FORTRAN Parallelization

Application Note
Document No. 720-001718-200

November 1988

CONVEX Computer Corporation

Richardson, Texas

© 1988 CONVEX Computer Corporation
All rights reserved.

This document is copyrighted. This document may not, in whole or part, be copied, duplicated,
reproduced, translated, stored electronically, or reduced to machine-readable form without prior
written consent from CONVEX Computer Corporation.

Although the material contained herein has been carefully reviewed, CONVEX Computer Corporation
(CONVEX)]) does not warrant it to be free of errors or omissions. CONVEX reserves the right to
make corrections, updates, revisions or changes to the information contained herein. CONVEX does
not warrant the material described herein to be free of patent infringement.

UNLESS PROVIDED OTHERWISE IN WRITING WITH CONVEX COMPUTER CORPORATION
(CONVEX), THE PROGRAM DESCRIBED HEREIN IS PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. SOME STATES DO NOT ALLOW THE EXCLUSION OF IMPLIED
WARRANTIES. THE ABOVE EXCLUSION MAY NOT BE APPLICABLE TO ALL PURCHASERS
BECAUSE WARRANTY RIGHTS CAN VARY FROM STATE TO STATE. IN NO EVENT WILL
CONVEX BE LIABLE TO ANYONE FOR SPECIAL, COLLATERAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES, INCLUDING ANY LOST PROFITS OR LOST SAVINGS,
ARISING OUT OF THE USE OF OR INABILITY TO USE THIS PROGRAM. CONVEX WILL
NOT BE LIABLE EVEN IF IT HAS BEEN NOTIFIED OF THE POSSIBILITY OF SUCH DAMAGE
BY THE PURCHASER OR ANY THIRD PARTY.

CONVEX and the CONVEX logo (“C") are registered trademarks of CONVEX Computer Corporation.
UNIX is a trademark of AT&T Bell Laboratories.

Printed in the United States of America

Introduction

With the release of the CONVEX FORTRAN V5.0 compiler, you gain the power of parallel
processing. This paper provides information you need to use that power successfully: what the
compiler does for you, what you can tell it to do, and the possible effects on how your programs
and your system perform.

Parallelization differs from vectorization in that it does not reduce CPU usage. Instead, it
spreads processing of a single program across multiple CPUs, improving turnaround or “wall
clock” time for that program.

The FORTRAN V5.0 compiler, invoked with the -O8 option, generates code that allows your
program to be executed by as many CPUs as are available when the program runs. It is
important to note that the generation of parallel code alone does not guarantee parallel execution.
You can prevent or suppress parallel processing by

e recompiling your program at a lower level of optimization
e using the C shell limit command
® executing your program under mpa, with the -t option

The CONVEX C200 Series machine is designed so that each CPU seeks out and executes the next
available piece of work, as soon as possible. Known as ASAP (Automatic Self-Allocating
Processors), this scheme optimizes system use and throughput in multiuser environments by
preventing the wasted CPU cycles characteristic of other multiple-CPU systems. The hardware
performs CPU allocation without incurring the overhead of a system call.

The pieces of work that a CPU performs are streams of execution, called threads. A program
always incorporates one thread, and may incorporate many. True parallel processing occurs when
different CPUs simultaneously execute the separate threads of a single program.

CONVEX UNIX V7.0 implements a thread scheduler to act as an interface between the
hardware’s creation of threads and the operating system’s own allocation of CPUs to execute
them. The operating system assigns each process a priority and places it in a run queue. Every
second, the operating system recalculates the priority of each process, taking into account the
accumulated CPU time of all the process’ threads. Processes that consume great amounts of CPU
time are assigned a lower priority, so that other processes can move up in the run queue.

The FORTRAN V5.0 compiler generates parallel code that is independent of the number of CPUs
available. It identifies parallelizable loops by constructing a flow control graph, based on
dependency analysis.

A loop is parallelizable if there are no dependencies between iterations. A cross-iteration
dependency, or loop carried dependency (LCD), exists when a calculation in one iteration of a
loop depends on the result of a previous iteration.- You cannot perform two calculations in
parallel if one calculation depends on the result of the other.

The CONVEX FORTRAN V5.0 compiler is designed to identify dependencies, protecting the
integrity of your data. If the compiler cannot determine whether a loop can execute safely in
parallel, it does not generate parallel code. Instead, it includes in the optimization report its
reason for not parallelizing the loop.

