
5-1

5System Overview 5

Introduction 5

This chapter provides an overview of the Inferno system, including:

n Innovative Basic Principles

n Design Characteristics

n System Architecture

n System Components

Innovative Basic Principles

5-2 Inferno User’s Guide

Innovative Basic Principles 5

The Inferno system is a distributed operating system based on three
innovative principles:

n Resources as files: System resources are represented as files in an
hierarchical file system.

n Namespace: The application view of the network is a single,
coherent namespace that appears as an hierarchical file system but
can represent physically separated resources.

n Standard communications protocol: A standard communications
protocol, called Styx, is used to access all resources, both local and
remote.

Resources as Files 5

File systems are central to the Inferno system. Files are not just data, but
also interfaces to peripherals, programs, services, and networks. This
file-oriented interface involves resolving names in an hierarchical tree,
attaching to them by name, and accessing their contents by read and write
calls.

Using files as a central concept in the system has the following
advantages:

n File systems have simple and well understood interfaces across a
wide variety of operating systems. Interfaces to the files generally
consist of a small set of well-defined operations, such as open, read
and write.

Innovative Basic Principles

System Overview 5-3

n Reliance on file systems reduces the amount of interface code and
keeps the Inferno system small, reliable and highly portable. The
use of a file system interface also reduces the complexity and size of
applications.

n Naming conventions for files are well known, uniform, and easily
understood.

n Access rights and permissions to files are simple, yet can be used to
ensure multiple levels of security.

File names and contents can be dynamic and can be synthesized on
per-demand and per-client basis. For example, the Inferno system creates
a dynamic set of files to represent each active TCP connection. An
application then reads from and writes to these files while the target TCP
connection is still active. When the connection is no longer necessary, the
files are closed and the connection is closed automatically.

The Inferno file system structure is defined implicitly by fixing the
allowable set of file methods. File servers can easily manage the
brokerage of file operations such as granting file access. The file system
structure implicitly defines the mechanisms for garbage collection and
accounting.

Namespace 5

The second key principle of the Inferno system is the customizable
namespace by which an application builds a unique private view of the
resources and services that it needs to access. Each set of resources and
services is represented as an hierarchy of files and is accessible using
familiar file access operations of open, read, and write. The various
resources and services used by a process are combined into a single
hierarchy of file names called a namespace.

Innovative Basic Principles

5-4 Inferno User’s Guide

The resources accessible to an individual namespace can be located on a
single client or on multiple servers throughout the network. Therefore,
file systems provided by different servers are combined into a single,
unique namespace, which becomes the application’s view of the network.

The Inferno namespace operations provide a simple programming model,
network transparency, and great flexibility in delivering resources to meet
the many, and sometimes conflicting, needs of diverse users. The use of
namespace and namespace operations results in simpler, smaller, less
costly, and more maintainable software.

Reduces Complexity 5

The file model is simple (open, read, and write) and known to all
programmers. Representing so many resources by a common interface is
a first step in controlling complexity. For certain naturally complex
resources, the Inferno system provides interfaces as suites of related files,
each individually simple to use. One example is the Internet Protocol (IP)
device interface that includes separate data, ctl (control), and status files.
Devices are controlled by simply writing a text string to the appropriate
control file. For example, a connection can be established by writing
“connect 135.3.60.100” to the control file.

The local namespace can be extended by grafting on file trees from
Inferno servers, thereby gaining access to resources from those machines.
Once incorporated into the local namespace, use of the remote resources
is indistinguishable from local resource use.

Namespace operations can be used to separate application issues from
configuration issues. Resources can be made to appear where they are
needed rather than having applications adapt to where resources can be
found.

Innovative Basic Principles

System Overview 5-5

The namespace allows for network transparency that is supported for all
Inferno files including files of data, devices, and daemon interfaces.
Applications are networked without explicit network programming.

Reduces Size 5

Some system interfaces that traditionally require system calls are
provided by special files. This reduces the size of the Inferno operating
system.

Customizable 5

The namespace can be personalized. Changes in the namespace can be
either shared or restricted to individual users or even to individual
programs. In this way, resources can be optimally positioned within the
namespace for each situation rather than having to find compromises
between the varied, sometimes contradictory, needs of many applications.

Connectivity 5

An important system service provided through a file interface is the
connection server, a service that translates a symbolic host name to a
network address, which can be used to establish a connection.

The protocol is to write the hostname of interest into the special file
/net/cs, then read back the answer.

Innovative Basic Principles

5-6 Inferno User’s Guide

Figure 5-1 Connection Server

The write request is detected by a daemon process that translates the name
and stores the answer until the read request arrives. Multiple, interleaved
requests are handled correctly. The daemon is a small, simple application
program, not part of the kernel. The kernel itself uses the /net/cs file to
translate a name to a network address.

Namespace Operations 5

The key namespace operations are mount and bind. See the section on
Namespace Construction later in this chapter.

Standard Communications Protocol 5

The third key principle of the Inferno system is the use of a standard
communications protocol called Styx. This protocol represents network
transports, network devices and network connections as file systems.

The protocol supports remote access to files and allows a remote machine
to use these interfaces as gateways. Using the same set of files to
represent different devices allows the creation of common tools to serve
several networks. Network connections represented by these files behave
the same way for all networks and this allows applications to contain no
network-specific code.

write

read

/net/cs

hostname

network address

Design Characteristics

System Overview 5-7

Design Characteristics 5

The characteristics that result from the basic design of the Inferno system
are:

n Small

n Portable

n Secure

n Network independent

Small 5

Since resources are represented as files, the amount of interface code
required for the kernel and the applications is significantly reduced.
Complete solutions, including basic applications, can run comfortably in
one megabyte of memory in an Inferno-enabled network.

Portable 5

The Inferno kernel and device drivers, the emulation kernel, and the Dis
interpreter are written in C to provide a high degree of operating system
portability. The remainder of the Inferno system is written in Limbo, a
high-level language designed to take advantage of Inferno system
capabilities. Writing these components in Limbo ensures that they will
behave the same way on any platform to which the Inferno system is
ported. In addition, application programs written in Limbo and compiled
to Dis bytecode will behave the same way on any Inferno system
platform.

Design Characteristics

5-8 Inferno User’s Guide

Note: Device drivers for specific hardware, such as an MPEG card or
television interface, must be implemented when the Inferno
kernel is ported to a new hardware environment.

