

: Shape (starting_location), _size(starting size)
{
}

Point Rectangle::size() const
{
return _size;

}

void Rectangle::change_ size(const Point &new_size)
{
_size = new_size;

}

void Rectangle::draw()

{
Display.add line(location(), location() + Point (size().x(), 0), '-');
Display.add line(location(), location() + Point (0, size().y()), ’|’);
Display.add line(location() + size(), location() + Point(size().x(), 0), 'l');
Display.add line(location() + size(), location() + Point (0, size().y()), '-'):;

Lab Answers Object-Oriented Programming in C++ 12 Ans-5

{

return _location;

}

void Shape: :move (const Point &new_location)

{

_location = new_location;

}

void Shape::draw()

{
}

Horizontal_line::Horizontal line(const Point &starting_location,
int starting width)
: Shape (starting location), _width(starting width)
{
}

int Horizontal line::width() const

{

return _width;

}

void Horizontal_line::change_yidth(int new_width)
{
_width = new_width;

}

void Horizontal line::draw()

{
Display.add line(location(), location() + Point (width(), 0), ’'-');

Vertical_line::Vertical_line(const Point &starting_location,
int starting_height)
: Shape (starting_location), _height (starting_height)
{
}

int Vertical line::height() const

{

return _height;

}

void Vertical line::change height (int new_height)

{
_height = new_height;
}

void Vertical line::draw()

{
Display.add line(location(), location() + Point (0, height(})), rlry;

Rectangle::Rectangle (const Point &starting location,
const Point &starting size)

Lab Answers Object-Oriented Programming in C++ 12 Ans-4

}i

class Horizontal_line : public Shape ({
public:
Horizontal line(const Point &starting location,
int starting_length);

int width() const;
void change_ width(int new_width);

void draw();

private:
int _width;
}:

class Vertical line : public Shape {
public:
Vertical line(const Point &starting location,
int starting height);

int height () const;
void change_height (int new_height);

void draw();

private:
int _height;
}i

class Rectangle : public Shape {
public:
Rectangle (const Point &starting locatien,
const Point &starting size);

Point size () const;
void change size (const Point &new_size);

void draw():
private:

Point _size;

}:

FILE: shapes.c

#include "Shapes.h"
#include "Screen.h"

Shape::Shape (const Point &starting location)
: _location(starting location)

{
}

Point Shape::location() const

Lab Answers Object-Oriented Programming in C++ 12 Ans-3

FILE: bot_wind.c
#include "Bot_Wind.h"

void Bottom Window::change size (const Point &new_size)
{
int shrinkage = size().y() — new_size.y();
int i;
for (i=0; i<shrinkage; i++) {
scroll_up();

}

Window::change_size (new_size);

}

Bottom Window::Bottom Window(const Point &upper left,
const Point &size,
const String &title)
: Window (upper_left, size, title)

4. This exercise creates a base class and several derived classes.

a. The program use_screen.c is shown below:

FILE: use_screen.c

#include "Screen.h"

main(int, char *[])

{
Display.add_line(Point(5, 5), Point (50, 12), ’'*’);
return O;

b-f. The completed classes are declared in Shapes.h, and the member functions
are written in shapes.c, both of which are shown below:

FILE: Shapes.h

#include "Point.h"
class Shape {
public:

Shape (const Point &starting location):

Point location() const;
void move (const Point &new_location);

void draw():

private:
Point _location;

Lab Answers Object-Oriented Programming in C++ 12 Ans-2

UNIT 12

Lab Exercises (Answers)

1. The types int and float have many common operations, but the only way to take
advantage of this fact is with a macro that depends on the common operations:

#define average(a,b) ((a) +(b)/2)

There is no way to write a single function that works with either ints or floats.
This is analogous to our first version of the window system, which had three
independent classes (and there was no way to write a single function that worked
with any kind of window).

2. UNIX file descriptors provide a single type that represents three concepts: file 1/O,
inter-process communication, and terminal I/O. This is analogous to our attempt to
represent all kinds of windows with a single class, and shares one of the main
drawbacks of that scheme: it is not possible to have the compiler check to see that
the right kind of argument is used:

// The following function moves backward in a file, to allow
// 1ater re-reading of input. It will work with files, but

// not pipes or terminals. Unfortunately, there is no way for
// the compiler to ensure that it is called only with file

// descriptors that correspond to files.

back_up_n_bytes(int fd, long n_bytes)
{

}

3. Class Bottom_Window can be written by deriving it from Window and overriding
the change_size member function, so that the contents of a Bottom_Window will
scroll up before it shrinks. Class Bottom_ Window will also need a constructor,
and that constructor must provide arguments for the base class constructor (as is
noted on the last paragraph of the page "Derived Class Constructors” (page 12-36
in the Student Guide). It passes its arguments to the base class constructor without
modifying them.

