


void draw();

private:
int _width;
};

class Vertical line : public Shape {

public: .

Vertical_ line(const Point &starting_location,
int starting_height);

int height () const;
void change_height (int new_height);

void draw();

private:
int _height;
};

class Rectangle : public Shape {
public:
Rectangle (const Point &starting location,
const Point &starting_size);

Point size() const;
void change size (const Point &new_size);

void draw();
private:

Point _size;

}:

Lab Answers Object-Oriented Programming in C++ 13 Ans-3



collapse (bw) ;

sleep(5);
return 0;

3. When the keyword virtual is missing from the declaration of the change_size
member function in the Window base class, C++ will use static binding to
determine which change size function will be called in collapse. Since static
binding relies on the type information in the variable declaration, and the
parameter of collapse is declared with type Window, C++ will use the
Window::change size function. The sizes of Shell Windows and
Bottom_Windows will be changed incorrectly when they are passed to collapse.

4. If the draw function was not declared in class Shape, C++ would not allow the use
of s.draw inside the copies function (in file copies.c), as s (the parameter of
copies) is declared as Shape &s. Therefore, to compile copies.c, we must declare
draw in the base class.

If the draw function were not declared as a virtual function in class Shape, C++
would select the draw functions used for shapes according to the type shown in the
declaration. Since s is declared as Shape &s, C++ would always select
Shape::draw for s in the copies function, even if s actually refers to a Rectangle,
Vertical line or Horizontal line. To make C++ select the draw function
according to the type of object that is actually passed to copies, we must declare
draw as a virtual function in the base class. If we do not do this, none of the
shapes will be drawn by copies. The code for the functions, in shapes.c, does not
need to be modified. After the keyword virtual is added to the declaration of
draw, Shapes.h will look like this:

FILE: Shapes.h

#include "Point.h"

class Shape {
public:
Shape (const Point &starting_ location);

Point location() const;
void move (const Point &new_location);

virtual void draw();

private:
Point _location;
}z;

class Horizontal line : public Shape ({
public:
Horizontal line(const Point &starting location,
int starting_length);

int width() const;
void change_width (int new_width);

Lab Answers Object-Oriented Programming in C++ 13 Ans-2




UNIT 13

Lab Exercises (Answers)

1. The Shell Window only shrinks to 5 lines high (as requested) by 40 characters
wide (the minimum), since its size is changed by Shell Window::change_size.

2. When a Bottom_Window is shrunk by the collapse function, the text from the
bottom part is shown, since the size is changed with the
Bottom Window::change size function. The files collapse.c and u_collapse.c
have been modified as shown:

FILE: collapse.c

t#include "Shell Wind.h"
#include <stdlib.h>

// collapse function
// clear a window and make it small

void collapse (Window &w)
{
// The following statement is removed to see effect of change_size
// w.clear();
w.change_size(Point (5, 5));
// which change size function will be called
// (a) Window::change size(const Point &)
// (b) Shell Window::change_size (const Point &)

FILE: u_collapse.c

#include "Shell Wind.h"
#include "Bot_Wind.h"
#include <stdlib.h>

void collapse (Window &);

main(int, char *[])

{
Window w(Point (10, 16), Point (40, 6), "W"):
Shell Window sw(Point(l, 1), Point (10, 10), "SW");
Bottom Window bw(Point (50, 1), Point (10, 10), "BW"):;

w.add("Text in the Window");

sw.add ("User Terminal Login time\n");
sw.execute ("who | sort");

bw.add ("Placing text in the Window\n");

bw.add ("More text in the Window\n");

bw.add ("Even More text in the Window\n"):

sleep(2);

collapse (w);
collapse (sw) ;

Lab Answers Object-Oriented Programming in C++ 13 Ans-1



Lab Exercises Object-Oriented Programming in C++ 13 Ex-4




can compile and execute it directly using the commands:

