Unit 9

Object-Oriented Programming in C++

Type Casting

CONTENTS

Unit 9 - Type Casting

TYPE CASLINE ..eeoreeenieriieriienieetenee sttt rt et e e e st s s e e et eesne s s esseeeseebasssessbearsesssaessesnsesssenssessssessessensens 9-5
Casting 10 TYPE SEIINE cocveriveeiieiiiiiinitecreerie et ereeste st ere e car e eae e et e s e esseesteesseesseansssssesnsssnsesanennes 9-7
Simplifying Class SETINE -...ccccvverrieeririeririerienrieesiesieerteeseeseessresstesesstesstessssassesssesssesssessessssessesasesssesses 9-9
Constructors and Argument Passingcccceeeereeciiereeecvvresrereeeieeeeenenens reeeteeeeeseneraee s e e teraaaeas 9-13
AINDIGUILIES ..oviiiiiiiiiiiiiiiirieretetee et eteesses e estestsesbessaessaessaesbessssesnsessesssesnsenssssesnessssesssssssssnesssaens 9-15
Type Casting from Class TYPeS ..cc.cecrevirrrrrinriesrerienieeseeneseesesteessesseesseesseesssesseessessssessessssssssnses 9-17
MOTE AIDIGUILIES ...eoouiiiiiiciiiieirtirsteeterteseesteetre e e saeeraesreensesessersassseesssssseiassseesssssneesssssnsssesssenns 9-21
Casting Pointers & RefErencescccovevvieiieiieiiiiicnieiiteeer et eseteseseeseesueseeessestesseeesssessneseeas 9-27

Exercises 9 Ex - Lab Exercises

Answers 9 Ans - Exercise Answers

iii

Objectives

At the end of this unit we will be able to:

e create constructors for type casting
e create type cast operators

e distinguish between casting values,
pointers, and references

Versien 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++

Type Casting

Type Casting

Type casting does not affect the object being cast: it generates a new object of
another type, with the equivalent value. If we cast the int variable i to type
float, i is unchanged: the compiler simply generates a temporary value of type
float that has the same value as i. That temporary may be stored on the
stack (as if it were a local variable), or it may be kept in a register if the machine
has an available register of the right type.

Version 3.0.2
Copyright © 1000 ATET
All Rights Reserved

9-4 Object-Oriented Programming in C++

Type Casting

To perform a type cast, the compiler
o allocates temporary storage
e initializes temporary with value being cast

float f(int i, int j)
{
return (float) i / j:;

}

// compiler generates:

float f(int i, int j)

{
float temp_i = i, temp_j = j:
return temp_i / temp_3j:

Version 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 9-5

Type Casting
Casting to Type String

To cast a value of type char * to type String, C+4+ must allocate a
temporary String, and initialize that temporary with the char * value.

C+4+ can only do this if we have provided a constructor to initialize a String
with a char * value.

Note that there are two syntaxes for type casting to a class type: The
parenthesis may be placed around the type name (as in C), or around the value
being cast. The new syntax allows the casting of more than one value:

class complex {
public:
complex () ;
complex (float real_part) ;
complex (float real_part, float imaginary_part) ;

private:

float real, imag;
// or: float angle, distance;
}:

void func (const complex &) ;

main (int, char *[])

{
func (complex (4.0))
func ((complex) 4.0).

func (complex (0.5, 1.0)).

// func (0.5, 1.0) illegal
// func ((complex) 0.5, 1.0) illegal

return O;

Version 3.0.2
Copyright © 1000 ATT
All Rights Reserved

9-6 Object-Oriented Programming in C++

Casting to Type String

#include "String.h"

main (int, char *[])

{
String name;
name = (String) "Zaphod " + String('"Beeblebrox"):;
name.print () ;
((String) "Zaphod Beeblebrox'") .print():
return O;

+

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++ ‘ 9-7

Type Casting

Simplifying Class String

Now that C++ can cast a char * value to type String, we can remove some
of the defining operations from class String. We no longer need special
operations to assign a char * to a String, or to add char * values to
Strings.

