

COMPUTER MAINTENANCE COURSE

VOLUME XVIII

HP 2000A TIME SHARE SYSTEM

HEWLETT-PACKARD COMPUTER MAINTENANCE COURSE

VOLUME XVIII

STUDENTS MANUAL

HP 2000A TIME SHARE SYSTEM

(HP STOCK NO. 5951-1346)

-NOTICE-

The information contained in this manual is for training purposes only. Consult the Hewlett-Packard documentation supplied with the computer for current information concerning the specific computer system furnished.

The information contained in this publication may not be reproduced in any form without the expressed consent of the Hewlett-Packard Company.

COPYRIGHT HEWLETT PACKARD COMPANY 1971

11000 Wolfe Road, Cupertino, California 95014 Area Code 408 257-7000 TWX 910-338-0221

FORWARD

This manual has been prepared by the Cupertino Division Maintenance Training Group. It is intended to serve as an introduction to the HP 2000A Time Share System. It is hoped that the manual will serve the needs of system operators and Service Technicians.

This manual was written to help introduce the student to the Time Share Listing, and the Internal Software Reference Specifications. All specific references to the listing are to the 2000A Version "F". Other versions can also be used, although slight differences in page numbers and memory addresses will be experienced. These previous versions have been corrected and improved. Version F represents the up-to-date system and it should be in use by all installations. This manual is written from the standpoint of the functional system, with hardware emphasis. It does not go into detail on the interpreter or software technique.

It is hoped that this manual will take the hardware strengths of the service technician, and build upon that to provide the technician with an appreciation of the Time Share operating environment. The material is written under the assumption that the computer technician has completed the Basic Maintenance and the Advanced Options Maintenance Training courses. In order to effectively use the listings, it is essential that the reader be familiar with the machine language as well as the Assembler.

A system operator without adequate training on the hardware and programming may find some chapters difficult.

CONTENTS

		PAGE
Chapter 1	COMPUTER TIME SHARE	1-1
1-1	Introduction	1-1
1-2	Small Scientific Systems	11
1-3	Other Mini-Computer Applications	13
1-4	Time Sharing	13
1-5	Interpreter	14
16	Basic Language	14
1-7	Response Time	1~ 5
Chapter 2	EQUIPMENT	2-1
2-1	Minimum Configuration	21
22	Switch, Power Fail	21
2-3	Switch, Parity	2 2
2-4	Switch, Disc	2 - 2
2-5	Optional Hardware	2-5
Chapter 3	SOFTWARE SYSTEM	3-1
3-1	Multiplexor	3 1
3-2	Multiplexor Software Module	32
3-3	Phones	3-4
3-4	System Console	34
3-5	Disc Driver	3. 5
3-6	Library	35
3–7	Basic Interpreter	3 5
3-8	Power Fail/Auto Restart	3 6
3-9	Scheduler	3-6
3–10	System Functions	36
Chapter 4	MULTIPLEXOR SYSTEM	41
4–1	Teleprinter	41
4–2	Signal Quality	4 1
4–3	TTY Character Print	4 1
4-4	Multiplexor Data	42
4–5	Phones Control	44
4-6	Multiplexor Software	44
Chapter 5	SCHEDULER	5 1
5-1	Queue	5 - 1
5-2	Queue Example	51
5-3	Scheduler Loop	54
5-4	Clock Interrupt	5-5
5-5	Detailed Scheduler Functions	5-5

CONTENTS (Continued)

		PAGE
Chapter 6	TIME SHARE TABLES	61
6–1	Teletype Tables	61
6–2	Directory	64
6-3	Equipment Table	6 6
6-4	ID Table	67
6–5	AD Table	67
6–6	File Table	6-7
Chapter 7	TIME SHARE LOADER	71
7–1	Loader	71
7-2	Paper Tape Load	7-1
7-3	Awaken from Disc	7-5
7–4	Awaken from Mag Tape	7-5
7–5	System Update	7-6
7-6	Conversion vs Update	7-7
7–7	Loader switch 15 option	7-7
7-8	Non-Sleep Restart	7-8
7-9	Resuscitation	7-8
7-10	Disc Halt	7-8
7-11	Parity Halt	7-9
7-12	Wrap Around	7-9
7-13	Software Loop	7-10
7-14	Operating Halts	7-10
7–15	Loader Halts	7-10
7–16	Key Core Locations	7-11
Chapter 8	TIME SHARE EXAMPLE	8-1
8-1	Introduction	8-1
8-2	Multiplexor Example	8-1
8-3	Scheduler Example	8_4
Appendix A	GLOSSARY	A1

LIST OF ILLUSTRATIONS

FIGURE	TITLE	PAGE
1	Generalized Computer System	1-2
2	2000A Board Location (2116B Computer)	2-5
3	2000A Board Location (2116C Computer)	2 - 5
4	2000A Time Share System	33
5	Multiplexor Data and Phones	43
6	Multiplexor Flow Chart	47
7	Queue Example	52
8	Scheduler Loop	5-7
9	Clock Interrupt	59
10	Scheduler (Main Part)	5-11
11	Scheduler (SCHED)	5 - 12
12	Scheduler (Swapper)	5-13
13	Input/Output Buffering	63
14	Directory Entries	65
15	Logical Disc Information	66
16	ID Table Entry Format	66
17	Loader Block Diagram	7 - 2
18	Teletype Serial Data	82
19	Multiplexor Interrupts	82
20	Multiplexor Example	8-5
21	Scheduler Example	8 - 15

LIST OF TABLES

TABLE	TITLE	PAGE
1	2000A Minimum Hardware Configuration	2 - 2
2	2000A Optional Hardware	2 - 3
3	Disc/Drum Reference	2 - 4
4	Equipment Table	6 8
5	Important Core Locations	6 10
6	Contents of Lib (243)	6 12
7	Teletype Table	6 - 13

SECTION INDEX

computer time share

CHAPTER 1 COMPUTER TIME SHARE

1-1 INTRODUCTION

The computer has become an integral part of our lives. To the uninitiated, it has almost magical qualities. To a child, the computer seems to have an answer to any question. Often to a service technician with no prior computer experience the computer may be an awesome beast. Actually it can do a certain limited repertoire of instructions rapidly and reliably. Let's look at some of the capabilities to gain an appreciation of the computer environment.

The computer is the center of an operating system with two primary interfaces. One interface is to the physical world. This includes transducer inputs measuring voltage, temperature, strain, and other physical quantities. It can then control certain aspects of the environment. It does this by controlling voltage, switch closures, motor velocity, mechanical positions and other physical quantities. Some of these applications include data acquisition and process control. Figure 1 shows a representation of this generalized computer system.

The other primary interface is with man. Man has vast capabilities for memory, intelligent and rational thought, and decision making. Our communications channels with the computer are somewhat limited however. Visual display and printer output are the primary links used in computer to man output. The man to computer input is chiefly a manual operation via the keyboard or punched cards. What is the nature of common computer applications? These are discussed in following paragraphs. As we review these it will help in understanding the time share environment.

Throughout the book, we use the word system. It refers to an operating module requiring both hardware and software. Thus the Time Share system is not so much the equipment which must be purchased, or the paper tapes and listing as it is the personality of the operating environment. To the user, it is the program solution and error messages and response time. To the operator it may be the sleep tapes, the Log on–Log off messages, and status reports. To the service technician it may be the symptoms used to troubleshoot a fault.

1-2 SMALL SCIENTIFIC SYSTEMS

The small scientific systems are used chiefly to solve mathematical or engineering type problems. The programmer or engineer may set up mathematical models which can represent the physical or theoretical system under study. A language such as Fortran can be used to describe the problem and provide solutions. The computer is used to provide the manipulation, iteration, and data output. As such, it can be considered an extension of the human capability because of its speed, program, and data storage capabilities.

FIGURE 1. GENERALIZED COMPUTER SYSTEM

Inputs for this type of service include manual input on a keyboard, punched cards or tape. These can be on-line or off-line depending on the speed or convenience desired, and the operating system available. If tables or data are required, they may be provided on mag tape, disc or other suitable means.

Since the computer is a binary device with a very limited vocabulary – and is difficult to interface with directly, an operating system is usually provided. This is an optimized software–hardware system. The stored program modifies the apparent interface, making it easier for man to input or interpret information. Many operating systems and/or languages have been developed to facilitate the interaction with man.

Certain problems occur frequently. Operating systems have been designed specifically with these requirements in mind. They include: Disc Operating Systems, Mag Tape Operating Systems, "Batch Mode" systems, and Time Share Systems.

1-3 OTHER MINI-COMPUTER APPLICATIONS

To complete the discussion, we should also consider other applications utilizing mini-computers. Some are used as data concentrators. These computers interface with a data channel by performing some preliminary processing which improve the effectiveness and decrease the cost of the data line. Sometimes the computer is dedicated to a specific task, such as the controller of a test stand. A Fourier Analyser is another example of a dedicated computer. It receives physical input in the form of time and magnitude while performing mathematical operations and provides a frequency and magnitude output. Other applications include Fire Control applications, traffic control, high speed transportation controllers, ticket booking services, etc. The reader can undoubtedly add many other applications from his own experience.

1-4 TIME SHARING

A certain class of computer applications has arisen enough to warrant designing a special operating system and a special language. The language is BASIC. The operating system varies with the manufacturer and his hardware capability. The requirements are characterized by small data base requirements and straight forward computational requirements. In the generalized computer system diagram, figure 1, the interface is typically a keyboard for both input and output.

Under these circumstances, the computer (Central Processor Unit) has a great deal of spare time when servicing a single user. The operating system allows multiple users access to the system in a quasi-simultaneous manner; hence, the name Time Share.

Time Sharing systems run the gamut from the small dedicated single language systems like the HP 2000 family right up to the largest multilanguage-multiprocessor systems. The system cost ranges from under \$100,000 to well above \$10 million.

1 -- 3

1-5 INTERPRETER

Perhaps we should say a word about the Interpreter. A compiler translates symbols meaningful to the programmer into machine language code. Fortran or Cobal are examples of common compiler languages. In both cases, machine language code is generated in absolute or relocatable code, and the program is run. An Interpreter takes the symbolic statements one at a time, executing them in the proper order—but without generating any machine language program code.

The BASIC on-line interpreter checks for syntactical errors, wrong data type, missing delimiters and other common type errors. It provides error messages immediately. This allows the user to correct the program statements and try again. The on-line error messages and immediate correction feature provides a real benefit for the writing and debugging of a program.

The interpreter converts the program statements to a compiled format. This is a more efficient coding or symbolic representation for the program statements. The system makes use of this as well as syntax stacks, pointers and linkages. But this is not machine code, and the computer does not execute these statements in the normal machine language sense.

1-6 BASIC LANGUAGE

The HP 2000 family makes use of the "BASIC" language. This is a powerful conversational language using English words and common mathematical symbols. Basic stands for Beginners All-purpose Symbolic Instruction Code. It was developed at Dartmouth University in 1964 under the direction of Professors J. G. Kemeny and T. E. Kurtz.

Its simplicity along with the use of common English words and its free form input makes it easy to learn and use. Yet the strings, files, and matrix capability makes it powerful and effective.

The on-line feature provides error diagnostic messages both at program writing time and at Run time. This certainly assists the beginning programmer in learning and using the BASIC language. Although the language is easy to use, it does provide a powerful programming capability. The manual "A Guide to Time Shared Basic", HP Stock Number 02000–90002, is useful both as a reference and for self instruction.

An extensive library of programs is available for the HP 2000 Time Share Systems. These include applications in business and finance, engineering and scientific, mathematics, statistical analysis, educational, utility, and demonstrations and games.

An example of the usefulness and flexibility of the language is the Computer Aided Instruction (CAI) programs. One is the HP mathematics drill and practice program. It provides a six year program for grades one to six. In addition to the actual students drill material, it provides various teachers reports. These include students progress, new concepts in the next lesson block, and unusual circumstances such as low grades, skipping or review lessons. Another significant application is the Accounting package for small businesses.

1-7 RESPONSE TIME

One of the primary limitations of many computer systems is the speed of the I/O devices. In Time Share applications, the most common terminal used is the teleprinter. Its maximum speed is 10 characters per second. This data speed is compatible with a voice quality telephone line. It is not much of a challenge to the CPU, however. The system accepts input data from all teleprinters. At the end of each input line, an individual user is given high priority. The system determines the nature of the input and services it rapidly. This enables the user to continue with his next line and the system appears quite responsive.

In output operation, the system fills an output buffer for the user. It continues to process all outputs through the multiplexor routine. If the system fills an output buffer and cannot continue the user goes into output suspend. The multiplexor routine requires very little additional processor time and keeps a steady output to all users. When the buffer gets low the system again schedules the user and resumes his program. With this technique, the user receives a fairly steady output rate, and still the processor can service other users too.

The system achieves this responsive nature by establishing the priority for tasks. The maximum time slice allowed for any user when others are queued up awaiting service is 1.0 second. A user who had used up his maximum time period and had not completed his program would then be placed at the bottom of the queue.

Every 0.1 second, the system scans all inputs to determine whether some one had completed a line and was awaiting service. Priority is established to optimize reaction time. Highest priority is given to syntax lines, user requeued after I/O suspend, and then continuing programs during the time allowed. Next the core resident programs called by the system (SCRatch, TAPe and KEY) and called by BASIC (RUN, LISt and PUNch). The Disc resident programs including those called by a user and those called by the system operator are assigned the third priority. The lowest priority is assigned for the users who have expended their time allocation without completing their program.

The result of assigning priorities in this manner is a system that responds to a user very rapidly. In most situations, a user will not notice the delays. Typical delays for syntax lines are in the order of one second or less.

The largest delays are experienced when all terminals are being used for CAI exercises. In this case, everyone is executing a program. A significant number of input suspensions occur. These tend to speed up the system since each user does not require his full time allocation at one second. The nature of the exercise has a lot to do with the delays experienced. Delays of two to four seconds are common. Occasionally substantially longer delays may be encountered.

The remainder of this book will deal with the HP 2000A Time Share system. We are particularly interested in the hardware and in those aspects of the software system that affect system operation and maintenance.

equipment

CHAPTER 2 EQUIPMENT

The 2000A Time Share system requires a wide range of equipment and options. Some are required, others are optional. Even in the required list, certain substitutions can be made.

2-1 MINIMUM CONFIGURATION

The minimum hardware configuration for the HP 2000A system is shown in Table 1. The slot for all CPU options is fixed. The I/O slot for these minimum configuration peripherals is also fixed. The slot designators for Table 1 correspond to the 2116B computer. Figure 3 shows the specific locations in the 2116C computer.

This minimum configuration shows the 2773A Drum. Actually any Disc or Drum from TAble 3 would be satisfactory.

It is expected that the reader is familiar with the equipment used in the HP 2000A. And further, that he has available the instrument manuals. We need not describe their general function and purpose. There is more detailed information on the multiplexor hardware in Chapter 4.

The next three sections deal with the positions of the switches in the HP 2000A. Their positions are important. The instrument manuals describe the individual function but do not indicate the required position for a particular operating system.

2-2 SWITCH, POWER FAIL

The Power Fail board has a switch which defeats the automatic restart feature. This switch must be up to allow restart. If the switch is down and the computer experiences a momentary power failure, a halt \emptyset at P=31141 will be experienced. When power is restored, the computer may come up at some random address. If the switch is raised to the up position, it will restart.

When the switch is up and a momentary power failure is experienced, the interrupt to the power fail routine stores away the necessary information and halts the computer. When power is restored, the switch in up position allows an interrupt to take place. This time the flag indicates power is coming up and the "restart" portion of the routine is called. This restores the registers, initializes the Time Base Generator, restores the condition of the interrupt, synchronizes the multiplexors, and then returns to the P register location at the time of the initial power fail interrupt.

2-3 SWITCH, PARITY

The Parity check board has a switch that forces an immediate halt when up, or allows an interrupt to the trap cell if down whenever a parity error occurs. The immediate halt is caused by PEH signal clearing the RUN 1 flip flop. The Parity Error light on the front panel will be illuminated indicating the parity error condition. An interrupt mode exists with the switch down. A parity error occurring during a DMA transfer (core to disc) will be ignored. Because of this limitation it is essential that the switch on the Parity board be up in halt mode.

2-4 SWITCH, DISC

The Disc interface has a track protect switch. This allows read only operation from the protected tracks. The switch is located on the Data board. This switch must be down in unprotected position for the Time Share system allowing read/write capability on all tracks.

The protected tracks always include track zero (additional tracks are protected by removing additional diodes). The Time Share system must have access to track zero so the switch must be down.

TABLE 1 2000A MINIMUM HARDWARE CONFIGURATION

HARDWARE GROUP	MODEL NUMBER	NAME	BOARD STK.NO.	COMMENTS	2116B LOCATION
CPU	2116B-05 12588A 12591A 12579A 12578A	16K MEMORY PWR FAIL PARITY ERROR EAU DMA	12588-6001 12591-6001 02116-6196 02116-6202 02116-6206 02116-6205 02116-6204 02116-6203	(SWITCH UP) (SWITCH UP) TIMING LOGIC DMA REG. ADDR ENCODER DMA CONTROL CHAR. PACKER	A1 A3 A109 A110 A116,117 A118 A119 A120
PERIPHERALS	12584A-01 2754B 12539A 2748A 2773A	MULTIPLEXOR TELEPRINTER TIME B.GEN. READER DRUM	12584–6001 12531–6001 02116–6119 12597–6001 12610–6001	DATA (SWITCH DOWN) COMMAND	A203 SC10 A204 SC11 A205 SC12 A206 SC13 A207 SC14 A208 SC15
OTHER	2776A 2160A 2992Z	DRUM POWER SUPPLY POWER SUPPLY EXTENDER 2 BAY CABINET			

TABLE 2
2000A OPTIONAL HARDWARE

DESCRIPTION	MODEL	INTERFACE	
Mag Tape	HP 3030G	12559A	(60K Char/Sec)
	HP 7970A-200	13181A-001	(20K Char/Sec)
	HP 7970A-202	13181A	(30K Char/Sec)
Telephone-Auto Disconnect	12584B-001		
Keyboard-Display Terminal	2600A	None required	
	DISC/DI	RUM	<u> </u>
Drum (393,216 words)	2773A*	12610B	48 tracks/128 sectors
(786,432 words)	2774A		96 tracks/128 sectors
(1,572,864 words)	2775A		192 tracks/128 sectors
Disc (1,048,576 words)	2776A-004**	12610B	128 tracks/128 sectors
(786,432 words)	2776A-003		96 tracks/128 sectors
(524,288 words)	2776A-002		64 tracks/128 sectors

^{*}HP 2776A Power Supply

2-5 OPTIONAL HARDWARE

Table 2 shows the optional hardware available for the 2000A System. Three different mag tape units are available. The interface requires two adjacent I/O slots. These can be located in any slots starting at SC16 (A209). The Mag Tape command tells the system which unit is being used (i.e. MAG TAPE-22* indicates the 13181A Controller for 7970 because of the asterisk following the Select Code. Mag Tape-22 indicates the 12559A controller for the 3030.)

The Telephone Auto Disconnect option is required whenever the system contains a telephone Data Set like the 103E series. In the 2000A the board can be plugged into any available I/O slot. The PHOnes command gives the select code information and the number of seconds allowed for log on (i.e., PHONES-26,240).

A Keyboard Display unit (HP 2600A) is available. It can be used in place of the 2749A Teleprinter. It is usuable either hardwired, or connected through an acoustic coupler. In both cases, it can operate at a higher transmission data rate than the teleprinter.

Various Drum and Disc units are available. These are shown in Table 2. These can be substituted in place of the Drum on the minimum configuration list for larger capacity. Or they can be added as additional Disc or Drum units to increase storage capacity. The Discs and Drums are considered as logical units. Each 64 tracks (or a portion thereof) constitute a logical disc. The system will handle four logical discs. The first physical unit must utilize the I/O slots 14 and 15 for the interface. Succeeding physical units can use any two adjacent I/O slots. The various disc commands are used to modify the equipment status.

^{**}HP 2772A Power Supply

DISC/DRUM REFERENCE TABLE

TABLE 3

DEVICE	TYPE	SECTORS/ TRACK	NO. TRACKS*	STORAGE	POWER SUPPLY	INTERFACE
2770A-01	Disc	90	64	368,640	2772A	12606B
2771A	Disc	90	64	(Expandable)	2772A	12606B
2771A-01	Disc	90	128	737,280	2772A	12606B
2773A	Drum	128	48	393,216	2776A	1261 0 A
2774A	Drum	128	96	786,432	2776A	12610A
2774A-003	Drum	128	128	1,048,576	2776A	12610A
2766A	Disc	128	32	262,144	2772A	12610B
2766A-002	Disc	128	64	524,288	2772A	12610B
2766A-003	Disc	128	96	786,432	2772A	12610B
2766A-004	Disc	128	128	1,048,576	2772A	12610B

^{*}These are logical tracks and sectors. Refer to the instrument manual for data on physical tracks and sectors.

FIGURE 2. 2000A BOARD LOCATIONS (2116B COMPUTER)

SPARE		A22	CROW BAR ASSSEM	1BLY	∮ E	_	A222
MEMORY PROTECT	*	A21			Mem Ext	0 xtender	A221
DML		A20	DMA CHAR PACKER	A120		4 ~ 5	A220
SPARE		A19	DMA CONTROL	A119		JSX.	A219
INHIBIT DRIVER	ΧØ	A18	DMA ADDRESS ENC	A118	I/O BUSS LOADER	SC27	A218
SPARE		A17	DMA WORD COUNT	A117		SC26	A217
INHIBIT DRIVER	X1	A16	DMA WORD COUNT	A116		SC25	A216
DRIVER SWITCH	X0-1	A15	4			SC24	A215
DRIVER SWITCH	Y0-1	A14	ш			SC23	A214
SENSE AMPLIFIER	ΧØ	A13	A B			SC22	A213
SENSE AMPLIFIER	X1	A12	SPA			SC21	A212
SENSE AMPLIFIER	X2	A11				SC20	A211
SENSE AMPLIFIER	Х3	A12	FAN LOGIC	A110		SC17	A210
DRIVER SWITCH	X2-3	A9	EAU TIMING	A109		SC16	A209
DRIVER SWITCH	Y2-3	A8	SHIFT LOGIC	A108	DRUM COMMAND	SC15	A208
SPARE		Α7	INSTRUCTION DEC.	A107	DRUM DATA	SC14	A207
INHIBIT DRIVER	X2	A6	SYS. TIMING GEN.	A106	+8 BIT DUP REG	SC13	A206
SPARE		A5	∮ .≌	A105	TIME BASE GEN	SC12	A205
INHIBIT DRIVER	Х3	A4	rithmetic Logic Cards	A104	BUF'R'D TTY REG	SC11	A204
PARITY ERROR		А3	rithme Logic Cards	A103	I/O MULTIPLEXOR	SC10	A203
MMD		A2	1 1 2 2 2	A102	CENTRAL INTERRU	PT	A202
POWER FAIL		A1	FRONT PANEL COUP	A101	I/O CONTROL		A201

^{*}Optional, not required.

FIGURE 3. 2000A BOARD LOCATIONS (2116C COMPUTER)

INHIBIT DRIVER	A22	CROW BAR ASSEME	BLY	SPARE ,	
X-Y DRIVER	A21			SPARE 5	5
SSA	A20	l •		SPARE	A220
SSA	A19			102	A219
X-Y DRIVER	A18			SC2	-
INHIBIT DRIVER	A17	l		SC2	6 A217
MEMORY PROTECT*	A16	H		SC2	
PARITY ERROR	A15	SPAL			4 A215
MAD	A14	ν			3 A214
MDB	A13				2 A213
INHIBIT DRIVER	A12				1 A212
X-Y DRIVER	A11				0 A211
SSA	A10	EAU LOGIC	A110		7 A210
SSA	Α9	EAU TIMING	A109		6 A209
X-Y DRIVER	A8	SHIFT LOGIC	A108		5 A208
INHIBIT DRIVER	A7	INSTRUCTION DEC.	A107		4 A207
POWER FAIL	A6	SYS TIMING GEN	A106		3 A206
DMA CHAR PACKER	A5		A105		2 A205
DMA CONTROL	A4	s c c l	A104		1 A204
DMA ADDRESS ENC	A3	rithmetic Logic Cards	A103		0 A203
DMA WORD COUNT	A2	<u> </u>	A102	CENTRAL INTERRUPT	A202
DMA WORD COUNT	A1	FRONT PANEL COUP.	A101	I/O CONTROL	A201

^{*}Optional, not required.

software system

CHAPTER 3 2000A SOFTWARE SYSTEM

The 2000A Time Share System consists of six modules. The modules are in absolute format (not relocatable). They have limited ability to communicate with each other. The scheduler might be considered the master control program. We shall look briefly at each of these modules. Refer to Figure 4 for a representation of these modules. Those six modules consist of the multiplexor, system console, disc driver, library, Basic interpreter, and scheduler.

