
ronment that enables the microprocessor, R O M  
and RAM devices, and 1 /0  page registers to be 
tested. The microprocessor can then clear the 
signal later in its diagnostics, thus completing 
the module testing. 
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The Microprocessor Subsystem 
The microprocessor subsystem of the RQDX3 
module is made up  of a DCTl1 microprocessor, 
l 6 K  words of EPROM memory, a front-panel 
interface, and a prioritizing interrupt circuit. 

Although many different microprocessors 
could have been used, the choice of the DCTl1 
was made with the following criteria in mind: 

A 16-bit microprocessor could handle the 
MSCP requirements adequately, while an 
8-bit microprocessor would be strained and a 
32-bit microprocessor might be an overkill. 

A multiplexed address-and-data bus would 
reduce  the  number  o f  gate array pins 
required. 

A rich, orthogonal instruction set (PDP-11 
system) that could be easily understood 
should be used. 

The microprocessor should be able to be 
programmed in a high-level language. Much 
of the code for this module would be written 
in the C programming language. 

Full, efficient implementation of Q-bus 
block-mode transfers 

A programmable holdoff timer to regulate 
the Q-bus activity 

The Disk Controller Subsystem 
The disk controller subsystem had to provide 
the control and datapath functions for both 
floppy and hard disk drives in the smallest 
space and for the least cost. This requirement 
was satisfied by using a VLSI disk controller 
device. 

The RQDX3 data separator is designed to 
receive the encoded data stream from the disk 
and convert it into a binary data stream and 
clock, both of which are then fed to the disk 
controller chip. The data separator is designed 
to operate at three different data frequencies to 
be compatible with the available range of 
Winchester and floppy disk drives. The fre- 
quencies for each type of drive are as follows: 

5-MHz MFM encoded data recovery from 
ST4 1 2  Winchester disks (RD5X type) 

= 500-KHz MFM encoded data from high- 
Relatively fast execution speed is desired. speed ,  high-density floppy disks (RX33 
Available hardware and software develop- 
ment tools should be used. 

Our  past design exper ience  should be  
exploited to improve the product's time to 
market. 

The Q- bus Subsystem 
The Q-bus subsystem of this module is made u p  
of the programmed 1 /0  section, the Q-bus DMA 
controller section and the Q-bus interrupt sec- 
tion. The Q-bus DMA controller is composed of 
a finite sequential-state machine and associated 
datapath elements that are used to perform both 
block-mode and nonblock-mode Q-bus cycles. 
The state machine is implemented in a field- 
programmable logic sequencer rather than a 
gate array to eliminate the risk of schedule 
delays due to coding errors. However, the 
datapath elements needed to support the state 
machine are contained within the gate array 
devices. Some of the features of this controller 
are 

Full 22-bit Q-bus addressing 

A 16-bit DMA word counter 

250-KHz MFM encoded data from standard 
double-density floppy disks (RX50 type) 

The data recovery system for the RQDX3 is a 
unique MFM data recovery circuit that is very 
close to ideal. In short, with proper matching 
of the device delays, the recovery window is 
+50 nanoseconds, or one hundred percent of 
the window. This almost ideal data recovery is 
made possible by the following conditions: 

A solid and precise phase locked loop is 
used. 

The MFM encoding rules specify a 100-  
nanosecond "null" period after each flux 
transition. This period is used to reset the 
edge store and compensation flip-flops of the 
circuit. 

The VCO output has a fifty percent duty 
cycle. 

The logic delay paths in the data separator 
circuits are carefully matched. This matching 
was accomplished by device  matching 
within the gate array that implements this 
function. Careful simulation of this logic was 

Q-bus memory parity detection carried out to prove this operation. 

74 Digital Technical J o u d  
No. 2 March 1986 



New Products 

The Structzire of the Firmware 
The firmware had to be designed to take full 
advantage of the parallelism provided by the 
chosen hardware architecture. Therefore, the 
RQDX3 firmware consists of a set of cooperat- 
ing routines, or jobs, each of which performs a 
dedicated function. Each job has its own stack 
and thus its own context and state information. 
Any operations that could possibly run in paral- 
lel have been separated and are controlled by 
separate jobs. A small operating system kernel 
provides facilities for creating new jobs, sus- 
pending and resuming execution of a given job, 
acquiring exclusive access to shared resources 
and later releasing those resources, and sched- 
uling jobs to run based upon priority and 
resource contention criteria. This kernel pro- 
vides a controlled way of overlapping opera- 
tions. That effectively means that the RQDX3 
can be simultaneously seeking on one or more 
drives, reading or writing from another drive, 
and transferring data to or from the host, all 
while performing calculations relating either to 
the current transfer or to a pending transfer. 

Performance Tests 
The main performance goal was to be able to 
sustain a high data-transfer rate for large trans- 
fers. In a typical situation, the VMS system uses 
the disk to swap, page, and load images. The 
RQDX3 is tuned so that these operations are 
completed as rapidly as possible. Maximum sus- 
tained data transfer rates of 420KB per second 
have been measured, compared to 170KB per 
second on the RQDX2. Such workloads are 
atypical, though, and do  not give a good indica- 
tion of overall system performance. When 
tested with a workload of from one to fifteen 
users on a MicroVAX I1 system, the RQDX3 is 
faster than the RQDX2, but slightly slower than 
the KDA5O. This relationship is more in line 
with the performance based on theoretical cal- 
culations. A user workload generates a lot of 
seeking, and the RD-class disks controlled by 
the RQDX2 and RQDX3 seek more slowly than 
the RA-class disks controlled by the KDASO. 

Higher performance can be gained by split- 
ting the disk activity among two, three, or even 
four disks. The RQDX3 has the ability to keep 
all four drives seeking at the same time. For 
small transfers, seek time dominates, and an 
increase in system throughput of thirty-five to 

forty percent can be realized. For large trans- 
fers, seek time is still important but decreases 
in s igni f icance ;  t h e  increase in system 
throughput may only be twenty percent. The 
RQDX2 does not take advantage of separate sys- 
tem and user disks; however, the RQDX3 will. 

Higher performance on a single drive can be 
achieved by queuing multiple requests to the 
RQDX3. The MSCP protocol allows these multi- 
ple requests to be automatically reordered by 
the controller to reduce the average seek time. 
For example,  the controller could always 
choose the request with the shortest seek time 
instead of the first request in its queue. An 
increase in system throughput of thirty to forty 
percent occurs when the number of outstand- 
ing 1 /0  requests increases from one to twelve. 

Summary 
The RQDX3 design project came close to meet- 
ing all its design goals. There were 40  working 
units exactly one year after the project began. 
However, problems in the reliability test setup, 
which delayed the manufacturing s tar tup,  
caused our first customer shipment to slip. The 
cost, performance, and module-size goals were 
all met to the satisfaction of the design team. 
The high yields in manufacturing can be attrib- 
uted to the quality of both the design and the 
manufacturing process. Without the structured 
design process and the team's adherence to it, 
this project would not have been successful. 
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me Evolution of 
Instruction Emulation 
for the Micro VAX Systems 

The MicroVAX CPU, the 78032 chip, implements a subset of the VAX 
instruction set, yet the operating system must support the full set. To 
accomplish that, the MicroVMS developers decided to emulate the miss- 
ing instructions-floating point, packed decimal, and character string 
instructions-in software. Since hardware and sopware were developed 
in parallel, a VAX-11/730 system, with its microcode rewritten to make it 
act like MicroVAX hardware, was used as a test vehicle. The performance 
measurements indicated excessively long execution times. The hardware 
design was extended to assist the sopware emulation task. The final 
emulator was also wed in the ULTW-32 and V'AXELN systems. 

When Digital Equipment Corporation decided 
to implement the VAX architecture' in silicon, 
it was clear that the entire instruction set could 
not be implemented on a single chip. To deter- 
mine what could be implemented, a team of 
software and hardware engineers was formed to 
identify the best subset of the VAX instructions 
that would fit. As a consequence, the software 
engineers had to find ways to provide support 
in the operating system for those instructions 
removed from the base machine. This paper dis- 
cusses how that  emula t ion  suppor t  was 
provided. 

Micro VAX Architecture 
The amount of microcode needed to implement 
an instruction is a good measure of the amount 
of space needed on a chip to implement the 
same instruction. Microcode size thus became 
one  measure used in determining which  
instructions to move off the chip. A second cri- 
terion was the frequency with which particular 
instructions are used. For example, integer and 
logical instructions are used very heavily and 
their frequency of use is independent of the 
application area. Floating point instructions 
appear most frequently in scientific and engi- 
neering computations. Packed decimal instruc- 
tions are more common in certain commercial 
applications. Eventually, by balancing these 

considerations, the engineers jdentified a sub- 
set of the VAX instruction set that would fit on 
one chip. That subset became the definition of 
the MicroVAX architecture. (The subset archi- 
tecture also differed from the full VAX architec- 
ture in such areas as the console subsystem.) 

Once the MicroVAX architecture was com- 
pleted, the hardware and software teams began 
independent development efforts. Since a major 
project goal was to minimize the time to mar- 
ke t ,  o n e  hardware  team inves t iga ted  a 
MicroVAX implementation (the MicroVAX I sys- 
tem) that used semicustom logic instead of a 
single chip. A second hardware team started the 
design of the MicroVAX chip itself2, and a third 
team initiated the design of the implementation 
(the MicroVAX I1 system) that would incorpo- 
rate that chip. At the same time, the software 
teams began their investigations of how to 
enhance the VMS, ULTRIX-32, and VAXELN 
operating systems in order to run these new 
machines. The software designs were influ- 
enced in part by the need to implement and test 
the  missing-instruction software emulation 
before any hardware was available. 

Operating System Support 
The major difference between the software 
architectures of the MicroVAX and the full VAX 
systems is the group of instructions that were 
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not implemented in the chip hardware. This 
group consists of 

Floating point instructions 

Packed decimal instructions 

Character string instructions 

(The MicroVAX architecture included the 
MOVC3 and MOVC5 instructions because they 
were heavily used in fundamental routines, 
such as copying or filling memory arrays.) 

Each of the three operating systems was sup- 
ported by a different design group.  These 
groups had to decide which course of action to 
take to accommodate the reduced number of 
instructions that would be implemented in 
microcode. The following alternatives were the 
most realistic courses to take: 

1. All compilers and assemblers could be 
changed to eliminate all uses of the miss- 
ing instructions. 

2. Emulation subroutines that applications 
could link into their programs could be 
supplied. (VMS used this method on 
early VAX models that did not include 
ha rdware  s u p p o r t  fo r  t h e  G and 
H floating point data types.) 

