CONVEX FORTRAN Language

Reference Manual
Document No. 720-000050-203

Seventh Edition
October 1983

CONVEX Computer Corporation

Richardson, Texas

CONVEX FORTRAN Language Reference Manual
Order No. DSW-037
Seventh Edition

© 1986, 1987, 1988 CONVEX Computer Corporation
All rights reserved.

This document is copyrighted. This document may not, in whole or part, be copied, duplicated,
reproduced, translated, stored electronically, or reduced to machine-readable form without prior
written consent from CONVEX Computer Corporation.

Although the material contained herein has been carefully reviewed, CONVEX Computer Corporation
(CONVEX) does not warrant it to be free of errors or omissions. CONVEX reserves the right to
make corrections, updates, revisions or changes to the information contained herein. CONVEX does
not warrant the material described herein to be free of patent infringement.

UNLESS PROVIDED OTHERWISE IN WRITING WITH CONVEX COMPUTER CORPORATION
(CONVEX), THE PROGRAM DESCRIBED HEREIN IS PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. SOME STATES DO NOT ALLOW THE EXCLUSION OF IMPLIED
WARRANTIES. THE ABOVE EXCLUSION MAY NOT BE APPLICABLE TO ALL PURCHASERS
BECAUSE WARRANTY RIGHTS CAN VARY FROM STATE TO STATE. IN NO EVENT WILL
CONVEX BE LIABLE TO ANYONE FOR SPECIAL, COLLATERAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES, INCLUDING ANY LOST PROFITS OR LOST SAVINGS,
ARISING OUT OF THE USE OR INABILITY TO USE THIS PROGRAM. CONVEX WILL NOT
BE LIABLE EVEN IF IT HAS BEEN NOTIFIED OF THE POSSIBILITY OF SUCH DAMAGE BY
THE PURCHASER OR ANY THIRD PARTY.

CONVEX and the CONVEX logo (“C") are registered trademarks of CONVEX Computer Corporation.
COVUE is a trademark of CONVEX Computer Corporation.
Cray is a registered trademark of Cray Research, Inc.
Sun FORTRAN is a trademark of Sun Microsystems, Inc.
UNIX is a trademark of AT&T Bell Laboratories.
VAX and VMS are trademarks of Digital Equipment Corporation.

Printed in the United States of America

Revision Information for

CONVEX FORTRAN Language Reference Manual

Edition D°°§:“e“t Description

Seventh | 720-000050-203 | Released with CONVEX FORTRAN software V5.0, November
1988. Added descriptions of new directives SYNCH_PARALLEL,
FORCE_VECTOR, FORCE_PARALLEL, BEGIN_TASKS,
NEXT_TASK, END_TASKS, PSTRIP, VSTRIP. Added new
command line options -O3, -or, -ep, -re, -tm; deleted option -fx.
Added description of variable formats. Removed Chapter 9,
combined material on main programs into other chapters, and
renumbered Chapters 10 and 11. Removed Appendix A,
relocated preprocessor statements to Appendix J, added system
limits as Appendix D, and renumbered other appendixes as
necessary. Expanded preprocessor appendix to contain all
preprocessor information. Corrected all reported errors and
performed major editorial revisions.

Sixth 720-000050-202 | Released with CONVEX FORTRAN software V4.1, May 1988.
Rev. 1 Added descriptions of new options -fpp, -rl, -sfc, -vfc. Added
descriptions of new directives UNROLL, SELECT, MAX_TRIPS,
ROW_WISE. Changed option -cft to -cfc. Added new VMS
FORTRAN features to Appendix I. Added Appendix J to
describe Sun FORTRAN compatibility and moved problem
reporting to Appendix K.

6.0 720-000050-201 { Released with CONVEX FORTRAN software V4.0, November
1987. Added IEEE, Cray, and inline substitution options.
Changed Appendix H to describe Cray compatibility; revised
VAX compatibility appendix and made it Appendix [. Moved
problem reporting to Appendix J.

5.0 720-000050-200 | Released with CONVEX FORTRAN software V3.0, May 1987.
Updated entire manual to reflect enhancements for CONVEX
FORTRAN V3.0 and to correct errors.

4.0 720-000099-000 | Released with CONVEX FORTRAN software V2.2, September
1986. Added NAMELIST format information to Chapter 3. In
Appendix C, changed or added information on options -B, -On,

-U, -db, -g, -kb, and -sc.
3.0 720-000150-000 | Released with CONVEX FORTRAN software V2.0, April 1986.

2.0 720-000150-000 | Released with CONVEX FORTRAN software V1.7, September
1985.

1.0 720-000150-100 | Released with CONVEX FORTRAN software V1.0, February
1985. First release of the manual

7 RN UL Y L ARIEIL YNSRI W UGAUGIIEUIEIY teetaeeatocnoanaaasraesssacssnassnasssosssonasesseassesnassssasnssassonraasesasnvassnsasane 10 1kH=O=%

3.5.0.4 Equivalencing SUbSETINGSccoooeeiuiiiuiiiiiiiiiiiiiieeeeeee et eee e e eaereeeeeeees Irm-3-5

3.5.0.5 Using EQUIVALENCE in Common Blockscccocoiiiiii, Irm-3-6

3.6 PARAMETER StAL@IMEND ©oo.iuviiineoiteee et eee et e Irm-3-6

3.6.1 Standard PARAMETER Statementoooovmmmmeeereeeiiee e Irm-3-6

3.6.2 Alternate PARAMETER Statementoouuvieeemmieeeiie oo Irm-3-7

3.7 PROGRAM StAteIMEI .evvvvvrrretinit et e eeeee et et Irm-3-7

3.8 NAMELIST Statementcoeeteemimmmeee e e Irm-3-8

3.9 EXTERNAL SEAtEIMERt ..oovoniiiieieeeee et Irm-3-9

3.10 INTRINSIC SEAtEIMEIE ovvvenniiiiiiiie et e e aeees Irm-3-9

3,11 SAVE SEALEIMENT woevrnneeiieiiiee e e Irm-3-9
DATA Statement

4.1 DATA Statement FOTINooooiniiii e e, Irm-4-1

4.1.1 Impled-DO ... e Irm-4-2

4.2 DATA Statement ExXtensions ... e e Irm-4-3

Assignment Statements

5.1 Character CONVEISIONSoiiiiiiiiee oot e e e Irm-5-1
5.2 ASSIGN StatemMentooooiiiiiin i Irm-5-3
Control Statements
6.1 GOTO SLAtEIMEIES .oovnniiiiin it lrm-6-1
6.1.1 Unconditional GOTO Statementcoeummoreeemnee et e e e e Irm-6-1
6.1.2 Computed GOTO Statementcccccceeiiiiiiiiiiiaiiiiiiieiiiieeieieee et eee e e e eeeees Irm-6-2
6.1.3 Assigned GOTO Statementccooeviiiiieiiiiriiiiee it Irm-G6-2
8.2 TE SHALEIMEIIES oevoiinniiiiiieie et e e e e Irm-6-3
6.2.1 Arithmetic IF Statementooooimmiiiiiiii et Irm-6-3
6.2.2 Logical IF Statementooooeiiiiiiiiiiiiiiiiiie e Irm-6-3
6.2.3 Block IF Statementoveevuniiiiiniii i Irm-6-4
6.2.3.1 Nested Block IF Statementsouoiieeiiieieiieee e Irm-6-6
6.3 DO SHEALEIMENES .oevvnrieeeeeieiiiiieee ettt e e e e e et Irm-6-6
6.3.0.2 Nested DO LoOPS ..uvuvviuiiieiiiiiiieiieiiiii e Irm-6-7
6.3.0.3 Extended Rangecoovviiiieiiiiiiiiiiiiiiiiiiiieeeeeee e Irm-6-8
6.3.1 DO WHILE Statementoeviiiimiieeei et Irm-6-8
6.4 END DO SEatemMentcoovvmeieiiiiiiie e Irm-6-9
6.5 CONTINUE SEALEIMENL o.ovvniiiiin it Irm-6-9
6.6 STOP SEALEIMIENE ..eiiiiiiiiiiit et ettt Irm-6-10
6.7 PAUSE SEAtEMEIE .eeevniiiiiiiiie e e e Irm-6-10
6.8 EIND Statement ..o Irm-6-10
Input/Output Statements
TL RECOTAS oo e Irm-7-1
7.1.1 Formatted Recordscoooiiiiiii i L Irm-7-2
7.1.2 Unformatted Records ... Irm-7-2
7.1.3 ENDFILE ReECOTA ..ot e, Irm-7-2
T O oo Irm-7-2
T.2.1 Internal FHles oo Irm-7-2
T3 UDIES oo Irm-7-3
T4 AcCesSING FIIES oeeeeeiiiiiiii it Irm-7-3
7.4.1 Sequential ACCESS ...ocooiiiiiiiiiiiiii it e Irm-7-3
T2 DITECH ACCESS v e e Irm-7-4
7.5 I/O Statement FOPMAtcoccooiiiiiiiiiiiiiiiiiiiii e Irm-7-4
7.5.1 Input/Output Lists ...cooooiiiiiiiiiii e Irm-7-4
7.5.2 Implied-DO LIStS ...ooiiiiiiii i Irm-7-5
T8 SPECHIEIS oot et Irm-7-5
T.6.1 UNIL SPECIACT .eoniiiiiiii ettt e e et e e e e e et e eaa e aaees Irm-7-6
7.6.2 Format SPecifiercoooiiiiiiii e Irm-7-6
7.6.3 Record Specifier ...ooooeiiii s lrm-7-6

7.6.5 Error SPeciflercooiiiiiiiiiiiiiiiiiiiii e e ettt a e e e Irm-7-7
7.6.6 End-of-File SPecifiercoooiiiiiiiiiiiiiite ettt ettt Irm-7-7
7.6.7 Namelist Specifierooovvvriiiiiiiiiiiiiiiiiiiiiiiiiene, ettt e et e e e e Irm-7-8
7.7 READ Statement ..occ.eceeeiiiiiiiiitiieeieirete et et e eeseteae s s esrraaeesaessnteetaeeessessssesaeesaebeeesanens Irm-7-8
7.7.1 External Sequential READ Statementsccooceiiiiiiiiiiiiiiiiiie e Irm-7-9
7.7.2 External Direct READ Statementscccccoceiiiieriieiieeiiiiiiieiiirieeeeeeeeeaeeeeennnees Irm-7-10
7.7.3 Internal READ Statementso.ooieiiiiieiiiimiiiiiiiiiiiiieeeeeeeeeeeeeeereerrrneeen e e eeeenns lrm-7-11

7.8 ACCEPT Statementooooiiiiiiiiimiiiiiiiiiiiee e e e ettt e e e e e aeaeeaaeanas Irm-7-11
7.9 WRITE SHatemMentcooviuviiiiiiiiiiiieieie ettt e e enaena e Irm-7-12
7.9.1 Sequential-Access WRITE Statementsco.ocooiiiiiiiieriineeiiiaeiiiieeeeiiee e Irm-7-12
7.9.2 Direct-Access WRITE Statementscocooviiiiiiiiiiieiiiie e Irm-7-13
7.9.3 Internal Direct-Access WRITE Statementsc.coooeviiiiiiiiiiiiiiiiieiiieeineiieiinanes Irm-7-1+4
7.10 PRINT and TYPE Statementsccoocovvrieiiieeeeeiieiiiiiieiieeieeeeee e e eeae e e e e eiisninsneneeeaeas lrm-7-14
7.11 Additional Statementsc.oooiiuiiiiiii et e et e et a e e e e e e Irm-7-15
7.11.1 ENCODE Statementccvuuviimmiuiuiiiiiiiiieiieeeeeaeeeeeeeeiiiiiieesseeeaeaeeaeeeeeeeeeess Irm-7-15
7.11.2 DECODE Statementoieiiiiiiiiiiiieiieeiiieinee e e it eeeeeai e e eaeesiiaaaasteasinaaaaaeaennes Irm-7-16
7.11.3 FIND Statementooooiiiiiiiiiiiiiiiiii it e e e e e e e e ee et ettt e eeeaaeaeeaaaens Irm-7-17
7.12 Auxiliary Input/Output SLALEIMENtS oovvvviriiieeeereeiieiiiiiiieiiiee e eeeeeeeeee e e Irm-7-18
7.12.1 OPEN StateImentcoveieiiiiiiiiiiiiiiiieeeeeeeeeeiiiiirrireaeee et e eaeeeaeaeaeaeseiansansereeeas Irm-7-18
7.12.1. 1 ACCESS KeyWord ..oooiiie e Irm-7-18

7.12.1.2 ASSOCIATEVARIABLE Keywordocoooiiiiiiiiiiiiiiiie e lrm-7-20

7.12.1. 3 BLANK I eyword ..o Irm-7-20

7.12.1.4 BLOCKSIZE KeYyWOrd ...oooviiiiiiiiiiiiiiiiiiieeaeeeee e lrm-7-20

7.12.1.5 CARRIAGECONTROL Keywordc.occcouiiiiiiiiiiiiiiiiieiecciceeee lrm-7-20

7.12.1.6 DEFAULTFILE Keywordcooiiiiiiiiiiiiiiiiiieiee e lrm-7-21

7.12.1.7 DISPOSE IKEYWOTA ..uuiiiiiiiiiiiiiieeeeiiiiiiieeeeeiiieeeeeeeaiaiaeeaeeaneneeeesesinnsaeaaaees Irm-7-21

7.12.1.8 ERR KeyWordooovneiiiiiiieee e Irm-7-21

7.12.1.9 FILE Keyword ...cooouiiiiiiiiieieee e Irm-7-21

7.12.1.10 FORM KeyWordcoeevvmiiiiiiiiriiiie et e e et e eenre e Irm-7-22

7.12.1.11 TOSTAT KeyWOTrd ..ooovieniiiiiieiiiiieeeiicie et e e e Irm-7-22

7.12.1.12 MAXREQC KeyWOTrdceeviviiieeereiiiiiiiieeieeiiiieeeeeeirieeeeeeariieeeessniinnaeanees Irm-7-22

7.12.1.13 NOSPANBLOCIKS I eyWOrd ..ccceiiiiiiieiiiiiiiiieee e eeee e e e e Irm-7-23

7.12.1.14 READONLY KeyWOrd ..c.cceeeiieeeiiiiiiriiiiieiieceereec e Irm-7-23

7.12.1.15 RECL Keywordccoiiiiiiiiiiiieeii e Irm-7-23

7.12.1.16 RECORDTYPE Keywordccccoiiiiiiiiiiiii e lrm-7-23

7.12.1.17 STATUS Keyword ...oooiiiiiiiiieiee e lrm-7-24

7.12.1.18 UNIT KeyWord ..oooooiiiiiiiiiiii et lrm-7-24

7.12.2 CLOSE Statementovimiiiiiiiiiiiiiiiieeeeeeae e s e e e aeeaaeeeeiesaeiaeeeeeeeeeeeaaaeaaeaess Irm-7-25
7.12.3 INQUIRE Statementcooooiiiiiiiiiiiiiiie e Irm-7-25
7.12.4 File-Positioning Statementsoooiiiiiiiiiiiiiii e lrm-7-28
7.12.4.1 REWIND Statementooooooiiiiiiiiiiiiiiie e e e e e lrm-7-23

7.12.4.2 BACKSPACE Statementcocooovuieiiiiieiiiiiiieiie et eeieee e e e eaeae e Irm-7-28

7.12.4.3 ENDFILE Statementccooooiiiiiiiiiiiiiiiiiiie et Irm-7-29

8 Format Specifications

8.1 FORMAT SEALEMENE ..vviiiiiiiitiiiiiiii et e et e et e e et e e e e e e e enansee e enee e lrm-8-1
8.2 FORMAT Control ..ot e e Irm-8-2
8.2.1 Repeat COUND ...oooiiiiiiiiiiitiiiiite ettt e e e e e e e e e e teeeeb e lrm-8-3
8.3 DIESCIIPEOTS toiiiiiiiiiiiiiiiiiii ittt et ettt e e e e e e e e e eas Irm-8-3
8.3.1 A DSCTIPOT .ot e e Irm-8-4
8.3.2 ApOStrophe DeSCrIPhOT ..ueemiiiiiiiieei it lrm-8-5
8.3.3 H DesCriptor ..ot e Irm-3-5
B.3.4 L DeSCIIP OT oottt ettt et e e e e eaeannaas Irm-3-5
B.3.5 I DeSCrIPLOT oot e Irm-38-6
IR S T O 2 B 710 1 o1 7o) U PO PRUUPRU lrm-8-7
B.3.7 Z DESCTIPLOT ..ottt e e Irm-8-7
B.3.8 I DeSCIIPOT oviiiiiii i e e Irm-8-8
8.3.9 E and D DesCriPLors ...ceeiiiiiiiiiiiiiiii et Irm-8-9
B.3.10 G DESCIIPOT oiiitiiiiiii et et Irm-8-10

8.3.11 B DeSCTIPLOTS ..eeeuieirerieiiiiiteeeeiteee e e e e eeseeeaeeeeeeeensaeseeneserrrssnsnnnsnsnnnnss Irm-8-12

8.3.12 P DESCIIPLOT .evvveereiiiiiiieieeciiee ettt e e e e e st ee e s e e e e eaeeeaeeeean Irm-8-13

8.3.13 S DESCIIPLOLS .uvvvviiierriririeereeeeieitrtreeeeeeeeeeeesesnsreeeeeeeeeeeesessasnnnnsseesaeteeeeeeseeeaaanans Irm-8-13

8.3.14 R DeSCIIPLOT .euvveiiiiiriiiieeeeeeeeciieeee et e e e e e er e e e e Irm-8-14

8.3.15 X DESCIIPEOT .uveiriiiiiiienieesieeesieeeeeteeeetee e e etee e e e e e aeeeeneeseenneeeeaareeseenreseennseeanns Irm-8-14

8.3.18 T DESCIIPLOTS ..eeiiiiiiiiiritereritetreeiitieeesentnreeeeeeeeee e e eaneeeeeeneeeee e et eeeeeeennneeens Irm-8-15

8.3.17 § DIESCTIPEOT wovveeuvietrieeteeteeeteeetteetee et et et e e e e e e e Irm-8-16

8.3.18 Q DESCIIPLOL .eeeeiiiiiiiiiiiee et et Irm-8-16

8.3.19 Colon DeSCrIPOTevviiiiiieiriiieeeiteee e e e e e e e eea e e e Irm-8-17

8.3.20 Slash DesCriPtor ..ueeeeiiiiiiiiiiiieeeee e Irm-8-17

8.4 Default Field Descriptor VAUEScccovviiiiieiiiiiiiiieieiee e Irm-8-17

8.5 Comma Field Separator on Input Dataoooevviiiiiiiiiiiiiiee e Irm-8-18

8.6 Runtime FOrmMatscccooiiiiiiiiiiir ittt lrm-8-19

8.7 Variable FOrmMAats «..cccccoiiiiiiiiiiii e lrm-8-19

8.8 List-Directed FOrmattingcccecceiiiiiiiiiiiiiieee i Irm-8-20

B.8.1 INPUL oottt e s Irm-8-20

8.8.1.1 Character INPUL ..ccvvveiieiiiiiiiece e Irm-8-20

8.8.1.2 Nulls and SI1ashesccoooiiiiiiiiiiiiii e lrm-8-21

8.8.2 Namelist-Directed Formattingccccooovveiiiiiiiiiiiiic e Irm-8-21

8.8.3 List-Directed OutPub «..ooocociiiiiiiiiiiiiiee e Irm-8-23

8.8.4 Namelist-Directed OUtPUbccceiiiiiiiiiiiiti e Irm-38-23

8.9 Carriage-Control CRaractersoooooiiiiiiiiiiiiiiiiceee e Irm-8-24

9 Subprograms

9.1 Dummy and Actual ATSUINENLSuuvviiiiieeiieeeeiiieeeeeeeeeeeeeeee et eeeeeeeeeeeeeeeeeee e s e aenens lrm-9-1

9.1.1 Variables as Dummy ArgUmMENtSccccoiiiiiiiiiiieiiiiieieicieeeee e Irm-9-1

9.1.2 Arrays as Dummy ATZUINENEScoeeivvnnieeeieiiiie e et e e e e e eeeeeeeees Irm-9-2

9.1.2.1 Adjustable ATTAYS ..coooiiiiiiiiiiiiiiiiieeeeeeeee e Irm-9-2

9.1.2.2 ASSUIMEA-SIZ€ ATTAYS eeovvuiiriiiriiineeeerrririiiieeereertiiiieeeeesreneeeeenerneeeseerrnnnnes Irm-9-3

9.1.3 Character ATGUIMENES ...oceeiueniiiiiiieeeieeeeeeeeieetreee e e e eeeee et ee e e e e e e e e eeeeeeeesaeeaans Irm-9-3

9.1.3.1 Character Argument Lengthsccccooiiiiiiiiiiiiii Irm-9-3

9.1.4 Procedures as Dummy ATgUmentscceeieeeevriiiioiiiieeeeeiiiieeeeeeeeeeeeeeeeireeee e Irm-9-4

9.1.5 Alternate Return ATgUmentsooooiiiiiiiiiiiiiiiiiiiiieeee e eee e e e Irm-9-5

9.2 FUDCEIONS ...viiiiiiiiiiiiiriiiititititeeeit e ee e e e e e e e e e eaaeteeae e e e eeeeeeeeeetansaeseeeeeeeaeeeeeeeeeeeeeeennns Irm-9-5

9.2.1 Intrinsic FURCEIONS «ooiioiiiiiiiiieiiiiiee et Irm-9-5

9.2.2 Built-1n FUNCEIONS toiviiiiiiiiiiiiiiii it Irm-9-6

9.2.2.1 BREF and Z0VAL ...ooouviiiiieieeieeeeee e Irm-9-6

9.2.2.2 TELOC ... Irm-9-7

9.2.3 Statement FUNCHIONS ...eoiiiiiiuiiiiiiiiiiiie it lrm-9-7

9.3 Function SUbDProgramsccoooiiiiiiiiieiree st lrm-9-9

9.4 Subroutine SUDPIOZIAMS ...cooiiiiiiiiirriiiieeiiiii it Irm-9-10

9.5 ENTRY SALEMENT tooovviiiiiieiieiiiiiieeee et Irm-9-11

9.6 RETURN SEAtEMENt ..ovviiiiiiiiiiiii i iiiieiie oo e e Irm-9-12
10 Block Data Subprogram

Appendices

A Generic and Intrinsic Functionsc.oooooiiiiii A-1

B Compiler OPLIONSooooiiiiiiiiiiiiiieee e B-1

B.1 Compiling Programsoeoiiiiiiieiiiiiiiiieieeeieeeeeeeee e e Irm-B-1

C Compiler DIFECEIVES ...oooiiiiiiiiiiiiiiiiie e e e e e e C-1

C.1 Information Directivescccccovvieeeerrniinnnn. et et et aaaas Irm-C-1

C.2 Control DITECHIVES ...ooviiiiiiiiiiiiiieieeiiee et e e e e lrm-C-3

D System LIMIts ..o e D-1

E ASCII CRaracter Seboooouiiiiiiiiiiiiee it e ettt e e e E-1

F FORTRAN-68 Compatibilitycccoooiiiiiiiii e -1

vi

F.1 Compiling FORTRAN-66 Programsc..ceeeeiiiiiiiiiieiieieeieeieeeeeeieeeeeieieeeeereeeeeeeeneeaees Irm-F-1

F.2 EXTERNAL Statementccoocevevvreereiiereniiieeeeieeeeeeetesseeceeeeeereesestmeiessesiie e sennnree s Irm-F-1
F.3 DO Loop Minimum Iteration Countuiiieeieeiieiiiiiiiieeee e e e e e ee e eeeeas Irm-F-2
F.4 OPEN Statement KeyWordscccovviiiiiiiiiiiiiiei et Irm-F-2
F.5 X Format Edit DeSCriPIOr -..eccovieiieiiiiiiiiieeieiseiiiie e e eeeetee e e e e eeaitaeeeaeaeeeeeneeeeaeeaees Irm-F-3
G Cray FORTRAN Compatibilityccoooiriiiiiiiiiiie e G-1
H VAX FORTRAN Compatibilitycccooveiiiiiiiiii e H-1
H.1 Supported Featuresccccooiooiiiiiiii e e e ettt eee e e e e eesee e e e e enn e e aeeanes lrm-H-1
H.2 Unsupported Featuresoooooiiiiiiiiiiiieieieie e e e ee e e e e e ee st e e e e e ernbn e e aeaeene Irm-H-1
H.3 Miscellaneous Differencesooooiiiiiiiiii e lrm-H-3
H.4 VAX FORTRAN RECOTAS ..ovvuiiiiiiiiieiieiieeiiiieie e ettt e e e e ettt e e e e e et e e e eeeaans Irm-H-3
I Sun FORTRAN Compatibilitycoooiiiiiiiiii e e |
J P TP OCESSOT ... e et a ettt e e e ettt e e e e ee e e e J-1
J.1 Preprocessor SHtAteMENESc.c.ooueiiiiiii i Irm-J-1
J.2 Preprocessor OPUIONSe.eeiieiiiiriietriiiiis e ettt e e e eee e s e e e et eeetb e e eereeeaaii e eeeeeaes Irm-J-2
J.3 Preprocessor MESSAZESoeiiiuiiiiiiiiiiii e e e e st e e e e ettt e e e e e et ra e e e et et e e eenanaes Irm-J-2
K Problem REePOTHINIE ...oouuiiiiiiiiiiiiiiiiiiiiie e e et e e e e e e ea et a e e e et e eeet e e e eetatiaaeeaaeeeeiaanees X-1
K.1 Introduction ...l e et ee ettt et eaeeeeee e eaee e e aanas Irm-K-1
K.2 Information Required to Report a Problem ... Irm-IK-1

1-1 FORTRAN FLElAS ooiiiiiiiiiiiiiiie ettt s bbbt Irm-1-3
1-2 OPTIONS SEAtEIMENT «oeuunieeeieeiieiiiiier et it ereerte e eeereir e e eeriaaseretaneaeerennseaatannaeasenaaasesnearesenaes Irm-1-6
D1 DAbA TYPES oeriiiieiiiitii ettt e e e e e et et e ettt et et e ettt e e e et e anae e aeeeneanen lrm-2-1
2-2 Storage Requirements for Data Types ..c.ooooiiiriiiiiiii e e lrm-2-2
31 ATTAY LOCALIOMS Luuuuiieieeiiiiiii e e et e e ettt ee e e ettt e e e et e e e e r e eraeeecennee e eenaeaenaaes Irm-3-5
5-1 Conversion of EXPreSSIONSccceeiieiiiiiiii it ieiiiee e ree e e eeaaneeeert s eeateareasean e areanaaaeennnaeaeennns Irm-5-2
7-1 Data Transfer I/O SEAtementscoooiiiiiiiiiiiieceit et e e e Irm-7-1
7-2 OPEN Statement KeyWordsooooiiiiiiiiiiiiiiee e et Irm-7-19
7-3 INQUIRE SPECHIEIS ...eeiiiiiiiiiiiiiiiiieee et e e e lrm-7-27
8-1 Character Assignment for Numeric I/O List Elementscoocooiveiiiiiiiiiiinnniicieiinieeene Irm-8-4
8-2 Default Field Descriplors ..ooveeiiiiiiiiiiiiiiii et et Irm-8-18
8-3 List-Directed Output Formatscooooiiiiiiiiiiiii e Irm-8-23
8-4 Vertical Format Controloooiiiiiiiiiiiiii et Irm-8-25
9-1 Built-in Functions and Defaults for Argument Listsccococoeoiiiii, Irm-9-7
A-1 Generic and Intrinsic FUnctionsooooiiiiiiiii e Irm-A-1
C-1 Restrictions on Directive USeoooiiiiiiiiiiiiiin i lrm-C-4
C-2 Maximum Strip Mine Lengths ... Irm-C-6
-1 ASCIL CharaCter Set ..o.ueeiiiiiiiiiiiiii et e et e e e e e e e e e e e e e eaennas Irm-E-1
List of Figures
1-1 Required Order of SEAtEIMENESoiieiiiiiiiiieet et ee e e e e e Irm-1-5
6-1 Valid and Invalid Control Transferscocoieeiieiiiimiiiiiiiiiiiieeieee e lrm-6-8
K-1 Sample contact SessION ..o e Irm-I<-3

vii

Preface

This manual is a reference for the CONVEX FORTRAN programming language. Its purpose is
to provide a thorough working definition of CONVEX FORTRAN. This document encompasses
both the ANSI standard established by the American National Standards Institute (ANSI N3.9-
1978) and the CONVEX extensions to FORTRAN-77.

This manual is intended for use by those individuals who are responsible for developing
FORTRAN programs for the CONVEX family of supercomputers. A working knowledge of
FORTRAN-77 is a prerequisite to the use of this manual.

As this document is intended for the primary use of the seasoned programmer, a novice
programmer may require additional reference materials. Consult the bibliography at the end of
the Preface for a listing of useful texts that supplement the material contained in this document.
Although you do not need to know the CONVEX version of the UNIX operating system in detail
to understand this document, some familiarity with the system is beneficial.

Organization
This manual is organized into the following chapters and appendices:

e Chapter 1 discusses FORTRAN program elements and program unit format.

e Chapter 2 discusses constants, variables, arrays, expressions, and function references.
e Chapter 3 describes features and functions of specification statements.

e Chapter 4 discusses the DATA statement.

e Chapter 5 describes the assignment statement and defines values used in a program.
e Chapter 6 describes the functions and operations of control statements.

e Chapter 7 discusses files, units, [/O statement components, data transfer [/O
statements, and auxiliary I/O statements.

e Chapter 8 defines the format specification descriptors as well as carriage-control options
and separators.

e Chapter 9 discusses the functions and operations of subprograms.
e Chapter 10 discusses the BLOCIC DATA statement.

e Appendix A lists the generic and intrinsic functions in table form, complete with
number of arguments, generic name, specific name, type of argument, and type of
result.

o Appendix B describes the compiler options.

o Appendix C lists the compiler directives.

e Appendix D lists the maximum sizes for the various elements in a FORTRAN program.
e Appendix E contains the FORTRAN and ASCII character sets.

Appendix F discusses FORTRAN-66 compatibility.

ix

Appendix G discusses Cray FORTRAN compatibility.
Appendix H discusses VAX FORTRAN compatibility. .
Appendix I discusses Sun FORTRAN compatibility.
Appendix J describes the CONVEX FORTRAN preprocessor.

e Appendix K provides information for using the contact problem reporting utility.

An index and reader reply forms are included at the back of the manual.

Notational Conventions
The following conventions are used in this document:
e Brackets ([]) designate optional entries.
o The * mark represents the nonprinting space character.
o A horizontal ellipsis { ...) shows repetition of the preceding item(s).

e A vertical ellipsis shows continuation of a sequence where not all of the statements in an
example are shown.

o References to the CONVEX UNIX Programmer’s Manual appear in the form fe(1F),
where the name of the manual page is followed by its section number enclosed in
parentheses.

o Within text, ¢talics indicate commands, options, filenames, or programs.

o Within command sequences, words appearing in boldface should be typed exactly as
they appear; words appearing in italics indicate items to be filled in by the programmer.
Substitute the actual name of the item for the word in italics. For example, the
command sequence

Id [options] [object files] [libraries)

instructs you to type the command [/d, followed by your choice of options, object files,
and/or libraries.

e CONVEX extensions to the FORTRAN language appear in this type style.

Associated Documents

The following documents, available from CONVEX Computer Corporation, are recommended to
the CONVEX FORTRAN programmer:

e CONVEX FORTRAN User’s Guide, describes how to compile and run CONVEX
FORTRAN programs under the UNIX operating system.

o (CONVEX UNIX Primer, contains basic self-instruction for learning and using the
CONVEX UNIX operating system.

o CONVEX UNIX Programmer’s Manual, Parts I and II, contains complete reference
material on the UNIX operating system for the CONVEX family of supercomputers.

e American National Standard Programming Language, FORTRAN manual (ANSI X3.9-
1978) defines the standard language.

For further reference, Section 3F of the CONVEX UNIX Programmer’s Manual contains the
FORTRAN runtime library functions.

xi

Chapter 1
Introduction

CONVEX FORTRAN is a high-level language that increases programmer productivity,
maximizes software portability, and enhances the speed of execution using global and local
optimization, vectorization, and parallelization techniques. CONVEX FORTRAN contains both
standard FORTRAN functions as defined by the American National Standard FORTRAN-77
{ANSI X3.9-1978) and unique CONVEX extensions. This sentence fllustrates the type style that is
used to indicate CONVEX extensions throughout the document.

1.1 Program Elements

A CONVEX FORTRAN program unit consists of a sequence of FORTRAN statements, an
optional OPTIONS statement, and optional comment lines. A program unit terminates with an
END statement.

Collectively, program units build an executable program. An executable program contains a
main program and, optionally, one or more subprograms. The first statement of a main program
cannot be a FUNCTION, SUBROUTINE, or BLOCK DATA statement. A main program may,
but need not, begin with a PROGRAM statement. A subprogram begins with a FUNCTION,
SUBROUTINE, or BLOCK DATA statement.

1.1.1 FORTRAN Character Set

If you are entering your CONVEX FORTRAN program from a terminal, you may enter statement lines
of any length as long as you do not exceed the system limit (see Appendix D) or use the -72 compiler
option. Statements are coded using the conventional FORTRAN character set:

Uppercase letters A through 7
Digits 0 through 9
Special characters blank = +-*/(),.$":

and the following CONVEX extensions:

Lowercase letters
Exclamation mark
Percent sign
Ampersand
Quotation mark
Underscore

Left angle bracket
Right angle bracket
Pound sign
Semicolon

-z

:g.&\m

VAL

Additional ASCII printable characters can be used in FORTRAN statements only as part of
character or Hollerith constants. You can, however, use all printable ASCII characters in
comment lines.

Irm-1-1

Introduction

Blanks (spaces) can be used to improve readability of a program. Blanks are ignored unless they
appear within a character or a Hollerith constant or as an editing specification.

1.1.2 Comment Line

A comment line has no effect on the actual execution of a program. It is used for documenting
program action, identifying processes, or improving readability of the program. You can place a
comment line anywhere in a program unit, even before the initial line or between continuation
lines. You cannot continue a comment line using the continuation indicator.

The letter C or an asterisk (*) in column 1 of a line indicates a comment line. Also, an
exclamation point (!) in column 1 {or any field except column 6) indicates that the remainder of the line
is comment text. You can begin the comment text anywhere on the line following the comment
indicator. A line containing only blanks is also a comment line.

1.2 Building FORTRAN Statements

Statements are classified as executable or nonexecutable. The executable statements specily
action; they form an execution sequence in an executable program. The nonexecutable statements
indicate characteristics, arrangement, and initial values of variables; contain editing information;
classify program units; and designate entry points within subprograms.

Statements classified as executable include:

Arithmetic, logical, statement label (ASSIGN), and character assignment statements
Unconditional GOTO, assigned GOTO, and computed GOTO statements
Arithmetic IF and lovxcal IF statements

Block IF, ELSE IF, ELSE and END IF statements

CONTINUE statement

STOP and PAUSE statements

DO and ENDDO statements

READ, WRITE, and PRINT statements

REWIND, BACKSPACE, ENDFILE, OPEN, CLOSE, and INQUIRE statements
CALL and RETURN statements

END statement

Statements classified as nonexecutable include:

¢ PROGRAM, FUNCTION, SUBROUTINE, ENTRY, and BLOCK DATA statements

e DIMENSION, COMMON, EQUIVALENCE, IMPLICIT, PARAMETER, EXTERNAL,
INTRINSIC, and SAVE statements

¢ INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, and CHARACTER
statements

o DATA statement

o FORMAT statement

e Statement function statement

Each line that contains a FORTRAN statement is divided into fields providing for statement,
label, continuation indicator, statement text, and a sequence number. Table 1-1 gives the general

rules for entering items into fields.

You can use either character-per-column or tab-character formatting. Tab formatting is convenient
for terminal entry.

Irm-1-2

Introduction

Table 1-1: FORTRAN Fields

Column Use

1 {(Comment or debugger) The letter C, exclamation point, or
asterisk indicates a comment line. The
letter D designates a debugging statement.

1 - 5 (Statement label or compiler | A statement label contains one to five

directive) digits. C$DIR indicates a compiler
directive.
6 (Initial or continuation line) A zero or blank indicates an initial line;

any other character indicates a
continuation line; for tab formatting, a
tab and a digit 1 - 9 indicate continuation.

7 - end of line (Statements) This field contains the actual
FORTRAN statement. At any point in
the field, an exclamation point indicates
that the remaining text is a comment.

1.2.1 Character-per-Column Formatting

This section describes the column-by column contents of each field of a FORTRAN statement.
Optional information that can be entered in the various fields is also discussed.

1.2.1.1 Statement Label Field

A statement label allows you to reference statements in a program unit. Although any statement
can have a label, only labeled executable statements and FORMAT statements can be referred to
by other statements. Two statements in a program unit cannot have the same label.

The statement label, which must be a decimal integer, can be positioned in any column, 1 - 5.
Leading zeros and blanks are ignored; e.g., 5, 05, and 00005 are the same label.

1.2.1.2 Initial Line

Use column 6 to indicate an initial line or a continuation line. An initial line indicates a single
FORTRAN statement. Use a zero or blank (space) in column 6 to indicate an initial line. An
initial line cannot be a comment line; however, it can have a statement label. If you do not label
it, leave columns 1 through 5 blank.

1.2.1.3 Continuation Line

A continuation line has no statement label. Using the continuation indicator causes the compiler
to consider the last character of the previous line (not comment lines) as part of the line where
the continuation indicator is placed. The continuation indicator is any character except 0 or
blank (space) in column 6.

Irm-1-3

Introduction

1.2.1.4 Statement Text Field

The statement text begins in column 7 and continues to the end of the line or until an exclamation
mark is encountered. (See Appendix D for the maximum allowed line length.) The interpretation
of a statement is not affected by spaces and tabs except when they appear within character and
Hollerith constants. To continue a statement on the next line, use the continuation indicator.

Two statements, separated by a semicolon (;), may appear on the same line. The character following
the semicolon is treated as column 7 of the second statement. Thus. the statement following the
semicolon cannot be a comment, specify a continuation field, or contain a label.

1.2.1.5 Debug Statements

CONVEX FORTRAN allows you to place a debugging statement indicator, the letter D, in column 1 of
the statement label field. You may add a statement label in the remaining columns of the label field.
To continue a debugging statement over more than one line, begin each new continuation line with a D
in column 1 and a continuation indicator.

You may treat debugging statements as comments or as source text to the compiler. If you use the
compiler command line option -dc, the statements are treated as source text to the compiler; omitting
this option causes the statements to be treated as comments.

1.2.1.6 Compiler Directives

A compiler directive provides information to the compiler or instructs the compiler to override certain
conditions that inhibit optimization, vectorization, or parallelization. A compiler directive begins with
C$DIR in columns 1 through 5 and must fit on one line. Appendix C describes the compiler directives.

1.2.2 ANSI Standard Formatting

The ANSI FORTRAN standard specifies a restricted form of character-per-column formatting
and states that all lines are 72 characters in length. You may get the same effect with CONVEX
FORTRAN by specifying the -72 option on the compiler command line. If -72 is specified, any line
shorter than 72 characters is padded with blanks and any characters beyond 72 are ignored. A tab
counts as one character.

