FILE: same.c

#include <string.h>
#include "String.h"

int is_the_same_as(String s, String t)
{

return !strcmp(s.text, t.text);

}

int is_different_from(String s, String t)
{
return strcmp(s.text, t.text);

}

int is_;he_same_ps(String s, char *t)
{
return !stremp(s.text, t);

}

int is_different_from(String s, char *t)
{

return strcmp(s.text, t);
}

int is_the_ same_as(char *s, String t)
{
return !strcmp(s, t.text);

}

int is_different_from(char *s, String t)
{
return strcmp(s, t.text);

}

Lab Answers Object-Oriented Programming in C++ 4 Ans-4

void print (double f£)
{

printf("slg", £);
}

void print (int i)
{

print£("sd", i);
}

void print (Point p)
{

printf (" (%4, %d)\n", p.x(), P.YO));
}

It is not slowed down by the calls to the member functions x and y, however, since
these functions are inline functions. We have achieved the efficiency of the friend
function that we wrote for question one together with the ease of maintenance that
we had before we made print(Point) a friend.

FILE: String.h

const int max string_length = 128;
class String {
public:

void set_to(char *);
int lenath():

UNIT 4

Lab Exercises (Answers)

1. Class Point must now declare print(Point) as a friend function:

FILE: Fr.Point.h

class Point {
public:
int x();
int y();
void set_to(int x, int y):

friend void print (Point);
private:

int _x, _y;
Y

Since Point.h contains the declaration of print(Point), the file print_pt.h is not
needed. The code for print(Point) can be left in print_pt.c, but since it is now a

else
printf("doesn’t work.\n");

printf(“\nis_ﬂiﬁérent_from(String, char *) ");

if (!is_different_from(hl, "hello") && is_different_from(hl, "world"))
printf ("works.\n");

else
printf ("doesn’t work.\n");

// Test new functions from unit 4

printf("\nis_;he_same_ps(char *, String) "):

if (is_the_same_as("hello", hl) && !is_the_same as("world", hl))
printf ("works.\n");

else
printf("doesn’t work.\n");

printf("\nis_diﬁerent_from(char *, String "):

if (!is_different_from("hello", hl) && is_different_from("world", hl))
printf ("works.\n");

else
printf("doesn’t work.\n");

return O0;

Lab Exercises Object-Oriented Programming in C++ 4 Ex-3

3. Change to the uwnitO4/string directory. The file same.c contains the
is_the same as and is_different_from functions resulting from the unit03
exercises. Write two more functions to compare character arrays to Strings:
is_the same_as(char *, String) and is_different_from(char *, String). These
new functions should be friends of class String. While you are adding these two
new functions to the files String.h and same.c, convert the existing member
functions with those names (that you wrote in the last lab) into friend functions to
get more practice with friend functions.

You can compile and execute the test program by entering 'make prob3’ or you
can compile and execute it directly using the commands:

$CC -o str_same str same.c string.c same.c
$ str_same

SUMMARY
DIRECTORY | unitO4/string
DECLARATION String.h (modify)
IMPLEMENTATION | same.c (modify), string.c
TEST PROGRAM str_same.c

FILE: str_same.c

#include "String.h"
#include <stdio.h>

main(int, char *[])
{
String hl, h2, w;

hl.set_to("hello"):;
h2.set_to("hello");
w.set_to("world");

printf("\nis_the_same_ as(String, String) ");

if (is_the_same_as(hl, h2) && !is_the_ same_as (hl, w))
printf ("works.\n");

else
printf("doesn’t work.\n");

printf("\nis_diﬁérent_from(String, String) ")

if (!is_different_from(hl, h2) && is_different_from(hl, w))
printf ("works.\n");

else
printf("doesn’t work.\n");

printf(“\nis_phe_same_as(String, char *) ");
if (is_the_same_as(hl, "hello") && !is_the_ same_as(hl, "world"))
printf ("works.\n");

Lab Exercises Object-Oriented Programming in C++ 4 Ex-2

UNIT 4

Lab Exercises

1. Change to the unit04/point directory. The files Fr.Point.h and Fr print.c are copies
of the files Point.h and print.c. For this exercise you are to modify the files
Fr.Point.h and Fr.print.c. '

Make your print(Point) function a friend of class Point, and change it (remember
to use the files Fr.Point.h and Fr.print.c) so that it accesses the private data
members of the Point it is printing. How does the new function compare to the
original in terms of efficiency? How many functions will need to be re-written if
we change the representation of points? How many would have been re-written if
we had not made print(Point) into a friend of class Point?

