void draw():;

private:
int _height;
}:

class Rectangle : public Shape {
public:
Re_tangle (const Point &starting_location,
const Point &starting size):

Point size () const;
void change_size (const Point &new_size);

void draw();
private:

Point _size;

}:

3. If a programmer forgot to override draw in a class derived from Shape, the
compiler would generate an error message (since pure virtual functions must be
overridden). If a programmer tried to create and draw a Shape, the compiler
would generate an error for the creation of a Shape object, since it is not legal to
create an object of an abstract class. With the following two statements added to
file copies.c, the compiler should generate an error:

Shape s; // Create a ’Shape’ variable
s.draw(); // Attempt to draw it

Lab Answers Object-Oriented Programming in C++ 15 Ans-2

UNIT 15

Lab Exercises (Answers)

1. The lines marked "illegal" in the file use_priv.c will not compile, since the insert
function is considered a private member function of classes Stack and Set.

2. To make the draw function in class Shape into a pure virtual function, the
initializer "=0" must be added to the declaration of the member function in
Shapes.h (shown below). The code for the member function Shape::draw can
now be deleted from shapes.c.

The Unit 13 test program (copies.c) will still work with Shape::draw declared as a
pure virtual function.

The revised Shapes.h file is:

FILE: Shapes.h
#include "Point.h"

class Shape {
public:
Shape (const Point &starting_location):

Point location() const;
void move (const Point &new_location);

virtual void draw() = 0;

private:
Point _location;

}:

class Horizontal line : public Shape {
public:
Horizontal_line(const Point &starting_ location,
int starting length);

int width() const;
void change_width (int new_width);

void draw():;

private:
int _width;
}:

class Vertical line : public Shape {
public:
Vertical line(const Point &starting location,
int starting height);

int height () const;
void change_height (int new_height);

Lab Answers Object-Oriented Programming in C++ 15 Ans-1

Shape s;
s.draw() ;

Add the above two statements to the copies.c test program and try to compile it.
NOTE: the statements are already in the file as comments.

You can attempt to compile the test program by entering make prob3’ or ‘make
copies’ or you can attempt to compile it directly using the command:

$cc -¢c -I../../pre_windows copies.c

| SUMMARY |
DIRECTORY unitl5/shapes '
DECLARATION pre_windows/*.h, Shapes.h
IMPLEMENTATION | Not Applicable

TEST PROGRAM copies.c (modify)

Lab Exercises Object-Oriented Programming in C++ 15 Ex-2

UNIT 15
Lab Exercises
1. Change to the unitl5/lecture directory. Change the file use_priv.c (shown on page

15-17 of your Student Guide) so that the lines marked as "illegal” are no longer
commented out. Try to compile the file and observe the results.

You can attempt to compile this file by entering 'make probl’ or ’'make
use_priv.o’ or you can attempt to compile it directly using the command:

$CC -c use priv.c

| SUMMARY |

DIRECTORY unit15/lecture
DECLARATION | priv_derh

IMPLEMENTATION | Not Applicable
TEST PROGRAM use_priv.c (modify)

2. Change to the unitl5/shapes directory. The base class Shape contains the virtual
member function draw. Since this function should be declared in the base class,
but we can not put any code in the base class function, change it into a pure virtual
member function (since class Shape will have a pure virtual function, it will be an
abstract class.) Are any changes needed to re-compile the test program copies.c
(the same test program from Unit 13)?

You can compile the test program by entering ’'make prob2’ or ‘'make copies’ or
you can compile it directly using the command:

$cCc -I../../pre_windows shapes.c copies.c \
-L../../pre_windows -lpre wind \
-lcurses -o copies

$ copies

I SUMMARY |

DIRECTORY unitl5/shapes
DECLARATION pre_windows/*.h, Shapes.h (modify)
IMPLEMENTATION | pre windows/lib_pre wind.a, shapes.c (modify)
TEST PROGRAM copies.c

3. Remain in the unitl5/shapes directory. What would happen if a programmer
derived a class from Shape and forgot to override draw? What would happen if a
programmer tried to create a Shape variable and draw it? For example:

Lab Exercises Object-Oriented Programming in C++ 15 Ex-1

Lab Exercises

Versicn 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

15 Ex-30 Object-Oriented Programming in C++

Exercises 15 Ex

Object-Oriented Programming in C++

Lab Exercises

Object-Oriented Programming in C++ 15-29

Kinds of Hierarchies

Version 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

15-28 Object-Oriented Programming in C++

Summary

Classes may share:
e both behavior and implementation

— derived classes inherit base’s functions
and data

— polymorphic functions may depend on
base's functions

— inherited implementation simplifies
derived classes

e ONnly implementation
— private data or private derivation
— simplify creation of classes
— do not affect users of classes

o only behavior

— abstract classes define only functions
(behavior)