The understanding of the relationship between these Time Share System modules is essential. We might consider the primary purpose of the HP 2000A to execute the user program or user command (like RENumber). Incidental to this is the process of inputting program statements, providing syntax checking, error messages and these other services. In either case the executing program is a portion of the Basic Interpreter or the Library program. We might consider these as foreground activities.

It is first necessary to swap the users swap track to the user swap area in core. The actual swap is made on a cycle stealing basis with DMA. There may also be required communications through the multiplexor. The scheduler does the checking and scheduling for all pending activities. These activities might be considered background or overhead.

We do not wish to make these definitions more rigorous, and would prefer not to examine them too closely. What we are trying to do is first provide an intuitive feel for the different modules, their purpose, and the manner in which they share the available CPU time.

3-1 MULTIPLEXOR

The teleprinters are input-output devices. The data format is the 8-bit ASCII code embedded within three other start and stop bits. Communications between the teleprinters and the system is handled in bit serial manner.

The multiplexor panel has a sheet metal deck with 16 connectors, one for each possible teleprinter or telephone data channel. The multiplexor data interface board has the flag and interrupt circuitry, an 880 hertz oscillator to generate the interrupts and allow synchronism with the teleprinter data, sixteen data input circuits and sixteen data output circuits. Refer to Figure 5 for the multiplexor Data and Phone hardware diagram.

3-2 MULTIPLEXOR SOFTWARE MODULE

The multiplexor software module makes use of the TTY Tables and buffer areas. Each port has an associated teletype table containing temporary storage for pointers, time counters, status, priority, etc. The buffer areas provide temporary storage for input and output communications with each teleprinter.

The multiplexor system handles the character input bit-by-bit, stacking the characters into the proper buffer area. It processes the special characters as it goes, such as backspace and alt-mode. When the carriage return indicates the end of the line, the multiplexor sets a bit in the status word used by the scheduler. The next time through the scheduler the proper action will be determined and the user will be placed on the queue.

Up until the final character in the line, all of the necessary processing has taken place within the multiplexor module. It operates under interrupt mode using only the necessary time required for the bit-by-bit and character-by-character processing.

Similarly, in output mode, a Library module or the basic module will provide output rapidly filling the buffer area. The multiplexor system then processes the output character-by-character and bit-by-bit. This may be likened to a background-foreground mode of operation. All communications are handled essentially in parallel in the background. This requires a certain amount of time and appears as system overhead. In the foreground the Time Share system is working with one individual user at a time.

The multiplexor operates on a statistical basis. There are 8 interrupts per bit, and 11 bits per character. Thus, with 88 interrupts per character, it is highly unlikely that all teleprinters would start a character at the same instant.

Normally, the processing load of the multiplexor is distributed fairly evenly between the various interrupts. The overhead due to processing the multiplexor interrupts (when no user is being serviced) is about 90 microseconds. This represents about 8% of the available CPU time. The module requires about 160 microseconds to service a new character, 80 microseconds to process each bit, 245 microseconds for end of character. Additional time is required for special character (i.e., alt mode, carriage return, backspace, etc.)

The multiplexor board has a flag storage flip flop. This allows the multiplexor system up to two interrupt time periods without losing an interrupt. An occasional loss of an interrupt would not be accumulative. End of line processing places the users on the queue, thus reducing the duty cycle of the multiplexor.

FIGURE 4. 2000A TIME SHARE SYSTEM

3-3 PHONES

The phones routine handles the control signals for the Bell Telephone Model 103 data set. It provides the proper time for initial log on. It also handles inadvertant disconnect. Although it is shown as a separate module, it is just a small portion of the scheduler.

3-4 SYSTEM CONSOLE

The system console provides a means of controlling the hardware system. The 2754B Teleprinter is interfaced with an HP 12531B Interface Card. The system console is used for four functions. First it allows control over user ID. This is done by adding new ID's, killing ID's, changing passwords, resetting time clocks, and controlling the allocation of disc space and allowable time. Second it is used for hardware control. This includes the DISc, MAG tape, PHOnes, LOCk and UNLock commands and the ROSter and STAtus requests.

The third function deals with program control. These commands include the DIRectory listing and the REPort listing all ID's with time and disc usage. PURge command allows cleaning up old programs which have not been used recently. SLEep command is used to save a tape copy of the system and all library and directory programs. It also provides a compaction of available disc spaces.

The fourth use of the system console provides log-on log-off messages to support the accounting and billing procedures. Since the logging is such an important function, the teleprinter punches a paper tape back up for all log-on log-off messages. The logging functions are of high priority, because they directly affect the system response time to the user, so these messages interrupt routine functions such as a DIRectory print, STAtus, or REPort.

The system console software module is operated under the interrupt mode. It uses two flags T35F1 and T35F2 to keep track of its current operating mode. T35F2 must be zero to allow input. The 36 word buffer is used for both input and output buffering.

Library routines can use the buffer by setting T35F2 thus inhibiting any input. In addition to the separate console driver significant coding exists within the scheduler. This portion deals primarily with setting up the log buffer, and in setting up the queue entry for the system console.

The function of the system console can be defeated by setting bit 0 of the computer switch register. This allows the 2000A cabinet door to be locked, thus preventing unauthorized tampering with the console. The console will continue to print log on and log off messages.

3-5 DISC DRIVER

The fourth software module is the Disc Driver. The Time Share system makes full use of the fixed head disc or drum. All disc transfers are made under DMA control. The computer memory size limits the system to only one user at a time. Each user (port) has one dedicated swap track on the disc. As a user reaches the top of the queue, the scheduler initiates the disc to core transfer. This brings in 85 sectors replacing the previous contents of the core swap area. The disc driver also writes the user core swap area to the disc swap track, or brings in the 4 sectors associated with each library program to the library core area starting at address 37300.

The disc driver is entered with the A and B registers containing the disc and core address. The location WORD contains the number of words to be transferred. A status location ENDSK is set at the beginning of the transfer, and is cleared at the completion of the transfer. Its condition indicates whether a transfer is underway.

3-6 LIBRARY

A 256 word segment of core is used by the various library programs. The origin address is 37300. There are more than 30 of these programs. They are disc resident, and are brought in whenever needed to this 256 word library area. In certain cases, the program exceeds the 256 word limit. This is handled by breaking the program into segments and executing the program and overlay sequentially. These programs are absolute. They can call other programs as necessary. For example: Save can call Supersave, and Hello program will search the library for \$Hello executing it upon process completion.

It should be apparent that the use of a disc and the availability of these library programs has added a significant amount of power and sophistication to the system capability compared to Single Terminal Basic capabilities.

3-7 BASIC INTERPRETER

The Basic Interpreter is the heart of the software system. It is comprised of many functional subsections. These include syntax checking, compile and decompile, error routines, generation of symbol tables, formula evaluation, arithmetical routines, utility routines, and the program execution loop. This entire program uses only slightly more than 6600 words of memory.

One of the most significant problems to be overcome was the multi-entry nature of the compiler. This allows a users program to terminate at any point in the compiler. When he works up through the queue, the compiler can continue the execution again at the proper place. To accomplish this certain pointers and stacks had to be included in the user swap area.

The actual user program is maintained in the core user swap area. This area consists of 5440 words of memory. The swap area has various sub-routine pointers, value tables, symbol tables, syntax stacks, etc. All of these are of syntactical nature. They are not computer programs. The computer P register should never be executing in the user swap area. Some of the swap area is on the base page to facilitate access from anywhere in the interpreter.

The program may be in the uncompiled mode. This is the regular English language form as the program is initially entered. When the user types RUN, the program must be complied. This is a translation to a symbolic form required by the interpreter.

3-8 POWER FAIL/AUTO RESTART

The Time Share system requires a software module to service the power fail conditions. It is not considered one of the system software modules because of its specialized nature.

3-9 SCHEDULER

The sixth system module is the scheduler. This is the executive module. It handles the service requests from the other modules. It is responsible for making good use of CPU time.

The scheduler is entered every 100 milliseconds by an interrupt from the Time Base Generator. It is also entered whenever the interpreter module completes its task. Let's look at the various functions performed by the scheduler.

The Time Base Generator interrupt is serviced. The time of day counters are updated and serviced in case of roll over. The timer for a user is updated. The swap out is initiated if the users time slice is exhausted.

The queue is an ordered list of users awaiting service. It is maintained on a priority basis. The scheduler inserts new entries, and removes those who are done. It removes those who have exhausted their time slice and re-inserts them at the proper priority.

As the scheduler works through, it checks the status of the multiplexor through the MPCOM word, the phones input for changes or time outs, the system console through its flag words, and the logger request.

3-10 SYSTEM FUNCTIONS

Let's consider the relationship between these system functions. The multiplexor handled the bit by bit and character by character transfer until the carriage return was detected. Then the user's flag was set in the MPCOM word indicating service required. The input line was placed in the appropriate buffer, and the pointers are available in the TTY tables. There are various reasons for a service request. These include a command or syntax statement, output buffer down to 10 characters on an output wait, input provided following an input wait, or a user abort. The response may require initializing a library program or entering the interpreter, or it may be to continue a program suspended for I/O wait. In any case, it will require placing the user on the queue.

The phones processing is simple. It looks at the ringing and carrier lines from the data set. A change in the status (or voltage level) of these lines requires service. The action required is normally to provide the Data Terminal Ready signal, or to remove it. In the event of unintentional disconnect, the log off procedure is initiated.

The system console has an associated buffer for input and output. A logger buffer also exists for log on and log off messages. A log on/off message will be placed in the logger buffer. If the console is quiet, the log message prints. If the console was actively outputting a print (as in DIRectory or STAtus), the logger message waits until the completion of the current line before gaining control.

The scheduler also provides swapping. The time required to effect a disc transfer is significant. The swapper thus initiates the disc transfer at the earliest possible moment. The scheduler continues to process routine matters while awaiting the transfer completion.

multiplexor system

CHAPTER 4 MULTIPLEXOR SYSTEM

The multiplexor system provides a means to link the computer to the teleprinters. The input to the Time Share system may be syntax statements, commands, or data input. The output will be program messages, error messages, command completion, etc. The multiplexor is the communications link. We will consider the characteristic of the elements within this system.

4-1 TELEPRINTER

The teleprinter is an electro-mechanical device. The main shaft is driven by a synchronous motor. This establishes the data rate, and all data to and from the teleprinter must be synchronized at this rate.

The teleprinter uses an eight level ASCII code. ASCII stands for an industry adopted standard code called the American Standard Code for Information Interchange. The code requires 7 bits for data and the eighth is an optional parity bit. These eight ASCII bits are preceded by a start bit (logic zero level) and followed by two stop bits (logic one level). The data rate is 10 characters per second. The time period for a full character is 100 milliseconds. Each bit requires about 9.09 milliseconds.

4-2 SIGNAL QUALITY

The signal output will seldom be an ideal pulse train. Noise bursts and pulse deterioration due to long transmission lines or telephone circuits will reduce this quality. Time synchronism will not be exact. The best time to sample a bit will be somewhere near the middle of the bit.

4-3 TTY CHARACTER PRINT

In LINE mode pushing a key will initiate the generation of the pulse train and will result in a complete rotation of the main shaft. The character will not print automatically however. An electrical signal must be sent back to the teleprinter from the computer in order to print a character. This is referred to as an echo.

Let us digress a moment and see how this works. In LOCAL mode depressing a key moves the code bars under the keyboard setting up switch conditions for the 8 data bits. It also initiates one rotation of the shaft. The switches place voltages on the individual segments of the distributor which are then scanned sequentially during the shaft revolution by the distributor. The start and stop bits are also added. This is the data signal which is available for the computer while in LINE mode. In LOCAL mode the signal actuates the selector solonoid. This in turn allows the cams sequentially to set up code bars for print selection. In the time share application, each bit is sampled in the middle of the bit period. The returned signal is delayed 4 or 5 milliseconds compared with LOCAL mode. There are adjustments to help optimize the unit for this time shift. These adjustments include the mechanical "Range"

Finder" adjustment, and the armature spring tension and setting. These adjustments should be attempted only by qualified technicians. If misadjusted occasionally a character may misprint even though the proper data has been received by the computer.

4-4 MULTIPLEXOR DATA

How does the hardwired teletype work from a data flow concept? See figure 5 for the multiplexor data and phones information. The interrupt circuit on the multiplexor assembly generates computer interrupts. These interrupts allow synchronization with the teleprinter data train. We need to locate the center of the bit, thus requiring more than one interrupt per bit. It would be desirable to spread the teleprinter servicing over various interrupts so all 16 units would not likely require simultaneous servicing, An interrupt rate of 880 cycles per second was selected thus giving 8 interrupts per bit.

Figure 5 shows one teleprinter. Its cable can be attached to any one of the 16 connectors (J \emptyset to J15). In the event a data phone is used, the teleprinter would plug into an acoustic coupler. It would make an acoustic coupling with the telephone hand set to the telephone network. The telephone network would terminate in a 103 type data set which would then plug into the multiplexor connector (instead of the teleprinter cable).

The physical wiring on the multiplexor should be described. The Data lines are wired on the connector chassis from each port connector to J17. A Data cable (12584–6005) then takes all of these connections from J17 to the multiplexor Data board in I/O slot 10.

The Ringing and Carrier signals are routed from each of the 16 connectors to the Ring Carrier assembly which is mounted directly behind the connector chassis. The ring or carrier connections are then routed to J16. The cable (12584–6008) then takes these signals to the multiplexor phones board which can be located in any available I/O slot SC16 or above. The Data Terminal Ready signal then returns through the cable and J16 to the individual port.

The incoming data from the teleprinter is routed through the multiplexor panel to the multiplexor data board. The input circuits monitor the voltage levels of each of the 16 lines. The computer uses the LIA/B instruction to input the data levels. Each Port is associated with one of the 16 bits of the computer word. It should be noted that the input circuit inverts the logic level. The start bit for character is a logic zero at the teleprinter. After being inverted on the multiplexor data card, it is a logic one at the I/O slot.

It is up to the multiplexor software to recognize the initial change of state from a zero to a one as the start of a new character. It counts 4 interrupts to the middle of the bit. It then begins to send the output data back to the teleprinter to allow printing. After 8 more interrupts, it determines the logic level of the first data bit and sends it back, etc. This results in a 4.5 millisecond phase difference between the generated and returned data. Mechanical phasing adjustments allow for this mode of operation.

3-3 PHONES

The phones routine handles the control signals for the Bell Telephone Model 103 data set. It provides the proper time for initial log on. It also handles inadvertant disconnect. Although it is shown as a separate module, it is just a small portion of the scheduler.

3-4 SYSTEM CONSOLE

The system console provides a means of controlling the hardware system. The 2754B Teleprinter is interfaced with an HP 12531B Interface Card. The system console is used for four functions. First it allows control over user ID. This is done by adding new ID's, killing ID's, changing passwords, resetting time clocks, and controlling the allocation of disc space and allowable time. Second it is used for hardware control. This includes the DISc, MAG tape, PHOnes, LOCk and UNLock commands and the ROSter and STAtus requests.

The third function deals with program control. These commands include the DIRectory listing and the REPort listing all ID's with time and disc usage. PURge command allows cleaning up old programs which have not been used recently. SLEep command is used to save a tape copy of the system and all library and directory programs. It also provides a compaction of available disc spaces.

The fourth use of the system console provides log-on log-off messages to support the accounting and billing procedures. Since the logging is such an important function, the teleprinter punches a paper tape back up for all log-on log-off messages. The logging functions are of high priority, because they directly affect the system response time to the user, so these messages interrupt routine functions such as a DIRectory print, STAtus, or REPort.

The system console software module is operated under the interrupt mode. It uses two flags T35F1 and T35F2 to keep track of its current operating mode. T35F2 must be zero to allow input. The 36 word buffer is used for both input and output buffering.

Library routines can use the buffer by setting T35F2 thus inhibiting any input. In addition to the separate console driver significant coding exists within the scheduler. This portion deals primarily with setting up the log buffer, and in setting up the queue entry for the system console.

The function of the system console can be defeated by setting bit Ø of the computer switch register. This allows the 2000A cabinet door to be locked, thus preventing unauthorized tampering with the console. The console will continue to print log on and log off messages.

During output when the bit timer rolls over the new bit must be sent out. When character roll over occurs, the buffer pointers are incremented and the new character is prepared, While in output wait the number of characters are checked. If 10 characters remain the MPCOM bit is set to reschedule the user.

The flow chart is roughly proportional to the time required by the multiplexor driver. The oscillator frequency of 880 hertz was selected to distribute possible end of character processing over the various interrupts. Decreasing the oscillator frequency would slightly reduce multiplexor overhead. But the number of users (per interrupt) requiring service would increase. The multiplexor board has a special flag and interrupt circuit. It has a storage flip flop which retains an interrupt occurring before the completion of the multiplexor routine. It virtually doubles the amount of time available for any one interrupt before resulting in erroneous data.

FIGURE 6. MULTIPLEXOR FLOW CHART SHEET 1 OF 3

FIGURE 6. MULTIPLEXOR FLOW CHART SHEET 2 OF 3

scheduler

CHAPTER 5 SCHEDULER

The Scheduler is the Time Share Executive. A review of figure 4 shows the significant relationship between the scheduler and the other modules. The Queue is an ordered listing of all users desiring to be serviced. It is the servicing of the queue, including the status and priority, which constitutes the primary function of the scheduler.

The scheduler calls the Disc to effect a swap from the disc to core or from core to the disc. It controls the transfer to either the Basic intrepreter or to the library. The multiplexor is a self contained driver. It is entered by the interrupt from its oscillator. It handles communication from the teleprinter to the buffer or from the buffer to the teleprinter. The scheduler checks the MPCOM status word to determine when a user requires servicing.

The interaction of these modules depends in great measure on the queue. Before continuing with the operation of the scheduler, it is important to understand the queue.

5-1 QUEUE

The queue is an ordered list of users desiring service. The list is ordered by priority. Within each priority, the queue follows the first-in, first-out concept. The fundamental concept in the queue philosophy is to accomplish the short interactive tasks rapidly at the expense of compute (or run) bound programs. This gives the system a responsiveness and speed which is very desirable.

Priority is assigned in this manner. The highest priority is 0 and it is assigned for users returning following an I/O syspend, and for syntax lines. Priority 1 is assigned to those commands handled by the Basic interpreter – RUN, LISt and PUNch. All other commands are disc resident and are assigned a priority level of 2. Whenever a command of priority 2 reaches the top of the queue, its priority is reassigned 0. If the job is not completed within its one second time slice, it is reassigned a priority of 4 and requeued. The commands KEY and TAPe are executed immediately and do not require being placed on the queue.

5-2 QUEUE EXAMPLE

Figure 7 shows an example of a queue. The queue is comprised of one to eighteen entries. Each entry consists of a link address to the next entry and the priority level of the user. The queue consists of the pseudo entry at MLINK +1. It points to itself, (or to the top of the queue), with a priority of 77777B. This priority insures that this entry will always be the last entry on the queue. The words LINK and PLEV are entries from the users teletype table. They have significance only if the user is on the queue.

Page 1 of 2

MLINK +1 always points to the top of the queue. In this case (figure 7) it is the LINK address of port 1, with a priority of 0. Port 1 LINK points to the second entry, Port 3 with a priority of 2. The other entries are the console with priority 2, and Port 6 with priority 4. Port 6 is the last user entry. It points to the pseudo entry MLINK +1.

To remove an entry from the queue requires merely changing the preceding LINK. For example, if port 1 had completed its task changing MLINK +1 to 33167 would dequeue port 1. The addition of another user to the queue is similar.

Suppose that port 8 typed GET-SAM. It would be assigned a priority 2. The scheduler would then search the queue to determine its proper location, The scheduler compares the priority to be inserted with each queue entry until the new priority is less than the next queue entry. MLINK +1 points to the top of the queue.

In this case, the priority is not less than port 1. It is not less than Port 3. It is not less than the console. But it is less than Port 6. Therefore it must be inserted between the console and Port 6. This is done by placing the priority 2 in location 33372. The link value in the console T35LK (33305) is placed in location 33371, and 33371 is placed in 206. The queue is now expanded to include the new user. See figure 7 sheet 2/2 for the queue after inserting Port 8.

5-3 SCHEDULER LOOP

We are now ready to look at the overall scheduler loop. Whenever the system has nothing to do the queue is empty, and the scheduler stays in the idle loop. See figure 8. The loop starts at SCH1. It checks to determine whether any phone servicing is necessary, whether the multiplexor has any user teleprinter business ready to handle, whether the system console needs servicing and finally if some one is on the queue and is in core ready to run.

The scheduler remains in this loop. It is interrupted by the multiplexor oscillator but returns on completion. It is also interrupted by the Time Base Generator. When the time clock is updated, the return to the scheduler is through the jump at the CLKIN NOP location.

The loop will finally be broken when a user logs on. At the end of the log on line multiplexor processing will be indicated by the MPCOM bit. The user will be queued up, and the HELlo command will be brought in by the SWAPR. When it is in and ready the Time Share System will exit the loop to initiate the command execution.

5-4 CLOCK INTERRUPT

Each 100 milliseconds the scheduler will be entered again to check for phones, multiplexor, and console servicing requirements. The scheduler will exit to continue the command execution. The library commands are not timed, but continue to completion. The user will be dequeued when a library command is completed. The entry point for this is SCHEQ. The scheduler will stay in the loop until another user is placed on the queue.

When a user is in run mode, he is allowed a one second time slice. Each time the clock interrupt takes place, his timer CLOC is checked against time of day. When his time slice is used up and someone else is on the queue, he is swapped out and requeued at the lower priority.

Input-output operations also provide entry points to the scheduler. In the case of required input, the user is immediately dequeued and placed in input suspend. This is required because the input wait is always extremely long. This entry point is SCHIQ. Another point is provided for output request. The routine #OUTC is called whenever a character is outputted to the teleprinter. This is accomplished by adding the character to the output buffer which is then serviced by the multiplexor. In the case in which the buffer is completely filled, the user is then removed from the queue. The scheduler services the next user on the queue, or remains in the scheduler loop. When the output buffer decreases to exactly 10 characters remaining the user is requeued by the multiplexor with a priority of 0, thus ensuring early service.

In general, there are only the four entry points to the scheduler. The only exit is to initiate execution. The TSB entry is the initial entry point called when the system is entered from the loader.

5-5 DETAILED SCHEDULER FUNCTIONS

We can now consider more detailed blocks of the scheduler. Figure 9 shows the action required by a clock interrupt. The software merely updates the 0.1 second counter, and then the hour counter in case of roll over. Then it returns to the scheduler if it was there at interrupt. Otherwise it enters the scheduler at SCHED.

The lisiting at SCHED determines whether the operation is untimed, or timed but not used up, and then goes to the SCHI main part of the scheduler. If the user is timed and the time slice is used up, he is requeued at the lower priority. The program jumps to SWAPR to start early swapping. The scheduler then remains in the loop until the new user is in and ready. Figure 11 shows the processing required by the SCHED coding.

Figure 10 shows the main part of the scheduler. The phones coding is bypassed unless the phones command is used to indicate the hardware exists. The function is rather simple. It must connect the user on call up. It must time for log on within the allowable time. It must detect and process a disconnect. When this is completed, it goes on to the multiplexor communications.

:			

FIGURE 9. CLOCK INTERRUPT

The multiplexor communications is indicated by the word MPCOM. The corresponding user bit is set whenever servicing is required. The scheduler uses the user status to help determine what is required. A status of 2 or 3 is a return from I/O suspend. This establishes a new priority of 0 and the user is placed on the queue. A status of 4 or more indicates that a command is being processed. RUN = 5, LISt = 6, PUNch = 7, etc. Refer to the command table P222/#18 for the sequence.

A status of -1 is given when the multiplexor determines the user desires an abort. When the scheduler begins to process the abort it gives a status of 1. A status of 1 thus indicates an abort is underway and no further processing is required.

A status of zero indicates the user is in idle condition. This is the normal condition for receiving a new line of syntax or a command. The status of -2 indicates a special disconnect from the phones coding.