You can compile and execute the test program by entering 'make probl’ or you
can compile and execute it directly using the commands:

$CC -o print_testl print_testl.c point.c Fr.print.c
$ print_testl

| SUMMARY =|

DIRECTORY unit04/point
DECLARATION Fr.Point.h (modify), print.h
IMPLEMENTATION | Fr.print.c (modify), point.c

TEST PROGRAM print_testl.c

2. This exercise uses the files Point.h, print.c, and print.h where the functions are not
declared as friends. Make the x and y functions of class Point into inline
functions. How does the efficiency of print compare to the original function? To
the friend function in question one? How many functions will need to be re-
written if we change the representation of points?

You can compile and execute the test program by entering 'make prob2’ or you
can compile and execute it directly using the commands:

$CC -o print_test2 print_test2.c point.c print.c
$ print_test2

SUMMARY
DIRECTORY unit04/point
DECLARATION Point.h (modify), print.h
IMPLEMENTATION | point.c (modify), print.c
TEST PROGRAM print_test2.c

Lab Exercises Object-Oriented Programming in C++ 4 Ex-1

Lab Exercises

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

4 Ex-28 Object-Oriented Programming in C++

Exercises 4 Ex

Object-Oriented Programming in C++

Lab Exercises

Object-Oriented Programming in C++ 4-27

Friend Functions

Version 30.2
Copyright © 1000 AT&T
All Rights Reserved

4-26 Object-Oriented Programming in C++

Summary

A friend function can be used instead of a
member when:

o the first argument is not of the class type

e a function must access the private section
of more than one class

In other situations, use a member function
instead.

Versicn 8.0.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C+4++ 4-25

Friend Functions
Summary

We have seen that member functions may be necessary when the first argument
of a function is not of the class type, or when a function must access the private
section of more than one class. In other situations, member functions should be
chosen instead, because dynamic binding can only be used with member functions
(we will study dynamic binding later in the course).

Version 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

4-24 Object-Oriented Programming in C++

Example Inline Functions

class Matrix {
public:
int elem(int i, int j):
void set_elem(int i, int j, int val);

private:
int elements[3] [3];
}:

inline int Matrix::elem(int i, int j)
{

return elements[i] [j]:

b

inline void Matrix::set_elem(int i, int j, int val)
{

elements[i] [j] = val;

}

Version 8.0.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ _ 4-23

Friend Functions
Example Inline Functions

We can avoid the overhead of the "extra level" of function calls if we make the
member functions that access the data of a matrix into inline functions.

Inline functions can also be created by putting the code for a function into the
class declaration:

class Matrix {
int elements[3][3]:.

public:
int elem(int i, int j) { return elements(i] [j]:@ }

void set_elem(int i, int j, int val) { elements[i] [j] = val; }

}:

This style is not recommended because it puts the code for the function in the
public section (a user of the class should not have to read through it when looking
at the public section), and it can make the class declarations much longer, and
forcing us to put the private section first.

Version 30.2
Copyright © 1900 AT&T
All Rights Reserved

4-22 Object-Oriented Programming in C++

Inline Functions

Inline functions act like functions:
e They can be class members
e Type checking is performed
e They can be overloaded
o They obey normal parameter passing rules

But they are implemented like macros:
o Code is substituted inline, not called
o Use is faster than calling a function
o Use may take more space
e They are defined in .h files, not .c files

Version 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C4++ 4-21

Friend Functions

Inline Functions

In C, if a small piece of code is used over and over again in parts of a program
where execution speed is critical, that code is often written as a macro instead of
a function. Macros are still legal in C++4, but they do not fit in well with the
other C++ features: they can not be listed as friends or members of a class, their
arguments’ types are not checked, so they can not be overloaded, and the
arguments do not obey the normal parameter passing rules (this can be a problem
in C, as well).

C++ provides inline function expansion, to make up for these problems with
macro expansion. If we move a function into a header file and label it with the
word "inline", C++ will expand it inline rather than generating function calls to
it, if possible. If the function has any parameters that were passed by value,
C+4+4 only copies the value if it will be changed in the function, to avoid
unnecessary overhead. Some constructs are too complicated for the C+4+ inline
function mechanism, in which case there will usually be an error or warning from
the compiler.

If an inline function is changed, all used of that inline function must be re-
compiled, so inline functions should only be used for functions that are not likely
to change.