Version 30.2
Copyright © 1960 ATZT
All Rights Reserved

9-8 Object-Oriented Programming in C++

Simplifying Class String

const int max_string_length = 128;
class String {

public:
String() .
String(const char *);
String(const String &) ;
“String()

String &operator=(const String &) ;
int 1length() const;

int read():

void print () const;

const char &operator [] (int) const;
char & operator [] (int);
String substring(int start, int len) const;

friend String operator+ (const String &, const String &) ;

private:
// a String is a sequence of up to
// max_string_length non-null characters
// followed by a null character

char text[max_string_length+1l]:

Version 302
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 9-9

Type Casting
Using Class String

Even though we have removed the special operator= that assigned a char *
value to a String, we can still perform these assignments. C++4 will implicitly
cast the value on the right from type char * to String. Similarly, we can
still add char * and String values: C+4+4 will cast the char * into a
String before calling operator+ (const String &, const String &)

We have simplified our class String, but lost some efficiency. The
concatenation of a String and a character array used to require only a call to
the special operator+ that took those arguments. Now, it requires both a cast
(using the constructor) and a call to the operator+ for Strings.

C++ will not implicitly cast a value that is to be used as the invoking object of a
member function. For this reason, operator+ must still be a friend of class
String. If it were a member, C++ would not allow the expression " Hello "

+ name, which requires an implicit cast of the left operand, which would be the
invoking object of operator+.

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

9-10 Object-Oriented Programming in C++

Using Class String

#include "String.h"

main (int, char *[])

{

' String firstname, name;
firstname = '"Zaphod";
name = firstname + " " + "Beeblebrox";
name.print () ;
((String) "Zaphod Beeblebrox") .print():
return O;

}

Version 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 9-11

Type Casting

Constructors and Argument Passing

In C4+, parameter passing and value returning are, by definition, equivalent to
initialization. When a function is called, its formal arguments are initialized with
the actual arguments passed. Upon return from a function, the value of the
temporary that holds the function’s result is initialized with the returned value.
For this reason, class-type function arguments and return values will be copied
by the class’s constructor functions, even if there is no cast required.

For example, C+4+ uses the constructor String: :String(const String &)
to copy the String argument statement to the sentence function’s formal
argument words.

Versicn 302
Copyright © 1960 AT&T
All Rights Reserved

9-12 Object-Oriented Programming in C++

Constructors and Argument Passing

#include "String.h"
String sentence (String words, char *punctuation = ".");

main (int, char *[])

{
String statement = "Hello, Zaphod";
sentence (statement) .print () ;
sentence (""Do you have any Tea", "?") .print():
return O;
}

String sentence (String words, char *punctuation)

{

return words + punctuation;

by

Version 8.0.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 9-13

Type Casting
Ambiguities

If there is more than one possible match for an overloaded function name, C4++
may require an explicit cast.

When trying to match an overloaded name to one particular function, C++ looks
for the "best" match according to the following rules!:

1. exact match

2. match with promotions: integral conversions, float to double, or
"o . h . ¥
trivial” conversions (e.g., type/[| to type*, or type to const type)

3. match with standard conversions (e.g., int to float, pointer type to
void *)

4. match with conversions requiring temporaries
5. match with user-defined conversion
6. match with "..."

If there is no "best match"” according to the above rules (e.g., two functions that
both require user-defined conversion, and no function that is higher on the list),
the call is considered ambiguous, and C++4 produces an error message.

1. Excerpted from AT&T C++ language System Release 2.0 Product Reference Manual

Version 3.0.2
Copyright © 1000 ATET
All Rights Reserved

9-14 Object-Oriented Programming in C+4+

Ambiguities

#include "String.h"

class example {

public:
example (const char *);
/).

}:

void f1l (const String &) ;
void f1 (const example &) ;

main (int, char *[])

{
// fl("hello, world"); is ambiguous

f1((String) '"hello world");
f1((example) "hello world"):
// or provide void fl (const char *)

Versicn 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++

9-15

Type Casting
Type Casting from Class Types

Constructors can not be written for type casts from class types to built-in types,
because there is no way to write a constructor for a built-in type. To allow casts
from a class type to a built-in type, overload the type casting operator. We have
provided an operator const char* rather than operator char* to keep
users from changing the characters in the String. If we had provided
operator char*, the users could have created an illegal String:

String s
char very_large_array[1000];
// fill very_large_array

strcpy (s, very_large_array) .

Version 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

9-16 Object-Oriented Programming in C++

Type Casting from Class Types

const int max_string_length = 128;
class String {

public:
String():
String(const char *);
String(const String &) ;
“String() ;

operator const char*() const;

String &operator=(const String &)
int 1length() const;

int read():

void print () const;

const char &operator [] (int) const;
char & operator [] (int);
String substring(int start, int len) const;

friend String operator+ (const String &, const String &)

private:
// a String is a sequence of up to
// max_string length non-null characters
// followed by a null character

char text[max_string length+l];

Version 30.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 9-17

Type Casting

String::operator char*

The facing page shows the definition of the type cast operator to cast a String to
type char *.