Once all of the multiplexor processing is completed, the scheduler then checks the console. When the console is finished, the scheduler continues with the SWAPR routine.

The SWAPR routine has two exit points. One is to initiate execution. This occurs when the user is in the swap area, or a library program is in 37300. If these are not ready, then the SWAPR exits to SCH1 again and continues in the scheduler loop. Refer to figure 12 for the swapper clock diagram.

FIGURE 11. SCHEDULER (SCHED)

5 - 12

FIGURE 12. SCHEDULER (SWAPPER)

time share tables

CHAPTER 6 TIME SHARE TABLES

The Time Share system uses a number of tables. An understanding of these tables is helpful when working with the HP 2000A system. Some are core resident and some are disc resident.

6-1 TELETYPE TABLES

The teletype tables consist of sixteen tables, one per user. Each table consists of twenty-six words (twenty-three entries). Table 7 gives a listing of the teletype table with the core address for each entry. During certain operations, some of the data from the respective teletype table is transferred to the base page, giving easier access to the data.

Some entries are fixed by the operating system. These include:

MASK	A "one" in the bit corresponding to the port number and allows
	AND and EOR type instructions to update pointers.

BGIN Associated with each port is a 50 word buffer. BGIN is the address of the first word.

BEND is the address of the next word following the end of the physical buffer.

LADR The multiplexor contains a ladder sub program. LADR is the address of an instruction corresponding to the user port. This allows this instruction to be changed from an ISZ to a JMP from time to time.

Certain entries are of general interest. These include:

ID	Whenever a user successfully logs on his ID code is placed in this location.
NAME	The name of the current program is contained in these three words. When the name is less than six characters, blanks are used to fill out the three words.
TIME	This two word entry contains the time of day at log on. It is used to update the accounting information at log off.

DISC This contains the disc address of the first sector of the swap area. To facilitate swapping, it is not required that the first sector of the program coincide with the track origin.

PROG This entry monitors the amount of required core by pointing to the last word used in the swap area.

Associated with the Scheduler are five of the teletype table entries.

LINK This entry contains the address of the next user on the Queue.

The contents has significance only if the user is on the queue.

PLEV This word is used in conjunction with LINK and contains the priority of the user when he is entered on the queue.

STAT This contains the status of the user.

RSTR Contains the starting address of the program when initially placed

on the queue, or the restart address when suspended.

CLOC This entry has the time of day value when his time slice will run out.

Two entries are used for general timing.

PHON Is used for timing required by the Phones Logic, including log on

and disconnect timing.

ABCN This is a counter used by the multiplexor to handle possible abort

timing.

A number of the entries are used by the multiplexor for the input/output communications and for buffering.

BTIM Is a counter location to count the multiplexor interrupts corresponding to the individual bits.

CHAR Is a location which contains the current character being processed. The character is input or output a bit at a time and the packing or unpacking is done in this location.

BCNT Counts the number of bits within a character for both input and output mode.

Four entries remain. They are associated with the character buffer for input and output.

CCNT Contains the number of characters to be output including the current one. The number is in minus form.

BPNT Points to the location in which the next input character will be placed.

In output it points to the character currently being transmitted.

BSTR Points to the first character of the current line.

BHED Points to the head of the input or output character sequence.

For keyboard input, BSTR=BHED. In tape mode, however, multiple input lines may exist. BSTR points to the start of the current input line. At the end of a line, it points just beyond the line. BHED points to the beginning of the next line requiring service by Basic. When Basic completes the processing of a line, BHED is

advanced to the next line. In this mode of operation the buffer must act as a wrap around buffer. When a character would exceed the physical buffer (i.e., equals BEND) it is placed at the beginning BGIN.

During output the buffer acts as a wrap around buffer. BPND points to the character being transmitted. BSTR points to the location into which the next character will be deposited.

FIGURE 13. INPUT/OUTPUT BUFFERING

Figure 13 shows a diagrammatic representation of the buffer pointers. The Input example shows BSTR=BHED. The input line originates at the start of physical buffer. BPNT points to the location to be used by the next character. After processing by the system or basic BPNT will be reset to BSTR for the next input line.

The Tape input example shows three lines of input data. BHED points to the beginning of the next line remaining to be processed by basic. BPNT indicates the position of the next character input by the multiplexor. In this example, the buffer has wrapped around one or more times.

In the output example, output lines have no significance. BPNT is the position into which the next character will be appended by the system. BSTR points to the current character being output. CCNT maintains a count of the number of characters remaining to be output. In this case, the buffer has wrapped around one or more times.

6-2 DIRECTORY

The Directory is a disc resident table containing information on every program and file. It includes the public library and individual users. The directory contains one disc track for each logical disc (up to 4). When a disc is removed, the directory track is not deleted. Thus, the number of directory tracks represents the maximum number of discs which have been on the system.

Each directory entry contains eight words. Figure 14 shows the format for the directory entry. These entries are sorted by words 0 to 3. Word 0 allows sort by ID codes. Then within each ID code, words 1 to 3 allow sort by program or file name. Bit 15 of words 1 and 2 are ignored for the sort.

The first and last entries in the directory table are pseudo entries. The date insures these entries will not be lost due to the PURge command. The values of words 0 to 3 insure these will be the first and last entries respectively in the Directory. Figure 14 also shows a specific example of a directory entry.

The maximum number of Directory entries is 680 per track. Routines exist which distribute the entries over all directory tracks whenever a track is filled up. This tends to minimize the time required for adding, deleting and searching for an entry.

The equipment table contains entries with information about the directory. DIREC contains seven words for each of the four possible directory tracks. It is located from address 100 to 133. The first location is the length of that directory track. The next four words repeat the first four words of the first entry on the track, and provide sort information about the contents of the track. The sixth word is unused. The last word contains the disc address for that track. These entries are repeated for the other three directory tracks if required. A disc address of 0 indicates the directory track is not set up.

- a BIT 15=1 IF PROTECTED, ● IF UNPROTECTED
- b BIT 15=1 IF FILE, 0 IF PROGRAM

	1st ENTRY				
0	0				
1	0				
2	0				
3	0				
4	0				
5	177777				
6	0				
7	0				

6-3 EQUIPMENT TABLE

Core locations 100 to 166 contain the Equipment Table. Locations 100 to 137 deal with the Directory, AD and ID tables.

Locations 140 to 157 are used to indicate which disc tracks are available for the system. Each logical disc requires four words. Each track is represented by a bit. A one in the bit indicates the track is locked off. A zero indicates the track is available. For example, address 140=000020 indicates that track of the first logical disc is locked off. The same contents at 142 would indicate track 37.

The information concerning the disc addresses are contained in address 160 to 163. Figure 15 shows the format for this data.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
160-163		NUM	BER C	OF SEC	TORS	/TRAC	CK		DISC NO.	· I		SEL	ECT (CODE		

FIGURE 15. LOGICAL DISC INFORMATION

0	ID CODE
1	
2	PASSWORD
3	
4	TIME ALLOWED
	(MINUTES)
5	TIME USED
6	DISC ALLOWED
	(SECTORS)
7	DISC USED

FIGURE 16. ID TABLE ENTRY FORMAT

The Select Code for the Mag Tape interface is contained in address 164. 165 contains the Select Code of the phones board. 166 has the log on time constant associated with the phones option. It is the number of seconds allowed times ten.

6-4 ID TABLE

The AD and ID tables are disc resident. They share the same track.

The ID table is a list of information associated with each assigned ID code. Figure 16 shows the format for each ID table entry. Words 4 to 7 use the full 16 bits for magnitude allowing values from 0 to 65535.

IDLOC is a word in the equipment table giving the disc address of the ID table. IDLEN provides the current length in words.

The ID table starts at the track origin, using as many sectors as necessary.

6-5 AD TABLE

The AD table is a list of all available space on the disc. The format is a two word entry. The first is the disc address of the first sector available. The second is the length of the area in sectors. This table begins at the first available sector following the ID table.

An entry exists for each of the system and swap tracks, but the length is zero. The last entry is a pseudo entry of the form: address 177777, length 0. Since track zero is required by the T.S. system, this insures that every entry is bounded by two AD entries.

Initially each track has an entry equal to the length of the track. As programs are saved and killed, the AD entry for that track expands or contracts keeping the available number of sectors updated.

Whenever a space is exactly used up, the AD entry is deleted. When an interior program is killed, a new AD entry is generated. This eventually leads to a situation where holes exist through out the disc. The sleep command repacks all programs and files on each track so that all available space is at the end of each track. Thus, after sleep, not more than one entry exists per track. Bringing up the system from mag tape sleep is even more efficient in packing. Programs are moved up filling the empty spaces on earlier tracks. Thus the available space occurs on the upper disc tracks.

6-6 FILE TABLE

The 128 word table FUSS resides on the disc. An eight word subtable exists for each of the 16 users. These words contain the disc address of each of the files currently being used by the user. Bit 7 of the word is set for read only access to the file. The first user declaring a file obtains the write capability. All subsequent users get read only access.

TABLE 4 EQUIPMENT TABLE

00100	CTORY TRACK LENGTH OF THIS TRACK
	LENGTH OF THIS TRACK
	,
00101	
00102	First 5 words of this
00103	Directory Track
00104	(Pseudo Entry)
00105	· ·
00106	DISC ADDRESS
SECOND DIF	RECTORY TRACK
00107	LENGTH OF THIS TRACK
)
	First 5 words of this
	Directory Track
	DISC ADDRESS
00115	DISC ADDRESS
THIRD DIRE	ECTORY TRACK
00116	LENGTH OF THIS TRACK
00117	
00120	First 5 words of this
00121	(
00122	Directory Track
00123	
00124	DISC ADDRESS
EOURTH DU	RECTORY TRACK
	LENGTH OF THIS TRACK
	LENGTH OF THIS TRACK
00127	First 5 words of this
	Directory Track
00132	
00133	DISC ADDRESS
00134	DISC ADDRESS OF IDT
	NEGATIVE LENGTH OF ID TABLE
	DISC ADDRESS OF ADT
	NEGATIVE LENGTH OF AD TABLE
0013/	
LOGICAL DI	
00140	0-15 Track Lock/Unlock Bits
00141	16-31 0 = Unlocked
00142	$32-47 \qquad 1 = Locked$
00143	48-63
	00104

TABLE 4 (CONTINUED)

EQUIPMENT TABLE

	LOCICAL	DISC ONE
TID AND (C. 1.)		
TRAX (Con't)	00144	0-15
	00145	
	00146	
	00147	48-63
	LOGICAL	L DISC TWO
	00150	0-15
	00151	16-31
	00152	32–47
	00153	48-63
	LOGICAL	DISC THREE
	00154	0–15
	00155	16-31
	00156	
	00157	48-63
?TBL	00160	Logical Disc Zero \[0-5 = SC \]
	00161	r 1 n 0 1 (7 - n 1 1
	00162	
	00163	Logical Disc Three per Track
MAGSC	00164	SC for Magtape, 0 if None
PHSC	00165	
PHR	00166	Log On Time Constant

TABLE 5 IMPORTANT CORE LOCATIONS

MPCOM	00234:	Bits indicate terminals attempting to communicate with scheduler
MAIN	00242:	Address of TTY table for terminal whose swap track is now in core (\$\phi\$ indicates no swap track in core)
LIB	00243:	Address of a word containing the disc address of the program or overlay currently loaded in core at address 37300
ENDSK INPTF	00247: 00250:	If = 0 then disc transfer not in progress. Bits indicate ports whose input is being deliberately ignored by the system. These bits are set to a 1 when a start bit is sensed and remain set until the system is ready to receive another character from the corresponding terminal.
WORD	00303:	Word count (-words) of last disc transfer
MLINK	00320:	First link of queue – contains address of link word in a TTY table which in
MLINK+1	00321:	turn contains address of next link word — ultimately one link points back to address 320 (could be as many as 18 words in Queue)
AREG	02140:	A-Register at last program suspend
BREG	01241:	B-Register at last program suspend
EREG	01242:	E and OV registers at last prog. suspend
PREG	01243:	P-Register at last program suspend Check for swap track in correct position
DISC	30740:	Return address for last call to disc driver
DINT	30773:	Interrupt return address for disc driver
DFAIL	31062:	Disc retry counter (-10 to \emptyset)
DADDR	31057:	Disc address of last disc transfer
POW	31066:	Power fail interrupt return address
TT35	31342:	Return address for last call to ASR-35 driver
TT2	31361:	Interrupt return address for ASR-35 TTY

TABLE 5 (CONTINUED) IMPORTANT CORE LOCATIONS

MPXNT	32127:	Interrupt return address for TTY Multiplexor
CLKIN	34107:	Clock Interrupt return address
LTEMP	00013:	Temporary Locations Used by system library routines Important if crash occurred during execution of a system command
MOVES MOVED	00040: 00041:	Move routine source ADDR Move routine destination ADDR

TABLE 6 CONTENTS OF LIB (243)

CONTENTS OF LIB.	ROUTINE LOADED AT ADDR. 37300	PAGE IN LISTING	CONTENTS OF LIB.	ROUTINE LOADED AT ADDR. 37300	PAGE IN LISTING	
35662	LIBR, SIZES	232	35706	ЕСНО	298	
35663	FUSS TABLE	233	35707	REPORT	299	
35664	FILES	234	35710	RESET	302	
35665	SAVE	240	35711	CHANGE ID	304	
35666	SUPER SAVE	245	35712	35712 DIRECTORY		
35667	GET	251	35713	STATUS	311	
35670	APPEND	254	35714	SLEEP	317	
35671	HELLO	257	35715	SLEEP OVERLAY	322	
35672	BYE	263	35716	NEW ID	328	
35673	KILL	267	35717	KILL ID	332	
35674	RENUMBER	272	35720	KILL ID OVERLAY	336	
35675	NAME	278	35721	UNLOCK	342	
35676	CATALOG	280	35722	LOCK	346	
35677	LIBRARY	284	35723	LOCK OVERLAY	352	
35700	DELETE	285	35724	PURGE	356	
35701	TIME	287	35725	PURGE OVERLAY	362	
35702	PROTECT	289	35726	ROSTER	366	
35703	UNPROTECT	291	35727	DISC	368	
35704	OPEN	292	35730	MAG TAPE	374	
35705	LENGTH	297	35731	PHONES	375	

NOTES * Note a system command

Not loaded at 37300

TABLE 7. TELETYPE TABLE

					T = -	T-=	- 00	107	-00	100	140	144	140	112	14	15
	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15
втім	33021	33053	33105	33137	33171	33223	33255	33307	33341	33373	33425	33457	33511	33543	33575	33627
CHAR	33022	33054	33106	33140	33172	33224	33256	33310	33342	33374	33426	33460	33512	33544	33576	33630
BCNT	33023	33055	33107	33141	33173	33225	33257	33311	33343	33375	33427	33461	33513	33545	33577	33631
MASK	33024	33056	33110	33142	33174	33226	33260	33312	33344	33376	33430	33462	33514	33546	33600	33632
	(1)	(2)	(4)	(10)	(20)	(40)	(100)	(200)	(400)	(1000)	(2000)	(4000)	(10000)	(20000)	(40000)	(100000)
CCNT	33025	33057	33111	33143	33175	33227	33261	33313	33345	33377	33431	33463	33515	33547	33601	33633
BPNT	33026	33060	33112	33144	33176	33230	33262	33314	33346	33400	33432	33464	33516	33550	33602	33634
BSTR	33027	33061	33113	33145	33177	33231	33263	33315	33347	33401	33433	33466	33520	33552	33604	33636
BHED	33030	33062	33114	33146	33200	33232	33264	33316	33350	33402	33434	33466	33520	33552	33604	33636
BGIN	33031	33063	33115	33147	33201	33233	33265	33317 (74754)	33351 (63272)	33403 (63436)	33435 (57756)	33467 (47752)	33521 (53752)	33553 (63602)	33605 (63746)	33637 (64112)
	(67542)	(67706)	(70052)	(74134)	(74300)	(74444)	(74610)	(74754)	1632721	(63436)	(37730)	(47752)				
BEND	33032 (67706)	33064 (70052)	33116 (70216)	33150 (74300)	33202 (74444)	33234 (74610)	33261 (74754)	33320 (75120)	33352 (63436)	33404 (63602)	33436 (60122)	(50116)	33521 (54116)	33553 (63746)	33605 (64112)	33637 (64256)
LADR	33033 (32337)	33065 (32343)	33117 (32347)	33151 (32353)	33203 (32357)	33235 (32363)	33267 (32367)	33321 (32373)	33353 (32377)	33405 (32403)	33437 (32407)	33471 (32413)	33523 (32417)	33555 (32423)	33607 (32427)	33641 (32433)
DISC	33034	33066	33120	33152	33204	33236	33270	33322	33354	33406	33440	33472	33524	33556	33610	33642
PROG	33035	33067	33121	33153	33205	33237	33271	33323	33355	33407	33441	33473	33525	33557	33611	33643
ID	33036	33070	33122	33154	33206	33240	33272	33324	33356	33410	33442	33474	33526	33560	33612	33644
NAME (3)	33037-41	33071-73	33123-25	33155-57	33207-11	33241-43	33273-75	3325-27	33357-61	33411-13	33443-45	33475-77	33527-31	33561-63	33613-15	33645-46
PHON	33042	33074	33126	33160	33212	33244	33276	33330	33362	33414	33446	33500	33532	33564	33616	33650
TIME (2)	33043-44	33075-76	33127-30	33161-62	33213-14	33245-46	33277-60	33331-32	33363-64	33415-16	33447-50	33501-02	33533-34	33565-66	33617-20	33651-52
ABCN	33045	33077	33131	33163	33215	33247	33301	33333	33365	33417	33451	33503	33535	33567	33621	33653
CLOC	33046	33100	33132	33164	33216	33250	33302	33334	33366	33420	33452	33504	33536	33570	33622	33654
RSTR	33047	33101	33133	33165	33217	33251	33303	33335	33367	33421	33453	33505	33537	33571	33623	33655
STAT	33050	33102	33134	33166	33220	33252	33304	33336	33370	33422	33454	33506	33540	33572	33624	33656
LINK	33051	33103	33135	33167	33221	33253	33305	33337	33371	33423	33455	33507	33541	33573	33625	33657
		1	+	33170	33222	33254	33306	33340	33372	33424	33456	33510	33542	33574	33626	33660

time share loader

CHAPTER 7 TIME SHARE LOADER

7-1 LOADER

The Time Share Loader has the following primary operation modes:

- 1. A paper tape load of a completely new system. This implies no ID codes, no library, etc.
- 2. A load from disc following a disc sleep.
- 3. A load from mag tape following a mag tape sleep.
- 4. An update to the system which retains the ID's, public and user library but updates or replaces the operating system.

 This would include updating from 2000A Version E to Version F, or an update from the 2000A to 2000B.
- 5. The final mode is an attempt to resuscitate following operator error or hardware or software failure.

7-2 PAPER TAPE LOAD

This is the initial load of a Time Share system. We can follow the sequential steps by following the loader block diagram. Refer to figure 17. The loading is initiated by first loading the HP 2000A Time Share Loader Tape HP 20872F. This is loaded using the protected binary loader at address 37700. The Loader starting address is 2000.

The first question is "LIBRARY?" The answer is 'NO cr' This initiates the system generation and sets system generation flag, creates the equipment table, sets number of sectors for disc 0, and locks discs 1,2,&3. The question "SECTORS/TRACK ON DISC-Ø?" is answered '90 cr' for 2770, 2771 discs or '128 cr' for 2773,2774 and 2775 drums or 2766 disc.

The system must now set up the disc tables. It asks "DISC MODIFICATIONS?" This allows adding logical discs 1 to 3 if available. The system gets the disc number, select code, and number of sectors. It then updates the equipment table entries ?TBL. This is terminated by the carriage return instead of another disc command. The system now builds the available Disc table for all sixty-four tracks of each logical disc.

The system then asks "GIVE LOCK, UNLOCK OR LOAD COMMAND." The system uses the LOCk and UNLock commands to update the equipment table TRAX entries. The sequence is terminated by the LOAD command. At this point the T.S. system tape (part 1 of 2) must be in the photoreader.

FIGURE 17. LOADER BLOCK DIAGRAM SHEET 1 OF 2

FIGURE 17. LOADER BLOCK DIAGRAM SHEET 2 OF 2

The 20 system tracks are claimed and the ADT entries for those tracks are set to zero. The T.S. disc loader is written to track \emptyset , sector 1. The question "DISC MONITOR PRESENT?" allows the DOS system to be resident on the DISC. The DOS bootstrap is on track \emptyset , sector 2. The bootstrap loader is written to track \emptyset , sector \emptyset .

The loader now reads the paper tape records and begins to fill core. These records are in regular absolute assembly format. The first byte is the number of words in the record. The second byte is \emptyset . The second word is the core address for the first data entry. Following the last data word in the record is the check sum word. As these records are entered, the system checks for valid address and checksum. The first system tape is read in. The break between the two tapes is completely arbitrary. A group of 10 feed holes between records is evaluated as the end of the first tape. The Part 2 of 2 is then placed in the reader and loading continues.

When the first library program is encountered, and for each succeeding one, the status of bit 15 switch is checked. A "1" results in a HLT 15B allowing patching to take place. Pushing RUN results in writing to the disc the preceding program. More about this switch 15 option later.

When all library programs are completed, a record at address Ø signifies the end of the paper tape read. The library programs require 2 disc tracks.

The system now initializes the user swap area and the teletype tables for all 16 users. Certain information must be generated, i.e., mask bit, buffer beginning and end, logical buffer head and pointer. This information is placed both in the teletype core table and written to the user swap track for the language processor.

The core resident system is written to disc. Core addresses 0 to 12000 are placed in track \emptyset starting at Sector 3. Core locations 14000 to 26500 are written to the second system track. Core locations 26500 to 37300 are written to the third system track.

The system now requests the "DATE" and "TIME." With this information, it sets up the two time of day counters, one in tenths of seconds, the other in hours of the year. The power fail halt is replaced with the jump to power fail subroutine. The system then jumps to the TSB entry in the scheduler.

At TSB, the time base generator is set for 100 msec interrupts and the multiplexor is started. The system console prints "READY". The system enters the Scheduler loop at SCH1. This completes the Paper tape load.

The system is up and running, but is clean. There are no entries in the ID table. The AD table contains an entry for each disc track. The entries for all system tracks show an available length of 0 sectors, thus preventing subsequent allocation. All other tracks show a length equal to the number of sectors per track for the disc or drum. The final pseudo entry completes the ADT. The Directory has just the 2 pseudo entries.

To make a useful system, the system operator must log on new ID's for himself and other users. He may want to add public library. He may desire to use equipment commands to add mag tape and phones.

7-3 AWAKEN FROM DISC

Mose of the Loader steps are bypassed when bringing up a time share system from the Disc. The assumption is that an operating system existed and was satisfactorily slept.

The procedure uses the protected disc loader option at address 37760. This reads the time share bootstrap from track \emptyset , sector \emptyset into Location 2 to 77. This program halts at P=10 so the Loader Protect switch can be set to protected. It also allows the switch option bit 0="1" for a DOS.

The protected loader at 37760 sets up a DMA transfer from disc address track 0, sector 0 to core address 0, with transfer length 100B words. It then puts a jump self in address 77 and jumps to 77. The program stays there until the DMA transfer is completed. The final word is a JMP 35 which is placed in location 77. This allows a jmp to the 2–77 program when the transfer is done. The disc parity is checked. If satisfactory a halt 77 is executed. This allows protecting the binary loader before proceding.

Pushing RUN again initiates the transfer of the Post-Sleep Disc Loader from disc track 0, sector 1 to core address 2436. This loader reads in the entire core resident system from the three system tracks. It then jumps to the Date/Time routine of the loader and continues to the Time Share Scheduler.

A few comments can be made at this time about the limitations of this process. The contents of the disc must be intact. The system can not operate if a disc failure occurs on a system track. A failure on a library track will result in the loss of all program and files resident on that track. If the time share system was not terminated with a sleep command, this awaken from the disc may not be successful.

7-4 AWAKEN FROM MAG TAPE

The process of bring up the system from a mag tape sleep requires that the Time Share Loader paper tape be loaded first. The starting address is 2000. The 'YES' answer to the question" LIBRARY?" indicates that the reload is from mag tape or disc, and is not a new system generation.

