Unit 2

Object-Oriented Programming in C++

Classes and Member Functions

Classes and Member Functions

Objectives

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

2-2 Object-Oriented Programming in C++

Objectives

At the end of this unit we will be able to;
o Define a type in terms of a list of operations
e Choose an implementation for the type

o Write the code for the type's defining
operations

Versicn 302
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 2-3

Classes and Member Functions

Creating a Type

The keyword class is used to declare a new type in C++. A class is divided into
two sections: the public and the private. The public section lists all the
information that will be available to programmers who declare variables of that
type, including the list of operations that can be used to manipulate variables of
that type. The private section lists information that can only be used inside the
class’s defining operations.

We will look first at the public section and the use of a class, and then at the
private section and the implementation.

Version 8.0.2
Copyright © 1000 ATET
All Rights Reserved

2-4 Object-Oriented Programming in C++

Creating a Type
A data abstraction is created with the class
keyword.

A class declaration is like a struct, except:
o it lists defining operations as well as data
e members may be public or private

A class is used to declare variables.
Member function call syntax:

variable-name.member-function(arguments)

Version 30.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 2-5

Classes and Member Functions

A Simple class String

Our class. String has only four defining operations:

e set_to, to give a String a value

length, to find the length of a String

e read,toread in a String

print, to print out a String

Since these functions are listed as members of the class (like members of a
structure in C), they are known as the "member functions" of class String. All
members declared in a class are part of the class, and their names will not be
confused with names outside the class (like the names of members of a struct in
C). Member names are said to be in the class’s scope.

Note that class String is distinct from a quoted group of characters (e.g. "hello,
world"), which has type char * but are often called strings.

Versicn 30.2
Copyright © 1000 AT&T
All Rights Reserved

2-6 Object-Oriented Programming in C++

A Simple class String

class String {

public:
void set_to {char *);
int 1length():
int read(); // read from stdin

void print(): // print to stdout

private:
// implementation details

}:

Version 30.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++

2-7

Classes and Member Functions

Using class String

String variables are declared just like any other variables. They can be
manipulated by calling the defining operations listed in the public section of class
String. Member functions are called with a special kind of function call, in
which the name of the object comes before the function name. We will call the
object that invokes the member function the tnvoking object.

arg.length():; // invoking object = arg
input.length() ; // invoking object = input

A programmer using class String can write functions that work with String
variables, but those functions must be written in terms of the defining operations
or other functions (they can not access the implementation of the String
directly).

class String {

public:
void set_to (char *);
int 1length():
int read(): // read from stdin
void print(); // print to stdout

private:
// implementation details
}:

Version 3.0.2
Copyright © 1900 ATET
All Rights Reserved

2-8 Object-Oriented Programming in C4++

Using class String

#include "String.h"
#include <stdio.h>

main (int argc, char *argv[])

{
String arg, input;
if (argc == 2) {
arg.set_to(argv[l]):
printf ("argument length is %d\n", arg.length()):
}
printf ("enter a string:\n");
input.read() ;
printf ("length is %d\n", input.length()):
return O;
+

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C4++ 7 2-9

Classes and Member Functions
A Simple Implementation

Before we can compile the test program, we must fill in the private section of
class String, and write the code for the member functions. The first step in
writing a class is getting the right set of operations, so we will use the a simple
implementation of class String in our first tests. We can concentrate on a
flexible, efficient implementation of the class once we have decided on the right
set of member functions.

During the development of class String, we will use an array of 129 characters
to store the text for every String variable, so we declare an array of 129
characters in the private section of class String. Class String is like a
"struct" in the C language because it shows what storage will be needed when
String variables are created. It is different from a C "struct” because only the
String operations can access the data of a String.

Any members declared before the first "public:" or "private:" will be private. In
early versions of C++, there was no keyword "private:", so the only way to
declare private members was to list them before the keyword "public:". Class
declarations written in early versions of C++ look like this: (they can still be
compiled, but the style on the facing page is recommended).)

const int max_string_length = 128;
class String {

// a String is a sequence of up to
// max_string_length non-null characters
// followed by a null character

char text [max_string_length+1]:

public:
void set_to (char *);
int 1length():
int read():; // read from stdin
void print(); // print to stdout

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

2-10 Object-Oriented Programming in C++

A Simple Implementation

const int max_string_length = 128;
class String {

public:
void set_to (char *);
int 1length():
int read(): // read from stdin
void print(); // print to stdout

private:
// a String is a sequence of up to
// max_string_length non-null characters
// followed by a null character

char text[max_string_length+l];

Versian 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 2-11

Classes and Member Functions
Writing Member Functions

The name of any class member may be preceded by its class’s name using the
scope resolution operator. For example, because length is a member function of
class String, the expression’

input.length ()
could be written:

input.String: :length()

The scope resolution operator is not needed for calls to member functions,
because C++ will automatically choose member functions from the invoking
object’s class. The scope resolution operator is required in the definition of a
member function, since there is no other way for C++ to tell which class’s
member function is being defined.

A member function can work with its invoking object by using the keyword this.

The keyword this is implicitly defined as a pointer to the function’s invoking
object:

input.length() // inside String::length, '"this" points to input
arg.length () // inside String::length, '"this" points to arg

A member function can refer to the individual members of its invoking object by
using the member names without specifying an object. For example, a String
member function can get at its invoking object’s text with either this->text
or just text.

input.length() // "text" or "this->text" means input.text
arg.length () // "text" or "this->text" means arg.text

Versicn 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

2-12 Object-Oriented Programming in C++

Writing Member Functions

Defined with scope resolution operator, " :: "

class-name::member-function-name(parameter-list)

{
// body
}

Member function can refer to:

e its arguments (by using the parameter
names)

e its invoking object
— by using the keyword this
— by using member names

Versian 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 2-13

Classes and Member Functions

String Member Functions

The length member function uses the C library function strlen to find
number of characters before the null byte in the invoking object’s text array. It
can refer to the invoking objects text array with either the expression text or
the expression this->text. In the example input.length(), either of the
above expressions would refer to input.text

set_to copies the characters from the argument (of type char *) into the text
array of the invoking object (a String) with strncpy. It then stores a null
byte in the last element of the array, to ensure that the array will be null
terminated even if s contains more than max_string_length characters (in
which case, strncpy would not have provided the terminating null.

The read and print member functions use the stdio library functions fgets
and fputs to input or output a line of characters. read also removes the
newline character from the end of the input. It can find the length of its invoking
object with the expression length () or this->length() .

Class String is shown here for reference:
const int max_string_length = 128;
class String {

public:
void set_to(char *);
int 1length():
int read(): // read from stdin
void print(): // print to stdout

private:
// a String is a sequence of up to
// max_string_length non-null characters
// followed by a null character

char text[max_string_length+l];

Version 3.0.2
Copyright © 1000 ATEZT
All Rights Reserved

2-14 Object-Oriented Programming in C4++

String Member Functions

#include "String.h"

#include <string.h> // (for standard C string functions)
#include <stdio.h> // (stdio is used in read, print)

int String::length/()

{
return strlen (text) ;
// or, return strlen (this->text) ;
}
void String::set_to (char *s)
{ _
strncpy (text, s, max_string_length) ;
text [max_string_length] = O;
}
int String::read()
{ :
if (fgets (text, max_string_length+l, stdin) == 0)
return O; // end of file
if (text[length()-1] == '\n')
text[length () -1] = '\0';
return 1;
by
void String: :print ()
{ |
fputs (text, stdout):
)

Version 302
Copyright © 1960 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 2-15

Classes and Member Functions

More String Functions

Any additional work with String variables will quickly show that we need more

defining operations. For example, we may want to concatenate Strings, or
find a substring of some String.

Note that the concat and substring operations will return Strings, and that
Strings can be assigned. They can also be passed as arguments to functions.

This is legal because structure variables could be assigned, returned, or passed as
arguments in C.

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

2-16 Object-Oriented Programming in C++

More String Functions

#include "String.h"
#include <stdio.h>

main (int, char *[])

{
String firstname, lastname, name;
firstname.set_to ("Zaphod ") ;
lastname.set_to ("Beeblebrox") ;
name = firstname.concat (&lastname) ;
printf ("name is: ");
name.print () ;
firstname = name.substring (0O, 6);
printf ("\nfirstname is: ");
firstname.print ().
return O;

3

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++

2-17

Classes and Member Functions

Adding String Functions

The String::substring function takes only two arguments, the start
position and length of the substring. It does not need to have a String
argument to know which String to use, because it takes a substring of the
invoking object.

The concat function returns the concatenation of the invoking String and the
argument String.

Versicn 302
Copyright © 1000 AT&T
All Rights Reserved

2-18 Object-Oriented Programming in C++

Adding String Functions

const int max_string_length = 128;

class String {

public:

void set_to (char *);
int 1length():

int read():

void print():

String substring(int start, int len);
// return substring of invoking string,
// Without changing original.

String concat (String *) ;
// return the concatenation of invoking string
// and the argument, without changing either.

private:

// a String is a sequence of up to
// max_string_length non-null characters
// followed by a null character

char text[max_string_length+l];

Version 3.0.2
Copyright © 1960 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 2-19

Classes and Member Functions
String::substring

When the String: :substring function refers to "text", it means the member

text of the invoking object. It can use sub.text to refer to the text of its
local variable sub.

const int max_string_length = 128;
class String {

public:
void set_to (char *);
int 1length():
int read():
void print() .

String substring(int start, int len):
// return substring of invoking string,
// Wwithout changing original.

String concat (String *);
// return the concatenation of invoking string
// and the argument, without changing either.

private:
// a String is a sequence of up to
// max_string_length non-null characters
// followed by a null character

char text [max_string_length+l]:;

Version 3.0.2
Qopyright © 1000 AT&T
All Rights Reserved

2-20 Object-Oriented Programming in C++

String::substring

#include "String.h"
#include <string.h>
#include <stdio.h>
#include <stdlib.h> // (for "exit")

String String: :substring(int start, int len)
{
if (start+len >= length() || start < 0) {
fprintf (stderr,
"illegal index (%d) for String \"%s\".\n",
start, text);
exit (1):
¥
else {
String sub;
int i=0;

while (i<len) {
sub.text[i] = text[start+i];
i++;

4

)
sub.text[i] = '\O';

return sub;

Version 8.0.2
Copyright © 1000 AT&T
All Righte Reserved

Object-Oriented Programming in C++ 2-21

Classes and Member Functions
String::concat

The String: :concat function copies the text of the invoking String into the
temporary both, appends the text of the argument String after it, and
returns both.

const int max_string_length = 128;
class String {

public:
void set_to (char *);
int 1length():
int read():
void print():

String substring(int start, int len):
// return substring of invoking string,
// without changing original.

String concat (String *);
// return the concatenation of invoking string
// and the argument, without changing either.

private:
// a String is a sequence of up to
// max_string_length non-null characters
// followed by a null character

char text [max_string_length+1];

Version 3.0.2
Copyright © 1000 ATET
All Rights Reserved

2-22 Object-Oriented Programming in C++

String::concat

#include "String.h"
#include <string.h>
#include <stdio.h>

#include <stdlib.h>

String String: :concat (String *other)

{
String both;
if (length() + other->length() > max_string_length) {
fprintf (stderr, "RUN TIME ERROR: String too large");
exit (1) ;
}
strcpy (both.text, text); 7
strcat (both.text, other->text)
return both;
}

Version 30.2
Copyright © 1090 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 2-23

Classes and Member Functions

Summary

Version 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

2-24 Object-Oriented Programming in C++

Summary

The keyword class is used to define a type

e The member functions listed in the public
section are the defining operations

o The implementation details are listed in the
private section

o Only the class’s defining operations can
access the private members

o The member functions refer to the invoking
object using this or member names

Versicn 8.0.2
Copyright © 1000 ATET
All Rights Reserved

Object-Oriented Programming in C++ 2-25

Classes and Member Functions

Version 3.0.2
Copyright © 1090 AT&T
All Rights Reserved

2-26 Object-Oriented Programming in C++

Exercises 2 Ex

Object-Oriented Programming in C++

Lab Exercises

Ohiert-Orionted Pracramminae in O L1

ettt e b

Lab Exercises

Version 30.2
Copyright © 1900 AT&T
All Rights Reserved

2 Ex-28 Object-Oriented Programming in C++

Unit 2 Lab Exercises

In many units, you will find that there are more lab exercises than you can do in
the allotted time (this ensures that even a quick programmer will have something
to do). You should therefore decide which questions are most interesting to you,
and work on them first. Do not worry if you don’t have time to answer all the
questions.

Some lab exercises let you create a new class, named Point, and others let you
modify the class String discussed in the lecture. In later units, lab exercises
involving class Point will depend on your answers to the Point questions in
this unit, and future lab exercises for class String will depend on your answers
to the String labs in this unit. Therefore, you may find it helpful to pick one of
those two classes, and, in each unit, do the labs for that class first.

In this unit, question 1 lets you compile a C++ program. Start with question 1
regardless of which class interests you more. Questions 2 and 3 let you start class
Point, and question 4 asks you to enhance the String class discussed in the
lecture. .

1) The String class discussed in the lecture is in the unit02 directory. The
class declaration is in the file String.h, and the member functions in the files
simple_fns.c, substring.c, and concat.c. Compile and run the
program use_string.c, which is a sample use of class String.

FILE: use_string.c

#include "String.h"
#include <stdio.h>

main (int, char *[])

{

String s, t;

s.set_to("hello world")
printf ("Length of s is %d\n", s.length()):

printf ("Enter string t: ")
t.read();
printf ("Length of t is %d\n", t.length()):

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 2 Ex-29

Lab Exercises

return O;

}

2) Create a directory named point below your home directory, and keep the
files for questions 2 and 3 in that directory. This will allow you to return to these
exercises at later times during the course. Create a class Point that represents
a pair of co-ordinates. Such a class might be used to identify positions on the
terminal screen in a graphics program. Your class needs only three member
functions: one (called x) to find the distance along the X axis, one (called y) to
find the distance along the Y axis, and one, called set_to, to give values to the
Point’s X and Y co-ordinates. (The function’s first argument should be the X
value, and the second argument the Y.) You may assume that the X and Y
values will be integers. You may use whatever private data members seem
appropriate (such as two integers named _x and _y. Note that we should not
give the data the same name as the member functions: adding underscores, or
capitalizing the names, are ways to prevent this).

Put the class declaration in the file Point.h, and the source for the member
functions in point.c, both in the point directory. Test your class with the
test program use_point.c, which is located in the unit02/Labs directory.

FILE: Labs/use_point.c

#include "Point.h"
#include <stdio.h>

main (int, char *[])

{
Point pl, p2;

pl.set_to (3, 5):
p2.set_to (2, 7):

if (pl.x() == 3 &&
pl.y() == 5 &&
pP2.x() == 2 &&
p2.y() == 17)
{ .
printf ("test successful.\n"):
return O;

Version 3.0.2
Copyright © 1900 AT&T
All Rights Reserved

2 Ex-30 Object-Oriented Programming in C++

}

else {
printf ("test failed.\n");
return 1;
}
}

3) Write a function named print which takes one argument of type Point
and prints out the x and y values of that point. print should not be a
member function of class Point, but a function that could have been written by
a user of class Point.

Put the declaration of the print function in the file print_pt.h, and the
definition in print_pt.c. Test your print function with the file
print_test.c (which is also in the unit02/Labs directory.)

FILE: Labs/print_test.c

#include "Point.h"
#include "print_pt.h"
#include <stdio.h>

main (int, char *[])

{
Point pl, p2;

pl.set_to (3, 5):
p2.set_to (8, 2):

printf ("printing (3, 5): "):
print (pl):

printf ("\nprinting (8, 2): "):
print (p2):

printf ("\n");

return O;

Version 80.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 2 Ex-31

Lab Exercises

4) In this exercise, you will make additions to the class String studied in the
lecture. Return to the unit02 directory and modify the files there. Add member
functions to class String so that users will be able to compare Strings. Add
a function named is_the_same_as which returns a TRUE (non-zero) value if
the invoking object is the same as the argument, and another named
is_different_from which returns a TRUE (non-zero) value if the invoking
object is different from the argument. If you feel ambitious, add is_before

and is_after to tell if one string comes before or after the other in ASCII
order.

Keep the code for your new member functions in the file same.c, so that you
can copy them for later labs. Test your class with the program str_same.c.

FILE: str_same.c

#include "String.h"
#include <stdio.h>

main (int, char *[])

{
String hl, h2, w;

hl.set_to("hello"):
h2.set_to("hello")
w.set_to ("world") ;

printf ("\nString: :is_the_same_as ") ;

if (hl.is_the_same_as (h2) && 'hl.is_the_same_as (wW))
printf ("works.\n") ;

else
printf ("doesn't work.\n");

printf ("\nString::is_different_from ") ;

if (‘thl.is_different_from(h2) && hl.is_different_from(w))
printf ("works.\n")

else
printf ("doesn't work.\n"):;

return O;

}

Versico 3.0.2
Copyright © 1960 AT&T
All Rights Reserved

2 Ex-32 Object-Oriented Programming in C++

Answers 2 Ans

Object-Oriented Programming in C++

Exercise Answers

Object-Oriented Programming in C++ 2 Ex-33

Exercise Answers

Version 30.2
Copyright © 1900 AT&T
All Rights Reserved

2 Ans-34 Object-Oriented Programming in C++

UNIT 2
Lab Exercises

In this unit, question 1 lets you compile a C++ program. Start with question 1 regardless
of which class (String or Point) interests you more. Questions 2 and 3 let you start class
Point, and question 4 asks you to enhance the String class discussed in the lecture.

1.

Change to the unit02/string directory. The String class discussed in the lecture is
in this directory. The class declaration is in the file String.h, and the
implementation of the member functions is in the file string.c. Compile and run
the program use_string.c, which is a sample use of class String.

SUMMARY
DIRECTORY unit02/string
DECLARATION String.h
IMPLEMENTATION | string.c
TEST PROGRAM use_string.c

FILE: use string.c

$include "String.h"
#include <stdio.h>

main(int, char *[])
{
String s, t;

s.set_to("hello world");
printf ("Length of s is %d\n", s.length());

printf ("Enter string t: ");
t.read():;
printf ("Length of t is %d\n", t.length()):

return 0;

Change to the unit02/point directory. Create a class Point that represents a pair of
co-ordinates. Such a class might be used to identify positions on the terminal
screen in a graphics program. Your class needs only three member functions: one
(called x) to find the distance along the X axis, one (called y) to find the distance
along the Y axis, and one, called set_to, to give values to the Point’s X and Y co-
ordinates. (The function’s first argument should be the X value, and the second
argument the Y value.) You may assume that the X and Y values will be integers.
You may use whatever private data members seem appropriate (such as two
integers named x and _y. Note that we should not give the data the same name as
the member functions: adding underscores or capitalizing the names are two ways

Lab Exercises Object-Oriented Programming in C++ 2 Ex-3

to prevent this).

Put the class declaration in the file Point.h, and the source for the member
functions in point.c, both in the unit02/point directory. Test your class with the
test program use_point.c, which is located in the unit02/point directory. You can
compile and execute this test program (use_point) by entering 'make prob2 or
you can compile and execute it directly using the commands:

$ CC -o use_point use_point.c point.c

$ use_point

| SUMMARY I

DIRECTORY unit02/point
DECLARATION Point.h (new)
IMPLEMENTATION | point.c (new)
TEST PROGRAM use_point.c

#$include "Point.h"
#include <stdio.h>

main(int, char *[])
{
Point pl, p2;

pl.set_to(3, 5);
p2.set_to(2, 7);

if (pl.x() == 3 &&
pl.y() == 5 &&
p2.x() == 2 &&
pP2.y() == 17)

{
printf("test successful.\n");
return O;

}

else {
printf("test failed.\n");
return 1;

}

}

FILE: use point.c

3. Write a function named print which takes one argument of type Point and prints
out the x and y values of that point. print should NOT be a member function of
class Point, but a function that could have been written by a user of class Point.

Put the declaration of the print function in the file print_pth, and the
implementation in print_pt.c. Test your print function with the file print_test.c

Lab Exercises Object-Oriented Programming in C++

2 Ex-4

(which is also in the unir02/point directory). You can compile and execute this test
program (print_test) by entering 'make prob3’ or you can compile and execute it
directly using the commands:

$CC -o print_test print test.c point.c print_pt.c
$ print_test '

SUMMARY
DIRECTORY unit02/point
DECLARATION Point.h, print_pt.h (new)
IMPLEMENTATION | point.c, print_pt.c (new)
TEST PROGRAM print_test.c

FILE: print_test.c

#include "Point.h"
#include "print pt.h"
#include <stdio.h>

main(int, char *[])
{
Point pl, p2;

pl.set_to(3, 5);
p2.set_to(8, 2);

printf ("printing (3, 5): ");
print (pl):;

printf ("\nprinting (8, 2): ");
print (p2):;

printf ("\n");

return O;

4. In this exercise, you will make additions to the class String studied in the lecture.
Return to the unit02/string directory and modify the files as follows. Add member
functions to the class String (declared in String.h) so that users will be able to
compare Strings. Add a function named is_the_same_as which returns a TRUE
(non-zero) value if the invoking object is the same as the argument, and another
named is_different_from which returns a TRUE (non-zero) value if the invoking
object is different from the argument. If you feel ambitious, add is_before and
is_after to tell if one string comes before or after the other in ASCII order. If you
add these two functions, change the corresponding lines from comments to
statements in the file str_same.c that test these functions.

Lab Exercises Object-Oriented Programming in C++ 2 Ex-5

Put the implementation of your new member functions in the file same.c (the
existing member functions are in the file strings.c). Test your newly modified class
with the program str_same.c. You can compile and execute this test program
(str_same) by entering 'make prob4’ or you can compile and execute it directly
using the commands:

$CC -o str same str same.c string.c same.c
$ str same

SUMMARY
DIRECTORY unit(2/string
DECLARATION String.h (modify)
IMPLEMENTATION | string.c, same.c (new)
TEST PROGRAM str_same.c

FILE: str same.c

#include "String.h"
#include <stdio.h>

main(int, char *[])
{
String hl, h2, w;

hl.set_to("hello");
h2.set_to("hello");
w.set_to("world");

printf("\nString::is_the_same_as ");

if (hl.is_the_same_as(h2) && !'hl.is_the_same_as (w))
printf£ ("works.\n");

else
printf("doesn’t work.\n");

printf ("\nString::is different_from ");

if (!hl.is_different_ from(h2) && hl.is_different_from(w))
printf ("works.\n");

else
printf("doesn’t work.\n");

// The following can be used to test the ’is before’ and ’'is after’
// member functions if you have included them in your String class.

// printf("\nString::is_before ");
// if (lw.is_before(h2) && hl.is before(w))
// printf ("works.\n");

// else
// printf ("doesn’t work.\n");
//

// printf("\nString::is_after ");
// if (w.is_after(h2) && !hl.is_after(w))

Lab Exercises Object-Oriented Programming in C++ 2 Ex-6

// printf ("works.\n");
// else
// printf ("doesn’t work.\n");

return O;

Lab Exercises Object-Oriented Programming in C++ 2 Ex-7

UNIT 2

Lab Exercises (Answers)

1. To compile the program from question one, log in and run the commands:

cd unit02/string
CC -0 use_string use_string.c string.c

2. The file Point.h contains the declaration for class Point:

FILE: Point.h

class Point {
public:
int x();
int y(:
void set_to(int x, int y);

private:
int _x, _y»
Y

The file point.c contains the member functions:

FILE: point.c

#include "Point.h"

int Point::x()
{

return XxX;

}

int Point::y()

{

return _y:

}

void Point::set_to(int x, int y)
{

X

¥

X7
y;

}

Lab Answers Object-Oriented Programming in C++

2 Ans-1

3. The declaration of the print function is in the (one line) header file print_pt.h:

FILE: print pt.h

void print (Point);

The code for the function in the file print_pt.c:

FILE: print_pt.c

#include "Point.h"
#include "print_ pt.h"
$include <stdio.h>

void print (Point p)
{

printf (" (%d,%d)\n", p.x(), pP-Y(O):
}

4. The functions is_the_same_as and is_different_from (as well as is_before and
is_after if you chose to add them) must be added to the class:

FILE: String.h

const int max_string length = 128;
class String {

public:
void set_to(char *);
int length();
int read():;
void print():;

int is_the_ same_as (String);
int is_different_from(String);
int is_before(String);

int is_after(String);

String substring(int start, int len);
// return substring of invoking string,
// without changing original.

String concat (String *);
// return the concatenation of invoking string
// and the argument, without changing either.

private:
// a String is a sequence of up to
// max_string_length non-null characters

// followed by a null character

char text[max string_length+l];

Lab Answers Object-Oriented Programming in C++ 2 Ans-2

The code for the functions are in the file same.c:

FILE: same.c

#include <string.h>
#include "String.h"

int String::is_the_same_ as (String s)
{

return !strcmp(text, s.text):;
}

int String::is_different from(String s)
{

return strcmp(text, s.text);
}

int String::is_before(String s)
{
return (strcmp(text, s.text) < 0);

}

int String::is_after(String s)
{
return (strcmp(text, s.text) > 0);

}

NOTE: the solution contains the functions is_before and is_after. However, these
two functions will NOT be carried forward to subsequent unit exercises.

Lab Answers - Object-Oriented Programming in C++ 2 Ans-3