Secure 5

The Inferno system authenticates all connections between systems with
digital signatures using the ElGamal algorithm. This authentication uses
the public key algorithm, in which both client and server possess public
key/private key pairs. Messages signed with a private key can be verified
with the public key.

In addition to authentication, the Inferno Application Programming
Interface (API) also provides message digesting using the SHA or MD5
algorithms and data encryption using RC4 and DES.

Security at the application level is the responsibility of the application
designer. The Inferno API provides a generic way to implement security
in all Limbo applications.

Note: Security algorithms are subject to US Department of Commerce
export restrictions. Not all security components described in this
guide are included with the distribution.

Network Independent 5

Use of a standard communications protocol allows Inferno applications to
be designed independently of the physical network. It is not necessary to
design and develop local and remote proxy interfaces to ensure
inter-machine communications.

System Components

System Overview 5-9

System Components 5

This section provides an overview of the components of the Inferno
system.

The four primary components of the Inferno system are:

n Inferno kernel

n Limbo programming language

n Dis virtual machine

n Styx communications protocol

Each of these elements provide distinct functions, integrated together to
make up the Inferno operating system.

Figure 5-2 presents the components of the Inferno system as layers.

System Components

5-10 Inferno User’s Guide

Figure 5-2 Inferno Components Diagram

Application Layer 5

At the highest level, the application layer, Limbo applications run through
the Dis virtual machine. The Dis virtual machine component of the
application layer interprets application instructions and invokes the
appropriate system calls necessary to complete the requested actions.

Applications written in Limbo can run on any Inferno resource, either a
client or a server. The interface to the lower levels of the Inferno system,
the Inferno API, is identical for both client and server, and across all
Inferno environments. The Inferno API provides access to system

Applications

Dis Virtual Machine

N
am

es
p

ac
e

Pr
oc

es
s

M
an

ag
em

en
t

M
em

or
y

M
an

ag
em

en
t

Se
cu

ri
ty

G
ra

p
h
ic

s
Li

b
ra

ri
es

Styx Communications

Host
Os*

Application

Device
Drivers

Network

Layer

Kernel
Layer

“Hardware”
Layer

Host OS available in
Emulation Environment

*

System Components

System Overview 5-11

resources by including core Limbo modules that contain explicit interface
specifications.

One of the major benefits of the Inferno system is that it insulates
applications from the hardware, operating system, and the network. This
helps reduce programming costs since a single program will run on
multiple types of hardware, either native or alongside host operating
systems, and with various types of network connections. You do not have
to have multiple versions for multiple platforms.

Kernel Layer 5

Below the application layer are the components of the Inferno system that
provide operating system functionality, including:

n Namespace management

n Process management

n Memory management

n Security

n Graphics functions

These kernel elements behave the same whether an Inferno kernel is
running directly on hardware as the native operating system or as an
emulator on a host operating system.

“Hardware” Layer 5

The hardware layer primarily consists of physical components of the
system, such as devices and networks. The exception is when the Inferno
system is running in the emulation environment, where access to this
layer is through the host operating system. In either case, the application
code is insulated from direct access to the hardware.

Kernel

5-12 Inferno User’s Guide

Kernel 5

The Inferno kernel provides mechanisms for data and resource
management, networking, and security.

The purpose of the Inferno kernel is to provide an environment for
running applications under the Dis virtual machine. The kernel provides
the following services to Dis:

n Process management

n Memory management

n Namespace management

n Data streaming

n Network protocols

The kernel is also responsible for I/O and hardware connections through
device drivers. The reduced role of the kernel results in an operating
system that is small in size and, therefore, easier to port to new platforms
and architectures.

Native versus Emulated Environments 5

The Inferno kernel runs in one of two modes:

Native: The Inferno system runs as the primary operating
system, directly on the CPU.

Hosted: The Inferno system runs as an application on the native
operating system. This is called emulation mode.

Kernel

System Overview 5-13

The goal of the emulation kernel is to hide the differences between
operating systems. For purposes of application development, the
emulation kernel is identical to the native kernel. Only the small
proportion of hardware- or operating system-dependent code differs in
each configuration. And, with the new Device Driver Development Kit
(DDK) available with Release 2.0, writing a device driver is easier using
the standard kernel interface.

In a hosted, or emulation, environment, the system is much the same as in
native mode. In a hosted environment, a host operating system provides
many of the services that the native Inferno kernel provides in the native
environment. The Inferno system can efficiently perform resource
management that might be dependent on the devices on the host system,
allowing the Inferno system to interact with existing operating systems
without modification to the upper, application layer.

In hosted mode, the Inferno emulator, called emu, provides the control
console of the system. This console is in the form of a shell-like interface
from which other Inferno applications can be launched. The virtual
machine insulates applications from the host operating system and
architecture. For example, system calls for memory management and
scheduling algorithms are the same regardless of the platform. In hosted
or emulated mode, the Inferno system is an application to the host
operating system. The Inferno system makes use of the host drivers. The
host is unaware of Inferno applications.

While many resources are available to the Inferno system when it is run in
the hosted mode on a server with many resources, native mode is used to
run the Inferno system on thin clients with small memory and no disk.
The native Inferno system is compiled to and makes calls directly to the
hardware. The kernel and Dis have to be modified. Inferno device drivers
have to be written. When the Inferno system is booted, a program called
init is executed. This program can invoke any Inferno application or shell.

Kernel

5-14 Inferno User’s Guide

Process Management and Scheduling 5

The Inferno kernel provides preemptive scheduling of processes that are
responsible for managing and servicing protocol stacks, media copies,
alarms, interrupts, and the like. The kernel schedules processes with
multiple priority run queues using a round-robin mechanism. Scheduling
is on a fixed time slice, or quantum, basis with each quantum being set by
the local system clock.

The run queue has eight classes, ranging from background, the lowest
priority, through lock, the highest priority. The highest priority is given to
tasks such as video telephony followed in order of decreasing priority by
MPEG codec, audio codec, important, normal, low and background tasks.
Class switching is supported using the system module stream method.
The stream process is moved to the highest priority to perform media
copies.

Interrupts are fully preemptive with the exception of processes holding
spin locks. The priority of these processes is raised to ensure task
completion.