$cC -I../../pre_windows shapes.c copies.c \

$ copies

-L../../pre_windows -lpre wind \
-lcurses -o copies

A SUMMARY ’
DIRECTORY unitl3/shapes

DECLARATION pre_windows/*.h, Shapes.h (modify)

IMPLEMENTATION | pre_windows/lib_pre wind.a, shapes.c

TEST PROGRAM copies.c

FILE: copies.c

#$include "Shapes.h"
#include "Screen.h"
#include <stdlib.h>

// produce many copies of a shape on the screen

void copies (Shape &s)

{

Point p = s.location();
int i;

for (i=5 ; i > 0 ; i--) {

}

s.move(p + Point(i * 5, i * 2));
s.draw();

main(int, char *[])

{

Rectangle r(Point (12, 8), Point (8, 4));
Horizontal line h(Point (40, 8), 20);
Vertical line v(Point (8, 10), 8);

r.draw() ;
h.draw();
v.draw();

sleep(2);
copies(r);
copies (h);
copies(v);

sleep(2);
return O;

Lab Exercises Object-Oriented Programming in C++

13 Ex-3



DECLARATION pre_windows/*.h, Shell Wind.h, Bot Wind.h
IMPLEMENTATION | pre_windows/libpre_wind.a, window.c,
shell_wind.c, bot_wind.c

TEST PROGRAM collapse.c (modify), u_collapse.c (modify)

3. Remain in the unitl3/window directory. Remove the keyword virtual from the
declaration of the change size member function in the Window.h header file. Re-
compile the test program from the last exercise, and observe the results when it is
run. To what size does the Shell Window shrink? Which data are left in the
Bottom Window?

You can compile and execute the test program by entering ’'make prob3’ or you
can compile and execute it directly using the commands:

$cc -1../../pre_windows u_collapse.c collapse.c \
window.c shell wind.c input wind.c \
bot_wind.c -L../../pre_windows -lpre wind \
—-lcurses -o collapse

$ collapse

After you have compiled and executed the test program, put the keyword virtual
back in the declaration of the change size member function in the Window.h

header file.

SUMMARY
DIRECTORY unitl3/window
DECLARATION pre_windows/*.h, Window.h (modify),
IMPLEMENTATION | pre_windows/libpre_wind.a, window.c,
shell_wind.c, bot_wind.c

TEST PROGRAM collapse.c, u_collapse.c

4. This exercise uses the classes created for exercise 4 of the Unit 12 Lab. The
’ unitl 3/shapes directory contains the final results from the Unit 12 Lab and is the
starting point for this exercise.

Change to the unitl 3/shapes directory. Add the keyword virtual to the appropriate
member function(s) of your base class in the file Shapes.h. Compile and execute
the program copies.c (shown below for reference.) What would happen if none of
the base class member functions were virtual?

You can compile and execute the test program by entering ’make prob4’ or you

Lab Exercises Object-Oriented Programming in C++ 13 Ex-2




UNIT 13

Lab Exercises

1. Change to the unitl3/window directory. The files collapse.c and u_collapse.c
contain the collaps= and main functions shown on page 13-15 of the Student
Guide. Compile these functions and run the resulting program (collapse). How
large is the Shell Window after it collapses?

You can compile and execute this program by entering ’make probl’ or you can
compile and execute it directly using the commands:

$CC -1../../pre_windows u_collapse.c collapse.c \
window.c shell wind.c -L../../pre_windows \
-lpre wind -lcurses —o collapse

$ collapse
l SUMMARY
DIRECTORY unitl3/window

DECLARATION pre_windows/*.h, Shell Wind.h
IMPLEMENTATION | pre_windows/libpre_wind.a,
window.c, shell_wind.c

TEST PROGRAM collapse.c, u_collapse.c

2. Remain in the wunitl3/window directory. The files Bot Wind.h and bot_wind.c
contain the solutions from the Unit 12 lab exercises. Change the test program in
the file u_collapse.c so that it declares a Bottom_Window variable, in addition to
the Window and Shell Window variables. It should also call the collapse
function with the new Bottom Window variable. Which part of the
Bottom_Window is visible after it has been collapsed? Note: you will need to add

some text to the Bottom_window, and remove the call to the clear function from
the collapse function (in the file collapse.c), so that you can tell which data are
shown in the Bottom_Window after the call to collapse.