Iseek(fd, -n_bytes, 1);

FILE: Bot Wind.h
#include "Window.h"
class Bottom_window : public Window {
public:
Bottom_Window(const Point &upper_left,
const Point &size,

const String &title);

void change_size (const Point &extent);

Lab Answers Object-Oriented Programming in C++ 12 Ans-1

h.draw();

v.draw();

if (r.location() != Point (25, 2) ||
h.location() != Point (23, 20) ||
v.location() != Point (45, 12))

fprintf (stderr, "INCONSISTENT LOCATION.\n");
return 2; .

}

sleep(2);
return 0;

Lab Exercises Object-Oriented Programming in C++ 12 Ex-8

classes with the program use_shapes.c (in the unitl2/shapes directory).

You can compile and execute this program by entering 'make probdf’ or
you can compile and execute it directly using the commands:

$cc ~-I1../../pre_windows shapes.c use_shapes.c \
-L../../pre_windows -lpre_wind \
-lcurses -o use_shapes

$ use_shapes

The -1, -L, and -l options will cause C++ to search the pre_windows
directory for header files and libraries.

SUMMARY _
DIRECTORY “unit12/shapes
DECLARATION pre_windows/* h, Shapes.h (modify)
IMPLEMENTATION | pre windows/libpre_wind.a, shapes.c (modify)
TEST PROGRAM use_shapes.c

FILE: use_shapes.c

#include "Shapes.h"
#include "Screen.h"
$include <stdlib.h>

main(int, char *[])

{
Rectangle r(Point (12, 8), Point(8, 4));
Horizontal line h(Point (40, 8), 20);
Vertical line v(Point (8, 10), 8);

r.draw();
h.draw();
v.draw();

if (r.location() != Point(12, 8) ||
h.location() != Point (40, 8) ||
v.location() != Point(8, 10))

fprintf (stderr, "INCONSISTENT LOCATION.\n");
return 1;

}

sleep(2);

Lab Exercises

r.move (Point (25,
h.move (Point (23,
v.move (Point (45,

Display.clear();

r.draw();

2));
20)):
12));

Object-Oriented Programming in C++ 12 Ex-7

can compile and execute it directly using the commands:

$cc -I../../pre_windows shapes.c use hline.c \
-L../../pre_windows -lpre wind \
-lcurses -o use hline

$ use_hline

The -1, -L, and -l options will cause C++ to search the pre_windows directory
for header files and libraries.

SUMMARY
"DIRECTORY unit]2/shapes
DECLARATION pre_windows/*.h, Shapes.h (modify)
IMPLEMENTATION | pre windows/libpre_wind.a, shapes.c (modify)
TEST PROGRAM use_hline.c

FILE: use_hline.c

#include "Shapes.h"
#include "Screen.h"
#include <stdlib.h>

main(int, char *[])

{
Horizontal line h(Point (40, 8), 20);

h.draw();

if (h.location() != Point (40, 8))

{
fprintf (stderr, "INCONSISTENT LOCATION.\n");

return 1;

}

h.move (Point (23, 20));
Display.clear();
h.draw();

if (h.location() != Point (23, 20)})

{
fprintf (stderr, "INCONSISTENT LOCATION.\n");

return 2;

}

sleep(2);
return 0;

f. Write the classes Vertical line and Rectangle. Put the class declarations in
Shapes.h and the code for the member functions in shapes.c. Test your new

Lab Exercises Object-Oriented Programming in C++ 12 Ex-6

b. Write the public section of the base class in the file Shapes.h, in the
unitl2/shapes directory. The base class should be named Shape, and should
contain all the member functions that are common to the three classes in
Shapes3.h. Do not worry about the private section, or about writing the
member functions yet. If you like, you may use the file Shapes3.h (in your
unitl 2/shapes directory) as a starting point. Although there is no test
program for this exercise, you can check the syntax of your class by creating
a file shapes.c that contains one line:

#include "Shapes.h"

and compiling that file. You can compile the program by entering ’make
prob4b’ or ’make shapes.o’ or you can compile it directly using the
command:

$ CC -c shapes.c

c. What data can we put in the private section of the base class? Write the
private section of the base class, and the base class member functions. If you
have a draw function in the base class, and are unsure what to put there,
simply create a function that does nothing. Put the source code for the
member functions in the file shapes.c. This class is not yet complete enough
to run, but you can check the syntax by compiling the shapes.c file. You can
compile the program by entering 'make prob4c’ or ‘'make shapes.o’ or you
can compile it directly using the command:

$CcC -c shapes.c

d. Write the public section for class Horizontal line in the file Shapes.h.
Check the syntax by compiling the shapes.c file. You can compile the
program by entering 'make prob4d’ or ‘'make shapes.o’ or you can compile
it directly using the command:

$CC -c shapes.c

e. Write the private section and the member functions for class
Horizontal line. The member functions should be added to the file
shapes.c. Remember that all the members of the base class will be inherited
by a derived class, so you should not duplicate the data defined in the base
class. Use the defining operations of class Screen to draw the line on the
global variable Display. Test the class Horizontal_line with the program
use_hline.c in the unitl2/shapes directory.

