Unit 11

Object-Oriented Programming in C++

Storage Management

CONTENTS

Unit 11 - Storage Management

Operators New and deletecceoiiireciieiieeciieeieeccceeecee e cenre e er e e eaeeesaee e st eeersresbeesaesennas 11-5
Dynamic Storage AlOCAtIOnccccociiriiriirinenerineeiee et te e e e e sae e se e esseese s s eneerebeereereenns 11-7
Using New and deletecooocoiiiiiiriiiriecreceecreecrree et s e teeseseeese e be e ssnseesnresanseesane s ressaneeas 11-9
Hiding Storage Managementc...ccccceverrerrernrireniierereesresessesssesseessesssessseessesssesensssssessesseesnsessees 11-13
A Better Implementation of class SEFINEcccceeveveiveiieeeeciieieieeeeeeeeeeesesstesseessessessesassaseseesnon 11-15
StrIng OPeTations fOr: ..ooiiiioiicieiieecteeecctterctreeccreeeeeee e cre e e raeeeesabesessses s e baeesssnnssessnsnessntessssesns 11-19
CTEALION ..eiiitiiieieiectrctrrecrtesereeesaesressaeeaessaesassbessasssnessessaassaabessserssentesnsessessntsersesrnnsnseanns 11-19
INTIATIZATION ...oocvieiiiiiieieeecceecrerierseessresareseeeeesseesseesseeseesss e seesssesressesraesssensansssensssrsnerseensennes 11-21
Initialization With @ StINEccccoiiriiiiiiieieercree e seee s srseseereesnensessassnens 11-23
DESETUCLION ..eoueiuiiuieiieiiieieteeec ettt se e s s ebe s eteebe s ssese s e eseesensensessenesssnsansensensesenes 11-25
ASSIZIINERE ..ocveiiiiiiiiiieiiiieceeseerteeeeeeeeteesaeesteessesssesaeseesssessaesbesssesseeeseenssesseesssebeensserssentessnsan 11-27
CONCALENATION ..uiivuiiiiieiecieiieeeerest s rreeeressaeseesresssesssessresssassasstsssssssessnansaessaesaneassesssassnsnses 11-29

Private Functions

Exercises 11 Ex - Lab Exercises

Answers 11 Ans - Exercise Answers

i

Objectives

At the end of this unit we will be able to:

o create and destroy objects on the free
store

e hide details of memory management in a
class

Version 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 11-3

Storage Management
Operators new and delete

When a variable is declared, it is created and destroyed according to well defined
rules: If it is global or static, it is created before the start of main and destroyed
after the end of main. If it is local, it is created upon entry to the block in
which it is declared, and destroyed upon exit from that block. Compilers usually
need to know the size of global, static, and local objects, so it is usually
impossible to create a global, static, or local variable whose size is not known at
compile time.

If a function needs to create an object that will still exist after the function
returns, or if it needs to create an object whose size is not known at compile time,
it can create the object on the free store (or heap), in which case it will last until
it is explicitly destroyed.

An object can be created on the free store with the operator new. new is applied
to a type name, and creates an object of that type. new, like the malloc
function of C’s standard library!, yields a pointer to the object it created. That
object can be destroyed by applying the operator delete to the pointer.

1. new and delete manage the heap by calling malloc and free, so that libraries using
malloc and free can be called from C++ programs using new and delete.

Versicn 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

11-4 Object-Oriented Programming in C++

Operators new and delete

operator new
e creates an object on the "free store"
— allocates storage
— calls constructor

e returns pointer to object, or NULL if out of
storage

e Object exists until explicitly destroyed

operator delete
e destroys an object created with new
— calls destructor
— frees storage

Version 302
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C4++ 11-5

Storage Management

Dynamic Storage Allocation

The size of all static and global variables is known at compile time, so a fixed size
piece of memory can be set aside for them when the program starts up. Local
variables are always created and destroyed in LIFO (last in, first out) order, so
the memory for them can be organized as a stack. The compiler knows nothing

about the timing of creation and destruction of the free store, so it is organized as
a heap.

The facing page shows a typical division of memory into text, static, stack, and
heap memory.

Version 302
Copyright © 1090 AT&T
All Rights Reserved

11-6 Object-Oriented Programming in C4+

Dynamic Storage Allocation

PROGRAM func()

TEXT func ptr = n{ew in
}

STATIC g i | 34

HEAP {

UNUSED

top of

STACK

///

77/

Storage Management

Using new and delete

Objects allocated with new can be initialized by specifying the initial value in
parenthesis after the type name.