To avoid errors associated with parallelization, you need to understand the nature of your code
and data. Be sure that what you think is independent really is. Debug your program with little
or no optimization and check your output carefully. Recompile at a higher level and check again.
Continue this process of incremental optimization, checking at each level that your program
produces valid output. Debugging your program at increasing levels of optimization lets you
know at what level an error is introduced and may help prevent some errors along the way.

The CONVEX compiler includes a set of directives with which you can enhance its ability to
identify dependencies, and even override its judgment regarding a given segment of code. The
only danger in telling the compiler to ignore any detected or assumed dependencies is that the
compiler may have been right.

If you alter the compiler’s behavior in the mistaken belief that no data dependency exists, the
resulting code is nondeterministic. That is, you may get good answers one time your program
runs and bad answers the next. This unpredictability exists because the errors are order-
dependent, and you cannot predict the execution order of your program’s parallel threads.

For this reason, it is always safer to let the compiler choose which code segments to parallelize.
That is its job. :

Automatic parallelization

The CONVEX FORTRAN V5.0 compiler performs several transformations on your program,
taking every opportunity to enhance parallel performance. The most important transformations
are reordering transformations. Reordering transformations do not eliminate operations from a
program or replace them with simpler operations, but rearrange them so they can be executed
more efficiently.

Reordering transformations performed and orchestrated by the FORTRAN V5.0 compiler, when
invoked at optimization level 3, include the following:

vectorization
partial vectorization
parallelization

loop interchange
loop distribution

The compiler automatically parallelizes the outermost loop in a nest (if it can be parallelized),
including the strip-mine loop created when a loop has been vectorized. The compiler also
distributes and interchanges loops so it can generate parallel code for the outer loop. Most scalar
reductions and assignments can be parallelized, at the cost of some additional synchronization
code.

An example

Consider a common algorithm for the matrix multiplication C=A*B (for N by N arrays A, B,

and C).

DD I=1,N
Do J=1,N
C(I,J)=0
DO K=1,N
C(I,3)=C(I,J)+A(I,K)*B(K,J)
ENDDO
ENDDO
ENDDO

The compiler processes this loop nest by first distributing the I and J loops.

DO I=1,N
DO J=1,N
c(1,J)=0
ENDDO
ENDDO

D0 I=1,N
DO J=1,N
DO K=1,N
C(I,1=C(I,N+A(I.K)*B(K. D)
ENDDO
ENDDO
ENDDO

It then moves the I loop to the innermost position in each nest, so that contiguous storage
elements can be vectorized.

D0 J=1,N
DO I=1,N
C(1,5=0
ENDDO
ENDDO

Do J=1,N
DO K=1,N
DO I=1,N
C(I,J)=C(I,J)+A(I,K)*B(K,J)
ENDDO
ENDDO
ENDDO

Both 1 loops are now strip mined to the optimal vector length (some function of N). MVSL
represents that function. In the second nest, the induction variable IOUTER is recognized as
loop-invariant with respect to the K loop, so the compiler interchanges those two loops.

Do J=1,N
M=MVSL (N)
DO IOUTER=1,N,M
DO I=IOUTER,MIN(N,IOUTER+M-1)
c(1,3)=0
ENDDO
ENDDO
ENDDO

DO J=1,N
DO ICQUTER=1,N,M
DA K=1,N
DO I=IOUTER,MIN(N,IOUTER+M-1)
C(I,NN=C(I,N)+A(I ,K)*B(K,J)
ENDDO
ENDDO
ENDDO
ENDDO

Now the outer loops are parallelized, and vector code is generated for the inner nests.

represent vector registers that can contain up to 128 64-bit elements.

DOALL J=1,N
=MVSL (N)
DO IOUTER=1,N,M
C(IOUTER:MIN(N, IOUTER+M-1),J)=0
ENDDO
ENDDO

DDALL J=1,N
DO IOUTER=1,N,M
DO K=1,N
VO=C (IOUTER :MIN(N, IOUTER+M-1),J)
V1=A(IOUTER :MIN(N, IOUTER+M-1) ,K)
VO=VO+V1*B(K,J)
C(IOUTER:MIN(N, IOUTER+M-1),J)=V0
ENDDO
ENDDO
ENDDO

V0 and V1

Finally, global vector register allocation removes a vector load and a vector store from the I

loop.

The remaining reference to vector V1 chains with the vector addition and vector

multiplication in the next statement, resulting in an even greater speedup (roughly 2.5 times).