1.2.3 Tab-Key Formatting

Tab-key formatting is a shorthand method of skipping to the various fields of a CONVEX FORTRAN
statement. As with character-per-column formatting, the statement label must appear in the first 5
columns of the line. The next character is the tab character. If the character immediately following
the tab is a digit from 1 to 9, this specifies a continuation as if the character had been in column 6 in
character-per-column format.

Any other character after the tab is considered the first character of the statement field, as if it had
been entered in column 7 in character-per-column format.

Irm-1-4

Introduction

1.3 Order of Statements and Lines

Figure 1-1 shows the order required for a CONVEX FORTRAN program unit. You can mix
statements separated by vertical lines but not statements separated by horizontal lines. For example,
you can intersperse DATA statements with statement function definitions and with executable
statements. You cannot, however, mix statement function definitions with executable statements.

Figure 1-1: Required Order of Statements

OPTIONS Statement

PROGRAM, FUNCTION, SUBROUTINE,
or BLOCK DATA Statement

IMPLICIT NONE Statement

IMPLICIT Statements
Comment
Lines PARAMETER
and NAMELIST, cher v Statements
INCLUDE FORMAT DATA Specification
Statements and ’ Statements Statements
ENTRY
Statements

Statement Function
Definitions

Executable Statements

END Statement

1.4 OPTIONS Statement

You can use the OPTIONS statement to include options not specified on the FORTRAN command line
or to override options that are specified on the command line. The options remain in effect only within

the program unit in which they are defined. If used, the OPTIONS statement must be the first
statement in a program unit.

The OPTIONS statement has the form:

OPTIONS option [option...]

Table 7-2 summarizes the options that can be specified in the OPTIONS statement.

Irm-1-5

Introduction

Table 1-2: OPTIONS Statement

Option Description
-al Treat non-character arrays as assumed-size arrays.
-cs Check subscript bounds at runtime.
-F66 Select FORTRAN-66 rules.
-i2 (4, or 8} | Default to integer size.
-na Suppress ad Visory messages.
-no Perform no optimization.
-nw Suppress warning messages.
-On Perform optimization, where:
-00 = local scalar optimization
-01 = global scalar optimization
-O2 = vectorization
-0O3 = automatic parallelization
-r4 for 8) Default to real size.
-re Generate reentrant code.
-rl Perform loop replication optimizations.
-sa Prevent compiler from generating precompiled argument packets.
-uo Perform potentially unsafe optimizations.

Example:

OPTIONS -02 -r8

This statement specifies that the following program unit should be compiled at optimization level -02

and that all REAL data should be compiled as DOUBLE-PRECISION.

1.5 INCLUDE Statement

The INCLUDE statement causes the compiler to insert source code from the specified file into the

program being compiled. The statement has the form:

INCLUDE ‘filename’

or

#include ‘filename’

where ‘filename’ is the pathname of the file from which source code is to be read. The contents of the

file are inserted at the place where the INCLUDE statement appears.

Irm-1-6

Introduction

When the compiler reaches the end of the included file, compilation resumes with the statement
following the INCLUDE statement. The included file can itself contain an INCLUDE statement;
INCLUDE statements can be nested up to the system limit as described in Appendix D. The

INCLUDE statement can appear anywhere within a program unit.

NOTE

The INCLUDE statement operates somewhat
differently under COVUEshell. Please refer to the
CONVEX COVUEshell Reference Manual for more

details.

Irm-1-7

Chapter 2
Constants, Variables, and Arrays

The basic components of FORTRAN statements are constants, variables, arrays, expressions, and
function references.

2.1 Symbolic Names

Variables, arrays, and functions have symbolic names that identify them in a program. A
symbolic name must start with a letter and may be followed by any number of letters (A-Z),

digits (0-9), underscores (_). or dollar signs ($), up to the maximum length allowed for a symbolic
name (see Appendix D).

Letters may also be specified in lowercase (a-z) and are converted to uppercase by the compiler; thus
" the symbolic names ABC and abc are the same. Because dollar signs are used in CONVEX-supplied
software, it is recommended that you not use dollar signs in your symbolic names.

2.2 Data Types

Each basic component of a FORTRAN program has a data type. For components with symbolic

names, you can specify the data type explicitly in a type statement or implicitly by the first letter
of the name. Table 2-1 lists the data types.

Table 2-1: Data Types

Data Type... Includes Types...

CHARACTER CHARACTER*n, CHARACTER*(*)

COMPLEX COMPLEX*8, COMPLEX*16

INTEGER INTEGER*1 (BYTE), INTEGER*2, INTEGER*4,
INTEGER*8

LOGICAL LOGICAL*1, LOGICAL*2, LOGICAL*4,
LOGICAL*8

REAL REAL*4, REAL*8 (DOUBLE PRECISION)

RECORD

In CONVEX FORTRAN, INTEGER*4 corresponds to the standard INTEGER data type,
REAL*4 to REAL, COMPLEX*8 to COMPLEX, and REAL*8 to DOUBLE PRECISION.
COMPLEX is an ordered pair of real values representing the real and imaginary parts of a
complex number. The COMPLEX*16 data type differs from COMPLEX*8 in that its parts are
double-precision rather than single precision. BYTE is a synonym for INTEGER*1.

The data type determines the storage requirement for the component as shown in Table 2-2. For
LOGICAL and INTEGER, the storage requirement can be controlled by the -i compiler option: the

default is four bytes. For REAL and COMPLEX, the storage requirements can be controlled by the -r
compiler option.

Irm-2-1

Constants, Variables, and Arrays

For CHARACTER data type, len may have an integer value ranging from 1 to the maximum
length permitted by the system (see Appendix D). The notation CHARACTER*(*) specifies an
assumed-length character string.

Table 2-2: Storage Requirements for Data Types

Data Type Storage Requirements

(Bytes)
LOGICAL 1,2,4, or8
LOGICAL*1 1
LOGICAL*2 2
LOGICAL*4 4
LOGICAL*8 8
INTEGER 1,2,4, 0r8
INTEGER*1, BYTE 1
INTEGER*2 2
INTEGER*4 4
INTEGER*8 8
REAL 4or8
REAL*4 4
REAL*8, DOUBLE PRECISION 8
COMPLEX 8 or 16
COMPLEX*3 8
COMPLEX*16 16
CHARACTER*len len
CHARACTER*(*)

2.2.1 Conversion of Data Types

Where data type differs between the variable or array element on the left side and the expression
on the right side of an assignment statement, CONVEX FORTRAN converts the expression on
the right to the same data type as that on the left side. For the purpose of conversion, CONVEX
FORTRAN does the following:

e Treats LOGICALS as INTEGERS of the same length.

e Converts INTEGERS to longer ones by sign extension and to shorter ones by truncation.
Truncation of significant bits causes an integer overflow.

e Converts INTEGER values to REAL values by truncation. For example, 82762035 is
too large to fit in a REAL*4 without loss of precision, so just enough rightmost bits of
the binary representation are truncated to make it fit. After conversion, the value
becomes 82762033.0

e Converts REAL values to INTEGER values by truncation. Rounding is not performed.
For example, I = 5.9 assigns the value 5 to L.

e Converts REAL*8 to REAL*4 by rounding the REAL*8 value to the precision of a
REAL*4.

Irm-2-2

Constants, Variables, and Arrays

e Converts COMPLEX values to other noncomplex numeric data types by converting the
real part only. For example, R = (15.6d0,7.5D6) assigns the value 15.6 to R.

e Converts noncomplex values to COMPLEX by converting first to the appropriate
precision REAL value to get the real part, and then assigning 0.0 or 0.0D0 to the
imaginary part.

e Handles COMPLEX-to-COMPLEX conversions by converting the real and imaginary parts
separately, that is, as two REAL conversions.

2.3 Constants

A constant is an arithmetic or logical value, or a character string that does not change during
program execution. The form in which a constant is expressed determines the value and data
type. The PARAMETER statement is used to assign a symbolic name to a constant.

2.3.1 Integer Constants

An integer constant consists of the digits 0 to 9 and, possibly, a sign. If the constant is positive,
the sign is optional; if the constant is negative, the sign is required. Leading zeros have no eflect
on the value.

Examples:
Legal Illegal Reason
248 24.8 Has decimal point
54 5E8 Uses exponential notation
12333 12,000 Has comma

An integer constant is represented at the default integer precision (4) or at a higher precision if the
constant is too large for the default precision. You can change the default precision by using compiler
options (such as -i or -cft] as described in Appendix B.

2.3.2 Real Constants

A REAL*4 constant consists of an optional positive sign or required negative sign, digits (0-9), a
decimal point, and an optional exponent. The exponent is represented as the letter E followed by
an integer that denotes the power of 10. You can place the decimal point anywhere in the string
(e.g., 2.1, .2, 678912.). When you specify an exponent, the decimal is optional; 7.E3 is the same
as 7E3.

A double-precision (REAL*8) constant is identical to the REAL*4 except the exponent is not
optional and the exponent letter D is used instead of E.

Examples:
Legal Illegal Reason
2500. 2500 Decimal point missing
+2.0E2 2.0E Exponent field missing
5E4 5.000 Has comma
4E-2
3.0E4

Irm-2-3

Constants, Variables, and Arrays

2.3.3 Complex Constants

Both COMPLEX*8 and COMPLEX*16 constants consist of a pair of real constants separated by
a comma and enclosed in parentheses. The first constant is the real part and the second constant
is the imaginary part. A COMPLEX*8 constant is a pair of integer or REAL*4 constants. A
COMPLEX*16 constant is an ordered pair of integer, REAL*4 or REAL*8 constants, where one of the
pair must be REAL*8.

Example:

Legal _ lllegal Reason
(1.6405D0,-1.6405D0) (1.640D) Second constant missing

2.3.4 Octal Constants

An octal constant consists of one or more octal digits enclosed in apostrophes and followed by the
letter O. An octal digit can range from 0 to 7. An octal constant has the form:

‘cc...c’O

where c represents an octal digit.

Examples:

Legal lllegal Reason

'765°0 ‘835°0 8 not in range O to 7

'123°0 1230 Missing apostrophes
If you specify the -vfc compiler option (see Appendix H), the compiler accepts octal constants of the
form:

"cc...c

where c represents an octal digit.

2.3.5 Hexadecimal Constants

A hexadecimal constant consists of one or more hexadecimal digits enclosed in apostrophes and
followed by the letter X. A hexadecimal digit can range from 0 to 9. A to F for a to f]. A
hexadecimal constant has the form:

‘cc...c’X

where c represents a hexadecimal digit.

Examples:
Legal llegal Reason
"1A6°X 'FFG'X Gnotinrange0-9 A-F
'123°X 12.4°X Decimal point not allowed
‘FFFFFFFF'X 1AB2X No apostrophe
‘abc123ff' X

Irm-2-4

Constants, Variables, and Arrays

2.3.5.1 Octal and Hexadecimal Constants—Data Specification

Octal and hexadecimal constants assume data types depending on how they are used. The following
conditions apply:

o When you use octal or hexadecimal constants as actual arguments, no data type is assumed.

e When you use either of the constants with a binary operator, the data type of the constant
matches the data type of the other operand.

e When a specific data type is required, that type is assumed for the constant.
e In any other context, the type is INTEGER*4 for the constant.
When the number of digits required exceeds the length of the constant, the leftmost places are filled
with zeros. When the length of the constant exceeds the number of digits required, the excess digits
are truncated on the left: an error message results if any of the truncated digits are nonzeros. For
example:
INTEGER*4 i,j

where: -

="'12'X (same as '00000012°X)
J = TT7THIHH0076°X (same as 'ffff0076°X)

2.3.6 Hollerith Constants

Hollerith constants are strings of printable ASCIl characters, preceded by a character count and the
letter H. A Hollerith constant has the form:

nHcc...c

where:
n specifies the number of the characters in the constant (including spaces and tabs).
¢ is a printable ASCII character.

The value of n must be an unsigned, positive integer greater than zero.

Example:
Valid Invalid Reason
4HHelp OH Must contain one character minimum

Hollerith constants assume data type according to the context in which they are used:
o When a specific data type is required, that type is assumed for the constant.
e When the constant is used as an actual argument, no data type is assumed.
e When the constant is used with a binary operator, the data type of the constant is that of

the other operand. Although the data type is that of the other operand, the bit pattern is
taken from the Hollerith constant.

Irm-2-5

Constants, Variables, and Arrays

® In any other context, the constant assumes an INTEGER*4 data type, unless you specify
another one using the -i option.

2.3.7 Logical Constants

A logical constant represents the value true or false. The form must be .TRUE. or .FALSE.
(including the delimiting periods).

2.3.8 Character Constants

A character constant consists of a string of printable ASCII characters with delimiting
apostrophes. The value of the character constant includes characters, spaces, and tabs between
the delimiting apostrophes. The delimiting apostrophes are not part of the value, but every
string must begin and end with them. Within a string, use two consecutive apostrophes () to
represent an apostrophe.

Examples:

*final’
'two’'’'s complement’
'double“quote’

A character constant can also be delimited by quotation marks (”) instead of apostrophes. In
either case, the beginning delimiter must be the same as the ending delimiter. When quotation
marks are the delimiters, use two consecutive quotation marks (””) within a string to represent
quotation marks.

Examples:

*begin”

"two's complement®
double"quote"

*bad string” (invalid)

2.4 Variables

A variable represents a value that can be changed during program execution by an assignment. or
READ statement. You can assign an initial value to a variable with a DATA statement or a type
statement. A variable is associated with a storage location. Whenever a variable is used, the
current value in the storage location is referenced.

A variable type is classified as INTEGER, REAL, DOUBLE PRECISION, COMPLEX,
LOGICAL, or CHARACTER. The data type describes the data, its storage requirements, and its
precision. If there is no explicit type statement, the first character of the symbolic name identifies
the data type.

Multiple variables can be associated with the same storage location by means of COMMON
statements, EQUIVALENCE statements, or actual arguments and dummy arguments in
subprogram references. The COMMON statement allows two or more variables in different
program units to share the same storage unit. The EQUIVALENCE statement allows variables
in the same program unit to share the same storage unit (see Chapter 3).

Irm-2-6

Constants, Variables, and Arrays

2.5 Arrays

An array is a set of adjoining storage locations, with one to seven dimensions, identified by a
single symbolic name. For example, a one-dimensional array consists of a single column of
figures; a two-dimensional array consists of a table of figures. To reference a specific element in a
two-dimensional array, specify both a row and column number. Each array element (individual
storage unit) is referenced by the array name and a qualifier called a subscript.

All the values in the array have the same data type and any value assigned is converted to the
data type of the array. A DATA statement can be used to define an array element or an entire
array before program execution. During execution, an array element is defined with an
assignment or input statement; the entire array may be defined with an input statement.

2.5.1 Array Declaration

DIMENSION, COMMON, or type statements allow array declarations. An array declarator
defines the name of the array within the program unit, the number of dimensions in the array.
and the upper and lower bounds of elements in each dimension. If an array has more than one
dimension, separate the dimension declarators with commas.

Examples:

DIMENSION MYRAY(5) ! One-dimensional array with 5 elements; integer type
! by name.

COMMON RERAY(5,5) ! Two-dimensional array with 25 elements; real type by
! name.

INTEGER A(5,5,5) ! Three-dimensional array with 125 elements (5 planes,
! 5 rows, 5 columns); INTEGER type statement overrides
! the name rule and any conflicting IMPLICIT statement.

CHARACTER*8 MYRAY (2) ! One-dimensional character array with 2 elements,
! MYRAY(1) and MYRAY(2); storage space is 8 for each
! element.

If you do not specify a lower or upper bound, the lower bound is 1 and the upper bound is the
number of elements in that dimension. To use a lower bound that is not 1, you must specify
both bounds. The bounds values can be positive, negative, or zero. Separate lower- and upper-
bound values by a colon.

The following statement specifies a one-dimensional array with five elements, 0 - 4:
DIMENSION MYRAY (0:4)

The following statement specifies a two-dimensional array with 25 elements. The first dimension
contains elements -1 through 3; the second, elements 2 through 6.

COMMON MYRAY(-1:3,2:6)

2.5.2 Array Subscripts

A pair of parentheses enclosing one to seven subscript expressions separated by commas
constitutes a subscript. A subscript specifies which array element is being referenced. It
immediately follows the array name. Specify one subscript expression for each dimension defined
for the array. For a two-dimension array of COMMON MYRAY(5,5), a valid reference is
MYRAY(2,4). A subscript expression can be any valid arithmetic expression.

Irm-2-7

Constants, Variables, and Arrays

2.5.3 Array Storage

Even though array elements are arranged and referenced in dimensions, array storage in memory
is in linear sequence. For example, a one-dimensional array consists of a column of figures. In
this case, the array is stored with the first element in the first storage location and its last
element in the last storage location of the sequence. Multidimensional array elements are stored
so the value of the first subscript (leftmost) varies most rapidly. This is called the “order of
subscript progression.”

2.6 Expressions

An expression is a combination of one or more operands and optional operators. During program
execution, an expression specifies a computation or evaluation that produces a single value. The
operators determine the operations to be executed on the operands. An expression can be
arithmetic, logical, relational, or character.

2.6.1 Arithmetic Expressions

An arithmetic expression consists of arithmetic operators and operands. Arithmetic operands
include character, Hollerith, octal, and hexadecimal constants described previously, in addition to
the standard FORTRAN-77 operands of numeric constants, numeric variables, numeric array
elements, arithmetic expressions enclosed in parentheses, or arithmetic function references. The
term “‘numeric’’ as used here includes logical data. The system treats logical data as integer data
when it is used in an arithmetic context.

The arithmetic operator specifies the type of computation to perform on the operands. This
computation generates a numeric value. The arithmetic operators are:

Operator Function Example
*H Exponentiation C**2

* Multiplication C*2

/ Division C/2

+ Addition C+2

- Subtraction C-2

+ Unary plus (identity) C/(+2)

- Unary minus (negation) | C/(-2)

Arithmetic operators used with two operands are binary operators. The plus and minus operators
are unary, however; they change or confirm the sign of the operand.
2.6.1.1 Operator Precedence

When an expression contains two or more operators, they are executed according to the following
order of precedence if there are no parentheses.

Operator Priority
** Evaluated first
*and / Evaluated second
+ and - Evaluated last

Operators with the highest priority are processed before those with lower priority except that
parentheses within an expression cause the operation inside the parentheses to be performed first.

Irm-2-8

Constants, Variables, and Arrays

Examples:
6 * 2%*x2 - § ! Yields a value of 19
3 +4 x3 - 9/3 ! Yields a value of 12
(3 +4) *3-9/3 ! Yields a value of 18

When an expression contains two or more operators of equal precedence, evaluation occurs in
left-to-right order, except for exponentiation that is evaluated right to left. CONVEX
FORTRAN, however, may execute operations in differing orders as long as the order remains
algebraically equivalent to left-to-right order of evaluation.

If more than one set of operators appears within parentheses, the operators are evaluated
according to the normal order of precedence, unless overridden by parentheses within parentheses.
In nested parenthesized expressions, the innermost set is evaluated first.

2.6.1.2 Data Type Priority

Where operands of different data types are combined in an arithmetic expression, the higher-
ranked argument determines the type, and the greater-precision argument determines the
precision. Data types are ranked as follows:

Rank Data Type
1 (lowest) | LOGICAL*1, *2, *4, *8
2 INTEGER*1 (BYTE), *2, *4, *8
3 REAL*4 (REAL), *8 (DOUBLE PRECISION)
4 (highest) | COMPLEX*8 (COMPLEX). *16 (DOUBLE COMPLEX)

When LOGICAL and INTEGER are combined, the resulting type is INTEGER, and the precision is the
highest specified, whether *1, *2, *4, or *8. Even REAL*8 and COMPLEX*8 yielding COMPLEX*16
is consistent with this rule, if you regard the precision of COMPLEX*8 as 4 and of COMPLEX*16 as 8
(the precision of the real and imaginary parts). The CONVEX FORTRAN extensions in data types are
LOGICAL*1, LOGICAL*2, LOGICAL*8, INTEGER*1, INTEGER*2, INTEGER*8, and COMPLEX*16.

The data types of arithmetic expressions follow certain conventions:
o LOGICAL entities are treated as INTEGERS when used in an arithmetic context.
o REAL operations are performed only if one or more of the operands is REAL.

e In COMPLEX operations, those operations involving COMPLEX*8 and REAL*8 elements
are evaluated as COMPLEX*16 operations; hence, the REAL*8 element is not rounded.

These conventions also apply to arithmetic operations where one of the operands is a constant.
Additional precision is used for the constant if a real or complex constant is used in a higher-precision
expression. In such expressions, the effect is as if a REAL*8 representation of the constant had been
given.

2.6.2 Relational Expressions

A relational expression compares either the value of two arithmetic expressions or the value of
two character expressions that produce a logical value of true or false. The two expressions are
separated by a relational operator. Each relational operator must include delimiting periods.

The relational operators are .LT., .LE., .EQ., NE., .GT., and .GE.

Irm-2-9

Constants, Variables, and Arrays

2.6.3 Logical Expressions

A logical expression consists of one logical operand or a combination of logical operands and
logical operators. After evaluation, a logical expression produces a logical value of true or false.
Logical operands in CONVEX FORTRAN can be any of the following:

A logical constant or an integer.

A logical variable or an integer.

A logical array element or an integer.

A logical expression enclosed in parentheses or an integer.
A logical function reference or an integer.

A relational expression.

The evaluation of a logical expression that contains two or more logical operators is based on
operator precedence as follows:

Precedence Operator
Lowest .EQV., NEQV. ((XOR.)
.OR.
AND.
Highest .NOT.

The logical operator .XOR. is the same as .NEQV. Operators on the same level of precedence are
interpreted from left to right. The arithmetic rules for operator precedence apply for evaluation.
The evaluation of mixed operations is first by arithmetic rules of precedence, next by relational
operations, and last by logical operations.

The expression in the following example yields a value of FALSE:

6
2
5
K .LE. N) .AND. (N .GT. M)

K
M
N
(

As stated in the ANSI standard, logical operators used on logical values produce values of type
LOGICAL. Logical operators operating on integer values produce values of type INTEGER. The logical
operation is carried out bit by bit on the corresponding bits of the internal binary representation of the
integer elements. When a logical operator combines integer and logical values, the logical value is first
converted to an integer. The operation is then carried out for the two integer elements; the resulting
data type is INTEGER.

2.6.4 Character Expressions

The evaluation of a character expression produces a string of type CHARACTER. Within a
character expression, two slashes may be used to specify concatenation. Concatenation produces
a string that is the sum of the operand strings and executes from left to right.

Parentheses have no effect on the value of a character expression. If spaces are included in the
expression, the spaces are part of the value.

Examples:
'MY'//'EXAMPLE’ ! Yields a value of MYEXAMPLE
'MY '//'EXAMPLE’ ! Yields a value of MY EXAMPLE

Irm-2-10

Constants, Variables, and Arrays

2.6.4.1 Character Substrings

A character substring is a sequence of adjacent characters that are part of a character variable or
array element. A substring name identifies a character substring that can be assigned values and
referenced. A character substring reference to a variable has the form:

var ([ezpr] : [expr?])

where var is a character variable name, ezpr! is an optional numeric expression indicating the
leftmost character position of the substring, and ezpr2 i1s an optional numeric expression
indicating the rightmost character position of the substring. If ezprl is omitted, a value of 1 1s
assumed; if expr? is omitted, the length of the character variable is assumed. The value of expri{
must be positive and less than or equal to exprl. The value of expr2 must be less than or equal
to the length of the string.

For example, if:

CHARACTER*14 NAME
NAME = °CONVEX FORTRAN’

then:
NAME(8:14)

indicates a substring beginning with the position 8 (F) and ending in position 14 (N) of the
variable NAME, giving the value of FORTRAN to the substring NAME(8:14). Character
positions are numbered from left to right within a character variable or array element.

The character substring form for referencing an array is: character array name, subscript
expression, numeric expression indicating leftmost character of substring, a colon (:), and
numeric expression indicating rightmost character of substring. For example:

EXAMPLE(1,5) (:3)

indicates the substring begins with the first character position and ends with the third character
position of the character array EXAMPLE(1,5).

2.6.4.2 Constant Expressions

A constant expression is one in which each primary is a constant, the symbolic name of a
constant, or a constant expression.

A compile-time constant expression can be a compile-time logical expression, character expression,
or arithmetic expression. CONVEX FORTRAN provides the following extensions:

e In the compile-time logical expression, each operand is a constant, the symbolic name of
a constant, another compile-time constant expression, or one of the functions IAND, IOR,
NOT, IEOR, ISHFT, LGE, LGT, LLE, or LLT with constant operands.

e In the compile-time character expression, each operand is a constant, the symbolic name
of a constant, another compile-time constant expression, or the function CHAR with a
constant operand.

e In the compile-time arithmetic expression, each operand is a constant, the symbolic
name of a constant, another compile-time constant expression, or one of the functions
MIN, MAX, ABS, MOD, ICHAR, NINT, DIM, DPROD, CMPLX, CONJG, or IMAG with
constant operands.

Irm-2-11

Chapter 3

Specification Statements

Specification statements are nonexecutable statements that appear before the first executable
statement in a program unit. These statements define the type of variable or array, stipulate
storage requirements for each variable based on its type, indicate the dimension of arrays, define
storage sharing, and assign initial values to variables and arrays. Specification statements
include:

COMMON
IMPLICIT

Type declaration
DIMENSION
EQUIVALENCE
PARAMETER
PROGRAM
NAMELIST
EXTERNAL
INTRINSIC
SAVE

If you specify the -sfc (Sun FORTRAN) compiler option, you may use the STATIC and AUTOMATIC
statements. For further information, see Appendix I. The DATA statement, which assigns initial
values to variables, arrays, and array elements, is classified as an initialization statement. The
DATA statement is described in Chapter 4.

3.1 COMMON Statement

The COMMON statement allows variables or arrays in a main program or subprogram to share
the same storage location with variables and arrays in other subprograms. These blocks of
storage are called common blocks. Common blocks can be named or unnamed; unnamed blocks
are called blank common. The block specification determines storage order of variables and
arrays. Named common blocks of the same name may be of different sizes in different program
units of an executable program.

The COMMON statement has the form:
COMMON [/[ebn]/] nlist [[,] /[cbn] /nlist]...

where:

cbn is a symbolic name for a common block. If you do not specify a symbolic
name (blank common), the first pair of slashes is optional.

nlist 1s a list of variable names, array names, and array declarators.

An entity name (name in nlist) can appear only once in a COMMON statement within a program
unit. If a common block name appears twice in the same program unit, the effect is as if the nlust
of the second appearance came after the first nlist. You can use a common block name (cbn)
more than once in a COMMON statement and in a program unit. A common block can have the
same name as any local entity except a constant, intrinsic function, or a variable name that is
also a function name. If you give both a common block and variable the same name, all
references to the name, except when it appears surrounded by slashes (/) in COMMON and

Irm-3-1

Specification Statements

SAVE statements, indicate the variable. Thus, SAVE X refers to the variable, while SAVE /X/
refers to the common block.

Arrays and variables in COMMON can be initialized in DATA statements in program units other than
BLOCK data subprograms. A variable in COMMON, however, can be initialized only in one program
unit, although different variables in a COMMON block may be initialized in different program units.

3.2 IMPLICIT Statement

The IMPLICIT statement allows you to override the implied data typing of symbolic names
within a program unit. The IMPLICIT statement has the forms:

IMPLICIT typ (al,d]...) [,{typ] (al,a]...)]...
IMPLICIT NONE

where:

typ is INTEGER/[*len], REAL[*/len], DOUBLE PRECISION, LDOUBLE
COMPLEX, COMPLEX{[*len], LOGICAL[*len], or CHARACTER [*len]
data type.

a is one letter or a range of letters; the range is expressed as first letter of
range, minus sign, last letter of range, i.e., F-H.

len is an optional length specifier for the data type.

If used, the IMPLICIT statement must precede any other specification statements in the program
unit. If this statement is not used, variable names that begin with the letters I through N imply
type integer; all others imply REAL types.

The IMPLICIT NONE form of the statement overrides all implicit defaults. In this case, you must
explicitly declare the data types of all symbolic names in the program unit. If you specify IMPLICIT
NONE, no other IMPLICIT statement can be included in the program unit.

Examples:

IMPLICIT COMPLEX(F,H-J) ! Any name beginning with the letter F or any of
the letters H, I, J is type COMPLEX

IMPLICIT LOGICAL(L) ! Any name beginning with the letter L is type
LOGICAL (value of .TRUE. or .FALSE.)

IMPLICIT CHARACTER*8(C) ! Any name beginning with the letter C is type
CHARACTER with the length of the character entity
being 8

IMPLICIT REAL (A-H), (0-Z) ! Any name beginning with the letters A through H
or 0 through Z is type REAL

3.3 Type-Declaration Statements
Type statements are numeric or CHARACTER type declarations. Type statements take

precedence over the name rule and IMPLICIT statements if there 1s a conflict. You can also use
these statements to specify array dimensions.

Irm-3-2

Specification Statements

Both numeric and CHARACTER type-declaration statements can initialize data by including values
bounded by slashes (/) in the statement. Place the values after the symbolic name of the variable or
array to be initialized. Initial values are assigned in the same way that they are assigned in DATA
statements. The following subsections include examples of both forms of type-declaration statements.

3.3.0.1 Numeric Type-Declaration Statements

As mentioned previously, type-declaration statements have the form:
type v [/clist/] [,v [/clist/] |...

where:
type is any data type specifier except CHARACTER.

v is the symbolic name of a constant, variable, array, statement function or
function subprogram, or array declarator.

clist is a list of constants. (See “"Data Statement,”” Chapter 4.)

You can follow the symbolic name with a data-type length specifier written as *s, where s is one of the
acceptable lengths for the data type being declared. A new length, which overrides the length attribute
that the statement implies, is thus assigned to the specified item. When you use data type-length
specifiers with an array declarator, place them immediately after the array name.

You can assign initial values to variables or arrays with /clist/, which initializes the variable or array
immediately preceding it. For arrays only, the clist can consist of more than one element. If you
initialize an array using /clist/. every element in the array must be assigned a value, as in the following
example:

REAL*8 PI/7.43562D0/, E/3.33D0/, QARRAY(10)/5%0.0,5%*1.0/

3.3.0.2 CHARACTER Type-Declaration Statements

CHARACTER type-declaration statements, like the numeric type, use the /clist/ provision but in
the following form:

CHARACTER [*len [,] | v[*len] [/clist/] [,v[*len] [/clist/]]...

where:

v is the symbolic name of a constant, variable, array, statement function or
function subprogram, or array declarator.

len is an unsigned integer constant, an integer constant expression enclosed in
parentheses, or an asterisk enclosed in parentheses. The value of len
specifies the length of the character data elements. When an array is being
declared, the length must appear after the array dimension.

clist is a list of constants, as in the DATA statement.

As for numeric type-declaration statements, the /clist/ assigns initial values to the variable or the array
immediately preceding it. For arrays only, clist can contain more than one element. Where this is the
case, it must contain a value for every element in the array.

Irm-3-3

Specification Statements

The following example specifies an array DEMO consisting of fifty 16-character elements, an
array DUMMY comprising twenty 9-character elements, and a variable DRAFT, which is 5
characters long with an initial value of 'ABCDE':

CHARACTER*16 DEMO(50), DUMMY(20)*9, DRAFT*5 /'ABCDE'/

If you do not specify the length of an item (CHARACTER*len), its length is len—the default
length specification for that item. If you specify the length, that length takes precedence over the
default length specified in CHARACTER*/en.

If you specify the length as an *, i.e., CHARACTER *(*), the function name or dummy argument
assumes the length specification of the corresponding function reference or actual argument. This
is known as an assumed-length character argument.

3.4 DIMENSION Statement

The DIMENSION statement names arrays and specifies the bounds of the array. The type of
array and the product of the subscripts determine the number of storage units allocated to each
array named in the statement. The name rule or a preceding IMPLICIT or type statement
determines the data type. The general form includes the array name and the array dimension.
Each dimension is defined by a dimension declarator within the array declarator.

Example:
DIMENSION MYRAY(4,5)

The preceding example specifies a type INTEGER two-dimensional array with 20 elements. The
product of the dimension declarators, (4,5), determines the total number of storage elements
assigned to the array. When you specify two or more array declarators, separate them by
commas.

3.5 EQUIVALENCE Statement

The EQUIVALENCE statement causes two or more entities within a program unit to refer to the
same storage area. Thus, the same storage unit can be referenced by more than one name. Each
statement consists of two or more variables, array elements, array names, or substring names
separated by a comma. An array must be dimensioned with a DIMENSION, type, or COMMON
statement before it or any of its elements can be equivalenced. All elements contained in the
same set of parentheses are allotted storage in the same location. For example:

DIMENSION CONVEX (10), COM (12)
EQUIVALENCE (F,G,H), (CONVEX(9), COM(10)), (L,M,N)

indicates that the variables F, G, and H share the same location; the 9th element in array
CONVEX and the 10th element in array COM share the same location; the variables L, M, and N
share the same location.

If different data types are equivalenced, the EQUIVALENCE statement does not imply
mathematical equivalence or type conversion. Type is associated with the name used to reference
a location; the name determines how data is stored or read from the location. Names of dummy

arguments of an external procedure in a subprogram, or a variable name that is a function name
cannot appear in an EQUIVALENCE statement.

Use of the EQUIVALENCE statement can interfere with optimization of the program.

Irm-3-4

Specification Statements

3.5.0.3 Equivalencing Arrays

Making one array element equivalent to an element of another array also defines the relative
locations of the other array elements. For example:

DIMENSION A(5), B(4,3)
EQUIVALENCE (A(2),B(2,2))

The entire array A shares part of the storage space allotted to array B. The EQUIVALENCE
statements:

EQUIVALENCE (A,B(1,2)) or EQUIVALENCE (A(5),B(1,3))

also align the two arrays in the same manner as EQUIVALENCE (A(2),B(2,2)). Table 3-1 shows

how these statements align the arrays.

Table 3-1: Array Locations

Array B Array A

Elements Location | Elements Location
Number | Number

B(1,1) 1

B(2,1) 2

B(3,1) 3

B(4,1) 4

B(1,2) 5 A1) 1

B(2,2) 6 A(2) 2

B(3,2) 7 A(3) 3

B(4,2) 8 A(4) 4

B(1,3) 9 A(5) 5

B(2,3) 10

B(3,3) 11

B(4,3) 12

The same storage location cannot be allotted to two or more elements of the same array. For
instance, the following statements are invalid because they allocate the same storage for A(1) and

A3).

DIMENSION A(5), B(4,3)
EQUIVALENCE (A(1),B(3,3)), (A(3),B(3,3))

When making arrays equivalent for storage, you can identify an array element with a single subscript
(the linear element number), even if the array was defined as a multidimensional array. For example:

REAL A[10,10),Z(200)
EQUIVALENCE (A(100),Z(150))

associates element A(10,10] with element Z(150).

3.5.0.4 Equivalencing Substrings

When you make character substrings equivalent for storage, the EQUIVALENCE statement also
defines the storage location for the other corresponding characters in the character entities.

Irm-3-5

Specification Statements

For example:

CHARACTER PROD*12, N*8
EQUIVALENCE (PROD(6:10), N(4:8))

specifies the character variables PROD(6) and N(4), PROD(7) and N(5), through PROD(10) and
N({8) share storage locations. Thus, the storage locations for the other character entities are
defined as: N(1) shares storage with PROD(3), N(2) with PROD(4), and so forth.

Assigning the same storage location to two or more character substrings that begin at different
character positions within the same character variable or array is prohibited. You cannot use
EQUIVALENCE statements to indicate that consecutive storage units are to be nonconsecutive.

3.5.0.5 Using EQUIVALENCE in Common Blocks

You can extend a common block of storage with the EQUIVALENCE statement if you extend
locations beyond the last element and do not add to the beginning of the common block.

For example:

DIMENSION A(5), B(2,3)
COMMON B
EQUIVALENCE (A(1), B(1,2))

extends the common block beyond the last element. The existing common block includes B(1,1)
through B(2,3) and A(1) through A(4); A(5) is the extended portion being added beyond the last
element B(2,3) of the existing common block. If you change COMMON B in the previous
example to COMMON A:

DIMENSION A(5), B(2,3)
COMMON A
EQUIVALENCE (A(1), B(1,2))

the extension is invalid. The common block now includes A(1) through A(4), and B(1,2) through
B(2,3); both B(1,1) and B(2,1) comprise the extended portion preceding the common block, which
is invalid.

3.6 PARAMETER Statement

CONVEX FORTRAN supports two types of PARAMETER statements. The first type is the
standard FORTRAN PARAMETER statement; the second type is for compatibility with
compilers supplied by other vendors.

3.6.1 Standard PARAMETER statement

The PARAMETER statement assigns a symbolic name to a constant to be used within the
program unit. The name specified is used to reference that constant in other statements in the
program unit. You must have previously defined any symbolic constant names that appear in an
expression. A constant is named only once in a program although you can use the symbolic name
in subsequent DATA statements or expressions in the same program.

You can use the PARAMETER statement to define an entire format specification; however, it
must not appear as a part of a format specification. Also, it cannot be used as part of another
constant although CONVEX FORTRAN provides for use as either the real or imaginary part of a
complex constant.

Irm-3-6

Specification Statements

Examples:

PARAMETER (SMITH = 1)

PARAMETER (BOSQUE = 10, HAYS = 100)
COMPLEX LAMAR

PARAMETER (LAMAR = (BOSQUE,HAYS))

To determine the data type associated with each constant, use the implicit naming convention or
an explicit type-declaration statement appearing before the PARAMETER statement. If the
length for a character-type constant is greater than the default length of 1, you must specify the
length before the first appearance of the symbolic name.

3.6.2 Alternate PARAMETER Statement

An alternate form of the PARAMETER statement is available. This PARAMETER statement also
assigns a symbolic name to a constant but its list is not bounded by parentheses and the form of the
constant determines the data type of the variable. The alternate PARAMETER statement does not
conform to the ANSI standard but has the following form:

PARAMETER p=c [, p=c ...

where p is a symbolic name and c¢ is a constant, the symbolic name of a constant, or a compile-time
constant expression.

The data type is not determined by the implicit or explicit typing of the symbolic name, but by the
form of the constant. Once you have defined a symbolic name as a constant, you can use it wherever
a constant is allowed. You cannot, however, use the symbolic name of a constant as part of another
constant, but you can use it as a real or imaginary part of a complex constant.

Since the symbolic name of a constant assumes the data type of its corresponding expression, you
cannot specify the data type of a parameter in a type declaration statement, nor does the initial letter
of the constant name affect the data type.
Example:

PARAMETER BAKER = 3, XRAY = 45.4, ALPHA = XRAY*BAKER

To use the alternate PARAMETER statement with only one constant, specify the -vfc compiler option.
(See Appendix H.)

3.7 PROGRAM Statement

The PROGRAM statement can be used to assign a name to the main program unit; its use is
optional. If used, a PROGRAM statement must always be the first statement in the program
unless an OPTIONS statement is also included, in which case the PROGRAM statement immediately
follows the OPTIONS statement.
The PROGRAM statement has the form:

PROGRAM pgm
where pgm is the symbolic name for the main program.
Do not use the symbolic main program name as a name for an external procedure, block data

subprogram, or common block in the same executable program. Also, do not use a symbolic
main program name as a local name in the main program.

Irm-3-7

Specification Statements

You cannot reference the main program from itself or from a subprogram. An executable
program has only one main program.