Version 3.0.2
Copyright © 1990 AT&T
All Rights Reserved

4-20 Object-Oriented Programming in C++

Calling Existing Members

class Vector

{

public:
void set_elem(int, int);
int elem(int) ;
Yy

private:
int elements[3];

j

class Matrix

{

public:
void set_elem(int, int, int);
int elem(int, int);
/).

private:
int elements([3] [3]:

}:

Vector mult (Matrix *m, Vector *v);

Versicn 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++

4-19

Friend Functions

Calling Existing Members

Often it is possible to write a function in terms of existing member and friend
functions. In this case, it does not need access to the private section, so it does
not need to be either a member or a friend. Since it is neither a member or a
friend, it is can be written without knowledge of the implementation of either
class. This is the usual way to create functions that work with more than one
class, but it only works if the classes provide enough members and friends. The
mult function might look like this:

#include "Vec_Matr4.h"
// use: mult (m, V)

Vector mult (Matrix *m, Vector *v)

{
Vector r;
int i, j;
for (i=0; i<3; i++) {
r.set_elem(i, O):
for (j=0; j<3; j++)
r.set_elem(i, r.elem(i) + m->elem(i,j) * v->elem(j)):
}
return r;
}
void Matrix::set_elem(int i, int j, int val)
{
elements[i] [j] = val;
}
int Matrix::elem(int i, int j)
{
return elements[i] [Jj]°
}
void Vector::set_elem(int i, int val)
{
elements[i] = val:’
}
int Vector::elem(int i)
{
return elements[i];
3

Version 302
Copyright © 1990 AT&T
All Rights Reserved

4-18 Object-Oriented Programming in C++

All Members of Another class as Friends

class Vector; // forward reference
// to make declaration of
// "mult" legal

class Matrix

{

public:
Vector mult (Vector *v);
// ...

private:
int elements[3] [3]:

}:

class Vector

{

public:
friend class Matrix;
// -

private:
int elements[3];

}:

Version 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++

4-17

Friend Functions
All Members of Another class as Friends

All member functions of a class may be made friends of another class.

This is an alternative to simply listing each member function as a friend, as
shown on the previous page.

Versicn 302
Copyright © 1900 ATT
All Rights Reserved

4-16 Object-Oriented Programming in C++

Member of Another class as a Friend

class Vector; // forward reference
// to make declaration of
// "mult" legal

class Matrix

{

public:
Vector mult (Vector *v);
/).

private:
int elements[3] [3];

}:

class Vector

{

public:
friend Vector Matrix::mult (Vector *v);
//-

private:
int elements([3];

}:

Versian 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C4++

4-15

Friend Functions

Member of Another class as a Friend

A member function may be a friend of another class. This is another ways to
write a function that works with objects of different types. Since it also allows
access to the private sections of more than one class, it should also only be used
when designing several classes at the same time.

If we chose to write the mult function as a friend of class Vector and a member
of class Matrix, it might look like this:

#include "Vec_Matr2.h"
// use: m.mult (v) ;

Vector Matrix: :mult (Vector *v)

{
Vector r;
int i, j;
for (i=0; i<3; i++) {
r.elements[i] = O;
for (3j=0. j<3; j++)
r.elements[i] += this->elements[i] [j] * v->elements[]j];
}
return r;
}

Version 30.2
Copyright © 1000 ATET
All Rights Reserved

4-14 Object-Oriented Programming in C++

Friends of More Than One class

class Matrix; // forward reference
// to make declaration of

// "mult" legal

class Vector

{
public:

friend Vector mult (Matrix *m, Vector *v);

//. ..
private:
int elements[3];

}:

class Matrix

{
public:

friend Vector mult (Matrix *m, Vector *v);

/). ..

private:
int elements[3] [3]:
}:

Versicn 3.0.2
Copyright © 1900 ATZT
All Rights Reserved

Object-Oriented Programming in C++

4-13

Friend Functions

Friends of More Than One class

A function may be a friend of more than one class. If you are designing several
classes as part of one library, and need to write a function that works with the
private data of more than one of those classes, you can create a function that is a
friend of those classes. It is not possible to create a function that is a member of
more than one class.

Note that this technique should only be used when you are designing several
classes at the same time, and understand the private sections of those classes.