You can compile and execute the test program by entering ‘'make prob2’ or you
can compile and execute it directly using the commands:

$cc -1../../pre_windows u_collapse.c collapse.c \
window.c shell wind.c input_wind.c \
bot_wind.c -L../../pre_windows -lpre wind \
—lcurses -o collapse

$ collapse

Lab Exercises Object-Oriented Programming in C++ 13 Ex-1



Lab Exercises

Version 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

13 Ex-30 Object-Oriented Programming in C++




Exercises 13 Ex

Object-Oriented Programming in C++

Lab Exercises

Object-Oriented Programming in C++ 13-29



Dynamic Binding

Version 30.2
Copyright © 1900 AT&T
All Rights Reserved

13-28 Object-Oriented Programming in C++




Summary

With inheritance and dynamic binding, we can

e add new derived classes without modifying
code

e write polymorphic functions
e write functions for only one of the classes

Dynamic binding

e more execution time & memory than static
binding

o works even if declared type != object type

e in C++, must be selected by programmer

Versian 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 13-27



Dynamic Binding

Summary

Now that we know how and when to use dynamic binding, we can use inheritance
to write a group of classes that represent different kinds of windows, members
without any of the problems that arose before we used inheritance:

e We can add additional kinds of windows without having to modify the
existing classes

e We can write functions that use only the member functions common to all
windows (e.g., blank and collapse), and call them with any kind of window.

o If we write functions that require the member functions of one particular kind
of window (e.g., require_yes_or_no), we can call it only with the appropriate
kind of window.

Version 30,2
Copyright © 1960 AT&T
All Rights Reserved

13-26 - Object-Oriented Programming in C++




Copying a Derived Class Object

void collapse2 (Window w)

{
w.clear () ;
w.change_size (Point (5, 5));
}
main (int, char *[])
{
Window w (Point (10, 16), Point (40, 6), "W");
Shell_Window sw(Point (1, 1), Point (10, 10), "SW");
sleep (2) ;
W = sw;
sleep (2) ;
collapse2 (sw) :
sleep (2) ;
return O;
)y

Versicn 30.2
Copyright © 1060 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 13-25



Dynamic Binding

Copying a Derived Class Object

Since a derived class object can be used wherever a base class object is required,
we can assign a derived class value to a base class object, or initialize a base class
object with a derived class value. When we do this, the base class members of
the derived class are assigned or copied into the base class object. The type of
the base class object does not change, so if a virtual function is called, the base
class function will be used.

If assignment of base class objects is illegal (if the base class’s assignment
operator is in its private section), then neither base nor derived class objects can
be assigned to base class variables. If copying of base class objects is illegal (if
the base class’s copy constructor is in its private section), then neither base nor
derived class objects can be used to initialize base class variables.

Versicn 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

13-24 Object-Oriented Programming in C++




Polymorphic Arrays

void collapse (Window &) ;

main (int, char *[])

{
Window w(Point (10, 16), Point (40, 6), "W");
Shell_Window sw(Point (1, 1), Point (10, 10), "SW");
Input_Window iw (Point (45, 1), Point (30, 4), "IW"):
Window *all_windows [4] ;
all_windows [0O] = &w;
all_windows[1l] = &sw;
all_windows [2] = &iw;
all_windows[3] = O;
sleep (2) ;
int i.
for (i = 0; all_windows[i]; i++)
collapse(*all_windows[i]);
sleep (2) .
return O;
+

Version 30.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 13-23



Dynamic Binding
Polymorphic Arrays

Since a derived class object can be used anywhere a base class object is expected,
we can point a base class pointer to a derived class object. We can therefore
create an array of base class pointers, and point those pointers to several
different types of objects.