3. The emulation subroutines could be 
implemented so that their use would be 
invisible to application programs and 
even to most of the operating system. 

The VMS Decision Process 
The VMS design team began a study to deter- 
mine the extent to which the missing instruc- 
tions were used in the operating system code, 
including all the various VMS utility programs. 
As expected, the character string instructions 
were used most frequently and, in fact, were 
more widely used than expected. The CMPC3, 
CMPCS, and LOCC instructions were the most 
frequently used string instructions, occurring 
almost everywhere that tZSCII text was manipu- 
lated (for example, in device names, file 
names, and DCL commands). All software that 
included some kind of bitmap (about six to ten 
different areas, ranging from the file system to 
memory management) used the SCANC and 
SPANC instructions. A large number of table- 
lookup designs (including DCL and utility com- 
mand parsers) used the MATCHC, MOWC, and 
MOVTUC instructions. Finally, the CRC instruc- 

tion was used by the BACKUP utility and by the 
DECnet code. 

Very few data types were used outside their 
realms and only a few unexpected sequences 
were found that used the missing instructions. 
One example was the use of the CVTLF instruc- 
tion in the VMS kernel to determine the small- 
est power of 2 larger than a given integer. A 
second example was the use of the CVTLP 
instruction in the FORTRAN run-time support 
library as a quick method for converting binary 
representations to text. 

Once the extent of the missing instruction 
usage was determined, the design team consid- 
ered the number of compilers that were sup- 
ported by the VMS operating system. In all, over 
fifteen different languages are supported.3 The 
first alternative, changing the compilers and 
assemblers, would require that the code gener- 
ators for each product be changed. Moreover, 
new versions of the VMS operating system and 
all its layered products would have to be gener- 
ated using these new compilers. That would 
involve a significant investment of manpower, 
not just to enhance the compilers, but to pro- 
vide ongoing support to maintain each product. 
In addition, two variants of each new version of 
each product would have to be produced. A 
likely side effect was that these changes would 
probably cause other development groups to 
limit most layered products to the MicroVAX 
subset on all VAX machines. In that way, each 
group would have to maintain only one version 
of their product. 

Another consideration was the effect that the 
first or second alternatives would have on the 
marketing of MicroVAX systems. Customers and 
Digital's software engineers had become accus- 
tomed to developing software on one machine 
and executing it transparently on any other 
machine in the VAX family. That would not 
have been possible under either of the first two 
alternatives. 

Through this reasoning process, it became 
obvious that the correct choice was the third 
alternative, to design for software emulation 
and make it transparent to both applications 
and operating system code. While requiring a 
concentrated effort to write the emulation sup- 
port, the overall effort for software emulation 
was much smaller than removing the use of the 
missing instructions from existing software and 
compiler code generators. The effort was also 
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isolated. While some new code was needed, the 
number of changes to existing components was 
minimized. These changes were confined to the 
exception handler and the startup routines for 
the operating system. Finally, transparent emu- 
lation of all missing instructions would guaran- 
tee that systems implementing the MicroVAX 
architecture would be fully compatible with 
the VAX family of machines. 

Implementation 
As mentioned earlier, the MicroVAX program 
was geared to a tight time-to-market schedule. 
That made it highly desirable to develop the 
hardware and software in parallel as much as 
possible. The VMS design team decided to 
implement the emulation code and debug it 
long before the hardware design specifications 
for a particular MicroVAX implementation were 
written. In this way, the emulation code would 
be finished and working by the time the first 
MicroVAX hardware was ready to be debugged. 

Design of the Emulator 
At this point in the project, several decisions 
were made relating to the design and imple- 
mentation of the MicroVMS instruction emula- 
tor. The emulation routines would be devel- 
oped and tested by the VMS Development 
Group. These routines would attempt to avoid 
features or coding techniques specific to the 
VMS operating system. Thus the same emulation 
source code for the instructions could be used 
later by the ULTRIX-32 and VAXELN Develop- 
ment Groups. 

The emulation support was divided into two 
pieces. The first supported character string and 
packed decimal instructions (including CRC 
and EDITPC); the other, floating point data 
types. From the beginning of the MicroVAX 
effort, system configurations would be offered 
that provided some sort of floating point sup- 
port in h a r d ~ a r e . ~  That fact influenced the 
design of the two pieces in the emulator. 

Software support  for floating point was 
viewed as a technique for running programs 
that contained small amounts of floating point 
computation. Applications that depended heav- 
ily on floating point operations would likely be 
run on systems that had floating point support 
in the hardware. Conversely, applications that 
depended heavily on packed decimal or  charac- 
ter operations did not have a hardware option at 
their disposal. The decimal/string emulator 

reflects that in several places where space is 
sacrificed in an effort to speed up the emula- 
tion subroutines. 

Structure of the Emulator 

Once the two pieces were designed, the actual 
coding began. Each of the two emulation com- 
ponents was further divided into an operand 
decode piece and an instruction execution 
piece. 

The operand decoder was a straightforward 
finite-state machine. It parsed the instruction 
stream one operand at a time, placing results 
into registers "appropriate" to each instruc- 
tion. The register assignments were usually 
made by examining the expected register con- 
tents after each instruction had completed its 
execution. For example, the final state of a 
CMPCS instruction suggests that R1 and R3 be 
used as pointers to the two character strings, 
while RO and R2 contain the initial sizes of the 
strings. 

The instruction execution routines were sim- 
ple subroutines that accepted input parameters 
in registers and produced output conforming to 
the architectural specification of the instruc- 
tions. For example, after the execution of an 
ADDP4 instruction, RO and R2 contain zero, R1 
and R3 locate the addend and sum strings, and 
the other registers are preserved. 

At the outset, several other decisions were 
made that simplified the design and implemen- 
tation of the emulator. 

Emulation support was provided transpar- 
ently by being implemented at a very low 
level in the operating system. 

Emulation subroutines were executed in the 
access mode of the missing instruction. 

The existing emulation support for G and 
H floating point data types would serve as a 
base for  fu l l  floating poin t  emulat ion 
support. 

Transparent Support 
To emulate the missing instructions transpar- 
ently, the emulators had to become an integral 
part of the operating system. They were loaded 
into system space during the system bootstrap 
and connected directly to the reserved-opcode 
exception vector in the system control block. 
Whenever  a reserved-opcode  e x c e p t i o n  
occurred, the emulator would distinguish the 
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execution of a missing instruction from other 
illegal opcodes. Missing instructions would 
cause a control transfer to the appropriate emu- 
lation subroutines. Other illegal opcodes were 
passed on to the operating system as excep- 
tions. Since the host operating system provided 
support in a transparent fashion, existing pro- 
grams could execute on a MicroVAX system 
without being changed. 

Access Mode of Execution 
The reserved-opcode exception handler had to 
begin its execution in kernel mode, as defined 
by the VAX architecture. However, if the emula- 
tor routines continued in that mode,  the  
address validation rules demanded that not only 
each operand but also each byte in a character 
string be probed for read or  write access before 
that operand could be used. Because of the 
excessive cost of these operations, w e  decided 
that the emulator routines would execute in the 
access mode in which the missing instruction 
was used. If an operand or string was not acces- 
sible, an access violation exception would 
occur, which could be intercepted for special 
processing by the emulator. 

The IJse of Existing Rotttines 

An emulator for G and H floating point data 
types already existed. Instead of completely 
rewriting this emulator to  accommodate all 
four data types, it was restructured to separate 
its operand packing and unpacking routines 
from the arithmetic and conversion operations. 
Then, additional packing and unpacking rou- 
tines were added for F and D floating point data 
types. Also, the overall structure of the floating 
point emulator was changed from a condition 
handler to an integral piece of the operating 
system. (A condition handler executes only 
within user programs, while an integral compo- 
nent would receive control whenever a missing 
floating point instruction is executed.) 

Initial Testing 
It  was obvious that a testbed was needed to 
enable the design team to debug the emulation 
software. Some method was needed to force the 
emulation software to gain control in order to 
execute the missing instructions. Since the VMS 
macro assembler can substitute a macro for an 
instruction opcode, macros could be used to 
cause the assembler to take special action 

whenever i t  encountered any of the missing 
instructions. 

A set of macros was written that caused spe- 
cial object code to be generated whenever any 
of the missing instructions was encountered. 
This special object code consisted of a byte 
containing the illegal opcode FE(hex), the 
opcode for the instruction, and all the operand 
specifiers. When one of these instructions was 
executed, a reserved-opcode exception was 
generated. A special exception handler would 
then advance the PC from the byte containing 
the FE opcode to the actual opcode. Control 
was then passed to the instruction emulator. 
One of these macros is listed in Figure 1. 

Using these macros, programs written in 
assembly language could be reassembled and 
executed using software emulation for the miss- 
ing instructions. Thus any existing VAX proces- 
sor, such as a VAX-11/730 system, could be 
used as a testbed for the software emulation. 

Results of Initial Tests 
One key factor to determine was the increase in 
execution time required by software emulation 
for different parts of the operating system and 
for application programs. To determine these 
differences, the VMS Performance Group at 
Digital ran standard instruction-timing tests 
against the emulation code. Because these tests 
were run on an existing VAX processor, the exe- 
cution times for emulated instructions could be 
compared to those done in hardware on the 
same VAX processor. These test results showed 
that it took about ten times longer to emulate 
character string instructions than to execute 
them in hardware. 

To determine the reasons for this disparity, 
the design team performed a close inspection 
of the emulation code. Quite quickly it became 
obvious that, for the simpler string instructions, 
the operand decode required as much time as 
the instruction execution. To speed u p  the 
emulated instructions, hardware support was 
requested by the MicroVMS team. 

To support this request, we  made a list of the 
operand types for the missing character string 
and packed decimal instructions. There were 
only 5 operand types in all 27 instructions. 
These operand types were already being used 
by instruct ions that  we re  a part  of the  
MicroVU subset, such as MOVC3 and MOVC5. 
A meeting of the hardware and software teams 
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.title locctst 
Sopdef 

; Redefine the LOCC opcode with a new LOCC macro 

.macro locc char.rb.len.rw,addr.ab 
locc-f e char.rb,len.rw,addr.ab 
.endm locc 

desc: .ascid "This is a test" ;Test data for LOCC 

; Test program to try a LOCC instruction. 