Arrays of objects can be allocated with new by placing the array size in square
brackets after the type name. In this case, new returns a pointer to the first
element of the array. There is no way to give initial values for the elements of
the array, so the class must have either a constructor with no arguments or no
constructors at all. Note that the size of the array need not be known at compile
time. The size of the array must be specified when the array is deleted, if the
class has a destructor. Since a destructor may be added to a class later, we
recommend specifying the array size of all arrays destroyed with delete. new
and delete can be used for either built-in or user-defined types.

main (int argc, char *argv([])
{
// Dynamic Allocation
int *ptrl = new int;
if (ptrl == 0) exit(1l):
*ptrl = 12;
printf ("Y%d\n", *ptrl);

// Dynamic Allocation and Initialization
int *ptr2 = new int(12):

if (ptr2 == 0) exit(2):

printf ("%d\n", *ptr2);

// Dynamic Allocation of an Array
int *ptr3 = new int[argc]:

if (ptr3 == 0) exit(3):

ptr3[4] = 12;

printf ("%d\n", ptr3([4]):

// Destroy Objects
delete ptrl;
delete ptr2;
delete[argc] ptr3;

return O;

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

11-8 Object-Oriented Programming in C++

Using new and delete

#include "String.h"

main (int argc, char *argv([])

{

// Dynamic Allocation
String *ptril;

ptrl = new String;

if (ptrl == 0) exit(1l):;
*ptrl = "Hello, world";
(*ptrl + "\n") .print ()

// Dynamic Allocation and Initialization

String *ptr2;

ptr2 = new String("Hello, world"):
if (ptr2 == 0) exit (2);

(*ptr2 + "\n") .print () ;

// Dynamic Allocation of an Array
String *ptr3;

ptr3 = new String[argc];

if (ptr3 == 0) exit (3);
ptr3[argc-1] = "Hello, world";
(ptr3[argc-1] + "\n") .print():

// Destroy Objects
delete ptrl;
delete ptr2;
delete[argc] ptr3;

return O;

Versian 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++

11-0

Storage Management

Hiding Storage Management

A class can hide details of memory management from users of the class. If our
String class contains a pointer to a dynamically allocated block of characters
(instead of an array of characters), but the member and friend functions handle
all the storage allocation, then users of class do not need to know about the
pointer or the dynamically allocated memory. They will just continue to use the
String operations, without having to worry about how those operations are
implemented.

Since the size of a dynamically allocated piece of memory does not need to be
known until the memory is allocated, the member and friend functions can
allocate only as much memory as is needed for the String. This avoids the
waste of space that used to occur when a 5 byte string was stored in the 129 byte
array called text, and allows the creation of Strings that are longer than
128 bytes.

Version 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

11-10 Object-Oriented Programming in C++

Hiding Storage Management

A class can hide details of memory
management.

o declare a pointer in the private section

e« member and friend functions manage
pointer & storage

o users of the class don't worry about
memory management
class string can be enhanced
e variable length Strings
o existing code will still work

Versian 30.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 11-11

Storage Management
A Better Implementation of class String

The facing page shows the new class String. We have replaced the fixed-size
array text with the pointer heap_ptr (which will point to the memory we
allocate from the heap). The new comment gives the new representation
invariant: The pointer must point at heap storage, and that heap storage must
contain a null-terminated array of characters.

We will leave the declarations of the member and friend functions alone, so that
code that uses class String will not need to be changed (although it will have to
be re-compiled).

Versicn 302
Copyright © 1900 AT&T
All Rights Reserved

11-12 Object-Oriented Programming in C++

A Better Implementation of class String

class String {

public:
String() ;
String(const char *);
String(const String &) ;
~“String() ;

const char *as_char_pointer () const;

String &operator=(const String &) :
int 1length() const;

int read():

void print () const;

const char &operator [] (int) const:;
char & operator [] (int);
String substring(int start, int len) const;

static int n_concatenations () :
friend String operator+ (const String &, const String &) ;
private:
// heap_ptr must always point to a
// dynamically allocated,
// null terminated
// array of characters

char *heap_ptr;
static int concat_calls;

}:

Version 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 11-13

Storage Management
String Memory Allocation

The facing page shows the memory used for string objects with the old and new
implementations of class String.