If we choose to write the mult function as a friend of both classes, it might look
like this:

#include "Vec_Matr.h"
// use: mult (m, Vv):

Vector mult (Matrix *m, Vector *v)
{

Vector r;

int i, j;

for (i=0; i<3; i++) {
r.elements{i] = O;

for (J=0; j<3; j++)
r.elements[i] += m->elements[i] [j] * v->elements[j]:

}

return r;

Version 3.0.2
Copyright © 1900 AT&T
All Righte Reserved

4-12 Object-Oriented Programming in C++

Calling Friend Functions

#include "String.h"

main (int, char *[])

{

String firstname, lastname, name, output;

firstname.set_to ("Zaphod")
lastname.set_to ("Beeblebrox") ;

name = concat (&firstname, " ") ;
name = concat (&name, &lastname) ;
output = concat ("Name is: ", &name) ;

output.print ()

return O;

Versicn 3.0.2
Copyright © 1000 ATET
All Rights Reserved

Object-Oriented Programming in C++

4-11

Friend Functions

Calling Friend Functions

If we had tried to write the third concat function as a member, it would have
required an invoking object of type String, and would have looked something
like the function reverse_concat shown below:

#include "String.h"

main (int, char *[])

{

String firstname, lastname, name, output;

firstname.set_to (""Zaphod") ;
lastname.set_to ("Beeblebrox") ;

name = firstname.concat (" "):
name = name.concat (&lastname) ;
output = name.reverse_concat ('"Name is: ") ;

output.print () ;

return O;

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

4-10 Object-Oriented Programming in C++

Writing Friend Functions

#include "String.h"
#include <string.h>
#include <stdio.h>

#include <stdlib.h>

String concat (String *first, String *other)

{
String both;
if (first->length() +other->length () >max_string_length) {
fprintf (stderr, "RUN TIME ERROR: String too large\n");
exit (1) ;
}
strcpy (both.text, first->text):
strcat (both.text, other->text):
return both;
}
String concat (char *first, String *second)
{
String both;
if (strlen(first)+second->length () >max_string_length) {
fprintf (stderr, "RUN TIME ERROR: String too large\n'");
exit (1)
}
strcpy (both.text, first);
strcat (both.text, second->text):;
return both;
}

Version 302
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++4- : 4-9

Friend Functions
Writing Friend Functions

Friend functions are written just like other functions that are not member

functions of the class, but they can access the private section of object of the
class.

Versicn 30.2
Copyright © 1000 AT&T
All Rights Reserved

4-8 ‘ Object-Oriented Programming in C++

Declaring Friend Functions

const int max_string_length = 128;
class String {

public:
void set_to (char *);
int 1length():
int read():
void print () ;

String substring(int start, int len);

friend String concat(String *, String *);
friend String concat(String *, char *);

Jriend String concat(char *, String *);

private:
// a String is a sequence of up to
// max_string_length non-null characters
// followed by a null character

char text[max_string_length+1l]:

Version 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 4-7

Friend Functions

Declaring Friend Functions

Friend functions are distinguished from members with the keyword friend. Since
friend functions do not have invoking objects, each concat function must take
two arguments. Note that we have added a third concat function, which
concatenates a character array and a String.

The distinction between the public and private sections of a class applies only to
members of the class. A friend function may be declared in either the public or
the private section of a class, without any effect on its scope. We recommend
placing friend functions in the public section of a class, so that users need only
look at the public section to see all the defining operations.

Version 30.2
Copyright © 1900 AT&T
All Rights Reserved

4-6 Object-Oriented Programming in C++

Friend Functions

Member functions

are part of one class
can access the class’s private section

are called with an "invoking object" of that
class type

can use

— the keyword this

— the names of members

to refer to the invoking object

Friend functions

are declared in one or more classes

e have access to the private sections of

those classes

o are distinguished from members with the

keyword friend

o are not called with an invoking object of

those classes

Version 30.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 4-5

Friend Functions
Friend Functions

In C++, there are two kinds of defining operations for a class: member functions
and friend functions. Both must be listed in the class declaration, so both have
access to the class’s private section.

Only member functions are invoked by objects, so only member functions can use
the keyword this or the member names to refer to the invoking object. If a friend
function needs to work with some object of the class, that object must be passed
as an argument.

Versicn 30.2
Copyright © 1000 AT&T
All Rights Reserved

4-4 Object-Oriented Programming in C++

Objectives

At the end of this unit we will be able to:
o Declare, define and use friend functions

e Describe how friends differ from member
functions

e Decide whether a function should be
written as a member or friend

e Create an inline function

Versin 30.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++

Friend Functions

Objectives

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

4-2 Object-Oriented Programming in C++

Unit 4

Object-Oriented Programming in C++

Friend Functions