3.8 NAMELIST Statement

The NAMELIST statement associates a single unique name with a list of variables or array names.
This name defines a list of entities that can be modified (read) or transferred (written). Thus, you can
use this unique name in namelist-directed 1/O statements in place of the entities list. The NAMELIST
statement has the form:

NAMELIST /nigrpname/varlist [[.]/nigrpname/varlist]...
where:
nigrpname is a symbolic name representing the list of entities to be read or written.

varlist is a list of variable or array names (separated by commas) to be
associated with the nigrpname. A variable or array name may occur in
more than one varlist. An entity may be a dummy argument. These
entities, which may be explicitly or implicitly typed, can be any data type.

An entity can be of integer, real, logical, complex, and character data types. If the entity and the
constant value assigned to it are not of the same type, the compiler performs the arithmetic
assignment conversion. You may not, however, convert between numeric and character data types.

The following example shows the format for namelist-directed input. The $ in the first and last lines of
the example are in column two with a space in column 1. The remaining lines begin with a tab.

(space]SCONTROL

(tab] TESTCASE="40004.00",
(tab)CONDITION=.FALSE.,
(tab)BEGIN=100,
(tab]REPEAT=10,
(space)$END

The following statement illustrates the use of NAMELIST:
NAMELIST /EXAM1/ TESTA, TESTB, TESTC /EXAM2/ TOTTEST

In this example, the NAMELIST statement defines two groupnames—EXAM1 and EXAM2. The first
represents three entities (TESTA, TESTB, and TESTC)], while the second represents one entity
(TOTTEST). The order in which you list the entities in the varlist determines the order in which the
values are output; however, the order of input values is immaterial. Also, you do not need to define
every entity in the corresponding varlist during input. For instance, using the previous example, you
could input values for only TESTA and TESTB. The value of TESTC would remain unchanged.

Although you cannot use array elements and character substrings in a namelist, you can use namelist-
directed 1/O to assign values to elements of arrays or substrings of character variables that occur in
the namelist. You can also use a variable or an array name in several namelists. (See Chapters 7 and
8 for more information on namelist-directed 1/0.)

Irm-3-8

Specification Statements

3.9 EXTERNAL Statement

An EXTERNAL statement identifies a symbolic name as representing an externally defined
procedure or dummy procedure. It indicates that a given name is the name of a subprogram
instead of a variable or array name. An EXTERNAL statement must be used for a subprogram

or dummy procedure name that appears as an actual argument in a function reference or in a
CALL statement. The form is:

EXTERNAL n [,n]...

where n is the symbolic name of a user-supplied subprogram, block data subprogram, or dummy
procedure.

If an EXTERNAL statement declares an intrinsic name as an external procedure, the intrinsic
function cannot be referenced in that program unit. That name is associated with an external
procedure. For example, if you declare COS in the EXTERNAL statement (EXTERNAL COS),
all subsequent references are to an external procedure COS, not the intrinsic function COS.

3.10 INTRINSIC Statement

The INTRINSIC statement permits a name that specifies an intrinsic function to be used as an
actual argument. The INTRINSIC statement has the following format:

INTRINSIC = [,n]...
where n 1s one of the FORTRAN intrinsic functions.

If the name of an intrinsic function is to be used as an actual argument in a program unit, it
must appear in an INTRINSIC statement in that program unit. Not all types of intrinsic
functions can be used as actual arguments. These include intrinsic functions for type conversion,
maximum/minimum value and lexical comparison functions, e.g., INT, IFIX, IDINT, REAL,
FLOAT, SNGL, DBLE, CMPLX, ICHAR, CHAR, LGE, LGT, LLE, LLT, MAX, MAX0, AMAX]1,
AMAX0, MAX1, MIN, MINO, AMIN1, DMIN1, AMINO, and MINI.

3.11 SAVE Statement

The SAVE statement retains the values of designated variables and arrays in a subroutine or
function when a RETURN or END statement is executed. Thus, items specified in a SAVE
statement do not become undefined when the subroutine or function completes execution. In the
next call to the subroutine or function, a saved item has the same value it had on return from the
preceding call.

The SAVE statement has the following format:

SAVE [n [,n]...]
where n is a variable name, array name, or a named common block contained between slashes
(e.g., /NCOM/). A dummy argument name, subprogram or function name, or name of an entity
within a common block is not allowed. When a common block name appears in a SAVE

statement, all the variables and arrays in the common block are saved.

If the SAVE statement contains no arguments, the values of all allowable entities are retained.

Irm-3-9

Chapter 4
DATA Statement

The DATA statement establishes initial values for arrays, array elements, substrings, and
variables. Values are initialized when the program unit is compiled and may be changed during
program execution.

The DATA statement is nonexecutable. All entities initialized with a DATA statement are
defined when program execution begins; all entities not initialized with a DATA statement are
undefined when program execution begins. Undefined entities must be defined before they can be
referenced.

4.1 DATA Statement Form

The DATA statement has the following form:
DATA nlist/clist/ | [,|nlist/clist/]...
where:

nlist is a list of one or more array names, array element names, character
substring names, implied-DO lists or variable names. You cannot use
dummy argument names or function names in the nlist.

clist is a list of constants (numeric, character, logical, or Hollerith) or symbolic
names of constants (defined with a PARAMETER statement). Items in
clist are consecutively assigned to the entities in nlist; the first item in nlist
corresponds to the first item in clist. Constants can be repeatedly
associated with entities in the nlist.

The number of names in the nlist must equal the number of constants in the clist. The following
statement is invalid because there are two values for one variable.

DATA MYVAR/5,9/
You can repeat the same value for more than one element by placing a nonzero, unsigned integer
constant indicating the number of repetitions and an asterisk (*) before the value. For example,
the following statement initializes a character value of NAME for C, logical value FALSE. for
LOW, and 3 for both MYEXAMPLE(2) and MYEXAMPLE(3).

DATA C,LOW,MYEXAMPLE(2) ,MYEXAMPLE(3)/'NAME’, .FALSE.,b2%3/

As long as you retain the correct name/value association, the order and grouping is immaterial.
The previous example could also be represented as:

DATA C/’NAME'/,LOW/.FALSE./,MYEXAMPLE(2) ,MYEXAMPLE(3)/2%3/

When a character entity is longer than its corresponding character constant, blanks are added on

the right. If shorter, extra characters on the right are ignored. For example, the following
statements initialize PROD to PRODUCT"IS and NAME to GOOD"""""" :

Irm-4-1

DATA Statement

CHARACTER*10 PROD,NAME
DATA PROD,NAME/'PRODUCT~IS’, 'GOOD’/

The character entity is the same length as the constant in PROD, so no blanks are added or
ignored. Six blanks are automatically added to GOOD, however, as the character entity is longer
than its corresponding character constant.

You can use a DATA statement to initialize all or part of an array. For example:

DIMENSION MYRAY(4,3)
DATA MYRAY /12%5/

indicates that the value of all MYRAY elements are initialized to 5. Elements of the array are
initialized in the order of subscript progression.

4.1.1 Implied-DO

Implied-DO lists can occur in DATA statements in the form of:

(dlist, i=m1,m2,m3)

where:
dlist is a list of array element names and implied-DO lists.
) is the name of an integer variable termed the implied-DO variable.

ml,m2m8 are integer constant expressions which can contain implied-DO

variables of other implied-DO lists. The constants specify the initial
value, terminal value and increment, respectively, for the integer
variable. If you omit the comma and the value of m3, the
incrementation value defaults to 1. The incrementation count must
be positive.

Examples Using Implied-DO:

The statements:

REAL C(8),D(12)
DATA E, (C(I),I=2,6,2),F,(D(J),J=1,3)/4%0,4%1/

initialize E, C{2), C(4), C(6) to 0.0 and F, D(1), D(2), D(3) to 1.0.
The statements:

DIMENSION B(10,10)
DATA ((B(I,J),I=1,5),J=1,5)/25%2/

initialize the 25 elements of the submatrix to 2.0; the matrix is located at the upper-left corner of

B.
The following statements initialize 10 elements of the matrix B to 5:

INTEGER B(4,4)
DATA ((B(I,J),J=1,I),I=1,4)/10%5/

The matrix contains elements B(1,1...1,4), B(2,2...2,4), B(3,3), B(3,4) and B(4,4).

Irm-4-2

DATA Statement

4.2 DATA Statement Extensions

If, in the DATA statement, both the constant value in clist and the entity in nlist have numeric data
types, you can determine the data-type conversion in addition to the standard as follows:

e /f either an octal or hexadecimal constant is assigned to a variable or array element, the data
type of the variable or array element determines the number of digits that can be assigned.
Where the constant contains fewer digits than the variable or array element, the constant is
extended on the left with zeros. If the constant contains more digits than can be stored, the
constant is truncated on the left.

e [f either a Hollerith or character constant is assigned to a numeric variable or numeric array
element, the number of characters that can be assigned depends on the data type of the
variable or array element. Where the Hollerith or character constant contains fewer
characters than the variables or array element, spaces are added on the right of the
constant. If the constant contains more characters than can be stored, excess characters on
the right of the constant are eliminated.

The constant value in clist may be of the numeric data type and the entity in nlist of the CHARACTER
data type. When this is the case, the entity must conform to the following:

e The character entity must have a length of one character.

e The constant must be an integer, octal, or hexadecimal constant and must have a value in
the range 0 through 255.

Following these restrictions permits the entity to be initialized with the character that has the ASCIl
code specified by the constant, which, in turn, allows a character entity to be initialized to any 8-bit
ASCIl code. The next example initializes the real array R to all zeros, the real variable P, the character
variable C*4 to "TEST", and the character variable CR*1 to the ASCIl character code '0D’X.

DATA R(20), Pl /20%0.0, 3.14159265/
DATA C. CR /THTESTING, 'D'X

Arrays and variables in COMMON can be initialized in DATA statements in program units other than
BLOCK data subprograms. A variable in COMMON can only be initialized in one program unit.

Irm-4-3

Chapter 5

Assignment Statements

An assignment statement evaluates an expression and assigns the value to a variable, a substring,
or an array element. The ASSIGN statement assigns a statement label value to a variable. The
ASSIGN statement is discussed later in this chapter. The assignment statement has the form:

Vv = €T

where v is a variable, array element, or substring, and ex i1s an expression.

If the variable type on the left of the equal sign is the same as that of the expression on the right,
the value is assigned directly. For example, in the statement:

I =L+ M/K L=g9g, M=86, K=3

the variable and the expression are both INTEGER, so the value 5 is assigned directly. If the
variable is INTEGER and the expression is REAL, the expression is converted to INTEGER and
assigned to the variable. Thus, the statement:

I =(R+8)/T R=8.0, 8=9.0, T=3.0

assigns the INTEGER value of 5 (17/3 truncated) to 1. In this example, I is truncated and
converted to INTEGER. In general, if the data types differ, the value of the expression is
converted to the type of the entity before the value is assigned.

5.1 Character Conversions

The character assignment statement has the form:
v = ce

where v is a character variable, array element, or substring, and ce is a character expression.

The assigned entity and the expression can have different lengths. If the entity (v) is of greater
length than the length of the character expression (ce¢), CONVEX FORTRAN inserts blanks after
the characters until the length is equal to v. If the length of v 1s less than the length of ce, extra
expression characters on the right are truncated until v and ce are equal in length. For example,
the following statements assign CONVEX"""""" to NAME and supercompute (12 characters only)
to PROD.

CHARACTER*12 NAME, PROD
NAME = 'CONVEX’
PROD = ’'supercomputer’

The same character positions defined in v cannot be referenced in ce within the same statement.
When you assign a value to a character substring, the character positions in the character
variable or array element not included in the substring are not affected. If a value was previously
assigned, the value remains the same; if the value was undefined, it remains undefined. Using a
differing substring with the same name, such as A1(1:3) = Al1(4:6), is acceptable.

Table 5-1 summarizes the data conversion rules for assignment statements.

Irm-5-1

Assignment Statements

Table 5-1: Conversion of Expressions

Type of Variable

Type of Expression
E

Value Assigned

V)
INTEGER/LOGICAL INTEGER/LOGICAL | Direct assignment of E to V.

REAL Truncate E to INTEGER and assign to V.

REAL*8 Truncate E to INTEGER and assign to V.

COMPLEX Truncate real part of E to INTEGER and
assign to V. Imaginary part not used.

COMPLEX*16 Truncate real part of E to INTEGER and
assign to V. Imaginary part not used.

REAL INTEGER/LOGICAL | Convert to REAL and assign to V.

REAL Direct assignment of E to V.

REAL*8 Assign significant digits of E to V; least
significant digits of E rounded.

COMPLEX Assign real part of E to V. l[maginary part
not used.

COMPLEX*16 Assign significant digits of real part of E to V;
least significant digits rounded. Imaginary part
not used.

REAL*8 INTEGER/LOGICAL | Convert to REAL and assign to V.
(DOUBLE PRECISION) | REAL Assign E to most significant portion of V.
Least significant portion of V is assigned 0.

REAL*8 Direct assignment of E to V.

COMPLEX Assign real part of E to most significant of
V; assign 0 to least significant of V.
Imaginary part not used.

COMPLEX*16 Assign real part of E to V. Imaginary part not
used.

COMPLEX INTEGER/LOGICAL | Convert to REAL and assign to real part of
V. Assign 0.0 to imaginary part of V.

REAL Assign E to real part of V. Assign 0.0 to
imaginary part of V.

REAL*8 Assign most significant digits of E to real
part of V; least significant portion of E is
rounded. Assign 0.0 to imaginary part of V.

COMPLEX Direct assignment of E to V.

COMPLEX*16 Assign most significant portion of E to real

part of V; least significant portion of real part
of E is rounded. Assign most significant
imaginary part of E to imaginary part of V:
least significant portion of imaginary E is
rounded.

Irm-5-2

Assignment Statements

Table 5-1: Conversion of Expressions (continued)

Type of Variable | Type of Expression Value Assigned
V) (E)
COMPLEX*16 INTEGER/LOGICAL | Convert to REAL and assign to V. Assign 0.0
to imaginary part of V.
REAL Assign E to most significant portion of real
part of V. Assign 0.0 to imaginary part of V.
REAL*8 Assign E to real part of V. Assign 0.0 to

imaginary part of V.

COMPLEX Assign real part of E to most significant of real
V: assign O to least significant portion of real
part. Assign imaginary part of E to most
significant of imaginary V: assign 0 to least
significant portion of imaginary part.

COMPLEX*16 Direct assignment of E to V.
RECORD RECORD Must be a RECORD of the same type.

5.2 ASSIGN Statement
To assign a statement label to an integer variable, use the ASSIGN statement. It has the form:
ASSIGN s TO ¢

where s is the label of an executable statement in the current program unit and ¢ is an integer
variable name.

Execution of an ASSIGN statement causes the statement label (number) to be assigned to the
integer variable (7). The variable is now defined for use only as a statement label reference; it is
undefined as an integer variable. This statement label is required for referencing in an assigned
GOTO statement or as a format identifier in an input/output statement.
For example:

ASSIGN 75 TO M

GOTO M
causes transfer of control to a statement with the label 75. Do not use the ASSIGN statement for
arithmetic purpose, i.e., ASSIGN 75 to M is not equivalent to M = 75. If you define the integer
variable with a statement label, you can redefine it with the same or a different statement label
value or integer value. For example, using the statement:

M = 50

returns M to the status of an integer variable; it cannot be used in a GOTO statement.

Irm-5-3

Chapter 6
Control Statements

CONVEX FORTRAN usually executes statements in the order in which they are written.
Control statements provide a means of altering the normal program execution sequence. The
control statements include:

GO TO—unconditional, computed, assigned

[F—arithmetic, logical, block including ELSE IF, ELSE and END IF
DO-—indexed DO, DO WHILE

END DO

CONTINUE

STOP

PAUSE

END

6.1 GOTO Statements

You can use the GOTO statements to change the flow of a program by transferring control to a
specified statement. The three types of GOTO statements are unconditional GOTO, computed
GOTO and assigned GOTO.

6.1.1 Unconditional GOTO Statement
The unconditional GOTO statement has the form:
GOTO sl
where s/ is the label of an executable statement that appears within the current program unit.

During statement execution, control transfers to the statement identified by the statement label.
The identified statement then executes. For example:

GOTO 50
20 A =5 %D

50 T=T+ 1

transfers control to statement 50. In this example, to execute statement 20 and those statements
immediately following it, control must transfer at some point to statement 20.

Irm-6-1

Control Statements

6.1.2 Computed GOTO Statement

The computed GOTO statement specifies the next executable statement from a list of several
statements. The form of the computed GOTO statement is:

GOTO (slist) [,)e
where:

slist lists the labels of executable statements within the current program unit
separated by commas (11,12).

e is an arithmetic expression.
The computed GOTO statement evaluates the expression and transfers control to the labeled
statement whose position in slist corresponds to e. If the value of e is less than 1 or greater than
the number of statement labels in slist, control passes to the next statement in the program unit.
For example, the statement:

GOTO (10,15,20,15,30)1
transfers control based upon the value of variable I. If I is 2, control passes to statement 15; if |
1s 5, control goes to statement 30. If the value of I is less than 1 or greater than 5, control passes
to the first executable statement immediately following the computed GOTO.

As a CONVEX extension, e is converted to an integer data type when necessary. For example:

GOTO (10.15,20,15,30) X

6.1.3 Assigned GOTO Statement

The 'form of the assigned GOTO statement is:
GOTO v [[, (slist)]

where:

v is an integer variable name defined by an ASSIGN statement with the
value of an executable statement label.

slist is a list of one or more executable statements separated by commas
(ll’l""") within the program unit.

When you execute an assigned GOTO, v must have as its value the value of a statement label
attached to some executable statement in the same program unit. If several statement label
values slist are present, the label assigned to v must be a member of that list. For example:

ASSIGN 30 TO IFUN
10 GOTO IFUN (20,30,50)

30 FUN = 256.0 * 4.0

Statement 30 is executed immediately after statement 10. Control transfers to the statement
label last assigned to v by the execution of a prior ASSIGN statement.

Irm-6-2

Control Statements

6.2 IF Statements

During program execution, IF statements permit transfer of control based on the value of an

arithmetic or logical expression. The three types of IF statements are arithmetic, logical, and
block.

6.2.1 Arithmetic IF' Statement

The arithmetic IF statement evaluates the expression and transfers control based on the value of
the expression. The arithmetic IF statement has the form:

IF (ae) 11,12,13
where:
ae is an arithmetic expression.
11,12,13 are labels of executable statements contained within the current
program unit. You must include all three labels for the statement to
be valid.

During program execution the arithmetic expression is evaluated. If the value of the expression is
less than zero, control transfers to the statement with the label [; to the statement with the label
[, if the value is equal to zero; to the statement with the label 13 if the value is greater than zero.
Fgor example, the statement:
IF (IA*IB) 40, 20, 50

transfers control to the statement with label 40 if the product of (IA*IB) is less than zero: to
statement 20 if the product is zero; to statement 50 if the product is greater than zero. You can
repeat the same statement label in the arithmetic IF statement.

For example, the following statement transfers control to statement 200 if MYEXAM is zero or
greater than zero; if MYEXAM is less than zero, control transfers to statement 100.

IF (MYEXAM) 100, 200, 200

6.2.2 Logical IF Statement

The logical IF statement has the form:

IF (le¢) es
where:
le is a logical expression.
es Is an executable statement except a DO, END DO, END, logical IF, or a

block IF statement. Do not use the statement to transfer control to any
executable statement within a block IF statement or DO statement block.

The logical IF statement evaluates the value of the logical expression. If the value is .TRUE., the
statement (es) is executed. After the statement is executed, control transfers to the next
executable statement unless control is directed elsewhere by the statement (es). If the value
evaluates to .FALSE., the next executable statement is executed.

Irm-6-3

Control Statements

Consider the following example:

IF (Y .AND. Q) Z =7
IF (Y .LT. Q) GOTO 50
IF (Y .LE. Q) CALL SUB1

In the first statement, if both Y and Q are .TRUE., the value of Z is replaced by 7; otherwise, the
value of Z remains unchanged. In the second statement, if the value of Y is less than Q, control
transfers to the executable statement at 50; if Y is greater than Q, control transfers to the next
executable statement. In the third statement, if the value of Y is less than or equal to Q, the
subroutine SUB1 is called. If Y is greater than Q, control passes to the next executable
statement; SUBI is not called.

6.2.3 Block IF Statement

The block IF statement permits one or more statements {a block of statements) to be executed
depending upon the value of the logical expression. The block begins with an IF THEN
statement, followed by the statement block, and terminates with an END IF statement. The
ELSE statement and the ELSE IF THEN statement can be included in the block IF statement.
There are several variations of the block IF statement. The basic form is:

IF (l¢) THEN

END IF
If le (logical expression) is true, all the lines (the block) between IF THEN and END IF are
executed sequentially; otherwise, control transfers to the first executable statement following END
IF. (You can put one or more statements in the block.)
Consider the following example:

IF (H .LE. 40) THEN

P = H * PR
END IF

if H is equal to or less than 40, the block of statement(s), i.e., P = H * PR, is executed. After
execution of the block, control transfers to the first executable statement following END II".

Another variation of the block IF statement has the form:

IF (/) THEN

(executable statements for true value)

ELSE

(ca;ecutablc statements for false value)
END IF

If the expression (le} is true, the first block of statements is executed and the block following the
ELSE statement is ignored. Control then passes to the END IF statement which transfers control
to the next executable statement. However, if the expression (le) is false, the IFF THEN block is
skipped and control passes to the ELSE statement. Thus, the ELSE statement (block) is executed

Irm-6-4

Control Statements

only if the logical expression (le) of the block IF statement is false. For example, in the
statements:

IF (H .LE. 40) THEN
= H * PR
ELSE
0 = (H - 40) *PR *1.5
P=H=*PR+ 0
END IF

control transfers to the ELSE statement if H is more than 40. The ELSE block executes and
control passes to the END IF which transfers control to the next executable statement unless the
ELSE block has passed control elsewhere. However, if H is less than or equal to 40, the IF THEN
block executes; the ELSE statement block is skipped.

A more complex IF block statement has the form:

IF (le 1) THEN

ELSE IF (le,) THEN

ELSE IF (le) THEN

ELSE (optional depending upon program)

END IF
This IF block version allows you to use any number of additional logical expressions (le) to be
evaluated if the value of the first logical expression (le) is false. The ELSE IF THEN statement
executes if no preceding statement block in the IF bloc‘(has executed and the value of the ELSE
IF THEN is true. If both le, and le p are false, those block sequences are skipped and control
transfers to the next ELSE [F]THEN which is true. You can use any number of ELSE IFF THEN
statements. Use of the ELSE statement is optional, but you must include the ELSE statement if
an action must be taken if all ELSE IF THEN statements evaluate to the value of false. You

must conclude the block with the END IF statement. The next example contains an IF block
with ELSE IF THEN and ELSE statements.

IF (N .LE. J) THEN

K=M
ELSE IF (N .GT. J/3) THEN
K=1
ELSE IF (N .EQ. J/3) THEN
K= -(MY)
ELSE
K=1L
END IF

The IF block is evaluated sequentially; evaluation of each ELSE IF THEN statement continues
until a true value is determined. Then that ELSE IF THEN statement executes and control
transfers to the END IF statement which transfers control to the next executable statement. If
all ELSE IF THEN statements evaluate as false, the ELSE statement executes.

Irm-6-5

Control Statements

6.2.3.1 Nested Block IF Statements

The initial block IF can contain nested block IF statements as long as the nested block IF is
completely contained within a statement block. Each block begins with ane IF THEN statement
and ends with an END IF statement. For example:

IF (T .GT. 40) THEN
0=X=*1.5
IF (AT .GT. 60) THEN
B = 25
ELSE
B=0
END IF
ELSE
NP = H * P
END IF

If T is greater than 40, the block executes (0=X*1.5). Then the nested IF THEN is evaluated
and executed according to the value of AT. If AT is greater than 60, the block executes. If AT is
less than or equal to 60, control transfers to the ELSE statement. (The nested block IF must
have an END IF.) If T is less than or equal to 40, the nested IF block does not execute. Control
transfers to the outer ELSE statement.

6.3 DO Statements

A DO statement is used to specify a DO loop. The group of statements must follow the DO
statement, be located within the program unit, and end with a terminal statement. You cannot
transfer control into the range of a DO from elsewhere in the program unit, but you can
terminate execution of a DO loop by transferring control outside the loop. The DO statement has
the form:

DO [sl[,]] v = ez ezpezg
where:

sl is the label of an executable statement (followed by an optional comma) in
the current program unit. CONVEX FORTRAN does not require this label.
If you do not specify a label, the DO loop must terminate with an END DO
statement. That is, a statement of the form "DO 1=1,100,2" must terminate
with "END DO”. Nested DO loops cannot share an unlabeled END DO
statement, but they may share a labeled terminal statement.

The label identifies the last statement (terminal statement) of the DO loop
and the label must textually follow the DO statement. You cannot use an
unconditional GOTO, assigned GOTO, arithmetic IF, block IF, ELSE IF,
ELSE, END IF, RETURN, STOP, END, or DO statement as the terminal
statement. You can use a logical IF statement as the terminal statement
when the IF statement does not contain a DO, block IF, ELSE IF, ELSE,
END IF, END, or another logical IF.

v 1s the name of the integer, real or double-precision variable called the DO-
variable.

ez, is an integer, real, or double-precision expression that specifies the
beginning value of v upon the initial execution of the DO loop. (Each
succeeding value is determined by ez +ex,, ex,+2%ex,, ex ,+3%ex
. 1 & "1 & 71 3
... until the value exceeds cazg.)

Irm-6-6

Control Statements

ez, is an integer, real, or double-precision expression that specifies the ending
value of v.
22 is an integer, real, or double-precision expression that indicates the

increment for v after the first DO loop is executed. If you omit the
increment value and comma, the value defaults to 1.

The DO statement executes a loop that begins at the DO and ends with the terminal
statement. During execution, CONVEX FORTRAN evaluates ez, ez, exs to determine the
beginning value of v, to determine the final value of v and to seg t,he 1teratlon count. Each
time the DO loop executes, the value of the increment expression (ez,) is added to the DO
variable, and the iteration count is reduced by 1. The DO loop executes until the value of v
exceeds €z, Or executes a final time when v equals ez

Transfer of control outside the loop terminates execution of the loop with the value of v
remaining at the value currently defined. When a DO loop terminates normally, the value of
v is always greater than ez, For example, the statement:

DO 20 MYEXAM = 2,6,2

indicates execute the DO loop for MYEXAM taking the values 2, 4, and 6. The value of the
DO variable on termination of the DO loop becomes 8.

The iteration count is determined by INT({ez -ez +ex }/ea: J). The loop executes until the
iteration equals zero. Normally a negative or zero value 1ndxcates that the DO loop is not
executed. /f you specify the -F66 compiler option, the body of the loop executes once even when
the iteration count is zero or negative. Since internal representation of real numbers is not
exact, using a real number for the DO variable may produce a count that is unexpected. You
cannot redefine the DO variable (v) within the range of the DO loop. You can, however, alter
the initial, terminal, and increment parameters within the loop without affecting the iteration
count.

After execution of the DO loop, if there is no nesting of loops, control transfers to the first
executable statement after the terminal statement. If there is nesting of DO loops and DO
loops share a terminal statement, control transfers outward to the next most enclosing DO
loop.

6.3.0.2 Nested DO Loops

You can nest DO loops if each inner DO loop is entirely within the range of the outer DO
loop. The DO loop can be entered only through the DO statement. During execution, control
can be transferred out of the range before execution is completed and then control returned
within the range of the DO loop. You cannot, however, transfer control from an outer loop to
an inner loop. DO loops can share terminal statements but not unlabeled END DO statements. If
DO loops share terminal statements, a transfer to that statement can be made only from
within the range of the innermost DO. For example:

DO 10 I = 1,100

X=X+1
IF (X .GT. XMAX) GOTO 10

10 CONTINUE

Irm-6-7

Control Statements

6.3.0.3 Extended Range

To maintain compatibility with older FORTRAN implementations, CONVEX FORTRAN allows
extended range DO loops. An extended range DO loop is a loop in which control transfers outside
the body of the DO loop and then back into the loop. The statements in the extended range are
logically in the body of the loop.

The extended-range DO statement control transfers work under the following rules (see Figure 6-1
for examples):

® You may transfer into the range of a DO statement only if you make the transfer from
the extended range of that same DO statement; the transfer is invalid otherwise.

® The extended range of a DO statement should not change its control variable.

Figure 6-1: Valid and Invalid Control Transfers

Example of Valid Control Transfer Into Range of DO Statement From lIts
Extended Range:

5 DO10!=110

IF (A(l).LE.0)GOTO 20 DO Loop

30 Afl) =-1

10 CONTINUE
RETURN

20 A(l) = F(X(1)) Extended Range
GOTO 30

Example of Invalid Transfer Into Range of DO Statement:

IF (FLAG)GOTO 5
=3
GOTO 30 Invalid Control Transfer to DO Loop
5 DO101=110
IF (A{l).LE.0)GOTO 20

30 Al) =-
10 CONTINUE
20 RETURN

6.3.1 DO WHILE Statement

The DO WHILE statement allows continual execution of a DO loop as long as a logical expression
contained in the statement itself remains true. This statement has the form:

DO [s []] WHILE (e)

Irm-6-8

Control Statements

where:
s is the label of an executable statement that must physically follow in the same
program unit.
e is a logical expression.

The DO WHILE statement checks the value of the logical expression at the beginning of each
execution of the loop, starting with the first. When the value is true, execution of the statements in
the loop follows; when the value is false, control transfers to the statement following the loop. If you
do not include a label in the DO WHILE statement, you must terminate the DO WHILE loop with an
END DO statement. An example of the use of the DO WHILE statement follows:

DO WHILE (ARRAY (1.J).GT.1.0)
ARRAY (1.J) = ARRAY(1.J)/2.0

I = 1+1
= J-1
END DO

The condition is only tested at the top of the loop. If the condition occurs during the execution of the
loop, the loop does not terminate until control passes back to the top of the loop.

6.4 END DO Statement

The END DO statement terminates the DO and DO WHILE statements. You must include the END
DO statement at the end of a DO loop if the DO or DO WHILE statement defining the loop does not
contain a terminal-statement label. You may also use the END DO statement as a labeled terminal
statement if the DO or DO WHILE statement does contain a terminal-statement label. An example of
how the END DO statement is used in context follows:

REAL A(101)
DO 10 | = 1,100
A(l) = SIN(A(1))/COS(A(I+1))
10 END DO

REAL A(101)

DO 1=1,100
A(l)=SIN[(A(1))/COS[A(I1+1))

END DO

6.5 CONTINUE Statement

The CONTINUE statement ends a DO loop and transfers control to the next executable
statement. When used with a DO loop, a CONTINUE statement must be labeled; otherwise, no
label is required. Because execution of a CONTINUE statement has no effect, you can place it
anywhere in a program that an executable statement is allowed. This statement has the form:

CONTINUE

Irm-6-9

Control Statements

6.6 STOP Statement
‘The STOP statement terminates program execution and has the following form:
STOP [s]

where s is a string of five or fewer digits or a character constant to be displayed when the STOP
statement executes.

Example:

STOP '-JOB FINISHED®

6.7 PAUSE Statement

Use the PAUSE statement to temporarily halt program execution. The program resumes action
when the operator commands; the program itself does not control execution. The statement form
is:

PAUSE [
where s is a string of five or fewer digits or a character constant.
For example, the statement:

PAUSE 'INSERT TAPE 1; PRESS RETURN TO CONTINUE'

temporarily halts program execution. After the tape is inserted and carriage return is pressed,
program execution continues.

6.8 END Statement

The END statement terminates a main program without a message. In a function or subroutine
subprogram, it returns control to the calling program performing the same function as a
RETURN statement in a subprogram. It has the form:

END

The END statement must end every program unit and can appear only in columns 7 through 72
of an initial line.

Irm-6-10

Chapter 7
Input/Output Statements

Input/output statements provide a method for transferring data between internal storage and
external media or between internal storage and internal filess. CONVEX FORTRAN supports
READ, ACCEPT, and DECODE statements for input, and WRITE, TYPE, PRINT, and ENCODE
statements for output. Table 7-1 lists the supported I/O statements by category.

The auxiliary statements control the connection of files to external devices, position files, or

retrieve information about a file or unit. These statements are: OPEN, CLOSE, REWIND,
INQUIRE, BACKSPACE, ENDFILE, and FIND.

Table 7-1: Data Transfer I/O Statements

Statement Statement Name
Category READ WRITE ACCEPT TYPE PRINT DECODE ENCODE

Sequential/
External:
Formatted Yes Yes Yes Yes Yes No No
Unformatted Yes Yes No No No No No
List-Directed Yes Yes Yes Yes Yes No No
Namelist-Directed Yes Yes Yes Yes Yes No No
Sequential/
Internal:
Formatted Yes Yes No No No Yes Yes
List-Directed Yes Yes No No No No No
Direct/
External:
Formatted Yes Yes No No No No No
Unformatted Yes Yes No No No No No
Direct/
Internal:
Formatted Yes Yes No No No No No

NOTE: All unformatted, internal I/O statements, all direct, list-directed, and all
direct, namelist-directed I/O statements are not allowed. All other variations are
allowed.

7.1 Records

A sequence of characters or values processed as a unit constitutes a record; I/O statements
transfer all data as records. Formatted records contain characters; unformatted records (those
written without format specification) consist of bytes that represent binary values. Each
unformatted I/O statement transfers one record; formatted, list-directed, and namelist-directed
I/O statements can transfer multiple records. Each list-directed and namelist-directed I;0
statement transfers as many records as is required by the I/O data list. Each read or write begins
with a new record.

Irm-7-1

Input/Output Statements

7.1.1 Formatted Records

A formatted record consists of a sequence of characters (letters, numbers, and special symbols).
You cannot use formatted I/O on files connected for unformatted access.

With formatted input, if the input statement requires more fields than are available, the fields are
read as spaces. If the input statement does not require all the fields in the record, unneeded fields
are ignored.

The processor reads or writes the current record and possibly additional records during data
transfer. The length of the record is measured in characters and depends on the number of
characters written to the record. The length can be zero. Any record values left unfilled during
data transfer to fixed-length records are written as spaces. An error condition occurs if the size of
the data is greater than the record length when an output statement writes to a fixed-length
record.

7.1.2 Unformatted Records

An unformatted record consists of a sequence of zero or more bytes. You cannot use unformatted
I/O on files connected for formatted I/O. For each unformatted I/O statement the processor
reads or writes one record.

The number of bytes written determines the length of the unformatted record; the length can be
zero. On input, if the data list requires more fields than are available, an error condition occurs.
For fixed-length records, the data list in the output statement must not specify more values than
the record can hold. Any record fields left unfilled during data transfer to fixed-length records
become zeros.

7.1.3 ENDFILE Record

The ENDFILE statement writes the endfile record that ends the file. An endfile record is written
when the file is closed, either through the CLOSE statement, a REWIND statment, or implicitly
through program termination. The endfile record appears only as the last record of a file. You
cannot use an ENDFILE statement when a file is connected for direct access.

7.2 Files

A sequence of records that are input to or output from a program constitutes a file. A file is
either internal (array or variable) or external (located on a peripheral device). There are two
methods of accessing files: sequential and direct.

7.2.1 Internal Files

An internal file consists of a character variable, array, array element, or substring into which
records are read or written. If the file consists of a character variable, array element, or
substring, it constitutes a single record. When the file consists of an array. each element constitutes
a record. The internal file provides for transfer and conversion of data from internal storage to
internal storage.

Irm-7-2

Input/Output Statements

A record in the internal file can be read only if the record is defined. When the processor writes
the record, the record of the internal file becomes defined. Also, you can use character assignment
statements to define a record.

You can specify an internal file only in READ, WRITE, ENCODE, and DECODE statements.

7.3 Units

Before you can access an external file, you must associate (connect) it with a unit. Executing the
OPEN statement accomplishes the connection by assigning a logical number to the external file.
This number becomes the unit and file designator, which provides a means for referencing the file.
Internal files are not connected or opened but are referenced by variable, array, or substring
name. Connection also may be accomplished implicitly by the system. You cannot connect a file
to more than one unit at a time. You can, however, connect a unit to a file that does not exist,
that is, a new file that has not been written.

The following statements illustrate various ways to open a file. For instance, the statement:

OPEN (7)

opens the file fort.7; this is the file associated with unit 7 by default. Whereas, the following
statement:

OPEN (8, FILE='TEST.DAT")
connects unit 8 to the file TEST.DAT.
The statement

OPEN (9, STATUS='SCRATCH’)

opens a scratch (temporary) file associated with unit 9. When the file is closed or the program
terminates, the file is deleted.

To reassign the unit, terminate the connection. A CLOSE statement (or an OPEN statement for

another file) terminates the connection. The connection is terminated implicitly when the
program ends.

7.4 Accessing Files

You can use either the sequential or the direct method for accessing records of a file. Connection
of a file to a unit, typically accomplished with an OPEN statement, determines the method of
access.

7.4.1 Sequential Access
To connect a file for sequential access use the OPEN statement. For example:

OPEN (10,FILE='MYEXAM',K ACCESS='SEQUENTIAL')
OPEN (10,FILE='MYEXAM')

Irm-7-3

Input/Output Statements

If you do not specify the ACCESS keyword, the access mode defaults to SEQUENTIAL. To
change the access method, close the file and reopen it with the specification for the new access
method.

A file connected for sequential access cannot be read/written with direct access I/O statements.
A data-transfer statement causes the next record to be read or written when a file is connected for

sequential access; the records are accessed in their order of placement in the file. The last record
must be an endfile record.

7.4.2 Direct Access

If you connect a file for direct access, the records can be written or read in any order (randomly).
The record number specified in the I/O transfer statement determines the order of processing.
When you connect a file for direct access, you may not read/write the file with sequential-access
I/O statements.

To establish a direct-access file, open a unit for direct access; for example:

OPEN (10,FILE='MYEXAM’,6ACCESS='DIRECT',RECL=1024)

All records of a direct-access file have the same length. The record size is specified in bytes when
the file is opened.

7.5 I/0O Statement Format

The general format of an I/O transfer statement is:

READ (clist) volist
WRITE (clist) volist

where:
clist is the control information list that controls the transfer of the data.
tolist is the I/O list that specifies the data to be transferred.

If invalid data is encountered in a READ statement, execution stops at that point and the
remaining variables in the ¢olist are ignored.

7.5.1 Input/Output Lists

The I/O lists (¢olist) identify the entities whose values are transferred by 1/O data-transfer
statements. An Zolist entity can be:

® Character substring name (CHAR(6:10))
e Variable name (L)

e Array name (MYEXAM)

e Array element name (M(3))

e Implied-DO list {J, KL M, 1=1,4)

Irm-7-4

Input/Output Statements

e An expression (K + L or 'JKL'); used for output only. The expressions cannot contain
function references with /O statements in them.

When an array name without a subscript appears in an 7olist, the elements are processed in the
order in which they are stored, such as M(1,1), M(2,1)

7.5.2 Implied-DO Lists

An implied-DO list is used for specifying repetition of part of an I/O list, transferring part of any
array, and transferring array elements in an order that is not the same as the order in which they
are stored. The 1implied-DO loop has the form:

(dlist, v=ael,ae2 [,ae3])

where:
dlist is an 10 list.
v is an integer or real variable.

ael,ae2,aed are arithmetic expressions.

The variable and arithmetic expressions have the same forms and functions as those in the
standard DO statements. The loop begins with the value of ael and increments by the value of
aed until it equals or exceeds the value of ae2, the loop then exits. Elements in dlist can reference
v, but cannot change the value of ». The implied-DO loop can be nested.