The "mag tape select code?" is answered with the select code information if a mag tape is present. The select code followed by an "*" indicates the mag tape controller is an HP 13181A Interface (7970A). The absence of the "*" indicates an HP12559A Interface (3030). An answer of select code Ø indicates this is a system update and will be covered under that section. If a satisfactory select code is given, the mag tape driver is configured. The EQT table is read from the first tape record to core starting at address 100. The directory addresses are then set to zero in the equipment table to allow reassigning the system tracks.

The "DISC Modifications?" question allows changes to be made. If no changes are required, the hardware system will be the same as when slept. The ADT table is built up as in the paper tape load example.

The "LOCK, UNLOCK, OR LOAD?" allows changes to be made otherwise the tracks will be the same as at last sleep.

The necessary tracks for the system are allocated. The "Disc Monitor Present?" proceeds as before, and the configured bootstrap is written to the disc.

The IDT, ADT track is read from mag tape and a track is claimed. The proper number of directory tracks are claimed.

The track length table corresponding to the track images for all library is read. One by one the tracks are read in from tape and written to the disc. The old and new address are put in a table so the directory table can be updated. The ADT is updated as the records are written.

The Directory track(s) are read in, updated and written to the disc.

The System Segment table is read from mag tape. This allows the core resident system to be read from mag tape to the correct core location. When the last segment is finished, the Disc resident Library is read from mag tape and written to the disc. This is terminated at the EOT mark.

The user teletype tables and swap area are intitalized and loading continues as in the paper tape load to TSB and the scheduler loop.

7-5 SYSTEM UPDATE

The system update procedure provides a great deal of usefulness and power. It allows retaining the user and public library. In order to do this, it requires the Directory Tracks, IDT/ADT tracks, and Equipment table. The procedure replaces the system with a new system loaded from paper tape.

The normal entry is used. Load the Loader tape and start at address 2000. The "LIBRARY?" is answered 'YES cr' and "MAG TAPE SELECT CODE?" by cr. The lack of a valid select code tells the system it is a paper tape reload and not a mag tape restart. Thus, we will use the Equipment table on the disc. Read the Equipment table from disc track \emptyset , sector 4 to core address 100. Proceed now to the non-sleep entry point.

Read the ADT for Disc to core. Recover 2 of 3 system tracks for core system (track Ø is necessary and cannot be recovered), 2 for library, and 16 user tracks.

Configure and write Bootstrap loader and TS loader to disc. Read core system from paper. Read from paper tape and write to disc all library programs. Initiate swap tracks and teletype tables, dump core system to disc. Get Date/Time. Jump to TSB and to scheduler loop.

This procedure will not work if track 0, or a directory track, or the IDT/ADT track is defective. Disc problems on any other system track will be okay if an unused track exists on the Disc. If disc problems occur on a user or public library track the lock command will cause a loss in the contents of the track.

7-6 CONVERSION VS UPDATE

The preceding discussion involves updating a system. An update utilizes the existing equipment table, Directory Tracks, and IDT/ADT. It provides a vehicle to replace the core resident program and library programs while retaining the user and public library programs and files.

It may be necessary to convert as well as update. Conversion was required in converting from Version I of the 2000A to Version II. This involved substantial changes in ADT due to the disc/drum capability of more sectors per track and disc organization. It is also necessary to convert the 2000A to 2000B. This involves changes in the Directory and equipment table.

In situations where both update and conversion is required it is necessary first to sleep the system. The conversion program is loaded and executed. This makes all necessary changes in the tables. Then the update procedure is followed with the load of the new system from paper tape.

7-7 LOADER SWITCH 15 OPTION

The use of switch 15 in the "1" position during load allows changes to be made to the system or library programs prior to writing to the disc.

The first halt 15 occurs when the core system is fully loaded. The correction can be made by toggling through the switch register, or by using the protected binary loader. In either case, the P register contents must be noted prior to the change. The P register must be reset before pushing RUN again. It is important not to push PRESET during these changes. The halt 15 occurs in the SYSLB routine in the loader.

Corrections to Library programs may also involve changes to the Library Sizes program. Library Sizes is the first Library segment loaded and stored. It contains the negative length of all library programs. A change to a library program which involves a length change must also be reflected in this library Size table. Library Sizes and all other Library programs are loaded into Location 37300.

The procedure for a correction would be first to determine the coding change, and then the new length. The first halt is the core resident system. Push RUN. The second halt is the Library Size table. At this time, the length correction can be made. It is helpful to DISPLAY MEMORY at 37300 and a few additional locations to insure the correct program is in core.

After making the length correction and restoring the P register, push RUN. Each halt corresponds to another library program loaded in core. The list in Library Sizes helps keep track of the sequence. It is helpful to DISPLAY MEMORY prior to the actual program requiring correction to insure you haven't passed it by miss counting. After all corrections are made, switch 15 can be lowered to facilitate the rest of the load process.

The contents of the A and B register do not have to be reloaded. It is important that PRESET not be pushed at any time.

7-8 NON-SLEEP RESTART

The non-sleep entry point uses the Equipment table in core. It also requires the contents of the Directory tracks and the IDT/ADT track to be complete and correct. The primary difference between the system update and the non-sleep restart is that in the update the Equipment table is read from the disc whereas in the non-sleep restart the Equipment table must be in core.

Note that this non-sleep restart requires loading the loader paper tape. It is not an attempt to restart the core resident program.

7-9 RESUSCITATION

Resuscitation is the art (not science) of recovering from system difficulties. These difficulties may be hardware failure, or operator error. It is difficult to anticipate the specific action required in resuscitation because of the large number of possible conditions and the subtle nature of the detective work. There are certain types of difficulties that can be covered generally. It is helpful to use the non-sleep entry in the loader. The following halts are possible failures requiring resuscitation. The non-sleep entry point for the Loader is at Location 3000.

7-10 DISC HALT

We shall consider some of the possible crash conditions. Halt 4 is a halt associated with a failure in the disc driver. Refer DISER in the interrupt section. This failure indicates either parity error or abort flag from the Disc Controller. Before halt 4 the read or write is attempted 10 times. The B register contains the core address. Bit 15 of the B register indicates read if "zero", write if "one". The A register contains the disc address (bits 14–15=logical disc, bits 8–13=track, bits 0–6=sector, bit 7 is unused). WORD contains the minus number of words to be transferred. The options available include locking the track if it is a user or public library. This will result in a loss of all contents of that track.

A failure of a system track is usually fatal. It may be worth while to try a non-sleep recovery. If this works immediately attempt a sleep. Then use a system update to lock the offending track. In any case, a mag tape rewake is the final solution, but this results in a loss of all activity since the time of the mag tape sleep.

Since track zero is always required, there is no way to get the system up until this track is repaired. It should be obvious that the contents of all remaining tracks should not be disturbed during repair procedures in order to salvage the contents of the system. It is necessary to recover the equipment table in order to salvage the system.

7-11 PARITY HALT

Another general class of failure is a parity halt. This would be caused by equipment malfunction. The halt 5 occurs by execution of the trap cell. A careful analysis of the failure is necessary. A parity error in the core resident system can be corrected by referring to the listings. An error, however, in tables or users swap areas may cause a fatal system crash.

It is important to have the switch on the parity board up in halt mode. This results in an immediate halt. The Parity Error Lamp will be illuminated. This is the indication that a parity error has occurred. In the down position, the board works in the interrupt mode. Phase 5, however, prevents the interrupt and parity errors due to DMA would be ignored.

In the case of a DMA parity error with the switch up, the P register will be the location at the time of the DMA parity error, but of course this will not be related to the actual DMA address causing the error because the DMA transfer continues to completion even though the CPU had halted due to the parity error. With the switch up the Halt 5 will not be executed but the Parity Error Light will be illuminated.

7-12 WRAP AROUND

It is possible, due to hardware difficulties, for the computer to wrap around memory. It may halt at address 2 on the base page. This is probably the most difficult single malfunction to diagnose. It is not apparent how much damage may have been done to the core system prior to the actual halt. It is desirable to shorten any possible loop before starting the resuscitation. Do this by removing the multiplexor cables and time base generator before starting the 3000 non–sleep restart. If successful immediately sleep. Then ascertain the hardware condition by running equipment diagnostics. Restart the system with a system update to insure the core resident system is correct.

7-13 SOFTWARE LOOP

In some cases a software loop may be produced. This might be a queue loop in the scheduler, or a skip if flag set wait for the mage tape, or some such loop. The program can be halted and single cycled to determine the nature of the loop. The Preset button must not be pushed. It should be pointed out that the SINGLE CYCLE will not allow an Interrupt phase 4 to take place. By holding the HALT button and pushing RUN, it accomplished the single cycle function but allows interrupts.

In diagnosing such a loop, it may be desirable to shorten the loop. This can sometimes be done by removing the multiplexor cables or disabling the Data Set phone answering, removing the Time Base Generator board, etc.

Certain data is extremely helpful in troubleshooting a crashed system. This includes the equipment table, base page temporaries, teletype tables, and other selected locations such as: MPCOM, MAIN, LIB, ENDSK, WORD, etc.

In general, it is much better to call for immediate help from the Service Technician or System Analyst before playing with a crashed system. Careless technique may obliterate any troubleshooting symptoms, and make a recoverable halt a non-recoverable crash.

7-14 OPERATING HALTS

The halts which can occur in the normal operating system follow (for 2000A Version F).

ADDR	HLT	PURPOSE
00002	102002	System protection against wrap around
00004	103004	Power Fail during Loading
00005	102005	Parity Error
31055	103004	Disc Error
31140	102000	Power Fail
10273	10277	Completed sleep (in loader-Mag
		Tape dump)

7-15 LOADER HALTS

There are various halts in the loader. During initial system load a halt during loading is not a problem. Since there is no user or public library, the system can be checked with diagnostics, repaired, and then reloaded.

When the system contains user and public library then halts are much more important. The following list of halts help locate the location in the listing. These halts are listed sequentially as they appear in the listing.

HLT, CODE	P REG	LISTING	PURPOSE
103004	00005	P2/#1	Power Fail
102077	05102	P17/#2	End of First System Tape
102066	05145	P20/#2	Checksum Error
102001	05433	P25/#2	Mag Tape Error (timing or parity)
102015	05443	P26/#3	Halt before writing to disc-allows
			changes
102055	07144	P41/#4	Address Outside of Expected Area
102022	04001	P52/#5	Halt to Insure Loader Tape is
			Loaded Ref P=10263
102077	10274	P52/#5	Sleep tape done-can repeat
102011	10317	P52/#5	Tape Bad or too Short
102033	10772	P63/#6	3030 Mag Tape write ring
102044	11005	P63/#6	3030 Mag Tape to Auto
102033	11413	P69/#6	7970 Mag Tape Write Ring
102044	11442	P69/#6	7970 Mag Tape to Auto
102002	02462	P80/#7	Disc Error during transfer
103004	00005	P81/#7	Power Fail
102000	00044	P81/#7	Disc Error during Bootstrap
102001	00044	P81/#7	Disc Error Following the Bootstrap
			check
102077	00010	P81/#7	Completion Loading of Bootstrap

7-16 KEY CORE LOCATIONS

Certain core locations are helpful for non-sleep restart, troubleshooting and resuscitation. Refer tables 4 to 7. The equipment table contains information in core which is not updated onto track Øsector 4. The most obvious changes are in ADLEN and ADLOC, and directory length DIREC. Less frequent changes occur to the IDLEN and IDLOC, TRAX and changes in the directory reference locations. When a system is not slept, there is no record of the up-to-date equipment table except in core itself.

Certain core locations are of tremendous importance; such as, MPCOM, MAIN, LIB, ENDSK. Some of the locations shown are entry points for subroutines.

The LIB location 243 indicates which library program is in core. In the Teletype tables, certain locations are fixed including MASK, BGIN, BEND, and LADR. It should be obvious that if the port to the multiplexor is not in use, the corresponding teletype entry will not have significance. And further, if the ID entry is zero, then no user is currently logged on that port and the corresponding table is of no importance.

time share example

CHAPTER 8 TIME SHARE EXAMPLE

8-1 INTRODUCTION

The Time Share Listings may be quite formidable the first time a person starts to work with them. An example through the multiplexor and scheduler provides a mechanism to follow the activities of the system. It also provides an opportunity to tie together the functional flow charts.

The examples are complete. It is highly recommended that the reader try to forge ahead of the example by using the listings. Try to determine the course the system will take. Use the example to verify your conclusions.

The purpose of following the system action through this example is threefold. First, it acquaints the reader with many clever programming techniques. These include the use of pointers for access to tables, and the methods for moving the pointer through the table.

A second purpose is to familiarize the reader with some of the commonly used labels. It is helpful to see how the teletype tables are used, and how the base page helps for extensive use of certain teletype table entries. The third purpose if to give a feel for the activity in the multiplexor and scheduler. The skill developed in the example may be helpful in analysing a crashed system.

These examples are based on the current 2000A listings – Version F. It is possible to use previous listings C, D, or E. There will be slight differences. The page references may be off by one or two, and specific core locations may be off in come cases. Specifically, a shift in 2 memory addresses for certain program segments occurred in Version F. With these differences in mind, the example will still be useful.

8-2 MULTIPLEXOR EXAMPLE

The example we will use is a log on command. The user has a teletype hardwired to port 5. He turns the TTY to line and types: HELLO-H $\emptyset\emptyset$, SALES cr. To simplify the example, we will assume no other user activity. This will allow one new set up, one loader entry, one character to process, etc. We can focus in on all the relevant servicing for this one user without getting mired down with other users.

The first letter typed is the "H" in Hello. This is an eleven bit character requiring 100 milliseconds. Keep in mind this is a very long time period for the computer. For a normal typist, the time interval between the "H" and the "E" will also be quite long. Figure 18 shows a representation of the serial data from the teleprinter.

FIGURE 18. TELETYPE SERIAL DATA

The data requires 11 bits. The first is a start bit in position zero. The next eight are the ASCII representation. For letters they range in octal value from 101 for A to 132 for Z. Bit eight may be used for parity. Depending on the equipment used, it may be even or odd parity, or always zero or always set. In the HP 2749A Teleprinter this bit generates even parity.

In the 2000A, this bit is masked off. So it has no significance. Then two stop bits are sent, completing the character.

It may be hard at first to get a concept of relative time for the servicing of these TTY bits. There are 88 multiplexor interrupts during the time required for the letter "H". Of these interrupts, only 10 require specific servicing except to increment the bit counter each interrupt.

FIGURE 19. MULTIPLEXOR INTERRUPTS

The Interrupt designated A is the first "interrupt" occurring since the TTY data transition from the stop to start mode. We must start the new character processing. This requires about 160 microseconds.

The routine interrupts without specific tasks to perform require about 90 microseconds. Interrupt B is the next interrupt doing special servicing for our port. This interrupt represents the middle of bit. At this time, the output signal is sent to the teleprinter. Note that this produces a phase shift between the incoming and outgoing

data of about 4.5 milliseconds. Interrupt B and the other middle of bit interrupts require an additional 80 microseconds to process each new bit.

The interrupt occurring in the middle of bit number 9 is the end of character bit. This corresponds to interrupt number 76 as numbered in Figure 19. It is not necessary to process bit 10 because it must also be a stop bit. This end of character processing requires about 245 microseconds. There will be no further processing until the "A" interrupt for the Letter E at some subsequent time.

Now each 0.1 second the time base generator interrupts. This will occur once during the long elapsed time required for the letter H to come in. The scheduler requires about 150 microseconds for a routine service interrupt. Note, the system will normally be servicing the current user at the top of the queue, or it will be in the scheduler loop if there is no user on the queue.

Let's review the action that will be required by referring to the multiplexor flow chart Figure 6.

The initial multiplexor interrupt will occur at time A. The MPXNT entry point stores the registers, and inputs the new multiplexor data. It is determined that a new character is present. NEWIN routine determines the port number. SETIN puts necessary TTY table entries on the base page. It checks for abort, syntax or command entry. It prepares an ISZ instruction to count the multiplexor bits to determine the time for servicing the bits. It places a -4 in the BTIM. This is the number of interrupts required to get to the middle of the bit. A-10 is placed in the bit counter to determine when the full character is finished. We then continue with the ladder. The initial processing is finished. The program continues at the ladder.

During the fourth interrupt, we ISZ the BTIM and it rolls over. We then must service the character. We place the -8 in the bit timer. We put certain TTY tables entries on the base page. We add the current bit to the MPOUT data word. We add the current bit to the partial character being built up. We rotate the character and increment the bit counter. This completes the bit processing.

During the 76th interrupt, we service the 9th bit. This causes a roll over in the bit counter and we must service the end of character. We place TTY table entries on the base page, position and mask the character, replace the JMP *+4 to the ladder, and reset the input flag to allow more input. We now test it for certain special characters, and process it if necessary. If it is an acceptable character, we add it to the buffer, taking care of packing and buffer wrap around. We then return to the ladder.

The final character in the line is usually a carriage return. When this is typed, we set the input flag to prevent further input until the line is processed. We set the MPCOM flag which tells the scheduler there is a user requiring service.

With this review of the block diagram, it should be possible to follow the step by step example through the multiplexor. Refer to figure 20.

8-3 SCHEDULER EXAMPLE

We will continue the same example through the Scheduler. The HELLO-HOGO, SALES or command is in the users buffer. His TTY entries point to the actual location of the packed characters. His status is idle, no priority has been established.

Assume that no activity is currently going on, but that we will enter through the Time Base Generator entry point and continue through the Scheduler. This assumption gives us a clean entry point, but also let us queue the new user and go directly to the swapper to start the disc transfer. Refer to the Scheduler Loop simplified block figure 10. We enter CLKIN and update the clock and go to the main part of the shceduler SCHI. There are no phones to answer since we are hard wired. Multiplexor processing is required, however, since the MPCOM bit is set. We go to SCH5 for this processing.

The main work takes place in SCH5, SCH6, SCOM, SCHAR, and SCH11. The activities include locating the port numbers and clearing the MPCOM bit, checking for syntax or commands, and other special conditions like abort.

In this case, it is a command. The first three valid characters are then checked against the command table to determine which command is requested. The priority of 2 is assigned.

In SCH3 the user is placed on the queue. His entry is established according to his priority. SWAPR is called to effect the queue rotation. The user at the top of the queue is brought in. This is actually accomplished by using the Disc driver with DMA to bring in the HELLO library program to 37300.

Once the swap is initiated, the scheduler remains in the loop until ENDSK indicates the transfer is completed. This completes the example. Refer to figure 21 for the scheduler example.

Certain processing follows the example before the action requested by the Hello command is completed and the terminal is ready to use.

The HELLO program checks for a current ID. If one exists, then it must be logged off, with appropriate accounting update. It checks the new ID and ID code against the IDT to insure that both are valid, and the allowable time is not expended. It initiates a log on message to the system console. It updates the ID information in the TTY table. It then uses DLOOK to search for the \$HELLO program in the public library. If one exists, it is read in to the users swap area. Status is put to RUN with a jump to the Basic Interpreter executive. When the program is completed, the user is dequeued. The terminal is now ready for business.