.entry start-here,O ; Entry point for test program 
locc <Umamm ">,desc,@desc+4 ; Generate a n  emulated LOCC 
movzwl tl,t-0 ; Standard exit status code 
ret ; Exit from program 
.end start-here ; End of test program 

Figure I Test Program with Macro for LOCC Instruction 

concluded that there would be little cost to the 
underlying hardware if these operands were 
decoded before a missing instruction exception 
was signaled. 

Design of New Emulation Exceptions 
The result of that meeting was that two new 
exceptions were added to the MicroVAX archi- 
tecture as emulation assists. Since the hardware 
could easily decode the operands for the char- 
acter string and decimal string instructions, 
they were defined as the ones that the new 
exceptions would support. Thus, two of the 
three instruction types not implemented in 
hardware could now be handled effectively. 
The third type, floating point instructions, 
would continue to cause reserved-opcode 
exceptions, since their operands could not be 
decoded without significant additional hard- 
ware support. (A separate floating point unit, 
the MicroVAX 78132 chip, provides this hard- 
ware support for three of the four floating point 
data types.)* 

The first exception is generated whenever a 
character string or decimal string instruction 
that is not in the hardware subset is executed. 
The process causes the hardware to decode the 
operands and push the exception parameters 
onto the current stack. The exception parame- 
ters are depicted in Figure 2. 

The second exception occurs only when one 
of the emulated instructions is executed and 
the first-part-done (FPD) bit is set in the pro- 

gram status longword (PSL). The VAX architec- 
ture allows many instructions (including all the 
decimal and character string instructions) to be 
interrupted after partial execution. The original 
operand specifiers cannot be decoded again 
because the register contents may have been 
altered to store the intermediate results. When 
this second exception occurs, the exception 
handler unpacks the intermediate results and 
resumes execution at the point where the 
instruction was interrupted. 

PC OF INSTRUCTION 

DECODED FIRST OPERAND t -4 
OTHER 
DECODED 
OPERANDS 

UPDATED PC 

PSL OF EXCEPTION 

Figure 2 Exception Parameters for 
Emulation Assist Exception 
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Note that this second exception can occur 
only when an access violation has already 
occurred during instruction emulation. In that 
case, the operating system's access violation 
handler transfers control to  the emulator.  
Enough intermediate state is stored in the regis- 
ters to allow restarting the instruction, at which 
time the stack is restored to its state when the 
instruction began execution. Then the excep- 
tion PC is changed from a PC inside the emula- 
tor to the PC of the original instruction that 
triggered emulation. Finally, control is passed 
back to  the  operat ing system's exception 
reporting mechanism. (Page faults, device 
interrupts, and the like are invisible to the user 
and require no special handling. That is, there 
is no need to pack the state into the registers 
and alter the saved PC.) 

Final Design of the Instruction 
Emulators 
The final design produced emulation support 
in two pieces: one for the missing floating point 
instructions; the other for packed decimal and 
character string instructions. Although the two 
emulator programs supported different data 
types, their overall design contained many com- 
mon threads. This section describes the com- 
mon design philosophy, as well as the step-by- 
step operation of each emulator. 

Common Design Philosophy 
Nearly all the emulation code executes in the 
access mode in which each missing instruction 
was originally executed. The stack associated 
with that access mode is used as a working stor- 
age area for the emulation routines. 

The emulation of missing instructions is 
nearly invisible to programs in the sense that 
memory and register contents are identical to 
those obtained on  full VAX implementations. 
The only difference between the emulated and 
hardware implementations is in the time 
required to complete an instruction and in the 
stack remnants from the emulator's temporary 
storage area. (Memory locations at small nega- 
tive offsets from the top of the stack are speci- 
f i e d  a s  UNPREDICTABLE i n  t h e  VAX 
architecture .) 

The two emulator pieces share a common 
philosophy, if not common code, in regards to 
the two memory management faults. One fault 

is made in response to an invalid page and the 
other when a reference is made to a page that is 
not readable or writable as required. 

No special treatment is required for page 
faults (translation-not-valid faults). If an invalid 
page is referenced by the emulator, a page-fault 
exception is reported to the operating system. 
The PC in the page-fault frame points at the 
instruction within the emulator that referenced 
the invalid page. After the operating system 
makes the page valid, execution resumes with 
the faulting instruction. 

References to pages that are not accessible 
(access-violation faults) are more complicated 
than the page faults. Access-violation faults, 
unlike references to invalid pages, are visible at 
t h e  program leve l .  When t h e  emula to r  
intercepts the exception, the faulting PC points 
at the emulator instruction that references the 
inaccessible page. The stack contains working 
storage that must be removed and saved regis- 
ters that must be restored. In that way, the 
exception looks like an access violation gener- 
ated on a full VAX implementation. For most 
floating point instructions, an access violation 
implies that the state of the machine will be 
reset to its state when the instruction began. For 
the decimal, string, and POLYx instructions, 
the instruction can be left in a partially com- 
pleted state. The intermediate context is stored 
in the registers and the FPD bit is set in the 
saved PSL. This bit allows the emulator to 
resume these instructions at the point where 
they left off, rather than restarting them from 
the beginning (assuming that the access viola- 
tion can be resolved). 

Floating Point Emtrlation Support 
The program that emulates the missing floating 
point instructions in software differs in several 
details from the decimal/string emulation rou- 
tines. In floating point emulation, the functions 
are performed in the following order: 

1. Execution begins in kernel mode as a 
result of a reserved-opcode exception. 

2 .  If the exception occurs in a mode other 
than kernel, the exception parameters 
are copied to the stack of that access 
mode. Further emulation takes place in 
that access mode. 

3. Each operand is decoded. 
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4 .  Floating point operands are unpacked 
into exponent and mantissa. 

5. The operation (arithmetic or conver- 
sion) is performed. 

6. If the result is a floating point number, 
the resulting exponent and mantissa are 
packed into a single number. 

7. The result is stored and the exception 
dismissed. 

Before the exception is dismissed, the float- 
ing point emulator examines the opcode of the 
next instruction. If it is also a floating point 
instruction, then control is passed back to the 
beginning of the emulator to begin the operand 
decode for the next instruction. This technique 
saves the overhead of dismissing one exception 
and immediately generat ing an ident ical  
reserved-opcode exception. 

The nature of floating point operations 
allows many instructions to accomplish their 
results by sharing different routines. There are 
routines that can unpack and pack each of the 
four floating point data types. There are also 
routines that perform the various arithmetic 
and conversion operations. Because these rou- 
tines operate on unpacked numbers, the rou- 
tines are independent of the initial data type. 

The floating point emulation routines sup- 
port all four floating point data types. Thus the 
routines can be used with all MicroVAX systems 
and other VAX systems that do  not implement 
all four floating point data types in firmware or 
hardware. 

Decimafitring Emzllation Szrpport 
The emulation of a character string or packed 
decimal instruction proceeds as follows: 

1. Execution begins in the access mode in 
which the missing instruction was origi- 
nally used. 

2 .  Operands are moved from the stack into 
registers and control is passed to an 
instruction-specific routine. 

3. Some instruction results (for example, 
from MOVTC, MOVTUC, and packed 
decimal arithmetic and conversions) are 
s t o r e d  w h i l e  t h e s e  r o u t i n e s  a r e  
executing. 

4 .  The routine executes i~nt i l  an input or 
output string is used up,  at which time i t  
completes the storage of results. Execu- 
t i o n  i s  r e s u m e d  w i t h  t h e  n e x t  
instruction. 

Because the decimal/string emulator relies 
on hardware for its operand decode stage, the 
lookahead technique used by the floating point 
emulator cannot be used for decimal and string 
instructions. If the instruction following an 
emulated instruction also requires emulation 
support, the following sequence takes place: 

1. The first exception is dismissed. 

2 .  The next instruction is executed. 

3. The operands of that instruction are 
decoded and stored on the stack. 

4 .  The decimal/string emulator regains 
control. 

Since these instructions perform many unre- 
lated operations, there is little code that can be 
shared between their emulation routines. 

Testing and Debugging 
The main problem in testing the emulation 
software initially was that  there  was n o  
MicroVAX hardware available during most of 
the implementation cycle. Thus we had to 
develop techniques to simulate the hardware in 
order to begin the tests. There were two chief 
techniques used to test and debug the emula- 
tor. First, instruction-specific routines were 
tested as user-mode programs in a normal pro- 
gram development environment. Second, the 
exception handler front-end was tested on a 
VAX-1 1/730 system that was modified, by 
rewriting some of the 11/730 microcode, to act 
like a MicroVAX system. 

Instruction-Specific Testing 
Microcode written for a particular implementa- 
tion (both VAX and MicroVAX systems) can be 
used only on that particular machine or a simu- 
lation of that machine. However, macro-level 
code can be executed on any VAX processor. 
Therefore, since the emulation routines were 
written in macro-level code that executes on 
any VAX processor ,  "normal" debugging 
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techniques could be used for part of the debug 
effort. 

A set of test programs was constructed that 
would run on other VAX processors (1 1/730, 
11/750, and 11/780). These test programs 
would call each instruction-specific subroutine 
and compare the results (memory contents, reg- 
ister contents, and settings of the condition 
codes) with the output from the corresponding 
instructions executed on those processors. 
These tests allowed the basic algorithms to be 
debugged even before they were plugged into 
the emulator. The set of tests was limited only 
by the choice of input data for each instruction. 

The first set of tests uncovered most 
algorithmic problems but did not exercise the 
error paths (such as inaccessible source or des- 
tination strings). The code to handle these error 
conditions was written later in the develop- 
ment cycle. Neither the absence of these error 
paths nor errors in edge conditions (such as 
zero-length strings) prevented the VMS system 
from executing. 

Another benefit of a macrocode implementa- 
tion was seen during the debug of the edge- 
condition problems. Since the instruction emu- 
lation routines were just an extension of the 
operating system, the debugging tools used for 
other operating system code could be used to 
debug the emulator. 

Testing the VAX- 11/730 Breadboard 
Implementation 
The availability of the two new emulation 
exceptions changed the strategy for debugging 
the emulation code. The software solution used 
to obtain preliminary results was unable to 
mimic the new exceptions invented to assist 
the emulation. Therefore, a new testbed was 
needed to accommodate the debugging pro- 
cess. The testbed had to decode the operands 
and generate the appropriate exceptions to pass 
control to the software emulation code. One 
way to perform these functions was to alter an 
existing VAX system, such as the VAX-11/730 
processor. 