Version 302
Copyright © 1900 AT&T
All Rights Reserved

9-18 Object-Oriented Programming in C4++

String::operator char*

#include "String.h"

//
// operator const char* for Strings
//
// use:
// (const char *) s
// or a String used where a const char * is needed:
// open (s, O_RDONLY) ;
//
String: :operator const char* () const
{
return text;
}

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 9-19

Type Casting
More Ambiguities

There is a problem with defining both a rule for casting char * to String,
and a rule for casting String to char *: Expressions involving both String
and char * values may be ambiguous, because C+4++ does not know whether to
cast the String to type char *, or the char * to type String. For
example, if we had an operator- to subtract Strings, the expression name
- " Beeblebrox " could be evaluated either (a) by casting name to type char
* and subtracting pointers, or (b) by casting " Beeblebrox " to type String
and subtracting Strings. Note that the expression name + " Beeblebrox "
would not be ambiguous, because addition of pointers is illegal (so the only way
to evaluate the expression is to cast " Beeblebrox " to type String).

Version 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

9-20 Object-Oriented Programming in C++

More Ambiguities

#include "String.h"
#include <osfcn.h>
#include <fcntl.h>
#include <string.h>

String operator- (const String &, const String &) ;

main (int, char *argv([])
{
int fd;
String filename = " /tmp/test";

// cast filename to type char *
fd = open (filename, O_WRONLY | O_CREAT, 0666);
write(fd, "test", 4);
close(fd) ;

// not legal, since we can cast only to const char *
// strcpy (filename, '"zbc")

String name = "Zaphod Beeblebrox'";
// name - '""Beeblebrox'"; // is now ambiguous.

return O;

Version 30.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 9-21

Type Casting

Avoiding Ambiguities

If we allow type casting from type char * to type String, but not the other
way around, we can avoid the whole class of ambiguities introduced on the
previous page. We still need a way to use String variables with functions with
char * arguments (e.g., open), so we will provide a member function
as_char_pointer.

#include "String.h"

//

// use:

// open (s.as_char_pointer (), O_RDONLY) ;
//

const char *String::as_char_pointer () const

{
}

return text;

Versicn 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

9-22 Object-Oriented Programming in C4++

Avoiding Ambiguities

const int max_string _length = 128;
class String {

public:
String():
String(const char *);
String(const String &) ;
“String() .

const char *as_char_pointer() const;

String &operator=(const String &) ;
int 1length() const;

int read():

void print () const;

const char &operator [] (int) const;
char & operator [] (int):

String substring(int start, int len) const;

friend String operator+ (const String &, const String &) ;

private:
// a String is a sequence of up to
// max_string_length non-null characters
// followed by a null character

char text[max_string_length+l]:

Version 30.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 9-23

Type Casting

Converting Strings to Type char *

Users of class String can use the member function as_char_pointer to
convert a String into an equivalent char * value, but C++ will not be able to
perform a type cast. Therefore, there will be no ambiguity about which operand
should be cast, in our use of the hypothetical operator-.

Version 302
Copyright © 1990 AT&T
All Rights Reserved

9-24 Object-Oriented Programming in C++

Converting Strings to Type char *

#include "String.h"
#include <osfcn.h>
#include <fcntl.h>
#include <string.h>

String operator- (const String &, const String &) ;

main (int, char *argv[])
{
int f4;
String filename = "/tmp/test";

// convert filename to type char *
fd = open(filename.as_char_pointer (),
O_WRONLY | O_CREAT, 0666) ;
write (fd, "test", 4);
close (fd) ;

// not legal
// strcpy (filename.as_char_pointer (), '"zbc");

String name = '"Zaphod Beeblebrox";
name - '"Beeblebrox'"; // is no longer ambiguous.

return O;

Version 3.0.2
Copyright © 100 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 9-25

Type Casting
Casting Pointers & References

When cast a value of one type into another type, C++ creates a temporary
object of the appropriate type, and gives that temporary the value that is
equivalent to the value being cast (e.g., it generates the value 3 as the integer
equivalent of 3.14). It will generate this "equivalent" value according to rules
built into the compiler (for built-in types) or rules defined in the class (for class
types), so the process of conversion does not violate data encapsulation.

