Unit 7

Object-Oriented Programming in C++

Constants

CONTENTS

Unit 7 - Constants

CODSLANUS ..ueuuieeireieeriieiiirieererresirsrseeseesiestreseeesssrareeesssoessssesesssssssaseesssesssassssssessessnsssssessesssesssssssssssesssnnns 7-5
References t0 CONSEANTS ..cccvievuiiciirieiieriiieeiteeiteeesteeeeeceseeeeteeesateeseresssesssstesastesassessnsessnstesssneessesseseesns 7-7
POINtErs t0 CONSLANLSoccoueeeeieiiiieieeeieeeeeeteeerte e ceec s st e sessssteseseessneesseesasesasssessssesassssessseesssesns 7-9
Const Member FUNCHIONSccociiiiiieiiiecieceeecceeeccct ettt eeestee s e stesemeesenaeesnnsessasasenesssees 7-13
Overloading Based ON CONSLcoevvevcieriirrieeieerreeireneereeteeteeresse s esseestsesesseestesosesssesaneenseeesaenne 7-15
Extending class String to Work with COnStantscceevveiereenriiineiieieesteeeeteteeee e eeeeeeeeseenes 7-17
Function Parameter Declarationsccccoveevueeeeiiiieeieeeieeeiieresiseessaeeesseeessessssussensesessessssssessnsns 7-23
Creating Constant POINLETScccieiiiiciieieeiieeeeeeeeeeeee e cese et et seessseessesesnsesssaessnnsssssnssssesennes 7-25

Exercises 7 Ex - Lab Exercises

Answers 7 Ans - Exercise Answers

iii

Objectives

At the end of this unit we will be able to:
¢ Create constant objects and pointers

e Write functions that will work with constant
arguments

o Select the appropriate parameter passing
mechanism for a function

Versicn 8.0.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 7-3

Constants

7-4

Constants

Version 302
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++

Constants

Constants

o are declared with the keyword const

must be initialized

can not be changed

can only be passed to functions

— by value, or

— with a reference or pointer t0 const
can invoke only const member functions

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++

Constants

References to Constants

A reference can only refer to a constant object if it is declared as a reference to
const. For example, £f1 ‘s parameter may refer to the String s, but not to
the const String cs. C++ enforces this rule because a reference may be
used to change the object it refers to (for example, £1 can use the reference str
to change s).

A reference to const can refer to either a constant or a non-constant object. For
example, £2 ’s parameter may refer to either the const String cs or the
String s. If a function with a reference parameter does not need to change its
argument, the parameter should be a reference to const, to allow the use of the
function with either constant or non-constant objects.

Version 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

7-6 Object-Oriented Programming in C++

References to Constants

#include "String.h"

void f1l (String &) ;
void f2 (const String &)

main (int, char *[])

<

{
String s
s = "hello world";
const String cs = s;
f1(s) ; // £l can be called only with non-const
£f2 (cs) ; // £2 can be called with either a const
£2(s): // or a non-const
return O;
>
void f1l (String &str)
{
str = "new value'"; // fl can change its argument
}
void f2 (const String &str)
str.print () ; // £2 can not change its argument
by

Version 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 7-7

Constants

Pointers to Constants

A pointer can only point to a constant if it is declared as a pointer to const. A
pointer to const can point to either a constant or a non-constant object.

Versico 30.2
Copyright © 1000 AT&T
All Rights Reserved

7-8 Object-Oriented Programming in C++

Pointers to Constants

#include "String.h"

void f1l (String *);
void f2(const String *);

main (int, char *[])

{
String s;
s = "hello world";
const String cs = s;
f1(&s) // fl can be called only with non-const
£f2 (&ecs) ; // £2 can be called with either a const
f2 (&s) ; // or a non-const
return O;
+
void fl (String *str)
{
*str = '"nmew value"; // fl can change (*str)
}
void f2 (const String *str)
{
str->print () ; // £2 can not change (*str)
}

Versian 3.0.2
Copyright © 1990 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 7-9

Constants

Constants and Call by Value

Constants can be passed by value whether or not the functions parameter is
declared as a const. Since the function will work with a copy, instead of the

original constant, it will not be able to affect the constant, even if it does change
its argument.