Memory Management 5

The Inferno system has a two-level memory allocation mechanism. The
lower level maintains control of large blocks of contiguous memory. The
higher level divides memory into pools to allow applications to control
the behavior of the system when resources become scarce. The allocation
of memory pools for various purposes as required by the operating system
is provided for:

n The allocation of general memory structures

n Memory for the Dis heap

n Memory for graphics images and fonts

Kernel

System Overview 5-15

n A network buffer pool

Memory is stored as blocks in an unbalanced B-tree with the leaves sorted
by size. When a process requires memory, the tree is searched, using a
best-fit algorithm, for a block of memory that is large enough. If the
available block of memory is more than 25% larger than required, the
block is split. One piece of the block is allocated to the process and the
remainder is returned to the tree. If a block is less than 25% larger than
required, the block is allocated, wasting the remainder.

When the memory is released, the block is returned to the tree. If the
block is placed adjacent to another empty block on the tree, the two are
merged to form a single available block. This memory management
policy generally provides for fast allocation and relatively low
fragmentation of internal memory.

Devices 5

Each Inferno system device implements a file tree that can be attached to
a namespace for access by applications. The interface to all devices is
through the Inferno file system interface. Each device is represented by a
set of files that is implemented by a device driver. Device-specific
behavior is implemented by responding to open, read and write system
calls. With Release 2.0 and the new Device Driver Development Kit
(DDK), a device driver writer can use the standard kernel interface. The
developer no longer needs to have detailed knowledge of the kernel to
write a device driver. Inferno system installations in an emulation
environment require file system interfaces and interface programs to
connect to local device drivers and the file system implemented by the
host operating system.

File names beginning with the pound sign (#) specify the root of a file tree
that is implemented by a kernel device driver. The character following the
pound sign identifies the particular device driver. Table 5-1 lists the

Kernel

5-16 Inferno User’s Guide

Inferno system device characters. Some characters are reserved and other
drivers may be added in later releases.

Table 5-1 Inferno System Devices

/ Root file system, used to construct bootstrap
namespaces

| Pipe

A Digital audio input /output, provides access to stereo
audio ports

C Command execution

c Console device, controls console I/O, keyboard and
mouse processing

D Secure sockets layer, provides encryption support

d Draw device, implements raster graphics on a remote
display

E MPEG device, controls streaming for MPEG devices

F Key file system, used for storing private keys

I Internet protocol device, used to implement IP
communications

l Ethernet device, used to implement Ethernet
communications

M Mount driver, used to import remote file systems

p Prog device, provides query and control of status of
Inferno system processes

r Real-time clock device, controls real-time clock and
NVRAM access

s Limbo file channel server

Kernel

System Overview 5-17

The kernel maintains a table that maps these device characters to
device-specific operations for each type device supported by the kernel. A
kernel device driver is a server in the sense of the Styx protocol, with the
messages implemented as local rather than remote procedure calls.

There are 14 device switches that implement the calls contained in the
system module, sys.m. Each device switch has a direct counterpart in the
Styx messages that implement remote procedure calls. A synopsis is
presented in Table 5-2.

t Serial communications device, used to implement serial
communications

U Host OS file system

V Television, provides control for ITV applications

Table 5-2 Device Switches

init Initializes the device driver

attach Creates a channel attached to the root directory of the
device

walk Traverses a node in the directory tree supplied by the
device

clone Duplicates a channel

close Closes a channel

create Creates a file

open Prepares a file for I/O

remove Removes a file

Table 5-1 Inferno System Devices—Continued

Kernel

5-18 Inferno User’s Guide

Device drivers for specific hardware, such as an MPEG card or television
interface, must be implemented when the Inferno kernel is ported to a
new hardware environment. Inferno system installations in an emulation
environment require file system interfaces and interface programs to
connect to local device drivers and the file system implemented by the
host operating system.

Namespace Construction 5

An Inferno namespace or file system can consist of files that represent
devices or processes on remote systems.

The file system model is used for the Inferno namespace because files,
file structures, permissions and access controls are well understood. The
files interfaces of open, read, write, seek, and close (implicit) are well
known. Naming conventions, protection, and multiplexing are provided
automatically by a file interface. The file interface allows the Inferno
system to provide a single remote procedure call like protocol to access
resources. The file model allows resources to be operating system
independent and it allows multiple programs to access a server process.

There are several ways that a namespace can be constructed in the Inferno
system. This namespace can be created by the application, by another

read Returns data from a file

bread Performs a block read on a file

write Writes data to a file

bwrite Performs a block write to a file

stat Returns the attributes of a file

wstat Writes the file attributes

Table 5-2 Device Switches—Continued

Kernel

System Overview 5-19

program, or outside the application by an administrator. As far as the
application is concerned, the files are local. The application does not have
to be concerned about where the resources are located. A program can
assemble its own namespace, load its namespace from a file, or have its
namespace created by user-level commands.

For each related group of processes, the kernel maintains a table that
translates a user file descriptor into a channel structure, or Chan, on which
file-based system calls operate. The channel structure is similar to the
Unix kernel file structure and is central to building namespaces in the
Inferno system. A file descriptor, passed as a parameter in a system call,
is converted to a channel structure to provide the kernel with a
representation of the file object. The kernel stores a list of bindings
between channels in an internal mount table.

The namespace provides a customized, local view of resources available
in the network to an application. The correct functioning of the Inferno
system depends on the construction of a useful namespace. Building a
namespace is a two step process using the namespace operations mount
and bind.

Network transparency is supported for all Inferno system files including
files of data, devices, and daemon interfaces. Applications are networked
without explicit network programming.

Inferno system networking is more than simple client/server computing.
The roles of “client” and “server” are relative to some set of shared
resources. In general, application problems can be solved by having two
or more machines cross mount resources and have processes on each
coordinate on using the combined resources.

Kernel

5-20 Inferno User’s Guide

Mount 5

Mounting a namespace component provides local access to it. Local
devices are preceded by the pound sign and are typically pre-mounted.
Typically, they are mounted during system initialization, although they
can be mounted through user-defined scripts. Remote namespace
components, such as remote file systems, are explicitly mounted by an
application using the mount call from system.m. For example, the Limbo
code fragment:

if(sys->mount(fd, “/n/client”, sys->MREPL, ““) < 0) {
sys->fprint(stderr, “exec: mount: %r\n”);
return;
}

attaches fd to the /n/client directory in the current namespace. The
MREPL flag hides the current /n/client by replacing it in the local file tree.
Other flags provide for the construction of union directories that behave
like the concatenation of the component directories with a specified order.
The null string final parameter selects the default tree on the server.