String s = "hello";

With the old implementation, a local variable of type String would take up
max_string_length + 1 bytes of stack storage (labeled s.text), even if the
string is only 5 bytes long. With the new implementation, the only stack memory
used is for the pointer (labeled s.heap_ptr). The member and friend functions
must ensure that the pointer points to dynamically allocated memory that holds
the text of the String. The memory for the text does not have to be any longer
than the length of the String + 1 (for the null byte). When we replace the old
implementation with the new, the users of class String will not have to change
their programs. The users will only notice a few minor changes in Strings:
they no longer have a size limit, and the space and time requirements of the
String operations may have changed. In all other ways, the new String
objects look just like the old, to the user.

String *s_ptr;
s_ptr = new String("Hello") .

The declaration of s_ptr does not change with our new class String. With
either implementation, it is a pointer on the stack.

When we created a string with new, the old implementation allocated
max_string_length + 1 bytes (for the text member) on the heap, even if
the string was only 5 bytes long. The new implementation allocates space for the
pointer "heap_ptr" on the heap, and points it to another region of heap storage
that holds the characters of the string. The users will only notice a change in the
length limit, and space and time used by the operations.

Version 302
Copyright © 1900 AT&T
All Righte Reserved

11-14 Object-Oriented Programming in C++

String Memory Allocation

OLD IMPLEMENTATION

String s = "Hello™; String *s_ptr = new String(''Hello");
heap heap
Hello\O
s_ptr->text
s | Hello\0O s_ptr[
stack | stext stack

NEW IMPLEMENTATION

String s = "Hello"; String *s_ptr = new String(""Hello");
heap Hello\0 heap v
c_ptr->heap_ptr
Hello\0
s A s_ptr
stack s.heap_ptr stack

Versicn 302
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 11-15

Storage Management
String Creation

The string constructor’s job is to ensure that a newly created String obeys the
representation invariant. It therefore allocates a single null byte on the heap,
and points heap_ptr to it.

Every String that is created will undergo a two-step process: first, the memory
for the data declared in the class is allocated automatically. Then, the
constructor does whatever is necessary to finish the creation of the string.

If a String variable is declared, the memory for the data member (the pointer
heap_ptr) will come from the stack or the static area. If a Stringis created
with new, the memory for the data member will come from the heap. In either
case, the constructor will be called to finish the creation.

#include "String.h"

String *funcl ()

{
String s; // stack storage for s.heap_ptr,
// then constructor is called

String *s_ptr; // stack storage for s_ptr,
// no constructor

s_ptr = new String; // heap storage for s_ptr->heap_ptr,
// then constructor is called

return s_ptr;

3

Note that, if there were no String constructor, most of the other String
operations would probably cause core dumps when they tried to use the un-
initialized pointer heap_ptr. Even the assignment operator needs to use the
pointer to free the old storage of the object on the left (as we will see in a few
pages), so there could even be a core dump if the user declared a String and
immediately assigned it a value.

Versicn 3.0.2
Copyright © 1980 ATET
All Rights Reserved

11-16 Object-Oriented Programming in C++

String Creation

String s

// OR

s_ptr = new String:

BEFORE CONSTRUCTOR:

heap_pftr
AFTER CONSTRUCTOR:

——{ 0]

heap_ptr

String: :String|()
{
heap_ptr = new char;
if (heap_ptr == (char *) NULL) {
fprintf (stderr,

"Insufficient storage for empty string"):
exit (1)
+
*heap_ptr = '\0';

Version 30.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 11-17

Storage Management

String Initialization

The constructor to initialize strings with char * values are is shown on the
facing page. If we did not provide this constructor, users could not initialize
Strings with char * values.

This constructor will also be used to cast char * values to type String.
#include "String.h"

String *func4 (String s) // stack storage for s.heap_ptr,
// then constructor is called

{ :
String local = "Hello world"; // stack storage for local.heap_ptr,
// then constructor is called
String *s_ptr; // stack storage for s_ptr,
// no constructor
s_ptr = new String("Hello world"):;
// heap storage for s_ptr->heap_ptr,
// then constructor is called
return s_ptr;
}
void test_func4 ()
{
String *ptr = func4 ("test"):
delete ptr:
}

Version 30.2
Copyright © 1000 AT&T
All Righte Reserved

11-18 Object-Oriented Programming in C++

String Initialization

String s = "Hello world";