DOALL J=1,N
M=MVSL (N)
DO IOUTER=1,N,M
C(IOUTER:MIN(N, IOUTER+M-1),J)=0
ENDDO
ENDDO

DOALL J=1,N
DO IOUTER=1,N.,M
VO=C(IOUTER :MIN(N, IOUTER+M-1),J)
DO K=1,N
V1=A(IOUTER:MIN(N, IOUTER+M-1) ,K)
VO=VO0+V1*B(K,J)
ENDDO
C(IOUTER:MIN(N,IOUTER+M-1),J)=V0
ENDDO
ENDDO

The following table summarizes the effect of these transformations:

Extent of Optimization Time

global optimization 1.000
+ vectorization .107

0
+ vector register allocation 0.046
+ parallelization (4 CPUs) 0.012

Without programmer intervention, the compiler generates
(with all four CPUs) as the scalar version.

code that runs up to 83 times as fast

The optimization report

The compiler generates an optimization report for each program unit. This report consists of a

loop table, an array table, or both.

For example, consider the matrix multiplication loop just described, with N=200:

1 PROGRAM EXAMPLE1

2 REAL A(200,200), B(200,200), €(200,200)
3

4 DO I=1,200

5 DO J=1,200

6 Cc(1,J3)=0

7 DO K=1,200

8 C(I,J)=C(I,N+A(I,K)*B(K,J)
9 ENDDO

10 ENDDO
11 ENDDO

12

13 END

The following screen shows the optimization report output from compilation of the above

program. No array table is generated for this program.

é N
% fc -O3 examplel.f
Optimization by Loop for Routine EXAMPLE1
Line Iter. Reordering Optimizing / Special Exec.
Num. Var. Transformation Transformation Mode
5-1 I FULL VECTOR Dist Inter
5-2 I FULL VECTOR Inter
6-2 J PARALLEL
6-2 J PARALLEL
8-2 K Outer loop
Line Iter. Analysis
Num Var
5-1 I Interchanged to innermost
5-2 I Interchanged to innermost
%
- J

The loop table lists the optimizations performed on each loop and consists of two parts. Note
that the line numbers in this example consist of two numerals, separated by a hyphen, indicating
that the loop was distributed. The first numeral is the actual line number; the second indicates

which of the resulting loops (distributends) contains the line being described.

The first part of the loop table shows that the following transformations were performed:

e the I loop at line 5 was distributed, then interchanged and fully vectorized in both

distributends
e the J loop in the second distributend was parallelized
e the K loop in the second distributend became an outer loop

~

The second part of the loop table provides specific information about the transformations
performed on the I loop.

As an example of other transformations performed by the compiler, the following screen shows a
simple subroutine and the optimization report generated by the compiler.

~ p

% cat -n example2.f

1 PROGRAM EXAMPLE2

2 INTEGER*8 A(512),SUM
3

4 DO I = 1,512

5 SUM = SUM + A(I)
6 ENDDO

7

8 END

% fc -O3 -re -c example2.f

Optimization by Loop for Routine SUB

Line Iter. Reordering Optimizing / Special Exec.
Num. Var. Transformation Transformation Mode
4 I PARA/VECTOR Reduction S
%
. J

The “S” in the “Exec. Mode” column indicates that the compiler creates a scalar version of the
loop, as well as a parallel/vector version. ‘“Reduction” (in the adjacent column) indicates that
the compiler recognizes the reduction in the I loop, and paralielizes it. On this four-CPU system,
the compiler strip mines the loop into four parallel strips of 128 iterations each, which it then
vectorizes. In execution, information from the processing of each vector strip accumulates in a
communication register, from which SUM takes its final value.

Analyze the optimization report to find the parallelized segments of your program. Based on
your knowledge of the algorithms and data, add directives to tune that parallelization or to
override the compiler’s decisions.

User-assisted parallelization

One group of parallelization directives allows you to provide the compiler with additional
information that may supplement or enhance its ability to generate parallel code. You can use
the -ep option and the VSTRIP and PSTRIP directives to tune parallelization.

Expected processors

At compile time, the compiler detects the number of CPUs on your system. Known as ep, for
“expected processors,” this value is used to calculate the optimal vector and parallel strip lengths.
You can alter the compiler’s selection by specifying the expected number of CPUs with the -ep
option. This allows you to compile a program on one machine (a two-CPU system, for example)
that you intend to run on another (a four-CPU system, for ex:.mple).