The mount operation adds a file tree from a server machine to the current
namespace (see Figure 5-3). Once the file tree is attached, its members
can be accessed in the same manner as local files (see Figure 5-4).
Applications cannot detect that those files are remote. This is true even
for fileC, a file that this server has mapped into its namespace from yet
another server.

Kernel

System Overview 5-21

Figure 5-3 Client/Server View Before Mount

Figure 5-4 View After Mount, Before Bind

bind 5

Binding duplicates some piece of an existing namespace to another point
in the namespace. That is, the bind call places a mounted namespace
component in a desired location.

fileA

fileB

fileC

fileD

Client server

A

B

E

C /

D

fileA

fileB

fileC

fileD

A

B

E

C

D

Kernel

5-22 Inferno User’s Guide

The bind operation maps one file name in the namespace to another. For
example, an application may expect to find a certain file, fileB, in
directory, D, but the file actually resides in directory B. See Figure 5-4.

The bind operation can be used to make fileB appear to reside in directory
D. See Figure 5-5.

Note that fileB is still available from directory B. In this case, the original
contents of directory D are obscured. (Note that the contents of directory
D are not replaced and they will be available again after an unmount.
Different bind options can be used to make D a union directory that has
both the original contents and those from directory B. An example using
that will be shown later.

Figure 5-5 File View After Bind Operation

Managing Complexity 5

One implication of this example is that applications become simpler
because they need not cope with a variety of configurations. They can be
“hard-coded” to look for resources in certain directories. Ordinarily, this
would be bad practice; however, in the Inferno system, there can be a

fileA

fileB

fileC

fileB

A

B

E

C

D

Kernel

System Overview 5-23

separate set-up stage to provide the application with the needed file
(possibly using mounts over the network) in the expected location.

Separating configuration issues from application concerns makes each
task easier. This leads to better software that is less expensive to develop
and maintain.

Namespace Customization 5

An important facility of Inferno namespace operations is the ability to
create “union” directories. That is, the ability to make several directories
appear as one. Member files of each contributing directory appear in the
union. When contributing directories have file names in common, the file
available from the union depends on the sequence of constructing the
union.

In the Inferno system, the management of commands available to the
Inferno shell is done through the use of “union directories”. The Inferno
shell has no PATH variable. That is, it does not maintain a list of
directories to be searched for commands. The Inferno shell is
programmed to look for executable files in the following order: 1) the
explicitly named path, when given, 2) the current directory, and then 3)
the <inferno_root>/dis directory. See Figure 5-6.

Figure 5-6 Namespace Before Customization

netstat

ls

ps

nsbuild

notepad

nsbuild

notepad demo

dis mydis

Kernel

5-24 Inferno User’s Guide

When a user wants access to a command that does not exist in /dis, the
user can bind the command into /dis. If a user wants to use a customized
version of a command already existing in /dis, the user can bind in the
new command so that the personal version takes precedence over the
standard version. See Figure 5-7.

The Inferno system provides an operation to clone an existing namespace
to obtain an independent copy. Changes in the copy do not influence
those using the original.

Figure 5-7 Namespace After Customization

Controlling Access to Resources 5

System security can be enhanced by namespace operations that shrink an
existing namespace. A process can be restricted so that it can only access
a limited set of files and, once restricted, the process can access no others.

This technique is applied before starting a test program that requires a
carefully controlled environment or before starting a suspicious program
that might harm the local file system. The technique, also, can be applied
on Inferno server systems to restrict the set of files available for mounting
by clients.

netstat

ls

ps
notepad

nsbuild

notepad demo

dis mydis
create union

mydis

nsbuild
mydis

demo
mydis

Kernel

System Overview 5-25

Controlling access to resources by namespace restrictions is an adjunct to
the control provided by file and directory permissions. For example, a
mail reader application program might need a user’s identity to access
some of that user’s files. Should satisfying that requirement imply that the
program have the potential of accessing any of that user’s files? By
appropriately restricting the namespace, that need not be the case. The
program can be restricted to a universe containing only the files it needs.
The program’s permission to access other files is irrelevant if pathnames
to those other files cannot be defined.

Recall that files are representing all sorts of resources. By restricting the
namespace, the application’s universe of resources is limited. Omitting
the network interface means that it cannot make network calls. Omitting
the interface to running programs means that the application cannot
terminate other applications.

Union 5

When bind is used with the -a or -b options, the effect is not to replace the
target but to create a union of the contents of the source and target at the
target directory. The instruction

bind -b A/B C/D

results in a union of the contents of two directories, as shown in
Figure 5-8.

Kernel

5-26 Inferno User’s Guide

Figure 5-8 Union of the Contents of Directories A/B and C/D

The bind operation can be repeated to create the union of several
directories at D.

unmount 5

The effects of binding and mounting are undone by the unmount call.

fileA

fileB

fileC

fileB

A

B

E

C

D

fileD

Limbo Programming Language

System Overview 5-27

Limbo Programming Language 5

Limbo is a general-purpose programming language used to create Inferno
applications in a simple and efficient way. It can be used to produce
applications for the Inferno environment as well as to create gateways and
interfaces to services not native to the Inferno system. The language is
designed to take advantage of the network and security features of the
Inferno system.

Limbo is a modular, procedural language, with a familiar C-like syntax,
that is compiled into a hardware independent representation, or byte code,
for execution on a virtual machine. It is strongly typed, provides
automatic garbage collection, and supports only very restricted pointers.

Limbo applications can include just-in-time compilation at the discretion
of the programmer. Alternatively, a Limbo application can be interpreted
in the Dis virtual machine. Limbo applications run on any platform that
supports the Inferno API.

Limbo is discussed in more detail in the Inferno Programmer’s Guide.

Modules 5

A Limbo program is a module, or set of modules, that performs a task. In
source form, a module consists of a module declaration that specifies the
public interface—the functions, abstract data types, and constants that the
module makes visible to other modules—and an implementation that
provides the actual code. By convention, the module declaration is placed
in a separate .m file so it can be included by other modules, and the
implementation is stored in a .b file. Modules can have multiple
implementations, each in a separate implementation file.

