

UNIT 16

Lab Exercises (Answers)

1. The new class and its implementation:

FILE: Term Buffer.h

#include "Buffer.h”

class Terminal Buffer : public Buffer {
public:
Terminal Buffer (int size);
“Terminal Buffer():

private:
void flush();
}:

FILE: term buffer.c

#include "Term Buffer.h"
#include <iostream.h>

Terminal Buffer::Terminal Buffer(int size)
: Buffer (size)

{

}

Terminal Buffer::~Terminal_ Buffer ()
{

if (contains () > 0) flush():;
}

void Terminal Buffer::£flush()
{
int i;
for (i = 0; i < contains(); i++)
{
cerr << get(i);

}

Lab Answers Object-Oriented Programming in C++ 16 Ans-1

UNIT 16

Lab Exercises

1. Change to the unitl6/buffer directory. Create the class Terminal_ Buffer, that
buffers characters to be output to the terminal. Derive this class from class Buffer.
Declare the class in the file Term_Buffer.h, and write the member functions in
term_buffer.c.

When a Term_Buffer is full, its data are written to the ostream cerr (you may
assume cerr will output to the terminal). When a Terminal_Buffer is created, the
size must be given, but no file name is needed. Test the class with the test program
in the file term_test.c.

You can compile and execute the test program by entering ‘make probl’ or ‘'make
term_test’ or you can compile and execute it directly using the commands:

$CC term test.c term buffer.c buf prot.c \
buf public.c —o term test
$ term test

P SUMMARY
DIRECTORY unit16/buffer

DECLARATION Buffer.h, Term_Buffer.h (new)
IMPLEMENTATION | buf prot.c buf_public.c, term_buffer.c (new)
TEST PROGRAM term_test.c

FILE: term test.c

#include "Term Buffer.h"
#include <iostream.h>
#$include <libec.h>

main(int, char *[])
{
Terminal Buffer test(7);

char ch;

for (ch = 'a’ ; ch <= 'z’ ; ch++) {
test.add(ch);
sleep(l);

}

return O;

Lab Exercises Object-Oriented Programming in C++ 16 Ex-1

Lab Exercises

Version 30.2
Copyright © 1900 AT&T
All Rights Reserved

16 Ex-28 Object-Oriented Programming in C++

Exercises 16 Ex

Object-Oriented Programming in C++

Lab Exercises

Obhject-Oriented Pracrammine in O L Teer

Derived Class Access

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

16-26 Object-Oriented Programming in C++

Summary

A derived class can
e access protected members of base
e provide an implementation for base

All users of a class should be aware of
e the class’s public members, and friend
functions
Users creating derived classes should also be
aware of |
o the class’s protected members

o the class’s private virtual functions

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programmineg in 4+ TR-OK

Derived Class Access

Summary

Version 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

16-24 Object-Oriented Programming in C++

Using a Buffer

#include "File_Buffer.h"
#include <iostream.h>
#include <libc.h>

void do_test ()

{
File_Buffer test("test_file", 5);
char ch;
cout << "initially: \n";
system("1ls -1 test_file");
for (ch = 'a' ; ch <= 'e' ; ch++)

test.add (ch) ;

cout << "after 5 characters: \n";
system ('"1s -1 test_file")
test.add('f');
cout << "after 6 characters: \n";
system ("1s -1 test_file")

}

main (int, char *[])

{
do_test () ;
cout << "after do_test:\n":;
system("1ls -1 test_file");
return O;

}

Version 30.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C4+ TR-2R

Derived Class Access
Using a Buffer

If we create a 5 character buffer, and add up to five characters, no data will be
written to the disk. As soon as we add a sixth character, the original contents of
the buffer are written to the disk, so that the sixth character can be put into the
buffer. When the buffer is destroyed, the remaining data are flushed to the disk.