// OR
s_ptr = new String("Hello world");

BEFORE CONSTRUCTOR:

heap_ptr

AFTER CONSTRUCTOR:

String: :String(const char *init)
{
heap_ptr = new char [strlen (init)+1];
if (heap_ptr == (char *) NULL) {
fprintf (stderr,
"Insufficient storage for string \"%s\"\h", init) ;
exit (1) ;
}
strcpy (heap_ptr, init);

Version 30.2
Copyright © 1090 ATZT
All Rights Reserved

Object-Oriented Programming in C++ 11-19

Storage Management

String Copying

If a class does not provide a constructor for initializing with a value of its type
(e.g., initializing a String with a String), C++ will use the mechanism
compatible with structure copying in C: it will simply copy the memory for the
members of the initializing String into the memory of the String being
created. With our original class String, this mechanism would have worked.

The new class String, however, must control this form of initialization,
because the default mechanism would just copy the heap_ptr of the initializing
String over the heap_ptr of the string being created. That would result in
two pointers to the text of the original String - not a satisfactory situation,
because changes to one would change the other. Our String: :String(const
String &) comnstructor allocates space for a copy of the characters in the
original String, and copies the characters.

This constructor will also be used to copy String type arguments.

#include "String.h"

String *func5(String s) // stack storage for s.heap_ptr,
// then constructor is called

{
String local = s; // stack storage for local.heap_ptr,
// then constructor is called
String *s_ptr; // stack storage for s_ptr,
// no constructor
s_ptr = new String(local); // heap storage for s_ptr->heap_ptr,
// then constructor is called
return s_ptr;
}
void test_func5 ()
{
String argument = "test";
String *ptr = func5 (argument) ;
delete ptr;
}

Version 30.2
Copyright © 1000 ATAT
All Rights Reserved

11-20 Object-Oriented Programming in C++

String Copying

String s = t;

// OR
s_ptr = new String(t):

BEFORE CONSTRUCTOR:

s t| ——> Helloworld\0
heap_ptr heap_ptr

AFTER CONSTRUCTOR:

s| —t—>{ Helloworid\0 t] — Hello world\0
heap_ptr heap_ptr

String: :String(const String &init)

{

heap_ptr = new char [strlen(init.heap_ptr)+1]:;
if (heap_ptr == (char *) NULL) {
fprintf (stderr,
"Insufficient storage for string \"%s\'"\n",
init.heap_ptr);
exit (1):.
}
strcpy (heap_ptr, init.heap_ptr) ;

Version 30.2
Copyright © 1900 AT&T
All Righte Reserved

Object-Oriented Programming in C++ 11-21

Storage Management

String Destruction

Our original class String did not require a destructor, since the default
mechanism for destruction (freeing the storage for the data members declared in
the class) would destroy the String. Now, if we had no destructor, the
memory for the heap_ptr would be freed, but the heap memory containing the
characters would not. Therefore, our destructor must free the storage pointed to
by heap_ptr.

#include "String.h"

void func2 ()
{
String s = "Hello world";
String *s_ptr;
s_ptr = new String("Hello world"):

delete s_ptr; // destructor is called,
// then storage for s_ptr->heap_ptr
// is returned to the heap

} // upon return from func, destructor is called for s
// and storage for s.heap_ptr is returned to the stack

Version 3.0.2
Copyright © 1900 ATET
All Rights Reserved

11-22 Object-Oriented Programming in C++

String Destruction

delete s_ptr;
// OR s destroyed automatically

BEFORE DESTRUCTOR:

> Hello world\0

heap_ptr

AFTER DESTRUCTOR:

heap_ptr

String::"String|()
{
delete heap_ptr;

b

Version 30.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented. Programming in C++

11-23

Storage Management

-String Assignment

Our original class String did not need to control assignment of strings,
since the default mechanism for assignment (assigning the data members of the
object on the right to the members of the object on the left) would work. The
new class String, however, must control String assignment, because the
default mechanism would just copy the heap_ptr of the String on the right
over the heap_ptr of the String on the left. That would result in two
pointers to the characters of the right hand String, with the characters of the
left hand String still allocated, with no pointers to them (so there is no way to
free this memory later). Therefore, our operator= frees the storage for the
characters of the String on the left (which is the invoking object of the
operator= member function), allocates enough storage to hold a copy of the
right hand String's characters, and copies them.