At run time, modules are loaded dynamically, enabling the Inferno system
to keep programs small. The module load statement fetches the code and

Limbo Programming Language

5-28 Inferno User’s Guide

performs run-time type checking. Once a module has been loaded, its
functions can be called.

Limbo is strongly typed, and programs are checked at compile time and
again when modules are loaded. The Limbo compiler compiles each
source file into a machine-independent byte-coded .dis file that can be
loaded at run time.

Functions and Variables 5

Functions are associated with specific modules, either directly or as
members of abstract data types within a module. Functions are visible
outside their module only if they are part of the module interface. If the
target module is loaded, specific names can be used in a qualified form
such as sys->print or without the qualifier if imported with an explicit
import statement.

Besides normal block structure within functions, variables can have
global scope within a module. Module data can be accessed using the
module pointer.

Data 5

The size and signedness of integral types are specified in Limbo, and are
the same everywhere. Character constants are enclosed in single quotes
and can use escapes like \n or \udddd, but the characters themselves are in
Unicode and have type int. There is no enumeration type, but there is a
con declaration that creates a named constant.

Limbo also provides Unicode strings, arrays of arbitrary types, lists of
arbitrary types, tuples (unnamed structures with unnamed members of
arbitrary types), abstract data types or adt’s (named structures with
function members as well as data members), reference types (restricted

Limbo Programming Language

System Overview 5-29

pointers that can point only to adt objects), and typed channels (for
passing objects between processes).

A channel is a mechanism for synchronized communication. It provides a
place for one process to send or receive an object of a specific type. The
attempt to send or receive blocks until a matching receive or send is
attempted by another process. The alt statement selects randomly but
fairly among channels that are ready to read or write. The spawn
statement creates a new process that, except for its stack, shares memory
with other processes. Processes are preemptively scheduled by the Inferno
system. (The Inferno system processes have much in common with
threads in other operating systems.)

Limbo performs automatic garbage collection, so there is no need to free
dynamically created objects. Objects are deleted and their resources freed
when the last reference to them goes away. In general, the release of
resources happens immediately (“instant free”), whereas the release of
cyclic data structures can be delayed.

Operators and Expressions 5

Limbo provides many of C’s operators, but there is no ?: operator.
Pointers, created with ref, are very restricted and there is no & (address
of) operator. There is no address arithmetic and pointers can only point to
adt objects. Array slicing is supported, however, and conveniently
replaces many pointer constructions.

There are no implicit coercions between types, and only a handful of
explicit casts. The numeric types byte, int, and so on, can be used to
convert a numeric expression, as in

nl := byte 10;

and string can be used as a unary operator to convert any numeric
expression or array of bytes to a string (in %g format).

Limbo Programming Language

5-30 Inferno User’s Guide

Statements 5

Statements and control flow in Limbo are similar to those in C. A
statement is an expression followed by a semicolon, or a sequence of
statements enclosed in braces. The similar control flow statements are

if (expresssion) statement
if (expression) statement else statement
while (expresssion) statement
for (expresssion; expresssion; expresssion) statement
do stat while (expresssion);
return expresssion;
exit;

The exit statement terminates a process and frees its resources. There is
also a case statement analogous to C's switch. It also supports string and
range tests. A break or continue followed by a label causes a break out of,
or the next iteration of, the enclosing construct that is labeled with the
same label.

Comments begin with # and extend to the end of the line. There is no
preprocessor, but an include statement can be used to include source code,
usually module declaration files.

Libraries 5

Limbo has a growing set of standard libraries, each implemented as a
module. A handful of these (notably Sys, Draw, Math, and Tk) are
included in the Inferno kernel because they will be needed to support
almost any Limbo program. Among the others are Bufio, a buffered I/O
package, and Regex, for regular expressions.

Dis Virtual Machine

System Overview 5-31

Dis Virtual Machine 5

The Dis virtual machine provides the execution environment for
programs running under the Inferno operating system including Limbo
applications. The virtual machine models a CISC-like, three operand,
memory-to-memory architecture that makes the Inferno system flexible
and portable. Code can either be interpreted by a C library or compiled
on-the-fly into machine code for the target architecture.

For simplicity, this section uses the term thread to describe a thread of
control created by the Limbo spawn statement. The terms process and OS
process are used for Inferno processes and, in a hosted environment, host
operating system processes. There are separate schedulers for operating
system processes and Limbo threads.

Dis can schedule multiple threads that are executed in round-robin
fashion. This enables multi-tasking even on thin appliances.

Memory Organization 5

Memory for a thread of execution is divided into several separate regions:

n The code segment stores either a decoded virtual machine
instruction stream suitable for execution by the interpreter or native
machine code that is compiled on-the-fly for the host CPU. Neither
type of code segment is addressable from the Dis instruction set.

n A thread executing a module has access to two regions of data
memory:

q A module pointer (mp) defines a region of global storage for a
particular module

Dis Virtual Machine

5-32 Inferno User’s Guide

q A frame pointer (fp) defines the current frame activation
record for the thread

Frames are allocated dynamically from a stack by internal call and
return instructions. The stack is extended automatically from the
heap. The mp and fp registers cannot be addressed directly and can
be modified only by call and return instructions.

n Memory can be allocated from the heap using various forms of new
instructions and can subsequently be addressed using a double
indirect addressing mode with the pointer stored in either fp or mp.

Data memory is addressed as bytes. Words are stored in the native
representation of the host CPU. Data types larger than a byte must be
stored at aligned addresses.

Only a single instance of Dis controls the heap. Multiple instances cannot
share memory, since there are no locks on the heap.

All modules and threads share a single data heap. Program module
instances and stack frames are allocated from the heap. Each heap object
is associated with a type descriptor that contains its size and the location
of pointers to other heap objects. Memory location information is
transmitted in the form of type descriptors that are generated
automatically by the Limbo compiler.

When a new object is allocated, all of its pointers are initialized to nil, a
value guaranteed to cause an exception if dereferenced. Memory
protection is enforced by cooperation between the compiler and the
virtual machine.