Version 30.2
Copyright © 1900 AT&T
All Rights Reserved

16-22 Object-Oriented Programming in C++

File__Buffer:flush

#include '"File_Buffer.h"

File Buffer::File_Buffer (const char *name, int size)
: Buffer (size), str (name)

{
by
File_Buffer::"File_Buffer ()
{
if (contains () > O) flush{():
b
void File_Buffer:: flush()
{
int i;
for (i = O0; i < contains (). i++)
{
str << get (i)
by
str. flush () ;
b

Version 30.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C4++ 16-21

Derived Class Access

File_Buffer::flush

The File_Buffer::flush function uses the contains and get functions

from the base class to extract the data from the buffer, and puts the data into
the file with the "<<" operator.

Versicn 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

16-20 Object-Oriented Programming in C++

Class File_Buffer

#include "Buffer .h"
#include <fstream.h>

class File_Buffer : public Buffer {

public:
File Buffer (const char *name, int size);
“"File_Buffer () :

private:
void flush{():
ofstream str;

}:

Versicn 8.0.2
Copyright © 1960 AT&T
All Rights Reserved

Object-Oriented Programming in C4++ 16-19

Derived Class Access

Class File_Buffer

Class File_Buffer provides an overriding flush function, to write out
characters into a file. If this class were written as part of an operating system, it
would need private data to keep track of what part of the disk it should use, but
since we are constructing a simplified example, we’ll just declare an output file
stream.

The File_Buffer constructor will initialize the output file stream, and the

destructor will ensure that any data remaining in the File_Buffer is written
out before the buffer is destroyed.

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

16-18 Object-Oriented Programming in C++

Protected Member Functions

#include "Buffer.h"

int Buffer::contains ()

{
return _contains;
}
char Buffer: :get (int index)
{
return data[index];
}

Version 3.0.2
Copyright © 1960 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 16-17

Derived Class Access

Protected Member Functions

The contains and get functions simply return the appropriate information.
Since they are listed in the protected section of the class, they can be used by the

derived class member functions, or the member functions of class Buffer, but
not by other functions.

Versicn 30.2
Copyright © 1000 AT&T
All Rights Reserved

16-186 Object-Oriented Programming in C++4

Class Buffer's Protected Members

class Buffer {

public:
Buffer (int size) ;
virtual ~“Buffer () :

void add(char) ;

protected:
int contains () ;
char get (int index) ;

private:
virtual void flush() = O;
// flush() copies all characters
// from the buffer to the device

int _size_limit;

char *data;

// data must always point to

// an array of _size_limit chars

int _contains;
// —_contains gives the number of
// characters in the buffer

Version 30.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 16-15

Derived Class Access

Class Buffer’s Protected Members

Class Buffer provides two functions for use by the derived class flush
function: contains and get. contains returns the number of characters
contained in the Buffer, and get gives the derived class functions access to
the characters.

Version 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

16-14 Object-Oriented Programming in C++

Protected Members

e public members

— accessible from any function

— provides the class’s interface for users
e protected members

— accessible from class and derived
classes

— interface for derived classes

e private members
— only accessible from the class itself
— describe the representation

Version 8302
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 16-13

Derived Class Access

Protected Members

In situations where special features must be provided for derived classes, the base
class can declare protected members. A protected member can only be accessed
by the defining operations of the class itself and the derived classes.

Version 30.2
Copyright © 1900 AT&T
All Rights Reserved

16-12 Object-Oriented Programming in C++

Overriding flush

The derived class flush functions
e Obey rulesin base class
e must take characters from buffer

How can they read the characters?
e NO access to private data
e NO public functions provided

Version 302
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++

16-11

Derived Class Access

Overriding flush

The flush functions in the derived classes must obey the rules that our base
class gives in its comments about the flush function. They must therefore take
the characters from the buffer, and write them into whatever device they work
with.

The problem we face now is: How can the derived class functions access the data
in the base class? They do not have direct access to the base class data, and
there are no public member functions that return the characters.