The 11/730 is an entirely "soft" machine; 
that is, all its microcode is loaded at powerup 
rather than being resident in ROM. By altering 
that microcode, the design team could make 
the 11/730 look like the architecture in a 
MicroVAX system. The required changes were 
simply a matter of removing the microcode for 

instruction execution while leaving that for 
operand decode. To finish the alterations, the 
design team had to write a new "exception gen- 
erator" to create the emulation exceptions. 

At this time in the project, the first real 
MicroVAX hardware would still not be available 
for nine months. Therefore, the VMS design 
team decided to undertake the modifications to 
the 11/730's microcode and to build the 
testbed. We estimated that this effort would 
take one to two months, since the VMS devel- 
oper had to learn to write microcode. That 
meant that the software emulation code would 
still be completed long before the first 
MicroVAX hardware was ready. 

The microcode source programs were 
acquired from the 11/730 microcode team and 
assembled using the latest version of the 
microcode assembler. The 1 1/730 microcode 
was structured as separate modules for different 
functions (for example, floating point, compat- 
ibility mode, exceptions, memory management, 
and so on). Due to the lack of a "linker," label 
files that allowed routines to be called across 
modules had to be created. To speed the devel- 
opment, the design team wrote several FOR- 
TRAN tools that automatically generated new 
label files. In addition, command files were 
built that correctly created a new set of binary 
microcode files from a set of modified sources. 

The next step was to change the 11/7301s 
microcode. Since it had to exist in a limited 
amount of RAM space, the new code could not 
be added without removing some existing 
code. Therefore, we decided to replace the 
compatibility mode microcode with a new rou- 
tine to generate the emulation exception. Some 
new flags were added that, at the developer's 
choice, would allow different classes of 
instructions to be emulated (i .e . ,  decimal 
string, character string, or floating point). 
Finally, to boot the VMS system on this 
MicroVAX version of an 11/730, we had to 
enhance the VMS bootstrap code to load the 
emulation exception handlers and connect 
them to the appropriate exception vectors. 

Now the software emulation code, from the 
exception handler all the way down to instruc- 
tion execution, could be debugged. The best 
measure of the success of this venture was 
made when MicroVAX hardware was finally 
available. The customized VAX-11/730 system 
was such a good testbed, not only for the 
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instruction emulator but also the rest of the 
MicroVAX I support, that it took a mere four 
days to get the VMS system running. 

Other Test Mechanisms 
The initial testing of the instruction emulator 
consisted of a set of programs and sample input 
data for each of the missing instructions. While 
providing routines that worked in almost all 
cases, these tests did not exercise some of the 
more exotic edge conditions. Those included 
very long or very short strings, illegal operands, 
or strings that were not readable or writable. 
Once MicroVAX hardware was available, several 
new testing techniques could be used to exer- 
cise the emulator. 

Operating System Code 
More testing was provided by running the oper- 
ating system code with the emulator providing 
character-string and packed-decimal support. 
The VMS Development Group has a large set of 
regression tests that exercise most success and 
error paths within the operating system. These 
tests plus normal daily use by the VMS develop- 
ment community ensured that extensive testing 
of the instructions used by the VMS operating 
system was performed. 

Once the VMS system was running, the 
ULTRIX-32 and VAXELN Development Groups 
requested the source code for incorporation 
into their systems. These systems exercised 
parts of the emulator that the VMS system did 
not use. The ULTRIX kernel uses a small num- 
ber of packed decimal instructions (ASHP, 
ADDP4, SUBP4, and EDITPC) for some of its 
arithmetic and formatting support. When the 
ULTR1X-32 operating system first exercised the 
emulator, several bugs were detected and 
corrected. 

Compiler-Generated Code and Associated 
Tests 
The base operating systems used packed-deci- 
ma1 and floating point instructions in a small 
number of cases. These instructions received 
better testing using programs written in COBOL 
and FORTRAN. The compilers and their valida- 
tion tests were used to test the emulator rou- 
tines from the time they were first written until 
they finally shipped. 

Architectural Conformance 
Even such continual testing is no guarantee that 
each instruction executes according to the VAX 
architecture specification. Most of the testing 
described so far exercised the success paths of 
the emulation subroutines. The error paths, 
especially the code that intercepted and modi- 
fied access violations, required a different set of 
tests. 

CPU Diagnostics 
For each CPU designed by Digital, a set of CPU 
diagnostics is written that exercises as much of 
the central processor as possible. Included in 
these diagnostics is an instruction-set exerciser 
that tests for proper behavior in at least some of 
the interesting error cases. The CPU diagnostics 
for the MicroVAX I served as the primary test 
for the access violation handler in the deci- 
mal/string emulator. 

AXE Ver@cation Program 
All new VAX computers at Digital are tested 
with an architectural verification tool known as 
AXE. AXE programs are used to determine 
whether or not the machine conforms to the 
VAX architectural specification. AXE accom- 
plishes this testing by subjecting each VAX 
instruction, with many combinations of oper- 
ands, to a variety of error conditions. These 
conditions include inaccessible operands, 
instructions or operands that cross page bound- 
aries, and unusual operands. 

When the MicroVAX instruction emulator 
was subjected to AXE testing, the only bugs that 
remained involved an instruction restart follow- 
ing an access violation. 

Results 
As a result of this strategy, the software emula- 
tion code was completed and fully debugged 
before the first real MicroVAX hardware was 
finished. The ULTRIX-32 and VAXELN oper- 
ating system groups were able to take the VMS 
emulation code and convert it to work under 
their operating systems. That took much less 
effort than was required for the VMS develop- 
ment team to implement that code. With this 
technique, bugs found in the instruction-execu- 
tion logic in one system could be corrected in 
all three operating systems. 
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A second benefit of this engineering effort 
was seen by the  hardware designers. The 
revised VAX-11/730 microcode sources and 
microcode tools were further modified to cre- 
ate a MicroVAX CPU chip simulator. The simu- 
lator allowed the MicroVAX CPU boards to be 
tested before any MicroVAX chips were actually 
available. 

The biggest gain of all was that no applica- 
tion software, compilers, or operating system 
code had to be rewritten to avoid the use of the 
missing instructions. 
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Tibe TK5O Cartridge 
Tape Drive 

A streaming tape drive, the TK5O subsystem, prouides f a t  backup and 
data transfer for small computers like the MicroVAX I1 system. A single- 
reel cartridge, using half-inch magnetic tape, stores 100 megabytes of 
data. A unique tape transport system automatically threads the tape 
when the cartridge is inserted. The drive reads and writes data in a 
selpentine manner, going the entire tape length first on one track, then 
another. For high data integrity, the TK5O subsystem employs a sophisti- 
cated error-recovery algorithm, reading data afler writing it and rewrit- 
ing any corrected data farther down on the tape. The Q-bus controller, 
the TQK50, contains complex firmware conforming to Digital's Storage 
Architecture and controlling data transfers between the CPU and the 
tape. 

As the performance of computer  systems 
expands while their size shrinks, many factors 
demand special attention. One major factor is 
storage systems. Over the past few years, disk 
drives have made dramatic advances, providing 
storage capacity of hundreds of megabytes in 
very small and relatively inexpensive packages. 
Since the predominant technology for today's 
disk drive is based on the fixed-media concept, 
some means of providing system backup and 
data transfer capabilities is required. Magnetic 
tape systems are still the most viable way of 
providing these capabilities. 

Ease-of-use considerations require that a 
backup/transfer device be matched in capacity 
to the supported disk systems. It should also be 
extremely reliable, fast, and very cost effective. 
This paper describes a peripheral subsystem, 
the  TK50 magnetic  cartr idge tape drive 
(Figure I ) ,  that meets all these requirements. 

Design Goals of the m5O Subsystem 
The TK50 cartridge tape subsystem was con- 
ceived to meet the needs of the MicroVAX I1 
and similar computer systems. A study of tape 
products then available indicated that existing 
quarter-inch cartridge drives did not provide 

either the performance or the capacity required 
to back up  the large capacity disk drives sup- 
ported by these systems. Existing drives also 
lacked the  rel iabi l i ty  and data integri ty 
required to complement the designs of our new 
microsystems. Therefore, Digital designed the 
TK50 cartridge tape subsystem to meet the 
needs of the MicroVAX I1 system and other 
small to mid-range computers. 

A wide variety of factors defined the design 
goals of the TK50 subsystem. It had to fit into a 
standard 5 %-inch form factor and provide high 
capacity with high data integrity. The desire for 
mechanical simplicity, reliability, and low cost, 
while maintaining good performance, dictated 
a streaming tape design. The TK50 subsystem 
had to be compatible with the Q-bus, and the 
TK50 controller had to support the Tape Mass 
Storage Control Protocol (TMSCP) of the  
Digital Storage Architecture. 

Our investigations led to the concept of an 
automatic-threading, single-reel cartridge that 
utilized the established medium of instrumen- 
tation tape. This tape supports high bit densi- 
ties and fast tape speeds, allowing great latitude 
in specifying the performance and capacity of 
the TK50 subsystem. We also decided to use 
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Figure I The TK50 Tape Drive 

half-inch tape, rather than quarter-inch, to max- 
imize capacity. 

The requirement of the MicroVAX I1 system, 
as well as our desire to minimize risks in a first- 
generation product,  dictated that the tape 
capacity should be 100 megabytes (MB) . 

System Design 
The TK50 cartridge tape subsystem was devel- 
oped with three major components: 

A tape cartridge, called the CompacTape Car- 
tridge, that houses 600  feet of half-inch tape 
and supports the auto-threading feature of 
the transport mechanism 

A unique streaming tape transport featuring 
auto-threading and a microprocessor-con- 
trolled servo-system 

An intelligent, microprocessor-based Q-bus 
controller that supports TMSCP 

CompacTape Cartridge 
The CompacTape Cartridge is unique in many 
ways. First, it provides a large amount of data 

recording surface for its volume. The cartridge 
has approximately two hundred and fifty times 
the recording surface area of a single-sided 
5 %-inch floppy disk. Moreover, compared to 
the only commercial tape product then availa- 
ble to fit the 5 %-inch form factor, the Com- 
pacTape Cartridge is four times as efficient in 
utilizing tape volume in relation to cartridge 
volume. The cartridge is designed to maximize 
the volume of tape in the standard form factor 
of the 5 %-inch drive. The cartridge, shown in 
Figure 2, contains a single reel with the tape 
occupying forty percent of the cartridge's vol- 
ume. The tape is !h inch wide, .001 inch thick, 
and 600 feet long. 

Second, the CompacTape Cartridge is a com- 
pletely enclosed device that never exposes the 
media to the environment, thus greatly enhanc- 
ing the data reliability of the entire subsystem. 