We can create an array with one type of pointer, and those pointers can point to
different types, but we can not create an array that contains different types of
elements, since there is no way to declare such an array.

Versian 3.0.2
Copyright © 1900 AT&T
All Righte Reserved

13-22 Object-Oriented Programming in C++




Choosing virtual Functions

Which functions should be virtual ?

e anticipate which member functions will be
overridden

e make all member functions virtual
e add virtual to base class while developing
derived classes

Approach should depend on use of class

Versicn 3.0.2
Copyright © 1800 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 13-21



Dynamic Binding

Choosing virtual Functions

Base classes are often created because a programmer sees that several classes share common
. member functions (as is the case with the window example). When this happens, the common
functions are put in the base class, and the classes that originally inspired the base class become
the derived classes. In this case, the descriptions of the derived classes are known when the base

class is written, so the author of the base class can easily tell which functions will be overridden,
and make them virtual.

In some cases, however, you may need to add a new derived class to an existing base, or even
derive a class from some class that was not designed as a base class. If you need to override a base
class member function that was not declared virtual, you will have to change the base class.
Earlier in this unit, we saw that we could add new derived classes without having to modify or re-

compile existing code. That is only the case if we do not have to add the keyword virtual to any
base class functions.

To address this potential maintenance problem, we may want to consider three styles when we
create any class in C++:

(1) Try to anticipate which member functions might be overridden in derived classes, and make
them virtual.

This works well if the author of a class knows about the classes that will be derived from it.

(2) Make all member functions virtual in case a derived class needs to override one of them.

This style simulates what happens in languages where dynamic binding is used for all function
calls. We accept the storage and time overhead, but have the benefit that we never need to
change existing classes when we derive from them. Some programmers use this style when
developing classes, and then remove the keyword virtual (where possible) as a form of
optimization, before a completed program is shipped.

(3) Don’t make any functions virtual until you write the derived classes, and then go back and
change (and re-compile) the base.

This style is appropriate when performance is critical, or if there will probably not be any need to
derive a class from the one being written. Note that even if you use this style, and have to add
virtual to the base class at a later time, the changes you must make in the base class are far less
significant than the changes we had to make to our single-class window system that we described
before we learned about inheritance.

If your product is a class library rather than a program, you may not be able to tell which member
functions will be overridden by the users of your library. In that case, you may want to provide
two versions of the class: one with the virtual functions only where you expect functions to be
overridden, and the other with all member functions virtual (just in case you were wrong).

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

13-20 Object-Oriented Programming in C++




Virtual Functions

class Window {
public:
Window (const Point &upper_left,
const Point &size,
const String &title) ;
“"Window ()

void move (const Point &new_upper_left) ;

Point upper_left () const;
Point lower_right () const;

Point size() const;
virtual void change_size(const Point 8new_size);

// if new size is less than a minimum,

// shrink only to that minimum size

int move_cursor (const Point &where) ;

Point cursor () const;

Display_char character () const; // char under cursor

String line () const; // line cursor is on
void add (Display_char c) // put c in window
void add(const String &str) ; // put str in window

void clear () ;

void scroll_up ().

void scroll_down ()
private:

// data for a Window

}:

Version 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++

13-19



Dynamic Binding
Virtual Functions

If we simply add the keyword virtual in front of the change_size function in
class Window, the C++ compiler will use dynamic binding to call
change_size. Therefore, if we call collapse with a Shell_Window
argument, the Shell_Window: :change_size function will be used to change
the Shell_Window's size. /