. Version 302
Copyright © 1900 AT&T
All Rights Reserved

16-10 Object-Oriented Programming in C++

Buffer Member Functions

#include "Buffer.h"
#include <iostream.h>
$include <libc.h>

Buffer: :Buffer (int size)

{
data = new char [size];
if (data == 0) {
cerr << "Couldn't allocate space.\n'";
exit (1) ;
}
—size_ limit = size;
_contains = O;
}
Buffer::"Buffer ()
{
delete data;
+
void Buffer::add (char ch)
{
if (_contains == _size_limit) {
flush () ;
—contains = O;
}
data[_contains++] = ch;
}

Version 3.0.2
Qopyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 16-9

Derived Class Access
Buffer Member Functions

The Buffer constructor allocates an array to hold the characters, and sets the
_size_limit and _contains members. Therefore, when a Buffer is
created, it will obey all the rules stated in the private section.

The Buffer destructor frees the storage for the buffer, so that all the memory
for a Buffer object will be freed when a Buffer is destroyed.

The add member function checks to see if the Buffer is full before it adds the
character. If the Buffer is full, add calls the flush function to empty it.
Even though the code for the flush has not been written yet, we are relying on
the fact that it should follow the rules listed below its declaration in the base
class: it must write out the characters in the Buffer.

Version 0.2
Copyright © 1900 AT&T
All Rights Reserved

16-8 Object-Oriented Programming in C++

class Buffer

class Buffer {

public:
Buffer (int size):
virtual “Buffer ().

void add(char) ;

private:
virtual void flush () = O;
// flush() copies all characters
// from the buffer to the device

int _size_limit;

char *data;

// data must always point to

// an array of _size_limit chars

int _contains;
// —_contains gives the number of
// characters in the buffer

Versian 30.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++4 16-7

Derived Class Access
class Buffer

The abstract class Buffer provides a constructor, a destructor, and one
additional member function for the users. The constructor and destructor will
allocate and free storage to hold the characters in the buffer, and the add
function will add data into the buffer. When the buffer is full, the add function
will automatically call flush. In this example, flushing is handled
‘automatically, so the flush function is not listed in the public section. These
buffer classes will be used only for output, so there are no member functions for
reading data in from the buffer.

flush is a pure virtual function, because we can not write a flush function for
the base class. When we derive the class File_Buffer, we will provide the
flush member function.

The member named data must always point to an array of at least
_size_limit characters, and the member _contains must count the number
of characters in the buffer. Even though we have not written a flush function
yet, we are stating exactly what it must do in the comment that follows it. We
will expect the flush functions in the various derived classes to obey this rule.

Versico 30.2
Copyright © 1900 AT&T
All Rights Reserved

16-6 Object-Oriented Programming in C++

Example Classes

(class BUD

class File_Buffer @erminal_Buﬁer

Version 302
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 16-5

Derived Class Access

Example Classes

In this unit, we will see that a derived class can access its base class in ways that
other code can not. Our example will focus on a group of classes that represent
different kinds of buffers in an operating system. A File_Buffer holds
characters that are to be written into a disk file. A Terminal_Buffer holds
characters that will be output to a terminal. If new devices are added to the
system, new classes can be added to handle their output.

To avoid getting distracted by the details of writing operating system code, we
will simply implement the class File_Buffer by using the stream I/O library.

Versicn 30.2
Copyright © 1000 AT&T
All Rights Reserved

16-4 Object-Oriented Programming in C++

Objectives

At the end of this unit we will be able to:

e Describe the rules for access of a derived
class to its base

o Create and use protected member
functions

o Override a private function from the base

Version 30.2
Copyright © 1060 ATET
All Rights Reserved

Object-Oriented Programming in C++

16-3

CONTENTS

Unit 18 - Derived Class Access

Exercises 16 Ex - Lab Exercises

Answers 16 Ans - Exercise Answers

iii

Unit 16

Object-Oriented Programming in C++

Derived Class Access