#include "String.h"

void func3 ()

{

String s = "Hello world";

String t;

t =s:; // operator=(const String &)
3

Versicn 30.2
Copyright © 1000 AT&T
All Rights Reserved

11-24 Object-Oriented Programming in C++

String Assignment

t = s;
BEFORE ASSIGNMENT:
t \0 s ——>| Hello world\0
heap_ptr heap_ptr
AFTER ASSIGNMENT:
t Hello world\0 s —+—>{ Hello world\0
heap_ptr heap_ptr

String &String: :operator=(const String &rhs)
{
if (this != &rhs) { // in case of a = a
delete heap_ptr; // get rid of old text

heap_ptr = new char [rhs.length() +1];
if (heap_ptr == (char *) NULL) {
fprintf (stderr,
"Insufficient storage for string \"%s\"\n",
rhs.heap_ptr) ;
exit (1)
by
strcpy (heap_ptr, rhs.heap_ptr) ;

}

return *this;

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 11-25

Storage Management

String Concatenation

The concatenation function must also do some memory allocation. The
temporary it declares to hold the result will start out as a null String (its
heap_ptr pointing to a single null byte). The operator+ must free the single
null byte, and allocate enough storage to hold the result of the concatenation.

Version 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

11-26 Object-Oriented Programming in C++

String Concatenation

#include "String.h"
#include <string.h>
#include <stdio.h>
#include <stdlib.h>

String operator+ (const String &lhs, const String &rhs)

{
String both;

delete both.heap_ptr;
both.heap_ptr = new char[lhs.length() +rhs.length()+1];
if (both.heap_ptr == (char *) NULL) {
fprintf (stderr,
"Insufficient storage for \"%s\" + \"%s\"\n",
lhs.heap_ptr, rhs.heap_ptr)
exit (1)

>

String: :concat_calls++;

strcpy (both.heap_ptr, lhs.heap_ptr)
strcat (both.heap_ptr, rhs.heap_ptr)

return both;

Version 30.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 11-27

Storage Management
Private Functions

Several string member functions allocate text for a string and fill it with some
data (the constructors and the assignment operation). If we put the common
code in a private member function, that member function can be called by the
constructors and assignment operations, but not by the users of class String.

Version 302
Copyright © 1900 AT&T
All Rights Reserved

11-28 Object-Oriented Programming in C++

Private Functions

Member functions in the private section:
e Can be called by other members & friends
o Can not be called from any other functions

e Are useful when several member functlons
have similar code

Version 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 11-29

Storage Management

String::alloc_and_set

The String member function alloc_and_set allocates heap storage for a string,
and fills that storage with the characters passed to it. The constructors and
operator= can be written easily in terms of alloc_and_set.

String: :String(const String &s)

{
alloc_and_set (s.heap_ptr) ;
}
String: :String()
{
alloc_and_set (""):
>

Versiocn 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

11-30 Object-Oriented Programming in C++

String:alloc_and__set

class String {

// same public section

private:
void alloc_and_set (const char *);
char *heap_ptr:

}:
void String::alloc_and_set (const char *s)
{
heap_ptr = new char [strlen(s)+1];
if (heap_ptr == (char *) NULL) {
fprintf (stderr,
"Insufficient storage for string \"%s\'"\n", s):
exit (1)
>
strcpy (heap_ptr, s):
}
String: :String(const char *s)
{
alloc_and_set (s);
}

String &String: :operator=(const String &rhs)
{
if (this != &rhs) {
delete heap_ptr;
alloc_and_set (rhs.heap_ptr):

}

return *this;

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 11-31

Storage Management

Summary

Once we have decided on the right set of defining operations for a class, we can
turn our attention toward making that class efficient and flexible.

The original class String served an important role: it let us focus our attention
on getting the right set of operations without being distracted by implementation
details (and later we could focus our attention on implementation details without
being distracted by questions of which operations we really wanted). It also let
users of class String start their coding while class String was under
development. Users could start with the old class String, and later switch to
the new class String without having to re-write their code.

When the implementation of a class involves storage management, constructors
and destructors become even more important. They can be used to ensure that
memory is allocated when an object is created, and to ensure the memory is
properly freed when the object is destroyed. A destructor, assignment operator,
and copy constructor that were all optional in the original class String are
necessary to make the new class String work.