Versicn 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

13-18 Object-Oriented Programming in C++




Type Information and Function Selection

Static (compile-time) Binding

e uses type information from variable
declaration

e assumes declared type == object type
o defaultin C++

Dynamic (run-time) Binding
¢ uses type information in the object itself

e used only for member function’s invoking
object

e programmer selects with the keyword
virtual

Versicn 3.0.2
Copyright © 1900 ATET
All Rights Reserved

Object-Oriented Programming in C++ 13-17



Dynamic Binding
Type Information and Function Selection

Dynamic binding allows a compiler to delay the selection of the function until run
time, when there is more information about the object type. If we use static
binding, calls to change_size will always use information from the declaration
of the invoking object. The collapse function would always call
Window: :change_size, because the variable w is declared as a Window. If
we use dynamic binding, calls to change_size will use information found in the
invoking object itself, at run time. The collapse function would call
Window: :change_size if w is a Window, and
Shell_Window: :change_size if w is a Shell_Window. If w is an
Input_Window, collapse will call Input_Window: :change_size if it
exists, or Window: :change_size if class Input_Window does not override
change_size.

To perform dynamic binding on the change_size function, the compiler must
add information to every Window, Shell_Window, or Input_Window object
that is created. It must then check this information when the change_size
function is called. The overhead of a member function call using dynamic
binding is about equal to that of a call to a member function for our single
"window" class that we wrote before we learned about inheritance (the one that
had a data member that can be used to identify the kind of window, and had
member functions that switched on that member to select the code to be used to,
for example change the size). Therefore, if we use dynamic binding only when it
is necessary, it will not change the size or execution time of our program
significantly.

Unnecessary use of dynamic binding, however, can result in a waste of storage
and execution time. For this reason, C++ lets the programmer choose either
static or dynamic binding (many object-oriented languages provide only dynamic
binding). A member function will be selected with dynamic binding in C++ if it
is declared as a wvirtual function in the base class. Note that, in C++, dynamic
binding only applies to the invoking object, not to function arguments.

Version 3.0.2
Copyright © 1960 AT&T
All Rights Reserved

13-16 Object-Oriented Programming in C++




Another Polymorphic Function

// collapse function
// clear a window and make it small

void collapse (Window &w)

{
w.clear ().
w.change_size (Point (5, 5));
// which change_size function will be called
// (a) Window: :change_size (const Point &)
// () Shell_Window: :change_size (const Point &)
b
main (int, char *[])
{ |
Window w(Point (10, 16), Point (40, 6), "W"):
Shell_Window sw (Point (1, 1), Point (10, 10), "SW"):
w.add ("Text in the Window")
sw.add ("User Terminal Login time\n") ;
sw.execute (""who | sort"):;
sleep (2) ;
collapse (W) ;
collapse (sw) ;
sleep (2) ;
return O;
}

Versico 302
Copyright © 1900 ATZT
All Rights Reserved

Object-Oriented Programming in C++ 13-15



Dynamic Binding
Another Polymorphic Function

The new type checking rule has an impact on the C++ compiler’s ability to select
a function. The C++ compiler selects a function based on the function’s name,
the number of arguments, and the types of the invoking object and the
arguments.

The new type checking rule allows us to write functions (such as blank and
collapse ) in which a pointer or reference declared with the base type (
Window ) may be used with an object of a derived type ( Shell_Window or
Input_Window ). What happens when such a function uses an overridden
member function (e.g., change_size )? Will it call Window: :change_size
or Shell_Window: :change_size? '

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

13-14 Object-Oriented Programming in C++




Type Checking in Object-Oriented Languages

When an object of type T is expected, we can
use

e an object of type T, or
e an object of a class publicly derived from T

This rule
o allows polymorphic code
e introduces new problems..