The purpose of parallelization is to maximize program performance. By increasing the number of
CPUs that can work on one program, however, you increase the likelihood that those CPUs will
be unavailable for other programs. So, you might use the -ep option to limit the number of
CPUs that can participate in the execution of your program.

For instance, a side effect of using -ep! is that the compiler does not perform variable vector strip
mining or parallel strip mining. The program does not run at maximum performance, but total
system throughput improves.

Vector strip mining

The compiler calculates the maximum vector strip length (mvsl), according to the following
formula:

for ep=1, mvsl=128
for ep>1, mvsl=max(min((n+ep-1)/ep,128),8)

where n is the actual length of the vector (i.e., the loop trip count) and 128 is the size of the
vector register. The following table shows the maximum vector strip lengths calculated and the
strip lengths actually processed on a four-CPU system for vectors of various lengths:

Trip Count MVSL Actual Strip Length(s) Processed

3 8 3 (one iteration)
100 25 25, 25, 25, 25 (four iterations)
514 128 128, 128, 128, 128, 2 (five iteratioms)

Notice that the actual strip length for a given iteration is the optimal value (the mvsl) or the
number of vector elements left to process.

If you believe that you can improve the efficiency this formula provides, you may override the
compiler’s calculation for a specific loop by applying the VSTRIP(n) directive. This directive tells
the compiler to vectorize the immediately following loop with vectors of length n.

For example, on a two-CPU system, the compiler normally chooses a vector strip length of 64 for
the following loop:

DO I=1,128
A(I)=0
ENDDO

Preceding this loop with the line

C$DIR VSTRIP(32)

tells the compiler to use a vector length of 32, thereby creating a four-iteration parallel strip-mine
loop, which in turn allows up to four CPUs to participate in executing the loop. In practice, if
you expected to run the program on a four-CPU system, you would probably compile the
program with the -ep4 option.

The VSTRIP directive does not force vectorizization. If you apply it to a non-vector loop, the
compiler generates a warning message and ignores the directive.

Parallel strip mining

A parallelizable loop consists of multiple iterations that can execute independently. Each thread
involved in executing the loop performs a certain number of iterations. The compiler calculates
the size of those iteration blocks with the intent of spreading the work evenly across the available
CPUs and of minimizing the time spent binding threads and CPUs.

The compiler calculates the maximum parallel strip length (mpsl) according to the following
formula:

for ep=1, mpsl=1
for ep>1, mpsl=max(n/(2*ep),1)

where n is the actual length of the vector (trip count).

The PSTRIP(n) directive tells the compiler to generate parallel code, in strips of length n, for the
immediately following loop. You would apply the PSTRIP directive to a large-bodied loop if the
trip count of the loop typically falls in a known range. For instance, the compiler may be unable
to determine the trip count of the following loop:

DO I=1,N

ENDDO

If you know that N is usually around 1000 — perhaps 90% of the time — you would set the
parallel strip length to 250 (assuming a four-CPU system). You would do so by preceding the
loop with the line

C$DIR PSTRIP(250)

Unnecessary overhead is incurred when N is far from 1000; however, if the body of code in the
loop is large enough, that overhead is offset by the improved load-balancing and reduced overhead
more frequently achieved.

The PSTRIP directive does not force parallelization. If you apply it to a non-parallel loop, the
compiler generates a warning message and ignores the directive.

User-specified parallelization

Another group of directives allows you to override the compiler’s judgment about whether to
parallelize a particular code segment. You can use the FORCE_PARALLEL directive, the tasking
directives, and the SYNCH_PARALLEL directive to control parallelization.

The compiler does not automatically parallelize loops that contain subroutine calls or function
invocations. Arguments of subroutine calls, other than induction variables, are passed as global
data addresses. Parallel invocations of a given subroutine are not independent if they manipulate
the same global data. Because the compiler cannot determine whether the called subroutine
manipulates global data, it does not parallelize such loops.

Forcing parallelization

If the compiler is unable to determine whether a particular loop can be parallelized safely, it
assumes that it cannot. If you know that the subroutine call does not jeopardize data
independence, you can direct the compiler to behave against its better judgment. To do so, you
must recompile the called subroutine for reentrancy, using the -re option. Compiled in this way,
each invocation of the subroutine maintains a thread-private copy of its local data and a thread-
private stack to store compiler-generated temporary variables.

You must also tell the compiler to generate parallel code for the loop in which the call occurs, by
preceding the loop with the FORCE_PARALLEL directive. This directive forces the compiler to
parallelize the immediately following loop, regardless of dependencies it may have detected.