You can compile and execute this program by entering ’'make probde’ or you

Lab Exercises Object-Oriented Programming in C++ 12 Ex-5

f of this question guide you through this process one step at a time.

FILE: Shapes3.h

#include "Point.h"

class Rectangle {
public:
Rectangle (const Point &starting location,
const Point &starting size);
Point location():;
Point size();

void move (const Point &new_ location);
void change_size (const Point &new_size);

void draw():;

private:
Point _location;
Point _size;

class Horizontal line {
public:
Horizontal line(const Point &starting location,
int starting_width);
Point location():;
int width():;

void move (const Point &new_location);
void change width(int new_width);

void draw();

private:
Point _location;
int _width;

class Vertical line ({
public:
Vertical line(const Point &starting location,
int starting_beight);
Point location():
int height();

void move (const Point &new_location);
void change height (int new_height);

void draw();
private:

Point _location;
int _height;

Lab Exercises Object-Oriented Programming in C++ 12 Ex-4

a. This exercise will focus on a graphics program that draws different kinds of
shapes on the screen. You should be in the unitl2/shapes directory and do
all the work for all parts of exercise 4 in that directory.

Before starting to work on the class shapes, you should familiarize yourself
with the class Screen, which provides access to the terminal screzn. Class
Screen is declared in the file Screen.h, in the pre_windows directory. Write
a test program, named use_screen.c, in the unitl2/shapes directory. Your
program should use the add_line function to draw a line on the global
variable Display, which represents the terminal used to run the program.
Display is a variable of type Screen that is declared in Screen.h. Therefore,
any file that includes Screen.h, can use any of class Screen’s member and
friend functions to work with Display.

You can compile and execute your test program by entering ‘'make prob4a’
or you can compile and execute it directly using the commands:

$cc -1../../pre_windows use_screen.c \
-L../../pre_windows -lpre wind \
-lcurses -o use_screen

$ use_screen

The -I, -L, and -1 options will cause C++ to search the pre_windows
directory for header files and libraries.

| SUMMARY '
DIRECTORY it12/shapes

uni
DECLARATION pre_windows/*.h
IMPLEMENTATION | pre_windows/libpre_wind.a
TEST PROGRAM use_screen.c (new)

Now that you have had a chance to learn about class Screen, you can start to work
on classes representing the shapes that will be drawn on the screen by our test
program. A real graphics program would probably be able to draw circles,
squares, ellipses, rectangles, and many other shapes. It would probably also allow
the rotation of shapes to any angle. In this exercise, our test program will draw
only rectangles, horizontal lines, and vertical lines, and it will always draw
rectangles with two vertical and two horizontal sides.

In this exercise, you will create classes representing horizontal lines, vertical
lines, and rectangles. If you did not know about inheritance, you might create
three separate classes, as in the file Shapes3.h (which is shown below). Now that
you know about inheritance, you can define the features that are common to these
classes in a base class, and derive the other classes from the base. Parts b through

Lab Exercises Object-Oriented Programming in C++ 12 Ex-3

char bufl4];

for (i=0; i<w->size().y():; i++) {
w->move_cursor(Point (0, i));
sprintf(buf, "%34d", i);
w->add (buf) ;

}

main(int, char *[])
{
Window w(Point (2, 1),
Point (30, 20),
"A Window");

Bottom_Window bw(Point (35, 1),
Point (30, 20),
"A Bottom Window");

number lines (&w);
number lines (&bw);
sleep(2);

w.change_size (Point (20, 12));
bw.change_size (Point (20, 12));
sleep(2);

return O;

You can compile and execute the test program by entering ‘'make’ or you can
compile and execute it directly using the commands:

$cc -1../../pre_windows use_bot_w.c bot_wind.c \
window.c -L../.. /pre windows —1pre wind \
-lcurses -ltermcap -o use bot w

$ use_bot_w

l SUMMARY I

DIRECTORY unitl 2/window
DECLARATION pre_windows/*.h, Window.h,
Bot_Wind.h (new)
IMPLEMENTATION | pre_windows/libpre_wind.a,
window.c, bot_wind.c (new)

TEST PROGRAM use bot w.c

4. Change to the unitl2/shapes directory. In this lab exercise, you will create a base
class and several derived classes. The question is divided into several patts, to help
you approach the problem one step at a time. You may want to read all parts
before starting part a.