Third, the CompacTape Cartridge allows 
automatic tape threading once it is inserted into 
the TK50 tape drive. This auto-threading func- 
tion is a key feature of the mechanical design of 
the tape transport. 
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DRIVE HUB 

Figure 2 The TK50 Tape Cartridge 

Figure 3 Engagement of Drive Leader 
to Cartridge Leader 

The auto-threading works in the following 
way. When a cartridge is inserted into the drive, 
the tape must be threaded around the tape 
guides, over the read/write head, around the 

0 0 
take-up reel, and then fastened to the reel hub. 
Two leaders are used to accomplish the thread- 
ing, as shown in Figure 3 .  One, made of ,007- 
inch Mylar, is attached to the BOT end of the 
tape in the cartridge; the second is attached to 
the hub of the take-up reel in the drive. This 
second leader has an arrow-shaped t ip  that 
reaches from the reel, through the tape path, 
and into the area that will be occupied by the 
tip of the first leader when the cartridge is 
inserted. During the insertion process, the 
arrow-shaped tip is moved by a cam into the 
opening of the cartridge leader. Tension is then 
appl ied t o  lock t he  leaders together. This 
"buckle" is now ready to be pulled through the 
tape path and wound onto the take-up reel. 

This buckling process is accomplished by 
two links in the drive, in conjunction with a - TAPE LEADER DRIVE 
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constant tension applied by the motor to the 
take-up leader. One link uses a cam to move the 
two leader tips into each other. The other link STEP 1 STEP 2 STEP 3 

holds the take-up leader in the correct position 
and retreats at the right instant, allowing the 
motor to cinch the buckle. The entire process 
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happens during the last half-inch of insertion as 
the cartridge enters the drive. (See Figure 4 . )  
This linking takes place without any tape being 
spooled out of the cartridge. 

When the tape is rewound into the cartridge 
for removal from the drive, the two ears on the 
cartridge leader come to rest in a pocket in the 
cartridge shell. When the cartridge is removed 
from the drive, two opposing locks hold the 
reel in this position. The toothed locks engage 
with rhe teeth on the outer diameter of the reel 
flange. Thus locked, the tape stays tightly 
wound and the leader tip is kept in the correct 
position for a subsequent buckling process. 

Tape Transport 
The TK50 tape transport (Figure 5) consists of 
two major components: the tape drive and a 
single printed circuit board assembly. 

The tape drive encompasses the mechanical 
and electromechanical components to read data 
from and write data to the magnetic tape. The 
drive's major components include 

The magnetic readlwrite head and its linear 
positioner 

& PROPER LOCATION OF LEADER 

LEADER HIDDEN - LEADER DLSPLACED ABOVE LINK 

Figure 4 View of Leader Shown in Four 
Positions 

LEADER. TAKE-UP REEL. TAKE-UP 

CONSTRAINT. TAPE 

ASSEMBLY 
\ / . LEADER 

LINK. BUCKLING 

BRACKET & 
HEAD ASSEMBLY 

REEL. DRIVER 

BEZEL 
ASSEMBLY 

Figure 5 TK50 Tape Drive Transport 
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WRITE READ 

HEAD BRACKET 

\ \ ISLANDS / 

TAPE v / ISLANDS 
\ 

READ WRITE 

Figure G TK50 Read/Write Head (Top View) 

The cartridge threading mechanism 

The take-up reel and its motor 

The drive hub mechanism, which interfaces 
to the CompacTape Cartridge, and its motor 

The tachometer, which provides feedback to 
a microprocessor, the 805 1, for tape speed 
control 

Various sensing devices that monitor and 
control the handling of the tape as it passes 
over the read/write head 

HEAD BRACKET 

HEAD 

I 

Read/Write Head 

The read/write head is designed with four 
islands that are in contact with the tape 
(Figure 6). The tape forms a polygon as it con- 
tacts these four areas. Each island bends the 
tape by an angle of six degrees. Over its width, 
each island is curved by an amount correspond- 
ing to the radius of the natural curvature of the 
tape under working tension, thus assuring good 
surface contact (Figure 7). The narrow islands 
limit any temporary liftoff (due to contamina- 
tion) to very short sections of tape, and they 
clean the tape as well. 

HEAD BRACKET 

Figure 7 TK50 Read/Write Head (Side View) 
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Except for the ferrite cores, the entire head 
block is made of ceramic material to ensure 
long life. The two inner islands contain the 
read/write cores; the two outer ones direct the 
tape to the inner ones so that uniform contact 
between the tape and the head is provided. On 
the upper part of the head assembly are two 
gaps, a write gap (.018 inch wide) followed by 
a read gap (.008 inch wide), that read and 
write data when the tape is moving forward. 
Two corresponding lower gaps read and write 
data during reverse tape motion. The lower 
gaps cover the odd tracks and the upper gaps 
cover the even tracks; thus, the head has to 
traverse only half the tape width, helping 
greatly to keep the height of the drive within 
limits. The track spacing is .0 19 inch. 

Allto- Ttveading 
As the cartridge is inserted, its door opens, 
exposing the  cartridge leader. Then,  as 

described earlier, two plastic arms in the drive 
act to buckle the cartridge's supply leader to 
the drive's take-up leader. The rest of the auto- 
threading process is handled by the drive's 
motors, sensors and microprocessor. 

Tape motion and tension control is accom- 
plished through two microprocessor-controlled 
brushless direct-current motors. One of these 
motors is connected directly to the take-up 
hub; the other to a drive hub designed to inter- 
face to the CompacTape Cartridge. 

The engagement of the cartridge hub with 
the drive motor shaft is accomplished by a pair 
of gears that transmit torque and simultane- 
ously center the reel (Figure 8 ) .  A plastic hub 
with one set of teeth is attached to the spindle; 
another set of teeth is molded on the underside 
of the cartridge reel hub. A clutch gear engages 
both sets of teeth to drive the reel. To facilitate 
the insertion or removal of the cartridge, the 
clutch gear is axially retracted out of engage- 

Figure 8 TK5O Door Assembly 
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ment. The clutch gear is activated by the opera- 
tor's lowering or raising the handle. When the 
handle is lowered, the spring-loaded lower gear 
engages the reel and lifts i t  slightly into the 
cartridge to  eliminate contact between the 
rotating reel and the stationary shell (Figure 8).  

This clutching arrangement has a big advan- 
tage because i t  allows mechanical simplicity 
and easy operation of the drive. The cartridge is 
inserted by the  opera tor  in to  a channel  
(receiver) that puts the two leaders into a 
coplanar relationship. The entire linking pro- 
cess is thus accomplished by merely sliding the 
cartridge into the receiver slot. A solenoid-acti- 
vated interposer locks the cartridge in place 
when i t  reaches t he  end position in the  
receiver. When the front handle is then low- 
ered, the drive gear rises to mate with the car- 
tridge reel. A set of fingers simultaneously 
enters the bottom of the cartridge to release the 
reel locks, thus allowing the tape to move. The 
operator accomplishes all these actions with 
one hand. 

After a tape cartridge is inserted into the 
TK50 drive, the operator presses a button and 
the 805  1 microprocessor on the printed circuit 
assembly initiates the threading process. The 
reel motors, under microprocessor control, 
slowly put tension on the tape to accomplish 
the process. The buckled leaders and a length 
of tape are pulled through the drive and onto 
the take-up reel. Auto-threading is complete 
when the BOT hole in the tape is detected by a 
photo-transistor. When the auto-threading oper- 
ation ends,  the  microprocessor will  have 
received pulses from a tachometer attached to 
one of the rotating tape guides. Through the 
information derived from the tachometer, the 
microprocessor can maintain proper tension 
and tape speed. 

After the tape is positioned at BOT, the con- 
troller requests a calibration procedure. This 
procedure sets u p  the drive to ensure that 
proper values for the read circuitry gain and 
head stepper alignment are obtained. This cali- 
bration provides one of the key features of the 
TK50 subsystem: the ability of a user to  
exchange media between different TK50 tape 
drives without the need for adjustments. 

Once calibrated and at BOT, the TK50 drive 
is ready to read or write data. The drive writes 
data in a serpentine fashion over the entire 
length of the tape. The upper  part of the 

read/write head writes data on one track down 
the entire length of tape until i t  reaches a logi- 
cal EOT marker. (The logical EOT marker is a 
preset tachometer count; the physical EOT 
marker is a hole in the tape.) The tape direction 
is then reversed and the other lower write core 
will write data in the other direction for the 
entire length of the tape until a logical DOT is 
reached. The direction of the tape is then 
changed to forward, the head is stepped up  by 
19 mils, and the upper write core is again used 
to write data. Figure 9 illustrates the physical 
tape configuration. 

Dril'e C1rc117tq~ 

The printed circuit board assembly is built 
around an 805  1 microprocessor. The 805  1 and 
associated circuitry provide the intelligence to 
interpret commands, provide servo control for 
the reel motors, perform tape calibration proce- 
dures, and monitor various status inputs. The 
read/write circuits necessary to translate data to 
and from the tape's MFM format also reside on 
the board. Figure 1 0  illustrates a simplified 
block diagram of the TK50 drive board. 

Write data comes into the drive's logic board 
via the differential signal cable from the con- 
troller board. The data enters the shift register, 
which accepts the serial data and outputs a 
five-bit parallel data pattern into a program- 
mable array logic (PAL) device. The data is 
clocked through the shift register by a 500-KHz 
clock. (500 KHz is the write pulse rate, or data 
rate.) 

The PAL first accepts the five parallel bits 
from the shift register. Then the PAL generates 
the pre-compensation, as required, and trans- 
lates the data into the MFM format recorded on 
the tape. A constant current source of 15 mil- 
liamps is applied alternately to each core of the 
active write head, resulting in the flux transi- 
tions necessary to write data on the tape. 

To enhance data reliability, the TK50 subsys- 
tem reads data just after writing it. This tech- 
nique uses the read head (positioned immedi- 
ately behind the write head) to read the data 
from the tape as soon as it has been written. 
(See Figure 7.) 

The read data is sent back to the controller, 
where the communications interface performs 
CRC processing. If an error is detected, the con- 
troller rewrites the block that contained the 
error. The rewritten block is placed farther 
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down on the tape to avoid the performance loss 
resulting from the drive's having to move the 
tape back and rewrite over the data block con- 
taining the error. The controller firmware is 
able to detect these rewritten blocks during a 
subsequent read pass for data recovery proce- 
dures, thereby enhancing system integrity. 