Versicn 30.2
Copyright © 1900 AT&T
All Rights Reserved

7-10 Object-Oriented Programming in C++

Constants and Call by Value

#include "String.h"

void f1l (String);
void f2 (const String) ;

main (int, char *[])

{
String s;
s = "hello world";
const String cs = s;
fl(cs); // £l can be called with either a const
£l (s) ; // or a non-const
f2(cs):; // f2 can be called with either a const
f2 (s) ; // or a non-const
return O;
}
void fl (String str)
{
str = "new value"; // fl can change str, but not original
b
void £f2 (const String str)
{
str.print () ; // £2 can not change str
I

Versicn 8.0.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 7-11

Constants

Const Member Functions

A const object of a class type can invoke a member function only if that member
function is declared as a const member function!. A const member function can

not change its invoking object, and can be invoked by either a constant or non-
constant object.

void Employee: :set_name (const String &n)

{
name = n;
}
String Employee: :get_name () const
{ .
return name;
}

1. const member functions were not supported in C++ before release 2.0. In release 2.0, the
use of a non-const member function on a const object generates only a warning (instead of
an error) to allow compilation of code written for earlier versions of C++.

Versicn 302
Copyright © 1900 AT&T
All Rights Reserved

7-12 Object-Oriented Programming in C++

Const Member Functions

#include "String.h"

class Employee {
public:
void set_name (const String &) ;
String get_name () const;
/)
private:
String name;
float salary;

}:

main (int, char *[])

{
String jones, smith;
smith = "Smith";
jones = "Jones";

Employee e;
e.set_name (jones) ;
const Employee ce = e;

e.set_name (smith) ; // called only with non-const
ce.get_name () .print(); // called with either const
e.get_name () .print (). // or non-const

return O;

Versian 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 7-13

Constants

Overloading Based on const

Overloading can be based on const arguments. In this case, C++ will call the
function with const parameters when a call is made with constant arguments,
and the function without const parameters when a call uses non-constant
arguments. This is often useful when a function returns a reference to one of its
arguments, and the function is to be used with both constant and non-constant
‘arguments.

Version 30.2
Copyright © 1900 AT&T
All Rights Reserved

7-14 Object-Oriented Programming in C++

Overloading Based on const

#include "String.h"

String &longer (String &, String &)
const String &longer (const String &, const String &)

main (int, char *[])

{
String sl, s2;
sl = "hello world";
s2 = "bye";
const String csl = sl1, cs2 = s2;
longer (csl, cs2) .print(); // const version
longer (s1l, s2) = "new value"; // non-const version
longer (sl, s2) .print(): // non-const version
return O;
}
String &longer (String &strl, String &str2)
{
return strl.length() > str2.length() ? strl : str2;
}

const String &longer (const String &strl, const String &str2)
{ "

return strl.length() > str2.length() ? strl : str2;
3

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 7-15

Constants

Extending class String
to Work with Constants

If the defining operations of class String are to be used with constant
Strings, several changes must be made. Parameters passed by reference must
be changed to references to const, for functions to be called with constant
arguments. Pointer parameters must be changed to pointers to const, for
functions that will work will pointers to constants. Member functions must be
made into const member functions, if they are to work with constant Strings.
In addition, two operator [] functions are needed: one for use with constant
Strings, which will return a reference to const (so that the character in the
const String can not be changed), and one for use with non-constant
Strings, which will allow changes to the character returned.

Versicn 30.2
Copyright © 1000 AT&T
Al! Rights Reserved

7-16 Object-Oriented Programming in C++

Extending class String
to Work with Constants

const int max_string_length = 128;
class String {

public:
String &operator=(const char *);
int 1length() const;
int read():
void print () const;

const char &operator [] (int) const;
char & operator [] (int):

String substring(int start, int len) const;

friend String operator+ (const String &, const String &) ;
friend String operator+ (const String &, const char *);
friend String operator+ (const char *, const String &) ;

private:

// a String is a sequence of up to
// max_string_length non-null characters
// followed by a null character

char text[max_string_length+1l]:

Version 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 7-17

Constants

String Member Functions

The definitions of class String's defining operations must be changed to agree
with the definitions. Functions with const parameters can not change those
parameters, and const member functions can not change their invoking object.

Some of the functions are shown on the facing page, and some below:

String String: :substring(int start, int len) const

{
YIARE
bs
int String::length() const
{
YARE
}

int String::read()

{
/).
}
void String::print() const
{
YR
} .

String operator+ (const String &lhs, const String &rhs)

{
}
String operator+ (const String &lhs, const char *rhs)

{
}

/7.

/...

String operator+ (const char *1lhs, const String &rhs)

{
}

/).