Lab Exercises Object-Oriented k. ogramming in C++ 12 Ex-2

UNIT 12

Lab Exercises

1. The C types int and float have many operations in common. Is there any way for
a programmer to take advantage of these similarities? How does this relate to
our discussion of related types?

2. In the UNIX operating system, files, devices, and inter-process communication
channels (pipes) are all represented by a single type of value (known as a file
descriptor). This provides one of the major advantages of the UNIX system over
operating systems that provide three different mechanisms. It is easy to create
functions or even entire programs that can read and write from files, devices (such
as the user terminal), or pipes. How does this fit into our discussion of related
types in this section? What is one drawback of this setup?

3. Change to the unitl2/window directory. In this exercise, you will derive a new
class, Bottom Window, from an existing base, Window. All the files for class
Window are in the unitl2/window directory: the declaration is in the Window.h
header file and the implementation is in file window.c. Put the new class
declaration in the file Botr Wind.h, and the member functions in bot_wind.c. When
you have finished creating your new class, test it with the program use_bot_w.c.

A Bottom_Window is different from other kinds of windows in the following
way: if a Bottom Window shrinks in size, it will preserve the text on the bottom
part of the window (rather than the top). For example, if we shrink a regular
Window that was 20 lines high, so that it becomes only 10 lines high, we will only
be able to see the text that appeared on the first 10 lines of the window. If we
shrink a Bottom_Window from 20 lines to 10, we should be able to see only the
text that appcared on the last 10 lines of the Bottom Window. You may
implement any reasonable response when a Bottom Window gets bigger.

HINT: find out how much shorter the Bottom Window will be, by using the y()
member function (from class Point) on the current size of the Bottom Window
and on the new size. Then scroll the contents of the Bottom_ Window up that
many times by calling the scroll up function repeatedly The class declarations
for the classes Point and String used by this exercise are in the pre_windows
directory. You may want to look at some of the class declarations, but you should
not need to read the definitions of the member functions for any of the classes you
use (i.e., do not look at window.c or pre_windows/string.c).

FILE: use bot_w.c

#$include "Window.h"
#include "Bot_Wind.h"
#include <stdio.h>
#include <stdlib.h>

void number lines (Window *w)

{

int 1i;

Lab Exercises Object-Oriented Programming in C++ 12 Ex-1

Lab Exercises

Version 30.2
Copyright © 1990 AT&T
All Rights Reserved

12 Ex-44 Object-Oriented Programming in C++

Exercises 12 Ex

Object-Oriented Programming in C++

Lab Exercises

Object-Oriented Programmine in C4+4 1942

Inheritance

Version 302
Copyright © 1900 AT&T
All Rights Reserved

12-42 Object-Oriented Programming in C++

Summary

common operations grouped in base class

a derived class inherits the members of the
base class.

new functions may be added in the derived
class.

base class functions may be overridden in
the derived class.

the derived class may declare a
constructor

Version 80.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C4+ 12-41

Inheritance

Summary

Versiocn 8.0.2
Cupyright © 1000 AT&T
All Rights Reserved

12-40 Object-Oriented Programming in C++

Using class Shell_Window

#include '"Shell_Wind.h"
#include <stdlib.h>

main (int, char *[])
{
Window w (Point (10, 16), Point (40, 6), "A Window"):

Shell_Window sw(Point(1, 1), Point(10, 10),
"A Shell_Window");

w.add ("This is a window");
sleep (2) ;

sw.add ("Files:\n");
sw.execute ("1s") ;
sleep (2);

sw.change_size (Point (2, 2))
w.change_size (Point (2, 2));
sleep (2) ;

return O;

Version 3.0.2
Copyright © 1990 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 12-39

Inheritance

Using class Shell_Window

When a derived class object is created, both the base class constructor and the
derived class constructor will be called.

Version 30.2
Copyright © 1900 AT&T
All Rights Reserved

12-38 Object-Oriented Programming in C++

Derived Class Constructors

#include "Shell_Wind.h"

Shell_Window: :Shell_Window (const Point &upper_left,
const Point &size,
const String &title)
: Window (upper_left,
max (size, MIN_SW_SIZE),

n! 1" + title + " !ll)
c A
// this constructor will be called
// after the base class constructor
}

Version 302
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 12-37

Inheritance

Derived Class Constructors

Both the derived class constructor and the base class constructor will be called
when a derived class object is created. The base class constructor will be called
before the body of the derived class constructor, but the derived class constructor
can control the arguments given to the base class constructor. The syntax for
providing this list of arguments is similar to the syntax used to provide arguments
to the constructors of a class’s data members, but starts with the base class name
rather than the member name. The base class name is optional if there is only
one base class?.