There is still room for improvement in the implementation of our class String.
For most applications, a keeping a length field is more efficient than relying on a
null byte at the end of an array. The String class could be re-written to keep a
length field instead of a null-terminated array. The copy constructor and the
assignment operator always copy one String's characters into another
String. This is not really necessary if neither string is ever changed. We would
re-write class string to keep a count of the number of strings sharing the
characters and copy these characters only when necessary. Either of these
changes could be made without forcing users of class string to re-write their code.

Version 83.0.2
Copyright © 1900 AT&T
All Rights Reserved

11-32 Object-Oriented Programming in C++

Summary

The details of memory management for a class
may be hidden by that class’s member
functions and friends:

e constructor functions can handle storage
allocation when objects are created

e a destructor function can free storage
when objects are destroyed

e a copy constructor can handle storage
allocation when objects are copied (for
function calls and returns)

e the assignment operator can handle
storage allocation during assignment

o other defining operations (such as +,
substring, etc) may also need to allocate
storage.

Versicn 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++4 11-33

Storage Management

Versicn 30.2
Copyright © 1900 AT&T
All Rights Reserved

11-34 Object-Oriented Programming in C++

Exercises 11 Ex

Object-Oriented Programming in C++

Lab Exercises

Object-Oriented Programming in C++ 11-35

Lab Exercises

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

11 Ex-36 Object-Oriented Programming in C++

UNIT 11
Lab Exercises

1. In this lab, you will be asked to create an entire class. This will give you a chance
to combine C++ features from many parts of this course, and test your ability to
decide when each language feature is needed. You will not need to use any files
from the previous labs.

Change to the unitll/int_array directory. Create a class Int_array, representing
an array of integers, according to the following descriptions. The class declaration
should be in the file Int_array.h. You should put the code for implementing the
functions in the file int_array.c. A test program has been provided for each step of
this problem, in the files testla.c, testlb.c, testlc.c, testld.c, and testle.c. Also, a
Matkefile has been provided for your convenience.

a. The size of an Int_array must be given when the Int_array is created:
Int_array ia(10);

b. Elements in the Int_array can be accessed with the [] operator. Note that
this exercise does not require an operator= function.
ia[0] = 100;
ia[l] = 10;
printf("first 2 elements should be 100 and 10: %d, %d.\n", ia[0], ia[1]);
c. If anillegal index is given, the program halts:

ia[9] = 17;
ia[5000] = 508; // program stops

d. Int_arrays can be assigned; if they are, the Int_array on the left takes on
the size and all the elements of the Int_array on the right. Note that this
exercise does require an operator= function.

Int_array ia2(7);
ia2[0] = -1;

ia2 =ia;
printf("ia2[9] should be 17: %d\n", ia2[9]);

e. IfanInt array is passed by value to a function, the function receives a copy
of the Int_array:

Lab Exercises Object-Oriented Programming in C++ 11 Ex-1

test(iaZ);
printf("ia2[9] should still be 17: %d\n", ia2[9]);

// where test is the following:

void test(Int_array copy)

{
printf(" copy[9] should be 17: %d\n", copy[9]);
copy[9] = -1;
printf(" copy[9] changed to -1: %d\n", copy[9]);
}

You can compile and execute each test program by entering 'make probln’ (n = a,
b, ¢, d, or e); you can compile and execute all of them by entering ’'make’; or, you
can compile and execute them directly using the commands:

$CC testla.c int_array.c -o testla
$ testla
$CC testlb.c int_array.c -o testlb
$ testlb
$CC testlc.c int_array.c -o testlc
$ testlc
$CC testld.c int_array.c -o testld
$ testld
$CC testle.c int_array.c -o testle
$ testle

Lab Exercises

SUMMARY l

DIRECTORY | unitll/int_array
DECLARATION Int_array.h (new)
IMPLEMENTATION | int_array.c (new)
TEST PROGRAM testix.c (x=a,b,c,d,e)

Object-Oriented Programming in C++ 11 Ex-2

UNIT 11

Lab Exercises (Answers)

1. The completed class Int_array is shown after the discussion of which parts are
necessary for each of the lab exercises.

a. If we are to provide the size of an Int_array when we create it, we must
consider that size as the initial value of the array, and create a constructor
(Int_array::Int_array(int size)) to handle that form of initialization. Since
we do not wish to allow un- initialized Int_arrays, we will not provide a
default constructor.