Note that, if you force the compiler to parallelize a loop that carries dependencies, the generated
code may work every time you test it and fail on its first use. No amount of testing can
guarantee the correctness of code generated by forcing the compiler to ignore presumed
dependencies. You must analyze your data and algorithms to ensure that the code can be run
safely in parallel.

For example, the loop in the following example would not be parallelized automatically because of

the subroutine call. The FORCE_PARALLEL directive overrides the compiler’s decision, and

causes it to generate parallel code for the loop.

C$DIR FORCE_PARALLEL

Do I=1,N

CALL SUB(A,B,I,N)
ENDDC
OPTIONS -re

SUBROUTINE SUB(A,B,I,N)
REAL A(N),B(N)

A(I) = B(I)*3.14
RETURN

END

Because SUB does not contain any operations that violate data independence, it can safely
execute in parallel.

If the subroutine is called only from within a parallelized loop, compile it at optimization level 2
rather than 3. Only one loop at a time can be run in parallel, and the loop containing the call
will already be doing so. Thus, any parallelizable code within the subroutine will never execute in
parallel. The additional code generated by compiling for parallelization is useless overhead.

Parallelizing non-loop code

The compiler does not recognize parallelizable code that occurs outside of a loop. You may use
the tasking directives to tell the compiler that certain non-loop sections of code can execute safely
in parallel.

The BEGIN_TASKS directive tells the compiler to generate parallel code for the immediately
following series of tasks. The NEXT_TASK directive denotes to the compiler the end of the
preceding task and the start of another. The END_TASKS directive denotes to the compiler the
end of the preceding series of tasks.

For example, the following sequence causes the compiler to construct a parallelizable loop around
the three tasks, with control directed to a different task for each iteratiog.

C$DIR BEGIN_TASKS
<stmti>
C$DIR NEXT_TASK
<stmt2>
C$DIR NEXT_TASK
<stmt3>
C$DIR END_TASKS

The code generated is functionally equivalent to the code generated for the following sequence:
C$DIR FORCE_PARALLEL

DO 100, I=1,3
G0T0(10,20,30),1

10 <stmti>
GOTO 100
20 <stmt2>
GOTO 100
30 <stmt3>

100 CONTINUE

Effective uses of the tasking directives include the initialization of large, independent arrays. The
tasked blocks should be of sufficient size to offset the additional overhead incurred by
parallelization. It is best if the blocks are also roughly equal in size.

Synchronized parallelization

The turnaround time of certain loops can be decreased by inserting synchronization points to
satisfy the cross-iteration dependencies. The SYNCH_PARALLEL directive tells the compiler to
perform the immediately following loop in synchronized parallel, even though doing so appears to
achieve less than full efficiency. Typically, the compiler can generate more efficient code by
partially vectorizing such loops.

One reason to use the SYNCH_PARALLEL directive is to speed up a benchmark, where
turnaround time is the only consideration, and it is known that synchronized parallelization is
faster than the partial vectorization chosen by the compiler. For synchronized code to execute
efficiently in parallel, the independent (parallel) portion of the loop must be large relative to the
dependent (sequential) portion.

The SYNCH_PARALLEL directive is currently supported only on the innermost loop in a nest.

Debugging parallelized programs

Debugging should be an integral part of a general development strategy, incremental
optimization. In this strategy, you eliminate errors that pertain to a given level of optimization
before moving to a higher level. At each level, you check for those errors that arise as a result of
greater optimization and for those that were overlooked at the previous level. When you compile
your program for parallelization, you have already eliminated most errors at a lower level where
they are much easter to find.

Once you are satisfied that your program works correctly in parallel without added directives, use
the optimization report to determine what loops have and have not been parallelized. Use your
knowledge of the algorithms and data to determine what enhancements you can make by

v

applying directives. Keep checking your program output as you add directives, making sure that
your assumptions about data independence are valid.

The remainder of this section discusses the steps you might follow in debugging your parallelized
program and some tools you can use in the process.

A debugging strategy

If your program produces correct answers when compiled at optimization level 2, but not at 3,
run the parallelized code serially. To do so, use the C shell command limst concurrency 1, or run
your program under the mpa utility with the -t1 option (see ‘““The mpa utility” below).

If you get correct answers from the serial run of your parallelized code, some dependency has been
overlooked. This may suggest a hidden alias (such as an item in COMMON being passed as an
argument) or a floating-point round-off discrepancy being propagated into significance.