Read data signals from the read head are fed 
to the differential preamplifier circuit and in 
turn to the read amplifier. The gain of the 
preamplifier is automatically set during calibra- 
tion to maintain an optimum signal level. The 
signal from the read amplifier is then passed to 
a differentiated, linear-phase, low-pass filter. A 
zero-crossing detection circuit produces a 
digital signal, consisting of a single pulse for 
each detected zero crossing, that represents 
data read from the tape. 

The digital data is then sent to the phase lock 
loop (PLL) circuit where the clock signal is 
recovered and the MFM data is decoded. The 
PLL consists of two PALS, a voltage-controlled 
oscillator, and some analog circuitry. 

The read-data pulse from the read amplifier 
circuit is used in conjunction with the 500-KHz 
write clock to optimize the "lock time" for the 
PLL. Whenever there is a gap (no signal) going 
into the PLL, i t  will lock onto the 500-KHz 
clock signal. This locking is done so that the 
loop-filter integrating capacitor is kept at a con- 
stant voltage. This process minimizes the phase- 
lock time during the preamble. 

When the READ ENABLE signal is asserted, the 
PLL waits for the synchronization (sync) bit. 
When the PLL detects the transition, i t  clocks 
the sync bit and data onto the serial line to the 
controller and starts sending back the read 
clock. The sync bit signals the communications 
processor on the controller to start processing 
the following data and the CRC check-word, 
and to check for a matching CRC. 

Q- bus Controller 
The intelligent interface between the TK50 
tape transport and the Q-bus is designated as 
the TQK5O. Figure 11 is a block diagram of the 
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TQK5O. The interface is a Q-bus-compatible 
dual board based on the 80  186 microprocessor. 
In conjunction with 32 kilobytes (KB) of highly 
complex firmware, the 8 0  186 and its associ- 
ated hardware perform the following functions: 

Interface the controller to the Q-bus (via sin- 
gle-word and DMA transfers) 

Translate and process TMSCP command 
packets and responses 

Provide data format and error recovery 
processing 

Control the general operation of the tape 
transport mechanism 

Support the serial data link between the con- 
troller and drive 

Hardware 
The Q-bus interface is controlled primarily by 
an 80186 microprocessor and an 82S105 field 
programmed logic sequencer (FPLS), which is a 
high-performance LSI device capable of per- 
forming complex logic functions. Using the 
82S105 FPLS sequencer allowed us to create an 
efficient, flexible design in a very small space. 
The FPLS and microprocessor are responsible 
for maintaining the strict Q-bus protocol during 
DMA transfers to and from the controller. The 
DMA transfers and interface interrupts are 
processed very quickly due to the high per- 
formance of the microprocessor and FPLS. This 
high performance makes possible the data rates 
needed to support tape streaming and lessens 
the criticality of the DMA latencies in the host 
system. 

Assisting the FPLS is an 80186 microproces- 
sor operating at 6 MHz. The 801 86 is a highly 
complex, 16-bit microprocessor; it is responsi- 
ble for all the command, control, and data 
processing for the TQK5O. A microprocessor 
with the 80186's performance is required due 
to the large number of complex tasks that must 
be performed within very short time frames 
(e.g., ECC processing during inter-block gaps 
on tape). The high level of integration available 
with the 8 0  186 was a key factor in its selection. 
In addition to the CPU, the 80186 contains 
three onboard timers, an interrupt controller, 
address decoding, and two DMA channels. Also 
important in the selection of the 80  186 was the 
availability of sophisticated development tools 
and efficient software support packages. 

The 80186 microprocessor is supported by 
numerous components that include SSI, MSI 
and PAL devices. Furthermore, the program 
store and the workspace/data buffers are pro- 
vided by 128-kilobit (Kb) EPROMs and 64Kb 
static RAMS. A total of 32KB of program store 
and 16- of buffer is available to the 801 86.  

Communications between the TQK5O con- 
troller and the TK50 tape transport take place 
over a pair of full-duplex, differential, serial 
Lines. A multiprotocol communications proces- 
sor (NEC 7201) is used to process the serial-to- 
parallel and parallel-to-serial conversions. One 
fu l l -duplex  channel ,  opera t ing  a t  1 8 7 . 5  
kilobaud, communicates the command/status 
information between the controller and the 
transport. The other channel provides the data 
communications path, supported by data-link 
error checking via CRC-16. This second chan- 
nel operates synchronously at 500Kb per sec- 
ond. The NEC 7201 communications chip sup- 
ports DMA transfers to and from the 8 0  186 and 
operates in a priority-interrupt mode. 

Firm.zi~are 
The most complex component of the TK50 sub- 
system is its firmware. The 32KB of firmware 
contained in EPROM are partitioned into five 
major functions: 

The PORT/Q22 (Q-bus) for data transfer 
control 

The SERVER for TMSCP command processing 

The  TOS for  t a p e  t r anspor t  c o n t r o l  
and formatting 

The ECC for error detection and correction 

The ROD for resident onboard diagnostics 

The PORT/Q22 firmware controls data trans- 
fers between the controller and CPU, and also 
maintains the command queue processing. Up 
to four TMSCP commands can be queued,  
allowing the host to set up  a series of opera- 
tions for execution while it continues with 
other processing. DMA transfers of up  to 64K-1 
bytes can be made, allowing an effective, low- 
overhead data transfer between the subsystem 
and CPU memory space. 

The SERVER firmware is responsible for trans- 
lating and executing the wide variety of TMSCP 
commands. These commands provide a very 
structured environment within which control, 

-- 
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status, and data transfers are accomplished. 
TMSCP is a packet protocol that uses a com- 
mand-response sequence.  Each pair of com- 
mand-response packets contains information 
pertaining to the internal command as well as 
various command modifiers, status fields, and 
subsystem parameters. A l l  levels of information, 
from the command sequence number to com- 
mand status to hardware and firmware revision 
levels, are provided in TMSCP. In addition to 
assembling and processing this information, the 
SERVER firmware uses values, such as physical 
and logical record numbers, to validate infor- 
mation being processed from the tape. 

SERVER has an additional mode that supports 
the Diagnostic Utility Protocol (DUP). DUP 
provides a set of commands that allow detailed 
tests of the subsystem to be performed. DUP 
operates in conjunction with the resident on-  
board diagnostic module. 

The TOS (tape operation support) firmware 
controls the transfer of data between the tape 
transport and the buffers allocated by SERVER. 
This control is accomplished through format- 
ting operations and through physical control of 
the tape transport mechanism. 

The TK50 subsystem is a streaming tape drive 
that was designed to operate in an efficient 
block-mode environment. The TK50 subsystem 
relies on logical information written on the 
tape to determine the tape's physical and logi- 
cal positions. The physical and logical contexts 
are maintained by the TOS firmware and writ- 
ten into special control fields embedded in the 
TK50 tape format. Information contained in 
these fields includes physical object number,  
logical object number,  tape-mark number,  byte 
count,  sequence control number,  track num- 
b e r ,  and b lock  type .  This  informat ion is 
processed by TOS to maintain the physical and 
logical contexts between the subsystem and the 
data on the tape. 

D u r i n g  s t r e a m i n g  o p e r a t i o n s ,  c o n t e x t  
processing is the  primary function of TOS. 
However, when the host system is unable to 
process data at a sufficient rate to maintain the 
streaming operation (4 5KB per  second),  TOS 
must provide complex  positioning control .  
Whenever the  host system falls below the  
required data transfer rate, TOS must stop the 
tape. Since the TK50 subsystem was mechani- 
cally optimized for streaming, any stopping and 
starting of the tape is a time-consuming and 
imprecise operation. Moreover, the TK50 sub- 

system lacks the inter-record gaps that are used 
for positional information in traditional 9-track 
tape drives. The TK50 subsystem must rely on 
data read from the tape to locate its position. 

When the host system resumes data process- 
i n g ,  TOS m u s t  repos i t ion  t h e  t ape  by a 
sequence of reverse, stop, forward, and read. 
After locating the last data block processed on 
the tape, TOS continues with the host's request. 
The host's failure to process data at a sufficient 
rate is costly in terms of system throughput. 
This situation requires increased complexity in 
the subsystem design. 

TOS provides a padding function to help 
compensate for insufficient host processing 
power.  With padding, TOS allows data latencies 
of u p  to 6 3  milliseconds before reverting to the 
repositioning mode. During this data latency 
period, pad blocks are written to the tape in 
9-millisecond increments. That allows the tape 
t o  c o n t i n u e  s t r e a m i n g .  T h e  t rade-of f  is  
improved  per formance  a t  t h e  e x p e n s e  of 
slightly reduced tape capacity ( 5  1 2  bytes per 
pad block).  If the  63-millisecond period is 
exceeded, TOS stops and performs a reposition 
to the point of the last data block. When addi- 
tional data arrives, TOS overwrites any previ- 
ously written pad blocks. In practice, this pad 
function enhances performance and seldom 
reduces tape capacity by more than ten percent. 

The ECC firmware provides the means to 
detect and correct errors. To provide a high 
level of reliability, the  TK50 subsystem is 
designed to allow only one unrecoverable error 
in every 1 X 1 0 '  ' bits read. This is equivalent to 
one unrecoverable error in every 125  cartridge 
reads. To achieve this goal, ECC implements 
error-detection and error-correction schemes. 
Error detection is based on the CRC-16 method, 
which is supported by the hardware communi- 
cations device. This industry-standard method 
has been proven to be very efficient in this 
environment. 

To implement the error-correction function, 
ECC processes serial-formatted data to and from 
the tape. Data is written to and read from the 
tape in 512-byte blocks. Each block is grouped 
into 8-block units, called data entities. Within 
an entity, the four even-numbered data blocks 
(0 ,2 ,4 ,6 )  and the four odd-numbered blocks 
(1 ,3 ,5 ,7)  are protected by longitudinal check- 
sum blocks. An entity, therefore, consists of ten 
blocks: data blocks 0 through 7 and ECC blocks 
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(5 12 BYTE BLOCKS) 

Figure 12 Entity of Ten Blocks 

0 

8 and 9.  Figure 1 2  shows the arrangement of 
the ten blocks. 

This technique, coupled with record-level 
checking by SERVER and the host operating sys- 
tem, insures the complete integrity of the user's 
data. 