The following statements illustrate uses of the implied-DO loop:

WRITE (7) (A,B,I=1,10) ! writes the pair A,B 10 times
READ (7) (A (I),I=5,10) ! reads elements 5 through 10 of array A
WRITE (7) ((A (I,J3),J=1,N),I=1,N) ! writes the array A by rows

7.6 Specifiers

You can use seven specifiers in the control information list to provide information on various
aspects of data transfer. Each specifier consists of a keyword, an equal sign, and a parameter for
the specifier. The specifiers are:

Unit
Format
Record
Status
Error

End of file
Namelist

Irm-7-5

Input/Output Statements

7.6.1 Unit Specifier

The unit sbeciﬁer identifies the external or internal unit being accessed. It has the form:
[UNIT =] u

where u is an internal or external identifier. As an external file identifier, u is an integer of
positive or zero value from 0 to 255 or * which defaults to a preassigned input or output unit. As
an internal file identifier, u is the name of a character variable, array, array element, or
substring.

The keyword UNIT== is optional if the unit specifier is the first item in a list of specifiers.

7.6.2 Format Specifier

You must include a format specifier in each data transfer statement to or from a formatted file.
The format specifier is a label of a FORMAT statement, a character expression within the
transfer statement, or an asterisk indicating list-directed formatting. A format specifier has the
form:

[FMT =]for [FMT =|*

where:

f is a character expression (character constant or name of a character
variable, array element, or substring) that contains a runtime format, a
statement label of a FORMAT statement, or an integer variable with an
assigned FORMAT statement label. The FORMAT statement must be in
the current program unit.

*

indicates list-directed formatting that uses default formatting based on the
1/0 list data types.

If the first item of the control information list is the unit specifier (without the keyword UNIT=)
and the second item is the format specifier, you can omit FMT= from the format specifier. If no
format specifier is included, the I/O statement is unformatted.

7.6.3 Record Specifier

The record specifier, when used in a data-transfer statement, indicates which record is to be read
or written in a file connected for direct access. You may not use the record specifier for
sequentially accessed files. A record specifier has the forms:

REC = r or T

where r is a numeric expression with a positive value that specifies the position of the record to be
accessed for 1/O. If the second form is used, the unit specifier cannot use the UNIT keyword and the
value for r must appear immediately after the unit specifier with no intervening comma, for example,
WRITE (5°10). The second form is valid only if the -vfc compiler option is specified.

Irm-7-6

Input/Output Statements

7.6.4 Status Specifier

The status specifier provides a means for determining an error or end-of-file condition. A status
specifier has the form:

IOSTAT = ios
where 70s is an integer variable or array element.
After the I/O statement containing the status specifier executes, the status variable contains:

o Positive integer, which indicates an error condition exists; this integer is the error
number.

e 0, which indicates normal execution; no error or end-of-file condition exists.
e -1, which indicates end-of-file condition.
If you indicate only the status specifier (no END or ERR specifier) in the statement and an error

condition exists or an end-of-file condition occurs during program execution, program execution
continues at the next executable statement.

7.6.5 Error Specifier

If an error occurs during program execution, an error specifier causes control to be transferred to
the designated statement. An error specifier has the form:

ERR =5
where s is the label of an executable statement in the same program unit as the error specifier.
When the processor detects an error during program execution, the I/O statement terminates

immediately. The value of the status specifier (if included) becomes a positive integer and control
transfers to the statement whose label appears in the error specifier.

7.6.6 End-of-File Specifier

You can use the end-of-file specifier in a statement when you want to transfer control to a specific
statement on an end-of-file condition. An end-of-file specifier has the form:

END = s

where s is the statement label of an executable statement in the same program unit as the end-
of-file specifier.

An end-of-file condition exists when the end-of-file record is read in an external file opened for
sequential access, or when an attempt is made to read a record beyond the range of an internal
file. When an end-of-file condition is detected during program execution, the READ statement
terminates, the value of the status specifier (if included) becomes -1, and control transfers to the
statement whose label appears in the end-of-file specifier.

Irm-7-7

Input/Output Statements

7.6.7 Namelist Specifier

The namelist specifier allows you to specify that namelist-directed 1/0 is to be used and to specify the
groupname for the entities that are modified during input or written on output. The namelist specifier
has the form:

NML = nigrpname

where nigrpname is the symbolic name that has been defined for the entities in a NAMELIST
statement.

If the first item of the control information list is the unit specifier without the keyword UNIT=, you can
omit the keyword NML= from the namelist specifier, but you must place the namelist specifier
(nigrpname) as the second item in the control information list. Otherwise, you must always use the
keyword NML=. You cannot use the namelist specifier in a statement containing a format specifier.

7.7 READ Statement

READ is an input statement that assigns values from a record to the iolist variables. Execution
of the READ statement with an external file causes input data to be transferred from the external
file into internal storage or memory. Execution of the READ statement with an internal file
causes data to be transferred between internal storage locations.

The statement has the form:

READ (clist) [tolist]

READ f [,7olist]
where:
clist is a control information list (described in the “Specifiers” section). You

must include a unit specifier in the READ statement clist, and if the
record is formatted, a format specifier. The record specifier must be
included for direct access of a file. You must include the namelist
specifier for namelist-directed I/O. The status, error, and end-ol-file
specifiers are optional.

tolist is the 1/O list that identifies the data to be transferred. The entities
include variables, array elements, substrings, implied-DO lists, and/or
array names.

f i1s the format specifier. The specifier is a character array name, a
character expression, a character constant, statement label of a
FORMAT statement, or an integer variable assigned the label of the
FORMAT statement. Use an asterisk (*) to indicate list-directed
formatting.

When the READ statement executes, at least one record consisting of values from the I/O entities
is written. The file is then positioned at the beginning of the next record. CONVEX FORTRAN
reads a sequential, formatted file unless an OPEN statement contains FORM="UNFORMATTED’
and/or ACCESS='DIRECT'. READ statements that specify unformatted reads to internal files
are not permitted. Direct-access, internal I/O is permitted. The logical record length is the length
of the array element. Thus, a character variable array is similar to a fixed-length, direct-access
file and obeys the same rules for formatted 1/0O.

Irm-7-8

Input/Output Statements

The values transfer as one record unless you include a slash, which indicates a new record, in the
format specification.

7.7.1 External Sequential READ Statements

There are four classes of external sequential READ statements: formatted, unformatted, list-
directed and namelist-directed. The use of IOSTAT, ERR, and END status specifiers is optional

in all four classes of statements.

For example, the formatted sequential READ statement, which requires a unit (%) and a format
specifier (), has the form:

READ (u,f [, JOSTAT,ERR,END]) [solis]
For example:

READ (UNIT=50, FMT=10, IOSTAT=IOERR, ERR=120) D, E, F
READ (50, 10) D, E, F

Both statements sequentially read values into D, E, and F according to the format specified by
statement 10. The first READ statement returns any error codes in the variable IOERR and
transfers control to statement 120 on an error condition.

An unformatted sequential READ statement, which requires a unit specifier (u), has the form:
READ (u [, JOSTAT,ERR,END]) [0list]
For example:

READ (UNIT=#, END=260) D, E
READ (50)

The first statement sequentially reads from the implicit input unit values into D and E without
any conversion. The second statement skips the next record in the file connected to unit 50.

*

A list-directed sequential-access statement, which must contain to indicate list-directed

formatting, has the form:

READ («* ,(JOSTAT,ERR,END]) [iolist]
READ *|,iolist]

For example:

READ (UNIT=50, FMT=#) D, E, F
READ (50, =*, IOSTAT=IOERR)
READ *, D, E, F

The first statement assigns values to D, E, and F from the current record of the file connected to
unit 50. Conversion from ASCII to internal format is done according to the rules for list-directed
formatting. The second statement skips the current record of the file connected to unit 50. The
last statement reads from the implicit input unit into the variables D, E, and F under list-
directed formatting.

The namelist-directed sequential READ, with a unit specifier (u) and a namelist specifier (nl] in the
control information list, has the form:

READ (u.nl [IOSTAT.ERR.END])

Irm-7-9

Input/Output Statements

When the namelist-directed READ is used with a nonkeyword (no control information list). it has the
form:

READ nlgrpname
where nigrpname represents the name associated with a list of entities.

When you use the namelist-directed READ statement, you must have a NAMELIST statement in the
program segment.

For example:

NAMELIST /SAM/ NAME, EXAM1, EXAM2, EXAM3

CHARACTER*5 NAME

READ (UNIT=50, NML=SAM) or READ SAM
The first statement associates the name (SAM) with the four entities. The second statement defines
NAME to be a CHARACTER?*5 variable: EXAM1, EXAM2, and EXAM3 are implicitly typed. The
third statement reads input data and assigns values to the namelist entities—~NAME ,EXAM1, EXAM2,
EXAM3. The READ statement reads data until it finds the specified name (SAM). Then it translates
the data from external to internal form, using the data type of the entities and the form of the input.
Then the translated data is assigned to the specified entities (NAME, EXAM1, EXAM2, EXAM3) in

the order they appear in the input records. (See Chapter 8 for detailed information on inputting
values.)

7.7.2 External Direct READ Statements

There are two classes of external direct-access READ statements: formatted and unformatted.

A formatted direct-access statement must contain a unit specifier (), record number (rn), and
format specifier (f). This statement has the form:

READ (u,rn,f ,JOSTAT,ERR,END]) [¢olis{]
For example:
READ (119, 100, REC=25) D, E, F

This statement reads record number 25 of the file connected to unit 119 and assigns values to D,
E, and F from this record.

An unformatted direct-access statement, which must contain a unit (#) and record (rn) specifier,
has the form:

READ (u,rn [, JOSTAT,ERR,END]) [7olist|
For example:
READ (50, REC=1) D, E, F

In this case, the statement reads the first record of the file connected to unit 50 and assigns values
from it without translation to the variables D, E, and F.

Irm-7-10

Input/Output Statements

7.7.3 Internal READ Statements

The internal READ statement transfers and converts information from internal storage. In the
internal READ statement, the name of the character variable, array, array element, or substring
(7u) is used in place of the external identifier. The use of IOSTAT, ERR, and END status
specifiers is optional.
The internal sequential-access READ statement is always formatted and has the form:

READ (iu,f [,(JOSTAT,ERR,END)]) [dolis{]

The following statement transfers values from MYEXAM to A and B, converting them from
ASCII to internal form according to the format at line 25.

READ (MYEXAM,25) A, B
The following statement uses list-directed formatting.
READ (MYEXAM.*] A, B
The internal direct-access READ statement has the form:
READ (u.frn, [IOSTAT,ERR,END]) [iolist]
For example:
READ (ARR. 10, REC=2) A
This statement converts the second element of the array ARR from ASCII to internal form and stores

the result in A. The logical record length is the length of the array element. Thus, a character variable
array is similar to a fixed-length, direct-access file, and follows the same rules.

7.8 ACCEPT Statement

The ACCEPT statement sequentially reads data from the implicit input unit and has the following

formats:
ACCEPT f [iolist]
ACCEPT * [iolist]
ACCEPT nigrpname
where:
f is the nonkeyword form of a format specifier.
* specifies list-directed formatting.
iolist is an 1/0 list.

nigrpname is the nonkeyword form of the namelist specifier.

The ACCEPT statement is like the READ formatted or list-directed, sequential, external statement
except that reading is always done from the implicit input unit.

Irm-7-11

Input/Output Statements

Example:

ACCEPT 100, I, J
100 FORMAT (21)

As shown, the ACCEPT statement reads integer data from the implicit input unit and assigns values to
the integer variables | and J.

7.9 WRITE Statement

The WRITE statement transfers data from internal storage to external devices or from internal
storage to internal files. The WRITE statement has the form:

WRITE (clist) (dolist)
where:

clist is a control information list (described in the “Specifiers” section). that
must include a unit specifier. A formatted record must include a format
specifier. A record specifier must be included for direct access of a file. The

status and error specifiers are optional. (End-of-file is not allowed in
WRITE statements.)

tolist is the I/O list that identifies the data to be transferred. The entities may
include variables, array elements, substrings, implied DO lists and/or
array names, and expressions.

f is the format specifier and is a character array name, a character
expression, a character constant, statement label of a FORMAT statement,
or an integer variable assigned the label of the FORMAT statement. An
asterisk (*) indicates list-directed formatting.

The WRITE statement writes at least one record consisting of values from the I/O entities. The
file is then positioned at the beginning of the next record. CONVEX FORTRAN writes a
sequential, formatted file unless an OPEN statement contains FORM="UNFORMATTED' and/or
specifies ACCESS='DIRECT’. Unformatted writes to internal files are not permitted. Direct-
access, internal 1/0 is permitted. The logical record length is the length of the array element. A
character variable array is similar to a fixed-length, direct-access file, and obeys the same rules for

formatted 1/0.
The values transfer as one record unless you include a slash, which indicates a new record, in the

format specification. If the WRITE statement specifies I/O to a nonexistent file, the file is created
unless an error condition occurs.

7.9.1 Sequential-Access WRITE Statements

There are four classes of sequential WRITE statements—formatted, unformatted, list-directed,
and namelist-directed. The use of IOSTAT and ERR specifiers is allowed in all four classes of
statements.

For example, the formatted sequential WRITE statement, which requires a unit (u) and a format
(/) specifier, has the form:

WRITE (u,f [,JOSTAT,ERR]) [iolis]

For example:

Irm-7-12

Input/Output Statements

WRITE (UNIT=50, FMT=10, IOSTAT=IOERR, ERR=120) D, E, F
WRITE (50, 10) D, E, F

Both statements transfer formatted values from the file connected to unit 50 to the variables D,

E, and F. The first statement, however, allows for transfer of control if an error condition exists.

In this example, if an error condition exists, the error number is assigned to IOERR and control

transfers to statement 120.

An unformatted sequential WRITE statement, which requires a unit () specifier, has the form:
WRITE (v [, JOSTAT,ERR]) [iolist]

For example:

WRITE (UNIT=50) D, E
WRITE (50)

The first statement writes two unformatted values to unit 50. The second writes an empty record
to unit 50.

A list-directed sequential-access WRITE statement, which must contain * to indicate list-directed
formatting and a unit (u) specifier, has the form:

WRITE (u,* [IOSTAT,ERR]) [iolist|
For example:
WRITE (UNIT=50, FMT=%) D, E, F
which writes D, E, and F according to the default format used for list-directed 1/0.

The namelist-directed WRITE statement, which requires a unit (u) and a namelist (nl) specifier, has
the form:

WRITE (u,nl [IOSTAT.ERR])

In the following example, the statement transfers data from the variables specified by the namelist
specifier SAMPLE to the file connected to unit 50.

WRITE (UNIT=50, NML=SAMPLE)

7.9.2 Direct-Access WRITE Statements

There are two classes of external direct-access WRITE statements—formatted and unformatted.
The use of IOSTAT and ERR status specifiers is optional in both statement classes.

For example, a formatted direct-access statement, which must contain a unit (u) specifier, record
number (rn), and format (f) specifier has the form:

WRITE (u,rn,f [,JIOSTAT,ERR]) [iolist]
For example:

WRITE (50, 100, REC=25) D, E, F
WRITE (50, 100, REC=25, ERR=100) D, E, F

Irm-7-13

Input/Output Statements

Both statements write D, E, and F to record number 25 of unit 50 according to the format
specified in statement 100. The second statement also transfers control to statement 100 if an
error condition exists. An unformatted direct-access statement, which must contain a unit (u)
and record number (rn) specifier, has the form:

WRITE (u,rn ,JOSTAT,ERR]) [0lis¢]
For example:

WRITE (60, REC=25) D, E, F
WRITE (50, REC=25, ERR=250) D, E, F

Both statements write D, E, and F to record number 25; no data formatting occurs. The second
statement transfers control to statement number 250 if an error condition exists.

7.9.3 Internal Direct-Access WRITE Statements

The internal WRITE statment converts data from one location in memory to another. In the
internal WRITE statement, the name of the character variable, array, array element, or substring
(#u) is used in place of the external unit identifier. The use of IOSTAT and ERR status specifiers
is optional. The internal sequential-access WRITE statement is always formatted and has the
form:

WRITE (i, f ,JOSTAT,ERR]) [iolist]
Some examples of valid internal direct-access write statements are:

WRITE (MYEXAM,256) A, B
WRITE (MYEXAM.*) A, B

which transfer values from A and B to MYEXAM, converting them from internal form to ASCII.
The first example uses a format at statement 25, while the second statement uses list-directed
formatting.
The internal direct-access WRITE statement has the form:

WRITE (iu.f.rn, [IOSTAT,ERR,END]) [iolist]
For example:

WRITE (ARR, 10. REC=2) A

This statement transfers the values from A to the second element of ARR, converting them from
internal form to ASCIl according to the format specified at statement 10.

7.10 PRINT and TYPE Statements

You can use either the PRINT statement or the TYPE statement to transfer formatted records to
the implicit output device. These statements use the sequential mode of access. The forms are:

PRINT f [,iolist] or TYPE f [iolist]

PRINT * [,iolist] or TYPE * [iolist]
PRINT nigrpname or TYPE nigrpname

Irm-7-14

Input/Output Statements

where:
f is the format specifier.
* specifies list-directed formatting.
tolist is an I/O list.

nlgrpname s the nonkeyword form of the namelist specifier.
Example:
CHARACTER*16 CLASS. RANK
TYPE 400, CLASS, RANK
400 FORMAT ('CLASS="A.'RANK=",A)

As shown, the TYPE statement writes one record to the implicit output device: the record consists of
four fields of character data.

7.11 Additional Statements
The ENCODE, DECODE, and FIND statements are extensions to the ANSI standard and have been

included to allow for compatibility with other FORTRAN versions and for ease in transporting

older FORTRAN programs to CONVEX machines.

7.11.1 ENCODE Statement

The ENCODE statement is equivalent to the WRITE formatted, sequential, internal statement.
ENCODE transfers data between arrays or variables in internal storage and translates the data from
internal to character form. An example of the ENCODE statement follows:

ENCODE (c.tb [IOSTAT=ios] [ERR=s]) [iolist]

where:

< is an integer expression (the number of characters (bytes) to be translated to
character form).

f identifies the format (an error results if you specify more than one record).

b is an array, array element, variable, or character substring reference, any of
which receives the characters after translation to external form.

ios is either an integer array element or an integer variable that is defined as a
positive integer if an error occurs and as a zero if no error occurs.

s is the label of an executable statement to which control transfers if an error

occurs during 1/O transfer.
iolist is an 1/0 list that contains the data to be translated to character form.
The ENCODE statement translates the elements in the 1/0 list to character form, as specified by the
format identifier and stores the characters in b. If the number of characters transferred is less than c,

the remaining positions fill with blanks. If b is an array. its elements are processed in the order of
subscript progression.

Irm-7-15

Input/Output Statements

The data type of b in any given statement determines the number of characters that the ENCODE
statement processes. An array of LOGICAL*2, for example, can contain two characters per element,
so that the maximum number of characters is twice the number of elements in that array; a character
array can contain characters equal in number to the length of each element muitiplied by the number of
elements; a character variable or character array element can contain characters equal in number to its
length.

The interaction between the format specifier and the 1/O list is the same as for a formatted 1/O
Statement.

Example:
CHARACTER*8 A
1=1000
J=9
ENCODE (8,100,A) 1.J
100 FORMAT(2/4)
Result:

A="1000"""9"

7.11.2 DECODE Statement

The DECODE statement is equivalent to the READ formatted, sequential, internal statement.
DECODE transfers data between arrays or variables in internal storage and translates the data from
character to internal form. The DECODE statement is represented as follows:

DECODE (c.£b [IOSTAT=ios] [.ERR=s]) [iolist]

where:

c is an integer expression (the number of characters (bytes) to be translated to
internal form).

f identifies the format (an error results if more than one record is specified).

b is an array, array element, variable, or character substring reference, any of
which contains the characters to be translated to internal form.

ios is either an integer array element or an integer variable that is defined as a
positive integer if an error occurs and as a zero if no error occurs.

s is the label of an executable statement.

iolist is an I/O list that receives the data after translation to internal form.

The DECODE statement translates the character data in b to internal (binary) form according to the
format specifier and stores the elements in the list. If b is an array, its elements are processed in the
order of subscript progression.

The data type of b in any given statement determines the number of characters that the DECODE
statement processes. A LOGICAL*2, for example, can contain two characters per element, so that the
maximum number of characters is twice the number of elements in that array; a character array can
contain characters equal in number to the length of each element multiplied by the number of elements;
a character variable or character array element can contain characters equal in number to its length.

Irm-7-16

Input/Output Statements

The interaction between the format specifier and the 1/O list is the same as for a formatted 1/0O
statement.

Example:

CHARACTER*8 A
DATA A/1000°**9'/
DECODE(8,100,A) 1.J

100 FORMAT (214

Result:

1=1000
J=9

7.11.3 FIND Statement

The FIND statement positions a direct-access file to a particular record. It also sets the associated
variable of the file to that record number. No transfer of data occurs. The FIND statement is
represented as:

FIND ([UNIT=] u,REC=r [ERR=s] [IOSTAT=ios])

where:
u is a logical unit number; it must refer to a direct-access file.
r is the direct-access record number; it cannot be less than 1 or greater than the
number of records defined for the file.
s is the label of the executable statement to which control transfers if an error
occurs.
ios is an integer variable or integer array element that is defined as a positive

integer if an error occurs and as a zero if no error occurs.
Example 1:
FIND (2.REC=1)
This statement positions unit 2 to the first record of the file; the associated file variable is set to 1.
Example 2:
FIND (4,REC=INDX])

This statement positions the file to the record identified by the content of INDX; the associated file
variable is set to the value of INDX.

Irm-7-17

Input/Output Statements

7.12 Auxiliary Input/Output Statements

Auxiliary statements control the connection of files to external devices, position files, or retrieve
information about files or units. The auxiliary statements include:

OPEN
CLOSE
INQUIRE
REWIND
BACKSPACE
ENDFILE

7.12.1 OPEN Statement

The OPEN statement connects an existing external file to the specified unit, changes the
attributes of a connected file, or creates a new file and connects it to the specified unit. The
statement has the form:

OPEN (specifier [,specifier]...)

Each specifier normally consists of a keyword and its value. You must include a unit number in
the OPEN statement; all other specifiers are optional. The specifiers may be listed in any order
except that the unit number must be first when it is given without the UNIT= keyword. For
example:

OPEN (7, FILE='TEST.DAT', RECORDTYPE='FIXED', RECL=80)

connects the file TEST.DAT to unit 7 and defines the file to be a sequentially accessed formatted
file with fixed-length records of 80 characters.

The following sections describe the OPEN statement keywords, which are summarized in Table
7-2. In the descriptions, the term ‘“‘numeric expression’ can be any integer or real expression.
The value of the expression is converted to INTEGER data type before it is used in the OPEN
statement.

NOTE

The OPEN statement operates somewhat differently
under COVUEshell. Please refer to the CONVEX
COVUEshell Reference Manual for more details.

7.12.1.1 ACCESS Keyword

The ACCESS keyword indicates the method of file access—direct or sequential. 'APPEND’
implies sequential access with positioning after the last record in the file. You must include the
record length, RECL, in the list when ACCESS='DIRECT'. The keyword has the form:

ACCESS = cez

where cex is a character expression DIRECT’, 'SEQUENTIAL', or 'APPEND’. The default is
'SEQUENTIAL'.

The following statement opens the file ¢st for sequential access with positioning after the last
record in the file.

OPEN (UNIT=10, FILE='tst’, ACCESS='APPEND’)

Irm-7-18

Input/Output Statements

Table 7-2: OPEN Statement Keywords

Keyword Values Function Default
ACCESS 'SEQUENTIAL' Access mode 'SEQUENTIAL/
'DIRECT’
"APPEND"’
ASSOCIATEVARIABLE v Next direct-access None
record
BLANK 'NULL/ Interpretation of 'NULL'
'ZERO' blanks _
BLOCKSIZE E Physical block size System default
CARRIAGECONTROL 'FORTRAN’ Print control LIST
‘LIST’ {Formatted)
‘NONE’ ‘"NONE’
{Unformatted)
DEFAULTFILE c Default file
specification
DISPOSE 'KEEP’ or File disposition Depends on STATUS
DISP "SAVE’ or at close keyword
'‘DELETE’
ERR S Error transfer label
FILE C File-name specifica- | fort.n, where n is
NAME tion the unit number
FORM 'FORMATTED’ Format type 'FORMATTED’
'PRINT for sequential access;
"UNFORMATTED! 'UNFORMATTED!
for direct access
IOSTAT A I/0 status
MAXREC E Direct-access record Unlimited
limit
NOSPANBLOCKS None allowed Ignored--for VAX
compatibility only
READONLY - Write protection Depends on access
rights to file
RECL E Record Length As specified at
RECORDSIZE file creation
RECORDTYPE ‘FIXED' Record structure 'VARIABLE’
'VARIABLE’ for sequential access;
"FIXED' for
direct access
STATUS 'OLD’ File status at open TUNKNOWN/
TYPE 'NEW'
'SCRATCH'
'TUNKNOWN/
UNIT E Logical unit number
Key: E is a numeric expression.

C i1s a character expression, numeric array name, numeric variable name, or numeric array

element name.

V is an integer variable name.
S is a statement label.

Irm-7-19

Input/Output Statements

7.12.1.2 ASSOCIATEVARIABLE Keyword

The ASSOCIATEVARIABLE keyword specifies an integer variable to be updated after each direct
access 1/O operation. The keyword has the form:

ASSOCIATEVARIABLE = asv

where asv is an integer variable.

After each direct-access 1/O operation, asv is set to the number of the next sequential record in the
file. This identifier is valid for direct-access mode only: it is ignored for other access modes.

7.12.1.3 BLANK Keyword

The BLANK keyword determines the interpretation of blank characters in numeric formatted
input fields. The keyword has the form:

BLANK = blnk

where bink specifies the character expression 'NULL' or 'ZERQO’. The default is 'NULL' unless the
-F66 compiler option is specified, in which case the default is 'ZERO".

If you specify BLANK='NULL', all blanks are ignored. When BLANK='ZERO', all blanks
except leading blanks are read as zeros.

7.12.1.4 BLOCKSIZE Keyword

The BLOCKSIZE keyword specifies the physical transfer size (in bytes] for the file. The keyword has
the form:

BLOCKSIZE = bls
where bls is a numeric expression.
The default is the system default for the device. If you specify BLOCKSIZE, the physical record for
block devices is set to the value of bls, with a maximum of 64k bytes. For other devices, the

BLOCKSIZE value is rounded up to a multiple of the file system block size.

The following statements write one physical record of 200 bytes to the block-mode tape device
/dev/mt12. The physical record consists of two logical records, each 100 bytes long.

CHARACTER*1 A(100). B(100)
OPEN (7, FILE="/dev/mt12", BLOCKSIZE=200, RECORDTYPE="FIXED", RECL=100)

WRITE (7. *(100A1)") (A(l). 1=1.100)
WRITE (7, *(100A1)’) (B{l). 1=1.100)

7.12.1.5 CARRIAGECONTROL Keyword

The CARRIAGECONTROL keyword determines the type of carriage control processing to be used
when printing a file. The keyword has the form:

CARRIAGECONTROL = cc

Irm-7-20

Input/Output Statements

where cc is a character expression having a value equal to 'FORTRAN’, 'LIST", or ‘'NONE".
The default is 'LIST' for formatted files and 'NONE’ for unformatted files. the control characters
required to interpret it on an ASCIl output device. These control characters are Control-L for start of

page, New Line for double spacing, and null (no character] for single spacing.

Files created with CARRIAGECONTROL="LIST" may be printed with the fpr utility.

7.12.1.6 DEFAULTFILE Keyword
The DEFAULTFILE keyword contains a default file specification. The keyword has the form:
DEFAULTFILE = C

where ¢ is a character expression that specifies a default file specification.

7.12.1.7 DISPOSE Keyword

The DISPOSE keyword allows you to keep, save, or delete files connected to the unit when the unit is
closed. The keyword has the form:

DISPOSE = dis
DISP = dis

where dis is a character expression having a value equal to 'KEEP', 'SAVE’, or 'DELETE".

Specifying ‘KEEP’ or "SAVE’ retains the file after the unit is closed: 'DELETE’ causes the file to be
deleted. For scratch files, the default is 'DELETE". For all other files, the default is 'KEEP'. The
preferred method of deleting a file, according to the ANSI standard, is to use the STATUS="DELETE’
keyword in the CLOSE statement.

The following example causes the file associated with unit 10 to be deleted when closed.

OPEN (UNIT=10, DISP="DELETE’)

7.12.1.8 ERR Keyword

The ERR keyword specifies a statement number to which control i1s passed if an error occurs
during execution of the OPEN statement. The keyword has the form:

ERR = s/

where sl specifies the statement label of an executable statement that appears in the same
program unit as the error specifier.

7.12.1.9 FILE Keyword

The FILE (or NAME) keyword specifies the name of the file being connected to the unit. The
keyword has the form:

FILE = fin or NAME = fin

Irm-7-21

Input/Output Statements

where fln represents a character expression, a numeric array name (if it is a packed array), a numeric
variable name, or a numeric array element name. If the FILE specification does not appear in an
OPEN statement, the unit is connected to a predefined file.

When the filename is stored in a numeric variable, numeric array, or numeric array element, the
name must consist of ASCII characters terminated by an ASCII null character (zero byte). If the
filename is stored in a character variable, array, or array element, it must not contain a zero
byte.

The following statement opens the file tst.in for sequential access and connects it to unit 1.

OPEN (UNIT=1, FILE="tst.in’)

7.12.1.10 FORM Keyword

The FORM keyword indicates either formatted or unformatted I/O. The keyword has the form:
FORM = f

where frepresents the character expression with the value ' FORMATTED’, 'UNFORMATTED', or

"PRINT'. If you do not specify a format specifier in the OPEN statement, formatted 1/Q is

assumed for sequentially accessed files. Unformatted I/O is assumed for direct-access files.

Specifying FORM="PRINT’ implies ‘“‘formatted’’ and carriage control = 'FORTRAN' and enables

vertical format control for that unit. Vertical format control is interpreted at runtime only on

sequential formatted writes to a PRINT file.

As an alternative to specifying FORM="PRINT", use the UNIX utility fpr before printing the file to
interpret vertical format control.

7.12.1.11 IOSTAT Keyword

The IOSTAT keyword provides a variable that is set to indicate the status of OPEN operation.
The keyword has the form:

IOSTAT = ios

where tos is an integer variable or integer array element. A nonzero value returned in ‘os
indicates an error condition.

7.12.1.12 MAXREC Keyword

The MAXREC keyword determines the total number of records allowed in a direct-access file. The
keyword has the form:

MAXREC = mr
where mr is a numeric expression.

The MAXREC keyword applies only to direct-access files. The default is an unlimited number of
records.

The following statement opens the file associated with unit 1 for direct access. Records past record
number 100 cannot be accessed.

Irm-7-22

Input/Output Statements

OPEN (1, ACCESS="DIRECT", MAXREC=100)

7.12.1.13 NOSPANBLOCKS Keyword

The NOSPANBLOCKS keyword specifies that records are not to cross disk block boundaries. This
keyword is provided for VAX compatibility only and is ignored by CONVEX FORTRAN. The keyword
has the form:

NOSPANBLOCKS

7.12.1.14 READONLY Keyword

The READONLY keyword specifies that an existing file can be read but not written. The keyword has
the form:

READONLY

Using READONLY in an OPEN statement does not prevent the file from being removed when it is
closed.

7.12.1.15 RECL Keyword

The RECL (or RECORDSIZE} keyword specifies the record size for fixed-length records and the
maximum record size for variable-length files. The keyword has the form:

RECL == ve or RECORDSIZE = ie

where 7e is an integer expression with a positive value. You must specify RECL when the file is
opened with RECORDTYPE="FIXED'. The record size is measured in bytes; the default is 80
bytes. For fixed-length records, RECL is the size of the logical record buffer. For variable-length
records, RECL is an initial approximation of the logical record size and the buffer is incremented
in multiples of RECL bytes.

The following statement opens the direct-access unformatted file connected to unit 10. Each
record in the file 1s 20 bytes long.

OPEN (UNIT=10, RECL=20, ACCESS='DIRECT’, FORM='UNFORMATTED')

7.12.1.16 RECORDTYPE Keyword

The RECORDTYPE keyword specifies fixed- or variable-length records for a file. The keyword has the
form:

RECORDTYPE = typ

where typ is a character expression whose value is equal to 'FIXED' or 'VARIABLE'. The defaults
are:

File Access Default Recordtype

Direct Fixed
Sequential Variable
List-directed Variable

Irm-7-23

Input/Output Statements

If you specify RECORDTYPE="FIXED', you must also specify RECL. RECORDTYPE="VARIABLE’
is not allowed for direct-access files.

The following statement specifies sequential-access, fixed-length records, each of which is 10 bytes
long. The file is connected to logical unit 10.

OPEN (10, RECORDTYPE="FIXED', RECL=10)

7.12.1.17 STATUS Keyword

The STATUS (or TYPE) keyword determines the status of the file to be opened; the default is
TUNKNOWN'. The keyword has the form:

STATUS = sta or TYPE = sta
where sta is a character expression with the value of 'OLD’, 'NEW’ 'SCRATCH’, or UNKNOWN'.

If you specify STATUS='OLD’, the file must exist. To create a new file, specify
STATUS='NEW' in the OPEN statement. When 'SCRATCH' is designated as the status, the
unit is connected to a predefined file and must not be named. When the CLOSE statement is
executed, the 'SCRATCH’ file is deleted. When STATUS=UNKNOWN', CONVEX FORTRAN
searches the directories to see if the file exists. If it does, status becomes 'OLD’; if it does not
exist, status becomes 'NEW’.

If the STATUS (or TYPE) keyword is not specified, by default, scratch files are deleted and all
other files are retained.

7.12.1.18 UNIT Keyword

The UNIT keyword specifies the logical unit to which a file is to be connected. The keyword has
the form:

[UNIT=] u
where « is a numeric expression. The valid logical unit numbers are 0-255.

If the unit number appears as the first parameter of the OPEN statement, the UNIT keyword
may be omitted; if the unit number appears elsewhere in the OPEN statement, the UNIT
keyword is required.

If a unit is connected to a file but the FILE= specifier does not appear in the OPEN statement,
the file to be opened is the same as the file to which the unit is currently connected. In this case,
the BLANK= and FORM= specifiers are the only specifiers that can have a value different from
the one currently in effect. When the OPEN statement executes, the new value of the BLANK=
specifier becomes effective. The position of the file is unaffected.

If the file to be opened is not the same as the file to which the unit is connected, the effect is the
same as executing a CLOSE statement immediately prior to the execution of the OPEN
statement.

If a file is connected to a unit, you cannot reopen the file with a different unit number.

Irm-7-24

Input/Output Statements

7.12.2 CLOSE Statement

Use the CLOSE statement to disconnect a file from a unit. The CLOSE statement is represented

as: :
CLOSE ([UNIT=]u [,STATUS=p| ,ERR=5s] [JOSTAT= ios])
CLOSE ([UNIT=]u [,DISPOSE=p] [, ERR=5] [[JOSTAT=10s])
CLOSE ([UNIT==]u [.DISP=p] [ERR=3] [JOSTAT=jos|)
where:
U is a logical unit number that must be an integer expression.
P is a character expression that determines the disposition of the file. Its

values are 'IKEEP/, "'SAVE’, or 'DELETE'.

s is the label of an executable statement.

108 is an integer variable or integer array element.

The statement:

CLOSE (7, STATUS='DELETE’)

disconnects the file opened to unit 7 and deletes it. Specifying either 'SAVE" or 'KEEP' retains
the file after you close the unit. If the unit is not connected to a file, the CLOSE statement has

no effect.

The status specification supercedes the disposition specified in' the OPEN statement. For scratch
files, the default is ' DELETE'. For all other files, it is 'KEEP’. If you disconnect a unit or file by
the CLOSE statement, either can be connected again within the same executable program to the

same file or unit.

7.12.3 INQUIRE Statement

The INQUIRE statement determines specific information about a file or unit, such as the access
mode or blocksize. This statement has the forms:

INQUIRE (FILE=/fi, list)
INQUIRE ([UNIT=]u, list)

where:

fi

list

u

is a character expression, numeric array name, numeric variable name, or
numeric array element name whose value is the name of the file being
queried.

is a list of specifiers that indicate the information to be determined
for the file or unit. Each specifier appears in the list only once.
Table 7-3 describes the valid specifiers.

is the external unit specifier (number) that identifies the unit to be
queried. The unit need not exist nor need it be connected to a file. If
the unit is connected to a file, the inquiry includes both the
connection and the file.

Irm-7-25

Input/Output Statements

Although you can position FILE=fi and UNIT=u any place in the list that specifies
properties, if you omit the UNIT keyword, u must be the first item in the list.

The following statement returns the access mode of the file connected to unit 99 in the
character variable ACC.

INQUIRE (99, ACCESS=ACC)

The following statement returns the form of the file, FORMATTED' or UNFORMATTED/,
in the character variable FM.

INQUIRE (FILE='TEST.IN’, FORM=FM)

Irm-7-28

Input/Output Statements

Table 7-3: INQUIRE Specifiers

Specifier/Form

‘Specifier Variable Values

ACCESS = character*
BLANK = character*
BLOCKSIZE = integer*

CARRIAGECONTROL = character*

DIRECT = character*

ERR = statement label
EXIST = logical*

FORM = character*®

FORMATTED = character*

IOSTAT = integer*
NAME == character*
NAMED == logical*
NEXTREC = integer*

NUMBER = integer*
OPENED = logical*

RECL = integer*
RECORDTYPE = character*
SEQUENTIAL = character*

UNFORMATTED = character®

'DIRECT or 'SEQUENTIAL' if connected
'UNKNOWN' if no connection

'NULL' or '"ZERO' if connected and formatted I/O
'UNKNOWN if no connection and/or unformatted [/O

0 if not connected. Block size set on OPEN; system default
if not set on OPEN

'FORTRAN’ if FORTRAN specified on OPEN; °'LIST" if
specified on OPEN; 'NONE' if specified on OPEN;
"UNKNOWN' if not connected

YES' if direct access permitted; 'NO’ if direct access not
permitted; 'UNKNOWN' if not connected

Control transfers to statement if error condition

true if by file and exists; frue if by untt and unit is in
allowed set of unit numbers; false otherwise

"FORMATTED' if connected for formatted
'UNFORMATTED if connected for unformatted
"UNKNOWN' if not connected

'YES' if formatted I/O permitted
'NO' if formatted I/O not permitted
'"UNKNOWN! if file not connected

0 if no error condition; positive integer if error condition
filename if file has name; blank if no filename
true if file has a name; false if no name

next record number if record length specified on OPEN
0 otherwise

unit number of file connected; -1 if no unit connected

true if file/unit connected
false if file/unit not connected

record length set on OPEN if connected for direct access;
0 otherwise

'FIXED' if fixed-length record; 'VARIABLE' if variable-
length record: 'UNKNOWN’ if not connected

YES' if sequential access permitted; 'NO’ if sequential
access is not permitted; 'UNKNOWN' if not connected

YES' if unformatted records permitted; 'NO' if
unformatted records not permitted; 'UNKNOWN' if
undetermined

*The specifier variable can be either a variable or array element of the stated type.