Dis Virtual Machine

System Overview 5-33

Garbage Collection 5

The garbage collector in the Inferno Dis virtual machine is a hybrid
scheme that uses two algorithms:

n Reference counting

n Real time mark-and-sweep for cyclic structures

Most memory is collected immediately using a reference counting
algorithm. Dis performs reference counted garbage collection to restore
resources to availability immediately after last use. Every memory
location that stores a pointer is known to the virtual machine and memory
can be initialized and deallocated quickly and correctly.

Data structures that are cyclic are detected by the garbage collector that
runs as an independent background process in the virtual machine. Cyclic
structures are collected by a real time mark-and-sweep process using a
new four-color algorithm to ensure efficient deallocation. Since the
mark-and-sweep collection only involves cyclic structures, it is rarely
invoked and incurs virtually no overhead.

The hybrid approach for garbage collection allows code to be generated in
several styles: pure reference counted, mark and sweep, or a hybrid of the
two approaches. Compiler writers have the freedom to choose how
specific types are handled by the machine to optimize code for
performance or language implementation. Instruction selection
determines which algorithm will be applied to specific types.

When using reference counting, pointers are a special operand type and
should only be manipulated using the pointer instructions in order to
ensure the correct functioning of the garbage collector. Every memory
location that stores a pointer must be known to the interpreter so that it
can be initialized and deallocated correctly. The information is
transmitted in the form of type descriptors in the object module. Each

Dis Virtual Machine

5-34 Inferno User’s Guide

type descriptor contains a bit vector for a particular type where each bit
corresponds to a word in memory. Type descriptors are generated
automatically by the Limbo compiler. The assembler syntax for a type
descriptor is:

desc $10, 132, "001F"

The first parameter is the descriptor number, the second is the size in
bytes, and the third a pointer map. The map contains a list of hex bytes
where each byte maps eight 32 bit words. The most significant bit
represents the lowest memory address.

A one bit indicates a pointer in memory. The map need not have an entry
for every byte and unspecified bytes are assumed zero.

Operand Size 5

Operand sizes are defined as follows: a byte is 8 bits, a word or pointer is
32 bits, a float is 64 bits, a big integer is 64 bits. The operand size of each
instruction is encoded explicitly by the operand code. The operand size
and type are specified by the last character of the instruction mnemonic:

Table 5-3 Operand size

W word, 32-bit two’s complement

B byte, 8-bit unsigned

F float, IEEE format

L big, 64-bit two’s complement

P pointer

C Unicode string encoded in UTF-8

M memory

MP memory containing pointers

Dis Virtual Machine

System Overview 5-35

Effective Addresses 5

Each instruction can potentially address three operands. The source and
destination operands are general, but the middle operand can use any
address mode except double indirect. If the middle operand of a three
address instruction is omitted, it is assumed to be the same as the
destination operand.

The general operands generate an effective address from three basic
modes: immediate, indirect and double indirect. The assembler syntax for
each mode is:

Program Execution 5

Multiple Limbo threads are placed onto a run queue and executed in
round-robin fashion. Threads are multiplexed onto processes; a given
thread can be executed by several processes in sequence before it
completes, and multiple threads can be attached to a single process.

10(fp) 30-bit signed indirect from fp

20(mp) 30-bit signed indirect from mp

$0x123 30-bit signed immediate value

10(20(fp)) two 16-bit unsigned offsets double indirect from fp

10(20(mp)) two 16-bit unsigned offsets double indirect from mp

Dis Virtual Machine

5-36 Inferno User’s Guide

Table 5-4 lists the states that threads are placed in by Dis.

Execution continues for a given thread until one of the following
conditions is met.

n The thread is completed and assigned an exiting state by Dis
(Figure 5-9, Step A).

A thread will also be released from the virtual machine if it is
broken.

n The thread completes its quantum.

When a thread executes a specified number of instructions, it is
removed from virtual machine execution and placed on the Limbo
thread ready queue (Figure 5-9, Step B). The ready queue is a linked
list of threads that are waiting for access to the CPU.

Table 5-4 Thread States

alt Inter-thread communication processing

broken Thread has crashed

delete Remove from queue

exiting Thread instructions completed

ready Available to execute instructions

receive Ready to receive a value from another thread

release Remove from queue to complete a kernel call

send Ready to transmit a value to another thread

Dis Virtual Machine

System Overview 5-37

n The thread must send a message to, or receive a message from,
another thread.

A send state (Figure 5-9, Step C) requires a receive message from
another thread (Figure 5-9, Step D) to place it back into the ready
queue. When a thread is placed into a send state, it will not be
placed back on to the queue until the thread that is to receive its
message accepts it. Similarly, a thread in a receive state is not
placed back on to the queue until it has received the message and
acknowledged it to the sender.

The alt state exists when multiple messages must be exchanged
among threads. The thread is removed from the ready queue and the
alt routine coordinates multiple send and receive states across
multiple channels.

n The thread is blocked (Figure 5-9, Step E).

A thread is blocked when a file manipulation operation or a network
access instruction is encountered. A sleep instruction in a host
operating system also blocks a thread. Blocked threads are removed
from execution when a release request is issued. The operation that
caused the block condition is then scheduled by the operating
system.

On completion of the blocking operation, the operating system
process issues an acquire call to signal Dis that the Limbo thread is
ready to continue execution. When acquired, the thread is placed at
the front of the ready queue.

Dis Virtual Machine

5-38 Inferno User’s Guide

Figure 5-9 Dis Virtual Machine Operation

OS
Process

Process Scheduler

(A)
(Exit)

Limbo
Thread

(Broken)

Limbo
Thread

Message Sent

Message Rcvd

Unblocked

Executing

Limbo
Thread

(B)

(C)

(D)

(E)

OS
Process

OS
Process

OS
Process

(Send)

Limbo
Thread

(Rcvd)

Limbo
Thread

(Blocked)

Limbo
Thread

(Ready)

Limbo
Thread

(Ready)

Limbo
Thread

(Ready)

Limbo
Thread

Limbo
Thread

OS
Process

OS
Process

acquire() release()

(Ready)

Limbo
Thread

Limbo Thread

Ready Queue

Styx Communications Protocol

System Overview 5-39

Styx Communications Protocol 5

This section describes the Inferno networking environment, including an
overview of the Styx communications protocol, which is used for passing
messages between clients and servers across the network. Most of the
network traffic between Inferno systems is in the form of Styx messages.
Most applications do not use the Styx protocol directly, but make calls to
library routines that access files. Applications do not need to explicitly
manage details of the Styx protocol. File operations that invoke Styx
result in messages that perform the necessary operations on the remote
namespace. The complexity is concealed from the developer, who simply
invokes mount, open, read, and similar system calls as necessary.