— polymorphic functions may depend on
base’s functions

— no implementation is inherited

Object-Oriented Programming in C++ 15-27

Kinds of Hierarchies

Summary

Version 30.2
Copyright © 1900 AT&T
All Rights Reserved

15-26 Object-Oriented Programming in C++

Using an Abstract Class

void say_hello (Display_medium &m)

{
m.add ("hello, world\n"):

b

extern Screen Display;
extern Printer line_printer;

main (int, char *[])

{
say_hello (Display)
say_hello (line_printer) ;
line_printer.print ()
return O;

+

Version 30.2
Copyright © 1060 AT&T
All Rights Reserved

Object-Oriented Programming in C4++

15-25

Kinds of Hierarchies
Using an Abstract Class

Even though abstract classes do not simplify the creation of derived classes, they
are important because they let users of the classes create polymorphic functions.
Since Screen and Printer are publicly derived from Display_medium,
they must contain all the member functions declared in Display_medium. We
can therefore use objects of these classes (or any other classes publicly derived
from Display_medium) as arguments to the function say_hello.

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

15-24 Object-Oriented Programming in C++

Deriving From an Abstract Class

#include "Display_med.h"

class Screen : public Display_medium {
public:

Screen () ;

“Screen () ;

Point size() const;

Point cursor () const;
int move_cursor (const Point &p) ;

Display_char character () const ;
String line() const ;

void add (Display_char ch) ;
void add(const Point &, Display_char ch);
void add(const String &s) ;
void add(const Point &, const String &s) ;

void add_line (const Point &start,
const Point &end,
Display_char ch);

void clear () :

private:
// implementation

}:

Version 30.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 15-23

Kinds of Hierarchies
Deriving From an Abstract Class

We can now derive classes Screen and Printer from Display_medium. A
class derived from an abstract base must override all the pure virtual functions it
inherits.

We will have to declare the private data for classes Screen and Printer, and
write their member functions, before we can create programs that use them. The
use of an abstract base class has not made this process of implementing the
classes significantly easier.

#include "Display_med.h"

class Printer : public Display_medium {
public:
Point size() const;

Point cursor () const;
int move_cursor (const Point &p) ;

Display_char character () const;
String line() const ;

void add (Display_char ch);
void add(const String &s) ;

void clear ()
virtual void print().

private:
// implementation

}:

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

15-22 Object-Oriented Programming in C++

An Abstract Base Class

#include "Point.h"
#include "String.h"
#include 'Display_ch.h"

class Display_medium {

public:
virtual

virtual
virtual

virtual
virtual

virtual
virtual

virtual

virtual

private:

X

Point size() const = O;

Point cursor () const = O;

int move_cursor (const Point &p) = O;

Display_char character () const = O ;

’

String line() const = 0O ;

void add (Display_char ch) = O;
void add(const String &s) = O;

void add_line (const Point &start,
const Point &end,
Display_char ch);

void clear () ;

Versico 3.0.2
Copyright © 1000 ATET
All Rights Reserved

Object-Oriented Programming in C++

15-21

Kinds of Hierarchies

An Abstract Base Class

The abstract base class for our classes Screen and Printer is shown on the

facing page. It contains all the member functions that will be needed by both
classes.

Since we can not write most of the member functions for -class
Display_medium, we have declared them as pure virtual member functions.
Pure virtual member functions are identified by the initializer "= 0". C++ will
not let us create an object of an abstract class, since its pure virtual functions
will be declared but not defined. If we could create an object, we might end up
calling a function that does not exist.

An abstract base class may have some functions that are not pure virtual
functions. For example, we can write the functions Display_medium: :clear
and Display_medium: :add_line, even though class Display_medium has
no data.

void Display_medium: :clear ()

{
int x, vy
for (x = 0; x < size() .x(). xt++) {
for (y = 0; y < size().y():; y++) {
move_cursor (Point(x, y)):.
add(' ').
}
}
}

Versicn 30.2
Copyright © 1900 AT&T
All Rights Reserved

15-20 Object-Oriented Programming in C++

Sharing Behavior

Classes Screen and Printer
e share many operations
— add text

— clear page
o have different implementations

To share only behavior, we can

e list common operations in an abstract base
class

— little or no data
— pure virtual member functions

Versico 302
Copyright © 1900 ATET
All Rights Reserved

Object-Oriented Programming in C++ 15-19

Kinds of Hierarchies

Sharing Behavior

Classes may also share a common interface even thought they are implemented in very different
ways. For example, consider a class representing terminal screens, and a class representing a
sophisticated interface to a printer. Even though printers do not have "cursors” like terminals,
our printer driver simulates a cursor that moves around the page and lets us add text anywhere.