Version 30.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 13-13



Dynamic Binding
Type Checking in Object-Oriented Languages

In C, when one type of object is required, only an object of that type can be used.
The object may be the result of an implicit or explicit type cast, but it must be
the right type (e.g., if we compile sqrt (2) (or sqrt( (double) 2), on older
C compilers), sqgrt will still be called with a double (the result of the cast). In
C++4, however, when one type of object is expected, we can use an object of that
type, or any class publicly derived from that type. If we compile blank (sw),
the blank function will be called with a Shell_Window argument, even though
its parameter is of type Window. No conversion occurs.

Note that only objects of publicly derived classes can be used. We will study
private derivations in a later unit.

This type checking rule works (i.e., it still stops us from compiling bad code)
because the derived classes must, by definition, inherit all the functions and data
from their base class. So, a function that is written to work with the base class
can only rely on base class functions and data, which must be present in the
public section of the derived classes.

This type checking rule lets us create polymorphic functions, but it also
introduces a new problem, which we will see on the next page.

Version 30.2
Copyright © 1900 AT&T
All Rights Reserved

13-12 Object-Oriented Programming in C++




Functions for the Base Class

To create a polymorphic function:
o with independent window classes

— impossible (can only create overloaded
functions)

e With inheritance:

— use a base class parameter

void blank (Window &) ;

main (int, char *[])

{
Window w (Point (10, 16), Point (40, 6), "W");
Shell_Window sw(Point (1, 1), Point (10, 10), "SW"):;
Input_Window iw (Point (45, 1), Point (30, 4), "IW");
sleep (2) .
blank (w) ;
blank (sw) ;
blank (iw) ;

sleep (2) ;
return O;

Versicn 8.0.2
Copyright © 1900 ATET
All Rights Reserved

Object-Oriented Programming in C4++ 13-11



Dynamic Binding

Functions for the Base Class

It may come as a surprise that if a function has a Window parameter, we can

call it with a Window argument, an Input_Window argument, or a
Shell_Window argument.

Such function calls are legal because the type checking rules of C4++ are more
complicated than those of C.

#include "Window.h"

// "blank" function

// uses only functions common to
// all kinds of windows, so we should
// be able to use it on any window.

void blank (Window &w)

{

w.clear () :

w.move_cursor (Point (O, 0))

w.add ("This window intentionally left blank");
}

Version 80.2
Copyright © 1980 AT&T
All Rights Reserved

13-10 Object-Oriented Programming in C++




Functions for Derived Classes

To write a function for one kind of window:
e with a single class:

— check kind () of window in function
— not type safe
e with inheritance:

— use derived class parameter

int require_yes_or_no (Input_Window &, const String &)

main (int, char *[])

{
Window w (Point (10, 16), Point (40, 6), "W");
Shell_Window sw (Point (1, 1), Point (10, 10), "SW");

" Input_Window iw (Point (45, 1), Point (30, 4), "IW");

require_yes_or_no (iw, "End program?") ;

// require_yes_or_no (w, "End program?"); illegal

// require_yes_or_no (sw, "End program?"); illegal
return O;

}

Version 8302
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 13-9



Dynamic Binding
Functions for Derived Classes

It should come as no surprise that if a function has an Input_Window
parameter, we can only call it with an Input_Window argument. We can easily
create functions that can only be called with one particular kind of window
(which we could not do when we had a single window class).

// "require_yes_or_no"

// requires a yes or no answer to a question
// returns 1 for yes, O for no

// works only with input windows.

int require_yes_or_no (Input_Window &w, const String &question)
{
String answer;
do {
w.clear () ; i
w.move_cursor (Point (O, 0))
w.add (question) ;
answer = w.read_input()
} while ( answer != "yes" && answer != "no" ):

return answer == 'yes'";

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

13-8 Object-Oriented Programming in C++




Adding New Derived Classes

To add a new kind of window
o with a single class:
— add to enumeration
— add to union

— add cases to switch statements in
member functions

— need access to the source to change it
— need to understand existing code

— need to re-compile the member
functions & user’s code

— need to re-test the member functions
we changed

o with inheritance:
— simply add a new derived class

Versicn 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C+4++ 13-7



Dynamic Binding
Adding New Derived Classes
When we tried to use one class to represent the three kinds of windows, some of

the member functions contained switch statements:

void Window: :clear ()