Irm-7-27

Input/Output Statements

7.12.4 File-Positioning Statements

The file-positioning statements allow manipulation of external files. You cannot use these
statements with internal files. The positioning statements are:

o REWIND—repositions before the first record
¢ BACKSPACE—repositions to beginning of preceding record
e ENDFILE—writes an endfile record

The file-positioning statements have the form:

REWIND ([UNIT=]u [,ERR=3] [[JOSTAT="10s])
REWIND «

BACKSPACE ([UNIT=]u [,[ERR=s] [JOSTAT=1i0s])
BACKSPACE u

ENDFILE ([UNIT=|u [[ERR=3] [, JOSTAT=10s])

ENDFILE

where:

U is the unit specifier. If the unit specifier is the first argument, you can
omit UNIT=.

s i1s the statement label to which control transfers if an error condition
exists. (If both IOSTAT and ERR are omitted, the program terminates on
an error.)

108 is an integer variable or integer array element that is set to either a zero if

no error condition exists, or a positive integer error code if an error occurs
during program execution. (If IOSTAT, without ERR, is included in the
statement, execution continues at the next statement on an error.)

7.12.4.1 REWIND Statement

The REWIND statement positions a file at its initial point. If the file is already at its starting
point, REWIND takes no action. If the unit is not connected to a file, REWIND has no effect.
The following statements reposition the file MYEXAM to its beginning.

OPEN(10,FILE="MYEXAM',6STATUS="0LD")
READ (10 END=200) A,B,C

200 REWIND 10

7.12.4.2 BACKSPACE Statement

The BACKSPACE statement positions the file connected to the specified unit before the preceding
record. If the file is already at the first record, no action is taken. If the file is positioned after
the endfile record, BACKSPACE positions the file before the endfile record. You cannot
backspace a file that does not exist.

Irm-7-28

Input/Output Statements

The following statement repositions the file connected to unit 10 to the beginning of the preceding
record.

BACKSPACE 10

The following statements assign A and B the same value from the file connected to unit 8.

READ (8,%) A
BACKSPACE (8)
READ (8,%) B

7.12.4.3 ENDFILE Statement

The ENDFILE statement writes an endfile record on the file connected to the specified unit and
positions the file after the endfile record. After ENDFILE writes the endfile record, no additional
records can be read or written without using BACKSPACE or REWIND to reposition the file for

data-transfer operations.

The following statements write endfile records to the files connected to units 101 and d,
respectively.

ENDFILE (UNIT=101)
ENDFILE (4)

Irm-7-29

Chapter 8
Format Specifications

Format specifications describe the format of data to be read or written and define any editing
that is required. You can use any of the following format specification methods with formatted
I/O statements:

e The label of a FORMAT statement that contains the format, for example:

WRITE (6,50) A, B
50 FORMAT (I4)

e An integer variable assigned the label of a FORMAT statement, for example:

ASSIGN 50 TO L
WRITE (2,L) A1, A2

A character array, character variable, or other character expression that specifies the
format, for example:

READ (10,°(I4,1I6)') L, M
e An asterisk that indicates list-directed input/output, for example:
WRITE (10, *) K, L, M

8.1 FORMAT Statement

The nonexecutable FORMAT statement provides editing information necessary to produce the
desired format for I/O statements. The FORMAT statement has the form:

st FORMAT (flist)
where s/ is a required statement label and flist is a nonempty format list.

Each item in the flist is of the form:

[rled ned [r]fs

where:

r represents the repeat count.

ed is a repeatable edit descriptor. Repeatable descriptors indicate the type
and layout of the next data value in the file. The repeatable descriptors
are: I, 0, Z F,E,D, G, A L, and Q.

ned is a nonrepeatable descriptor. Nonrepeatable descriptors specify format
characteristics such as spacing and skipping data that is not required.
These descriptors are: H, X, P, T, TL, TR, SP, SS, S BN, BZ, B. SU, R,
slash, colon, dollar sign, and apostrophe descriptors.

fs nonempty flist.

Irm-8-1

Format Specifications

A repeatable edit descriptor has one of the following forms:
[rle [rlew [rewm [r]cw.d[Ee] [rfew.d.e
where:

r Is a repeat specification (unsigned integer constant) that indicates
repetition of the descriptor r times in the format specification. The repeat
specification cannot be used with all descriptors. If you omit the repeat
specification, the count defaults to 1. You must include at least one
repeatable descriptor in the format specification for I/O statements that
have one or more items in the I/O list.

¢ is a format descriptor that may or may not be repeatable.

w 1s an unsigned integer constant that indicates the field width in characters.
A field containing only blank characters represents the value of zero.
Leading blanks are not significant; other blanks are ignored or represented
as zero depending on the value of the BLANK keyword when the file was
connected.

m is an unsigned integer constant that indicates the minimum number of
characters, including leading zeros, that must appear within the field.

d is an unsigned integer constant that indicates the number of characters to
the right of the decimal point for REAL values.

E identifies the exponent field.

e is an unsigned, integer constant that indicates the number of characters to
output as the exponent.

Not all of the previously identified terms are required for formatting. For instance, e can be used
for formatting real values but is invalid for the use with integer format descriptors, e.g., I, O, Z.
Do not use PARAMETER constants for the terms r, w, m, d, or e.

8.2 FORMAT Control

When data transfer occurs, format control depends on information provided by the next format
descriptor and the next item in the [/O list, if any. Generally, the format specification is
interpreted from left to right, and elements in the I/O list are correlated with the corresponding
repeatable edit descriptors. There are no corresponding list elements for the nonrepeatable
descriptors. The I/O statement terminates if, during execution of the data transfer statement, a
repeatable edit descriptor is encountered but there is no corresponding item in the I/O list. For
example, the following statement:

READ (*, '(I4,5F6.2)') K, X, Y
causes three values, not six, to be read using the descriptors I4 and F6.2. The additional three
F6.2 descriptors are not used. If there is another item in the I/O list but no repeatable
descriptor, however, control reverts to the beginning of the format specification, and a new record
i1s started. For example:

READ (5, '(I4,1I6)') K, J, I, N

causes values to be read in from character positions 1 to 4, and 5 to 10 of the current record and
assigned to K and J, respectively. Control then reverts to the beginning of the format

Irm-8-2

Format Specifications

specification; values from character position 1 to 4, and 5 to 10 of the next record are read and
assigned to I and N, respectively. Reversion to the beginning of the format list causes multiple
records to be transferred. The end-of-file condition is flagged if there are insufficient records in
the file to satisfy the execution of the input statement.

You can transfer data entirely from the descriptors to the external records. In this case, there is
no corresponding item in the I/O list for the descriptors so format control communicates
information directly to the record. You can use H and character constant descriptors to transfer
data directly to the external record from the format specification. For example, the following
statement outputs the characters CONVEX FORTRAN to the file connected to unit 2:

WRITE (2, ° (''CONVEX FORTRAN'') ')

There is no output list in the above WRITE statement. Because the format identifier is a
character constant containing the format specification, the apostrophes in the format specification
must be represented by two consecutive apostrophes in the format identifier.

Usually, a new [/O statement positions the file at the next record. The use of 8§ while writing
causes suppression of a new line at the end of the current record. The slash descriptor terminates
processing of the current record; the next record is used for the remaining descriptors.

Processing of repeatable edit descriptors positions the file after the last character transferred.
This is also true of the H and apostrophe edit descriptors. Positioning left or right within the
current record is accomplished by the X, T, TL, and TR descriptors.

8.2.1 Repeat Count

You can use the descriptors A, O, Z, F, E, D, G, L, and I in a repetitive sequence by preceding
the descriptor with an unsigned, integer constant that specifies the number of repetitions. For
example, the following two statements are equivalent:

30 FORMAT (F6.0,F6.0,8X,F10.3,F10.3,F10.3)
30 FORMAT (2F6.0,8X,3F10.3)

You can also repeat a group of descriptors by enclosing the descriptors in parentheses and
preceding them with an unsigned, integer constant that specifies the number of repetitions. The
repeat count defaults to 1 when you do not specify the count. For example, the following two
statements are equivalent:

30 FORMAT (F6.0,F6.0,8X,F10.3,E12.4,5X,F10.3,E12.4,5X,F4.0)
30 FORMAT (2F6.0,8X,2(F10.3,E12.4,5X),F4.0)

8.3 Descriptors

The field and edit descriptors in CONVEX FORTRAN are grouped into the following categories:
e Character (A)

e Editing, character constants, and Hollerith constants (T, TL, TR, P, Q. dollar sign,
colonm, ..., slash, X, H, B. BN, BZ, S, SP, SS, SU, R)

o Integer (I, O, 2)
e Logical (L)

e Real and complex (D, E, F. G)

Irm-8-3

Format Specifications

8.3.1 A Descriptor
The A descriptor transfers character or Hollerith values and is represented by:
Alw]
In an input statement, the A field descriptor transfers w characters from the external record and
assigns them to the corresponding I/O list element. If the w field is not specified, the size is the

length of the character variable, character substring reference, or character array element. For
numeric I/O list elements, the size depends on the data type, as shown in Table 8-1.

Table 8-1: Character Assignment for Numeric I/O List Elements

I/0O List Elements Maximum No. of Characters
LOGICAL*1 1
LOGICAL*2 2
LOGICAL*4 4
LOGICAL*8 8
INTEGER*1 1
INTEGER*2 2
INTEGER*4 4
INTEGER*8 8
REAL*4 4
REAL*8(DOUBLE PRECISION) 8
COMPLEX 8
COMPLEX*16(DOUBLE COMPLEX) 16

If the w you specify is less than the size of the 7olist item, on input the characters are stored left
justified and padded on the right with blanks. If the w you specify is greater than the size of the
tolist item, the rightmost characters are stored in the variable on input.

On output, the value is right justified in the field and w characters from the entity are written to
the record. If w is greater than the number of characters in the entity, leading blanks are added
to right justify the value. It w is less than the number of characters in the 7olist item, only the
leftmost w characters are written.

Examples:

Reading into a CHARACTER*5 variable:

Format Code External Field Internal Value
A CONVEXCOMPUTER CONVE
Ad CONVEXCOMPUTER CONV"
Al4 CONVEXCOMPUTER PUTER

Writing from a CHARACTER*10 variable:

Format Code Internal Value External Field
A MY "EXAMPLE MY EXAMPLE

Ad MY EXAMPLE MY E

Ald4 MY "EXAMPLE MY TEXAMPLE

Irm-8-4

Format Specifications

8.3.2 Apostrophe Descriptor

The apostrophe descriptor has the form of a character constant. The characters that are enclosed
within a pair of apostrophes are written to the record. The width of the field equals the number
of characters contained within (but not including) the delimiting apostrophes. Use two
consecutive apostrophes to produce a single apostrophe. For example, the statement:

WRITE (6,100)
100 FORMAT ('THE~''CONVEX''~COMPUTER’)

produces

THE 'CONVEX' COMPUTER.

8.3.3 H Descriptor

The H descriptor writes a literal string to a record. You can use the H descriptor for output
editing as an alternative to apostrophe editing. This descriptor has the form:

nHe...c
The H descriptor writes the n characters immediately following the letter H, including
apostrophes and quotation marks. The c...c represents the actual characters to be written. For
example, the statement:

WRITE (6,10)
10 FORMAT (i17HENTER 'FILE’ NAME)

produces:

ENTER 'FILE’ NAME

8.3.4 L Descriptor

The L descriptor formats logical variables and has the form:
Lw
where w indicates the field width for the formatting of logical variables.

Optional blanks, optionally followed by a decimal point, a T (¢, .T, .t) for true or an F (f, .FF, .f)
for false, constitute the input field. The T or F can be followed by additional characters, i.e.,
.TRUE. or .FALSE., in the field. On input, an all blank field is read as false.

On output, the record contains w - 1 blanks, followed by a T or F depending on the value of the
corresponding /0 list element.

Irm-8-5

Format Specifications

Input Example:
Format Code External Field Internal Value
L2 T60 . TRUE.
L7 "*FALSE FALSE.
L7 1234567 Error—invalid

Output Example:

Format Code Internal Field External Field
L1 . .TRUE. T
L3 .FALSE. “°F

8.3.5 I Descriptor

The I descriptor provides integer formatting. It has one of the forms:

Iwor Iw.m

where:
w is an unsigned, positive integer constant that specifies the field to be edited
is w characters in width.
m is an unsigned, integer constant that specifies the minimum number of

digits for output (only), including leading zeros if necessary.

During input, the processor transfers w characters from the record in integer representation and
stores the integer values in the corresponding I/O list elements. Both forms of the I descriptor
are treated identically during input. On input, leading blanks are not significant; nonleading
blanks are interpreted according to the BLANK specifier in the OPEN statement or the BZ or BN
descriptor. If the field contains all blanks, the value is zero. A plus sign or no sign indicates a
positive value; a leading minus sign indicates a negative value.

During output, the processor formats the value of the I/O list element and outputs it in a field w
characters wide, right justified. Leading blanks are added, if needed, to fill the field. If the field
specified is too small for the value, the field fills with asterisks (*). If you specify m, the external
field consists of, at most, m characters; if necessary, the processor inserts leading zeros to pad to
m. The value of m must not be greater than the value of w. If m is zero and the value of the
entity is zero, the output field contains blank characters. The minus sign precedes a negative
integer; by default a plus does not precede a positive integer. You must include space for a minus
sign for negative integers in the w term.

Input Examples:

Format Code External Field Internal Value

I3 760 760

I4 nene 0

14 -760 -760

I5 760" " 760

I5 760"" 76000 (blanks interpreted as zeros)
15 7.60"" Error

Irm-8-6

Format Specifications

Output Examples:
Format Code Internal Value External Field
I4 760 “760
18.4 760 ~**"0760
I3 -760 *oHk
I4 0 "0

8.3.6 O Descriptor

The O descriptor transfers unsigned octal values. The descriptor has the form:

Ow[.m]
where:
w is an unsigned, positive integer constant that specifies the field to be edited is

w characters in width.

m is an unsigned, integer constant that specifies the minimum number of digits
for output, including leading zeros if necessary.

On input, format code O transfers w characters from the external field and assigns them as an octal
value to the corresponding 1/0 list element. On output, if m is specified and the external field consists
of fewer digits than m. the remaining positions fill with zeros on the left. You can use only the
numerals 0 - 7 in the external field: you cannot use a decimal point, a sign, or an exponent field.

Input Examples:

Format Code External Field Internal Octal
03 523 523
04 23176 2317
04 2.317 Error
04 -1234 Error

Output Examples:

Internal
Format Code Decimal Value External Value
06 4095 777
06 -4095 KEEER
03 4095 rr
04.3 8 ~010

8.3.7 Z Descriptor

The Z descriptor transfers unsigned hexadecimal values and is represented as:

Zw[.m]
where:
w is an unsigned, positive integer constant that specifies the field to be edited is

w characters in width.

Irm-8-7

Format Specifications

m is an unsigned. integer constant that specifies the minimum number of digits
for output, including leading zeros if necessary.

On input, descriptor Z transfers w characters from the external field and assigns them as a
hexadecimal value to the corresponding 1/0O list element. On output, if m is specified and the value
contains fewer digits than m, the remaining positions fill with zeros on the left. You can use only the
numerals 0 - 9 and the letters A (a] through F (f] in the external field; you cannot use a decimal point,
a sign, or an exponent field.

Input Examples:

Internal
Format Code External Field Hex Value
Z3 9A1 9A1
Z3 9A1B 9A1
Z3 9A.1 Error
Output Examples:
Internal
Format Code Decimal Value External Value
Z4 4095 “fff
zZ5 -1 kREER
Z26.4 4095 “Offf
22 4096 ¥

8.3.8 F Descriptor

The F descriptor provides formatting of real numbers. It has the form:

Fw.d
where:
w 1s an unsigned, positive integer constant that specifies the field to be edited
is w characters in width.
d specifies the number of digits in the fractional (right of the decimal) part

of the real number.

During input, the processor transfers w characters from the external field and stores the real
values in the corresponding I/O list elements. The input field consists of an optional sign
followed by a string of digits that can contain a decimal point. If the field contains a decimal
point, the d term has no effect, as the location of the explicit decimal overrides the location
specified by the field descriptor. If you omit the decimal point and the exponent, the rightmost d
digits are interpreted as the fractional part of the field with leading zeros assumed if necessary.

On input, leading blanks are not significant; nonleading blanks are interpreted according to the
BLANK specifier or the BZ or BN descriptor. If the field contains all blanks, the value is zero.
The processor treats a plus sign or no sign as a positive value; the minus sign indicates a negative
value.

During output, the processor transfers the value of the I/O list element rounded to d decimal
positions and outputs it in a field w characters wide, right justified. w must include space for a
minus sign when necessary, at least one digit to the left of the decimal point, the decimal point,
and d digits to the right of the decimal, i.e., at least equal to or greater than d + 3. Leading
spaces are added, if needed, to fill the field.

Irm-8-8

Input Example:

Format Code

F8.5
F8.5
F8.0
F8.5

Output Example:

Format Code

F9.4
F5.2
F6.3
F6.3

External Field

1234567"
12345.67
-1.23E-3
123456789

Internal Value

123.456789

123.456789

+1.12
-1.12

Format Specifications

Internal Value

12.34567
12345.67
-.00123
123.4568

External Field
"123.4568

Kk Kk
“1.120
-1.120

If the value is too large for the field, asterisks (*) are output. In native format, if the sign is a 1
and the exponent is 0, Rop (reserved operand) is output followed by the fraction in hexadecimal.
In IEEE format, if the exponent is all ones and the fraction is nonzero, NaN (not a number) is
output followed by the fraction in hexadecimal; if the exponent is all ones and the fraction is 0,
Inf (infinity) is output.

8.3.9 E and D Descriptors

The E and D descriptors are functionally identical. Both transfer real values in exponential form
and edit external real, double-precision or complex data. These descriptors differ only in the
exponent symbol they use. The E and D descriptors have the following forms:

Ew.d, Ew.d.e, or Ew.dEe
Dw.d, Dw.d.e, Dw.dEe

where:
w is the width of the field containing the real number, i.e., count of all
characters in the field, including sign, if any, decimal point, and exponent.
d is the fractional part of the field that consists of d digits.

E or D identifies the exponent part that consists of e digits (no effect on input).

e indicates the number of digits in the exponent.

On input, the descriptors read w characters from the external field and assign them as a real
value to the corresponding 1/O list element. The values being read consist of a string of digits
with an optional decimal point. When the decimal point is included, the d term has no effect.
When the decimal is omitted, however, the least significant d digits of the string are considered
the fractional part of the value.

On output. the E and D descriptors transfer the value of the I/O list element rounded to d
decimal posttions and output it to a field w characters wide, right justified. w must include space
for a minus sign (when necessary), the decimal point, d digits to the right of the decimal, and a
two- or three-digit exponent, depending on whether the I/O list item is REAL*4 or REAL*S.

Irm-8-9

Format Specifications

The exponent can be a signed-integer constant, (E or D) followed by zero or more blanks,
followed by an optional signed-integer constant. You can use the legal characters—digits 0 - 9,
decimal point, plus, minus, E, D, and blank. When using the descriptors in the form of Ew.d,
Ew.d.e or Ew.dEe (Dw.d, Dw.d.e, Dw.dEe), the value of the next item in the output list has the
form:

(][0].z 2y ... 7 ezp

where:
* signifies a plus or minus sign; the plus is optional for a positive value.
0 a leading zero that is optional.

TpTy . Ty are the d most significant digits of the value after rounding.
exp is a decimal exponent that is of the form E+ 72923 where 2 is a digit.

Input Example:

Format Code External Field Internal Value
E4.3 .625 .625
E6.1 .78-01 .078
D6.3 -.62D4 -6200

D6.3 123456 123.456
E4.3 62567 6.256

Output Example:

Format Code Internal Value External Field
Di1.4 -6250. -0.6250D+04
E103 625 "0.625E+03
E10.4 0.4568 0.4568E+00
E10.3 0.4568 "0.457E+00
E5.3 24.53 kAR Ak

If the value is too large for the field, asterisks (*) are output. In native format, if the sign is a 1
and the exponent is 0, Rop (reserved operand) is output followed by the fraction in hexadecimal.
In IEEE format, if the exponent is all ones and the fraction is nonzero, NaN (not a number) is
output followed by the fraction in hexadecimal; if the exponent is all ones and the fraction is 0,
Inf (infinity) is output.

8.3.10 G Descriptor

The G descriptor edits external single-precision, double-precision, or complex data. It has the
form:

Guw.d, Gw.d.eor Guw.dEe

where:
Ww is a nonzero, unsigned, integer constant that indicates the field width in
characters.
d is a nonzero, unsigned, integer constant that indicates the number of

characters to the right of the decimal point.

Irm-8-10

Format Specifications

E identifies the exponent field.
e is an unsigned, integer constant that indicates the number of digits in the
exponent.

Input editing is identical to F, E, and D editing. You may use the G descriptor when you are not
certain that the values you are using can be adequately represented by the F descriptor because of
their magnitude—either too large or too small.

On output, the G descriptor operates like the F descriptor. It transfers the corresponding I/O list
item rounded to d digits. Either the F or E style of editing is used depending on the magnitude
of the value. If the value can be represented using the F format without loss of significant digits,
F is chosen; otherwise, E is chosen.

Assume M is the magnitude of the data in the field. If M is less than 0.1 or equal to or greater
than 10**d, the output editing Gw.d or Gw.dEe is the same as kPEw.d and kPEw.dEe,
respectively, and £ is the scale factor currently in effect. If M is equal to or greater than 0.1 or
less than 10%*d, however, the F mode of editing is used with output of the four-character
exponent field as four blanks after the value. The scale factor has no effect and the value of M
determines the editing as follows:

Magnitude of Data Conversion Equivalence

0.1=M<1.0 F(w-n).dn(" ')
1.0=M or <10.0 F(w-n).(d-1),n(")

10%*(d-2)= M < 10**(d-1) | F(w-n).1,n("')
10%*(d-1)s M< 10**d F(w-n).0,n(")

The value n(* ') specifies that four or e + 2 spaces are to follow the numeric data representation;
n is 4 for Gw.d and e + 2 for Gw.dEe. Be sure the w term is large enough to include a sign, if
necessary, a decimal point, d digits to the right of the decimal and either a 4-character or e + 2-
character exponent. Thus, you must make w equal to or greater than d + 7 or d + 5 + e.

Input Example:

Format Code External Field Internal Value
G8.5 "1234567 12.34567
G8.5 12345.67 12345.67

G8.0 -1.234-3 .001234

Output Example:

Format Code Internal Value External Field
G136 -1234 “-1234.00" """
G13.6 0.01234 “0.123400E-01
G13.6 1.23456789 "71.23457° "
G10.4 15.65 "15.65" """
E10.4 15.65 0.1565E+02
F10.4 15.65 """15.6500

Irm-8-11

Format Specifications

If the value is too large for the field, asterisks (*) are output. In native format, if the sign is a 1
and the exponent is 0, Rop (reserved operand) is output followed by the fraction in hexadecimal.
In IEEE format, if the exponent is all ones and the fraction is nonzero, NaN (not a number) is
output followed by the fraction in hexadecimal; if the exponent is all ones and the fraction is 0,
Inf (infinity) is output.

8.3.11 B Descriptors

The B descriptors operate only during execution of the input statements and affect only the
numeric descriptors I, O, Z, F, E, D, and G. The BN and BZ descriptors supercede the default
interpretation of blanks while the B descriptor causes return to the default mode of blank
interpretation. Their forms and meanings are:

B reverts to default interpretation.

BZ interprets blanks as zeros.