The Shell_Window constructor compares the size argument against the

minimum size, to ensure that a valid size is passed to the Window constructor. It
also adds !’s to the title.

If the base class has one or more constructors, but no default constructor, then
the derived class must provide a constructor, which must provide base class
constructor arguments. If the base class has a default constructor and
constructors with parameters, then the derived class may provide constructors,
and derived class constructors may provide base class constructor arguments (if
they do not, the default constructor will be used). If the base class has only a
default constructor, or no constructor at all, then the derived class may provide
constructors, but those constructors can not provide base class constructor
arguments.

2. older versions of C++ (before 2.0) that provide only single inheritance require that the base
class name be omitted.

Version 30.2
Copyright © 1900 AT&T
All Rights Reserved

12-36 Object-Oriented Programming in C++

Using an Overridden Function

main (int, char *[])

{
Window w(Point (10, 16), Point (40, 6), "A Window");

Shell_Window sw(Point (1, 1), Point (50, 10),
"A Shell_Window") ;

sleep (2) ;
sw.change_size(Point(2,2));
w.change_size(Point(2,2));

sleep (2) ;
return O;

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 12-35

Inheritance

Using an Overridden Function

If change_size is called for a Shell_Window, the derived class member

function will be used. If change_size is called for a Window, the base class
member function will be used.

Version 302
Copyright © 1000 AT&T
Al Rights Reserved

12-34 Object-Oriented Programming in C++

Overriding a Base Class Function

#include "Shell_Wind.h"

const Point MIN_SW_SIZE (40, 3);

void Shell_Window: :change_size (const Point &new_size)
{
Window: :change_size (max (new_size, MIN_SW_SIZE)) ;

X

Versicn 3.0.2
Copyright © 1960 AT&T
All Rights Reserved

Object-Oriented Programming in C4++ 12-33

Inheritance

Overriding a Base Class Function

If a member function in a derived class has the same name and argument types as
a base class function, the new function overrides the original function in the
derived class. If change_size 1is called with a Window variable,
Window: :change_size will be used. If it is called with a Shell_Window
variable, Shell_Window: :change_size will be used.

The easiest way to write the new change_size function is to call the old one after
adjusting the argument. The max function for Point (defined in Point.h)
returns a Point that has x and y values equal to the maximum x and y values of
the two arguments. Therefore, the position that gets passed along to class
Window's change_size function will be at least as big as MIN_SW_SIZE in
both dimensions.

Version 3.0.2
Copyright © 1990 AT&T
All Rights Reserved

12-32 Object-Oriented Programming in C++

Using Derived Class Member Functions

main (int, char *[])

{
Window w(Point (10, 16), Point (40, 6), "A Window"):
Shell_Window sw(Point (1, 1), Point (50, 10),
"A Shell_Window") ;
w.add ("This is a window") ;
sleep (2) ;
sw.add ("Files:\n") ;
sw.execute ("1s") ;
sleep (2) ;
return O;
}

Version 3.0.2
Copyright © 1000 ATET
All Rights Reserved

Object-Oriented Programming in C++ 12-31

Inheritance

Using Derived Class Member Functions

All of the Window member functions will be inherited by class Shell_Window,
so they can be called with Shell_Window variables. The derived class member
functions can also be called with Shell_Window variables.

Version 30.2
Copyright © 1980 AT&T
All Rights Reserved

12-30 Object-Oriented Programming in C++

Defining Derived Class Functions

#include "Shell_Wind.h"
#include <stdio.h>

int Shell_Window: :execute (const String &command)

{
FILE *pipe;

pipe = popen(command.as_char_pointer (), "r");
if (pipe == NULL) return -1;

char buffer [256] ;
while (fgets (buffer, 256, pipe) !'=0) {
add (buffer) ;

// put text in invoking Shell_Window
+

return pclose (pipe) ;

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

.

Object-Oriented Programming in C++ 12-29

Inheritance

Defining Derived Class Functions

The derived class functions, like Shell_Window: :execute, can not access
the private members of the base class. Therefore, Shell_Window: :execute
can only control the data it is displaying on the screen by calling the member
functions declared in the public section of class Window. It will use
Window: :add function to add text into the invoking Shell_Window, but it
can NOT access private data declared in class Window.

The C language popen function is used to run the shell command. fgets is
used to read the output of the command into the variable buffer. The base
class add function is then used to add the contents of the buffer into the
invoking window.