Any errors at this stage probably result from a misused directive. You are forcing parallelization
at an inappropriate point. These errors most often involve a subroutine, compiled for reentrancy
and executed in parallel, in which a loop carried dependency exists. Determining reentrancy is
difficult, but important when you direct the compiler to act against its judgment.

Another common mistake is applying the FORCE_PARALLEL directive to a loop that calls a
subroutine, but failing to compile that subroutine (or some subroutine called by it) for
reentrancy. A related error is assuming that the local variables of a subroutine compiled for
reentrancy are initialized to 0 — the local variables must be initialized explicitly in the subroutine
code.

The source-level debugger

Part of the CONVEX CONSULTANT V8.0 package, csd provides thread-specific commands to
let you monitor the processing of parallel code. You can set process breakpoints, monitor
individual threads, examine thread-specific machine registers, and display thread stack
backtraces. Use esd to help you track down elusive dependencies. For more information on csd,

see the CONVEX CONSULTANT User’s Guide, 8th edition.

The mpa utility

The mpa (modify process attributes) utility sets or modifies the attributes of a process or
command. Using the -f option, you can cause a command to run as a fixed-schedule job. A
fixed-schedule job is always scheduled to run on all CPUs; the job waits until all CPUs are
available before executing. Running your program under mpa as a fixed-schedule job increases
the time your program takes to complete, and you are not advised to use mpa as a standard
mode of operation.

Fixed-schedule execution under mpa is, however, a useful debugging tool. Other than running on
a dedicated machine (i.e., standalone), fixed-schedule execution is the only way to guarantee that
the parallelized portions of your program run in parallel. This helps you in the development
stages to check for errors related to parallel execution.

The -t option allows you to limit concurrency for individual executions of your parallelized
program by specifying the maximum number of threads your program may entail at any given
time. That is, you get the same effect with the command

% mpa -tl1 a.out

as with the series

% limit concurrency 1
% a.out

% unlimit concurrency

Monitoring parallel programs

The following example shows how you can use simple assembly-language routines to gain access
to hardware timers and to thread and CPU identification registers. This information can help
you trace some of the effects of parallelization on your program.

.fpmode native
.text
.globl _getinfo_

getinfo:
psh.1 s0
and #0,s0
mov TID,sO
st.1l s0,€0 (ap)
mov CPUID, s0O
st.1 s0,e4 (ap)
mov TTR,sO
st.1 s0,@8(ap)
mov TOC,s0
st.1 s0,e12(ap)
pop.1l s0

rtn

’

SUBROUTINE GETINFO(TID,CPUID,TTR,TOC)
INTEGER*8 TID,CPUID,TTR,TOC

Save sO

Clear sO

Get thread id
Return TID

Get physical CPU id
Return CPUID

Get total thread time
Return TTR

Get wall clock time
Return TOC

Restore sO

Routine getinfo returns four pieces of information:

TID

CPUID

TTR

TOC

Specifies which thread is running. Threads are numbered 0 and 1 on a C220; 0,
1, and 2 on a C230; 0, 1, 2, and 3 on a C240.

Specifies the physical CPU processing the current thread. On a C220, CPUs are
numbered 0 and 1; on a C230, 0, 1, and 2; on a C240, 0, 1, 2, and 3.

Indicates the amount of time the current thread has been executing. TTR is a
64-bit register that accumulates microseconds of CPU time used by a given
thread.

Contains the current time. TOC is a 64-bit register that accumulates
microseconds of ‘“wall clock” time elapsed since the epoch.

Because getinfo contains no local data, you can consider it reentrant. You can call getinfo from
parallelized loops in your FORTRAN program. The information returned by getinfo is placed in
the addresses passed to it in the call. Typically, these addresses are shared (not thread-specific),
so do not pass the same global argument to parallel invocations of getsnfo. Pass array indices,
instead, as in the following example.