BN interprets blanks as nulls.
When execution of a formatted input statement begins, the interpretation of blanks depends on
the value of the BLANIK specifier on the OPEN statement, i.e., ignore or zero. Blanks are
ignored ('NULL') if you omit the BLANK specifier.
The BN descriptor causes the processor to treat all embedded blank characters as nulls in
subsequent input fields for the current statement. When the processor encounters BN, it treats
the input field as though the embedded blanks have been moved to the position of leading blanks;
the remainder of the field becomes right justified. The processor assigns the value of zero to a
field of all blanks. If you specify the BZ descriptor, the processor treats all embedded and trailing
blanks in subsequent numeric input fields as zeros.
For example, if a file connected to unit 5 contains the record:

~~~5~-500"""3"056

and the BLANK specifier has a value of 'NULL' or the BN descriptor is specified, the statements:

READ (5,'(I4,17,16)') L, M, N
READ (5,'(BN,I15,17,16)°) L, M, N

assign the value of 5 to L, the value of -500 to M, the value of 3056 to N. The processor ignores
all blanks. If the BZ descriptor is indicated by

READ (5,'(BZ,15,17,16)') L, M, N
the values assigned become: L = 50; M = -50000; N = 30056. The processor treats all
nonleading blanks as zero. If another input statement refers to unit 5, blank interpretation

returns to the default value.

The descriptor B causes return to the default mode of blank interpretation ('NULL’) and is identical to
BN. For example, change the previous example to include a B descriptor, such as:

READ (5.'(BZ.15.17,B,16)°) L, M, N

The value of 3056 is assigned to N rather than 30056 as the B descriptor returns interpretation to
default mode.

Irm-8-12



Format Specifications

8.3.12 P Descriptor

The P descriptor specifies a scale factor for real and complex values. The P descriptor can be
used on input or output and applies to the F, E | D, and G edit descriptors. The P descriptor has
the form:

nP

where n is an optionally-signed integer constant that specifies the number of positions, to the left
or right, that the decimal point is to be moved. A value for n must be specified.

If no P descriptor is specified, a scale factor of 0 is assumed. Once specified, a scale factor
remains in effect within a FORMAT statement until another P descriptor is encountered. The
following example uses a scale factor of 0 for the first format descriptor and a scale factor of 2 for
the two remaining descriptors.

PRINT 50, D
50 FORMAT (5,'(F8.2,2PF8.2,F6.2)")

On input, the scale factor (with the F, E, D, or G descriptors) causes the externally represented
number to be multiplied by 10**-n before it is assigned to the I/O list element.

Examples:
Format Code External Field Internal Value
3PF7.4 56.789" .056789
-3PES.3 56.789 56789.

On output, when you use the scale factor with the F descriptor, the externally represented
number equals the internally represented number multiplied by 10**n. When the scale factor is
used with E or D, the nonexponent part of the constant is multiplied by 10**n and n is
subtracted from the exponent. With G, if the F style of formatting is used, the scale factor is
ignored; otherwise, the effect is the same as E editing.

Examples:
Format Code Internal Value External Field
-1P F7.3 58.967 "°5.897
2PE10.3 890.11 "89.01E+01

If you use a scale lactor when an external field contains an explicit exponent, e.g., 5.E02, the
processor ignores 1t; in this case, 500 is stored regardless of the scale factor.

8.3.13 S Descriptors

The S descriptor can be used to control optional plus ( 4+ ) characters in numeric output or to
cause integer values to be interpreted as unsigned during output conversion. If you do not use any S
descriptor, positive values do not have leading plus signs. The S, SP and SS descriptors act only
during statement execution and only with I, F, E, and D editing. The SU descriptor only affects
integer values. The descriptors and their forms are:

S reverts to normal interpretation

SP adds plus sign

Irm-8-13




Format Specifications

SS suppresses plus sign

SU ' outputs integer values as unsigned values
The SP descriptor forces a plus sign during output for all subsequent positive I, F, D, E, and G
values within the format specification. Include space for the plus sign in the numeric fields.
When you use the SS descriptor, the processor suppresses leading plus characters from any
position where the plus is normally contained as an optional plus. The S descriptor returns the
normal plus sign handling option to the processor. For example, if L = +5, M = 100, N = -10,
I = 50, J = 6000, and K = -450, the following statements:

WRITE (10,30) L, M, N, I, J, K
30 FORMAT (Ss,12,15,SP,I4,14,8,15,15)

write the record as

~5°"100"-10~+50~6000~-450.
The SU descriptor, causes integer values to be interpreted as unsigned during output conversion. SU
remains in effect until another sign control specifier is encountered or until format interpretation is
complete. It has no effect on input. Radix and unsigned specifiers can be used to format a

hexadecimal dump as follows:

2000 FORMAT (SU, 16R, 8110.8)

8.3.14 R Descriptor

The R descriptor changes the radix for integer 1/O. This descriptor applies only to integers (I
descriptor) and must not be used with other descriptors. The R specifier has the form:

[n|R

where 2 = n = 36. The default value is 10. Omitting n restores the default decimal radix. The radix
specified by R remains in effect until another radix is specified or until format interpretation is complete.

For example,

I =15
WRITE (6,10) 1. I. | 10 FORMAT (16R.14.8R.14.R.14)

produces “""F""17""15.

8.3.15 X Descriptor
The X descriptor sets the position in a record and has the form:
nX

where n indicates the number of character positions to move forward (skip over) from the current
position in the file. The value of n must be greater than or equal to 1. The default is 1.

The X descriptor is functionally identical to the TR descriptor. When you use the X descriptor, n
indicates the next n characters are to be skipped. The character following the number of skipped

positions is transmitted. For example, the statements:

WRITE (*,200) 450, 8921

Irm-8-14



Format Specifications

200 FORMAT (2X,I3,3X,I4)
insert 2 blanks before 450 and 3 blanks before 8921.

The X format descriptor may not in itself change the length of a record. For example, the
following is invalid:

WRITE (6,100) I
100 FORMAT (I4.X)

8.3.16 T Descriptors

The T (tab) descriptors control forward and backward positioning within a record for input or
output of characters. These descriptors let you skip portions of a record or reread portions of a
record. The T descriptors are T, TR, and TL.

The T descriptor has two forms; the first form is:

Tn

where n specifies the absolute position within the record. It indicates transmission of characters
at position n. For example, in a file connected to the designated input unit is the record:

~2.57200""40
Execution of the following statements:

READ (*,35) A, B
35 FORMAT (T2,F3.0,T11,F3.0)

assigns A the value of 2.5 (positions the file at character 2 and reads the next 3 characters
according to format specification F3.0) then assigns the value of 40 to B (positions the file at
character 11 of the record and reads the next 3 characters).

On output, for example, the following statements:

PRINT 50
50 FORMAT (T10,'MY’,T13, EXAMPLE")

output MY at position 10 and EXAMPLE outputs at position 13.
Another form of the T descriptor is:
TornT

which causes tabbing to the next (or n-th) 8-column tab stop. You can therefore align columns of
alphanumerics without counting. For example, the statements:

READ (5.50) K.N
50 FORMAT (T,14,2T.13)

causes K to be read starting in character position 8 of the current record: the value for N is read
starting in position 24 of the current record.

The second of the T-series descriptors has the form:

TLn»

Irm-8-15




Format Specifications

where n, an unsigned, integer constant, indicates that the record is repositioned = characters left
(backwards) from the current position in the record. The default is 0. For example, if the
external record is 1.2345, the statements:

READ (5,20) X, I
20 FORMAT (F6.0,TL4,I3)

produce: X = 1.2345 and [ = 234
The last T-series descriptor is TR; it has the form:

TRn

where n is an unsigned integer that specifies the number of characters to move right (forward)
from the current position in the record. The default is 0. The TR field descriptor is identical to
X. For example, assume the external record is:

12.345°"""123

the statements:

READ (5,20) X, I
20 FORMAT (F6.0,TR4,I3)

produce: X = 12.345 and I = 123

The T descriptors cannot in themselves change the record length. Therefore, the following results
in a runtime error:

WRITE (6,10) I
10 FORMAT (I4,TR10)

8.3.17 §$ Descriptor

The § descriptor suppresses the new line at the end of the current record of a formatted sequential
write. (In an input statement, the § descriptor is ignored.) For terminal /O, a typed response follows
the output on the same line. For example, the following statements:

WRITE (*°(" enter value for x: ", §)’)
READ (*%) x

write “enter value for x:” to the output device with the cursor positioned one space to the right of the
colon.

8.3.18 Q Descriptor

The Q descriptor determines the number of unread characters in the current record. It is represented
by:

Q
For example:

READ (4,100) J, MYEXAM, (ISAM(I). | = 1. MYEXAM)
100 FORMAT (15.Q.80Al)

Irm-8-18



Format Specifications

reads the first field into variable J and stores the number of remaining characters in MYEXAM and
causes transfer of that number of characters to the character array, ISAM. If you place Q first in the
format specification, you can determine the actual length of the record.

In an output statement, the descriptor Q causes the corresponding 1/0 list element to be skipped.

8.3.19 Colon Descriptor

The colon (:) descriptor terminates format control when there are no more items in the I/O list.
If items remain in the I/O list, the colon descriptor has no effect. For example:

M = 15
WRITE (10,40)M
40 FORMAT (I2,:,’ SAMPLE’,13)

writes 15 only, ending format control at the colon. Change the statements slightly, however, and
the colon descriptor has no effect. For example:

M = 15
N = 500
WRITE (10,40) M, N
40 FORMAT (I2,:,’ SAMPLE',I4)

writes 15 SAMPLE 500; the colon descriptor is ignored as items remain in the [/O list.

8.3.20 Slash Descriptor

The slash descriptor indicates the end of data transfer for the current record. For example, the
following statements:

READ (10,50) L, M, N
50 FORMAT (I2/14,13)

cause L, to be read from the first record; M and N, from the second record.

During input, use sequential slashes to indicate bypassing of records. The first slash indicates the
end of input for the current record; subsequent slashes skip records. When you use the slash on a
unit connected for sequential access, the remainder of the current record is skipped and the file 1s
positioned at the beginning of next record. On direct access, 1 is added to the record number and
the processor reads that record.

On output, slashes can be used to create empty records. The first slash indicates end of output
for the current record; subsequent slashes produce empty records.

8.4 Default Field Descriptor Values
If you do not specify a field width value with the field descriptors I, O, Z, L, F, E, D, G, or A,

default values for w, d, and e are supplied based on the data type of the I/O list element as
shown in Table 8-2.

Irm-8-17




Format Specifications

Table 8-2: Default Field Descriptors

Field Descriptor List Element Type w d|e
10,2 INTEGER*1,LOGICAL*1 7

1.0.Z INTEGER*2,LOGICAL*2 7

0.2 INTEGER*4,LOGICAL*4 12

1,0,Z INTEGER*8,LOGICAL*8 23

0.z REAL*4 12

0.z REAL*8 23

L LOGICAL 2

F.E.G.D REAL,COMPLEX*8 15 7| 2
F.E.G.D REAL*8,COMPLEX*16 24 | 15| 3
A LOGICAL*1,INTEGER*1 1

A LOGICAL*2,INTEGER*2 2

A LOGICAL*4,INTEGER*4 4

A LOGICAL*8 INTEGER*8 8

A REAL*4,COMPLEX*8 4

A REAL*8,COMPLEX*16 8

A CHARACTER*N n

8.5 Comma Field Separator on Input Data
A comma between numeric fields overrides the width specified in the field descriptor. Because you can
use a comma to terminate a field, you can avoid padding the input field, which makes entering data
from a terminal keyboard easier. A comma field separator can be used with the numeric descriptors (1.
O.Z F E D, G, andl)
Example:

READ (5,100} I1.K
100 FORMAT (2i4)

Record:
1,2
Result:

|1 =1
K=2

The following constraints apply:
e Two successive commas constitute a null field.
® You cannot use a comma to terminate a field that is controlled by an A, or character
constant field descriptor. If the record reaches its physical end before w characters are read.

short-field termination occurs and the characters you input are assigned successfully.
Trailing spaces are appended to fill the corresponding 1/0 list item.

Irm-8-18



Format Specifications

8.6 Runtime Formats

Format specifications, called runtime formats, can be stored in character variables, character
substrings, character expressions, and in character and numeric arrays and numeric array elements.
The numeric arrays and numeric array elements are treated as Hollerith constants.

You can define or modify a runtime format during program execution. A runtime format is
similar to a FORMAT statement but does not have a label or the word FORMAT. For example:

INTEGER*8

CHARACTER*8 SFMT
IFMT = 8H(2X,I12)
SFMT = "(2X,I12)’
WRITE (6,IFMT) I
WRITE (6,SFMT) I

8.7 Variable Formats

A variable format contains an expression, enclosed in angle brackets, that is recomputed each time it is
encountered during format scanning. The expression has the form:

< ezpression>

The expression in the angle brackets can be used in a FORMAT statement wherever you can use
an integer, except as the character count of a Hollerith (H) descriptor.

A variable expression in a format is subject to the following rules:

e If the expression is not integer, it is converted to integer before use.

e Any valid FORTRAN expression can be used, including function calls and dummy
argument references.

o The value of the expression must conform to the restrictions on magnitude that apply
to its use in a format.

e A variable expression is not allowed in a runtime format.

Do not perform 1/O operations within a function call used in a variable format expression or a
runtime error occurs.

Example:

C test of d and e descriptors with repeat count
1 format(<j+2>D10.4,<j/2+1>E10.4)
2 format(<j+2>D10.4.2,<j/2+1>E10.4.2)
j =2
read(5,1) a,b,c,d,e,f
write(6,2) a,b,c,d,e,f
stop
end

Irm-8-19




Format Specifications

8.8 List-Directed Formatting

List-directed formatting transfers data based on the data type of the entity. A list-directed I/O
statement contains an asterisk (*) as the format indicator. For example, the following statement:

READ (5,%) J, M, L
reads three fields from unit 5 and assigns integer values to the variables J, M, and L.

The list-directed record consists of a sequence of values and value separators. A value is generally
a constant but can also be a null value, or the value may have the forms:

r*c or r*

where:
r is an unsigned, nonzero, integer constant that represents the repeat count.
r¥*c represents successive appearances of the constant ¢. You can enter a

repeat count to assign a value to more than one entity with r*c.

r repeat count with an empty constant (null values). A null value indicates
that the value of the corresponding I/O entity is to remain unchanged.

Separators divide the values in each list-directed record. A value separator is a blank, comma, or
a slash optionally enclosed by blanks. Normally, the blanks are considered as part of some value
separator. In the following cases, the blanks are not considered part of a value separator:

® Leading blanks in the first record unless followed by a slash or comma.

e Blanks embedded in a character constant.

8.8.1 Input

You can use list-directed input from any file that allows formatted input. The data type of the
constant, which can be logical, integer, real, complex, or character, determines the data type of
the value, as well as the translation from external to internal form. A character list element must
correspond with a character constant; likewise, a numeric element with a numeric constant. If
the data type of the external numeric field does not match the data type of the numeric list item,
the external value is converted according to the rules for conversion on assignment (see Table 5-
1). Input fields are separated by blanks, commas, or slashes.

The format of a complex value is: left parenthesis followed by a numeric value, 2 comma,
another numeric value (an ordered pair of numeric fields separated by a comma), followed by a
right parenthesis. The processor ignores one or more blanks around either parenthesis or the
comma. The end of record can occur between the real part and the comma or between the
comma and the imaginary part.

8.8.1.1 Character Input

Character constants for list-directed input are usually enclosed in apostrophes. Character
constants may span record boundaries.

Embedded blanks, commas, and slashes are not considered separators within a character string.

To include an apostrophe as part of a character string, use two consecutive apostrophes without
an intervening blank or end of record. .

Irm-8-20




Format Specifications

The processor transfers the leftmost characters read, either truncating the constant to fit in the
list item or filling it on the right with blanks.

CONVEX FORTRAN allows input of a string not enclosed in quotes. The string must not start with a
digit and cannot contain a separator consisting of a right or left parenthesis, i.e., (" or ), or blank

(space or tab). A “newline’’ terminates the string unless escaped with **\"'. Any string not meeting
these restrictions must be enclosed in single or double quotes.

8.8.1.2 Nulls and Slashes

You can specify a null value for a list item with a comma or with »* in the external record. No
characters between successive value separators or no characters preceding the first value separator
indicate a null field. When assigning a null for the first value, you can use one comma; for a
subsequent null, use two consecutive commas.

When you use a null value, it does not alter the value of the corresponding input list item.

When the processor encounters a slash on list-directed input, it skips the rest of the I/O list items
and terminates the READ statement. Those items skipped retain their original values.

8.8.2 Namelist-Directed Formatting

To assign input values for a namelist-directed READ, you must delimit the input record {or records)
with a dollar sign (§). Namelist input has the following form:

$nigrpname [ent = value [] ] ... $[END]
where: »

$ is the special symbol that indicates the beginning and end of input. You
can use the ampersand (&) rather than the $.

nigrpname  is the name defined for the entities contained in the namelist.
ent is a namelist entity. The entity can be a variable, an array name, a

subscripted variable, a variable with a substring, or a subscripted variable
with a substring.

value is a constant, a list of constants, or a repetition of constants or null
values.
END is an optional delimiter indicating no more input.

Use constant values for assigned values, array subscripts, and substring specifiers; you cannot use
PARAMETER constants.

You can use any data type. Conversion (following rules of arithmetic assignment} is performed if the
data type of a namelist entity and its assigned constant value do not match. Conversion between
numeric and character data is not allowed.

The following example shows how to input data to the namelist entities. You can assign the valuzs in
any order.

$SAM
NAME = 'TESTA’,
EXAM1 = 5.2,

Irm-8-21




Format Specifications

EXAM2 = 6.78,

EXAM3 = 10.0

$
There are several acceptable formats for entering input. For example, the previous input could also be
entered:

$SAM NAME "=""TESTA'"EXAM1"="5.2"EXAM2"="6.78"EXAM3"="10.0 SEND

You can also use commas or tabs as valid separators in the list of value assignments, as well as
spaces. (Input can begin at any column.)

The previous example assigns values to all of the namelist entities associated with SAM; however, you
do not need to assign values to all the defined entities. Only those entities that you assign a value to
change; those defined in the namelist but not assigned a value in the input data remain unchanged.
Likewise, when you have defined character substrings and array elements in the namelist, only those
you specify to receive input are changed. You can change part of a character substring. For example,
to change the character variable NAME from 'TESTA' to ‘'TESTB’, use the following namelist-directed
mput:

$SAM NAME(5:) = ‘B’ $END
The value for NAME is "'TESTB’; the first four positions of the value remain unchanged.
When you assign values to an array name, the first value is associated with the first element; the
second value with the second element, etc. The size of the array determines the number of array
elements you can assign; assignment must be less than or equal to the size of the array.
Using a program that contains:

DIMENSION MYRAY(10)

NAMELIST /SAM2/ MYRAY

READ SAM2
with the following input:

$SAM2 MYRAY = 10, 8, . 70 $END

Then, on program execution, the READ statement assigns the following values to the array elements:

MYRAY(1) 10
MYRAY(2) 8
MYRAY(3) Unchanged
MYRAY(4) 70

MYRAY(5-10)  Unchanged

Values MYRAY (3) and (5-10) remained unchanged since two consecutive commas indicate to not
change the current value, and values for unspecified arrays also remain unchanged.

Because values are assigned to the specified array element rather than beginning with the first element,
the READ statement can assign new values and not alter unspecified elements. For example, the
following line assigns values to MYRAY elements 5-7; the unspecified elements remain unchanged:

$SAM2 MYRAY(5) = 9, 85 60 $END

Irm-8-22



Format Specifications

Namelist-directed formatting follows the rules for list-directed input:

e When you define a groupname, do not use spaces or tabs in the name. Also, in value
assignments, the entity name cannot contain spaces or tabs except within a subscript or
substring specifier. Then spaces and tabs are acceptable within the parentheses.

® The groupname and each entity must be contained within a single record.

e When assigning values, you can precede and follow the equals sign with any number of tabs
and spaces.

e Character constants are enclosed in apostrophes. If you want an apostrophe to appear as
part of the character string, use two consecutive apostrophes without an intervening blank or
end record.

e You cannot use Hollerith, octal, or hexadecimal constants.

e Character constants may span record boundaries. Normally, the end of a record in namelist
input is a space character. If the end of record occurs within a character constant, however,
the end of record is ignored: the last character of the previous record is followed by the first
character of the next record.

e For fixed record length files, NAMELIST produces records of a fixed length, and reads
records of a fixed length for that type of file.

8.8.3 List-Directed Output

The format of list-directed output is defined by the data type of the [/O list items except that r*
is not used. Also, quotation marks are not output for character constants. Table 8-3 shows the
default output forms that the list-directed WRITE statement generates for each data type.

Table 8-3: List-Directed Output Formats

Data Type Output Format
LOGICAL*1 L2
LOGICAL*2 L2
LOGICAL*4 L2
LOGICAL*8 L2
INTEGER*1 15
INTEGER*2 17
INTEGER*4 12
INTEGER*8 122
REAL 1PG15.7E2
REAL*3 1PG24.15E3
COMPLEX 1X,("1PG14.7E2/ 1PG14.7TE2)
COMPLEX*16 | 1X.’(,1PG23.15E3,",",1PG23.15E3,")’
CHARACTER | An (n represents the character expression length)

8.8.4 Namelist-Directed Output

The format of namelist-directed output is defined by the data type of the list entities in the
corresponding NAMELIST statement. When you use a namelist-directed WRITE statement, the order
of data output is specified by the sequence in which namelist entities are defined in the NAMELIST
statement. For example, if you have a program unit that contains:

Irm-8-23




Format Specifications

LOGICAL L4

INTEGER 14

REAL R4

COMPLEX C8
CHARACTER*20 CHAR20

NAMELIST /CONTROL/ L4.14.R4,C8,CHAR20

READ (5,CONTROL)
WRITE (6,CONTROL)

END -

with the following input:

$CONTROL
L4 =F, 14 =-123213, C8 = (12,2),
CHAR20="test case’,
R4=3.14159

SEND

the WRITE statement outputs:

$CONTROL

L4 =F.

14 = """".123213,

R4 = *"3.141590"""",

c8 = (""12.00000"""",~"2.000000""""),
CHAR20 = ‘test”case”"""""""""""

$END

The output for this program segment is the current values of all list entities associated with the
namelist specifier. You can output a value for an entity that is defined by the NAMELIST statement
but is assigned no input value. (The entity may also be undefined or defined elsewhere in the
program.] For instance, if you had an entity, count, that was defined in the NAMELIST statement but

received no input, the current value of count would be written in addition to those values shown in the
example.

As the example illustrates, each value begins on a new line for namelist-directed output. Character
values are enclosed in apostrophes. As stated previously, the data types are determined by the data
type of the entities defined in the NAMELIST statement. The format output follows the same form as

list-directed. Although you can use the § and & characters interchangeably on input, the § character is
always used for output.

8.9 Carriage-Control Characters

The first character of a formatted record transfers to the printer as a carriage-control character.
Table 8-4 shows the characters that provide vertical format control.

Irm-8-24



Format Specifications

Table 8-4: Vertical Format Control

Character Interpretation
" Advance 1 line; begins output at beginning of next line.
0 Advance 2 lines; skips 1 line and begins output.
1 Advance to new page; begins output at the top of a new page.
+ Overwrites; begins output at the beginning of the current line
and returns to the left margin.
ASCII NUL | Overwrites with no advance; begins output at beginning of the
current line and does not return to left margin.
$ Prompting; begins output at the beginning of the next line and
suppresses carriage return at end of line.

Using FORM="PRINT" specifies formatted and implies vertical format control for that unit.

use the UNIX utility fpr to interpret the vertical format controls before printing the file.

You can

Irm-8-25







Chapter 9

Subprograms

Subprograms are program units that can be invoked from other program units. Subprograms
usually perform often-used sequences of operations for the invoking program unit. Arguments
{dummy and actual) of the subprogram are used to transfer information between the subprogram
and another program unit. The dummy argument appears in the argument list of a subprogram
and the actual argument appears in the argument list of a subprogram reference.

There are two classes of subprograms—BLOCK DATA subprograms and procedures. Procedure
subprograms include both function subprograms and subroutine subprograms. The procedures
can be either user-defined or supplied as part of the CONVEX FORTRAN system.

9.1 Dummy and Actual Arguments

Dummy arguments, which are classified as variables, arrays, or dummy procedures, are used in
statement functions, function subprograms, and subroutine subprograms to indicate the number
and types of actual arguments to be transferred. The dummy arguments indicate whether each
actual argument is a single value, array of values, procedure, or statement label. You cannot use

a dummy argument name in a DATA, EQUIVALENCE, INTRINSIC, SAVE, or COMMON

statement except as a common block name.

Actual arguments, which may be constants, symbolic names of constants, function references,
expressions, arrays and array elements, character substrings, alternate return specifiers, or
subprogram names, specify the entities that are to be associated with the dummy arguments. The
type of each actual argument must agree with the type of its associated dummy argument, except
when the actual argument is a subroutine name or an alternate return specifier. Actual
arguments must also agree in order and number with the dummy arguments.

A function or subroutine reference establishes an association between the corresponding dummy
and actual arguments. The dummy argument holds the value of the actual argument during
execution. For example, using the following statements:

SUBROUTINE SAMPLE (R,L)
CALL SAMPLE (B,80)

specifies R and L as the dummy arguments. The actual arguments (B,80) replace the dummy
arguments when the subroutine executes. Thus, B replaces R and 80 replaces L. Any value
assigned to R is also assigned to B.

The number of elements of a dummy argument used as an array cannot exceed the number of
elements in the actual argument. Also, a type CHARACTER dummy argument length must not
be larger than the length of the associated actual argument.

9.1.1 Variables as Dummy Arguments

To associate a dummy argument variable with an actual argument that is a variable, array
element, substring, or expression (including a constant), use the variable, array element,
substring, or expression as an actual argument and include a dummy argument of the same data
type in the subprogram argument list.

Irm-9-1




Subprograms

You may define the associated dummy argument within the subprogram if the actual argument is
a variable name, array element name, or substring name. If the associated actual argument is a
constant or constant name, function reference, or an expression, however, it must not be defined
within the subprogram. If you pass a constant to a subroutine as an actual parameter and that
subroutine attempts to modify the corresponding dummy argument, either by a READ or
ASSIGNMENT statement, a segmentation violation occurs because the constants are stored in
read-only storage.

9.1.2 Arrays as Dummy Arguments

If a dummy argument is declared as an array, it can only be associated with an actual argument
that is an array or array element of the same type. To pass an array to a subprogram, use the
array name as the actual argument. The subprogram must dimension the array to use it. That
is, the dummy array must be specified in an array declarator in the subprogram. The declarator
has the same format as that for an actual array but with the following differences:

® You cannot use the declarator in a COMMON statement. It is, however, permitted in a

DIMENSION or type statement.

e Integer constant expressions and expressions confaining integer constants and variables
can be used as upper and lower bounds of array dimensions. These dimensions are
considered adjustable, as one or both of the dimension-bound expressions is a variable.
The array is called an adjustable array.

® You can use an asterisk to specify the upper bound of the last dimension. In this case,
the array is known as an assumed-size array.

Common block elements should not be passed as dummy arguments if the called routine or any
routine that it, in turn, calls accesses that element from the common block.

9.1.2.1 Adjustable Arrays

Adjustable arrays are used to process arrays of different sizes in a single subprogram. The
adjustable array dimensions are determined in the reference to the subprogram.

Each dummy argument in the array declarator must be associated with an actual argument when
the subprogram is entered. Any variable used in an adjustable dimension or each COMMON
variable appearing in a dimension bound expression must have a defined value when the
subprogram is entered. The expressions specifying the adjustable dimensions are evaluated when
the subprogram is entered. Argument association is not retained through different references to
the subprogram. The bound values are determined each time a subprogram is entered.

In the statement:

DIMENSION E(I,I), G(5,2*I)

E and G are adjustable arrays.

The size of the adjustable array must be less than or equal to the size of the array of the
corresponding actual argument.

Irm-9-2



Subprograms

9.1.2.2 Assumed-Size Arrays

An asterisk is used to specify the upper bound of the last array dimension in an assumed-size
array declarator. For example:

DIMENSION SAM (*)

sets the upper bound to assumed-size for a one-dimensional array. If the array has more than one
dimension, only the last dimension can be assumed size. For example:

DIMENSION SAM (1:N,1:x%)
sets the upper bound for a two-dimensional array.
The assumed-size dummy array name cannot appear:
e In an I/0O list of a data transfer statement.
® As an internal unit identifier in an I/O statement.
® As a runtime format identifier in an I/O statement.

The size of the dummy array is the size of the actual argument array when the actual argument
corresponding to the dummy array is a noncharacter array name. When the actual argument
corresponding to the dummy argument is a noncharacter array element name, however, the size
of the array is the array size plus one minus the subscript value.

The size of the dummy array is INT(n + 1 -s)/l, when the actual argument is a character array
name, character array element name, or character array element substring, and begins at
character storage unit s of an array with n character storage units with [ as the length of an
element of the dummy array. If an assumed-size dummy array has n dimensions, the product of
the sizes of the first n-1 dimensions must be less than or equal to the size of the array.

9.1.3 Character Arguments

You can use character values in one or more of the dummy arguments in a subprogram if the
actual argument in the calling program unit is type CHARACTER. Thus, a dummy argument
that is a variable name of type CHARACTER can be associated only with an actual argument
that is either a character variable, character array element, character substring, or character
expression. A dummy argument that is an array name of type CHARACTER can be associated
only with an actual argument that is a character array, character array element, or character
array element substring.

If the actual argument is a Hollerith constant, i.e., 3HSAM, the dummy argument must be of numeric
data type. The corresponding dummy argument can have either a numeric or character data type
when the actual argument is a character constant {*"SAM").

9.1.3.1 Character Argument Lengths

The length of the dummy argument must not exceed the length of the actual argument. The
subprogram cannot access more characters than are declared for the argument in the calling unit.
That is, when the dummy argument is of type CHARACTER, the associated actual argument
must be less than or equal to the length of the actual argument. If the length of the dummy
argument of type CHARACTER 1is less than the length of the associated actual argument, only
the leftmost characters of the actual argument become associated with the dummy argument.

Irm-9-3




Subprograms

If you use an assumed-length character argument, it must be a dummy argument. When control
transfers to a subprogram, the assumed-length character dummy argument must be associated
with a character actual argument. It assumes the length of the corresponding actual argument.
Thus, if you use specify the dummy argument length as an assumed-length character argument,
i.e, *(*), the length used is the length of the associated actual argument.

If the dummy argument is an array, you can specify a length that differs from that of the calling
unit. In this case, however, the subprogram cannot access a character beyond the last character
reserved by the calling unit for the array. The restriction on length is for the entire array and
not each array element when a dummy argument of type CHARACTER is an array name.

You can also use a character array dummy argument with an assumed-length. In this case, the
length of each element in the dummy argument equals the length of the elements in the actual
argument. The assumed length and the array declarator determine the size of the assumed-length
character array.

The following example illustrates length specified for the arguments:

PROGRAM SAM
CHARACTER A1%2, A2x6, A3*8

END

SUBROUTINE MYEX(A)
CHARACTER A*6

END
Assume the following CALL statements occur in the main program SAM:

CALL MYEX (A1)

CALL MYEX (A2)

CALL MYEX (A3)
The first statement is invalid because the length of the dummy argument exceeds that of the
associated argument; the remaining two statements are valid with the six leftmost characters of

A3 being associated with A. If, however, the subprogram MYEX had been defined as:

SUBPROGRAM MYEXAM (A)
CHARACTER Ax (%)

END

all three of the CALL statements would have been valid. The length of the dummy argument A
is determined by the length of the corresponding actual argument.

9.1.4 Procedures as Dummy Arguments

A dummy argument is considered a dummy procedure if the dummy procedure name appears in

the dummy argument list of a FUNCTION, SUBROUTINE, or ENTRY statement and if:

e it is referenced as a function,
e it appears in a type statement and EXTERNAL statement, or
e it is referenced as a subroutine.

Irm-9-4




Subprograms

When you use a dummy argument that is a dummy procedure, associate it only with an actual
argument that is an intrinsic function, external function, subroutine, or another dummy
procedure. '

When you use a dummy argument as if it were an external function, or in a type statement and
EXTERNAL statement, the associated actual argument must be an intrinsic function, external
function, or dummy procedure.

If you use the dummy argument as a procedure name in a function reference and associate it with
an intrinsic function, the arguments must agree in order, number, and type with those specified
for the intrinsic function.

When you use the dummy argument as if it were a subroutine, the actual argument must be the
name of a subroutine or dummy procedure. If a procedure name appears only in a dummy
argument list, an EXTERNAL statement, and an actual argument list, it is not possible to
determine whether the symbolic name becomes associated with a function or subroutine by
examination of the subprogram alone.

9.1.5 Alternate Return Arguments

You can use an asterisk as a dummy argument only in the dummy argument list of a
SUBROUTINE statement or an ENTRY statement in a subroutine subprogram. When you use
the asterisk as a dummy argument, the corresponding actual argument must be an alternate
return specifier in the CALL statement. For example:

SUBROUTINE EXAM(D3,*,E2,*)
The alternate return allows you to return control to any executable labeled statement in the
calling program as long as you have included alternate return arguments in the corresponding

positions. These actual arguments have the form:

*label or &label

9.2 Functions

A function can be an intrinsic function, a statement function, or an external function (function

subprogram). These functions all supply a value to the expression. The function is referenced
from within another part of the program. When executed, a function has a value, and
consequently, a type. The general form of a function reference is:

Junce ( [a [ay)...] )
where func is the symbolic name of the function or dummy procedure being referenced, and a is a

list of actual arguments separated by commas. If you do not include arguments, you must still
include the enclosing parentheses.

9.2.1 Intrinsic Functions
CONVEX FORTRAN supplies intrinsic functions as a built-in language feature. You can invoke

these pre-existing functions by using the function name in any part of a user program; no
definition is required.

Irm-9-5




Subprograms

There are two classes of intrinsic names—generic names and specific names. If you reference a
generic intrinsic name, the compiler decides which special intrinsic to invoke based on the type of
the actual arguments. When you reference specific names, the arguments to the intrinsic must be
of a specific type. For example, the generic intrinsic function, LOG (natural logarithm), can
accept arguments of the type REAL, DOUBLE PRECISION and COMPLEX; whereas the specific
function, DLOG, can only accept a DOUBLE-PRECISION argument.

Using a generic name generally simplifies function referencing because you can use the function
name with more than one type of argument. You must use the appropriate specific name
whenever the intrinsic function name is to be used as an actual argument in a subprogram. For
either generic or specific functions that require multiple arguments, all arguments must be of the
same data type. The compiler does not convert incorrectly typed arguments.

Use of the IMPLICIT statement does not alter the type of intrinsic functions.
An intrinsic reference has the form:
inf (a [y} [-])

where infis an intrinsic name and a is the argument on which the function operates.

9.2.2 Built-in Functions

The built-in functions allow a FORTRAN program to pass arguments to a program that is not
written in FORTRAN.

9.2.2.1 %REF and % VAL

Two built-in functions—%REF and %VAL—may be used in the argument list of a CALL statement or
function reference to change the form of the argument. Such a change is necessary when you need to
call subprograms written in languages other than FORTRAN, because the actual argument has to be
passed in a form different from that used by FORTRAN. These two functions specify how the
argument should be passed to the subprogram.

Although you can use these functions in the actual argument list of a CALL statement or function
reference, you cannot use them in any other context. You need not, however, use these built-in
functions when invoking a FORTRAN library procedure or a user-supplied subprogram written in
FORTRAN. The two built-in argument list functions are (where a is an actual argument):

® %REF(a). This function passes the argument by reference.

e %VAL(a). This function passes the argument as a 32-bit immediate value: an argument
shorter than 32 bits is sign-extended to a 32-bit value.

Table 10-1 shows the FORTRAN argument-passing defaults and the allowed uses of %REF and
%VAL.

Irm-9-6



Subprograms

Table 9-1: Built-in Functions and Defaults for Argument Lists

Functions Allowed

Data | Type | Default | %REF | %VAL
Expressions:
LOGICAL (*1.2.4) | REF | VYes Yes?! Yes
LOGICAL*8 Ref Yes No No
INTEGER (*1.2.4) | REF | VYes Ves! Yes
INTEGER?*8 REF Yes No No
REAL*4 REF Yes Yes Yes
REAL*8 REF Yes No No
COMPLEX REF Yes No No
CHARACTER REF Yes No No
Hollerith REF No No No
Array Name:
Numeric REF Yes No No
Character REF Yes No No
Procedure Name:
Numeric REF Yes No No
Character REF Yes No No

1 If a logical or integer value occupies less than 32 bits of storage, it is converted to
a 32-bit value by sign extension.

9.2.2.2 %LOC

The %LOC built-in function computes the internal address of a storage element, as in the following
example:

%LOC(v)

where v is a variable name, array element name, array name, character substring name, or external
procedure name.

The %LOC built-in function produces an INTEGER*4 value that represents the location of its
argument. Addresses from user programs are BYTE addresses and are always negative integer values.

9.2.3 Statement Functions

The statement function is a nonexecutable single-statement procedure defined by the user. You
can reference a statement function only from the program unit in which it is defined. The form is
similar to an arithmetic, logical, or character assignment statement. Statement function definitions
must precede the use of the statement function. The statement function returns a single value to
the program. The form of a statement function is:

func ( [d [,d]...] ) = exp

Irm-9-7




Subprograms

where:

func  is the name of the statement function. The type is implied by the implicit
naming convention or by a prior type statement. Do not use the name to
identify any other entity in the current program unit except a common

block.

d represents a variable name called a statement function dummy argument.
The dummy argument holds the value of the actual argument during
execution. The dummy argument list specifies the order, number, and
type of actual argument whose values are used in the function reference.
The actual arguments must agree in order, number, and type with the
corresponding dummy arguments. (The compiler associates the actual
arguments with the dummy arguments of the companion statement
definition.)

Each name must be unique in the function definition and must be of the
data type of the actual value that replaces it during the function reference.
You can use the dummy argument name to identify a variable of the same
type, as a dummy argument in a FUNCTION, SUBROUTINE, or ENTRY

statement, or as a common block name.

exp is an expression. Each primary of ezp must be one of the following:
® A constant or symbolic name of a constant
e A variable reference
® An array element reference
e An intrinsic function referente
e A statement function that has been previously defined in the

current program unit
An external function reference
A dummy procedure reference

A statement function is referenced using its function reference as a primary in an expression. The
following example illustrates a statement function and the statement function reference.

IAVG(IGR!,IGR2,IGR3) = (IGR1 + IGR2 + IGR3)/3
ISC = IAVG(IOR,IWR,IAP)

When the statement function reference executes, all actual arguments that are expressions are
evaluated and actual arguments are associated with the corresponding dummy arguments. {The
compiler substitutes the values in the actual arguments for the dummy arguments.) Then the
processor evaluates the expression (right side of the statement function statement). Conversion
occurs, if necessary, of the resulting value to the type of the statement function according to the
usual arithmetic assignment rules; or a change occurs, if necessary, in the length of a character
expression value according to the usual character assignment rules. The resulting value is
available to the expression that contains the function reference.

In a statement function reference, you can use as an actual argument any expression except a

character expression involving concatenation of an operand whose length specification is an
asterisk in parentheses unless the operand is the symbolic name of a constant.

Irm-9-8




Subprograms

9.3 Function Subprograms