Once we have added all the text we need on a page, we use the print member function to send
the page to the printer.

class Screen {
public:
void clear():

void add (Display_char ch):
void add(const String &s):

Point size () const:
Point cursor () const;
int move_cursor (const Point &p):

private: // implementation of Screen

}:

class Printer {
public:
void clear():

void add(Display_char ch):
void add(const String &s):

Point size () const;
Point cursor () const:
int move_cursor (const Point &p):

void print():

private: // implementation of Printer

}:

These classes have very similar sets of member functions, but they may have completely different
implementations. If we create a base class for these two classes, any data in the base class will be
inherited by both classes. If there are no common data members, then we should not list any data
in the base. If the base class has no data, we will we will not be able to write many of the member
functions. A virtual member function that is declared but not defined is called a pure virtual
member function. A base class containing one or more pure virtual functions (and used for classes
that share only behavior) is called an abstract class.

Version 30.2
Copyright © 1000 AT&T
All Rights Reserved

15-18 Object-Oriented Programming in C++

Using classes Stack and Set

main (int, char *[])
{

Stack st;

Set s;

List 1;

l.insert (O, 256);
l.insert (1, 128);
l.insert (O, 128);

st.push (1) ;
st.push (2) ;
st.push(3):
// st.insert (1, 4); // illegal

s.add (2) ;
s.add (3);
s.add (5) ;
// s.insert (1, 5); // illegal

return O;

Version 3.0.2
Copyright © 1000 AT&T
All Righte Reserved

Object-Oriented Programming in C++

15-17

Kinds of Hierarchies
Using classes Stack and Set

Private derivation and the inclusion of a private member function are quite
different from public derivation. Since neither will allow the use of List
operations on Stack and Set objects, the users of these classes will not be able
to write code that depends on our implementation. Stacks and Sets do not

share the behavior of class List. C++ will not let us pass a Stack or Set as
an argument to a function expecting a List.

Version 3.0.2
Copyright © 1990 AT&T
All Rights Reserved

15-16 Object-Oriented Programming in C++

Member Functions using Private Data

void Stack: :push (const element &e)
{
l.insert (l.size(), e);
// or, equivalently,
// this->1l.insert (this->1l.size (), e);

Bg
void Set::add(const element &e)
{ .

if (1.find(e) == -1) {

l.insert (O, e);

}

X
Versicn 3.0.2

Copyright © 1990 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 15-15

Kinds of Hierarchies

Member Functions using Private Data

The use of a private data member lets the author of the classes take advantage of
the common implementation. The Stack and Set member functions can be
written quite easily in terms of operations on the List data member. Since the
data member is private, the users of these classes can not use the List
operations on a Stackora Set.

Version 3.0.2
Copyright © 1090 AT&T
All Rights Reserved

15-14 Object-Oriented Programming in C++

Private Data

class List {

public:
int find(const element &) ;
element lookup (int index) ;
void set (int index, const element &) ;
void insert (int index, const element &) ;
void remove (int index) ;
int size();

private:
// ...
}:

class Stack {
public:
void push(const element &)
element pop () :
int size () ;
private:
List 1;
}:

class Set {
public:
void add(const element &) ;
int contains (const element &)
int size ()
private:
List 1;
>

Versicn 8.0.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programmine in C++ 1R-12

Kinds of Hierarchies

Private Data

If Stack and Set each have a private data member of type List, the member
functions of Stack and Set can access that List; other functions can not.

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

15-12 Object-Oriented Programming in C++

Member Functions using Private Derivation

void Stack: :push (const element &e)
{
insert (size (), e):
// or, equivalently,
// this->insert (this->size(), e):

}
void Set::add(const element &e)
{
if (find(e) == -1) {
insert (0, e):
+
}

Version 30.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 15-11

Kinds of Hierarchies

Member Functions using Private Derivation

The use of private derivation provides the advantages of inheritance to the
author of the classes, without affecting the users’ code. The Stack and Set
member functions can be written quite easily in terms of the List operations,
but the users of these classes can not use the List operations to create illegal
Stacks or Sets.

Version 30.2
Copyright © 1900 AT&T
All Rights Reserved

15-10 Object-Oriented Programming in C++

Private Derivation

class List {
public:
int find(const element &); // returns -1 if not found
element lookup (int index) ;
void set (int index, const element &) ;
void insert (int index, const element &) ;
void remove (int index) ;
int size():

private:

// -
}:

class Stack : private List {
public: '
void push (const element &) ;
element pop () .
int size():

private:

}:

class Set : private List {

public:
void add(const element &) :
int contains (const element &) :
int size():

private:
}:
Versicn 8.0.2
Copyright © 1060 ATZT
All Rights Reserved

Object-Oriented Programming in C++ 15-9

Kinds of Hierarchies
Private Derivation

If we derive Stack and Set from class List with a private derivation, then the

public members of class List will be inherited into the private sections of those
classes.