Version 30.2
Copyright © 1900 AT&T
All Rights Reserved

12-28 Object-Oriented Programming in C++

Declaring a Derived Class

#include "Window.h"
extern const Point MIN_SW_SIZE; // 40 by 3

class Shell_Window : public Window {
public:
Shell_Window (const Point &upper_left,
const Point &size,
const String &title);

int execute (const String &command) ;
// run command, put output in Window
// returns exit status or -1 for failure

void change_size (const Point &new_size) ;

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++

12-27

Inheritance

Declaring a Derived Class

The declaration of a derived class gives the name of the new class (in this case,
Shell_Window), a colon followed by either "public" or "private”, and the name
of the base class (in this case, Window). This shows the C++ compiler that
Shell_Window is derived from Window. Class Shell_Window will inherit all
the functions and data of class Window. The keyword public in the first line of
the declaration means that all the public members of the base class will still be
public in the derived class. If private had been used instead, the public members
of the base would become private members of the derived class. Private
derivations will be covered in a later unit.

The derived class may add new members, or override base class member
functions. Class Shell_Window adds the member function execute, which
we will use to run shell commands. No additional data are needed in class
Shell_Window, so none are added.

To ensure that Shell_Windows can not become any smaller than 40 by 3, class
Shell_Window overrides the change_size function. If change_size is
used on a Shell_Window, the function from class Shell_Window will be
called (it enforced the size limit).

Class Shell_Window also declares a constructor function. This constructor will
ensure that Shell_Windows will be at least 40 by 3 when they are created.

Version 30.2
Copyright © 1000 AT&T
All Rights Reserved

12-26 Object-Oriented Programming in C++

Inheritance Example: class Shell_window

a Shell_Window is just like a Window
except:

e also has execute member function

e must always be at least 40 x 3 characters in
size

o titles will be marked with 'V’

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 12-25

Inheritance

Inheritance Example: class Shell_window

When we derive a class from class window, it will, by definition, contain all the
members of class window. We therefore concentrate, in our description of the
derived class, on how the new class differs from class window.

Version 302
Copyright © 1900 AT&T
All Rights Reserved

12-24 Object-Oriented Programming in C+4++

Using Windows

#include "Window.h"
#include <stdlib.h>

main (int, char *[])

{
Window w(Point (10, 2), Point (40,6), '"test window");
sleep (2) .
w.move_cursor (Point (0,1))
w.add ("This is a test."):
sleep (2) ;
w.clear () ;
w.add ("It vanishes at the\n"):
w.add ("end of main () ."):
sleep (2) ;
return O;

}

Versicn 30.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C4++ 12-23

Inheritance

Using Windows

This example shows the declaration, initialization, and use of a window variable.

Version 3.0.2
Copyright © 1990 AT&T
All Rights Reserved

12-22 Object-Oriented Programming in C++

class Window

class Window {
public:
Window (const Point &upper_left,
const Point &size,
const String &title);
“"Window () ;

void move (const Point &new_upper_left) ;
Point upper_left () const;
Point lower_right () const:

Point size () const;

void change_size (const Point &new_size) ;
// if new size is less than a minimum,
// shrink only to that minimum size

int move_cursor (const Point &where) ;
Point cursor () const;

Display_char character () const; // char under cursor

String line() const; // line cursor is on
void add (Display_char c): // put c in window
void add(const String &str) ; // put str in window

void clear () ;

void scroll_up():

void scroll_down () ;
private:

// data for a Window

}:

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

Ohient-Orientsd Pracrammineg in (L 1O o7

Inheritance

Creating a Base Class

To create a base class for windows, we simply find all the member functions
common to all the window classes we wish to create. We can implement our class
Window the way we would implement any other class: by picking data for the
private section, and writing the member functions. In this section, we will be not
discuss the implementation of class Window.

Some of the member functions have comments describing their actions. The
author of a class should provide extensive comments, or a complete manual, to
describe how to use the functions. Note, in particular, the comment about
change_size. Some kinds of windows may have limits on their sizes, so we can
not count on being able to make a window arbitrarily small. For example, shell
windows, which we will see in a few pages, must always be at least 40 x 3, so if we
tried to change a shell window’s size to 50 x 1 it would only shrink to 50 x 3.

Note that class Window makes use of other classes (i.e., String and Point). Class
Point is used to represent a location on the screen or in a window, such as the
upper left hand corner of the window or the position of the cursor within the
window. Since class Window uses classes Point and String, we include
String.h and Point.h before the declaration of class Window in Window.h. The
#include directives are omitted from the facing page due to lack of space.

Versico 8.0.2
Copyright © 1000 AT&T
All Rights Reserved

12-20 Object-Oriented Programming in C++

Inheritance

a base class
e contains the common members
e any class may be used as a base

derived classes
e inherit the members from the base
e may add additional members
e may override inherited member functions

Version 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C+4+

12-19

Inheritance
Inheritance

We can avoid these problems by using inheritance. To do this, we put all the
members that are common to all the window classes into a class known as the
base class, and derive the other classes from the base class.

Base classes are written just like the classes we have seen. In fact, any class may
be used as a base. A derived class contains (inherits) all the members (both data
and functions) of its base. The derived class may have additional members, or it
may re-define member functions inherited from its base class.