A function subprogram is a separate program unit that consists of a FUNCTION statement
followed by a series of statements that define the computing procedure. The calling program unit
references it; the statements execute, and through a RETURN or END statment, a single value
returns to the function reference in the calling unit. This value is assigned to the function name.

The FUNCTION statement specifies the name of the function, the dummy arguments used by the
function, and can indicate the type of the function value. In logical and numeric functions, the
FUNCTION statement, including the CONVEX extension *m and optional parentheses, is
represented by:

[typ] FUNCTION nam [*m] [ ( [d [,d]...] ) ]
where:
typ is one of the logical or numeric data-type specifiers.

nam  1is the symbolic name of the function subprogram. If you do not specify
typ nor declare the nam in a later type statement, the name implies the
data type of the function.

m is an unsigned, nonzero integer constant specifying the length of the data type.
It must be one of the valid length specifiers for the data type given by typ.

d is a dummy argument name that can include variable names, array names,
or dummy procedure names. All dummy argument names must match the
actual arguments in all references in number, order, and type. The
dummy name is local to the program unit and must not appear in a

DATA, EQUIVALENCE, INTRINSIC, SAVE, or COMMON statement,

except as a common block name.

In character functions, the CHARACTER FUNCTION statement, with the CONVEX extension of
*n and optional parentheses, is represented thus:

CHARACTER [*n] FUNCTION nam [*n] [ ( [ d [,d]...] )]

where n is either an unsigned, nonzero integer constant, or a parenthetical asterisk (*} indicating an
assumed-length function name. If you specify CHARACTER*(*), the function always assumes the
length declared for it in the program unit that invokes it. (An assumed-length character function
can have different lengths when invoked by different program units.) If n is an integer constant,
the value of n must agree with the length of the function specified in the program unit that
invokes the function. If you do not specify n, a length of 1 is assumed. If the length has already
been specified after the keyword CHARACTER, you cannot use the optional-length specification
following nam. Both nam and d retain the same definition.

You must begin the function subprogram with the FUNCTION statement. You can include any
statements except a BLOCK DATA, SUBROUTINE, PROGRAM, or another FUNCTION
statement within the function subprogram. End it with an END statement. Between a
FUNCTION and END statement, you can use the specified function name as a variable in an
executable statement or in a type statement if you omit typ. Include ENTRY statements to
provide multiple entry points to the subprogram.

Irm-9-9




Subprograms

A function specified in a subprogram can reference other subprograms but cannot reference itself,
directly or indirectly. The function must assign a value to its symbolic name at least once.

9.4 Subroutine Subprograms

A subroutine subprogram (subroutine) is a program unit that performs a specific, user-defined
task or subtask for some other program unit of the program. Subroutines are similar to function
subprograms, as actual and dummy arguments are handled the same for both. The RETURN
statement returns control to the calling program. They differ in that the subroutine names have
no type and no value is associated with the subroutine name. Also, you use a CALL statement,
not a function reference, to invoke a subroutine. Within the subroutine, you can specify different
points of return to the calling subprogram. The CALL statement has the form:

CALL sub [ ([ a[ya] - ])]

where:
sub is the name of the subroutine.
a 1s the actual argument that can be a constant, variable, expression, array,

array element, character substring, alternate return specifier, intrinsic
function name, external procedure name, or dummy procedure name. You
can use an * or & followed by the label of an executable statement to
indicate an alternate return. Do not use a character expression involving
concatenation of an operand whose length specification is an asterisk in
parentheses unless the operand is the symbolic name of a constant. If the
actual argument is a Hollerith constant, however, the dummy argument
must be of numeric data type.

Using the CALL statement invokes the subroutine. Control passes to the first executable
statement using any ¢ arguments for the subroutine dummy arguments. After the subroutine
returns, control returns to the statement in the calling unit that follows the CALL statement
unless you specify an alternate RETURN in the subroutine.

You must begin a subroutine with a SUBROUTINE statement and terminate it with an END

statement. It specifies the name of the subroutine and the arguments used by the subroutine.
The SUBROUTINE statement has the form:

SUBROUTINE name [ ( [d [,d]...] )]

where:

name in the symbolic name of the subroutine. As the subroutine has no data
type, you need not apply the naming rules. Since the name is global, do
not use it for any other purpose in the program.

d represents a dummy argument list consisting of a variable name, array
name, dummy procedure name, or an asterisk (*), if the subroutine uses
alternate returns, separated by commas. The argument list can be empty.
In this case, use of parentheses is optional; for example, either

SUBROUTINE EXAM or SUBROUTINE EXAM() is acceptable.

Irm-9-10



Subprograms

If you indicate the dummy argument as *, be sure that the corresponding actual argument in the
calling unit is also an * or & followed by the label of an executable statement within the calling
unit. You can specify an alternate return in the RETURN statement by giving the position of
this asterisk among other asterisks in the dummy argument.

You must specify an actual argument for each dummy argument in the SUBROUTINE statement
of the called subroutine. If you use a variable, array element, or array as the actual argument,
the data type must match that of the dummy argument. If the argument is the name of a
subprogram, you must declare this name in an EXTERNAL statement in this program unit.

The ENTRY statement may be used to specify multiple entry points for subroutines.

9.5 ENTRY Statement

You can use the nonexecutable ENTRY statement to specify alternative entry points into a
function or subroutine subprogram. You can reference an ENTRY from any program unit except
the subprogram that contains it. Use a function reference for ENTRY in a function; use CALL
for ENTRY in a subroutine. You can place an ENTRY anywhere between the initial
FUNCTION or SUBROUTINE statement and the END statement, but you must not place it
within a block IF or the range of a DO loop. The form of the ENTRY statement is:

ENTRY nam [ ( [d [,d] ... ] )]
where:

nam  is the symbolic name of the entry point representing either a subroutine
name in a subroutine or an external function name in a function
subprogram. When entry is in a function, nam has a data type that you
can imply or specify. If you use a type statement, it can appear before or
after the ENTRY statement. For entry in a subroutine, however, there is
no data type restriction.

d is a variable name, array name, or dummy procedure. You can use an
asterisk (*) as an alternate return only if the entry is in a subroutine. You
can omit the parentheses for an empty argument list in a subroutine entry,
but the parentheses must always be included in a function entry and in the
entry reference.

You can use dummy arguments in ENTRY statements that differ in order, number, type, and
name from the dummy arguments you use in the FUNCTION, SUBROUTINE, or other ENTRY
statements in the same subprogram. FEach reference to a function or subroutine, however, must
use an actual argument list that agrees in order, number, and type with the dummy argument list

in the corresponding FUNCTION, SUBROUTINE, or ENTRY statement.

If a dummy argument is not currently associated with an actual argument, it is undefined. The
actual-dummy argument association is not retained between references.

Defining any entry name or the name of the function subprogram defines all the associated names
of the same data type as all entry names within a function subprogram are associated with the
name of the function subprogram. You can use function and entry names of different data types.

You must define the variable whose name is used to reference the function before a RETURN or
END statement appears in the subprogram. You don’t need to use associated variables of the
same type unless the function is type CHARACTER; but an associated variable of different type
must not become defined within the subprogram.

Irm-9-11




Subprograms

9.6 RETURN Statement

The RETURN statement is used to return from a subroutine subprogram to one of several
alternative points in the calling program unit. You can use none, one, or more than one
RETURN statement in a subroutine. Use the alternate return only with subroutine subprograms,
not function subprograms. You can, however, use the RETURN statement without an alternate
specifier, in either a function or subroutine subprogram. The statement has the form:

RETURN |¢]

where e is an optional integer expression that specifies an alternate statement in the calling
program is to receive control. The system converts the value type to integer if necessary. The e
represents the number, such as RETURN 2, of the corresponding asterisk, among other asterisks,
in the dummy argument list of the subroutine. The alternate return specifier has the form of an
asterisk or ampersand followed by the label of an executable statement, e.g., *30 or &30. For
example:
CALL EXAM(D, *30,E, *40)
30 . 'RETURN 1 goes here.
40 'RETURN 2 goes here.

END

SUBROUTINE EXAM(D3,*,E2,*)

RE‘I‘URN' h !Returns after the CALL statement.
RETURN.i. !Returns to 30.

RETURN.; 'Returns to 40.

END

RETURN 1 indicates control transfers to the statement at line 30; RETURN 2 indicates the
alternate return transfers control to the statement at line 40. RETURN indicates control
transfers to the statement immediately after the CALL statement.

If you do not specify a RETURN, the END statement has the same effect as the RETURN.

Thus, using the alternate RETURN statement allows you to return control to any labeled
statement in the calling program whose label you specify as an alternate return specifier to the
subprogram. If e is less than 1 or greater than the total number of asterisks appearing in the
dummy argument list, control returns as for a normal RETURN (without specifier).

When a RETURN or END statement executes, the subprogram terminates the association
between the dummy arguments and the current actual arguments. All entities within the
subprogram become undefined except for entities saved by SAVE statements, entities declared in
blank common, initially defined entities that have neither been redefined or become defined, and
entities in a named common block that appear in the subprogram and appear in at least one
other program unit that is referencing the subprogram (directly or indirectly).

When used from a function, RETURN transfers control to the function reference in the calling

unit and returns the function value. In a subroutine, RETURN transfers control to the statement
following the CALL statement in the calling program unit.

Irm-9-12



Chapter 10
Block Data Subprogram

You can use a block data subprogram to provide initial values for variables and array elements in
named common blocks. A block data subprogram is nonexecutable; it must not contain any
executable statements. The block data subprogram has the nonexecutable BLOCK DATA
statement as its first statement. You can use only one BLOCK DATA statement in a subprogram,
but you can use more than one block data subprogram in the program units that constitute the
executable program. The statement has the form:

BLOCK DATA [name]

where name is an optional symbolic name for the block data subprogram in which the BLOCK
DATA statement appears. Do not assign the BLOCIK DATA the same name as for an external
procedure, main program, common block, or other block data subprogram, nor any local name in
the block data subprogram.

You can use only these specification statements between the BLOCIK DATA and END statements:
COMMON, DATA, DIMENSION, EQUIVALENCE, IMPLICIT, PARAMETER, SAVE, and any
of the type-declaration statements. Your block data subprogram must contain at least one
COMMON statement and one DATA statement.

All entities having storage units in the common block must be specified, but you are not required
to initialize all of the values. Be sure to provide specifications to establish the entire block.

Example:
BLOCK DATA Sample
COMMON/EX/A,B,C

COMMON/CAT/LIST(100)
DATA A/3.5/,LIST/(100%*5)

Irm-10-1







A

Generic and Intrinsic Functions

This appendix lists the generic and intrinsic functions for CONVEX FORTRAN. The numbers in the
first column refer to the notes following the table. Operand types required for intrinsic functions are
not changed when the -i or -r compiler option is used. The correct specific routines must be called
when default data sizes are changed.

Table A-1: Generic and Intrinsic Functions
Generic Specific Functions No. of Type of Type of
Arg. Argument Result

SQRT SQRT Square Root 1 REAL*4 REAL*4

1 DSQRT a**1/2 REAL*8 REAL*8
CSQRT COMPLEX*8 COMPLEX*8
CDSQRT COMPLEX*16 COMPLEX*16

LOG ALOG Natural Logarithm 1 REAL*4 REAL*4

2 DLOG log(e)a REAL*8 REAL*8
CLOG COMPLEX*3 COMPLEX*8
CDLOG COMPLEX*16 COMPLEX*16

LOG10 ALOG10 | Common Logarithm | 1 REAL*4 REAL*4

2 DLOG10 | log(10)a REAL*8 REAL*8

EXP EXP Exponential 1 REAL*4 REAL*4
DEXP e**a REAL*8 REAL*8
CEXP COMPLEX*8 COMPLEX*8
CDEXP COMPLEX*16 COMPLEX*16

SIN SIN Sine 1 REAL*4 REAL*4

3 DSIN Sin a REAL*8 REAL*8
CSIN COMPLEX*8 COMPLEX*3
CDSIN COMPLEX*16 COMPLEX*16

SIND SIND Sine(degree) 1 REAL*4 REAL*4

3 DSIND Sin a REAL*8 REAL*8

COS COs Cosine 1 REAL*4 REAL*4

3 DCOS Cos a REAL*8 REAL*8
CCOS COMPLEX*8 COMPLEX*3
CDCOS COMPLEX*16 COMPLEX*16

cosD CcosD Cosine(degree) 1 REAL*4 REAL*4

3 DCOSD Cos a REAL*8 REAL*8

TAN TAN Tangent 1 REAL*4 REAL*4

3 DTAN Tan a REAL*8 REAL*S

Irm-A-1




Generic and Intrinsic Functions

Table A-1: Generic and Intrinsic Functions (continued)

" Generic Specific Functions No. of Type of Type of
Arg. Argument Result
TAND TAND Tangent(degree) 1 REAL*4 REAL*4
3 DTAND Tan a REAL*8 REAL*8
ASIN ASIN Arc Sine 1 REAL*4 REAL*4
4,5 DASIN Arc Sin a REAL*8 REAL*8
ASIND ASIND Arc Sine(degree) 1 REAL*4 REAL*4
2,45 DASIND Arc Sine a REAL*8 REAL*8
ACOS ACOS Arc Cosine 1 REAL*4 REAL*4
4,5 DACOS Arc Cos a REAL*8 REAL*8
ACOSD ACOSD Arc Cosine(degree) 1 REAL*4 REAL*4
24,5 DACOSD Arc Cos a REAL*8 REAL*8
ATAN ATAN Arc Tangent 1 REAL*4 REAL*4
5 DATAN Arc Tan a REAL*8 REAL*8
ATAND ATAND Arc Tangent(degree] 1 REAL*4 REAL*4
2,5 DATAND Arc Tan a REAL*8 REAL*8
ATAN2 ATAN2 Arc Tangent 2 REAL*4 REAL*4
5,6 DATAN2 | Arc Tan a(1)/a(2) REAL*8 REAL*8
ATAN2D | ATAN2D Arc Tangent(degree) | 2 REAL*4 REAL*4
25,7 DATAN2D | Arc Tan af1)a(2) REAL*8 REAL*8
SINH SINH Hyperbolic Sine 1 REAL*4 REAL*4
DSINH Sinh a REAL*8 REAL*8
COSH COSH Hyperbolic Cosine 1 REAL*4 REAL*4
DCOSH Cosh a REAL*3 REAL*3
TANH TANH Hyperbolic Tangent | 1 REAL*4 REAL*4
DTANH Tanh a REAL*8 REAL*8
ABS IIABS Absolute Value 1 INTEGER*2 INTEGER*2
8 JIABS lal INTEGER*4 INTEGER*4
KIABS INTEGER*8 INTEGER*8
ABS REAL*4 REAL*4
DABS REAL*8 REAL*8
CABS COMPLEX*8 REAL*4
CDABS COMPLEX*16 REAL*8
IABS IIABS Absolute Value 1 INTEGER*2 INTEGER*2
8 JIABS lal INTEGER*4 INTEGER*4
KIABS INTEGER*8 INTEGER*8

Irm-A-2




Generic and Intrinsic Functions

Table A-1: Generic and Intrinsic Functions (continued)

Generic Specific Functions No. of Type of Type of
Arg. Argument Result
INT IINT Truncation 1 REAL*4 INTEGER*2
9,14 JINT [a] REAL*4 INTEGER*4
15 KINT REAL*4 INTEGER*8
IIDINT REAL*8 INTEGER*2
JIDINT REAL*8 INTEGER*4
KIDINT REAL*8 INTEGER*8
COMPLEX*8 INTEGER*2
COMPLEX*8 INTEGER*4
COMPLEX*8 INTEGER*8
COMPLEX*16 INTEGER*2
COMPLEX*16 INTEGER*4
COMPLEX*16 INTEGER*8
10,14 INT1 Conversion to 1 Any numeric INTEGER*1
INT2 Integer 1 Any numeric INTEGER*2
INT4 1 Any numeric INTEGER*4
INT8 1 Any numeric INTEGER*8
IDINT IIDINT Truncation 1 REAL*8 INTEGER*2
9,14 JIDINT a] REAL*8 INTEGER*4
15 AKIDINT REAL*8 INTEGER*8
AINT AINT Truncation 1 REAL*4 REAL*4
DINT [a] REAL*8 REAL*8
NINT ININT Nearest Integer | 1 REAL*4 INTEGER*2
9,14 JNINT [a+.5*sign(a)] REAL*4 INTEGER*4
15 KNINT REAL*4 INTEGER*8
IIDNNT REAL*8 INTEGER*2
JIDNNT REAL*8 INTEGER*4
KIDNNT REAL*8 INTEGER*8
IDNINT | IIDNNT Nearest Integer | 1 REAL*8 INTEGER*2
9,14 JIDNNT [a+.5*sign(a)] REAL*8 INTEGER*4
15 KIDNNT REAL*8 INTEGER*8
ANINT ANINT Nearest Integer | 1 REAL*4 REAL*4
9,15 DNINT [a+.5*sign(a)] REAL*8 REAL*3

Irm-A-3




Generic and Intrinsic Functions

Table A-1: Generic and Intrinsic Functions (continued)

Generic | Specific Functions No. of Type of Type of
Arg. Argument Result
ZEXT 1IZEXT Zero-Extend Functions 1 LOGICAL*1 INTEGER*2
14,15 LOGICAL*2
INTEGER*2
JZEXT LOGICAL*1 INTEGER*4
LOGICAL*2
LOGICAL*4
INTEGER*2
INTEGER*4
KZEXT LOGICAL*1 INTEGER*S8
LOGICAL*2
LOGICAL*4
LOGICAL*8
INTEGER*2
INTEGER*4
INTEGER?*8
REAL FLOATI Conversion to REAL*4 1 INTEGER*2 REAL*4
10 FLOATJ INTEGER*4 REAL*4
FLOATK INTEGER*8 REAL*4
REAL*4 REAL*4
SNGL REAL*8 REAL*4
COMPLEX*8 REAL*4
COMPLEX*16 REAL*4
DBLE Conversion to REAL*8 1 INTEGER*2 REAL*8
10 INTEGER*4 REAL*8
INTEGER*8 REAL*8
DBLE REAL*4 REAL*3
REAL*S REAL*8
COMPLEX*8 REAL*8
COMPLEX*16 REAL*8
IFIX lIFIX FIX 1 REAL*4 INTEGER*2
10,14 JIFIX (REAL*4-to-integer conversion) REAL*4 INTEGER*4
15 KIFIX REAL*4 INTEGER*8
FLOAT FLOATI Float 1 INTEGER*2 REAL*4
10 FLOATJ (Integer-to-REAL*4 conversion) INTEGER*4 REAL*4
FLOATK INTEGER*8 REAL*4

Irm-A-4




Table A-1: Generic and Intrinsic Functions (continued)

Generic and Intrinsic Functions

Generic Specific Functions No. of Type of Type of
Arg. Argument Result
DFLOAT | DFLOTI REAL*8 Float 1 INTEGER*2 REAL*8
10 DFLOTJ | (Integer-to-REAL*8 conversion) INTEGER*4 REAL*8
DFLOTK INTEGER*8 REAL*8
CMPLX Conversion to COMPLEX*8 1,2 INTEGER*2 COMPLEX*8
11,15 or 1,2 INTEGER*4 COMPLEX*38
COMPLEX*8 from Two 1,2 INTEGER*8 COMPLEX*8
Arguments
1,2 REAL*4 COMPLEXN*S
1,2 REAL*8 COMPLEX*3
1 COMPLEX*8 COMPLEX*g
1 COMPLEX*16 COMPLEX*8
DCMPLX Conversion to COMPLEX*16 1.2 INTEGER*2 COMPLEX*16
11,15 or 1.2 INTEGER*4 COMPLEX*16
COMPLEX*16 from Two 1.2 INTEGER*8 COMPLEX*16
Arguments
1.2 REAL*4 COMPLEX*16
1,2 REAL*8 COMPLEX*16
1 COMPLEX*8 COMPLEX*16
1 COMPLEX*16 COMPLEX*16
REAL Real Part of Complex 1 COMPLEX*8 REAL*4
DREAL COMPLEX*16 REAL*8
AIMAG Imaginary Part of Complex 1 COMPLEX*8 REAL*4
DIMAG COMPLEX*16 REAL*8
CONJG CONJG Complex Conjugate 1 COMPLEX*3 COMPLEX*8
DCONJG (if A =(X.Y) COMPLEX*16 COMPLEX*16
CONJG(A)=(X.-Y))
DPROD REAL*8 Product of REAL*4 2 REAL*4 REAL*3
a(1)*a(2)
MAX IMAXO0 Maximum n INTEGER*2 INTEGER*2
12,15 IJMAXO max(a(1),a(2),...a(n)) INTEGER*4 INTEGER*4
KMAX0 INTEGER*8 INTEGER*8
AMAX1 REAL*4 REAL*1
DMAX1 REAL*8 REAL*8
MAXO0 IMAXO0 Maximum n INTEGER*2 INTEGER*2
12,15 JMAXO max(a(1),a(2),...a(n)) INTEGER*4 INTEGER*4
KMAXO0 INTEGER*8 INTEGER*8
MAX1 IMAX1 Maximum n REAL*4 INTEGER*2
12,14 JMAX1 max(a(1),a(2),...a(n)) REAL*4 INTEGER*4
15 KMAX1 REAL*4 INTEGER*8
AMAXO0 AIMAXO Maximum n INTEGER*2 REAL*4
12,15 AJMAXO | max{a({l),a(2},...a(n)) INTEGER*4 REAL*4

Irm-A-5




Generic and Intrinsic Functions

Table A-1: Generic and Intrinsic Functions (continued)

Generic | Specific Functions No. of Type of Type of
Arg. Argument Result
MIN IMINO Minimum n INTEGER*2 INTEGER*2
13,15 JMINO min(a(1),a(2),...a(n)) INTEGER*4 | INTEGER*4
KMINO INTEGER*8 INTEGER*8
AMIN1 REAL*4 REAL*4
DMIN1 REAL*8 REAL*8
MINO IMINO Minimum n INTEGER*2 INTEGER*2
13,15 JMINO min(a(1),a(2),...a(n)) INTEGER*4 | INTEGER*4
KMINO INTEGER*8 INTEGER*8
MIN1 IMIN1 Minimum n REAL*4 INTEGER*2
13,14 IMIN min(a(1),2(2),-..a(n)) REAL*4 INTEGER*4
15 KMINI REAL*4 INTEGER*8
AMINO AIMINO Minimum n INTEGER*2 REAL*4
AJMINO | min(a(1),a(2),...a(n)) INTEGER*4 | REAL*4
DIM 11DIM Positive Difference 2 INTEGER*2 INTEGER*2
JIDIM a(1)-(min(a(1),a(2)) INTEGER*4 | INTEGER*4
KIDIM (Returns the first INTEGER*8 INTEGER*8
DIM argument minus the REAL*4 REAL*4
DDIM minimum of the two REAL*8 REAL*8
arguments)
IDIM HIDIM Positive Difference 2 INTEGER*2 INTEGER*2
JIDIM a(1)-(min(a(1),a(2)) INTEGER*4 | INTEGER*4
KIDIM (Returns the first INTEGER*8 INTEGER*8
argument minus the
minimum of the two
arguments)
MOD IMOD Remainder 2 INTEGER*2 INTEGER*2
JMOD a(1)-a(2)*[a(1)/a(2)] INTEGER*4 | INTEGER*4
KMOD (Returns the remainder INTEGER*8 INTEGER*8
AMOD when the first argument REAL*4 REAL*4
DMOD is divided by the second) REAL*8 REAL*8
SIGN 1IISIGN Transfer of Sign 2 INTEGER*2 INTEGER*2
JISIGN | Ja(1)iSign a(2) INTEGER*4 | INTEGER*4
KISIGN INTEGER*8 INTEGER*8
SIGN REAL*4 REAL*4
DSIGN REAL*8 REAL*8
ISIGN 1ISIGN Transfer of Sign 2 INTEGER*2 INTEGER*2
JISIGN la(1)ISign a(a) INTEGER*4 | INTEGER*4
KISIGN INTEGER*8 INTEGER*8

Irm-A-6




Generic and Intrinsic Functions

Table A-1: Generic and Intrinsic Functions (continued)

Generic Specific Functions No. of Type of Type of
Arg. Argument Result
IAND HIAND Bitwise AND 2 INTEGER*2 INTEGER*2
JIAND (performs a logical INTEGER*4 INTEGER*4
KIAND AND on corresponding bits) INTEGER*8 INTEGER*8
IOR 1IOR Bitwise OR 2 INTEGER*2 INTEGER*2
JIOR (performs an inclusive INTEGER*4 INTEGER*4
KIOR OR on corresponding bits) INTEGER*8 INTEGER*8
IEOR IIEOR Bitwise Exclusive OR 2 INTEGER*2 INTEGER*2
JIEOR {performs an exclusive INTEGER*4 INTEGER*4
KIEOR OR on corresponding bits) INTEGER*8 INTEGER*8
NOT INOT Bitwise Complement 1 INTEGER*2 INTEGER*2
JNOT {complements each bit] INTEGER*4 INTEGER*4
KNOT INTEGER*8 INTEGER*8
ISHFT* HSHFT Bitwise Shift 2 INTEGER*2 INTEGER*2
16 JISHFT (a(1) logically shifted INTEGER*4 INTEGER*4
KISHFT a(2) bits—positive a(2) INTEGER*8 INTEGER*8
argument shifts left;
negative, right)
IBITS?t IIBITS Bit Extraction 3 INTEGER*2 INTEGER*2
17 JIBITS (extracts bits af2) through INTEGER*4 INTEGER*4
KIBITS af2)+a(3)-1 from a(1)); INTEGER*8 INTEGER*8
IBSET?} IIBSET Bit Set 2 INTEGER*2 INTEGER*2
JIBSET (returns the value of INTEGER*4 INTEGER*4
KIBSET a(1) with bit a(2) of INTEGER*8 INTEGER*8
af1) set to 1)
BTEST?} BITEST Bit Test 2 INTEGER*2 LOGICAL*2
BJTEST (returns, TRUE, if bit INTEGER*4 LOGICAL*4
BKTEST a(2) of argument a(1) equals 1) INTEGER*8 LOGICAL*8
IBCLRT HIBCLR Bit Clear 2 INTEGER*2 INTEGER*2
JIBCLR (returns the value of a(1) INTEGER*4 INTEGER*4
KIBCLR with bits a(2) of a1} set INTEGER*8 INTEGER*8
TO 0)
ISHFTCt | NIISHFTC Bitwise Circular Shift 3 INTEGER*2 INTEGER*2
JISHFTC (circularly shifts INTEGER*4 INTEGER*4
KISHFTC | rightmost a(3} bits of INTEGER?*8 INTEGER*8
argument af1) by a(2)
places)

tArguments after the first are converted to the type of the first argument

Irm-A-7




Generic and Intrinsic Functions

Table A-1: Generic and Intrinsic Functions (continued)

Generic | Specific Functions No. of Type of Type of
Arg. Argument Result
15 LEN Length 1 CHARACTER | INTEGER*4
(returns length of the
character expression)
15 INDEX | Index(C(1)C(2)) 2 CHARACTER | INTEGER*4
(returns the position CHARACTER
of the substring ¢(2)
in the character
expression ¢(1))
15 CHAR Character 1 LOGICAL*1 CHARACTER
(returns a character INTEGER*2
that has the ASCII INTEGER*4
value specified by INTEGER*8
the argument)
15 ICHAR | ASCI Value 1 CHARACTER | INTEGER*4
(returns the ASCII
value of the argu-
ment; the argument
must be a character
expression that has
a length of 1)
LLT Character relationals | 2 CHARACTER | LOGICAL*4
LLE | (ASCI collating CHARACTER | LOGICAL*4
sequence)
LGT CHARACTER | LOGICAL*4
LGE CHARACTER | LOGICAL*4
NOTES:

1.

The SQRT or DSQRT argument must be greater than or equal to zero. The result is the
principal value where the real part is greater than or equal to zero. If the real part is zero,
the result is the principal value with the imaginary part greater than or equal to zero.

The ALOG, DLOG, ALOG10, DLOG10, ATAND, ATAN2D, ASIND, DASIND, ACOSD, or
DACOSD argument, must be greater than zero. The CLOG or CDLOG argument cannot be
(0.,0.).

The SIN, DSIN, COS, DCOS, TAN or DTAN argument must be in radians, and is treated
modulo 2*pi. The SIND, COSD, or TAND argument must be in degrees, and the argument is
treated modulo 360. The value of the sine and cosine functions for very large arguments is
unmeaningful. This is related to the accuracy of the argument reduction. For single 5orecision,
the maximum value is w* 2°°. For double precision, the maximum value is =* 2 * If the
argument exceeds the maximum, it is replaced with zero and evaluation continues.

The absolute value of the ASIN, DASIN, ACOS, DACOS, ASIND. DASIND, ACOSD, or
DACOSD argument must be less than or equal to 1.

The result of ASIN, DASIN, ACOS, DACOS, ATAN, DATAN, ATAN2, or DATAN2 is in
radians, and that of ASIND, DASIND, ACOSD, DACOSD, ATAND, DATAND, ATAN2D, or
DATAN2D is in degrees.

Irm-A-8




~1

10.

11.

13.

14.

15.

17.

Generic and Intrinsic Functions

If the value of the first ATAN2 or DATAN2 argument is positive, the result is positive; if it
is zero, the result is zero if the second argument is positive, and pi if it is negative. A
negative value for the first argument determines a negative result. A zero value for the
second argument results in the absolute value of pi/2. Neither argument can have the value
zero. The range of the result for ATAN2 or DATAN2 is -pt < result < pi.

If the value of the first ATAN2D or DATAN2D argument is positive, the result is positive. If it
is zero, the result is zero if the second argument is positive, and 180 degrees if it is negative. A
negative value for the first argument means the result is negative. A zero value for the second
argument results in the absolute value of 90 degrees. Neither argument can have the value zero.
The range of the result for ATAN2 or DTAN2D is: -180 degrees < result = 180 degrees.

The absolute value of a complex number, (X)Y), is the real value: (X**2 + Y**2)**]/2

Define [x] as the largest integer whose magnitude is not greater than the magnitude of x,
and whose sign matches that of x. For example [5.7] equals 5. and [-5.7] equals -5.

Functions used to convert one data type to another have the same effect as the implied
conversion in assignment statements. The functions REAL with a real argument, DBLE
with a double-precision argument, and INT with an integer argument return the value of
the argument without conversion.

If CMPLX or DCMPLX has only one argument, the argument converts into the real part of
a complex value, and zero is assigned to the imaginary part. If there are two arguments (not
complex), conversion of the first argument into the real part of the value, and the second
argument into the imaginary part, produces a complex value.

This function causes the return of the maximum value from the argument list; there must
be at least two arguments.

This function causes the return of the minimum value from the argument list; there must
be at least two arguments.

This function converts to the default integer type.
The INT, IDINT, NINT, IDNINT, IFIX, MAX1, MINI, and ZEXT functions return INTEGER*4

values if the /14 or -i4 flag is in effect, INTEGER*2 values if the /NOI4 or i2 or /I2 flag is in
effect, or INTEGER*8 values if the /I8 or -i8 flag is in effect.

These functions shift binary patterns—positive, left (a{2) is >0) and negative, right (a(2) <
0). Since ISHFT indicates a logical shift, the bits shifted out of one end are lost and zeros
are shifted in at the other end. As ISHFTC specifies a circular shift, the bits shifted out at
one end are shifted back in at the other end.

A bit in a binary pattern has a value of 0 or 1, being numbered right (least significant—0)
to left (most significant—63). A bit field is an adjacent group of bits within a binary
pattern with a specified starting bit position and length.

Irm-A-9







B
Compiler Options

B.1 Compiling Programs
To invoke the CONVEX FORTRAN compiler, use the following command line:
fc [options] files [loader-options)

In the command line, options is one or more of the compiler options described in the following
sections. Any options contained in an OPTIONS statement within a program override those
specified on the command line.

The parameter files represents one or more FORTRAN source files to be compiled, object files to
be loaded, or symbolic assembly language files to be assembled.

The parameter loader-options is one or more loader options as described in the CONVEX Loader
User’s Guide. If specified, these options are passed to the UNIX loader when compilation is
complete.

Language-Compatibility Options

-cfc Causes the compiler to use the Cray FORTRAN language definition instead of
the standard CONVEX FORTRAN definition. This option cannot be used
with the -7 or -r options.

-F68 Selects FORTRAN-66 language interpretation rules in cases of incompatibility.

-sa Prevents FORTRAN from generating pre-compiled argument packets in the
text segment. All arguments are placed on the stack. This option should only
be used when an application contains user-supplied C programs called from
FORTRAN. Using it with applications coded only in FORTRAN slows down
the application.

-sfe Causes the compiler to use the available subset of Sun {77 language features
instead of the corresponding CONVEX FORTRAN features. The subset is
described in Appendix I of the FORTRAN Language Reference Manual.

-vfe Causes the compiler to accept certain language extensions implemented in VAX

FORTRAN instead of the corresponding CONVEX FORTRAN features.

Irm-B-1




Compiler Options

Optimization Options

-ep n

-is directory

Specifies the expected number of processors (n) on which the program is going
to run. If the value of n is not an integer from 1 to 4, the behavior of the
compiler is indeterminate.

The compiler parallelizes a loop whenever doing so appears to decrease the
turnaround time, assuming the given number of processors. Use this option
with caution since it may lead to inefficient use of processors.

Instructs the compiler to prepare an intermediate language (.fil) file for a
subprogram that is to be used for inline substitution. The -i option cannot be
used with the -¢, -¢s, or -S options. Optimization levels are ignored.

Instructs the compiler to perform inline substitution of each subprogram [or
which there exists a .fil file in the specified directory. This option must be
repeated for each directory containing .fil files to be used for inline
substitution.

Specifies that the compiler is to perform no optimization. This option is the
default if the -O option is not specified.

Performs machine-independent optimizations at the specified level. You can
specify the following optimization levels:

Level Description
-00 Local scalar optimization
-01 Local scalar optimization and global scalar optimization
-02 Local scalar optimization, global scalar optimization,

and vectorization

-03 Local scalar optimization, global scalar optimization,
vectorization, and parallelization

If this option is not used, the compiler performs no machine-independent
optimization.

Causes the compiler to perform loop-replication optimizations on loops selected
by the compiler on the basis of profitability. The loop-replication options
include loop unrolling and dynamic loop selection.

This option may not be used unless the -O2 option is also specified. When the
-O2 option is specified, the compiler generates scalar and vector versions of
eligible loops and selects the best version at runtime.

Performs potentially unsafe optimizations, e.g., moves the evaluation of
common subexpressions and/or invariant code from within conditionally
executed code. Such moved code may be executed unconditionally.

Code-Generation Options

Irm-B-2

Suppresses the loading phase of the compilation. For example, output from the
file file.f or file.s is written to file.o.



-fi

-rn

-S

-tm (larget

Compiler Options

Specifies that real constants are to be translated into IEEE format and
processed in IEEE mode. If you specify this option, your machine must be
equipped with the IEEE support hardware, or an error message occurs and
compilation terminates. If you do not specify a floating-point format, your site
default is used.

NOTE: The CONVEX hardware and software only support the processing of
data encoded in IEEE format and do not conform to the IEEE 754
specifications for arithmetic.

Specifies that real constants are to be translated into native format and
processed In native mode. If you do not specify a floating-point format, your
site default is used.

Controls how the compiler interprets INTEGER and LOGICAL declarations
with unspecified lengths. The default interpretation is INTEGER*4 and
LOGICAL*4. The option changes the interpretation to INTEGER*2 and
LOGICAL*2, or INTEGER*8 and LOGICAL*8. n may be 2, 4, or 8.

Controls how the compiler interprets REAL declarations having unspecified
lengths. The default interpretation is REAL*4. n may be 4 or 8.

Causes the compiler to generate reentrant code for parallel or recursive
invocation of subprograms. This option makes it possible to call subroutines
from inside parallel loops.

Each invocation of a subroutine has its own copy of local variables. Arguments
are passed on the stack instead of by means of argument packets. Common
variables and saved or initialized variables are still shared among invocations.

If you compile a program using the -re option, you must initialize all local
variables.

Generates symbolic assembly code for each program unit in a source file.
Assembler output for source myfile.f is written to myfile.s. The assembly file is
not assembled to produce object code.

Specifies the target machine architecture for which compilation is to be
performed. The value for target can either be c1 or ¢2 {C1 or C2 may also be
used). If you specify a target machine, the instruction set for that machine is
used regardless of the machine on which the compiler is running. If you do not
specify a target machine, the compiler generates instructions for the class of
machine on which it is running.

Debugging and Profiling Options

-al

Causes noncharacter arrays declared with a last dimension of 1 to be treated as
if they were declared assumed-size (last dimension of *). Subscript checking

can then be performed if the -cs option is also specified. The -af option can be
used in the OPTTONS statement.

Compiles code to check that each subscript is within its array bounds. Does
not check the bounds for arrays that are dummy arguments for which the last
dimension bound is specified as * or 1. The -cs option can be used in the
OPTIONS statement.

Irm-B-3




Compiler Options

-db

Produces additional information for use by the symbolic debugger, ¢sd, and
passes the -lg option to the loader. This option can be used with all levels of
optimization. If the -O option is specified, there may be source statements for
which no debugging information is generated for csd.

Specifies that a line with a D in column 1 is to be compiled and not treated as
a comment line. Statements with a D in column 1 can be conditionally
compiled, making this feature a useful debugging tool.

Produce code that counts the number of times each routine is called. If loading
takes place, the standard startup routine is replaced with one that
automatically calls monitor at the start and arranges to write out a mon.out
file at normal termination of the object program.

Also, a profiling library is searched instead of the standard FORTRAN library.
An execution profile can then be generated by use of prof (optional product).

Causes the compiler to produce source-level counting code that produces an
execution profile named bmon.out at normal termination. Listings of source-
level execution counts can then be obtained with the use of bprof (optional
product).

Causes the compiler to produce counting code in the manner of -p but invokes
a runtime recording mechanism that keeps more extensive statistics and
produces a gmon.out file at normal termination. An execution profile can then
be generated by use of gprof (optional product).

Provides a syntax check. Stops compilation of each program unit in a source
file after the program has been determined to be a valid FORTRAN program.
Using this option during program development reduces compilation times.

Message and Listing Options

-or table

Irm-B-4

Suppresses all advisory diagnostic messages.

This option is no longer available. Use -or instead.

Suppresses all warning diagnostic messages.

Specifies the contents of the optimization report to be produced; either the loop
table, the array table, or both, can be displayed. The value for table can be all,

none, loop, or array. If this option is not specified, only the loop table is
displayed. Section 1.6.2 of this manual describes the optimization report.



-xrl

Compiler Options

Calls the fzref cross-reference generator. The following options are related to
this option:

Option Description
-iw n Specify the column width for identifiers. n can range
from 8 to 32. The default is 16.
-pw n Specify the logical page width used by the output
formatter. The default is 132.
-sl Produce a source listing with line numbers that precedes
the cross-reference table.

Calls the fxref cross-reference generator and puts all objects (such as variables
and arrays) into one table, rather than printing a separate table for each class
of objects.

Miscellaneous Options

-Bstring

-0 name

-tl n

Finds the substitute compiler (fskel and fpp) in the directory named séring.
The default directory is /usr/convez/oldfc, which contains the previous version
of the compiler for use as a backup.

Assigns name as the name of the executable file produced by the loader. The
default name is a.out. If the loader is not invoked because the -¢ option is
specified and if there is only one file to compile or assemble, then name
becomes the name of the object module.

Sets the maximum CPU time limit for compilation to n minutes. If the time
limit is exceeded, compilation terminates with the message System error in

Jusr/convez/fskel.

Display information concerning the version of the compiler that is being used.
Output goes to stderr.

Causes the compiler to process only the first 72 characters of each program
line. {The compiler normally processes all characters.) Continued Hollerith
and character constants are not padded. A line with fewer than 72 characters
ending with a Hollerith constant is padded with blanks until the constant is
completed, or until 72 characters are processed for that line. A line with fewer
than 72 characters ending with the first characters of a character constant is
padded with blanks until 72 characters have been processed. A tab counts as
one charactlel'.

Irm-B-5







C

Compiler Directives

Some directives provide information to the compiler that it cannot deduce on its own. Other
directives instruct the compiler to override certain default conditions that control optimization.
vectorization, or parallelization. A directive line has the following format:

C3DIR directive [, directive |

The line begins with the characters C$DIR followed by one or more of the directives described in
this appendix. If two or more directives are specified, they are separated by commas.

A directive must fit on one line; it cannot be continued. A directive may be surrounded by any
number of comment lines.

C.1 Information Directives

The information directives provide information to the compiler and may or may not cause the
compiler to take any action. The information directives are

e MAX_TRIPS
¢ NO_RECURRENCE
e NO_SIDE_EFFECTS

C.1.1 MAX _TRIPS Directive

The MAX_TRIPS directive tells the compiler that the loop which follows is never executed more
than the specified number of times. The format of this directive is

MAX_TRIPS (n)

This directive can be used to prevent strip mining, when it might otherwise be performed, by
specifying a value of n that is less than the vector register length of 128.

C.1.2 NO_RECURRENCE Directive

The NO_RECURRENCE directive instructs the compiler to disregard an apparent recurrence in a
loop. 1If there is no other impediment to vectorization, the loop is vectorized. The format of this
directive is

NO_RECURRENCE

This directive must be placed immediately before a DO statement or a labeled statement that
begins a loop. Comment lines can appear between the directive and the beginning of the loop.

Irm-C-1




Compiler Directives

The NO_RECURRENCE directive does not affect recurrences caused by a nested DO loop. The
directive can, however, be used on each loop in a nest to give the vectorizer maximum
opportunity for improving the performance of the nest. ’

When the NO_RECURRENCE directive is used, the compiler breaks the recurrence by arbitrarily
removing one or more dependencies of the cycle. In the following example, if J is positive, there
IS no recurrence.

C$DIR NO_RECURRENCE
DO 10 I + 1,N
10 ACI) = A(I+])

The compiler always processes a NO_RECURRENCE directive when the apparent recurrence
involves an array element; the compiler always ignores a NO_RECURRENCE directive when the
apparent recurrence involves a scalar. In the latter case, the compiler knows that a recurrence
exists.

NOTE

Incorrect results may occur if you mistake a real
recurrence for an apparent one. Always test vector
results against scalar results to determine whether a
recurrence is real or apparent.

C.1.3 NO_SIDE_EFFECTS Directive

The NO_SIDE_EFFECTS directive instructs the compiler that the specified functions do not
modify the value of a parameter or common variable, perform a read or write, or call another
routine. The format of this directive is

NO_SIDE_EFFECTS | ( func |, func] )]
The parameter func specifies one or more user-defined functions.
This directive allows scalar optimization to remove a function call if it occurs in an expression
assigned to a scalar variable that is never used. The function call can be removed since the
function has no side effects—it does not matter whether or not the call is made. Such
optimization opportunities usually arise after other optimizations are performed and rarely occur
in the original source text.
Although the directive can appear anywhere in a program unit, to be effective, it should be used
before the named function is called. Use the directive if the compiler gives the advisory message
“More optimization is possible if this function call has no side effects.” If there are no arguments,
the directive applies to all functions referenced (textually) after the directive.
Example 1:

C$DIR NO_SIDE_EFFECTS (F1,F2)

X =Y * F1(5,2) - W
*1f the X= does not reach a use of X, the assignment

*statement may be removed

A function call with no side effects is invariant with respect to a loop, provided its arguments are
loop invariant and the call may be moved out of the loop.

Irm-C-2



Compiler Directives

Example 2:

A function call may inhibit code motion. The directive is not applicable; the user must perform
the optimization at the source level. (The source would have to be modified to add the directive.)

D0I =1,N
Z = F3(A)

*if F3 has no side effects and A is invariant, Z=can be
*removed from the loop which may make Z loop invariant

ENDDO

Equivalent code is

T1 = F3(A)
DOI =1,N
Z=T1

ENDDO

Code motion moves the Z=.

C.2 Control Directives

The control directives control optimization, parallelization, and vectorization. The control
directives are

BEGIN_TASKS, NEXT_TASK, END_TASKS
SCALAR

FORCE_PARALLEL, FORCE_VECTOR
PSTRIP, VSTRIP

ROW_WISE

SELECT

SYNCH_PARALLEL

UNROLL

The scope of a vectorization directive is the loop immediately following the directive; the scope
does not, however, apply to loops nested therein. Some of the directives let you select loops or
code sections to be parallelized rather than leaving the choice up to the compiler.

Certain combinations of directives are invalid when used within the same program unit and will
cause the program unit to be rejected by the compiler. Table C-1 lists the invalid combinations.

Irm-C-3




Compiler Directives

Table C-1: Restrictions on Directive Use

The directive... Cannot be used with...
FORCE_PARALLEL SCALAR, SELECT, SYNCH_PARALLEL

FORCE_VECTOR PSTRIP, SCALAR, SELECT, SYNCH_PARALLEL, VSTRIP
PSTRIP FORCE_VECTOR, SCALAR
SCALAR FORCE_PARALLEL, FORCE_VECTOR, PSTRIP, SELECT,

SYNCH_PARALLEL, VSTRIP
SELECT FORCE_PARALLEL, FORCE_VECTOR, SCALAR
SYNCH_PARALLEL FORCE_PARALLEL, FORCE_VECTOR, SCALAR

VSTRIP FORCE_VECTOR, SCALAR

C.2.1 Tasking Directives

The tasking directives let you specify a group of independent tasks for parallel execution. The
tasking directives are

e BEGIN_TASKS
e NEXT_TASK
¢ END_TASKS

The BEGIN_TASKS directive identifies the beginning of the task group; the NEXT_TASK
directive identifies each individual task in the group; and the END_TASKS directive telmmatcs
the task group. The following code illustrates the use of these directives:

C$DIR BEGIN_TASKS
statement

C$DIR NEXT_TASK
statement

C$DIR NEXT_TASK
statement

C$DIR END_TASKS
The preceding example is equivalent to the following loop:
C$DIR FORCE_PARALLEL

DO 100 I =1,3
GOTO (10,20,30),I

10 statement-1
GOTO 100

20 statement-2
GOT0100

30 statement-3

100  CONTINUE

A maximum of 255 tasks can be specified between a BEGIN_TASKS and an END_TASKS
directive.

Irm-C-4




Compiler Directives

C.2.2 SCALAR Directive

The SCALAR directive prevents the DO loop that follows from being vectorized or parallelized.
The format of this directive is

SCALAR

The body of the loop may still be vectorized or parallelized if an outer loop interchanges with the
SCALAR loop. The SCALAR directive is useful when the iteration count of the loop is too low
for the overhead involved in setting up vectorization, or when the numerical results must be the
same as for a scalar loop. This directive can also be used to prevent loop interchange, which may
not choose the best loop to interchange when it cannot deduce the iteration counts of the loops
involved.

It is possible for the results of a vectorized loop to differ from its scalar equivalent. For example,
floating-point sum and product reduction operators may give different answers because the
underlying hardware does not process the operands in sequential order.

In the following example, the compiler normally interchanges the I loop with the J loop so that
elements of A, B, and C are accessed contiguously. The SCALAR directive ensures that the loop

of greater iteration count is retained as the innermost loop.

C$DIR SCALAR

DO 10 I = 1,N (where N = 2)
DO 10 J = 1,M (where M = 1000)
10 A(I,J) = B(I1,J) + C(1,D)