The member functions of Stack and Set can use the List member functions,
but other functions can not.

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

15-8 Object-Oriented Programming in C++

Sharing Implementation

Classes Stack and Set
e can be implemented with a linked list
e should not allow the use of list operations

To share only implementation, we can:
e use a private derivation, or
e use a private data member

Version 30.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C4++

15-7

Kinds of Hierarchies
Sharing Implementation

A stack and a set can both be implemented easily in terms of a linked list. But
they have very different public interfaces: A stack keeps track of the order in
which elements were added, and only allows access to the most recently added

element. A set does not order its elements, and a single element may occur only
once in a set.

Deriving classes Stack and Set publicly from List would allow the use of
List operations on Stacks and Sets. A user could insert an element in
the middle of a Stack, or insert one element twice in one Set. We can
allow classes Stack and Set to share the linked-list implementation in two
ways: we can use private derivations, or we can declare List data members in
the private sections of classes Stack and Set.

The code below shows examples of the uses of Lists, Stacks, and Sets:

main (int, char *[])
{

Stack st;

Set s

List 1;

l.insert (0O, 256):
l.insert (1, 128);
l.insert (0, 128);

st.push(1):
st .push (2) ;
st.push (3) ;
// st.insert (1, 4); // illegal

s.add (2) .
s.add (3):
s.add (5) ;
// s.insert(1, 5); // illegal

return O;

Version 3.0.2
Copyright © 1000 ATZT
All Rights Reserved

15-6 Object-Oriented Programming in C4+

Inheritance

Inheritance is used to group common features:
e cOmmon behavior

— derived classes share base’s public
operations

— user can create polymorphic code
e common implementation
— derived classes share base’s data

— derived class operations can call base's
operations

Classes may share:
e behavior and implementation
e Only behavior
o only implementation

Versicn 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C4++ 15-5

Kinds of Hierarchies
Inheritance

A derived class contains all the members from its base class; both the public
members and the private members. With a publicly derived class, the base
class’s public members are still public, and the private data is still hidden from
the outside world (it is even hidden from the derived class’s member functions).

Since a derived class object can "act like" a base class object (code that was
written for a base class object will work for a derived class), we say that the
derived classes share the behavior defined by the base. This common behavior
lets users of the classes create polymorphic functions. Functions with base class
arguments can only use the operations that are defined in the base (and therefore
shared), so these functions can work with arguments of any derived class.

Since the derived class also contains the private section of the base class, it
shares the base class’s implementation. This simplifies the creation of the derived
classes, as the common data and functions are defined only once, in the base.

There may be situations where we have several classes that share only common
behavior, but not a common implementation, or situations in which we have
several classes with a common implementation but very different interfaces. In
this unit, we will see how to handle such situations.

Version 302
Copyright © 1900 AT&T
All Rights Reserved

15-4 Object-Oriented Programming in C++

Objectives

At the end of this unit we will be able to:

e Distinguish inheritance of behavior from
inheritance of implementation

. Create groups of classes that share only
behavior

 Create groups of classes that share only
implementation

Version 302
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 15-3

Unit 15 - Kinds of Hierarchies

CONTENTS

Sharing Implementationc..coeirireeeeeieieeeeeee ettt eee e e e e et e e eneeseeene 15-7
Private DerIVAIONc.ccociiviiiriiiiiee ittt ettt et et e et e e eseaeeseseesesene s esesssess 15-9
Private Data ...ttt ettt ettt e e et et e et a st e e me e ns 15-13
Using classes Stack and Setc.cccoieiiiiminirieeeieeee ettt r e 15-17
Sharing Behaviorcoiiieiieeeeee et s e ee e e e e oo s e 15-21
ADn ADStract Base Classcccccceoivrviririniiieceeieeeeeeereeset et e s e eeee e et e e see st e seesaese s e e e seens 15-23
Deriving From an ADStract Classccoccueieeeveeieueeeeeieeieieeeeeeeeee et eeeeeeeeeeeeeeseeseseesese s 15-25
UsINg AN ADSETACH CLASS ..oiuieeeiiiirieieiieceteeteeet ettt et ettt s e e e e e et e eeesessseeneeseeens 15-27

Exercises 156 Ex - Lab Exercises

Answers 15 Ans - Exercise Answers

iii

Unit 15

Object-Oriented Programming in C++

Kinds of Hierarchies