C$DIR

100
200

PROGRAM INFO

INTEGER*8 TID(10) ! Thread Id Value
INTEGER*8 CID(10,2) ! CPU Id Value
INTEGER*8 TO0OC(10,2) ! Wallclock Time
INTEGER*8 TTR(10,2) ! Thread Time
INTEGER*8 TOTAL_TTR, TOTAL_TOC

REAL A(100000,10), B(100000,10)

COMMON /DATA/ A.B

FORCE_PARALLEL
DO I=1,10
CALL GETINFO(TID(I),CID(I,1),TTR(I,1),TOC(I,1))
DO J=1,100000
B(J,I)=100%J
A(J,I)=B(J,1)*3.14
ENDDO
CALL GETINFO(TID(I),CID(I,2),TTR(I,2),T0C(I,2))
ENDDO

WRITE(*,100)
DO I=1,10

TOTAL_TTR=TTR(I,2)-TTR(I,1)

TOTAL_TOC=TOC(I,2)-T0C(I,1)

WRITE(*,200) I,TID(I),CID(I,1),CID(I,2),TOTAL_TTR,TOTAL_TOC
ENDDO

FORMAT (*Loop Thread CPU Thread_time Wall time’)
FORMAT(i3,16,14,12,110,110)

END

The following screen shows how to assemble the getinfo routine and compile tnfo to link with it.

Notice that the compiler warns you of the two potential dependencies it detects in fnfo.

4 N\
% as getinfo.s
% fc -O3 info.f getinfo.o
fc: Warning on line 16.6 of info.f: WARNING: IGNORING DEPENDENCE FROM ‘A’
TO 'GETINFO' CAN CAUSE GENERATION OF INCORRECT OBJECT CODE !!
fc: Warning on line 15.6 of info.f: WARNING: IGNORING DEPENDENCE FROM ‘B’
TO 'GETINFO' CAN CAUSE GENERATION OF INCORRECT OBJECT CODE !!
Optimization by Loop for Routine INFO
Line Iter. Reordering Optimizing / Special Exec.
Num. Var. Transformation Transformation Mode
12 I PARALLEL
14 J FULL VECTOR
22 I Scalar
Line Iter Analysis
Num Var
22 I Insufficient vector code
%
N\ J
The following screen shows the output from the execution of the program info:
4 I
% a.out
Loop Thread CPU Thread_time Wall time
1 0 00 13998 856379
2 0 01 13978 31034
3 1 10 13999 41389
4 1 00 13995 63471
5 0 10 13876 71497
[} (o] 00 13812 56877
7 1 01 13850 51868
8 1 11 137356 47107
9 1 11 13631 34769
10 1 11 13872 34621
%
\ J

The threads are numbered O and 1, indicating that the maximum number of concurrent threads
(for this two-CPU system) was created. The columns under the CPU heading illustrate that a

thread may be started by one CPU and finished by another. Processing of a thread by more than

one CPU may be the result of a page fault, a system call, or a clock interrupt (which occurs every

ten milliseconds), all of which may cause the scheduler to bind threads with CPUs.

s
—

This program provides a convenient opportunity to see the effect of limited concurrency on a
parallelized program. The following output results from three consecutlve executions of the same

program under mpa with the -¢1 option:

4)
% mpa -tl a.out
Loop Thread CPU Thread_time Wall_time
1 0o 00 14024 33375
2 0 01 13971 327256
3 o 11 13934 29609
4 0 11 13963 29831
5 0 11 13981 29920
6 0 11 13962 30168
7 0 11 13932 29731
8 0 11 13999 30059
9 0 11 13462 29174
10 0 11 14052 36038
% mpa -tl a.out
Loop Thread CPU Thread_time Wall_time
1 0o 11 13990 33414
2 0 11 13892 29832
3 0 11 13940 31053
4 0 11 13895 29900
5 0 11 13928 29894
6 0 11 13889 29840
7 0 11 13887 30166
8 0 11 14000 35362
9 0 11 14058 33081
10 0 11 14919 40033
% mpa -tl a.out
Loop Thread CPU Thread_time Wall time
1 0 00 14203 34401
2 0 00 14147 30670
3 0O 00 14138 30937
4 0 00 14092 30609
5 0 00 14101 30388
6 0 00 14130 30727
7 0 00 14209 34353
8 0 00 14139 30918
9 [00 14171 31786
10 0 00 14805 38639
%
. J

Notice that the thread number is always 0. That is, only one thread is ever created. Either of
the two CPUs may execute it, in part or whole.

designated as thread number 1.

When two threads are created, the second is

Conclusion

The CONVEX FORTRAN V5.0 compiler is well-equipped to optimize your programs for parallel
execution with a minimum of programmer intervention. You are least likely to incur errors
related to parallelization if you let the compiler follow its built-in evaluation process.

You may enhance that process through the careful application of the available directives. You
have several tools available to help you track such errors as they arise, but effective use of the
directives is based on your thorough understanding of the data and algorithms of your program.