Version 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

7-18 Object-Oriented Programming in C++

String Member Functions

// use: s = "hello world"

String &String: :operator=(const char *rhs)

{
strncpy (text, rhs, max_string_length) ;

text [max_string_length] = '\0';

return *this;

by
char &String::operator [] (int index)
{
if (index < O || index >= length()) {
fprintf (stderr,
"Illegal index (%d) for String \"%s\".\n",
index, text);
exit (1)
}
return text [index] ;
}

const char &String: :operator [] (int index) const .
{
if (index < O || index >= length()) {
fprintf (stderr,
"Illegal index (%d) for String \"%s\".\n",
index, text);
exit (1)
}

return text [index]

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 7-19

Constants

Using const Strings

If we had not made the changes to class String, we would not have been able
to use constant Strings with the defining operations. Constant Strings
could not have been used with the operator+ functions, which used call by
reference. They could not have been used with the length, print, and
substring member functions, as these were not const member functions. They
could not have been used with the original operator [] function, which was
also a non-const member function.

Version 3.02
Copyright © 1000 AT&T
All Rights Reserved

7-20 Object-Oriented Programming in C++

Using const Strings

#include "String.h"

main (int, char *[])

{
String s;
s = "Zaphod Beeblebrox";
const String cs = s;
char ch;

// These would be illegal without the
// changes we made to class String:

cs + s;

"Hello, " + cs;

cs + n.n;

cs.length() ;

cs.print () ;

cs.substring (0, 6)

ch = ¢s[0];

// These are illegal:
#if defined TRY_ILLEGAL
cs = "ll’,
cs.read() ;
cs[0] = ch;
#endif

return O;

Version 30.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C+4++ 7-21

Constants

Function Parameter Declarations

Version 30.2
Copyright © 1900 AT&T
All Rights Reserved

7-22 Object-Oriented Programming in C-F+

Function Parameter Declarations

Does the function need to change calling
functions’ data?

If so, call by address will make that fact
clear to the caller:

void func (String *changable) ;
String s
func (&s); // s is probably changed

If not, does it need to change its own copy
of the argument?

If so, call by value will create a copy:

void func (String copy) :
String s;
func(s): // s is not changed

If not, use call by reference to const:

void func (const String ¬_changable)
String s
func(s); // s is not changed

Version 3.0.2
Copyright © 1960 ATET
All Rights Reserved

Object-Oriented Programming in C4+ 7-23

Constants

Creating Constant Pointers

A pointer to a constant (which we saw a few pages ago) can be moved to point to
a different object, but it can not be used to change the object to which it points.
A constant pointer, however, can be used to change the object to which it points,
but it can not be moved to another object (the pointer, not the object pointed to,
is considered const).

You can create a constant pointer by declaring a pointer with *const rather
than *. Note that pointers to constants are sometimes called "constant pointers"
when there is enough context to make the meaning clear.

Versian 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

7-24 Object-Oriented Programming in C++

Creating Constant Pointers

main (int, char *[])

{

//

//

//
//

String s, t.
s = "Zaphod Beeblebrox";
const String name = s;

// regular pointer to String:
String *ps = &s;

*ps = "Zaphod";

ps = &t

// pointer to const String
const String *pcs = &name;
pcs = &s;

*pcs = "Zaphod"; illegal

// const pointer to String
String *const cps = &s;
*cps = "Beeblebrox";

cps = &t; illegal

// const pointer to const String
const String *const cpcs = &name;
*cpcs = "Zaphod"; illegal

cpcs = &t illegal

return O;

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++

7-25

Constants

Summary

Versicn 302
Copyright © 1960 AT&T
All Rights Reserved

7-26 Object-Oriented Programming in C++

Summary

A constant may be used

e as an argument to a function using
— a reference to const parameter

— a pointer to const parameter
— call by value

e as an invoking object for const member
functions

Non-constants may also be used with the
above.

Version 3.0.2
Copyright © 1960 AT&T
All Rights Reserved

Object-Oriented Programming in C++

7-27

Constants

Version 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

7-28 Object-Oriented Programming in C++

Exercises 7 Ex

Object-Oriented Programming in C++

Lab Exercises

Object-Oriented Programming in C++ 7-29

Lab Exercises

7 Ex-30

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++

UNIT 7

Lab Exercises

1. Change to the unit07/point directory. Copies of the test programs use_ref.c and
use_point.c from Unit 6 are in this directory. Change the test programs for your
‘class Point so that they create some const Points. For example, in the test
program use_point.c, Point c is not changed, so it can be a constant. Similarly, in
the test program use_ref.c, Points p1 and p2 can be constants. Note that you will
need to initialize any constant Points with values of type Point, just as constant
Strings are initialized with values of type String in the examples on pages 7-7 to
7-11 of the Student Guide. Try to compile the modified test program without
making any changes to class Point (in file Point.h), and observe the result.