Version 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

12-18 Object-Oriented Programming in C++

Using the Single Class

// '"require_yes_or_no"

// requires a yes or no answer to a question
// returns 1 for yes, O for no

// works only with input windows.

int require_yes_or_no (Input_Window &w, const String &question)
{

String answer;
do {
w.clear () ;
w.move_cursor (Point (O, 0)) ;
w.add (question) ;
answer = w.read_input ()
} while (answer != "yes" && answer != '"no");

return answer == '"yes";

Version 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 12-17

Inheritance

Using the Single Class

The users of our Window class will not be able to write functions that work with
only one kind of window. The require_yes_or_no function needs to call the
read_input function, which is only appropriate when working with an input
window, but there is no way to restrict the arguments to require_yes_or_no
to only input windows.

Version 83.0.2
Copyright © 1960 AT&T
All Rights Reserved

12-16 Object-Oriented Programming in C++

Writing the Single Class

void Window: :clear ()

{

// clear any kind of window

3

void Window: :change_size (const Point &new_size)

{
switch (k) {

case text: // change the size of a text window
break;
case input: // change the size of an input window
break;
case shell: // change the size of a shell window
break;
}
by
String Window: :read_input ()
{
switch (k) {
case input: // read & return in the input
break;
default:
fprintf (stderr,
"Called read_input for wrong kind of window\n") ;
exit (1) ;
}
}

Versicn 30.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 12-15

Inheritance

Writing the Single Class

Our single class Window, like our group of three classes, causes problems for the
author. If we need to use different code to change the size of different kinds of
windows, then the change_size function must switch on the value of the
member k. This situation might arise if we place special limitations on the size
of a shell_window that do not apply to regular windows; perhaps shell_windows
are required to be at least 40 columns wide (anyone who has ever tried to use a
terminal with less that 40 columns will probably agree that this is a reasonable
restriction).

This use of a switch statement causes trouble if we try to add new types of
windows. To do so, we must add another case into the existing switch. This is
only possible if we have control of the window class, and even if we do, there is
the chance that we will introduce bugs into what was working code.

Version 3.0.2
Copyright © 1900 AT&T
All Righte Reserved

12-14 Object-Oriented Programming in C++

enum kind_of_window { text, input, shell };

A Single Class

class Window {

public:

Window (kind_of_window which_kind) ;

kind_of_window kind () ;

void
void
void
void
void
void

void execute (const String &command) ;

clear () ;

move_cursor (const Point &) ;
add (char) ;

add (const String &) ;

move (const Point &) ;
change_size (const Point &) ;

String read_input () ;

private:

kind_of_window k;

// data common to all windows
union {
// data for a Text_window
// data for a Shell_window
// data for an Input_window
} special_data;

}:

Version 30.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++

12-13

Inheritance

A Single Class

Since we want to allow functions that will work with any type of window, we
could try to combine the three types into one class, that would represent all kinds
of windows.

The single class Window would have all the member functions for all kinds of
windows. When a Window is created, the user must specify which kind of
window it is. The execute function is only appropriate for Windows that were
created with the kind shell, and the read_input function is only
appropriate for Windows that were created with the kind input.

We will see that there are also problems with this technique.

Version 30.2
Copyright © 100 AT&T
All Rights Reserved

12-12 Object-Oriented Programming in C++

Using Independent Classes

#include "Window.h"

// "blank" function

// uses only functions common to

// all kinds of windows, so we should
// be able to use it on any window.

void blank (Window &w)

{

w.clear () ;

w.move_cursor (Point (O, 0))

w.add ("This window intentionally left blank"):
}

Versicn 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 12-11

Inheritance

Using Independent Classes

An even more severe problem! occurs when we try to write code to use the three
‘window classes. There is no way to create functions that will work with any kind
of window. A user of our window classes would have to write three copies of each
function: one to work with Text_windows, one for Shell_windows, and one
for Input_windows. ‘

1. This problem is worse than the one on the previous page because it causes problems when we
try to use the class. If a class has many users, the number of functions that use the class
may be many times the number of functions in the class itself. Therefore, a problem for the
users can be many times worse than a problem for the author of a class.

Versicn 3.0.2
Copyright © 1960 AT&T
All Rights Reserved

12-10 Object-Oriented Programming in C4+

Writing Independent Classes

void Text_window: :clear ()

{

// clear a text window
}
void Shell_window: :clear ()
{

// clear a shell window
b
void Input_window: :clear ()
{

// clear an input window
}

void Text_window: :change_size (const Point &new_size)

{
// change the size of a text window
}
void Shell_window: :change_size (const Point &new_size)
{
// change the size of a shell window
}
void Input_window: :change_size (const Point &new_size)
{ .
// change the size of an input window
>

Version 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++

Inheritance

Writing Independent Classes

One problem will become apparent when we try to write the member functions of
the three classes. We will need to write each of the common member functions
three times (once for each class).