Glossary

ASAP

critical region

communication
register

concurrent
CPU
dependency
distributend

execution stream

granularity

loop distribution

Automatic Self-Allocating Processors, a unique architecture
designed by CONVEX. A cornerstone of ASAP is the
communication register, which allows CPUs to seek out and
execute the next piece of work as soon as possible.

A segment of code that modifies data or computer resources
shared by more than one thread.

A high-speed register used for communication among the threads
of a process. Threads communicate by sending and receiving
data through the communication registers. A hardware-
maintained lock bit is associated with each communication
register; the lock bit guarantees mutually exclusive access to the
register.

In parallel processing, threads that may execute at the same time
are concurrent.

A physical processing unit. Each CPU in the configuration
operates independently as a 64-bit CONVEX supercomputer.

A relationship between two statements, such that one statement
must precede the other to produce the intended result.

A loop generated by the compiler in the process of loop
distribution.

A series of instructions executed by a CPU.

The amount of work executed by a separate thread, between the
time it is created and the time it terminates. Granularity ranges
from half the entire program (coarse), to the single iterations of
a loop (fine), to individual source statements (very fine). The
overhead, or system time required to create and manage multiple
threads, determines the granularity of parallelization that is
profitable.

The restructuring of a loop nest to create additional innermost
loops and to enhance opportunities for loop interchange.

loop carried dependency

(LCD)

loop interchange

multiprocessor

mutual exclusion

parallelization

process

reentrancy

strip length,
parallel

strip length,
vector

A dependency between two operations executed on different
iterations of a given loop and on the same iteration of all
enclosing loops. The outermost loop for which the iterations are
different is the loop that carries the dependency. A loop carries a
dependency from an indexed assignment to an indexed use if, for
some iteration of the loop, the assignment stores a value that is
referred to on a later iteration of the loop. For example, there is
an LCD from A(I+1) to A(I) in the following loop:

DO I=1,100
A(I+1)=A(I)+B(I)
ENDDO

The reordering of nested loops to achieve greater locality of
reference for vectorization of greater granularity for
parallelization.

On a CONVEX supercomputer, the memory system, the 1/O
system, peripherals, and two or more CPUs.

A protocol that prevents access to a given resource by more than
one thread at a time.

The act of creating code that enables iterations of loops to run
simultaneously and without synchronization on multiple CPUs.
At optimization level 3, the CONVEX FORTRAN V5.0 compiler
automatically parallelizes your program and recognizes compiler
directives with which you can specify parallelization.

A collection of one or more execution streams within a single
logical address space; an executable program. A process is made
up of one or more threads.

As used in this paper, the capability of a code segment to have
multiple versions in existence that may execute in parallel. Each
version maintains a thread-private copy of its local data and a
thread-private stack to store compiler-generated temporary
variables.

The amount by which the induction variable of the inner loop is
advanced on each iteration of the outer loop.

The number of array elements processed in a given vector
operation.

) 7

strip mining

synchronization

thread

thread-specific or
thread-private

vector chaining

The transformation of a single loop into two nested loops.
CONVEX compilers perform the following parallelization and
related strip-mine optimizations:

parallel the outer loop (the parallel strip-mine loop)
advances the initial value of the inner loop’s
induction variable by the parallel strip length.

variable selects the parallel strip length based on the trip
count of the loop and the amount of code
contained in the loop body.

vector the inner loop is vectorized, and the outer loop
iterates over blocks of arrays in steps equal to
the vector length of the target machine.

A way to keep two threads from accessing the same critical
region simultaneously. You can synchronize your programs
using compiler directives or assembly-language instructions. You
do so, however, at the cost of additional overhead:
synchronization causes at least one CPU to wait for another.

An independent execution stream that is fetched and executed by
a CPU. One or more threads, each of which can execute on a
different CPU, make up each process. Memory, files, signals, and
other process attributes are generally shared among all the
threads in a given process, enabling the threads to cooperate in
solving the common problem. Threads are created and
terminated by instructions that can be automatically generated
by CONVEX compilers, inserted by adding compiler directives to
source code, or coded explicitly in assembly-language programs.

Data that is accessible by a single thread only (not shared among
the threads constituting a process). Thread-specific data allows
the same virtual address to refer to different physical memory
locations.

The overlapping vector operations in the CPU. For instance, in
the case of a vector load followed by a vector add, the add may
be started as soon as the first operands are available.