PAGE 0185 #16 MULTIFLEXUR INTERRUPT DRIVER. ENTRY POINT \$80 Times Per Second

```
MEXAT NUP - P REG
                                                  (RETURN ADDRESS)
2000
       32127 000000
        32138 870052
                               STA PPXA
                                              SAVE REGISTERS A.
  0003
                               STB MPXB
  DUN4
        32131 074053
                                               в,
                                              AND
        32132 005500
  CHNO
                               ERB
        32133 074054
                               STB MPXE
                                               Ε.
  0006
                                              GET NEW INPUT. A=177737
        32134 102510
                              LIA MPX
  0607
        32135 070051
                                              SAVE IN INBIT.
                               STA INBIT
  Dvivi8
                              LOB INPTE
        32136 064250
                                              GET OLD INPTF IN B. A=000000
  0009
                                              COMPLEMENT NEW BITS. A=000040
        32137 093000
                              CMA
  0010
                                              SET INPTF=1 FOR EACH NEW & BIT. 000040
        32140 036001
                               10R 1
  Disti
                               STA INPTF
        32141 070250
  0412
                                              GET INBIT AGAIN. GET 0'S FOR EAC
        32142 050051
                              LDA INBIT
  Bu13
        32143 010246
                               AND ABTST
                                              NEW INPUT OR OLD ABORT TRY. 177777
  0 w 1 4
  Ø 1:15
        32144 030001
                               10R 1
                                              INHIBIT IF INPTF=1.
                                                                             177737
                                              SET 1 FOR EACH BIT FOR WHICH
        32145 003003
                              CMA, SZA, RSS
  0616
                              JMP LADDK
        32146 020334
                                              WE WILL CALL SETIN.
  C 0 1 7
                             STA 1
       32147 074001
                                              B=000040
  Ø 6 1 8
  0020 NOW CALL SETIN FOR EACH NEW INPUT
       32150 004075 NEWIN, CLE, SLB, ERB
                                              TTYU0 Bit \emptyset = \emptyset
  0022
                                                                     B = 000020
                             JSB SETIN
        32151 010210
  0u23
        32152 004075
                             CLE, SLB, ERB
                                              TTY01 Bit \emptyset = \emptyset
                                                                     B = 000010
  3024
                             JSB SETIN
        32153 010210
  0025
        32154 004075
                                              TTY02 Bit Ø=Ø
                              CLE, SLB, ERB
                                                                     B=000004
  W026
                             JSB SETIN
        32155 016210
  0027
                             CLE, SLB, ERB
        32156 004075
                                              TTY03 Bit \emptyset = \emptyset
  8500
                                                                     B = 000002
        32157 010210
                             ( JSB SETIN
  0929
                                              TTYN4 Bit Ø=Ø
                             CLE, SLB, ERB
  0030
        32160 004075
                                                                     B = 000001
                             JSB SETIN
CLE, SLB, ERB
        32161 010210
  0631
                                              TTY05 Bit Ø=1
  0032
        32162 004075
        32163 010210
                               JSB SETIN -
                                                             → P 186/#16
  0633
        32164 004075
                              CLE, SLB, ERB
                                              TTYUR
  DN34
        32165 010210
  0035
                              JSB SETIN
        32166 004075
                              CLE, SLB, ERB
                                              TTYUT
  0036
        32167 010210
  Ø037
                               JSB SETIN
        32178 994075
                              CLE, SLP, ERB
  0 w 3 8
                                              TTYGA
  0039
        32171 010210
                               JSB SETIN
  B048
        32172 004075
                               CLE, SLB, ERB
                                              TTYUQ
        32173 010210
                               JSB SETIN
  0441
  0642
        32174 004475
                              CLE, SLB, ERB
                                              TTYIG
  0043
        32175 016210
                               JSB SETIN
        32176 004075
  8444
                              CLE, SLB, ERB
                                              TTY11
  8445
        32177 010210
                               JSB SETIN
                              CLE, SLB, ERB
  0046
        32200 004075
                                              TTY12
        32201 010210
  0647
                               JSB SETIN
  0048
        32202 904075
                               CLE, SLB, ERB
                                              TTY13
  0049
        32203 010210
                               JSB SETIN
  0050 32204 004075
                              CLE, SLB, ERB
                                              TTY14
  0 W 5 1
        32245 010210
                              JSB SETIN
        32206 0040/5
  0452
                               CLE, SLB, ERB
                                              TTY15
  0053 32207 016210
                               JSB SETIN
  B 454 *
  DW55* CURTRUL SHOULD NEVER RETURN TO THIS POINT.
  0056 *
```

```
0658* SETIN SEIS UP CONTROL FOR A NEW INPUT CHARACTER. IT FIRST DETER-
    04594 MINES WHETHER INPUT IS LEGAL FROM THE SPECIFIED TELETYPE.
                                              RETURN ADDRESS (32164)
                        SETIN NOP - P REG
- Ou61
          32218 000000
                                              SAVE BIT INDICATORS. B=000000
          32211 074055
                               STB MPXTE
   0662
                                              B=NEwIN+2*(TTY#+1) B=32164
                               LDB SETIN
          32212 060210
   0063
                                                                     B = 000012
                               ADB FNEWN
                                              B=2*TTY#
          32213 044410
   0064
                                                                     B = 000024
          32214 005000
                                              B=4+TTY#
                               BLS
   มิพธ5
                                                                     B = 032363
                               ADB DLADR
                                              B=DLADR+4+TTY#+3
          32215 044331
   0465
                                                                    A=33223
          32216 1600K1
                               LDA 1.I
                                              A=TTY TABLE ADDRESS
   Bu 67
                                                                    A = 33252
                               ADA .+7STAT
                                              A=STATUS ADDRESS
   00.68
          32217 040520
                               STA MPXT1
                                              SAVE STATUS ADDRESS.
          32220 070956
   0069
                               ADA .+?ABCN-?STAT A=ABORT COUNTER ADDRESS A=33247
          32221 040466
   0070
          32222 070062
                                              SAVE ABORT COUNTER ADDRESS.
                               STA EPAT
   0071
                                                                          Å=33226
                               ADA .+?MASK-?ABCN A=MASK ADDRESS.
          32223 046450
   0072
                                              SAVE MASK ADDRESS.
                               STA MASK
          32224 070061
   De: 73
                                                                        Initially
                               LDA MPXT1, I
                                              A=STATUS.
          32225 160056
   B 10 7 4
          32226 002021
                               SSA, RSS
                                              IGNORE IF STATUS IS ABORTING.
   Ø v 75
          32227 050472
                              - CPA XABUR
   Ø476
                               JMP SET1
          32230 020331
   0077
                              ASE
          32231 002002
                                              IF OTHER THAN IDLE
   0 W 7 8
          32232 056475
                               CPA ASYNT
                                                SYNTAX
   Bu79
          32233 026237
                               JMP *+4
   0000
                                              OR INPUT, WE ABORTHIM.
                               CPA XINPT
   B 10 8 1
          32234 050473
         32235 002001
                               RSS
   0082
                               JMP SET2+1
   0083 32236 026272
   8085* SET UP LADDER CODE AND INITIALIZE VARIABLES.
                                              A=>IELETYPE ENTRY A=33223
   BART
          32237 160001
                              LDA 1.I
                                                                  A=001223
          32246 010325
                               AND 81777
   0088
                                              CREATE ISZ INSTRUCTION, A=037223
B=DLAUR+4+TTY# B=32360
          32241 040403
                               ADA ISZIP
   6989
          32242 844466
                                              B=DLAUR+4+TTY#
   0090
                               ADB .-3
          32243 150001
                              CPA 1, I
                                              IF ISZ ALREADY THERE THIS IS
   8491
                             JHP SET2
STA CPTR
   0092
          32244 020271
                                              ABORTING.
          32245 070057
   Bug3
                                              SAVE ISZ.
          32246 060246
                                              IS ARTST SET TO INDICATE AN A=177777
                               LDA ABTST
   8694
                                                               A=000040
   8045
         32247 130061
                               IOR MASK, I
                                              ABORT ATTEMPT?
         32250 050246
   B096
                               CPA ABTST
   D097
         32251 026254
                               JMP *+3
                                              NO--START SETTING UP INPUT.
   8608
                               STA ABTST
         32252 070246
                                              YES -- FORGET ABORT ATTEMPT AND
                                              GO REINSTATE INPTF. A=037223
                               JMP SET3
   0099
          32253 026307
                             LDA CPTR
   0100
          32254 060057
                                              GET IST AGAIN.
   0101
          32255 170001
                               STA 1,1
                                              SET UP ISZ.
                                              B=>TTY TABLE ADDRESS B=32363
          32256 044474
   0162
                               ADB .+3
                                                                    B = 33223
          32257 164001
                               LDB 1, I
                                              B=>TTY TABLE
   0163
          32200 060465
   0134
                               LDA .-4
                                              SET TIME COUNTER
                                                       4 interrupts to middle of bit
   0105
          32261 170001
                               STA 1,1
                                               TO -4.
   0166
          32262 000004
                                              B=>CHARACTER.
                               INB
   6107
          32263 802400
                               CLA
                                              INITIALIZE CHARACTER
   0198
          32264 178881
                               STA 1,1
                                               TO ZERO.
          32255 000004
   0109
                               INB
                                              B=>BIT COUNTER.
                                              SET RIT COUNTER 10 bits to complete
   0119
         32266 064457
                               LDA .-18
                                                                character
   C111
          32267 170001
                               STA 1,I
                                              TO -19.
                               JMP SET1
   0112 32270 026331
                                              GO CHECK FOR ANY MORE TTYS.
   B114* ABORT COME
                                       → P 187/#16
```

```
32271 044474 SET2 ADB .+3
   0115
                              LDA ABTST
                                             TEST FOR ATTEMPTED APORT.
         32272 060246
  6117
         32273 116861
                              AND MASK, I
  0118
         32274 002002
  C119
                              SZA
                              JMP SET4
                                             NO--GU START ATTEMPTED ABORT.
         32275 020314
  0120
                              LDA INBII
        32276 060051
                                             IF ABORT ATTEMPTED, TEST FOR
  0121
        32277 110061
                                             INPUT BIT STILL 0.
                              AND MASK. I
  8122
        32300 002003
                              SZA, RSS
  0123
         32301 026320
                                             1T IS--GO BUMP COUNTER.
                              JMP SET5
   6124
        32302 030246
                              IOR ABTST
                                             INPUT=1. DISCONTINUE ABORT.
  6125
         32303 070246
                              STA ABTST
  0126
         32304 160002
                              LDA BPNT, I
                                             IF COUNTER REACHED 0, SET UP
  W127
         32305 002003
                              SZA, RSS
                                              ABORT CONDITION.
  0128
         32326 020324
                              JMP SET6
  9129
         32307 160061
                             LDA MASK, I
                                             RESET INPTF TO @ TO ALLOW MOKE
  0136
                       SET3
         32316 003000
                              CMA
                                                INPUT.
  0131
         32311 010250
                              AND INFTF
  9132
   0133
         32312 070250
                              STA INPTF
         32313 020331
                                             GO DO NEXT ENTRY.
                              JMP SET1
   0134
   0135
         32314 Ø24246 SET4
                             XOK ABTST
                                             SET ABTST=0 TO INDICATE ABORT
         32315 070246
                              STA ABTST
   0136
                                             ATTEMPT.
                                             SET ABON TO -100 TO COUNT
  0137
         32316 000421
                              LDA MIRO
                              JMP *+3
         32317 020322
                                               LENGTH OF BREAK.
  0138
        32320 160062 SET5
                                             IF COUNTER NOT ALREADY ZERO,
                             LDA BPNT, I
   0139
        32321 002024
                                                BUMP IT BY 1.
   0140
                              SSA, INA
  0141
        32322 170062
                              STA BPNT, I
         32323 020307
                              JMP SET3
  0142
  0143
         32324 203400
                       SET6
                              CCA
                                             SET ABORT REQUEST MODE.
         32325 170956
  0144
                              STA MPX11,I
         32326 060234
                              LDA MPCOM
  0145
                                             SET CUM.BIT TO
  0146
        32327 136661
                              IOR MASK. I
                                             TELL SCHEDULER.
        32330 070234
                              STA MPCOM
  0147
         32331 064055
- 0149
                             LDB MPXT0
                       SET1
                                             GET BIT INDICATORS AGAIN. B=000000
         32332 006002
   0150
                              SZB
                                             IF ALL 0, GO DIRECTLY TO LADDR.
  0151
        32333 126210
                              JMP SETIN, 1
                                             OTHERWISE, RETURN.
   $1634 THE INPUT-UUTPUT KADDR CONSISTS OF A SEQUENCE OF FOUR INSTRUCTIONS
   $154* FUR EACH TELETYPE/. THESE INSTRUCTIONS ARE AS FOLLOWS:
  Ø155*
             1. ISZ TIME COUNTER
                                    0R
                                         JMP *+4
  0156*
             2.JMP #+3
             3. JŠB MPXIC
  £157*
  0158*
             4. DEF TIME COUNTER
  0160* THE FULLUWING INSTRUCTION EXISTS ONLY TO GET AN ERROR MESSAGE
  0161* FROM THE ASSEMBLER IF A PAGE BOUNDARY OVERFLOW CAN BE PRO-
  8162* BUCED AT RUN TIVE.
  0164
         32334 037627
                              ISZ TTY15
  0165
         32334
                              ORG #=1
        32334 926340
                        LATUR.
  C168
                             JMP *+4
                              JMP *+3
  0169
         32335 420340
  0170
         32336 010444
                              JSB MPXIC
```

```
PAGE 0188 #16 MULTIPLEXOR INTERRUPT DRIVER_
                            DEF TTYER
      32337 033921
3171
0172*
                            JMP #+4
      32348 020344
0173
                            JMP *+3
      32341 220344
0174
                            JSB PPXIC
      32342 010444
0175
                            DEF TTYØ1
      32343 833853
2175
8177 *
      32344 020350
                            JMP ++4
0178
      32345 020350
                            JMP ++3
0179
                            JSB FPXIO
0180
      32346 016444
                            DEF TTY02
      32347 033165
0181
0182*
      32352 026354
                            JMP *+4
0183
                            JMP ++3
      32351 020354
0184
                            JSB MPX10
      32352 010444
0185
                            DEF TTY03
      32353 633137
0186
0187=
                            JMP *+4
0188
      32354 020360
      32355 020360
                            JMP *+3
0189
      32356 010444
                            JSB MPXIO
0190
      32357 033171
                            DEF TTY64
@191
0192*
                                                      1st Interrupt -4 \rightarrow -3
                                               BTIM)
                                       (ISZ
                            JMP ++4
0193
      32352 025364
                                                                      -3-→-2
                                                      2nd Interrupt
      32361 020364
                            JMP *+3
0194
                                                                     -2->-1
                                           4th
                                                      3rd Interrupt
                            JSB MPXIO
0195
      32362 016444
                                           ınterrupt 4th Interrupt -1→ 0
                            DEF TTY05
      32353 033223
9196
0197*
      32364 020370
                            JMP *+4
0198
                                                   P 189/#16
                            JMP *+3
0199
      32365 020370
                            JSB FPXIC
      32366 010444
0200
                            DEF TTY06
      32367 033255
0201
0202*
                                              GO TO MPXIO WHENEVER
      32370 020374
                            JMP *+4
0203
                                              A BTIM ROLL OVER
                            JMP ++3
0204
      32371 020374
                                              INDICATES PROCESSING
                            JSB MPXIO
      32372 016444
0205
                                              NECESSARY
      32373 033307
                            DEF TTY07
0286
0207 ×
6020
                            JMP *+4
      32374 026400
0209
      323/5 020400
                            JMP *+3
                            JSB FPXIO
      32376 016444
0210
                            DEF TTY08
      32377 033341
9211
0212*
                            JMP *+4
0213
      32430 020404
                            JMP *+3
      32461 020464
0214
0213
      32402 010444
                            JSB MPXIO
      32403 033373
                            DEF TTY09
0216
0217*
                           JMP *+4
      32404 026410
0216
                            JMP *+3
0219
      32405 026410
                            JSB MPXIO
0220
      32406 010444
0221
      32407 033425
                            DEF TTY10
0 222 *
0223
                            JMP *+4
      32410 020414
                            JMP ++3
0224
      32411 025414
0225
      32412 016444
                            JSB MPXIO
                            DEF TTY11
0226
      32413 033457
0227 *
```

```
PAGE 0199 #15 MULTIPLEXOR INTERRUPT DRIVER.
  C228 32414 020420
                            - 1MP ++4
                            'JMP ++3
        32415 020420
  0229
                             JSB MPXIC
        32416 010444
  0234
                             DEF TTY12
        32417 033511
  0231
  0232*
        32420 020424
                           ►JMP ++4
  0233
        32421 920424
                            /JMP *+3
  C234
                             JSB PPX10
  0235
        32422 010444
                             DEF TTY13
        32423 033543
  0236
  0237 *
        32424 020430
                            ► JMP *+4
  0238
                             JMP *+3
        32425 026430
  0239
                             JSB PPXIO
        32426 @15444
  0240
        32427 033575
                             DEF TTY14
  0241
  0242*
        32430 020434
                            - JMP *+4
  0243
                            JMP *+3
  0244
        32431 026434
                             JSB MPXIO
        32432 616444
  @245
                             DEF TTY15
  0246 32433 033627
                                           OUTPUT A NEW WORD TO A=177777
  0248 32434 060252
                           LDA MPOUT
                                            THE MULTIPLEXOR. Data Output
                             CTA PPX
  0249
        32435 102610
                             LDA MPXE
                                            RESTORE
        J2436 068854
  0250
        32437 001600
                             ELA
                                            E,
  0251
                                            Α,
                             LDA PPXA
  0252
        32440 066052
                             LDB PPXB
                                             AND B.
        32441 064053
  0253
                             CLF MPX
                                            ENABLE INTERRUPTS AGAIN.
        32442 143110
  0254
  0255 32443 120127
                             JMP PPXNT, I
                                            Return to prior activity.
                                            Multiplexor processing done
                                            for this interrupt.
                                                SERVICE OF A SINGLE TELE-
  0257* THE MPXIU ROUTINE IS CALLED FOR IO
  0258+ TYPE. IT IS CALLED WHENEVER A NEW BIT FOR A TELETYPE HAS COME IN
  0259* TO THE TELETYPE I/O REGISTER, OR WHEN IT IS NECESSARY TO
  D268* SEAD A BIT OUT. THIS IS INDICATED BY THE TIME COUNTER
  0261* FUR THAT TELETYPE ROLLING OVER TO ZERO.
  0262*
  $263+ LALLING SEGUENCE:
                                       At fourth interrupt we
  0204*
            ISZ TIME COUNTER
                                      must service the
             JMP *+3
   Ø265*
                                       first bit.
             JSB MPXIO
   0205×
             DEF TIME COUNTER
  £267*
                                    PREG = 32363
                                                        RETURN TO LADDER
0269 32444 000000 FFXIO NOP
                                            ENTRY POINT
   0270 32445 166444
                             LDB PPXIC, I
                                            B=>TIME COUNTERB=33223
                             ISZ MPXIO
                                            ADJUST RETURN ADDRESS MPXIO=32364
        32446 936444
   0271
        32447 066461
                                            RESET TIME COUNTER TO -8.
                             LUA .-8
   0272
                                           Count interrupts to middle next bit
        32450 170061
   0273
                             STA 1, I
                                            B=>CHARACTER
         32451 000004
   0274
                             INB
   0275
        32452 074057
                             STB CPTR
                                            CPTR=>CHARACTERon base page
   0276 32453 000004
                             INE
                                            B=>BIT COUNTER_
                                            BCNT => BIT COUNTER on base page
   0277
        32434 874468
                             STR ECNT
   0278 32455 000004
                             INB
                                            B=>MASK.
```

```
0279 32456 160001
                                           A=MASK. B=33226
                            LUA 1, I
                            STA PASK
                                                                 ON BASE PAGE
 0280
       32457 070001
                                           SAVE IN MASK.
 0281
       32450 016251
                            AND ICTOR
                                           TEST FOR INPUT OR OUTPUT.
                                                                       IOTOG=177777
       32451 002Nb3
                                           INPUT IF BIT = 1
 0282
                            SZA, RSS
       32462 026760
                            JMP CUTPT
0283
                                            OUTPUT IF Ø.
                           AND PLEX
       32463 016244
                                                                PLEX=177777
0284
                                           IF FULL DUPLEX,
                                                                A=000000 000040
       32464 003900
0285
                            CMA
                                           FORCE A ZERO INTO
      32465 010252
                                            THE APPROPRIATE BIT IN
0286
                            AND PPCUT
                                                                       A=177737
       32406 070252
                            STA MPOUT
0287
                                             MPOUT.
      32467 060051
                                                                        A=177737
0288
                            LDA INBIT
                                           GET THE INPUT AND ISOLATE
      32478 010061
0289
                            AND MASK
                                            THE BIT FOR THIS TELETYPE. A=000000
0290
       32471 002063
                            SZA, RSS
                                           IF Ø SKIP NEXT PART
0291
       32472 826476
                            JMP ++4
       32473 Ø30252
0292
                            IOR PPOUT
                                           SET A ONE INTO THE
       32474 876252
0293
                            STA PPOUT
                                            OUTPUT WORD.
      32475 002464
0294
                            CLA, INA
                                           SET FLAG TO ONE.
                                                               First bit is zero
                           RAR position
0295
       32476 140057
                                           ADD TO CHARACTER,
                                                               and doesn't hurt
0296
       32477 001300
                                            ROTATE,
                            STA CPTR, I
0297
       32500 170057
                                             AND REPLACE
                                                                  BCNT=-9
                            ISZ BCNT, I
0298
       32501 134060
                                           TEST BIT COUNTER AND
     32502 120444
                            JMP MPXIO, I
                                            RETURN IF NOT END OF CHARACTER.
0299
                                              CONTINUE LADDER
                         ROCESSING 10th BIT.
0301* END-OF-CHARACTER
                                                     CHARACTER NOW COMPLETE
                                           B=>RUNNING BUFFER PUINTER B=33230 on base page
0303
      32503 044473
                           - ADB .+2
      32544 074062
0364
                            STB BPNT
0305
      32505 006004
                            INB
                                           B=>START OF BUFFER
                                                                  on base page
0306
      32506 074063
                            STB BSTR
                                          B=>START OF FIRST BUFFER. on base page
2307
      32507 $00004
                            INB
0328
      32510 074064
                            STB BHED
                                          B=>START OF PHYSICAL BUFFER. on base page
0309
      32511 006004
                            INB
0310
      32512 074065
                            STB BGIN
                                          B=>END OF PHYSICAL BUFFER on base page
0311
      32513 000004
                            INB
6312
      32514 074066
                            STR BEAMbye stop
0313
      32515 001200
                            RAL bit
                                          POSITION DATA BITS TO
                                                                  Character was
0314
      32516 001727
                            ALF, ALF
                                                                      7 to Ø
                                           BITS 6-E OF A.
0315
      32517 010570
                                          MASK DATA BITS. MASK
                            AND B177
                                                                    8th Bit
0316
      32320 174057
                            STA CPTR, 1
                                          PUT INPUT CHAR IN CPTR PUSITION.
A=> <JSB INPUT> +2 A=32361 A=32364 H=000110
0317
      32521 062444
                           LDA PPXIO
      32522 044466
0318
                           ADA .-3
                                              <JMP ++3>
                                          A=>
                                                           B = 0.26364
0319
      32523 164000
                           LDB e, I
                                          B= <JMP ++3>
                                                           A=232360
0320
     32524 848478
                           ADA .-1
                                          CHANGE ISZ TO
0321
      32525 174000
                                                         RESTORE JMP *+4 TO LADDER
                           STB E, I
                                             JMP ++4
0322
      32526 060250
                           LDA INPIF
                                          RESET INPTF TO 0 SO ANOTHER
0323
      32527 020061
                           XOR MASK
                                           CHARACTER CAN START.
8324
      32530 070250
                           STA INPTF
0325
      32531 164057
                           LDB CPTR, I
                                                                 B=000110 ASCIIM
                                          GET CHARACTER IN B.
0326
      32532 060245
                           LDA ESCF
                                          HAS THIS TELETYPE BEEN RUBBED?
0327
      32533 010061
                           AND FASK
0328
      32534 002003
                           SZA, RSS
0329
      32535 026542
                           JMP INP.1
                                          NOT RUBBED OUT.
                                          P 191/#16
03.31+ THE INPUT LINE HAS BEEN RUBBED CUT AND NOTHING HAS
8332+ BEEN DUNE SINCE THE USER IS IN TAPE MUDE.
0334
      32536 020245
                           XOR ESCF
                                          PREPARE NEW VALUE OF ESCF.
0335 32537 054506
                           CPB .+158
                                          IF CHARACTER IS A CARRIAGE
```

```
RETURN, CLEAR ESCF.
       0336 32540 070245
                                  STA ESCF
       0337 32541 126444
                                   JMP MPXIO, I
       0339+ NOW TEST CHARACTER +
                                                   B=000110 ASCII H
             32542 054326 INP. 1 CPB EKSPC
                                                 TEST FOR BACKSPACE.
       0341
                                  JMP INP.5
             32343 020670
       0342
                                                 TEST FOR ESCAPE.
             32544 054524
                                   CPB .+33B
       0343
                                  JMP INP.2
       0344
             32545 020606
                                   CPB ALTMD
                                                 TEST FOR ALTMODE
             32546 054324
       0345
       0346
             32547 020606
                                  JMP INP.2
                                                 OLD ALTMODE?
             32550 054572
                                   CPB .176
       0347
                                 JMP INP.2
             32551 020606
       0348
                                 SZB
             32552 005002
                                                 IGNORE FEED FRAMES AND
       0349
                                                 RUBOUTS.
             32553 054570
                                  CPB 8177
       0350
       0351
             32554 126444
                                  JMP MPXIC,I
                                  CPB .+128
                                                 IGNORE LINE FEEDS ALSO
              32555 054563
       6352
                                  JMP MPXIU, I
              32556 126444
       Ø353
                                 CPB .+238
                                                  IGNURE XOFF ALSC.
       0354
              32557 054514
                                  JMP PPXIU, I
             32560 126444
       0355
       0357* APPEND CHARACTER/ TO BUFFER *
                                   VALID CHARACTER
             32561 160062
                            INP. LDA BPNT, I
                                                 A=>POSITION FOR THIS CHARACTER.
       0359
                                                 A => POSITION FOR NEXT CHARACTER.
             32562 002004
                                   INA
       0360
                                                 IF Am> BEYOND END OF BUFFER,
       0361
              32563 150066
                                  CPA BEND, I
                                  ADA MBLEN
                                                  MAKE IT POINT TO THE START
              32564 044445
       ₽362
                                 CPA BHED, I
       0363
              32555 150064
                                                  IF BUFFER FULL,
             32566 020006
                                 JMP INP.2
                                                  TRANSFER FOR SPECIAL HANGLING.
       0364
                                 LDB BPNT, I
                                                 B=>CURRENT CHARACTER ADDRESS.
       0365
              32507 164062
                                                 SAVE NEXT CHARACTER ADDRESS.
                                  STA EPNT, I
             32570 170062
       0366
       0367
             32571 084865
                                   CLE, ERB
                                                 B=WORD ADDRESS
             32572 160001
                                   LDA 1, I
                                                 A=DESTINATION WORD
       0368
       8369
              32573 002041
                                   SEZ,RSS
                                                 IF HIGH CHAR, ROTATE
                                                                            PACK
             32574 001727
                                                  TO BOTTOM.
       0370
                                   ALF, ALF
                                                                            CHAR
       0371
              32575 010416
                                   AND FIMSK
                                                 CLEAR BOTTOM PART
                                                                            TN
                                                 MFRGE IN NEW CHARACTER.
       0372
              32576 140857
                                   ADA CPTR, I
                                                                           BUFFER
                                   SEZ,RSS
       0373
              32577 002041
                                                  IF HIGH CHARACTER,
       0374
              32600 001727
                                   ALF, ALF
                                                  ROTATE BACK.
                                   STA 1,1
       C375
              32601 170001
                                                  STORE BACK IN MEMORY.
              32602 160057
                                   LDA CPTR, I
                                                  IF CHARACTER WAS A
       0376
                                   CPA .+158
                                                   CARRIAGE RETURN,
       0377
             32603 050506
             32604 020647
                                   JMP INP.3
       0378
                                                  GO TO PROCESS IT.
                                  JMP MPXIO, I
       0379
             32625 120444
p192/#16 WHEN CARRIAGE RETURN
                                                    DONE WITH CHARACTER
                                                     RETURN TO LADDER
        TS FOUND
       6381* PRUCESS ESCAPE/ALI-MODE
             32606 160063
                                                 RESET BUFFER POINTER
       0383
                            INP.2 LDA BSTR,I
             32637 170062
                                   STA EPNT, I
       0384
                                                  TO BEGINNING.
       0385
             32612 060253
                                   LDA TAPEF
                                                  IS USER IN TAPE MODE?
       0386
              32611 016861
                                   AND MASK
       0387
              32612 002002
                                   SZA
       0385
              32613 020644
                                   JMP INP21
                                                 YES.
       0389
             32514 154963
                                  LDB ESTR, I
                                                 MOVE REVERSE
```

```
0344
         32515 064665
                              CLE, ERB
                                             SLASH
   0391
         32516 060411
                              LDA KVRSL
                                              AND
   0392
         32617 174001
                              STA 1, I
                                              CRLF TO
         32620 000004
                              INB
                                             USER+S
   0393
         32621 868233
                              LDA CRLF
                                               BUFFER.
   0394
         32622 170961
                              STA 1, I
   0395
   U396
         32623 860861
                              LDA PASK
                                             SET IOTOG TO
         32524 020251
                              XOR LOTUG
   0397
                                             DUTPUT.
        32625 076251
                              STA IUTUG
   0398
   0399
        32526 007400
                              CCB
        32627 174060
                              STR BCNT, I
                                             FORCE OUT FIRST CHARACTER.
   3460
         32630 174057
   0401
                              STB CPTR, I
                                             SET OUTPUT CHARACTER TO ALL UNES
                              ADB BPNT
   0402
        32531 044062
                                             SET CHARACTER
                              LDA .-4
   0403
         32632 060465
                                             COUNT TO SAY
         32633 170001
   0424
                              STA 1,I
                                             FOUR CHARACTERS.
        32634 007400
                                             SET AN
   0405
                              CCB
                              ADB MPXIO
   0406
        32535 945444
                                             182
   0407
         32636 160001
                              LDA 1, I
                                             INSTRUCTION
                              AND 81777
   0408
         32637 010325
                                               INTO THE
         32640 030403
   0400
                              IOR 15ZIP
                                            FIRST WORD OF
   0410
         32641 044466
                              ADB .-3
                                             THE USER'S RUNG
                                               IN THE LADDER.
   0411
         32642 170001
                              STA 1, I
         32543 126444
   6412
                              JMP MPXIG, I
   3413
         32644 030245
                       INP21 IOR ESCF
                                             IF TAPE MODE, SET
   0414
         32645 076245
                              STA ESCF
                                             ESCF BIT AND RESET BUFFER
   0415
         32646 120444
                              JMP PPXIO,1
   0417*
         ENTER USER IN TTO WHEN A CARRIAGE RETURN COMES IN
                               FINAL CHARACTER IN LINE
-0419
         32647 060253
                       INP.3 LDA TAPEF
                                            IS USER IN
                                                          =1 IF IN TAPE
         32650 010061
   0420
                              AND MASK
                                             TAPE MODE?
   0421
         32651 002002
                             SZA
                             JMP INP31
   0422
         32652 020662
                                             YES
                            LDA INPTE
         32653 060250
   0423
                                            IF NOT TAPE MODE, SET
         32554 030061
   0424
                              IOR MASK
                                             INPTF TO PREVENT FURTHER
   0425
         32655 070250
                              STA INPIF
                                              INPUT.
   8426
         32056 060234
                       1NP32 LDA MPCOM
                                             SET COM.BIT.
                                                              TELL SCHEDULER WE
         32557 034061
                              IOR MASK
   0427
                                                              REOUIRE SERVICING
         32668 070234
   0428
                              STA PPCOM
                             JMP MPXIO, I
   8429
         32661 120444
                                                                   THIS COMPLETES
                                              BACK TO LADDER.
   0430
         32662 160063
                       INP31 LDA BSTR, I
                                            GET POINTER TO BEGINNING CF
                                                                           MULTIPLEX-
   0431
         32603 164962
                              LDB BPNT, I
                                             CURRENT BUFFER AND RESET TO
                                                                            OR SERVIC-
         32064 174063
   0432
                              STB BSTR, I
                                              CURRENT CHARACTER.
                                                                            ING FOR
   0433
         32665 154864
                             CPA BHED, I
                                                                            ENTIRE
                                             IF BUFFER JUST COMPLETED WAS
   0434
         32566 020656
                              JMP INP32
                                             FIRST, GO MAKE ITU ENTRY.
                                                                            LINE.
   0435
        32607 120444
                              JMP FPXIC, I
                                                                       IS NOW UP TO
                                            OTHERWISE JUST RETURN.
                                                                       THE SCHEDULER.
   0437* PRUCESS BACKSPACE
         32570 160062 INP.5 LDA BPNT, I
   0439
                                            GET BUFFER POINTER.
   0440
         32571 150063
                             CPA ESTR, I
                                            IF NO CHARACTERS,
   0411
         32672 120444
                                             RETURN IMMEDIATELY.
                              JMP MPXIG,1
   0442
         32673 156065
                              CPA EGIN, 1
                                            IF AT BEGINNING OF PHYSICAL
   0443
         32074 040327
                              ADA BLEN
                                             BUFFER, MOVE TO END.
   0444 32675 040470
                              ADA .-1
                                            BACK UP ONE.
```