There is a way of reducing the size of this problem, but we won’t discuss it here
because there is a second, even more serious, problem.

Version 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

12-8 Object-Oriented Programming in C++

Independent Classes

class Tezt_window {
public:
void clear () ;
void move_cursor (const Point &) ;
void add (char) ;
void add (const String &) ;
void move (const Point &) ;
void change_size (const Point &) ;

private: // data for a Text_window
}:

class Shell_window {

public:

void clear ()

void move_cursor (const Point &) ;

void add(char) ;

void add(const String &);

void move (const Point &) ;

void change_size (const Point &) ;
void execute(const String command);

private: // data for a Shell_window
}:

class Input_window {

public:

void clear () ;
void move_cursor (const Point &) ;
void add(char) ;
void add(const String &)
void move (const Point &) ;
void change_size (const Point &) ;
String read_input();
private: // data for an Input_window

}:

Version 30.2
Copyright © 1000 AT&T
All Rights Reserved

Ohiert-Oriented Pracrammine in (L L

Inheritance

Independent Classes

Since we need three kinds of windows, we could define three classes, one for each
kind of window. We will see that there are several problems with this approach.

Version 30.2
Copyright © 1000 AT&T
All Rights Reserved

12-6 Object-Oriented Programming in C++

Related Types
A program may contain groups of related, but
not identical types.

For an object-oriented window system:

Text_window Shell_window Input_window

clear clear clear

Move__cursor Move_cursor move__cursor

add add add

move move - move

change_size change_size change_size
execute read_input

Version 30.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C4++ 12-5

Inheritance

Related Types

A program may contain groups of related, but not identical classes. For example,
a program that displays information in many different windows on the screen
might need to have several types of windows:

e Some windows would just display some text.
e Some would display the output of a shell command.

e Some would prompt the user for input.

All windows can be cleared, have the cursor moved around on them, have text
added to them, be moved around on the screen, or have their sizes changed.

NOTE: The details of these window classes will be presented after the
introduction to the concept of inheritance. The summaries on the facing page
show just enough functions to make this introduction clear.

Groups of classes that have much in common, like this group of window classes,
can be created in a simple, flexible, and efficient manner with inheritance. Before
we show how to use inheritance, lets see what happens if we try to create these
classes using just the C++4 features we already know...

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

12-4 Object-Oriented Programming in C++

Objectives

At the end of this unit we will be able to:

e Use inheritance to create groups of classes
that share common features

o Describe why inheritance is needed to
create these groups

Versian 80.2
Copyright © 1900 ATET
All Rights Reserved

Object-Oriented Programming in C++ 12-3

CONTENTS

Unit 12 - Inheritance

Related TYPeS oottt et ettt ea et s s nene oo 12-5
How not t0 define TElated LY PES: .eocieeeeieeeeiicceeeeteceeectteete et e et e e eeeseeeseseeseeessaesseaeeseseesnsensessns 12-7
Independent CIASSESccocceriiieieiiieeiecieeee et eee et eae e saae e aae s eaessmee et esanteesaesenaennes 12-7
A SINGIE ClaBS ...cviiiiiiiiiiiiiieeireeeee ettt et ae et s et e e ens et etene et e eeenenas 12-13
IRRETIEANCE oottt et s e be bt b st e s e e st e et et e eeenm e e e e e e s essesessrenes 12-19
Class WIDAOW ..ottt ettt e s e s e et s saee st eeasesaaensaensesseesssesnssnsessses 12-21
Inheritance EXamPpleccccociiiiiiiiiiininieiieieecte ettt et se et ae s 12-25
Class ShEl_WINAOWccoiieiiieiiieieeeece ettt ettt e et e e et et e e eee e eeeeneesenes 12-27
Defining Member FUNCHIONS ..cccccoiuiieiiiiiecieeciecieeeseeeeeeeteesaeeesaessseeessaeesesesseaeessaesssesssaeesssesas 12-29
Overriding a Base Class FUNCEION .c...ocvicuveeteiieeeiieeceeeeeeecene et ee e eseeesaeesaesneeneeaaeseean 12-33
Derived Class CONSEIUCLOTScc.coveviveeuiereeerereriteseesieeeeeseeeeeeeeseseeeseseeseesesssneseeeseesesnsseesenens 12-37
Using class Shell_WINAOWccocooviuiieieiiiictceetectetcee ettt e e ee et et s e s seneans 12-39

Exercises 12 Ex - Lab Exercises

Answers 12 Ans - Exercise Answers

Unit 12

Object-Oriented Programming in C++

Inheritance