The ROD (resident onboard diagnostics) 
firmware provides additional support for the 
TQK5O. When the subsystem is initialized, the 
firmware executes a series of go/no-go tests 
that validate the functionality of the controller. 
Ninety-eight percent of the TQK5O's function- 
ality is covered by these tests, excluding the 
Q-bus and drive-interface logic circuits. More 
extensive diagnostics that fully test the TK50 
subsystem are available under the DUP. Having 
the diagnostics resident in firmware allows the 
running of integrated tests that interact at levels 
not permitted from the system interface. That 
avoids the difficulties in supporting down-line 
l o a d a b l e  c o d e  i n  v a r i o u s  r u n - t i m e  
environments. 

Summary 

t 
1 

Designing the TK50 cartridge tape subsystem 
and turning it into a product was a significant 
challenge. The effort proves that good perform- 
ance ,  high rel iabi l i ty ,  ease of use ,  and 
extraordinary data integrity can be achieved in 
a cost-effective manner. These qualities will 
continue to be required as computer systems 
increase in performance and capacity. 

To that end, the TK50 cartridge tape subsys- 
tem is but the first of a family of cartridge tape 
products. Work is continuing on the develop- 
ment of subsystems with higher performance 
and greater capacities. Interfaces to computer 
systems other than those based on the Q-bus 
have been or are being developed to meet the 
expanding needs for greater storage capacity. 
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Designing the TK50 cartridge tape subsystem 
required a multitude of disciplines involving 
scores of individuals. Each member of the TK50 
program team contributed time, energy, and 
personal commitment to yield a successful 
product.  The authors wish to acknowledge 
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Porting ULTRCY 
software to the 
Micro VAX System 

The UL TlUX system, written in the C programming language, was ported 
to the MicroVAX ZZprocessor by a multistep process. This involved estab- 
lishing a cross-development enuironment, building a bootpath, porting 
the ULTRCY kernel, and writing special device drivers. The remaining 
soflware was ported afler those steps were completed. To minimize 
UL TRCY design changes, the system's Z/O architecture was mapped into 
the MicroVAX physical address space so as to mirror the equivalent 
mapping on larger VAX system. Some MicroVM instructions must be 
emulated in macrocode. The emulator used in the MicroVMS sojbare 
was adapted for use in this ULTlUX somare. 

The UNIX system came into existence in 1969 
at the AT&T Bell Laboratories in Murray Hill, 
New Jersey. The initial system was written in 
assembler and ran on  a PDP-7 system that was 
loaded from paper tapes. From late 1970 to 
early 1971, the UNIX software was reimple- 
mented for the PDP-11 system using a cross- 
assembler running on  the original PDP-7 sys- 
tem. In 1973, the kernel was rewritten in the C 
programming language. Since that time the sys- 
tem has undergone many changes and is still 
the subject of much research.' Today, there are 
two major 32-bi t  variants of the  original 
software: 4BSD, developed at the University of 
California at Berkeley; and System V, from 
AT&T Corporation. Digital Equipment Corpora- 
tion's original ULTRIX-32 product is a direct 
descendant of 4.2BSD. 

In 1983, Digital decided to develop and dis- 
tribute a UNIX software product. At that time, 
4.2BSD was the only virtual-memory UNIX 
operating system running on VAX processors. It 
is still the only UNIX software derivative to pro- 
vide network support. These features were the 
key factors in deciding to use 4.2BSD as the 
basis of the ULTRIX-32 system. 

Development started in the fall of 1983 on 
one of the first 4.2BSD distributions, and the 

final product was released in April 1984 as 
ULTRIX-32 V1.O. In the current version of the 
product, we have combined the two UNIX sys- 
tem derivatives by adding the system services of 
the AT&T version to the original ULTRIX-32 sys- 
tem. To that base we have added reliability and 
maintainability features, as well as new-proces- 
sor support. The resulting system, one of the 
industry's most powerful and versatile UNIX 
software versions, spans the full VAX system 
price/performance range. 

Porting the UNLX System 
"Porting" is the process of implementing an 
operating system on a new processor. The UNIX 
system has been ported to more processors than 
any other system in existence. It runs on  all 
classes of machines, from 8086 microproces- 
sors to the CRAY-2. For VMS and RSX systems 
and the like, porting normally means a major 
rewrite because significant parts of them are 
written in low-level languages, usually macro 
assembler. Rewriting one of these systems is so 
expensive that either the effort would not be 
undertaken or the new system would be written 
from scratch. 

The UNIX system is different. It is written in 
a single high-level language, c , ~  and has been 
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structured to be as processor independent as 
possible. However, vestiges of its PDP-11 heri- 
tage are still apparent. 

All 32-bit versions of the ULTRIX-32 system 
are built from a common set of source files. The 
kernel files are organized into machine-depen- 
dent and machine-independent parts. The dif- 
ferences between the VAX and MicroVAX ver- 
sions of the system are resolved through the use 
of conditional compilation and linking. The 
present kernel sources for the MicroVAX ver- 
sion are as foIlows: 

Files Language 

209 C headers 

C source 

Assembler source 

The 21 assembler source files can be further 
broken down as follows: 

Files Purpose 

14 MicroVAX subset and 
floating point emulator 

3 Templates for 
rpb,scb,spt 

Macro definitions 

Initial startup code 
(1ocore.s) 

The last and most significant file is loco re.^, 
which contains the initial startup code and a 
few cri t ical  rout ines needed  for  process 
management. 

Bringing the UNIX system u p  on  a new 
processor is normally done in multiple steps by 
a small team. The difficulty and extent of the 
work involved is directly related to the archi- 
tectural differences between the versions for 
the existing and target processors. Our team 
consisted of three people, later joined by a 
fourth. The first was responsible for the com- 
piler and subset emulator. The second did the 
software installation and verification for the 
first version of the product.  Later, he was 
responsible for some device drivers. The author 
of this paper did the kernel port and other 
device drivers. The fourth person assumed 
responsibility for installation. 

Bringing the ULTRIX-32 system u p  on a 
processor involves the following steps: 

1. Es t ab l i sh  a c r o s s - d e v e l o p m e n t  
environment. 

C language 

Native assembler 

Linker 

Debugger 

2 .  Build a boot path. 

3. Port the kernel and a few key programs. 

4. Write special device drivers. 

5. Port the rest of the system. 

The Cross Development Environment 
When porting to a new architecture, i t  is neces- 
sary to develop a set of tools that produces code 
for the target system. These tools constitute a 
cross-development system for software genera- 
tion and often become the basis for the even- 
tuaI native environment. Their construction is 
normally the first step in the porting process. In 
the MicroVAX case, the cross-development 
tools were not necessary, for reasons explained 
below. 

The MicroVAX system is a subset architecture 
with the majority of the string manipulation 
instructions m i s ~ i n g . ~  MicroVAX systems can 
also be configured without floating point sup- 
port in the hardware. Our challenge, which was 
also shared by the VMS and VAXELN Develop- 
ment Groups, was to provide an execution 
environment for user programs that was com- 
pletely compatible with larger VAX systems. 

By closely examining the instructions pro- 
duced by our C compiler, we  found that, with 
the exception of the floating point instructions, 
not one missing string instruction was created. 
Further examinations revealed that the only 
place where any of the missing instructions 
were used was in a handful of output formatting 
routines. As an interim solution, the affected 
routines were rewritten to eliminate the miss- 
ing i n s t r ~ c t i o n s . ~  

The Boot Path 
MicroVAX systems contain the virtual memory 
boot (VMB) program in ROM. Normally this 
program loads the VMS system but has been 
enhanced to perform an alternate initial pro- 
gram load operation, called a boot-block boot. 
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This operation is the mechanism used to boot 
the ULTRIX system and is based on block num- 
ber 0 of the boot disk being in a special format. 
Booting is a multistage process. 

1.  VMB first chec.ks for an ODs-I1 file struc- 
t ~ r e . ~  In the default case, VMB will per- 
form a "sniffer boot," which consists of 
first checking the removable media, then 
the fixed disks, and finally the Ethernet. 
The system can also be booted from the 
TK50 cartridge tape drive and a special 
PROM board. 

Porting The Kernel 
The VAX Architecture Standard (Digital Stan- 
dard 032) specifies the VAX instruction set, 
memory management, and process environ- 
ment. However, the standard leaves many other 
areas open for change. These areas are typically 
ones that need to be supported on each new 
processor. For the MicroVAX system, it was 
necessary to address problems in the following 
areas: 

Startup code 

1 /0  architecture 
2 .  If an ODs-I1 file structure is not present, 

VMB looks for a valid boot-block image 
in the first block on the disk. This block 
contains a table that specifies the size 
and location of the secondary boot 
image. If the table is valid, VMB reads the 
secondary boot image into memory and 
transfers control to the image. (If the 
table is invalid, control is transferred 
back to step 1 above.) 

3. The secondary boot image on ULTRIX 
systems is a program that locates, reads, 
and executes the tertiary boot program 
from an ULTRIX file system. The func- 
t ional i ty of the  secondary boot  is 
severely constrained because it resides 
outside the file system in a fixed-size 
(7.5KB) area adjacent to the boot block. 

4. The tertiary boot is capable of loading 
and running other programs. Unlike the 
secondary boot program, it supports 
interactive terminal 1 /0  and can prompt 
the user for an alternate program to load. 
As a default, the tertiary boot loads the 
operating system kernel, called v m ~ n i x , ~  
from the boot disk. 

5. After the steps above have been com- 
pleted, the kernel is in memory and 
ready to run. 

The two boot programs are part of the stand- 
alone system, which in itself constitutes a port- 
ing problem that is not very different from port- 
ing the kernel. The problems encountered are 
similar, although simplified, because the stand- 
alone system runs with the interrupts and mem- 
ory management disabled. The stand-alone sys- 
tem is not nearly as flexible as the kernel. 

Console support 

System clock 

Missing instruction emulation 

Initial Startup Code 
After the kernel is loaded into memory, control 
is transferred to the initial startup code. This is 
entered with the processor interrupt priority 
"raised" to disable the interrupts, and with 
memory management turned off. The code sets 
up  the memory management system and then 
"handcrafts" the processor to run the first VAX 
process. The majority of this code is located in 
a single assembly language file, called 1ocore.s. 
In the case of the MicroVAX system, the instruc- 
tion emulator and several changes to the 1 /0  
system required special mapping support dur- 
ing startup. (This support is discussed in the 
last section of this paper.) 

In addition to the startup code, 1ocore.s con- 
tains time-critical routines that use the VAX 
process-management instructions. Some of 
them contain a case1 instruction based on the 
processor type for processor-specific opera- 
tions. Those routines had to be extended to 
include the MicroVAX processors. 