{
}

// clear any kind of window

void Window: :change_size (const Point &new_size)

{
switch (k) {

case text: // change the size of a text window
break;
case input: // change the size of an input window
break;
case shell: // change the size of a shell window
break;
}
}
String Window: :read_input ()
{
switch (k) {
case input: // read & return in the input
break;
default:
fprintf (stderr,
"Called read_input for wrong kind of window\n") :
exit (1)
}
X

The code above is hard to extend, because the addition of new kinds of windows
requires the modification of existing code.

When we saw how to create a derived class, we saw that we could add new
functions (or data) for the derived class, override functions in the derived class,
and create a specialized constructor for the derived class. None of these
activities required any change to the base class, or any existing derived window
classes.

Version 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

13-6 Object-Oriented Programming in C++




Inheritance

Creating related types:
e independent classes
— couldn’t write blank
e single class
— hard to add new types
— couldn’t write require_yes_or_no
e base & derived classes

— none of the above problems, if used with
dynamac binding

Versioo 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 13-5



Dynamic Binding

Inheritance

Before we learned about derived classes, we saw the problems associated with
other ways of creating a group of similar classes (e.g., our window classes):

With several independent classes, we had no way to write a function that worked
with all kinds of windows (such as the function blank ). This would force us to
write three blank functions, one for each kind of window. This problem would
become worse and worse as our program grows. If our final product had five
kinds of windows, and the users wanted to write 30 different functions to
manipulate those windows, they would end up writing 120 unnecessary functions.

With a single class for all kinds of windows, we had to modify existing code to
add a new kind of window, and we had no way to write a function that could be
called with only one kind of window (such as the function require_yes_or_no

).

In the next few pages, we will see that the use of inheritance avoids the problems
we found with both of the original solutions, but only if we use dynamic binding
(dynamic binding will be defined after we see what happens when we try to use
inheritance without it).

Version 30.2
Copyright © 1000 AT&T
All Rights Reserved

13-4 Object-Oriented Programming in C++




Objectives

At the end of this unit we will be able to:

e Distinguish dynamic binding from static

- binding
e Describe why dynamic binding is needed
e Use dynamic binding in C++

Version 302
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++

13-3



CONTENTS

Unit 13 - Dynamic Binding

INBETILAIICE .ottt ettt e et e et e e e e e e et e et e ea e s e e see s eneesenneaes 13-5
Adding New Derived Classes ........coccivieinimiiniereiniecieeecreee ettt eee e este e et e eneeeeeesseeeeessens 13-7
Functions fOr Derived CIaSSES .......ocveiiiiieiirieieeeieeeeiesceteeee e ee e seesesereeeeeseeesesesesessessessenesans 13-9
Functions for the Base CLass .......cocccceiriiirecririeeeeeceeceerce ettt et ee e estesee e seees e aeseeseseseesons 13-11
Type Checking in Object-Oriented Languages .........ccoeeueeieveeieeierinieienieeeeeeeeeeeeeeeseeeeeseesenenns 13-13
Type Information and Function SeleCtion ........ccccooicceeierieierieietieeieeeeseeeeeeeeeeeeeseeeneessseessesaes 13-17
POIYMOTPRIC ATTAYS ..ceovceiriiuiiriiiieteetetceeietcece ettt st ne st eessees e esessssesenesesessasesessesessnes 13-25
SUIMINATY ottt sttt eett et et e st ese e se et e e e ss s st e st e e eeseeesaeneseneesmeeseeemeeasaeasaessessesseeessessessses 13-29

Exercises 13 Ex - Lab Exercises

Answers 13 Ans - Exercise Answers

iii




Unit 13

Object-Oriented Programming in C++

Dynamic Binding