C445 32676 170062 STA BPNT, I D446 32677 120444 JMP MPXIO, I

8449* THE OUTPI SECTION IS CALLED FOR OUTPUT SERVICE FOR A SINGLE TELE-0458* TYPE, IT IS CALLED WHENEVER A NEW BIT MUST BE SENT TO THE TELE-0451* TYPE, THIS HAPPENS WHENEVER THE TIME COUNTER FOR THE TELETYPE BE-0452* COMES ZERO.

```
0454
      32700 160057 CLTPT LDA CPTR, I
                                         A-OUTPUT CHARACTER.
                                         SHIFT NEXT BIT TO AU.
0455 32701 001300
                          RAR
                                         STORE BACK IN MEMORY.
                          STA CPTR, I
0456
     32702 170057
                                         NOW TEST THE OUTGOING BIT. IF
      32703 002030
                          SSA, SLA
0457
     32704 026712
                          JMP CUT.1
                                         IT DIFFERS FROM THE PREVIOUS
2458
                                          BIT WE HAVE TO CHANGE THE BIT
0459
      32705 003030
                          CMA, SSA, SLA
      32706 020712
                          JMP GUT.1
                                            IN THE OUTPUT WORD.
0460
0461
      32707 069252
                          LDA MPOUT
      32710 020061
                          XOR FASK
0462
0463 32711 070252
                          STA MPOUT
0464+
                                         RETURN UNLESS THIS IS THE LAST
      32712 134060 CLT.1 IST BCNT, I
0465
      32713 120444
                          JMP MPXIG, 1
                                         BIT OF THE CHARACTER.
0466
      32714 068456
                          LDA .-11
                                         RESET BIT COUNTER TO -11 FOR
0467
                           STA BCNT, 1
                                         THE NEXT CHARACTER.
2468
      32715 170060
      32716 800004
                           INB
                                         B=>CHAR COUNTER.
0469
                                         TEST TO SEE IF ANY CHARACTERS
      32717 134001
                           ISZ 1, I
0470
      32720 020754
                          JMP CUT.2
                                         ARE LEFT.
0471
C472*
      END OF GOTPUT
0473*
0474*
                          LDB MPXIO
0475 32721 066444
                                         B=> <JSB MPXIC>+2
0476
      32722 044466
                          ADB .-3
                                         B=>
                                             <JMP *+3>
      32723 160001
                                         A =
                                              <JMP ++3>
0477
                          LDA 1, I
      32724 044470
                                             <JMP ++4>
8478
                          ADB .-1
                                         R = >
                                         SET <JMP ++4>
0479
      32725 170001
                          STA 1,1
0460
     32726 060251
                          LDA IUTOG
                                         SET JUTOG TO
      32727 020061
                          XOR MASK
                                          SAY
0481
0482
      32730 070251
                          STA LUTOG
                                         INPUT.
      32731 064057
                          LDB CPTR
0483
                                         SET
0484
      32732 044517
                          ADB .+?STAT-1 B=>STATUS.
      32733 160001
                          LDA 1, I
                                         A=STATUS
0485
3486
      32734 050472
                          CPA XABUR
                                         IF STATUS IS ABORT, CHANGE TO
     32735 802400
                          CLA
0487
                                           IDLE.
P488 32736 174901
                          STA 1.1
0489
     32737 044452
                           ADB .+?BGIN-?STAT RESET ALL
0496 32740 166001
                                          BUFFER
                          LDA 1,1
0491
     32741 044466
                                          POINTERS
                           ADB .-3
      32742 170001
0492
                           STA 1,1
                                          TO
      32743 000004
0493
                           INB
                                             THE
0494 32744 176961
                                          BEGINNING
                          STA 1,1
0495 32745 006004
                                          OF THE USER'S
                          INR
0496 32746 17w0w1
                          STA 1, I
                                          BUFFER.
```

FIGURE 20. MULTIPLEXOR EXAMPLE (Con't) SHEET 9 OF 10

```
32747 960961 GUT.3 LDA FASK
0497
      32750 003000
                          CMA
                                          COMPLEMENT TO
0498
8499
      32751 010250
                           AND INPTF
                                           TURN OFF
                           STA INPTF
                                            INPTF BIT.
      32752 070250
0500
                           JMP MPXIO, I
0501
      32753 120444
0503+ END OF CHARACTER -- AT LEAST ONE LEFT
0505
      32754 006004 CLT.2 INB
                                         B=>BUFFER POINTER.
      32755 160001
                                         A=BUFFER POINTER.
0506
                           LDA 1, I
                                         A=>NEXT CHARACTER.
     32756 002004
0507
                           INA
                           ADB .+78END-78PNT B=>BUFFER END.
     32757 844475
0548
0509
      32760 150001
                           CPA 1,I
                                         IF END OF BUFFER, CHANGE TO
                                          BEGINNING.
     32761 040405
                           ADA MBLEN
8510
     32762 844465
                           ADB .+78PNT-7BEND B=>BUFFER POINTER.
0511
     32763 178001
                                         RESET BUFFER POINTER.
6512
                           STA 1, I
      32764 064000
                          LDB 0
                                         MOVE POINTER TO B.
Ø513
      32765 004065
                           CLE, ERB
                                         POSITION AS WORD POINTER.
0514
     32766 160001
                                         A-WORD CONTAINING CHARACTER.
0515
                          LDA 1,I
     32767 002041
                                         POSITION SO THAT CHARACTER IS
                          SEZ,RSS
0516
      32770 001727
                          ALF, ALF
                                         IN BITS 7-0
8517
                           AND B177
                                         MASK OUT CHARACTER.
B518
     32771 010570
     32772 001222
                          RAL, RAL
                                         POSITION IN ORDER TO SET UP
0519
0526 32773 036464
                          IOR MBITS
                                          FOR OUTPUTTING AND MERGE IN
0521
      32774 959484
                           CPA MBITS
      32775 020735
                           XOR 81000
0522
0523 32776 170057
                          STA CFTR, I
                                          STOP AND PARITY BITS.
8524*
0525 32777 064057
                                         SET B=> STATUS.
                          LDB CPTR
0526 33000 044517
                          ADB .+?STAT-1
      33001 160001
                                         A=STATUS
0527
                          LDA 1, I
      33002 950472
                          CPA XABOR
                                         IF ABORT STATUS, RETURN
0528
                                         IMMEDIATELY.
8529
      33003 126444
                           JMP MPXIO, I
      33004 050474
0530
                          CPA SOUTH
                                         IF OUTPUT WAIT, CHECK FOR
      33005 002001
0531
                                          ALMOST DONE.
                          RSS
0532 33806 020747
                          JMP OUT.3
                                         OTHERWISE GO CLEAR INPTF.
Ø533*
0534
      33007 844446
                          ADB .+?CCNT-?STAT IF OUTPUT WAIT, TEST FOR
                          LDA 1,I
                                              10 CHARACTERS LEFT.
0335
      33010 160001
      33011 044514
                          ADB .+?STAT-?CCNT
Ø536
      33812 059457
Ø537
                          CPA .-10
     33013 002001
0538
                          RSS
6539
      33014 026747
                          JMP OUT.3
                                         NOT EXACTLY 18 LEFT.
9549
     33015 060234
                          LDA HPCOM
      33016 030061
                          IOR MASK
8541
                          STA MPCOM
0542
      33017 878234
0543
     33420 826747 MPXED JMP OUT.3
```

```
THE CLOCK DRIVER IS THE CENTRAL POINT THROUGH WHICH CONTROL IS
  0264*
         PASSED TO THE SCHEDULER. ENTRY COMES TO THE DRIVER WHENEVER THE
  0265*
         CLOCK (KEAL TIME SCALAR) INTERRUPTS. THIS EVENT OCCURS EVERY
  0266*
         100 MS. BESILES GIVING CONTROL TO THE SCHEDULER, THE CLOCK
  0267*
         DRIVER ALSO HAS THE TASK OF UPDATING THE TIME OF DAY CLUCK.
  0268*
  $269* THIS CLOCK IS A TWO WORD ENTRY WHOSE VALUE IS AS FOLLOWS:
            DATIM=24+DAY+HOUR
  0270 *
            DATIM+1 = 644 + FIN+10 + SEC-36808
  @271*
        ENTER EVERY 0.1 SECOND T.B.G. INTERRUPT
                                PREG RETURN ADDRESS
₩ 8273
        34147 ØUDUEO CLKIN NOP
                                           ENTRY POINT.
                                                                ROLL OVER EACH
                                           BUMP 100MS COUNTER
        34110 034037
                             ISZ DATIM+1
  0274
                                                                         HOUR
                                           NO PROBLEM IF NO SKIP
  0275
        34111 020120
                             JMP CLC1
        34112 070077
                             STA CTEMP
                                           SAVE A.
  0276
        34113 060401
                             LDA M36K
                                           RESET 100MS COUNTER.
  0277
        34114 070037
  0278
                             STA DATIM+1
                                            RESET A.
  0279
        34115 060077
                             LDA CTEMP
                                           BUMP HR COUNTER.
                             ISZ DATIM
        34116 034036
  0280
        34117 000000
                             NOP
                                            JUST IN CASE.
  0281
  0283* THE NEXT INSTRUCTION IS NURMALLY A JMP. WHEN THE
  0284 * SCHEDULEK IS KLNWING, HOWEVER, IT PREVENTS ITSELF
  0285* FROM HEING REENTERED BY INSERTING A NOP.
                      CLC1 NOP / JMP SCHED
        34120 000000
  0287
  0289
        34121 103112
                             CLF CLOCK
                                            ALLOW ANOTHER CLOCK INTERRUPT.
        34122 120107
                             JMP CLKIN, I
                                            RETURN.
  0290
        34123 020124
                             JMP SCHED
                                           USED TO INSERT IN CLC1.
  0291
                      CLCZ
  Ø293*
         THE SCHEDULER SECTION OF TSB DETERMINES WHICH
  8294*
         PROGRAM IS TO RUN NEXT. FIRST IT CLEARS CLC1,
  0295*
        ALLOWING THE CLACK TO CONTINUE INTERRUPTING.
                      SCHED STA AREG
  0297
        34124 071240
                                            SAVE A-REGISTER.
        34125 002400
  0298
                                            INSERT NOP IN CLC1 TO PREVENT
                             CLA
        34126 072120
  0299
                             STA CLC1
                                             REENTERING SCHED.
  0300
        34127 062107
                             LDA CLKIN
                                            SAVE THE PROGRAM COUNTER
        34130 071243
                                             ALSO.
  Ø341
                             STA PREG
        34131 103112
  0302
                                            NOW LET THE CLOCK IN AGAIN.
                      CLKED CLF CLOCK
  0303
        34132 075241
                             STB BREG
                                            SAVE B REGISTER,
        34133 001520
  6304
                             ERA, ALS
                                            E-REGISTER,
        34134 102201
  0305
                             SOC
                                            AND OVERFLOW REGISTER.
        34135 002004
  0306
                             INA
                             STA EREG
  6307
        34136 071242
  0309
        34137 960254
                             LDA TIMEF
                                            GET TIMER FLAG.
                                            IF U, THIS IS NOT A TIMED PROG.
  0310
        34140 002002
                            SZA
        34141 134067
                             ISZ TIMER, I
  0311
                                            IF NOT 0, BUMP TIMER.
  0312
        34142 020177
                            JMP SCH1
                                            IF NOT OUT OF TIME, SKIP ROTAT-
  0313*
                                           ING RUN QUEUE.
  0314*
                                ➤ P 203/#17
            AT THIS PUINT WE HAVE DISCOVERED THAT THE PROGRAM THAT HAS
  6315*
            BEEN RUNNING HAS EXHAUSTED ITS TIME LIMIT. THE NEXT STEP IS
  0310*
```

```
TO AUJUST THE QUEUE SO THAT THIS PROGRAM IS MOVED TO THE
  0317*
            BUTTUM. THIS IS ACCOMPLISHED BY DELETING THE PROGRAM
  9315*
            FROM THE GUEUE AND THEN REINSERTING IT WITH ITS NEW PRIORITY.
  6319*
  0320*
        34143 064321
                             LDB PLINK+1
                                            GET THE ADDRESS OF PRIORITY
  0321
        34144 006004
  0322
                             INB
                                            FOR THE CURRENT PROGRAM.
        34145 060475
                             LDA .+4
                                            SET IT TO LOW PRIORITY.
  6323
        34146 178881
                             STA 1, I
  0324
        34147 044470
  0325
                             ADB .-1
        34150 160001
                                           GET THE LINK FROM THE CURRENT
                             LDA 1, I
  0326
  0327
        34151 070321
                             STA MLINK+1
                                            PROGRAM AND STORE IT IN MLINK+1
  8328*
         THE NEXT SECTION INSERTS A USER INTO THE QUEUE IN ORDER OF HIS
  6329*
  0330* PRIORITY. WHEN WE ARRIVE HERE, THE B REGISTER POINTS TO THE LINK
         WORD FOR THE USER.
  0331*
  0332*
                                             SCHL=33253
→ ₽333
        34152 074071 SCH3 STB SCHL
                                           SAVE LINK ADDRESS IN SCHL.
        34153 000004
                             INB
                                           B=>USERS PRIORITY
  0334
∾ 0335
        34154 166861
                             LDA 1, I
                                           A=PRIORITY
                                                          A=2

√ 8336

        34155 003000
                                           STORE -1-PRIORITY A=177775
                             CMA
0337
        34156 070076
                             STA SCHPR
                                              IN SCHPR.
                                           B=>PHONY USER. B=321
        34157 064320
                             LDB MLINK
  0338
        34160 074074
                      SCH2
                                           SAVE IN SCHP.
  0339
                             STB SCHP
                                           B POINTS TO NEXT USER. B \Rightarrow LINK
  0340
        34151 164001
                             LDB 1,1
  0341
        34162 060001 HIS
                             LDA 1
                                           GET PRIORITY OF
                                                                   A > LINK
        34163 002004 PRIORITYINA
  0342
                                            THAT USER IN
                                                                   A >> PLEV
        34164 160000 ≤ OURS LDA e,1
  0343
                                             ۸.
                                                 A=PRIORITY
  B344
        34105 848076
                             ADA SCHPR
                                           COMPARE WITH PRIORITY
                                     HIS OF USER BEING INSERTED.
        34166 802020
  0345
                             SSA
  0346
        34167 020160
                             JMP SCH2
                                           IF >= GO TO LINK TO NEXT ENTRY.
                             STB SCHL, IA
        341/0 174071
  0347
                                           SET NEW ENTRY TO PUINT TO HIM.
  0348
        34171 060071
                             LDA SCHL
  0349
        34172 170074
                             STA SCHP, I
                                           SET PREVIOUS ENTRY => NEW ENTRY.
                             ADA .+?CLOC-?LINK SET NEW USERS CLOCK TO -10.
  0350
        34173 040466
  0351
        34174 064457
                             LDB .-10
                                             SET UP TIME SLICE
  0352
        34175 174000
                             STB 2,1
        34176 017240
  0353
                            JSB SWAPR
                                           START EARLY SHAPPING.
  Ø354*
            THIS SECTION IS THE BEGINNING OF THE MAIN PART OF THE SCHEDU-
  0355*
            LER. CONTROL ALWAYS COMES HERE TO EXAMINE THE TTO UNTIL IT'S
  0355*
  B357*
            EXHAUSTED, CR WHEN THERE IS NOTHING TO DO. SWAPR ALWAYS COMES
            TO THIS POINT WHEN THE QUEUE IS EMPTY OR THE FIRST PROGRAM ON
  Ø358*
  0359*
            THE WUEUE IS ABSENT.
  8368*
  0361+ THE FULLUWING SECTION OF CODE TAKES CARE OF THE TELEPHONE LOGIC.
  8362+ IT IS RESPONSIBLE FOR MAKING 3 DECISIONS:
  0363*
            1) A USER HAS CALLED UP;
  6364*
            2) A USER HAS HUNG UP;
  0365*
            3) A USER HAS BEEN ON TOO LONG WITHOUT SUCCESSFULLY LOGGING IN
  0366+ THE FULLUHING BIT FLAGS ARE USED:
            PHL=MOST RECENT INPUT FROM DISCONNECT BOARD
  0367*
  0368*
            PHN=CURRENT INPUT FRCM DISCONNECT ROARD
  Ø369*
            PHO = UUTPUT TO DISCONNECT BOARD
            PHT=1 IF USER IS BEING TIMED FOR SOMETHING
  0370+
  6371+ WHEN A USER IS BEING TIMED, LOCATION 2PHON IN HIS TTY TABLE CON-
  0372+ TAINS THE VALUE OF DATIM+1 NECESSARY FOR TIMEOUT TO BE ACHIEVED.
```

```
34177 000000 SCHI NOP (CHANGED TO RSS BY PHONES COMMAND)
2374
                            JHP SCH54 - IF NO PHONES
                                                              P204/#17
  0375
        34200 020324
                                            GET NEW INPUT FROM DISCONNECTOR.
  8376
        34201 102500
                       SCH41 LIA P
                                            SAVE.
        34242 074236
                             STA PHN
  0377
02 0378
                                            TEST FOR ANY CHANGES
        34243 024235
                             XOR PHL
                             IOR PHT
        34204 830248
                                            OR TIMEOUTS.
  0379
        34265 864276
                             LDB DMASE
                                            => TTY00+7MASK-(TTY01-TTY00)
  0380
        34206 002003 SCH42 SZA, RSS
                                            TEST FOR ANYTHING TO DO.
  0381
        34207 026320
                             JMP SCH52
                                            NO.
  0382
                             ADB .+TTY81-TTY80 SET NEW MASK ADDRESS.
        34210 044523
  Ø383
        34211 000075
                             CLE, SLA, ERA
                                            BIT TEST.
  0364
  0385
        34212 092001
                             RSS
                                            FOUND ONE.
                             JMP *-3
                                            TEST NEXT.
        34213 026210
  0386
  0387*
                             STA SCHP
                                            SAVE BIT TEST WORD.
        34214 070074
  Ø388
                             STB SCHL
        34215 074071
                                            SAVE MASK ADDRESS
  Ø389
        34216 060236
                             LDA PHN
                                            TEST FOR CHANGE IN
  8390
        34217 020235
                             XOR PHL
                                            DISCONNECT INPUT.
  8391
        34220 110001
                             AND 1, I
  0342
        34221 002003
                             SZA, RSS
  0393
                             JMP SCH56
                                            NO CHANGE--MUST BE TIMEOUT.
  0394
        34222 026271
  0395
        34223 016236
                             AND PHN
                                            WHICH WAY DID TI CHANGE?
        34224 002002
  0396
                             SZA
        34225 026245
                             JMP SCH43
                                            CHANGE FROM 0 TO 1.
  0397
  0398*
        34226 060240
                             LDA PHT
                                            TEST IF TIMED.
  Ø399
        34227 110061
  0400
                             AND 1, I
  0401
        34232 002002
                             SZA
        34231 020237
                             JMP SCH48
                                            GO HANDLE LINE DROPOUT.
  0442
        34232 160001
  0403
                             LDA 1, I
                                            ANSWER
  0464
        34233 003000
                             CMA
                                             THE
                             AND PHO
  0405
        34234 010237
                                              PHONE.
        34235 074237
                             STA PHO
  0406
                             JMP SCH44
                                            NO--USER JUST CAME ON.
        34236 020243
  0407
        34237 044503
                       SCH48 ADB .+?ID-?MASK
                                                LINE DROPOUT -- IGNORE IF
  0408
                                                 VALID ID.
        34240 160001
                             LDA 1, I
  8449
  0410
        34241 002002
                             SZA
  6411
        34242 020266
                             JMP SCH49
  0412*
  8413* USER HAS JUST CALLED IN. SET UP TIMING FOR LOGON.
  0414*
  0415
        34243 060166 SCH44 LDA PHR
                                            GET REQUIRED RESPONSE TIME.
                                            GO SET UP ENTRY.
                             JMP SCH45
  0416
        34244 020251
        34245 010240
  0417
                       SCH43 AND PHT
                                            IGNORE DROPOUT IF ALREADY
        34246 002002
  0418
                             SZA
                                             TIMING.
        34247 026263
                             JMP SCH47
  0419
                       LDA .+20
SCH45 LDB SCHL
  0420
        34250 060515
                                            OTHERWISE SET UP 2 SEC TIMER. (F)
        34251 064071
  9421
                                            COMPUTE ADDRESS OF PHONE LOC.
                             ADB .+?PHON-?MASK
  0422
        34252 044507
  Ø423
        34253 000040
                             CLE
                                            COMPUTE REQUIRED TIME FOR RUNOUT
        34254 040037
  0424
                             ADA DATIM+1
  0425
        34255 002040
                             QF7
        34256 040401
  0426
                             ADA M36K
        34257 170001
                             STA 1, I
  0427
  0428
        34260 064240
                             LDA PHT
                                            SET TIMING BIT.
  0429
        34261 130071
                             IOR SCHL, I
  0430 34262 070240 SCH46 STA PHT
```