Most of the code for this constructor is in the function allocate, which
allocates storage for the integers, points the array pointer to that storage, and
sets both legal_size and actual_size. The code in allocate was written as a
separate function because it will be needed in several other member
functions of class Int_array. This was not apparent at first, and the class
was written once without allocate, and then revised to include this private
function.

The two size fields will be discussed when they become important later (in
answer 1d). Note that after the constructor Int_array::Int_array(int size)
has finished, all 3 statements in the comment labeled "Rep invariant” in the
header file Int_array.h must be true.

b. See part (c).

c. The two operator[] functions allow indexing into const and non-const
Int_arrays. Both check to determine if the requested index is within the
size of the array, so that a program will halt if it tries to index an illegal
element of the array.

d. The function Int_array::operator=(const Int_array &rhs) will handle the
assignment of one Int_array to another. We must write this function
because the built-in mechanism for assignment will not work properly for
Int_arrays. The built-in mechanism would assign all the members (the
sizes and the pointer) of one Int_array to the other. If this happened, both
Int_array’s pointers would point to the same piece of memory, and changes
to one Int_array’s elements would affect the other Int_array.

The original code for the assignment operator simply freed the old storage,
allocated enough to hold the new contents of the array, and copied the
elements (as is done in class String in the lecture notes).

Lab Answers Object-Oriented Programming in C++ 11 Ans-1

Int_array &Int_array::operator=(const Int_array &rhs)
{

int i;

delete array;
allocate(rhs._size);

for (i = 0; i < _size; i++)
array[i] = rhs.array[i];

return *this;

}

Note that there is no need to free the old array and allocate a new one if the
existing array is large enough. If the existing array is large enough, we can
just change the legal size of the Int_array without freeing up and re-
allocating the storage. If we choose to do this, we should save the
actual_size of the allocated array in a separate field, so that we can check it
later if a new value is assigned to the Int_array. That is what is done by the
class Int_array shown below.

e. The constructor Int_array::Int_array(const Int_array &init) will be used
to initialize Int_arrays with values of type Int_array. This happens when
we initialize a local variable, or when an Int_array is passed to a function
with an Int_array parameter. The actual argument given in a function call
is used as the initial value for the parameter declared in the function.

This constructor allocates enough space, and copies the elements of the
initializing value into the object being created.

FILE: Int array.h

class Int_array {

public:
Int_array(int size);
Int_array(const Int_array &init);
“Int_array();

int &operator(] (int index):
const int &operator[] (int index) const;

Int_array &operator=(const Int_array &rhs);

private:
void allocate(int size);

int *array:

int legal_size;
int actual_size;
// Rep invariant:

// legal_size gives the number of legal indexes in the array

Lab Answers Object-Oriented Programming in C++ 11 Ans-2

// array points to a dynamically allocated array of actual_size ints
// actual _size >= legal size

FILE: int_array.c

#include <stdio.h>
#include <stdlib.h>
#include "Int_array.h"

void Int_array::allocate (int size)
{
array = new int[size];
if (array == NULL) {
fprintf (stderr,
"Insufficient storage for Int_array of size %d.\n",
size);
exit (1l);
}
actual_size = legal size = size;

}

Int_array::Int_array(int size)
{

allocate (size);
}

Int_array::"Int_array()
{

delete array;

// delete[actual size] not needed for array of built-in type
}

Int_array::Int_array(const Int array &init)
{
int i;
allocate (init.legal_ size);
for (i = 0; i < legal_size; it++)
array[i] = dinit.arrayli];

}

int &Int_array::operator[] (int index)

{

if (index < 0 || index >= legal size) {
fprintf (stderr, "illegal index\n"):;
exit(1l);

}

return array[indexl}:;

}

const int &Int_array::operator{] (int index) const

{

if (index < O || index >= legal size) {
fprintf (stderr, "illegal index\n");
exit(1l);

}

return arraylindex]:;

Lab Answers Object-Oriented Programming in C++ 11 Ans-3

}

Int_array &Int_array::operator=(const Int_ array &rhs)
{

if (rhs.legal_size > actual_size) { // allocate more storage

delete array;
allocate(rhs.legal_ size);

}

else { // re—use existing storage if rhs is same size or smaller
legal_size = rhs.legal_size;

}

int i;

for (i = 0; i < legal_size; i++)

array([i] = rhs.arrayli]l;

return *this;

Lab Answers Object-Oriented Programming in C++ 11 Ans-4