An application can use something other than Styx for communication if it
does not need to make use of a namespace. For example, Charon, the
Inferno web browser, and Ftp Access are Inferno applications that are part
of the Inferno Window Manager, wm. They use the Inferno TCP/IP
device drivers to communicate with other systems.

Because one of the goals of the Inferno system is to encourage resource
sharing in a widely distributed environment, the organization of the
networking environment plays a crucial role in the success of the system.
Inferno system users can access the system using a wide variety of
hardware: PDAs, set-top boxes, terminals, personal computers, or
workstations. To facilitate resource sharing in a diverse environment,
each type of hardware device must present the same view of the network
to the user.

Like other services in the Inferno system, network transports, network
devices and network connections are represented as file systems.

An Inferno server is a machine that provides access to one or more
hierarchical file systems on request from a client, usually through a
network connection. A connection to a server is a bidirectional

Styx Communications Protocol

5-40 Inferno User’s Guide

communications link between a server and a client. A connection remains
established while any of the files in the connection directory are
referenced or until a close system call is received from the network. The
primary function of the server is to process file system navigation and file
manipulation requests from its clients.

Using the same set of files to represent different devices allows the
creation of common tools that can serve several networks or interfaces.
Some familiar services whose implementation on other operating systems
is more complex can be provided just by echoing the contents of the
interface files. Network connections represented by these files behave the
same way for all networks and allow application programs to contain no
network-specific code.

The Inferno kernel, either hosted or native, supports the Internet Protocol
(IP) suite, including Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP).

Styx Protocol 5

File operations between any two machines are accomplished by sending
requests and receiving replies using the Styx protocol in a manner similar
to Unix remote procedure calls. The protocol supports remote access to
files and allows a remote machine to use these interfaces as gateways.

Styx messages are not manipulated directly by an application designer.
Any file operation that invokes Styx results in messages that perform the
necessary operations on the remote namespace. The exact set of messages
differs depending on the call, but in all cases the complexity is concealed
from the developer, who simply invokes mount, open, read and similar
system commands as necessary.

The protocol contains messages that perform:

Styx Communications Protocol

System Overview 5-41

n Navigation over the file hierarchy

n Control of file attributes

n Access to data in files

n Miscellaneous functions

Operation 5

A kernel-resident file server, devmnt, functions as a mount driver that is
used by the mount system call to connect the namespace of a process to
the service provided by a server over a communications channel. After
the mount has executed successfully, system calls involving files in that
portion of the namespace will be converted by devmnt into the appropriate
Styx messages to the server.

The mount system call issues attach messages to the server to identify and
validate the user of the connection. Each distinct use of a connection must
mount it separately; devmnt multiplexes the access of the various users
and their processes to the service.

File oriented system calls are converted by the kernel into Styx procedure
calls. The server devmnt translates these procedure calls into remote
procedure calls, which are then transmitted to the server as Styx messages
over the communications channel. Each message is implemented by
writing the protocol message to the server followed by reading the server
channel to get the reply. Errors in the reply message are turned into
system call error returns.

A read or write system call on a file served by devmnt can be translated
into more than one message since there is a maximum data size for a Styx
message. The system call will return when the specified number of bytes
have been transferred or a short reply is returned.

Styx Communications Protocol

5-42 Inferno User’s Guide

Styx Messages 5

A descriptive listing of Styx message pairs by general category is
presented in the following tables.

Table 5-5 Styx Message Pairs

Tattach

Rattach

Authenticate the caller, establish fid that points to the
root directory of the namespace of the machine that
was called

Tclone

Rclone

Create a copy of an existing fid; when done, two fids are
pointing to the same file in the hierarchy

Twalk

Rwalk

Move fid one step in the file hierarchy

Tclunk

Rclunk

Close a fid (throw it away); the actual file is unaffected

Tstat

Rstat

Return file attributes

Twstat

Rwstat

Set attributes; usually, a Tstat is first done to get the
attributes, and then a Twstat is executed with a status
buffer altered as needed

Topen

Ropen

Check file permissions and, if allowable, prepare an
existing file for reading or writing

Tcreate

Rcreate

Create and open a new file

Tread

Rread

Access contents of file

Twrite

Rwrite

Write to file

Styx Communications Protocol

System Overview 5-43

Styx Message Structure 5

Styx runs on top of any reliable transport level protocol so that the
underlying network connection is transparent to applications. Styx relies
on several properties of the underlying transport protocol. For example, it
assumes that messages arrive reliably and in sequence.

The general structure of Styx messages is given in Figure 5-10. Each
message consists of a sequence of bytes in defined byte order for machine
independence. The first byte, Type, is the message type that is one of the
enumerated constants defined in styx.h. Message types are typically
arranged in pairs, called transactions. T-messages are requests from client
to server (for example, Topen) that are matched by corresponding
R-messages that are replies from server to client (for example, Ropen).

Tremove

Rremove

Remove the file that the fid is pointing to and clunk the
fid

Tnop

Rnop

No operation; can be used to synchronize the channel
between two services

Tflush

Rflush

Interrupt a pending operation

Rerror Indicates that an error has occurred; the Contents
segment contains the text of the error generated by the
server

Table 5-5 Styx Message Pairs

Styx Communications Protocol

5-44 Inferno User’s Guide

Figure 5-10 General Structure of a Styx Message

The second field, Tag, is a chosen by the client to identify the message.
The client must ensure that no two outstanding messages on the same
connection have the same tag. The reply type will have a value one
greater than the request that generated it except in the event of an error
reply (Rerror).

The fid field is a file identifier that is part of Styx messages that operate
on files. Every file that is manipulated by the operating system is
identified by a fid. The Contents field contains one or more elements that
represent the information required by the message.