FIGURE 21. SCHEDULER EXAMPLE (Con't) SHEET 3 OF 18

```
0431 34263 060074 SCH47 LDA SCHP
                                           GET BIT TEST AND COUNTER
                            LDB SCHL
       34264 064971
                                           WORDS AGAIN.
  0432
  0433
        34265 026206
                             JMP SCH42
                                           LOOP.
  0434*
  8435 34266 168071
                      SCH49 LDA 8CHL,I
                                           CLEAR PHT.
        34267 020240
                             XOR PHT
  0436
  8437
        34276 026262
                             JMP SCH46
  Ø438*
  8439* CODE TO LEST FOR HANGUP OR UNSUCCESSFUL LOGON.
  0440*
        34271 044507 SCH50 ADB .+?PHON=?MASK TEST FOR KICKOFF.
  3441
  8442 34272 168881
                            LDA 1,I
                                           GET REQUIRED TIME.
        34273 003884
  8443
                             CMA, INA
                                           SUBTRACT FROM
        34274 040037
                             ADA DATIM+1
  0444
                                           CURRENT TIME.
  0445
        34275 002020
                             SSA
  8446
        34276 026263
                             JMP SCH47
                                           NOT TIMED OUT.
  0447*
  0448
        34277 044477
                             ADB .+?STAT-?PHON
        34300 160001
                            LDA 1,I
                                           GET USER'S STATUS.
  8449
       34301 050467
  0450
                            CPA .-2
                                           ALREADY HANDLED.
  0451
        34302 020263
                             JMP SCH47
  Ø452
        34303 840460
                             ADA .+.-XSYNT-1-COM3+COM2
        34304 002021
  0453
                             SSA,RSS
                                          TEST FOR LIBRARY TYPE PROGRAM.
  0454
        34305 026263
                             JMP SCH47
                                          IGNURE FOR NOW IF IT IS.
        34306 060467
  0455
                            LDA .-2
                                           SET STATUS TO -2.
  9456
        34307 170001
                             STA 1, I
                             CLF 0
  0457
        34310 103100
  0458
        34311 160071
                            LDA SCHL, I
                                           SET MPCOM BIT.
  0459
        34312 036234
                            IOR MPCOM
  0460
        34313 070234
                             STA MPCOM
        34314 102160
                            STF &
  8461
        34315 044472
  0462
                            ADB .+?LINK-75TAT
                             JSB DEQUE
  0463
        34316 @17461
                                          REMOVE USER FROM QUEUE.
        34317 020263
                             JMP SCH47
  0464
  8465*
  8466* END OF PROCESSING
  0467*
                     SCH52 LDA PHO
  0468 34320 060237
                                           OUTPUT TO PHONES.
                     SCH53 OTA @
  0469
        34321 102600
  0470
        34322 060236
                            LDA PHN
                                           COPY N INTO L.
  8471
        34323 070235
                             STA PHL
  8472*
        34324 102100 SCH54 STF &
                                             ENABLES INTERRUPTS
× 0001
       34325 060234
                                           TEST FOR ANY COMMUNICATION MPCOM=00040
  80N2
                            LDA MPCOM
  0003
        34326 002002
                            SZA
                                            FRUM MULTIPLEXOR.
° 0004
                           JMP SCH5
        34327 026546
0605*
                                      ➤ P208/#18
                                                      TO SERVICE MULTIPLEXOR
  0006* IEST FOR ANY TIYES BUSINESS
  8 M M 7 *
  0008 34330 003400
                            CCA
                                           TEST FOR DRIVER BUSY.
       34331 050356
                            CPA T35F1
  0009
  0010
       34332 020507
                            JMP SCH15
                                           DRIVER IS BUSY.
  0011*
  8012+ WHEN 13511=0, THE CONSOLE IS QUIET SO WE CAN DO LOGGING.
  0013*
  0614 34333 040332
                            ADA LOGCT
                                           TEST FOR ANY ENTRIES IN LOGIABLE
  0015 34334 050470
                            CPA .-1
```

```
0016 34335 020430
                        JMP SCH16
                                      LOG TABLE IS EMPTY.
0017*
0018* SET UP LUG BUFFER
8619*
0020 34336 070332
                         STA LOGCT
                                       DECREMENT LOG COUNTER.
      34337 060333
                         LDA LOGPI
0021
                                       BUMP LOG POINTER
0022 34340 002004
                         INA
0023 34341 050336
                         CPA LOGND
                                      IF AT END,
0024 34342 060335
                        LDA LUGBG
                                        WRAP AROUND.
0025 34343 070333
                         STA LOGP1
                                      TEST FOR LOGON
8026 34344 160333
                         LDA LOGPI.I
      34345 064337
0027
                         LDB ASCIN OR LOGOUT.
0028 34346 002020
                         SSA
8029 34347 064340
                         LDB ASCFF
0030 34350 076417
                         STB LOGBF+3
0631 34351 101052
                        LSR 10
                                      SHIFT LOG CHAR TO LEAST 5 BITS.
                                    MASK OFF OTHER STUFF.
0032 34352 010530
                         AND .+378
0033 34353 040341
                         ADA ASCBA
                                      CONVERT TO ASCII.
     34354 072420
                         STA LOGBE+4
0034
0035 34355 160333
                         LDA LOGP1, I GET ACCOUNT NUMBER AGAIN.
0036 34356 010325
                         AND 81777
                                       KEEP ONLY # PART.
0037 34357 006400
                         CLB
0038 34360 100400
                         DIV .+10
                                      GET 1ST 2 DIGITS IN A, LAST IN B
0039 34362 005727
                        BLF, PLF
                                      SET UP LAST DIGIT AS
8040 34363 844342
                        ADB ASCOB
                                       ASCII LEFT HALF.
9041 34364 076422
0042 34365 01/134
                        STB LOGBF+6
                        JSB #LTEN
                                       CONVERT FIRST 2 TO ASCCIL ALSO.
0043 34366 072421
0044 34367 034333
                         STA LOGBF+5
                         ISZ LOGP1
0045 34370 160333
                         LDA LUGPI, I
                                      NOW GET THE TIME.
0046 34371 010510
                         AND .+178
                                      GET TERMINAL NUMBER.
0047 34372 01/134
                                       CONVERT AND STORE IN BUFFER.
                         JSB #LTEN
8048 34373 072426
                        STA LUGBF+12
0049 34374 160333
                        LDA LOGPI,I
     34375 006400
0050
                         CLB
                         ASR 4
0051
      34376 101024
                        DIV D60
STB LOGP1, I
     34377 100400
0052
0053 34401 174333
                                      SAVE SECOND HALF
     34402 017134
C054
                                       CONVERT FIRST HALF TO ASCII.
                         JSB #LTEN
0055 34403 072423
                         STA LUGBF+7
     34404 160333
0656
                        LDA LOGPI,I
     34405 017134
0057
                        JSB #LTEN ,
                                      CONVERT 2ND HALF TO ASCII.
     34406 072424
34407 060520
0058
                         STA LOGBF+8
                        LDA .+23
LDB LOGR2
9459
0060 34410 060413 LDB LOGR2 TO PPRINT THE 0061 34411 114270 SCH21 JSB TTY35,I STUFF.
0060 34410 060413
8062 34412 826587
                         JMP SCH15
0063 34413 134414 LCGR2 DEF ++1,1
                                     BUFFER ADDRESS (I=>PUNCH)
     34414 025052 LCGBF ASC 11, **LOGOFF A123 8930 #81
0064
0465
     34427 011400
                        OCT 11400
                                       XOFF
0066*
8867* TTY35 IU COMPLETE
0068*
0069 34430 050357 SCH16 CPA T35F2
                                       TEST DRIVER COMMUNICATE FLAG.
0070 34431 002301 RSS
0071 34432 026507
0072 34433 060347
                        JMP SCH15
                     LDA T35ST
                                     GET CONSOLE STATUS.
```

FIGURE 21. SCHEDULER EXAMPLE (Con't) SHEET 5 OF 18

```
LDB T35PR
0473 34434 064351
                           CPA ZOUTH
                                         IF OUTPUT WAIT,
      34435 054474
0174
                           JMP SCH23
                                         GO SET HIM UP.
      34436 @20402
D075
     34437 002362
                           SZA
                                          IF NOT IDLE WEVE ALREADY
B476
                           JMP SCH15
     34440 020507
                                           QUEUED HIM.
0 v. 7 7
0678 TTY35 INFUT CUMPANU
B 479 *
0080 34441 060353
                          LDA 13582
                                         POINTER TO FIRST CHARACTER
                          STA SHEED
                                          OF CONSOLE BUFFER.
     34442 070070
Un81
                          LDA T35ND
     34443 060354
                                         POINTER TO END OF
0482
                           STA SCHL
                                          CONSOLE BUFFER.
     34444 078871
6683
      34445 060531
                           LDA .+408
                                          INITIALIZE COMMAND
ยผล4
                           STA SCHP
     34446 070074
                                          HOLDER.
Q 485
     34447 017162
                           JSB SCOM
                                         GET COMMAND.
Ø486
0087
     34452 020470
                           JMP SCH17
                                         BLANK LINE
                           JMP SCH18
                                         ERROR
0088 34451 025472
                           JMP SCH18
                                         ERROR
0089 34452 020472
MAGNA
BU91* SET UP QUEUE ENTRY FOR CONSOLE.
0092*
0093 34453 060070
                           LDA SBHED
                                         SET POINTER FOR
                                          T35CR.
     34454 070044
                           STA T35CP
9 to 9 4
    34455 060531
                           LDA .+4BB
                                          SET UP LAZT CHAR
Ø w 9 5
                           STA T35LC
0096 34456 070045
                                          AS BLANK
0097*
0098 34457 064263
                           LDA #LIB#
                                         SET RESTART ADDRESS.
                           STA TJ5RS
      34468 070346
0099
     34461 846467
                           ADB SCH19
                                         SET PROGRAM STATUS
0100
     34462 074347 SCH23 STB T35ST
                                          TYPE.
0101
                           LDA .+2
STA T35PR
0102
     34463 066473
                                          SET PRIORITY.
    34464 070351
0103
0104 34465 064352
                           LDB T35LN
                                         GO INSERT IN QUEUE
0105 34466 026152
                           JMP SCH3
D106 34467 142127 SCH19 ABS -COM2+XSYNT-.+1
0107 34470 060374 SCH17 LDA ONEI OUTPU
                                         OUTPUT LINE FEED
     34471 002001
0148
                           RSS
     34472 060475 SCH18 LDA .+4
                                         OUTPUT ERROR MESSAGR
0169
     34473 000400
0110
                           CLB
     34474 074357
                           STB 135F2
0111
     34475 064375
0112
                           LDB LEH
0113 34476 026411
                           JMP SCH21
0114* START OF SYSTEM
0115 34477 060474 TSB
                                         START CLOCK COUNTING IN
                           LDA .+3
     34500 102612
                           OTA CLOCK
                                         100 MS UNITS.
Ø116
£117
     34501 103712
                           STC CLOCK,C
                                          START CLOCK AND
0118
     34502 103710
                           STC PPX,C
                                          MPX.
     34503 066477
0119
                           LDA .+6
                                          START SYSTEM
                           LDB READY
0120
     34504 064311
                                         TELETYPE BY OUTPUTTING
0121
      34505 114270
                           JSB TTY35,1
                                           READY MESSAGE.
                           JMP SCH1
     34506 026177
0122
@124*
0125*
C126 34507 01/240 SCH15 JSB SWAPR
                                         CHECK FOR ANYTHING TO DO. IF NOT
                                          SWAPR WILL GO TO SCH1 AGAIN.
0127*
0128 *
                                          IT WILL RETURN HERE IF THERE IS
```

FIGURE 21. SCHEDULER EXAMPLE (Con't) SHEET 6 OF 18

AN EXECUTABLE PROGRAM IN COKE.

```
THE PRUGRAM TO RUN IS AT THE HEAD OF THE QUEUE, AND SWAPR HAS
0131*
         GUARANTEEU THAT IT IS IN CORE. THE FOLLOWING SECTION OF CODE
0132*
         SETS IT UP TO RUN, AND ALSO SETS UP THE CLOCK DRIVER SO THAT
0133*
         FUTURE INTERRUPTS WILL GO BACK INTO THE SCHEDULER.
0134*
                                        INHIBIT INTERRUPT.
0136 34510 103100
                         CLF @
                                        RESTORE A <JMP SCHED> IN THE
                         LDA CLC2
     34511 062123
0137
                                         CLOCK INTERRUPT ROUTINE.
     34512 072120
                         STA CLC1
0138
     34513 060321
                         LDA PLINK+1
0139
                                        GET PRIORITY OF PROGRAM.
     34514 602004
                         INA
0140
      34515 164000
                         LDB e,I
0141
                                        IF PRIORITY IS 2, CHANGE IT TO
      34516 054473
                         CPB .+2
0142
                                        ZERO SO IT DOESN'T GET INTERRUPTE
     34517 006400
                         CLB
0143
     34520 174000
                         STB E, I
0144
                         ADA .+?RSTR-?PLEV GET RESTART ADDRESS
0145 34521 040466
                                         IF NOT 0, PUT IT IN PREG
8146 34522 164000
                          LDB 2,I
                                         TO START UP PROPERLY.
                          SZB
     34523 000002
0147
    34524 075243
                          STE PREG
0148
                                        PUT O INTO TABLE IN ANY CASE
     34525 000400
                          CLB
0149
     34526 174000
34527 074254
                          STB 2, I
0150
                                        SET TO SAY NO TIMING.
                          STB TIMEF
0151
     34530 002004
                                        GET PROGRAM STATUS.
                         INA
0152
0153 34531 164000
                         LDB e,I
                          ADA .+?CLOC-?STAT SET TIMER POINTER.
     34532 040467
0154
                         STA TIMER
     34533 070067
0155
                                        IF STATUS IS RUN, SET
                         CPB XSYNT+1
     34534 054476
0156
                                         TIMEFLAG FOR CLOCKING.
     34535 034254
                          ISZ TIMEF
Ø157
      34536 061242
                          LDA EREG
                                        RESTORE E
0158
                                        AND OVERFLOW
     34537 103101
                          CLO
8159
     34540 000036
                                          REGISTERS.
                          SLA, ELA
0160
     34541 102101
                          STO
0161
                          LDA AREG
                                        RESTORE A AND
     34542 061240
0162
                                          B REG.
     34543 Ø65241
                          LDB EREG
0163
                                        ENABLE INTERRUPT AND
                          STF 2
0164
     34544 102100
                          JMP PREG, I
                                        TRANSFER TO PROGRAM.
     34545 125243
B165
Ø166*
0167* THIS SECTION ACTUALLY PROCESSES A TTO ENTRY. THERE ARE SEVERAL
0168* KINDS OF ENTRIES WHICH MAY BE CLASSIFIED AS FOLLOWS!
0169*
          1) ABORT - THIS IS INDICATED BY THE TELETYPE STATUS BEING
D170*
            -1. THE ACTION TAKEN IS TO STOP THE PROGRAM (IF IT 18
0171*
             IN THE GUEUE), AND TO INITIATE THE ABORT MESSAGE.
0172*
0173*
          2) OUTPUT TERMINATE - THIS IS INDICATED BY THE STATUS BEING
0174*
             MUUTH. THE TTO ENTRY REALLY MEANS THAT THE CUTPUT BUFFER
0175*
             IS ALMOST EMPTY. THE PROGRAM IS PLACED BACK ON THE QUEUE
0175*
             ACCURDING TO ITS PRIORITY.
0177*
0178*
          3) INPUT - THIS IS INDICATED BY STATUS BEING XINPT. IT INDI-
Ø179*
             CATES THAT A USER PROGRAM OR SYSTEM PROGRAM THAT HAS
0180*
             REQUESTED INPUT HAS GOTTEN IT. THE PROGRAM IS PLACED IN
£181*
             THE QUELE.
0182*
0153*
```

FIGURE 21. SCHEDULER EXAMPLE (Con't) SHEET 7 OF 18

```
4) CUMMAND - WHEN STATUS IS XIDLE, EITHER A COMMAND OR
 9184 *
               A SYNIAX STATEMENT HAS BEEN ENTERED. THESE CAN BE DISTIN-GUISHED BY THE FIRST NON BLANK INPUT CHARACTER, WHICH IS
 0165*
 0186*
 0167 *
               A UIGII CNLY IF SYNTAX HAS BEEN ENTERED.
 0188*
       34546 064300 SCH5 LDB ETTYN
-0189
                                            COMPUTE ADDRESS OF TABLE
 0190
       34547 006033
                            SLA, RAR
                                            ENTRY FOR SIGNALLING TELETYPE.
                                            FOUND. FIND BIT IN MPCOM WHICH
 0191
       34550 025553
                             JMP *+3-
                           ADB .+TTY 1-TTY00
 0142
       34551 044523
                                                     INDICATES SERVICE REQUIRED
46132
                                        PORT 5
       34552 020547
                            \JMP *=3
                             STB TTG -
       34553 074072
                                            SAVE ADDRESS IN TTU
00194
                                                                   B=33223 BASE PAGE
       34534 044506
                             ADB .+710
                                            STORE ID ADDRESS IN
D 195
       34555 074973
                             STB SCHID
                                             SCHID.
 0196
                                                                   ID ADDR TO BASE PAGE
 0197
       34556 103100
                             CLF &
                                            INHIBIT MULTIPLEXOR.
       34557 044457
                             ADB .+7MASK-71D
 8919
                                                              B = 33226
                             LDA 1,I
                                            CLEAR MPCOM BIT.
 0199
       34560 160001
       34561 020234
                             XOR MPCOM
 6200
       34562 070234
 0201
                             STA MPCOM
                                                           MPCOM=000000
       34563 044515
 8202
                             ADB .+?STAT-?MASK B=>STATUS.
 0203
       34564 160001
                             LDA 1, I
                                            GET STATUS IN A. A=Ø IDLE
       34565 848465
 0204
                             ADA .-4
                                            MAKE SURE STATUS A=-4
       34566 002021
 0245
                             SSA, RSS
                                              18 < 4.
 0206
       34567 026324
                            JMP 8CH54
                                            IGNORE OTHERWISE.
       34578 042572
 0207
                            ADA ++2
                                            BRANCH TO SECTION TO HANDLE REQU A=34575
       34571 124000
 0208
                             JMP &, I
       34572 034601
                             DEF ++7
 8209
      34573 020636
                             JMP 8CH8
                                            SPECIAL DISCONNECT.
 0216
                             JMP SCH7
 0211
       34574 026612
                                            ABORT
 0212
      34575 020651
                             JMP SCH6
                                            COMMAND
 0213
       34576 026324
                             JMP SCH5A
                                            ABORTING.
       34577 000000
 0214
                             NOP
                                            INPUT
 0215×
                                                  → P 209/#18 CHECK FOR COMMAND
 0216+ CODE TO HANDLE INPUT OR OUTPUT.
 0217*
0218
      34600 044473
                             ADB .+2
                                            B=>PLEV
 0219
      34601 160001
                            LDA 1,I
                                            GET ACTUAL STATUS
 8220
       34602 044467
                             ADB .-2
                                            B=>STATUS.
 0221
       34003 170801
                             STA 1,1
                                            SET ACTUAL STATUS
 0222
       34604 102100
                             STF 6
 0223
       34695 044473
                             ADB .+2
                                            B=>PLEV
       34606 002400
 0224
                            CLA
                                            SET PRIORITY TO Ø
       34607 170001
0225
                            STA 1, I
       34618 044470
0226
                                            GO INSERT USER IN
                            ADH .-1
                             JMP SCH3
0227
      34611 026152
                                            QUEUE.
0228*
8229* CODE TO HANGLE ABORT
0230 *
0231
      34612 102100 SCH7
                            STF @
0232
       34613 006004
                            INB
                                            B=>LINK
      34614 017461
6233
                            JSB LEQUE
                                            REMOVE USER FROM QUEUE.
      34515 064072
0234
                            LDB TTQ
                                            CHANGE STATUS
0235
      34616 044520
                            ADB .+?STAT
      34617 064472
0236
                            LDA XABOR
                                            TO ABORTING
0237
       34520 170001
                            STA 1,1
C238
      34521 003400
                            CCA
                                            SET CHARACTER COUNT TO -1 TO
0239
       34622 044446
                            ADB .+?CCNT-7STAT
624U
      34623 170001
                            STA 1,1
                                           TERMINATE ANY CURRENT OUTPUT.
```

FIGURE 21. SCHEDULER EXAMPLE (Con't) SHEET 8 OF 18

```
LDB TTG
                                        PRINT ABORT
0241 34624 054072
                                         MESSAGE.
     34625 060461
                          LDA .-8
0242
     34526 01/144
                          JSH TYPE
0243
                          OCT 6412
                                        CRLF
      34627 000412
0244
                          ASC 2,STOP
      34630 051524
0245
                          OCT 6412
0246
      34632 000412
                                        CRLE
                          LDB TTG
                                         SCRATCH IF SHELLO IS RUNNING.
     34633 064472
0247
     34634 017640
                          JSB FTEST
0248
0249
     34635 026324
                           JMP SCH54
0250*
8251* CODE TO SET UP FORCED DISCONNECT.
8252*
                          ADB .+?LADR-?STAT
0253 34636 044454 SCH8
                                       GET POINTER TO USER'S LADER. [F]
      34637 160001
                          LDA 1,I
0254
                                         POINTS TO MODIFIED WORD.
                                                                       IFI
      34640 840466
0255
                           ADA .-3
      34641 878871
                                         SAVE IN SCHL.
                                                                       (F)
                          STA SCHL
0256
                                         A POINTS TO JMP ++3.
                                                                       (F)
     34642 002064
                          INA
Ø257
                                                                       [F]
                                         LOAD "JMP ++3" AND STORE IN
0258
     34643 160000
                          LDA C.I
                                         LADDR. THIS SHUTS OUT MPX.
SET A TO POINT AT RESTART
                                                                       (F)
     34544 170071
                          STA SCHL, I
Ø259
                                                                       (F)
     34645 060001
2260
                          LDA 1
                          ADA .+?RSTR-?LADR ADDRESS.
                                                                       (F)
     34646 040505
0261
                                                                       [F]
     34647 102100
                          STF @
0262
                                        GO SET UP STARTING INFG.
0263 34650 02/072
                           JMP SCH61
0264*
Ø265*
0266* COUE TO HANDLE COMMANDS.
                                     B ⇒ STAT
0267*
                                      ALLOW MULTIPLEXOR INTERRUPTS AGAIN
0268 34551 102100 SCH6 STF 0
                           ADB .+?BHED-?STAT B=>BUFFER HEAD. B=33232
0269
     34652 044451
                                       GET RUFFER HEAD.
      34653 160001
0270
                           LDA 1, I
      34654 070070
                           STA SHED
                                         INITIALIZE BUFFER POINTER BASE PAGE
0271
      34655 044473
                                         B=>BUFFER END
0272
                           ADB .+2
                                                             ON BASE PAGE
      34656 074071
                           STB SCHL
0273
      34657 902400 SCH24 CLA
                                         INITIALIZE SCHP TO HOLD
0274
                           STA SCHP
                                         CHARACTERS.
                                                                ON BASE PAGE
0275
     34660 074074
                          JSB SCOM
                                         INTERPRET COMMAND
      34661 017162
0276
                                         EMPTY LINE.
0277
      34652 020744 VARIABLEJMP SCHJE
      34663 020606 RETURN JMP SCH9
34664 020734 JMP EHERN
                                         FIRST CARACTER A DIGIT
0278
0279
                                         INVALID COMMAND.
                         JMP SCH11
9280 34065 926742
                                         COMMAND IS OK.
          RETURN HELLO
                                          P213/#18 GET CHARACTER
8281 *
0282* THE FIRST CHARACTER IS A DIGIT. THIS MEANS THE LINE IS SYNTAX AND
B283* WE HAVE TO QUEUE IT AS SUCH.
                                        ➤ P 210/#18
0284*
$285 34666 $64871 SCH9 LDE SCHL
                                         GET TABLE POINTER AGAIN.
      34667 044511
                           ADB .+?PLEV-?BEND B=>PRIORITY
0266
      34670 002400
                                         SET PRIORITY TO 0
0287
                           CLA
                           CPA SCHIE, I
0288
     34671 150073
                                         IF NO ID, GO LOG IN.
     34672 026746
                           JMP SCH25
0289
     34673 170001
0290
                           STA 1, I
                           ADB .+?RSTR-?PLEV SET UP STARTING ADDRESS
     34674 044466
0291
      34675 060661
                           LDA SYNTA
0292
                                             FOR SYNTAX
     34676 170001
0293
                           STA 1,1
     34577 044472
0244
                          ADB .+?STAT-?RSTR
0295 34790 066475
                          LDA XSYNT
                                        SET STATUS TO
                           STA 1,I
0296
     34741 174061
                                          SYNTAX.
0297 34702 000004
                           INF
                                         GO INSERT IN QUEUE.
```

