Unit 1

Object-Oriented Programming in C++

Introduction

Introduction

Objectives

Nersion 402
Copyright = Mo NTET
Al Rights Reserveal

-2 Object-Oriented Programming in C4-+

Objectives

At the end of this unit you will be able to:

e Distinguish object-oriented from
procedure-oriented programming.

o Define the terms data abstraction and data
encapsulation, and explain how they relate
to C and C++

e List some of the advantages of object-
oriented programming.

Version 3.0.2
Copytight ¥ 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 1-3

Introduction

What is C++?

C++ is an extension of the C language that is designed to support a kind of
programming known as "object-oriented programming." An understanding of the
basic principles of object-oriented programming is essential for anyone who wants
to obtain the full benefit of C4+.

Version 3.0.2
Copyright * 1000 XT&T
All Righire Reserved

1-4 Objeet-Oriented Programming in C++

What is C++?

C++ is an extension of the C language that:

e Provides facilities to support object-
oriented programming

e Compiles C code with little or no change
e Maintains the overall character of C:

— New features maintain C's high
efficiency

— New features allow "low-level”
programming

— New features let the programmer "bend
the rules"

Nersious 3.0.2
Copyright * 1990 ATLT
All Rights eserved

Ohject-Oriented Programming in C++ 1-5

Introduction
Procedure-Oriented Programming

We will introduce object-oriented programming (often abbreviated O.0.P.) by
contrasting it with procedure-oriented programming (P.O.P.). 0.0.P.and P.O.P.
are two ways of thinking about and organizing programs: both help you divide a
program into pieces that can be written independently and combined later. They
differ in the kinds of picces vou create.

Each piece must be written by one or more programmers, whom we call the
authors. Other programmers (the users) use the pieces to construct other pieces
or the complete program itself. A programmer may use existing pieces of code
while acting as the author of a new piece. For example, if you use the C standard
I/O library and the math library to create a calculator program, you are the
author of the calculator program and the user of both libraries.

Individual pieces of code are most useful when they let the users think of the
piece in abstract terms. That is. the users can think in high-level terms when they
use the code, without having to worry about low-level details of how the piece is
implemented. An abstraction separates what the user needs to know to use a
piece of code from what the author had to know to write the code. For example,
when you use the sin function, you can think in terms of the mathematical idea
of the sine of an angle, without worrving about how the library function
computes the value.

Note that, for the purposes of this discussion, we will not distinguish between
procedures and functions.

Version 3002
Copyright © 1000 ATAT
All Rights Reserved

1-6 Object-Oriented Programming in C4++

Procedure-Oriented Programming

Procedure-oriented programming

e a way of thinking about and organizing
programs

e programs are made up of procedures:
— written by one or more authors
— used by many users

— Kknown as procedural abstractions if use
does not require knowledge of
implementation

Version 3.0.2
Copyright ¥ 1000 ATAZT
Al Rights Rexerved

Objeet-Oriented Programming in C;F+ 1-7

Introduction

Language Support for
Procedure-Oriented Programming

Traditional languages have many features to help you create procedural
abstractions.

e procedure names
e restricted scope of local variables
e argument & return value copying

It is possible to use many of the techniques of procedure-oriented programming
with a language that lacks the above features, but many of the advantages will
be lost, since the code can not fully reflect the design principles.

Version 3.0.2
CopyTight ¥ 1000 AT&T
All Rights Reserved

1-8 Object-Oriented Programming in C4++

Language Support for
Procedure-Oriented Programming

Language features of traditional languages
(like C) help you create procedural
abstractions:

e Function names
e Limited scope of local variables

e Automatic function argument and return
value copying

Version 3.0.2
CopyTight ¢ 1900 AT&T
All Righte Reserved

Object-Oriented Programming in C4++

1-9

Introduction

Object-Oriented Programming

Programs contain both data and code to manipulate those data. Procedure-
oriented programming focuses on defining abstractions that correspond to the
actions taken by the code. Object-oriented programming focuses on defining
abstractions that represent the data being manipulated.

Procedural abstractions allow many programmers to use a procedure without
knowledge of the details known to the procedure’s authors. Data abstractions
allow many programmers to use a data type without knowledge of the details
known to the data type’s authors. For example, yvou can use the data type
float in a C program without worryving about how floating point numbers are
represented on the machine that will run your program.

When several classes have similar features. they can be defined in a simple,
flexible, and efficient manner using inheritance.