Type Tag fid Contents

1 byte 2 bytes 2 bytes Variable length

Contains arguments for specific commands

16-bit unsigned integer that identifies the “current” file

Unique identifier used to track commands

Indicates message type: initial transmission (T-message) or reply (R-message)

Inferno Networking

System Overview 5-45

Inferno Networking 5

Any Inferno system configuration can be made up of many distributed
clients and servers. the Inferno system does not dictate any rules or
restrictions on where these machines are located − they can be in the next
room or across the country. Additionally, Inferno-based machines can be
connected to each other by a variety of physical media and network
protocols as required to maximize connectivity and throughput.

The Inferno system hides network complexity from applications. When
an application needs to access services that reside on remote servers, a
few simple operations are used to construct a single, locally-represented
namespace that can encompass multiple machines and multiple networks.
For example, if a client has access only to a TCP/IP network and requires
access to other networks, the client can mount the additional networks
from a server that has access to them. When attached to the local
namespace, the remote server networks appear to be local to the client.

Like other services in the Inferno system, network interfaces are
represented as file systems in a local namespace. The Styx
communications protocol unifies different parts of the local namespace
that can be constructed from the vast collection of files on the network.
File operations between any two machines are accomplished by sending
requests and receiving replies using Styx messages. The protocol supports
remote access to files and allows a remote machine to use these interfaces
as gateways.

Styx messages are not manipulated directly by an application developer.
Any file operation generates the appropriate Styx messages to perform the
necessary operations on the namespace. The exact sequence of messages
differs depending on the call, but the complexity is concealed from the
developer who simply invokes familiar open, read, and similar file
system operations.

Inferno Networking

5-46 Inferno User’s Guide

Styx runs on top of any reliable transport level protocol, making the
underlying network connection transparent to applications. Styx relies on
several properties of the underlying transport protocol. For example, it
assumes that messages arrive reliably and in sequence.

Inferno-enabled Systems 5

On Inferno-enabled systems in the network, Limbo programs can
communicate with each other through Styx. You can use mount
commands to access files and devices on those systems. Non-inferno
enabled systems cannot communicate in this way.

However, communication between Inferno-enabled and non-Inferno
systems is possible in a limited way using the HyperText Transfer
Protocol (HTTP) and the File Transfer Protocol (FTP). FTP Access is an
application written in Limbo that is delivered with the Inferno system. It
uses FTP to access files on a remote system that is not necessarily
Inferno-enabled. You are limited to the functionality provided by these
protocols; you are not able to use all the Inferno system functionality.

Establishing a Network Namespace 5

A server file system is incorporated into a client namespace using the
kernel mount and bind calls. For example, if a client has access only to a
TCP/IP network and requires access to other networks, the client can
mount these networks from a server that has access to them by
constructing a union of the client and server directories by default named
/net.

Figure 5-11 shows the /net file tree for a client that only has access to a
TCP/IP connection. The /net file tree on the server called <server> has
access to multiple connections.

Inferno Networking

System Overview 5-47

Figure 5-11 An Example of Two Network File Trees

The client creates a namespace that incorporates the /net file system from
the server by issuing a mount and bind sequence of commands similar to
the following from the Inferno control console:

mount net!server /n/remote
bind -a /n/remote/net /net

After the mount and bind commands have executed successfully, all of
the listed networks that are connected to the <server> are available to the
client. The client can then send requests intended for these networks by
way of the server. The server acts as a gateway without the need for a
client protocol stack.

/net

tcp udp atm

data

ctl

local

remote

status

listen

cs (connection server)

clone 0 1 2 clone 0 1 2

data

ctl

local

remote

status

listen

ServerClient

/net

tcp

clone 1 2

data
ctl

local
remote

status
listen

0

Inferno Networking

5-48 Inferno User’s Guide

Following the mount and bind sequence described above, a list of
directories at the client machine would look like the following:

$ ls /net
cs
atm
udp
tcp
tcp

Note that there are two /net/tcp directories resulting from the union of the
local and remote directory structures. Both the local and remote versions
of this directory are part of the local namespace. Only the first, on the
local machine, is accessible. Using the -b option in the bind command
would make only the remote /net/tcp directory accessible.

Network Connection Server Applications 5

A client with access to a server may be able to use all of the networks
attached to that server.

The Inferno server application named cs (connection server) hides the
details of call setup from applications. Cs is provided as a demonstration
server application.

A network connection is established in two phases. The cs application is
first contacted to translate a logical network name into a device name and
a connect address string. The cs service receives a logical name such as
tcp!<server>!styx and returns the device name and connect address
string:

/net/tcp/clone
connect 35.104.9.52!6666

Inferno Networking

System Overview 5-49

The path name identifies the network device, and the connect address
string is used to set up a connection. To establish the connection, the
client then opens /net/tcp/clone and writes the control message into it.

When /net/tcp/clone is opened, it actually returns a file descriptor to

/net/tcp/<number>/ctl

where <number> is a numeric directory name (see Figure 5-11). Text
commands are then written to the ctl file to control the connection.

Each network directory contains a clone file and a directory for each
connection of that type, numbered 0 through n, where n+1 is the number
of connections of a single type. Opening the clone file finds and reserves
an unused connection directory and opens its ctl file. The file descriptor
returned to the client by the open call points to the ctl file. Each
connection directory contains files to control a single connection and to
send and receive information to it.

TCP Connections 5

TCP is the most common protocol used in the Inferno system. A TCP
connection is represented by the files indicated in Figure 5-11 under the
/net/tcp/0 directory. The organization of the TCP file system is similar to
that of other network connections types. The function of each of these
files is described in the following sections.

Control File 5

Reading the ctl file descriptor returns a text string containing the
connection number. The client program uses this value to construct the
full name of the connection directory. The client program can read and
write the file descriptor returned by the open call to send and receive
control messages to the driver or connection. A connection remains

Inferno Networking

5-50 Inferno User’s Guide

established while any of the files in the connection directory are
referenced, or until a close message is received from the network.

Data File 5

The data file provides access to the media. Reading the data file returns
data received across the network, blocking the file until some data is
available. Writing to the data file prefixes a header and queues data for
transmission.

Status File 5

The status file can be read to yield protocol-dependent information about
the state of the interface.

Local and Remote Files 5

The files local and remote contain an IP address and port number for each
end of the connection.

Listen File 5

The listen file is used to accept the incoming calls from the network. If a
process opens the listen file, the process will block until an incoming call
is received.