In the following example, neither iteration count is sufficient to warrant vectorizing the loops.

C$DIR SCALAR

D0 10 I =1,N ! (where N = 2)
C$DIR SCALAR

DO 10 J = 1,M ! (where M = 2)
10 A(I,J) = B(I,J)) + C(1I.J0)

C.2.3 Force Directives

The force directives tell the compiler that the following loop is to be either parallelized or
vectorized regardless of apparent recurrences or loop dependencies. The force directives are

e FORCE_PARALLEL
e FORCE_VECTOR

The FORCE_PARALLEL directive tells the compiler that the iterations of the following loop are
independent and that the loop should be parallelized. The FORCE_VECTOR directive also
implies that the iterations of the following loop are independent but tells the compiler to
vectorize, rather than parallelize, the loop. If both FORCE_PARALLEL and FORCE_VECTOR
are specified for the same loop. the loop is vectorized and the resulting strip mine loop is
parallelized.

Both FORCE_PARALLEL and FORCE_VECTOR ignore any dependencies between iterations
that the compiler may have located. Also, even though you use these directives on a loop, you
may not get the desired code transformation if the compiler cannot generate the requested code;
scalar recurrences usually cause this sort of problem.

Irm-C-5




Compiler Directives

It is possible to use a FORCE_VECTOR directive with a loop that was fully vectorized and get
incorrect answers since the directive causes the compiler to ignore dependencies.

A loop can be executed in the following ways:

If you specify... | Then the loop is processed as...
scalar serial

vector vector but not parallel

parallel parallel but not vector

parallel, vector parallel outer strip and vector inner strip

Both loops that contain calls and loops that do not contain calls may be parallelized with the
FORCE_PARALLEL directive. The FORCE_VECTOR directive should only be used with fully
vectorizable loops. Neither directive can be used with the SCALAR directive or with the
NO_RECURRENCE directive or an error condition results.

The FORCE_VECTOR directive can only be used on innermost loops. The FORCE_PARALLEL
directive may be used on any parallelizable loop that does not contain a loop preceded by the
FORCE_PARALLEL directive. The FORCE_PARALLEL directive is effective only if the -O3

compiler option is specified.

C.2.4 Strip-Mine Directives

The strip-mine directives allow you to control the strip-mine length for the associated parallel or
vector loop. The strip-mine directives are

e PSTRIP
e VSTRIP

If you do not specify one of the strip-mine directives, the compiler selects a default value. Table
C-2 shows the maximum strip mine lengths that the compiler uses when you specify the -O3 and
-ep compiler options. In the table, n is the actual vector length and ep is the number of
processors specified in the -ep option.

Table C-2: Maximum Strip Mine Lengths

Processors (-ep) Parallel Strip Length Vector Strip Length
1 1 128
more than 1 max{n/(2¥ep),1) max{min((n-+ep-1)/ep,128),8)

The actual strip length per iteration is the smaller of: the number of iterations remaining to be
p gth p ! g
processed or the maximum length of a strip from the table.

Examples:

The following examples show the maximum and actual vector strip lengths when the system
includes four processors (-ep=4).

Trip Count {Maximum Strip Length Actual Strip Length(s)
2 8 2
514 128 128, 128, 128, 128, 2 (for the 5 iterations)

Irm-C-6



Compiler Directives

If you do not specify the -ep directive, the compiler selects a default value for strip mining that is
appropriate for the architecture of the machine on which you are compiling. The PSTRIP or the
VSTRIP directive overrides the default values shown in the table.

C.2.4.1 PSTRIP Directive

The PSTRIP directive tells the compiler that the parallel loop associated with this directive
should be strip-mined using the specified length. The format of this directive is

PSTRIP (n)

The value n is the strip mine length; if this directive is not used, the compiler selects a default
value according to an internal algorithm. The PSTRIP directive cannot be used with vector
loops.

C.2.4.2 VSTRIP Directive

The VSTRIP directive tells the compiler that the following vector loop should be strip mined
with the specified length. The format of this directive is

VSTRIP (n)
The value n is the strip mine length and must be less than or equal to 128. The VSTRIP

directive lets you reduce strip-mine length to create more iterations of the strip-mine loop so that
it can be effectively parallelized.

C.2.5 ROW_WISE Directive

The ROW_WISE directive tells the compiler that the designated array names have their
dimensions reversed. Reversing the order of subscripts can assist in vectorization. The format of
this directive is

ROW_WISE (array_name [,array_name...] )
The following cautions apply to the use of the ROW_WISE directive:

e Implicit array [/O, such as READ(5,*)A, is not allowed for arrays that appear in a
ROW_WISE directive.

e The array appears reversed when viewed in the debugger.
e If the ROW_WISE directive is applied to a dummy argument, the actual argument
must also appear in a ROW_WISE directive within the caller. The compiler cannot

detect this situation.

The following example illustrates the type of situation in which use of the ROW_WISE directive
can improve performance of a program.

C$DIR ROW_WISE (A)
DIMENSION A(4,1000)

DO I = 1,4
DO J = 1,1000
A(I,J) =0
ENDDO
ENDDO

Irm-C-7




Compiler Directives

Although the preceding example vectorizes, performance is slowed because the array is being
accessed via non-contiguous memory (FORTRAN stores arrays in column major order). If,
however, the code segment in the preceding example were preceded by the directive C$DIR
ROW_WISE (A), it would be interpreted by the compiler as follows:

DIMENSION A(1000,4)

DO I =1,4
DO J = 1,1000
A(J,I) =0
ENDDO
ENDDO

The array is now being accessed from contiguous memory, thus increasing the execution speed.

C.2.6 SELECT Directive

The SELECT directive causes the compiler to generate multiple versions of a loop and to select,
at runtime, which version to execute based on a specified trip count. This directive has the form

SELECT (typel, type2 [,count] )

The parameters typel and (ype? indicate the type of loop to be generated and can have the
following values:

Loop Type Explanation
Sors Generate scalar loop
Vorv Generate vector loop

If the actual loop iteration count as determined at runtime is less than or equal to the iteration
count specified in the directive, then the typel version of the loop is executed; otherwise, the type2
version is executed. The iteration count is optional. If given, it must be a positive integer
greater than 0. If no iteration count is given, the compiler assumes a default value of 4.

C.2.7 SYNCH_PARALLEL Directive

The SYNCH_PARALLEL directive tells the compiler that the following loop should be executed
in parallel even though it requires synchronization that might result in less than full efficiency.
The format of this directive is

SYNCH_PARALLEL
This directive is effective only if the -O3 option is specified on the compiler command line.

The loop in the following example might run faster in a machine with four processors than if it
were partially vectorized and the recurrence placed in a scalar, nonparallel loop.

C$DIR SYNCH_PARALLEL
DO I = 1,32
IF (A(I).LT.0) THEN
A(I) + A(I-1) + B(D)
D(I) = E(I)*F(I)
ENDIF
ENDDO

Irm-C-8



Compiler Directives

C.2.8 UNROLL Directive

The UNROLL directive reduces loop overhead by replicating the body of the loop that follows.
Unrolling is performed on both scalar and vector loops. The format of this directive is

UNROLL
To be eligible for unrolling, a loop must contain no internal branching and must have an
iteration count that can be determined by the compiler. The compiler unrolls a loop completely

only if its iteration count is known to be less than 5; otherwise, partial unrolling is performed.

In order for this directive to take effect, optimization level -O3 or -O2 must be specified on the
compiler command line.

Irm-C-9







D

System Limits

This appendix lists the maximum sizes for the various elements in a CONVEX FORTRAN program.

The maximum...

Is...

Statement length
Hollerith length

String length

Identifier length
Cross-reference identifier
File name length
INCLUDE nesting

Number of files in a program

13,200 characters
2000 characters
65,535 characters
42 characters

31 characters
200 characters
127

127

Additionally, the total space used by all dimensioned arrays in a program must not exceed the

memory space of the system architecture.

Irm-D-1







E

ASCII Character Set

This appendix lists the American Standard Code for Information Interchange (ASCII) with each
character equivalent in hexadecimal and octal values. The FORTRAN character set is a subsct of the
ASCII character set; i.e., although not all of the ASCII characters are FORTRAN characters. all of
the FORTRAN characters are included in the ASCII character set.

Table E-1: ASCII Character Set

Hex Oct Hex Oct Hex Oct
Value Value Char | Value Value Char | Value Value Char

00 000 NUL 20 040 SP 40 100 @
01 001 SOH 21 041 ! 41 101 A
02 002 STX 22 042 ? 42 102 B
03 003 ETX 23 043 # 43 103 C
04 004 EOT 24 044 $ 44 104 D
05 005 ENQ 25 045 % 45 105 E
06 006 ACK 26 046 & 46 106 F
07 007 BEL 27 047 ’ 47 107 G
08 010  BS 28 050 ( 48 110 H
09 011 HT 29 051 ) 49 111 I

0A 012 LF 2A 052 * 1A 112 J
0B 013 VT 2B 053 + 4B 113 IN
0C 014 FF 2C 054 , 4C 114 I,
oD 015 CR 2D 055 - 4D 115 M
OE 016 SO 2E 056 . 4B 116 N
oF 017 SI 2F 057 / 4 117 O
10 020 DLE 30 060 0 50 120 P
11 021 DC1 31 061 1 51 121 Q
12 022 DC2 32 062 2 52 122 R
13 023 DC3 33 063 3 53 123 S
14 024 DC4 34 064 4 54 124 T
15 025 NAK 35 065 5 55 125 U
16 026 SYN 36 066 6 56 126 \%
17 027 ETB 37 067 7 57 127 W
18 030 CAN 33 070 3 58 130 X
19 031 EM 39 071 9 59 131 Y
1A 032 SUB 3A 072 : 5A 132 Z
1B 033 ESC 3B 073 ; 5B 133 [

1C 034 FS 3C 074 < 5C 134 \

1D 035 S 3D 075 = 5D 135 }

1E 036 RS 3E 076 > 5E 136 "

1F 037 Us 3F 077 ? 5F 137 _

Irm-E-1




ASCII Character Set

Table E-1: ASCII Character Set (continued)

Hex Oct Hex Oct | Hex Oct

Value Value Char |{ Value Value Char | Value Value Char
60 140 ¢ 6B 153 k 76 166 v
61 141 a 6C 154 1 77 167 w
62 142 b 6D 155 m 78 170 X
63 143 c 6E 156 n 79 171 y
64 144 d 6F 157 o} 7A 172 3
65 145 e 70 160 p 7B 173 {
66 146 f 71 161 q 7C 174 |
67 147 g 72 162 r 7D 175 }
68 150 h 73 163 S 7E 176 b
69 151 i 74 164 t 7F 177 DEL
BA 152 ] 75 165 u

Irm-E-2




F
FORTRAN-66 Compatibility

The CONVEX FORTRAN compiler adheres to the American National Standard FORTRAN-77,
X3.9-1978, ISO 1539-1980(E), i.e., the default language interpretations are FORTRAN-77. The
compiler can, however, compile FORTRAN-66 programs. There are five incompatibilities
hetween American National Standard FORTRAN-77 and FORTRAN-66, X3.9-1966.

EXTERNAL statement

DO loop minimum iteration count

OPEN statement BLANIK keyword default
OPEN statement STATUS keyword default
X format edit descriptor

The first two incompatibilities are interpreted by the compiler; the rest are interpreted by the
runtime system. If your program uses the OPEN statement and you want FORTRAN-G66
interpretation rules at runtime, either include a call to Zoinst in your main program or include
the library 166 in your link by using the option -1I66 on the fc command line. The X format edit
descriptor use must be modified.

F.1 Compiling FORTRAN-66 Programs

To compile a FORTRAN-66 program, you can modify the program, transforming it into a
FORTRAN-77 program, and/or use the -F66 option.

1. Use grep to identify OPEN statements in which a STATUS keyword is to be added,
EXTERNAL statements that must be changed to INTRINSIC statements, and
FFORMAT statements using the X edit descriptor.

1o

Use the -F66 option or OPTIONS statement to select FORTRAN-66 language
interpretations. The -FG66 option allows for the interpretation of ENXNTERNAL
statements, DO loop minimum iteration counts, and BLANK and STATUS keyword
defaults in OPEN. It does not affect the X format edit descriptor. To avoid including
the -FG6 option in the fc command each time, use the alias command as follows:

alias fc fc -F66
You can include this format in your .cshre file, with the $ parameter representing

specified files. (When you use the alias command, you must be using C shell not the
Bourne shell, as it has no a//as command.)

F.2 EXTERNAL Statement

In FORTRAN-66, the EXTERNAL statement specifies that a symbolic name is the name of either
a user-defined external procedure or a FORTRAN-supplied function. In FORTRAN-77, two
statements accomplish this function:

Irm-F-1




FORTRAN-66 Compatibility

e The INTRINSIC statement specifies that the procedure is a FORTRAN-supplied
intrinsic procedure, such as SQRT.

e The EXTERNAL statement specifies that the procedure is user-supplied.
Because of the exact specification of these two procedures, you cannot modify the EXTERNAL

statements in your program so that the same source program works with both FORTRAN-77 and
FORTRAN-66. You must substitute an equivalent statement to include the changes:

FORTRAN-66 FORTRAN-77

EXTERNAL USER EXTERNAL USER (no change)

EXTERNAL SQRT INTRINSIC SQRT

EXTERNAL *SQRT | EXTERNAL SQRT (where SQRT is a user {unction
not the intrinsic for the square root)

F.3 DO Loop Minimum Iteration Count

In FORTRAN-66 the body of a DO loop is always executed; in FORTRAN-77 the body of the DO
loop is not executed if the end condition of the loop is already satisfied when the DO statement is
executed. To run a FORTRAN-66 program with the FORTRAN-77 compiler, you can either use

the -F'66 option, or modify the DO statements in the program to ensure a minimum loop count of
1; e.g., in FORTRAN-77, the loop

DO 20 J=INIT,LAST

is not executed if INIT > LAST, but is executed once in FORTRAN-66. If this DO statement
occurs in a FORTRAN-66 program, its equivalent FORTRAN-77 statement is:

DO 20 J=INIT,MAX(INIT,LAST)

F.4 OPEN Statement Keywords

While FORTRAN-66 does not contain an OPEN statement, it does allow for many
implementations based on FORTRAN-66 which contain an OPEN statement. Both the BLANIX
and STATUS keywords in OPEN for FORTRAN-77 differ from the implementations which are
utilized under FORTRAN-66.

F.4.1 BLANK keyword

The BLANK keyword affects the treatment of blanks in numeric input fields read with the D, E,
F, G, 1, O, and Z field descriptors. In FORTRAN-77, the OPEN statement BLANK keyword
defaults to BLANK='NULL' (which means that blanks in numeric fields are ignored). The
FORTRAN-66 interpretation of blanks in numeric input fields is equivalent to BLANK='ZERO'.

When a logical unit is opened without an explicit OPEN statement, CONVEX FORTRAN and
FORTRAN-66 both provide a default equivalent to BLANK='ZERO'.

The use of BLANK='NULL' causes embedded and trailing blanks to be ignored and the value

converted as if the nonblank characters were right-justified in the field. However, the use of
BLANK='ZERO' causes embedded and trailing blanks to be treated as zeros.

Irm-F-2



FORTRAN-66 Compatibility

If your program treats blanks in numeric input fields as zeros, and you do not want to use -1I66

or foinzt, include BLANK-:’ZERO' in the OPEN statement.

F.4.2 STATUS Keyword

The OPEN statement STATUS keyword in FORTRAN-77 specifies the initial status of the file
(OLD, NEW, SCRATCH, or UNKNOWN); its default value is UNKNOWN. In FORTRAN-66,
where STATUS is called TYPE, the default value is NEW.

If your program assumes that the default value for TYPE is NEW and you do not want to use
-1I66 or ‘onit, put STATUS = 'NEW' in the OPEN statement.

F.5 X Format Edit Descriptor

The FORTRAN-66 implementation of the X format edit descriptor writes blanks to and may
extend the output record. The FORTRAN-77 version does not modify character positions that
are skipped and does not, as a result, affect the length of the output record.

F.5.1 Format Code Separators

Formats with no format code separators are supported.

Irm-F-3







G
Cray FORTRAN Compatibility

To facilitate porting code written for the Cray compiler, the -cfc option can be specified on the
Je command line. When used, this option changes certain aspects of the CONVEX FORTRAN
compiler as follows:

e The default data types are as follows:

Type Default Length
integer INTEGER*8

real REAL*8

complex COMPLEX*16
logical LOGICAL*8

Constants are stored in the default INTEGER or REAL type.

e Constants written in exponential form with an E (e.g., 1.23E4) are stored in REAL*3
format.

e Intrinsics that work with default integer and single-precision types work with Cray
default types (8-byte quantities).

LOGICAL*2 and *4, INTEGER*4, and REAL*4 are treated as LOGICAL*S,
INTEGER*8, and REAL*S8.

The following Cray features are not supported:

e Double-precision (REAL*16) data types; that is, constants written with a D in the
exponent or objects declared double-precision.

e (ray special features such as intrinsics and directives.

Irm-G-1







H
VAX FORTRAN Compatibility

This Appendix describes compatibility between VAX FORTRAN and CONVEX FORTRAN. To
facilitate porting code written for the VAX compiler, certain VAX features are supported as
described below.

H.1 Supported Features
CONVEX FORTRAN supports the VAX INCLUDE statement, but VMS file names are not
supported. CONVEX FORTRAN supports the following VAX FORTRAN features only when

the -vfc option is specified on the fc command line.

e The alternate form (without parentheses) of the PARAMETER statement with only one
constant specified.

e The ’r form of the record specifier.

e Octal constants in the form "nn, where nn is a string of octal digits.

e The RECL== specifier used in the OPEN and INQUIRE statements returns the number
of VAX words rather than bytes for unformatted files.

e Default file names in the form “FOROnn.DAT”, where the number nn corresponds to
unit number nn.

e VAX FORTRAN records.

The organization and structure of VAX FORTRAN records is discussed briefly at the end of this
appendix.

H.2 Unsupported Features
CONVEX FORTRAN does not support the following VAX FORTRAN features:
e REAL*16 data type
o %DESCR
e RMS calls
e The VOLATILE statement
e The zccc...c form of hexadecimal constants

e Interactive display of NAMELIST group and values or end-of-line comments (!) in the
NAMELIST input data.

Irm-H-1




VAX FORTRAN Compatibility

o Byte ordering with respect to characters and parameter passing is not VAX compatible.

o Logical values differ in the two compilers. On CONVEX, a logical value is true if it is
all 1. On VAX, it is true in a test if the low-order bit is 1, i.e., IF(A) is equivalent to
IF(A .AND. 1).

o Numerical differences exist owing to the accuracy of CONVEX floating-point
representation and the rounding method used. See the CONVEX Architecture Handbook
for further information.

e Hollerith constants can be used where a character value is expected.

o Unlike VAX FORTRAN, CONVEX FORTRAN does not allow you to call a function as

a subroutine.

e CONVEX FORTRAN does not support radix 50 constants.

o CONVEX FORTRAN does not allow the variable on the left-hand side of a character
assignment statement to appear on the right-hand side. VAX FORTRAN allows the
construct as an extension.

e CONVEX does not allow the MOD function to be defined for a zero denominator.

e The ANSI standard prohibits modifying an argument within a subroutine 1if the
subroutine was called with a constant in the argument list. The CONVEX FORTRAN

compiler enforces this rule.

o CONVEX does not support DO statements of the form:
DO 714 J=1, 100 WHILE {(Q.NE.Z)

The product does not support certain VAX FORTRAN I/O extensions:

e REWRITE, DELETE, and UNLOCI( statements

o Indexed I/O (key-indexed files)

e File sharing

o DEFINEFILE statement

e OPEN keywords (PRINT and SUBMIT values for DISPOSE; USEROPEN;
INITIALSIZE; EXTENDSIZE; BUFFERCOUNT; SEGMENTED for RECORDTYPE;
and ORGANIZATION).

o CLOSE keywords (PRINT and SUBMIT values for STATUS)

o ASCII null as a carriage control character

The internal format of variable-length type records of VAX FORTRAN and CONVEX
FORTRAN differ when RECORDTYPE=VARIABLE.

Irm-H-2



VAX FORTRAN Compatibility

The following table shows how the VAX and CONVEX versions of the STOP message differ.

Statement CONYVEX Message VAX Message
STOP STOP: FORTRAN STOP
STOP 4 STOP: 4 4
STOP 'here STOP: here here

Integer overflow traps are turned off by default in fe, whereas VAX FORTRAN enables them by
default. The main reasons for this are:

e Overflow is turned off in C, and many users mix C and FORTRAN code.

e It i1s difficult to optimize integer expressions if integer overflow is turned on because
most addresses are negative integers near overflow on a CONVEX machine.

When you use the H descriptor on input, the first character transferred appears immediately alter
the letter H. The characters that are in the field descriptor before input are replaced
{(overwritten) by the new input characters.

H.3 Miscellaneous ]jiﬂ'erences

The following miscellaneous differences exist between VAX FORTRAN and CONVIEX
FORTRAN:

e Unit numbers in VAX FORTRAN range from 0 to 99 and on CONVEX FORTRAN
from O to 255.

e VAX FORTRAN supports the use of both Hollerith and apostrophe edit descriptors
during formatted input. CONVEX FORTRAN allows Hollerith but does not allow
apostrophe edit descriptors.

e In VAX FORTRAN, ‘cc...c'O octal constants are of type integer; in CONVEX
FORTRAN, the ‘cc...c’ form of octal constants is typeless.

e If invalid data is encountered on a VAX FORTRAN READ statement, all variables on
the tolist are assigned except those corresponding to the bad data. If the same error
occurs in CONVVEX FORTRAN, the READ statement terminates at once and the
remaining variables in the zo0list are unchanged.

H.4 VAX FORTRAN Records

A VAX FORTRAN record consists of one or more fields. The fields within a record are defined
by means of a structure declaration that defines the field names, types of data within fields, and
order and alignment of fields within a record.

H.4.1 Structure Declaration

A structure declaration is bounded by STRUCTURE and END STRUCTURE statements and
contains one or more fleld declarations. The order in which the field declarations occur
determines the order of fields within the structure. At least one field declaration must be specified
or an error condition occurs.

Irm-H-3




VAX FORTRAN Compatibility

A structure declaration has the following format:

STRUCTURE /structure-name/
field declaration

END STRUCTURE

A structure declaration does not create a variable. A variable is created by a RECORD statement
containing the name of a previously-declared structure. The format of a record statement is as
follows:

RECORD /structure-name/record-namelist

where structure-name is the name of a previously declared structure and record-namelist is a list
of variable names, array names, or array declarations separated by commas.

H.4.2 Field Declaration

A field declaration can be any combination of the following: a typed data declaration, a
substructure declaration, or a union declaration.

A typed data declaration is the same as a normal FORTRAN type statement. As with
FORTRAN typed data statements, field declarations may contain initializers. The name %FILL
can be used in place of a field name to create space in the structure for padding, although this
space cannot be initialized.

A substructure declaration can be declared by a RECORD statement that creates an instance of a
previously-declared structure.

A union declaration is bounded by UNION and END UNION statements and defines a data area
that can be shared during program execution. A union declaration must contain at least two
map declarations (see below) or an error condition occurs. A union declaration has the following
format:

UNION
map declaration
map declaration

END UNION
A map declaration defines a unique group of fields and is bounded by MAP and END MADP
statements. A map declaration must contain at least one field declaration or an error condition

occurs. A map declaration has the following format:

MAP
field declaration

END MAP

Irm-H-4



I
Sun FORTRAN Compatibility

To facilitate porting code written for the Sun FORTRAN compiler, the -sfc option can be
specified on the f¢ command line. When used, this option changes certain aspects of the

CONVEX FORTRAN compiler as follows:

e As in the C language, escape sequences using a backslash (\) are supported in character
strings to define nonprintable characters. The following table lists the supported

sequences.
Character Sequence
newline \n
tab \t
form feed \f
NUL \0
single quote \
double quote \?
backslash \

e The ampersand (&) character in the first nonblank column of a source line indicates
that the line is a continuation, regardless of what is in column 6.

o Recursive subroutines and functions are allowed.
e The declarations AUTOMATIC and STATIC are supported.

The preceding features represent only a subset of Sun FORTRAN FORTRAN that has been
made available in CONVEX FORTRAN.

Irm-I-1







J

Preprocessor

The compiler contains a preprocessor that was used in previous versions but is now optional.
The preprocessor is retained for support purposes only and should not be used unless absolutely
necessary. Certain language elements may not be available when the preprocessor is used. In
addition, macros in Hollerith strings are not expanded and may cause problems with some
programs.

J.1 Preprocessor Statements

Preprocessor statements begin with the # symbol and are syntax-independent of the compiler.
You can continue long statements by entering a backslash at the end of the line to be continued.

J.1.1 #define Statement

The #define statement causes the preprocessor to replace subsequent instances of an identifier
with a given token-string. This statement has the form:

#define identifier token-string

#define identifier(identifier,..., identifier) token-string
The token string in the definition replaces the i¢dentifier. The arguments in the call in the second
form are token strings separated by commas. Commas within quoted strings or protected by
parentheses do not separate arguments. The corresponding foken string from the call replaces
every identifier mentioned in the formal parameter list of the definition, and the number of
formal and actual parameters must be the same. Text inside a string or a character is not
replaced.

Blanks are significant in #define statements. In addition, the argument list must immediately
follow the macro name.

J.1.2 #undef Statement:

The #undef statement causes the identifier preprocessor definition to be removed. This statement
has the form:

#undef identifier

J.1.3 #include Statement

The #include statement replaces the line on which the statement appears by the contents of a
specified file. This statement has the form:

#include " filename"

Irm-J-1




Preprocessor

This statement searches for the specified file in the directory of the original source file, then along
the paths specified in -I options on the command line, and finally along a standard search path.
#1nclude statements may be nested.

J.1.4 #if Statement

The #if statement checks whether a constant expression evaluates to nonzero, whether the
identifier is currently defined in the preprocessor, or whether the identifier is currently undefined
in the preprocessor. This statement has the forms:

#1if constant-expression
#ifdef identifier
#ifndef identifier

These forms are followed by an arbitrary number of lines that may contain a control line # else.
The last line must be #endif. If the condition is true, the lines between the # else and the # endif
are ignored; if the checked condition is false, the lines between the #¢f and an #else (or the
# endif, if no # else exists) are ignored. These constructions may be nested.

J.2 Preprocessor Options

Certain compiler command line options are associated exclusively with the preprocessor. These
options, with the exception of -fpp, are being phased out. The options are as follows:

-Dname[=def]  Defines name to the preprocessor as if it had been specified in a
# define statement. If no definition is given, the name is defined
as 1.

-E Runs only the FORTRAN preprocessor on the named
FORTRAN programs and sends the result to the standard
output file.

-fpp Runs the FORTRAN preprocessor as the first step of
compilation. If this option is not specified, the preprocessor is
not used.

~Idir For #include files whose names do not begin with /7, the

preprocessor searches first in the directory of the file argument,
then in directories named in -I, then in directories on a standard
list.

-Uname Removes any initial definition of name. The only built-in names

defined are “__LINE__”, and “__FILE__".

—— )

J.3 Preprocessor Messages
During compilation, error messages can be generated by either the FORTRAN preprocessor, fpp,
or by the FORTRAN compiler, fc. The preprocessor generates error messages and warning
messages in the following format:

fpp: file: line number: error message

The preprocessor error and warning messages are designed to be self-explanatory.

Irm-J-2



K
Problem Reporting

K.1 Introduction

The contact utility is the recommended way to report software and documentation problems to
the Technical Assistance Center (TAC). It is an interactive tool that prompts you for the
information necessary to report a problem to the TAC.
You must have a UNIX-to-UNIX Communications Protocol (UUCP) connection to the TAC to
use contact. A UUCP system allows communication between UNIX systems by either dial-up or
hard-wired communication lines. See uucp(l) or the entry in info{1) (online information system)
for more information.
You must know the name and version number of the product involved. If you do not know the
version number of the program or utility you are having trouble with, use the vers command.
The syntax for the command is

vers filename

where filename is the the full pathname of the program. If you don’t know the full pathname of
the program, type

which program

For more information on these commands, see vers(l) and which(1) in the CONVEX UNIX
Programmer’s Manual, Part 1.

K.2 Information Required to Report a Problem
contact requires the following information:
1. Your name, title, phone number, and corporate name.

2. The name and version of the product involved. Use the wers command if you don’t
know the version number of the program or utility.

3. A short (1 line) summary of the problem.
4. A detailed description of the problem. Include source code and a stack backtrace
whenever possible. ({See adb(1) or ¢sd(1) for information on obtaining stack backtraces.)

The more information provided, the quicker your problem can be isolated and solved.

5. The priority of the problem. You are shown a list of six levels from which to select.

Irm-K-1




Problem Reporting

the report, you can abort the contact session; the file is saved in your home directory in a file
named dead.report.

The following figure is a sample contact session. User input is in bold lettering, and the system
response is in constant-width lettering.

Irm-K-2




Problem Reporting

Figure K-1: Sample contact Session

%contact
Welcome to contact version 0.14 ()

Enter your name, title, phone number, and corporate name ("D to terminate)
> Margaret Atwood, systems programmer, 814-4444, University

> of Chicago

>

Enter the name of the product involved
> CONVEX UNIX Programmer’s Manual, Part I RETURN)

Enter the version number (in the form X.X or X.X.X.X) of the product
> Revision 4.0 RETURN)

Enter a short (1 line) summary of the problem
> The finger command manual page lists nonexistent bug

Enter a detailed description of the problem ("D to terminate)

> The finger(l) man page says, under the BUGS section, that “Only the first
line of the .project file is printed.” Happily, this is not true!

>

Enter a problem priority, based on the following:

1) Critical - Work cannot proceed until the problem is resolved.
2) Serious - work can proceed around the problem, with difficulty
3) Necessary - problem has to be fixed.

4) Annoying - problem is bothersome.

5) Enhancement - requested enhancement.
6) Informative - for informational purposes only.
> 4

Enter the instructions by which the problem may be reproduced ("D to terminate)
> a) put more than one line in .project RETURN)

> b) read the man page for finger(1)

>

Enter any comments that are applicable (D to terminate)
>

Do you have any suggestions or comments on the documentation that you
referenced when you were trying to resolve your problem (for example,
additions, corrections organization, accessibility)? (°D to terminate)
> The man page should be updated.

>

Are there any files that should be included in this report (yes | no)?
> no

Please select one of the following options:
1) Review the problem report.

2) Edit the problem report.

3) Submit the problem report.

4) Abort the problem report.

>3

Problem report submitted.

%

Irm-K-3







$ descriptor lrm-8-16
: descriptor  lrm-8-17

A
ACCEPT statement Irm-7-1, Irm-7-11
ACCESS keyword Irm-7-18
accessing files lrm-7-3
actual arguments Irm-9-1
adjustable arrays Ilrm-9-2
alternate return arguments Irm-9-5, Irm-9-9
ANSI standard formatting Ilrm-1-4
apostrophe descriptor lrm-8-5
arguments Irm-9-8, lrm-9-9
arguments, alternate return lrm-9-9
arguments, character lrm-9-3
arguments, dummy lrm-9-9
arithmetic expression, data type lrm-2-9
arithmetic expression, data types Irm-2-8
arithmetic expressions lrm-2-8
arithmetic IF statement lrm-6-3
arithmetic operators Irm-2-8
array arguments Irm-9-2
array declaration lrm-2-7
array storage Irm-2-8
array subscripts lrm-2-7
arrays Irm-2-7
ASCII character set lrm-E-1
ASSIGN statement Irm-5-3
assigned GOTO statement lrm-6-2
assignment statement lrm-5-1
ASSOCIATEVARIABLE keyword Irm-7-20
assumed-length character argument lrm-3-4
assumed-size arrays Irm-9-3
auxiliary input/output statements lrm-7-18

B

B descriptors Ilrm-8-12

BACKSPACE statement lrm-7-28

BEGIN_TASKS directive lrm-C-4

blank common storage lrm-3-1

BLANK keyword Irm-7-20, Irm-I-2

BLOCK DATA statement, definition
Irm-10-1

BLOCK DATA statement in subprograms
Irm-9-9

block IF statement lrm-6-4

blockdata subprogram lIrm-10-1

BLOCKSIZE keyword Irm-7-20

BN descriptor lrm-8-12

built-in functions lrm-9-6

built-in functions %REF and %VAL Irm-9-6

BYTE Irm-2-1

BZ descriptor lrm-8-12

C
CALL statement lrm-9-10
carriage-control characters Irm-8-24
CARRIAGECONTROL keyword Ilrm-7-20
-cfe option  Irm-G-1
character arguments Ilrm-9-3
character constants lrm-2-6

Index

character conversions Irm-5-1
character descriptor A Irm-8-4
character equivalence lrm-3-5
character expressions lrm-2-10
CHARACTER FUNCTION statement
Irm-9-9
character substrings Irm-2-11
CHARACTER type-declaration statements
Irm-3-3
character-per-column formatting Irm-1-3
characters, carriage-control Irm-8-24
CLOSE statement lrm-7-25
coding statements lrm-1-1
colon descriptor lrm-8-17
comma field separator lrm-8-18
comment line lrm-1-2
common block storage lrm-3-1
common blocks lrm-3-6
COMMON statement lrm-3-1
COMMON statements lrm-2-6
compiler directives lrm-1-4, lrm-C-1
compiler options Ilrm-B-1
compiling FORTRAN-66 programs Irm-F-1
compiling programs lrm-B-1
COMPLEX Irm-2-1
complex descriptor lrm-8-4
COMPLEX*16 Irm-2-1
COMPLEX*16 constants lrm-2-4
COMPLEX*8 Irm-2-1, Irm-2-9
COMPLEX*8 constants lrm-2-4
computed GOTO statement Irm-6-2
concatenation Irm-2-10
constant expressions Irm-2-11
constants lrm-2-3
contact, reporting problems Ilrm-K-1
continuation indicator Irm-1-3
continuation line Irm-1-3
CONTINUE statement lrm-6-9
control statement Irm-6-1
conversion of data types Irm-2-2
COVUEshell Irm-1-7, Irm-7-18
Cray compatibility lrm-G-1

D
D descriptor Irm-38-9
D indicator lrm-1-4
DATA statement lrm-4-1
DATA statement form Irm-4-1
DATA statement, implied-DO  lrm-4-2
data types lrm-2-1
data types, arithmetic expression Irm-2-8
data types, conversion lrm-2-2
data types, equivalenced lrm-3-4
data-type length specifiers Irm-3-3
-dc option Irm-1-4
debug statements Irm-1-4
DECODE statement lrm-7-16
default descriptor values Irm-8-17
DEFAULTFILE keyword Irm-7-21
descriptors lrm-8-3
dimension declarator lrm-2-7
DIMENSION statement Ilrm-3-4




Page 2

direct access Irm-7-4

direct-access WRITE statements lrm-7-13

directives, compiler lfrm-1-4, lIrm-C-1

DISPOSE keyword Irm-7-21

DO loops, extended range Irm-6-8

DO statement Irm-6-8, Irm-6-9

DO statements Irm-6-6

DO WHILE statement lrm-6-8, Irm-6-9

dollar sign descriptor Irm-8-16

DOUBLE PRECISION  Irm-2-1

double-Precision constants lrm-2-3

dummy argument Irm-9-1

dummy argument, NAMELIST statement
Irm-3-8

dummy arguments Irm-9-1, Irm-9-8, Irm-9-9

dummy arguments, arrays lrm-9-2

E

E descriptor lrm-8-9

edit descriptors lrm-8-3

ENCODE statement lrm-7-15
ENCODE statement, example Irm-7-16
END DO statement Ilrm-6-9

END statement Irm-6-10

END statement in subprograms Irm-9-9
ENDFILE record Irm-7-2

ENDFILE statement Irm-7-28
end-of-file specifier Irm-7-7
END_TASKS directive lrm-C-4
ENTRY statement Irm-9-11
EQUIVALENCE statement Irm-3-4
EQUIVALENCE statements Irm-2-6
equivalencing arrays Irm-3-5

ERR keyword Irm-7-21

error reporting lrm-I<-1

error specifier lrm-7-7

executable program Irm-1-1
expressions lrm-2-8

expressions, constant lrm-2-11
external READ statements lrm-7-9
EXTERNAL statement lrm-3-9

F
F descriptor lrm-8-8
fe command line Irm-B-1
field descriptors lrm-8-3
field separators, external Irm-8-18
FILE keyword Irm-7-21
file positioning Irm-8-3
file-positioning statements Irm-7-28
files lrm-7-2
files, accessing lrm-7-3
FIND statment lrm-7-17
floating-point representation, IEEE lrm-B-3
force directives Irm-C-5
FORCE_PARALLEL directive Irm-C-5
FORCE_VECTOR directive lrm-C-5
FORM keyword Irm-7-22
format code separators lrm-F-3
FORMAT control Irm-8-2
format specifications lrm-8-1

Index

format specifier Ilrm-7-6

FORMAT statement lrm-8-1
formats, variable Irm-8-19
formatted records Irm-7-2
formatting, list-directed Irm-8-20
FORTRAN character set Irm-1-1, Irm-E-1
FORTRAN-66 compatibility lrm-F-1
FORTRAN-77 formatting lrm-1-4
fep lrm-J-1

FUNCTION statement lrm-9-9
function subprograms Irm-9-9
functions Irm-9-5

G
G descriptor lrm-8-10
generic and intrinsic functions, table Irm-A-1
GOTO statement Ilrm-6-1

H
H descriptor Irm-8-5
hexadecimal constants Irm-2-4, Irm-2-5
Hollerith constants lrm-2-5

I

I descriptor lrm-8-6

[EEE floating-point representation Ilrm-B-3

IF statements Ilrm-6-3

IF THEN statement Irm-6-4

IMPLICIT NONE statement. lrm-3-2

IMPLICIT statement lrm-3-2

implied-DO list Irm-7-5

#include statement Irm-1-6

INCLUDE statement Irm-1-6

Inf message Irm-8-9, Irm-8-10, Irm-8-11

initial line Ilrm-1-3

input, list-directed Irm-8-20

input/output lists lrm-7-4

input/output statements Irm-7-1

input/output statements, auxiliary Irm-7-18

INQUIRE statement lrm-7-25

integer constants lrm-2-3

integer descriptor Irm-8-4

INTEGER*1 Irm-2-1

INTEGER*2 Irm-2-1

INTEGER*4 Irm-2-1

INTEGER*8 Irm-2-1

internal direct-access WRITE statements
Irm-7-14

internal files lrm-7-2

internal READ statements lrm-7-11

intrinsic functions Irm-9-5

INTRINSIC statement Irm-3-9

invoking the compiler lrm-B-1

I/O statement format Irm-7-4

I/O statements Irm-7-1

IOSTAT keyword Irm-7-22




Index

K
keywords, OPEN statement Irm-7-18

L

L descriptor Irm-8-5

limits, system lrm-D-1
list-directed character input Irm-8-20
list-directed complex input lrm-8-20
list-directed formatting lrm-8-20
list-directed input Ilrm-8-20
list-directed, null value Irm-8-21
list-directed output Ilrm-8-23
list-directed, slashes lrm-8-21
%LOC built-in function lrm-9-7
logical constants lrm-2-6

logical descriptor Irm-8-4
logical elements lrm-2-10
logical entities lrm-2-9

logical expressions Irm-2-10
logical IF statement Irm-6-3
logical operator . XOR. Irm-2-10
LOGICAL*1 Irm-2-1
LOGICAL*2 Irm-2-1
LOGICAL*4 Irm-2-1
LOGICAL*8 Irm-2-1

M
main program Irm-1-1, Irm-3-7
MAXREC keyword lrm-7-22
MAX_TRIPS directive lrm-C-1

multiple statements lrm-1-4

N
NAME keyword Irm-7-21
namelist input lrm-8-21
namelist specifier lrm-7-8
NAMELIST statement lrm-3-8
namelist-directed formatting lrm-8-21
namelist-directed output lrm-8-23
NaN message Irm-8-9, Irm-8-10, lrm-8-11
nested biock IF statement lrm-6-6
nested DO loops Irm-6-7
NEXT_TASK directive lrm-C-4
NML keyword Irm-7-8
nonrepeatable descriptors lrm-8-2
NO_RECURRENCE directive Irm-C-1
NO_SIDE_EFFECTS directive lrm-C-2
NOSPANBLOCKS keyword lrm-7-23
numeric type-declaration statements lrm-3-3

O
O descriptor lrm-8-7
octal constants Irm-2-4, Irm-2-5
OPEN statement lrm-7-18
OPEN statement keywords lrm-F-2
operator precedence lrm-2-8
optimization directives Irm-C-3
options, compiler lrm-B-1
OPTIONS statement lrm-1-5

Page 3

P
P descriptor Ilrm-8-13
parallelization directives lrm-C-3
PARAMETER statement lrm-3-6
PARAMETER statement, alternate lrm-3-7
PAUSE statement lrm-6-10
precedence, operator Irm-2-3
preprocessor lrm-J-1
PRINT statement Ilrm-7-1, Irm-7-14
procedures as dummy arguments lrm-9-4
program elements Irm-1-1
program, executable lrm-1-1
program, main Irm-1-1, lrm-3-7
PROGRAM statement lrm-1-1, lrm-3-7
PROGRAM statement in subprograms

lrm-9-9

program unit lrm-1-1

PSTRIP directive lrm-C-7

Q descriptor  1rm-8-16

R

R descriptor lrm-3-14

READ statement Irm-7-1, lrm-7-8

READ statement, direct Irm-7-10

READ statement, external lrm-7-9, Irm-7-10

READ statement, internal Ilrm-7-11

READ statement, sequential lrm-7-9

READONLY keyword Irm-7-23

REAL Irm-2-1

real constants Irm-2-3

real descriptor lrm-8-4

REAL*4 lrm-2-1

REAL*4 Constants Irm-2-3

REAL*8 Irm-2-1, Irm-2-9

REAL*8 constants Ilrm-2-3

RECL keyword Irm-7-23

record specifier Irm-7-6

records lrm-7-1

RECORDSIZE keyword lrm-7-23

RECORDTYPE keyword Irm-7-23

%REF built-in function lrm-9-6

relational expressions lrm-2-9

repeatable descriptors lrm-8-2, Irm-8-3

reporting problems lrm-K-1

RETURN, alternate lrm-9-10

RETURN statement Irm-6-10, Irm-9-11,
Irm-9-12

RETURN statement, definition Irm-9-12

RETURN statement in subprograms lrm-9-9

REWIND statement Irm-7-28

Rop message Irm-8-9, lrm-8-10, Irm-3-11

ROW-WISE directive Irm-C-7

runtime formats Irm-8-19

S
S descriptor lrm-8-13
SAVE statement Ilrm-3-9
SCALAR directive Irm-C-5




Page 4

scale factor Irm-8-13

SELECT directive lrm-C-8

sequential access Irm-7-3

sequential READ statements Irm-7-9

sequential WRITE statement, unformatted
Irm-7-13

sequential-access WRITE statements
Irm-7-12

-sfc option Irm-I-1

slash descriptor Irm-8-17

SP descriptor lrm-8-13

specification statements lrm-3-1

specifiers lrm-7-5

SS descriptor  Irm-8-13

statement field Irm-1-4

statement function reference lrm-9-8

statement functions Irm-9-7

statement label Irm-1-3

statement label assignment lrm-5-3

statements, executable Irm-1-2

statements, multiple lrm-1-4

statements, nonexecutable Irm-1-2

STATUS keyword Irm-7-24, Irm-F-3

status specifier Irm-7-7

STOP statement lrm-6-10

storage, array lrm-2-8

strip mining, parallel lrm-C-6

strip-mine directives lrm-C-6

SU descriptor lrm-8-14

subprogram lIrm-1-1

subprograms lrm-9-1

SUBROUTINE statement in subprograms
Irm-9-9

subroutine subprograms lrm-9-10

Sun FORTRAN compatibility Irm-I-1

symbolic Names Irm-2-1

SYNCH_PARALLEL directive Irm-C-8

system limits lrm-D-1

T

T descriptors lrm-8-15

tab character lrm-1-4

tab-key formatting Irm-1-4
tasking directives lrm-C-3, Irm-C-4
TL descriptor Irm-8-15

TR descriptor Irm-8-15

trouble reports lrm-K-1

TYPE keyword Irm-7-24

TYPE statement Irm-7-1, lrm-7-14
type-declaration statements lrm-3-2

U
unconditional GOTO statement Irm-6-1
unformatted records lrm-7-2
UNIT keyword lrm-7-24
unit specifier lrm-7-6
units  Irm-7-3
UNROLL directive Irm-C-9

Index

v
%VAL built-in function Irm-9-6
variable formats Irm-8-19

variables Irm-2-6

VAX FORTRAN compatibility lrm-H-1
VAX FORTRAN records lrm-H-3
vectorization directives Irm-C-3

vers command Irm-K-1

version of software, how to find Irm-K-1
-vfe option Irm-H-1

VMS FORTRAN compatibility lrm-H-1
VSTRIP directive Ilrm-C-7

W

which lrm-K-1

WRITE statement Irm-7-1, Irm-7-12,
Irm-8-23

WRITE statement, list-directed output for-
mats lrm-8-23

WRITE statements, direct access lrm-7-13

WRITE statements, internal lrm-7-14

X

X descriptor Irm-8-14
X format edit descriptor Irm-F-3

Z
Z descriptor Irm-8-7



—"‘-—-‘
A—— A N
—— W Software
— CONVEX Documentation
- A
-

Index Enhancements

So that we can continue to provide better indexing in CONVEX documentation, please keep track of
the words or phrases you look up in an index, but don’t find. Then, list under which index entry you
uitimately found the information you were seeking. You can mail one of these postage-paid forms to
the CONVEX Software Documentation Department monthly, or you can submit the information to
the Technical Assistance Center in the form of a bug report. You can get more forms by writing to
CONVEX at the address below, or by calling us. You can also photocopy this form and mail it back
in an envelope. Thank you for helping us to serve you better.

Name: Company:

Phone: Date:

Manual Title/Rev. No. Looked Up Found Information
This Word Under This Word

CONVEX Computer Corporation — P.O. Box 833851, Richardson, TX 75083-3851 (214)952-0200




emp———
———

-

> N
A N
A
AR
an—
AN

(Fold Here First)

CONVEX

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 1046 RICHARDSON, TEXAS

POSTAGE WILL BE PAID BY ADDRESSEE

CUSTOMER SERVICE -
CONVEX Computer Corp.
P.O. Box 833851
Richardson, TX 75083-3851

(Foid Here Second)

(Tape or Staple)

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES




CONVEX FORTRAN Language Reference Manual
Document No. 720-000050-203, Seventh Edition

Reader’s Forum

You are invited to submit your comments concerning the clarity and service of this manual.
Constructive critical comments are most welcome and help us in our efforts to generate quality
customer documentation. (Please list the page number for questions and comments):

From:
Name Title
Company Date

Address and Phone No.

FOR ADDITIONAL INFORMATION/DOCUMENTATION:

Location Phone Number
In Texas (214)952-0379
Other continental locations | 1(800)952-0379
Outside continental U.S. Contact local CONVEX office
Direct Mail Orders to: CONVEX Computer Corporation

Customer Service

Educational Department

P.O. Box 833851

Richardson, Texas 75083-3851 USA




(Fold Here First)

—en————
A—

=
___CONVEX

‘“
~——_————

'BUSINESS REPLY MAIL

FIRST CLASS  PERMIT NO. 1046 RICHARDSON, TEXAS

POSTAGE WILL BE PAID BY ADDRESSEE

CUSTOMER SERVICE
CONVEX Computer Corp.
P.O. Box 833851
Richardson, TX 75083-3851

(Fold Here Second)

(Tape or Staple)

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES