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

1-10 : Object-Oriented Programming in C++

Object-Oriented Programming

Object-oriented programming (O.O.P)

e another way of thinking about and
organizing programs

e programs made up of interacting pieces of
data (objects)

e groups of objects defined by classes (types)
— classes written by one or more authors
— classes used by many users

— known as data abstractions if use does
not require knowledge of implementation

e groups of classes defined with inheritance

Version 3.0.2
Copyright ¥ 1990 AT&T
All Righits Reserved

Object-Oriented Programming in C++ 1-11

Introduction

Language Support for
Object-Oriented Programming

Object-oriented languages have features that help you create data abstractions
and describe the relationships between these data abstractions.

Version 3.0.2
CopyTight © 1900 AT&T
All Rights Reserved

1-12 Object-Oriented Programming in C++

Language Support for
Object-Oriented Programming

Features of object-oriented languages (like C++)
let you:

e Create data abstractions (classes)
e use user-defined types like built-in types

e Create groups of related types using
inheritance

Object-oriented languages usually contain
features that allow the creation of procedural
abstractions.

Version 3.0.2
CopyTight ¢ 1090 AT&T
All Rights Reserved

Object-Oriented Programming in C4++ 1-13

Introduction

Programming with Abstractions

There are many reasons to build a program with abstractions.

If you build a program out of abstract pieces, the implementation details of each
piece are hidden in that piece. This makes the program easier to write, since you
will not be distracted by the implementation details of other parts of the
program. For example. you do not have to stop and think about the
implementation of the sin function when you call it. This also makes programs
easier to read, since each part of the program is concerned with only one task.

Programs built from abstractions are also easier to maintain, since changes to
one piece of code will not "break" other parts of the program.

If you can understand a part of a program in abstract terms, without extensive
study of its implementation, you can easily re-use that piece of code in a later
program.

One of the most significant advantages gained by building ‘a program from
abstractions is that each piece of the program gcorresponds to one of the
programmer’s ideas. It is difficult to describe exactly how it improves a program,
but programmers who are familiar with this correspondence often point to it as
one of the most important aspects of "good" code.

Version 30.2
CopyTight © 1900 AT&T
Al Rights Reserved

1-14 Object-Oriented Programming in C++

Programming with Abstractions

Building a program from abstractions:
o localizes implementation details
e £ases program maintenance
e allows easy re-use of parts of a program

e aligns pieces of a program with
programmer’'s ideas.

Version 30.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C4++ 1-15

Introduction

Advantages of Object-Oriented Programming -

Object-oriented programming lets you take full advantage of programming with
abstractions. Procedure-oriented programming allows only one kind of
abstraction, so many of the benefits listed on the previous page can only be
partially achieved with procedure-oriented programming alone.

Object-oriented programming also lets you create groups of similar types by using
inheritance. When you do this, you can write code that will work for any of the
types in the group. This ability can greatly simplify programs, since individual
functions can work for many types of arguments.

You can easily extend an object-oriented program by adding new types into an
existing group of similar types. When vou do this, code that you wrote to work
with the original group will also work with the new type.

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

1-16 Object-Oriented Programming in C++

Advantages of Object-Oriented Programming

Advantages of object-oriented programming:
e all advantages of abstraction apply to data

e groups of related data types can be
created easily with inheritance

e New types can easily be added to a group

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 1-17

Introduction

Data Abstraction

A data abstraction is a type defined in terms of a list of operations (which we will
call the defining operations).

The built-in types of the C language (float, int, etc.) are data abstractions.
C defines many operations for floats, but leaves the implementation of
floating point calculation to the compiler writer. You can write a C program

without any knowledge of how floating point numbers are represented on the
machine that will run your program.

C++ lets you define new types as data abstractions.

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

1-18 Object-Oriented Programming in C++

Data Abstraction

A data abstraction
o is a type defined in terms of operations
o for example, the Ctype float
— addition
— subtraction
— multiplication
— division
— comparison
— assignment

C++ allows the definition of new data
abstractions.

Version 3.0.2
Copytight © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C4++ 1-19

Introduction

Data Encapsulation

If a language allows only the defining operations of a type to work with the
implementation of objects of that type, the language is said to enforce data
encapsulation. Any other operations must be written in terms of the defining
operations (we are using the term operations to mean both the traditional
operators like +, -, etc., and user-defined functions, like average on the facing
page).

For example, if we want to work with floating point numbers, we must use the

operations; we can not access the bits that represent the exponent or mantissa
directly.

Version 30.2
Copyright © 1000 AT&T
All Rights Reserved

1-20 Object-Oriented Programming in C++

Data Encapsulation

Data encapsulation

o only defining operations can access
implementation

e other operations must use defining
operations:

float average(float a, float b)
{

return (a + b)/2;
b

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 1-21

Introduction

Benefits of Data Encapsulation

C enforces data encapsulation for built-in types (but it lets you get around the
rule by type-casting pointers).

In C+4++, you can define a class with encapsulated data (in which case, you can
still get around the rule by type-casting pointers).

Data encapsulation ensures that only a small part of any program depends on the
representation of any one type. If the representation changes, only the defining
operations for the type need to be modified.

Version 30.2
Copyright © 1990 AT&T
All Rights Reserved

1-22 Object-Oriented Programming in C++

Benefits of Data Encapsulation

C enforces data encapsulation for built-in
types. |

C++ allows user-defined types with data
encapsulation

Benefits of data encapsulation:

e only defining operations depend on
representation.

e change torepresentation only affects
defining operations

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++

1-23

Introduction

String Manipulation in C

We have seen that the built-in types of the C language are abstract, and that C
provides data encapsulation for them. The C language does not provide a built-
in type for string manipulation; null-terminated arrays of characters are used for
that purpose. Programmers writing programs often need to remember that this is
the way strings are represented in C: you often have to remember to allocate
enough space for the null byte, or store a null at the end of an array.

Version 3.0.2
Copyright © 1990 AT&T
All Rights Reserved

1-24 Object-Oriented Programming in C++

String Manipulation in C

In C;

e strings are represented with null-terminated
arrays of char

e programmers must be aware of
representation

e code often has to work with implementation
details

Version 3.0.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C4++ 1-25

Introduction

String Manipulation in C
Example

Much of the code on the facing page depends on the representation of strings in
C. If we decided that we would rather represent strings with a count of
characters followed by the characters themselves, how much of the program on

the facing page would we need to change? What fraction of existing C programs
would need to be changed?

Version 3.0.2
Copyright © 1990 AT&T
All Rights Reserved

1-26 Object-Oriented Programming in C»++

String Manipulation in C
Example

/* concatenate two strings -- C version. */
#include <string.h>
#include <stdlib.h>

char *name (char *first, char *last)
{
unsigned tot_length:
char *nam;
tot_length = strlen(first) + strlen(last) + 2;
nam = malloc (tot_length) ;
if (nam == NULL) {
fprintf (stderr, "Out of storage\n"):;
exit (1) ;
}
strcpy (nam, first);
strcat (nam, " ");
strcat (nam, last):
return nam;

3

main (int argec, char *argv[])
{
char *full_name;
full_name = name ('"Zaphod", "Beeblebrox") ;

/* work with full_name */
free (full_name) ;
return O;

Version 3.0.2
Copyright © 1990 AT&T
All Rights Reserved

Object-Oriented Procrammine in C4++ 1

-7

Introduction

String Manipulation in C++

We will see that it is possible to create a data abstraction to represent strings in
C++. Users of this abstraction will not need to know its implementation details,
and they will not write code that depends on that implementation.

Version 3.0.2
Copyright © 1090 AT&T
All Rights Reserved

1-28 Object-Oriented Programming in C++

String Manipulation in C++

Later, we will create a C++ class Stringto
represent strings:.

e wWe must choose an implementation
e users can ignore our implementation
o code that depends on our implementation

— is isolated in the defining operations of
our class

— does not creep into code that works
with Strings.

Version 30.2
Copyright © 1000 AT&T
All Rights Reserved

Object-Oriented Programming in C++ 1-29

Introduction

String Manipulation in C++
An Example

The code on the facing page does not depend on any particular representation of
strings. Class Stringis declared in the header file String.h. The header file
and the associated library contain all the implementation details of class
String. If we choose to change the implementation, we will not need to change
the code on the facing page (although we will have to re-compile it).

Version 3.0.2
Copyright © 1800 AT&T
All Rights Reserved

1-30 Object-Oriented Programming in C4++

String Manipulation in C++
An Example

/* concatenate two strings -- C++ version. */
#include <String.h>

String name (String first, String last)
{

return first + " " + last;
b
main (int, char *[])
{
String full_name;
full_name = name ("Zaphod", '"Beeblebrox") ;
// work with full_name
return O;
}

Version 30.2
Copyright © 1900 AT&T
All Rights Reserved

Object-Oriented Programming in C++

1-31

Introduction

Summary

Version 3.0.2
Copyright © 1990 AT&T
All Rights Reserved

1-32 Object-Oriented Programming in C++

Summary

Abstractions

e allow use without knowledge of
implementation

e Mmake code more modular

Object-oriented programming
 allows the creation of data abstractions
e allow new typesto be used like built-ins

o allow creation of groups of related types
with inheritance |

Version 3.0.2
Copyright © 1990 AT&T
All Rights Reserved

Object-Oriented Programming in C4++ 1-33

Introduction

Version 3.0.2
Copyright © 1090 AT&T
All Rights Reserved

1-34 Object-Oriented Programming in C++

Exercises 1 Ex

Object-Oriented Programming in C++

Lab Exercises

Object-Oriented Programming in C+4++

1-35

T

Lab Exercises

Version 30.2
Copyright © 1990 AT&T
All Rights Reserved

1 Ex-36 Object-Oriented Programming in C+4++

UNIT 1
Lab Exercises
1. The FILE structure in C’s standard I/O library is one example of data abstraction in
C. What functions can you think of that work with FILEs? Do you need to know

anything about the FILE structure itself to use these functions? In what ways do
FILEs differ from other objects in C?

2. C’s standard library contains many string processing functions. Are strings an
abstract type in C? Why or why not?

Lab Exercises Object-Oriented Programming in C++ 1 Ex-1

UNIT 1

Lab Exercises (Answers)

1. The FILE structure can be manipulated with the functions fprintf, fputc, fputs,
fscanf, fgetc, fgets, ftell, fseek, and other functions from the stdio library, without
knowledge of the FILE structure (although one should understand the concept of
buffered I/O). FILEs are different from other types of objects because one should
not create a local variable of type FILE.

2. The string manipulation functions from C’s standard library do not allow the use of
strings as an abstract type, because programmers must be aware of the
representation of strings (as NULL terminated arrays of char) to use work with
strings.

Lab Answers Object-Oriented Programming in C++ 1 Ans-1

INTRODUCTION TO LAB EXERCISES

Under your login directory you will find the unit02 through unitl8 directories and the
pre_windows directory. The pre_windows directory will not be used until Unit 12. Each
unimn directory contains subdirectories (e.g., string) for each type of class (e.g., String)
used in that unit’s lab exercises. In addition, each wnimn directory contains
subdirectories called lecture and solutions. The solutions subdirectory contains the
updated files (i.e., "answers") for this unit. The lecture subdirectory contains the files
used as examples during the lecture along with a Makefile and a file named RUN. If the
system you are using supports the make command, you can go to the lecture directory
and enter 'make’ to compile and execute the test programs discussed during the lecture.
If make is not supported, the RUN file can be executed to compile the test programs.
You are strongly encouraged to use the make command because it is far more efficient
than the RUN script. The lecture directory and its contents are provided in case you want
to experiment with the examples used in class.

Each class directory (e.g., string) will also contain a Makefile for your convenience in
compiling the Lab Exercises associated with that class. The instructions for each
exercise will tell you the appropriate make command (with any necessary arguments).
When you have completed all of the exercises in any class directory or unit directory, you
can execute the 'make clean’ command to remove all of the object files from that
directory and all sub-directories. This will keep the amount of disk space used to a
minimum.

In many units, you may find that there are more lab exercises than you can do in the
allotted time (this ensures that even a quick programmer will have something to do).
You should therefore decide which questions are most interesting to you, and work on
them first. Do not worry if you don’t have time to answer all the questions.

Some of the early lab exercises let you create a new class, named Point, and others let
you modify the class String discussed in the lecture. In later units, lab exercises
involving class Point will depend on the answers to the Point questions in this unit, and
future lab exercises for class String will depend on the answers to the String labs in this
unit. Therefore, you may find it helpful to pick one of these two classes, and, in each
unit, do the labs for that class first.

Each exercise will contain a SUMMARY table specifying the name of the file(s) where
the class is declared, the name(s) of the file(s) where the class member functions are
implemented, and the name of the file(s) containing the test program(s). A test program
represents the application program normally written by the user. The SUMMARY table
will also indicate the status of each file: ’(modify)’ means that the file exists but you must
modify it in some way to complete the exercise, '(new)’ means that you must write or
provide the entire contents of the file. If neither is specified, you must use the file but do
not have to make any changes to it. All files specified as ’(new)’ in the SUMMARY
table exist in the appropriate directory but contain only comments, i.e., no code. Thus,
you do not create any ’(new)’ file; you only add the appropriate contents (code,
declarations, etc.).

Lab Exercises Object-Oriented Programming in C++ 2 Ex-1

If the C++ compiler is not invoked with the "CC" command, you must specify the
"CC=compiler_name" argument on the make command line, i.e.:

make CC=compiler_name probl #instead of ’make probl’

Each exercise specifies the sequence of commands to compile and execute the test
program. Executing the test program by entering its name assumes that the current
directory is specified as part of the PATH shell variable. If this is not the case, you must

either add the current directory (".") to the PATH variable or execute the test program by
entering "./prog_name" instead of just "prog_name".

Lab Exercises Object-Oriented Programming in C++ 2 Ex-2