You can compile and execute both test programs by entering ‘'make’ or you can
compile and execute them directly using the commands:

$CC -o use_ref use_ref.c point.c print.c

$ use_ref

$CC -o use_point use point.c point.c print.c
$ use_point

Decide which member functions in your class Point do not change their invoking
object, and add the keyword const to their declarations. Change the parameters of
the member and friend functions to make them work with constants, when
appropriate. The print functions in print.c should also be modified to include
const where appropriate. Compile the two test programs with the new class Point.
Will the old test program still work too? Can you write a test program that
changes a const Point?

Again, you can compile and execute both test programs by entering ’'make’ or you
can compile and execute them directly using the commands:

$CC -0 use_ref use ref.c point.c print.c

$ use_ref

$CC -o use_point use point.c point.c print.c
$ use_point

SUMMARY
DIRECTORY | unit07/point
DECLARATION Point.h (modify), print.h (modify)
IMPLEMENTATION | point.c (modify), print.c (modify)
TEST PROGRAM use_ref.c (modify), use_point.c (modify)

Lab Exercises Object-Oriented Programming in C++ 7 Ex-1

2. Change to the unit07/string directory. The file same.c is a copy of the file from the
unit06/string directory. Change the operator== and operator!= functions so that
they can be used with constant Strings. Compile and execute the program
const_cmp.c to test your changes.

You can compile and execute this program by entering ‘'make prob2’ or you can
compile and execute it directly using the commands:

$CC —o const_cmp const_cmp.o string.o same.o
$ const_cmp

I SUMMARY |

DIRECTORY unit07/string
DECLARATION String.h (modify)
IMPLEMENTATION | string.c, same.c (modify)
TEST PROGRAM const_cmp.c

FILE: const cmp.c

#include "String.h"
#include <stdio.h>

main(int, char *[])
{
String a;
a = "hello world"”;

const String b a;

if (a == b) printf ("part 1 works\n"):;
if (b == a) printf ("part 2 works\n");
if (!(a != b)) printf("part 3 works\n"):;
if (!'(b t= a)) printf("part 4 works\n"):;

return 0;

Lab Exercises Object-Oriented Programming in C++ 7 Ex-2

UNIT 7

Lab Exercises (Answers)

1. The test programs use_point.c and use_ref.c from Unit 6 can be modified to create

a const Point:

FILE: use _point.c

#include "Point.h"
#include "print.h"
#include <stdio.h>

main(int, char *[])

{

Point a, b, init_c;

a.set_to(l, 1);
b.set_to(10, 10);
init_c.set_to(100,100);

const Point ¢ = init_c;

printf(" initially, a, b, and ¢ are:\n"):
print(a);
print (b);
print(c);

a=>b+ c;
printf (" after \"a = b + c;\"\n");
print (a);
print (b);
print (c);

a += b;

printf(" after \"a += b;\"\n");
print (a);

print (b);

print (c);

a=>b += c;

printf(" after \"a = b += c;\"\n");
print(a);

print (b);

print(c);

return O;

FILE: use ref.c

#include "Point.h"
#include "print.h"
#include <stdio.h>

Lab Answers Object-Oriented Programming in C++

7 Ans-1

main(int, char *[])

{
Point init_pl, init_p2;
init_pl.set_to(3, 5);
init_p2.set_to(8, 2);

const Point pl = init_pl, p2 = init_p2;

print ("printing (3, 5) + (8, 2): "):
print (pl + p2);

print ("\nprinting (8, 2) - (3, 5): ");
print (p2 - pl);

print ("\nprinting (8, 2) * 5: ");
print (p2 * 5);

print ("\nprinting 3 * (3, 5): ");
print (3 * pl);

print ("\nprinting (8, 2) / 2: ");
print (p2 / 2);

if(pl == p2)

printf("\noperator == does not work");
else

printf ("\noperator == works");
if (pl != p2)

printf("\noperator != works");
else

printf ("\noperator != does not work"):;

print ("\n"):;

return O;

When the modification are made, C++ will produce error messages for statements
in which the Point c is used as a reference or pointer argument to a function, or as
an invoking object for a non-const member function. For example, the expressions
"a=b+c" and "a =b += c" now give errors because c¢ is passed by reference to the
+ and += operators. In addition, if we had changed our print(Point) function to
use call by reference, the statement "print(c);" would also become illegal. To
prevent such problems, we can change functions that do not modify their
arguments to use references and pointers to const, and make member functions that
do not change their invoking object into const member functions:

FILE: Point.h

class Point {
public:
int x() const;
int y() const;
void set_to(int x, int y);

Point operator+(const Point &) const;
Point operator-(const Point &) const;

friend Point operator* (int, const Point &);
friend Point operator* (const Point &, int);

Point operator/(int) const;

Lab Answers Object-Oriented Programming in C++ 7 Ans-2

int operator==(const Point &) const;
int operator!=(const Point &) const;

Point &operator+=(const Point &);

private:
int _x;
int _y;

inline int Point::x() const

{

return (_x);

}

inline int Point::y() const

{
return(_y);

FILE: point.c

#include "Point.h"
#include <stdio.h>

void Point::set_to(int x, int y)
{

= X

_x
Y =Y

Ne o

Point Point::operator+(const Point &p) const
{

Point temp;

temp. x = _x + p._X;

temp. vy = _y + p._Y¥7

return temp;

}

Point Point::operator-(const Point &p) const
{
Point temp;
temp. x = _X - p._X
temp. vy = _Yy - P-_Y

return temp;

AR T}

Point operator*(int i, const Point &p)

{
Point temp;
temp. x = i * p._x;

temp. y =i * p._y;
return temp;

Point operator* (const Point &p, int i)

Lab Answers Object-Oriented Programming in C++ - 7 Ans-3

Point temp;
temp. x =1 * p. x
temp. y =i * p. ¥y
return temp;

~. o

}

Point Point::operator/(int i) const
{
Point temp;
temp. x = _x / i
temp. y= y /i

return temp;

~e N

}

int Point::operator==(const Point &p) const
{

return (_x == p._x && _y == p._y)?1:0;
}

int Point::operator!=(const Point &p) const
{

return (_x != p. _x I _y !'=p._y)?1:0;
}

Point &Point::operator+=(const Point &p)

{
*this = *this + p;
return *this;

Other functions that use call by reference can also be updated to use reference to
const:

FILE: print.h

// if using C++ 1.2 or before,
// then use "overload print;" here

void print (const char *);
void print (const double);
void print (const int);

void print (const Point &);

FILE: print.c

$include "Point.h"
#include "print.h"
#include <stdio.h>

void print (const char *s)

{
printf("%$s", s);
}

Lab Answers Object-Oriented Programming in C++ 7 Ans-4

void print (const double f)
{

printf("$lg", f£f);
}

void print (const int i)
{

printf£("%d", i);
}

void print (const Point &p)
{

printf (" (%4, %d)\n", p.x(), P.Y()):
}

2. To allow the use of the comparison operators with const Strings, the reference
arguments must be changed to references to const, and the member functions must
be made into const member functions:

FILE: String.h
const int max string length = 128;
class String {

public:
String &operator=(const char *);
int 1length() const;
int read():;
void print () const;

const char & operator [] (int) const;
char & operatoxr [] (int);
String substring(const int start, const int len) const;

friend String operator+(const String &, const String &);
friend String operator+(const String &, const char *);
friend String operator+(const char *, const String &);

friend int operator==(const String &sl, const String &s2);
friend int operator!=(const String &sl, const String &s2);
friend int operator==(const String &sl, const char *s);
friend int operator!=(const String &sl, const char *s);
friend int operator==(const char *s, const String &sl);
friend int operator!=(const char *s, const String &sl);

private:
// a String is a sequence of up to
// max_string length non-null characters
// followed by a null character

char text[max_string_length+1];

Lab Answers Object-Oriented Programming in C++ 7 Ans-5

Lab Answers

FILE: same.c

#include <string.h>
#include "String.h"

int operator==(const String &sl, const String &s2)

{

return !strcmp(sl.text, s2.text);

int operator!=(const String &sl, const String &s2)

{
return strcmp(sl.text, s2.text);

int operator==(const String &sl, const char *s2)

{
return !strcmp(sl.text, s2);
}

int operator!=(const String &sl, const char *s2)

{
return stramp(sl.text, s2);
}

int operator==(const char *s, const String &sl)
{
return !strcmp(sl.text, s);

}

int operator!=(const char *s, const String &sl)
{
return strcmp(sl.text, s):;

Object-Oriented Programming in C++

7 Ans-6