When we cast a pointer to a different kind of pointer, C++ converts the pointer
value, but not the object pointed to. In our example * ((int *) &f_var),
C++ converts the pointer &f_var to type int *, but does not do anything
with f_var itself. When we use the resulting pointer, we will be interpreting the
bilht pattern that makes up the float object f_var as an int. The result
we get depends on the representation of int and float objects. Using a
reference type in a cast causes a similar re-interpretation of a float object as if
it were an int.

Note that none of the casts changes f_var.

Pointer casting can be useful, as long as you remember that you are introducing
implementation dependencies. For example, the following statements will write
out or read in floating point numbers very efficiently, but the program and
machine reading in the numbers must use the same representation of float that
was used by the program and machine that wrote the numbers out.

// to write a float to file descriptor fd:
write (fd, &f_var, sizeof (float)):

// to read it in again:
read (fd, &f_far, sizeof (float)):

Version 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

9-26 Object-Oriented Programming in C++

Casting Pointers & References

Casting a value:

float f_var = 3.14;
printf ("%4d", (int) f_var);

e Creates a temporary object
¢ does not violate data encapsulation

Casting a pointer or reference

printf ("¥d", *((int *) &f_var)):
printf ("%d", (int &) f_var):

o re-interprets representation of object
e violates data encapsulation
e results are implementation dependent

Version 30.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 9-27

Type Casting

Summary

Version 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

9-28 Object-Oriented Programming in C++

Summary

Type casting
e uses constructor
e Or type cast operator
e reduces the number of functions needed
e Can cause ambiguities, if over used

\

Version 302
Copyright © 1900 AT&T
All Righte Reserved

Object-Oriented Programming in C++ 9-29

Type Casting

Version 3.0.2
Copyright © 1900 ATET
All Rights Reserved

9-30 Object-Oriented Programming in C+4+

Exercises 9 Ex

Object-Oriented Programming in C++

Lab Exercises

Object-Oriented Programming in C++ 9-31

Lab Exercises

Versicn 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

9 Ex-32 Object-Oriented Programming in C++

UNIT 9
Lab Exercises

1. Change to the unit09/point directory. How can the function add ten in the file
use_point2.c be simplified by taking advantage of the constructors added in
exercise 1 of the Unit 8 lab? Modify this file to take advantage of the constructors.
Then compile and execute the test program use_point2.c.

You can compile and execute this program by entering ‘make’ or you can compile
and execute it directly using the commands:

$CC -0 use_point2 use_point2.c point.c print.c
$ use_point2

SUMMARY
DIRECTORY unit09/point
DECLARATION Point.h, print.h
IMPLEMENTATION | point.c, print.c
TEST PROGRAM use_point2.c (modify)

FILE: use point2.c

#include "Point.h"
#include "print.h"
#include <stdio.h>

Point add ten(const Point &p)
{
Point pl;
pl.set_to (10, 10);
return p + pl;

main(int, char *[])
{
Point a(l, 1);

printf(" a is:\n");
print(a):;

printf(" add _ten(a) is:\n");
print (add_ten(a));

return O;

Lab Exercises Object-Oriented Programming in C++ 9 Ex-1

2. Change to the unit09/string directory. This exercise is a continuation of exercise 2
of Unit 8. The unit09/string directory contains the same modified versions of
string.c and encap.c created in the Unit 8 lab exercises. Examine the files lab2a.c,
lab2b.c and lab2c.c and predict which constructors and assignment operators will
be called. Compile and execute the programs to see if your predictions are correct.

You can compile and execute each test program by entering *'make prob2n’ (n = a,
b, or ¢); you can compile and execute all of them by entering make’; or, you can
compile and execute them directly using the commands:

$CC lab2a.c string.c encap.c —-o lab2a

$ lab2a
$ CC lab2b.c string.c encap.c -o lab2b
$ 1ab2b
$ CC lab2c.c string.c encap.c -o lab2c
$ 1ab2c

SUMMARY
DIRECTORY unit09/string
DECLARATION String.h
IMPLEMENTATION | string.c, encap.c
TEST PROGRAM lab2x.c (x=a, b, ¢)

Lab Exercises Object-Oriented Programming in C++ 9 Ex-2

UNIT 9

Lab Exercises (Answers)

1. The function can be simplified by omitting the temporary Point variable:

FILE: use pointz.c

#include "Point.h"
#include "print.h"
#include <stdio.h>

Point add ten(const Point &p)
{

return p + Point (10, 10);
}

main(int, char *[])
{
Point a(l, 1);

printf(" a is:\n");
print (a);

printf (" add ten(a) is:\n"):;
print (add_ten(a));

return O;

~ Lab Answers Object-Oriented Programming in C++

9 Ans-1