1 / 0  Architecture 
VAX processors do  not contain 1 /0  instructions; 
instead, device and device adapters exist in 
various sections of the physical address space of 
the processor. The control and data registers for 
these adapters appear as memory locations and 
are accessed using normal instructions. A key 
element of system software for any new proces- 
sor is support for these devices and their associ- 
ated address spaces. As an example, the physi- 
cal address space of the VAX-11/780 system is 
pictured in Figure 1. 
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PHYSICAL ADDRESS FUNCTION 

MEMORY 

ADAPTER OR 
NEXUS REGISTER 
ADDRESSSPACE 

1 FFF FFFF 
2000 0000 

I I 128K RESERVED 

TRACK0 8KB 

2018 0000 I UNIBUS2 ADDRESS SPACE I 
201C 0000 I UNIBUS3 ADDRESS SPACE I 

Figure I VAX- 11/780 Physical Address 
Space 

Each of the UNIBUS spaces can be further 
broken down as shown in Figure 2.  

T h e  p h y s i c a l  a d d r e s s  s p a c e  of  t h e  
MicroVAX I1 system is somewhat simpler, as 
depicted in Figure 3. 

With the exception of the memory sections, 
the address spaces of the two processors appear 
to be very different. In fact there are a surpris- 
ing number of similarities, as shown in Table 1.  

The NEXUS space is where the adapter con- 
trol and status registers reside. In the case of a 
UNIBUS adapter, the registers that control the 

Figure 2 VAX- 11/780 UNIBUS Space 

UNIBUS I/O 8KB 

mapping from the bus to main memory are 
located in the NEXUS space. The equivalent 
MicroVAX area, called local register space, also 
contains the mapping registers for the Q-bus to 
main memory. 

These physical address spaces are eventually 
mapped into virtual addresses through entries 
in the VAX Page Table. The result is pictured in 
Figure 4.  

One development goal that w e  set for each 
new processor support project is to minimize 
the changes necessary in the operating system. 
In the case of the MicroVAX I1 system, we 
examined the  differences in the  physical 
address spaces between that system and larger 
VAX systems. Although the names, sizes, and 
positions were different, they are functionally 
equivalent on both the small and larger sys- 
tems. As a result, w e  "coerced" the local regis- 
ter space into the NEXUS map, and the Q-bus 
memory and 1/0 spaces were arranged to look 
like a large UNIBUS adapter. With this approach 
we were not forced to drastically alter the ker- 
nel's view of the machine, thus minimizing 
changes to other portions of the kernel. 

A similar situation existed with respect to the 
Q-bus map. A device installed in a UNIBUS 
adapter sees an 18-bit address for a 256KB 

DEVICE REGISTERS 

PHYSICAL ADDRESS FUNCTION 

0000 0000 

MEMORY 

LOCAL RMISTER SPACE 
1256KB) 

lFFF FFFF 
2000 0000 

2000 FFFF 
3000 OOW 1 

Q-BUS MEMORY SPACE 
(4MB) 

&BUS I10 8KB 

Figure 3 Micro VAX I1 Physical Address 
Space 

DEVICE REGISTERS 
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Table 1 Comparison of Physical Address Spaces for the VAX-11/780 System 
and the MicroVAX II System 

Physical Address Spaces 

MicroVAX I I  
VAX Function Size Function Size Purpose of Function 

Memory 
NEXUS 8K each 

Memory 
Local Register 

Execute Programs 
CPU and Bus Control 
Registers 

UNIBUS Memory 248K Q-bus Memory 4MB Device Memory 

UNIBUS I/O 8K each Q-bus I/O 8K Device Registers 

PHYSICAL ADDRESS FUNCTION 

8000 0000 
VAX MEMORY 

Figure 4 Result of Physical-to- Virtual 
Mapping 

Figure 5 Q-bus Memory Mapping 

address space. The adapter has a set of registers 
that maps this 256KB space onto the much 

BIT POSITION 
larger VAX memory space. These registers per- 
form the equivalent function that is provided 31 28 27 18 17 o 
by VAX Page Table entries. In effect, they "vir- 
tualize" the memory that devices access. 
Figure 5 depicts this mapping. 

The MicroVAX I1 system contains a similar set 
of registers with the principal difference being 
that it has enough to map all four megabytes of 
main memory. Although that appears advanta- 
geous, it in fact posed a serious problem. The 
ULTRIX system dynamically allocates the bus- tines return a word that is encoded as shown in 
mapping registers from a central routine. It Figure 6 .  
would have been easy to modify this routine to The upper part contains the number of the 
"know" about the extra registers. The problem buffered datapath allocated, the middle is the 
encountered here was that these allocation rou- number of registers used, and the lower is 

Figure 6 Coding of Allocation Routine 
Word 

BUFFERED DATAPATH 
NUMBER 
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the bus virtual address. The format of this 
32-bit word is known by all device drivers that 
do DMA transfers. To change the word to use all 
the map registers available meant that the vir- 
tual address portion would need 22 bits instead 
of 18. That would have required corresponding 
changes in each of the device drivers. To deter- 
mine the severity of these problems, we  did 
some tests to see if the 18-bit format would be a 
limiting factor. Fortunately, we  found that 
there were always registers available. 

The end result of the mapping and map-regis- 
ter allocation scheme was that UNIBUS device 
drivers could be left unchanged as long as the 
Q-bus hardware was compatible wi th  the  
UNIBUS versions. We took advantage of that fact 
and thus were able to support the TSVO5, 
DHVl1, and RL02 disk subsystems without any 
impact on the development schedule.' 

Console Port 
Traditional VAX systems have a separate proces- 
sor  that performs console functions. This 
processor is used to control the main CPU and 
replaces the older-style front panel. Instead of 
having switches for halt or run, the console 
runs a program that  provides hal t ,  r u n ,  
examine, and initial program load capabilities. 
Programs running in a VAX system can commu- 
nicate with the console through an internal 
processor register. Commands sent in this regis- 
ter are used by the operating system to reboot 
and restart the machine. 

The MicroVAX system is different: the con- 
sole functions are handled by the microproces- 
sor, the MicroVAX 78032 chip, which runs a 
program resident in ROM. Like the larger VAX 
systems, a register is used to communicate with 
the console. A code can be placed in this regis- 
ter. When a subsequent HALT instruction is exe- 
cuted, execution switches to the console pro- 
gram in ROM, which then examines the code in 
the register.' In fact the register is actually a 
memory location in RAM that is backed u p  by 
batteries. 

The ULTRIX system contains a reboot and 
halt routine that is accessed by a privileged sys- 
tem call. That routine was modified to commu- 
nicate with the console program. 

System Clock 
The ULTRIX system keeps track of the current 
time by counting clock interrupts from the 
lOms interval timer. The time is kept in mem- 

ory as an unsigned integer; i t  is initialized from 
the time-of-year (TOY) register during system 
boot. The time is set by a privileged program 
through standard system calls and can be read 
by normal user programs. That set procedure is 
normally done by the system manager using the 
DATE command. DATE converts the time from 
a format of year, month, day, hour, minute, and 
second to the integer format needed by the sys- 
tem call. 

User enters: System converts to: 
- s e t  - 

yymmddh hmmss Integer - read - 
where yymmddhhmmss = Year, Month, Day, 
Hour, Minute, Second 

The MicroVAX system does not have a TOY 
register; instead, it has a watch chip backed up 
by a battery. The chip contains a number of 
counters that correspond to the year, month, 
day, hour, minute, and second. We could have 
modified the system call or added a new one to 
explicitly set the MicroVAX TOY clock. That 
w o u l d  have avoided  the  convers ion  t o  
integer format, given that the user has to enter 
date and time information in the format needed 
by the watch chip. However, it would have 
meant that we needed two versions of the DATE 
command, one for existing systems and the 
other for the MicroVAX system, to use the 
new format. To avoid that, we  borrowed the 
conversion routines from the DATE command 
and used them in MicroVAX versions of the sys- 
tem time-setting routine. The irony here is that 
t h e  da t e  is  n o w  conve r t ed  t w i c e .  The  
integer format is present on  either side of the 
system call. 

User enters: System reads: 
+ - 

yymmddhhmmss integer yymmddhhmmss 
C C 

 missing Instrrlction Em~lh t ion  
As mentioned previously, the MicroVAX hard- 
ware implements a subset of the full VAX 
instruction set.  Most string instructions are 
missing and are emulated in macrocode instead 
of implemented in hardware. The emulation 
code could have been placed in libraries, 
where i t  could be linked with user-level code. 
To do that, however, would mean that linked 
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images from other VAX systems would not run 
on a MicroVAX system, thus violating one of its 
basic objectives. 

Rather than using libraries, we chose to use 
an emulator designed by the VMS Development 
Group and ported that emulator to the ULTRIX 
system." The emulator links with the kernel and 
is almost completely invisible to user programs. 
I t  is supported by new traps in the hardware 
that help to decode each missing instruction. 
When the kernel or a user program executes 
one of the missing instructions, a trap occurs 
and the emulation code takes over. That hap- 
pens without changing mode; in other words, if 
an emulation trap occurs in a user program, the 
emulator is entered in user mode, not kernel 
mode like other traps. The result is user-mode 
execution of code in the kernel address space. 
(Unlike the VMS system, the entire ULTRIX ker- 
nel is normally unreadable by user programs.) 
The startup code now initializes the pages con- 
taining the emulator so that they can be read 
and executed by user-level code. 

As stated earlier, the end result is a combina- 
tion of hardware and software that is almost 
completely compatible with systems running 
the full VAX instruction set. In fact, executable 
images from other VAX systems can run without 
relinking. 'The only point of incompatibility is 
that the emulation code runs on the user stack 
when one of the missing instructions is exe- 
cuted by user code. (We have seen one cus- 
tomer application that was affected by this situ- 
ation. The application used knowledge of its 
past usage of the stack to do  "garbage collec- 
tion" and was confused by the intermediate 
results of the emulation code. That is normally 
not a problem; the ULTRIX-32 and ULTRIX- 
32m kits have over 500 user-level programs. 
They are compiled and linked once on a fill1 
VAX system and then run without modification 
on the MicroVAX system.) 

Summary 
In porting the ULTRIX system to the MicroVAX 
processor, we opted to maintain compatibility 
with other versions of the system, wherever 
possible. We choose not to support hardware 
features if they violated internal or external 
interfaces. Therefore, we were able to deliver a 
broader range of peripheral support with a min- 
imum of development. The end result-the 
MicroVAX system-combines hardware and 

software to provide customers, including devel- 
opers of software device-drivers, with a product 
that runs all VAX programs for a fraction of the 
cost of a larger VAX system. 
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