FIGURE 21. SCHEDULER EXAMPLE (Con't) SHEET 9 OF 18

```
8298 34743 826152
                              JMP SCH3
  0299
                                            TEST FOR TAPE MODE IF NULL LINE.
        34704 064072 SCH30 LDB TT0
  0360
        34705 044474
                             ADB .+?MASK
  0301
  6302
        34706 060253
                             LDA TAPEF
        34707 110001
                             AND 1, I
  0303
        34710 002003
  B364
                             SZA, RSS
                             JMP SCH20
        34711 026730
                                           NO TAPE--GO EMIT LINE FEED.
  0305
  0306
        34712 103100
                             CLF @
                                            INHIBIT INTERRUPT.
  0307
        34713 064070
                             LDR SBHED
                                            SET SBHED TO POINT AT 1ST CHAR
        34714 000004
                                             OF NEXT BUFFER.
  3020
                              INB
        34715 154071
                             CPB SCHL, I
  0309
        34716 044465
  0310
                             ADB PHLEN
  0311
        34717 874478
                             STB SBHED
        34720 060071
  0312
                             LDA SCHL
                                           SET BHED ALSO.
        34721 848467
  0313
                             ADA .-2
  0314
        34722 174000
                             STB e, I
        34723 040470
  0315
                             ADA .-1
                                            TEST FOR CONTINUATION.
        34724 154000
  0316
                             CPB 0,I
  8317
        34725 020324
                             JMP SCH54
                                            NO CONTINUATION.
  0318
        34726 102160
                             STF @
                                            INTERRUPT BACK ON.
  0319
        34727 926657
                             JMP SCH24
                                            GO SCAN NEXT BUFFER.
  0320*
        34730 060503 SCH20 LDA .+128
  0321
                                            OUTPUT A LINE FEED.
  0322
        34731 964072
                             LDB TTG
        34732 114323
  2323
                             JSB OUTCH, I
       34733 026324
  0324
                             JMP SCH54
  Ø325*
  0326* CUME HERE WHEN ANY ILLEGAL INPUT IS FOUND.
  Ø327*
                     EFERR LDA .-6
  0328
        34734 060463
  0329
        34735 017144
                             JSB TYPE
        34736 885877
  0330
                             OCT 5077,37477,6412
                       EF
                                                     (333)
        34741 926324
                             JMP SCH54
  0331
  0332*
  8333 COME HERE WHEN A LEGITIMATE COMMAND IS FOUND
  0334*
                                  B = 35671
 Ø335
        34742 160073 SCH11 LDA SCHID, I
                                            PROCESS COMMAND ONLY IF ID= FROM TTY
 0336
        34743 002003
                             SZA, RSS
                                             ID#A OR
                                                                          TABLE
        34744 Ø56761
 0337
                             CPB FI
                                              HELLO COMMAND.
                      SCH25 LDA .-16
 0338
        34745 026763
£ 9339
        34746 060451
                                            PRINT LOG IN MESSAGE
  0340
        34747 01/144
                             JSB TYPE
  C341
        34750 090120
                             OCT 5120
                                            IF-P
  0342
        34751 046105
                             ASC E, LEASE LOG IN
                             OCT 6412
  0343
        34757 006412
  0344
        34760 020324
                             JMP SCH54
  0345
        34761 035671
                      ١٦
                             DEF FELLO
  C346
                      LTAPE DEF CTAPE
SCH22 LDB TTG
        34762 035661
  0347
        34763 064072
                                            IF COMMAND, CLEAR TAPE FLAG.B=33223
  0348
        34754 844474
                             ADB .+?MASK
                                              B = 33226
  0349
        34765 103100
                                             HOLD OFF INTERRUPTS
                             CLF &
  0350
        34766 160001
                             LDA 1,I
                                            IF TAPEF AND
                                                            A=000040
        34767 010253
  0351
                             AND TAPER
                                             INPTF ARE
  0352
        34772 010250
                             AND INPTE
                                              BOTH SET,
  6353
        34771 002062
                             SZA
        34772 020734
  0354
                             JMP EHERR
                                             KILL HIM.
```

FIGURE 21. SCHEDULER EXAMPLE (Con't) SHEET 10 OF 18

```
PAGE U211 #18 SCHEDLLER
                                          B ⇒MASK
                                          A=000040
      34773 160001
                           LDA 1,1
0355
                                           BLOCK FURTHER
                            IOR INPTF
      34774 636256
£356
                                                      INPTF=000040
      34775 074250
                            STA INPTF
                                       INPT. IN ALLOW INTERRUPTS
0357
      34776 102100
                            STF @
0358
                                        A=000040
      34777 160001
                            LDA 1, I
0359
                                       A=177737
      35000 003000
                            CMA
9369
                                               WOULD HAVE REMOVED FROM
                            AND TAPEF
      35001 016253
0361
                                               TAPE MODE
                            STA TAPEF
      35002 070253
9362
                                           TEST FOR HELLO, BYE, OR SCRATCH.
      35003 160074
                            LDA SCHP, I
0363
                                           OK TO PROCEDE IF ANY
0364
      35004 053671
                            CPA HELLO
                           JMP SCH27
                                           OF THESE.
0365
      35005 02/021
                            CPA SCR
      35366 053653
0366
                            JMP SCH27
£367
      35007 027021
                            CPA BYE
      35010 053672
0368
                            JMP SCH27
      35911 02/021
0369
                                           TEST FOR ANY TAPE ERRORS.
      35212 150661
                            LDA 1, I
0370
                            AND TERR
      35013 010047
0371
      35014 002063
                            SZA, RSS
0372
                                           NO TAPE ERRORS -- CONTINUE.
      35015 027025
                            JMP SCH26
0373
0374*
                                           OTHERWISE, SET UP FOR EXECU-
9375
      35016 062762
                            LDA LTAPK
                            STA SCHP
                                            TION OF TAPE ERROR
      35317 076674
6370
      35/20 027025
                            JMP SCH26
                                             PRINTOUT ROUTINE.
Ø377
0378*
                                           IF HELLO, BYE OR SCRATCH, A=000040
      35021 160001
                     SC+27
                            LDA 1, I
0379
                                            CLEAR TAPE ERROR BIT. A=177737
      35322 093000
                            CMA
0380
                            AND TERR
      35023 010047
Ø381
                            STA TERR
                                             AND PROCEDE.
      35024 070047
0382
                                                  B = 33241
                     SCH26 ADB .+?NAME-?MASK
Ø383
      35025 044564
                                                            A=000000
                                           TEST FOR
C384
      35026 160001
                            LDA 1, I
                            SSA, RSS
                                           RUN-ONLY PROGRAM.
      35027 002021
0385
      35430 027040
                                           NOT RUN-ONLY.
                           JMP SCH28
@386
      35031 160074
                                           IF RUN-ONLY, DON'T
                            LDA SCHP, I
0387
      35032 053665
                            CPA SAVE
                                            ALLOW THESE
0388
      35033 027052
                            JMP SCH29
                                             COMMANDS.
0389
                            CPA LIS
0390
      35034 053657
      35035 027052
                            JMP SCH29
0391
      35036 053660
                            CPA PUN
0392
      35837 02/052
                            JMP SCH29
0393
0394*
                                                B = 33232
      35440 044462
                      5CH28
                            ADB .+?BHED-?NAME
0395
      35841 060070
                            LDA SBHED
                                           SET RUFFER POINTER.
0396
                                            WRITE INTO TTY TAPE
      35042 170001
                            STA 1, I
Ø397
      35043 064074
                            LDB SCHP
                                                             A = 35671
0398
      35944 044407
                                           TEST FOR TYPE 1 COMMAND. B=000013
                            ADB MCOM2
0399
                            SSB, RSS
0400
      35045 000021
                            JMP SCH12
                                           NOT TYPE I.
8461
      35046 027062
                                           GET STARTING ADDRESS FOR COMMAND
                            ADB ++2
      35047 04/051
0402
0443
      35050 124001
                            JMP 1.I
                                            PROCESSOR AND GO THERE.
                            DEF COM5-COM1+COM2.I
0404
      35351 135735
                      5C#29 LDA .- 10
      35452 060457
0465
                            JSP TYPE
      35053 017144
6466
      35254 095122
                            OCT 5122
                                           LF-R
0427
2433
      35255 052516
                            ASC 3, UN ONL
SANG
       35806 054415
                            OCT 54415
                                           Y-CR
0410
       35061 026730
                            JMP SCH2W
0411+
                           NEXT PAGE
```

FIGURE 21. SCHEDULER EXAMPLE (Con't) SHEET 11 OF 18

```
0412* TYPE II AND III COMMANUS
0413*
0414 35362 044476
                     SCH12 ADB XSYNT+1
                                         DETERMINE PROGRAM STATUS. B=000020
U415
     35363 866472
                           LDA TTO
                                           A=33223
0416
     35054 040520
                           AUA .+7STAT
                                            A = 33252
      35365 174860
                                           STATUS=20
8417
                           STB 2.1
                           ADA .+?RSTR-?STAT A=>RESTART ADDRESS A=33251
0418
      35266 046470
      35067 044460
0419
                           ADB .+.-XSYNT+COM2-COM3-1
                                                        TYPE 11 OR 111 ??
0424
      35070 000020
                           SSB
                                                                      B=000007
      35671 02/103
0421
                           JMP SCH13
                                         TYPE II COMMAND
      35072 064263 SCH61 LDB #LIB#
                                         TYPE III COMMANDS HAVE A STAN-
4422
0423
     35373 174000
                                          DARD STARTING ADDRESS AND B=37300
                           STB e,I
     35974 064473
3424
                           LDB .+2
                                           PRIORITY 2.
0425
     35075 040474 SCH14 ADA .+?PLEV-?RSTR
                                                         A = 33254
     35976 174000
0426
                           STB 0,1
                                           PLEV=2
0427
      35077 007460
                                         GET LINK POINTER IN B AND GO
                           CCB
     35100 044000
0428
                           ADB @
                                         TO INSERT INTO QUEUE. B=33253
      35101 020152
                          JMP SCH3 -
0429
                                            → P202/#17
0430
      35102 035741
                           DEF
                               CUM3+COM5-COM1
      35103 047102 SCH13 ADB +-1
0431
                                         GET STARTING ADDRESS FOR TYPE
0432 35104 164041
                           LDB 1,1
                                         II COMMANDS.
0433 35105 174000
                           STB E, I
0434 35106 000404
                                         GO SET PRIORITY TO 1
                           CLB, INB
0435 35107 027075
                           JMP SCH14
8436*
C437* "SCHATCH" COMMAND
8438*
0439 35110 064072 #SCR
                          LDB TTU
                                         B=>TTY TABLE.
0440 35111 017113
                           JSB SCRAT
                                         PERFORM SCRATCH FUNCTION.
0441
      35112 026730
                           JMP SCH28
                                         TERMINATE.
04424
6443 35113 890000 SCRAT NOP
                                         SCRATCH A PROGRAM (B=>USERS TTY)
                          LDA PBUFF
0444
     35114 060440
                                         IF MAIN=B, SET PBPTR.
0445
      35115 054242
                           CPB MAIN
0446
      35116 070046
                           STA PUPTR
     35117 044505
0447
                           ADB .+?PROG
                                         B=>PROGEND
0448 35120 170001
                           STA 1, I
                                         RESET TABLE (PROG)
0449 35121 844473
                          ADB .+?NAME-?PROG
                                               CLEAR
Q450 35122 160001
                          LDA 1, I
                                          READ-ONLY BIT.
0451
     35123 001665
                          ELA, CLE, ERA
                                           BIT.
8452
     35124 170001
                          STA 1,1
0453 35125 127113
                          JMP SCRAT.I
0454*
8455* "TAPE" CUMMAND
0456*
0457
     35126 Ø64072 #TAP
                          LDB TIG
                                         B=>TTY TABLE.
0458
     35127 044474
                          ADB .+?MASK
                                         B=>MASK
0459
     35130 960253
                          LDA TAPEF
                                         SET TAPE BIT.
0460
      35131 130001
                          IOR 1, I
      35132 070253 #TAP1 STA TAPEF
6461
0462
     35133 026730
                                         TERMINATE.
                          JMP SCH20
0463*
C464*
0465 35134 000000
                   #LTEN NOP
                                         CONVERT A # FROM 0-99 TO ASCII.
     35135 000400
0466
                          CLB
                                         GET FIRST DIGIT IN A,
0467
      35136 100400
                          DIV .+10
                                         SECOND IN B.
0468
    35140 001727
                          ALF, ALF
                                         POSITION FIRST ON LEFT,
```

```
0469 35141 040001
                                     ADA 1
                                                     ADD IN SECOND,
        0470 35142 040315
                                     ADA ASCOL
                                                       AUD IN ASCII BITS.
        0471
               35143 12/134
                                     JMP #LTEN, I
                                                        RETURN.
        0472*
        0473* TYPE SENUS AN ENTIRE STRING TO A TELETYPE. IT IS CALLED AS FOLLOWS
                   A = + # UF CHARS - + MUST END ON RIGHT HALF OF WORD
        9474*
        8475*
                   JSB TYPE
        0476*
                   <CHAR STRING>
                   RETURN
        0477*
              35144 000000
        0479
                              TYPE NOP
        6480
               35145 073161
                                     STA TYPET
                                                     SAVE COUNTER
               35146 163144
                              TYPEL LDA TYPE, 1
                                                     GET WORD CONTAINING CHAR.
        0401
        0482
               35147 067161
                                     LDB TYPET
                                                     GET COUNT IN B.
        0483
              35150 000011
                                     SLB, HSS
                                                     IF COUNT IS EVEN, TAKE HIGH
        0484
               35151 001727
                                     ALF, ALF
                                                      CHARI
                                                     IF COUNT IS ODD,
        0485
              35152 004810
                                     SLB
              35153 03/144
                                     ISZ TYPE
        0486
                                                      BUMP TYPE.
        0487
               35154 064072
                                                     OUTPUT CHAR TO TELETYPE.
                                     LDB TTO
        04HB
              35155 114323
                                     JSB CUTCH, I
        0489
               35156 Ø37161
                                     ISZ TYPET
                                                     ANY MORE?
        0490
               35157 027146
                                     JMP TYPEL
                                                     YES.
               35160 127144
                                     JMP TYPE, I
        0491
                                                     NO.
        0492 35101 000000 TYPET NOP
        2493* SCOM SCANS A COMMAND INPUT BUFFER TO DETERMINE WHAT
        0494+ THE CUMMAND IS. THE CALLING SEWUENCE TO SCOM IS:
        8495+
        8496*
                   JSB SCUM
        £497 *
                   «KETURN IF BLANK LINE»
        C498*
                   <RETURN IF FIRST CHARACTER A DIGIT>
        0400*
                   <RETURN IF NO LEGAL COMMAND>
                   <RETURN IF COMMAND FCUNE--B=COMMAND ADDRESS>
        0500+
        05V1*
        B562* SCUM ASSUMES THAT BEFORE IT IS CALLED, SBHED AND
        8503* SCHL ARE INITIALIZED AS REQUIRED BY SCHAR,, AND
        0504+ SCHP=U FUR NURMAL USERS AND OCT40 FOR CONSOLE.
              35162 000000 SCCM NOP PREG=34662
      ₩ 0506
                                                     ENTRY POINT.
               35163 064466
                                                    INITIALIZE CHAR. COUNT TO -3
P217/#18
ON BASE
        8507
                                     LDB .-3
        65r8
               35164 074075
                                     STH SCNT
                                                                            ON BASE PAGE
        D509
               35165 017437
                                     JSB SCHAR
                                                     GET A CHARACTER.
        0510
               35166 127162 RETURN JMP SCCM, I
                                                     NOT THERE-BLANK LINE.
              35167 037162 \xrightarrow{\text{RETORN}} ISZ SCCM34663 BUMP SCOM TO POINT AT DIGIT HEI. 35170 040434 ^{\text{A}=110"\text{H"}}ADA M608^{\text{A}=030} Test for first char a digit.
        0511
        0512
        0513
               35171 002020
                                     SSA
                                                     AUTOMATIC FAILURE IF
        0514
              35172 037162
                                    ISZ SCOM
                                                      < ASCO
                                   ADA .-10
                                                A=000018
        0515
              35173 040457
        0516
              35174 002020
                                    SSA
                                                     IF <= ASC9, RETURN TO P+2 IF A
        0517
              35175 127162
                                    JMP SCOM, I
                                                     DIGIT, P+3 IF NOT.
SCOM=34664
                                   18Z SCOM
        0518
              35176 037162
        0519
              35177 046436
                                     ADA M418
                                                     TEST FOR LETTER. A=177757
              35240 002021
       , 852V
2nJ
                              SCCMB, SSA, RSS
       8521
              35201 127162
                                    JMP SCCM, I
CHAR
                                                     NOT ALETTER.
                                   ADA .+328
        0522
              35242 040523
                                                                        "H"
                                                       A = 000007
       5560
              35203 602020
                                     SSA
       ₽524
              35204 12/162
                                     JMP SCOM, I
                                                     NOT A LETTER.
```

FIGURE 21. SCHEDULER EXAMPLE (Con't) SHEET 13 OF 18

```
PAGE W214 #18 SCHEDLLER
                                           H=00007, HE=000344, HEL=016213
TEST FOR 3 LETTERS IN. SCNT=-2
      35205 030074
                            LOK SCHP
  0525
        35236 034075
                             ISZ SCNT
  Ø526
                             ALF, SLA, RAL) NO--ROTATE FOR NEXT ONE.
        35247 001732
  Ø527
                            JMP SCOMA YES--GO TO SEARCH TABLE.
        35210 027216
  Ø528
                           STA SCHP
        35211 079074
  Ø529
                            JSB SCHAR
        35212 01/437
                                           GET NEXT CHARACTER
  0530
                                        FAIL. P217/#18 FOR 2nd CHAR
        35213 12/162Return
                             JMP SCOM, I
  0531
       35214 040422 A-105"E JMP SCOMB P213/#18
  0532
  0533
  9534+ SEARCH CUMMAND TABLE +
                                           B=>TABLE 	← —A=016213#HEL"
        35216 064412 SCOMA LDB SCOM1
  0535
        35217 002020
                            SSA
                                                            B = 35653
  0536
        35220 044525
                            ADB .+COM4-COM1
  8537
                      SCOMD CPA 1.1
       35221 150001
  0538
  8539
       35222 827227
                           JMP SCOMC
                                           COMMAND FOUND
                                                           - A COMPARES WITH "HEL"
       35223 054413
                            CPB 8COM5
  0540
                                        ILLEGAL COMMAND
  0541
        35224 127162
                             JMP SCOM, I
        35225 000004
                            INB
  0542
                                           TRY NEXT COMMAND
        35226 027221
                           V JMP SCOME
  0543
                      SCOMC ISZ SCOM
                                           RETURN O.K. SCOM=34665
  9544
        35227 037162
        35230 074074
                                           SAVE ADDRESS OF COMMAND. B=35671
  0545
                             STB SCHP
        35231 017437
                            JSB SCHAR __
  8546
                                           SCAN SEARCH CHARACTERS ONE BY ONE
                             JMP • • 4 ReturnFOR CR UNTIL CARRIAGE RETURN
        35232 027236
  8547
                             CPA .+558 TOR DASH.
  0548
        35233 050546
  0549
        35234 002001
                            RSS -
                           JMP +-4
        35235 027231
  0550
                                         CARRIAGE
RETURN
                             LDB SCHP
       35236 064074
  0551
                                                B=35671 ADDR OF COMMAND
                            JMP SCOM, I FOUND SCOM=34665
  0552 35237 127162
                                                       P209/#18
  Ø553*
  D554* THE SWAPK ROUTINE IS CALLED FROM VARIOUS POINTS IN THE SCHEDULER
  05554 IN ORDER TO DETERMINE IF A PROGRAM IS READY TO RUN. IT IS ALSO
  0556+ CALLED WHENEVER THE QUEUE IS UPDATED. THE FUNCTION OF SWAPR IS TO
  9557* DETERMINE IF THERE IS A PROGRAM ON THE QUEUE, AND IF SO, IS THE
  0558 PROGRAM AT THE FEAD OF THE QUEUE READY TO RUN. IF SAID PROGRAM IS
  8559* NOT READY, SWAPE INITIATES THE NECESSARY DISC TRANSFERS. SWAPE IN-
  9560+ DICATES WHETHER A PROGRAM CAN BE RUN OR NOT AS FOLLOWS:
  Ø561*
  Ø562*
            READY
                    * NORMAL RETURN
  0563*
            NOT READY: TRANSFER TO SCHI
        35240 800000 SHAPR NOP
                                     PREG=34177
9565
                                                       RETURN TO SCHI
  Ø566
        35241 060247
                             LDA ENDSK
                                           TEST FOR DISC BUSY.
  0567
        35242 002002
                            SZA
        35243 026177
  Ø568
                            JMP SCH1
                                           DISC BUSY -- THEREFORE, NOT READY.
N 0569
        35244 864321
                           LDB MLINK+1
                                           GET FIRST QUEUE ENTRY.
                                                                     ASSUME WE
0570
                                           TEST FOR QUEUE EMPTY.
        J5245 054320
                            CPB MLINK
                                                                      ARE TOP OF
A 0571
        35246 026177
                            JMP SCH1
                                           EMPTY -- NOTHING TO DO.
                                                                       QUEUE
                           LDA LOGCT
  0572
        35247 064332
                                           IF CONSOLE AND THERE
  0573
        35250 030356
                                           IS CURRENT OR
                             IOR T35F1
  8574
        35251 054352
                             CPB 135LN
                                            IMMINENT OUTPUT TO
  0575
        35252 002003
                             SZA,RSS
                                              ASR,
                            JMP SWAP4
        35253 02/262
  0576
  P577
        35254 017461
                             JSB LEQUE
                                            SUSPEND UNTIL ITS DONE.
        35255 060347
  0578
                             LDA T35ST
  8579
                             STA T35PR
        35256 070351
  0580
       35257 060474
                             LDA ZOUTH
                              NEXT PAGE
```

FIGURE 21. SCHEDULER EXAMPLE (Con't) SHEET 14 OF 18

```
PAGE 0215 #18 SCHELLLER
                           STA T35ST
0581
      35260 070347
                     JMP SWAPR+1
6582
      35261 02/241
                                             B = 33253
0583
      35202
                           ADB .-1
      35262 044470
                                          B=>STATUS OF FIRST ENTRY.
0584
0585
      35263 160001
                           LDA 1,1
                                          A=STATUS
                                                     A=2
      35264 050467
                                          TEST FOR SPECIAL DISCONNECT.
                           CPA .-2
0586
                          LDA %SYNT+1+BYE-COM2
ADA .-5+COM2-COM3 TEST FOR TYPE IT UR III.
0587
      35265 Wow512
      35266 848468
0588
      35267 002821
                           SSA, RSS
0569
                                                A = -7
     35272 02/364
                          JMP SWAP3
                                          PROGRAM IS OF TYPE III.
0590
                          ADB .-?STAT
     35271 044442
                                          TEST FOR PROGRAM IN CORE.
8591
                          CPB MAIN
      35272 054242
6592
                          JMP SWAPE, I
      35273 12/240
0593
                                          PROGRAM PRESENT.
                          LDA MAIN
                                          FIND OUT WHAT PROGRAM IS.
      35274 060242
0594
     35275 902802
                                          IS ANY PROGRAM PRESENT?
0505
                           SZA
                          JMP SWAP1
     35276 02/313
                                          YES.
8596
                         STE MAIN
@597 35277 @74242
                                          SET MAIN TO NEW PROGRAM.
0598*
0599 * INITIATE DISC TO CORE TRANSFER
BARUS
0601 35300 044505
                           ADB .+2PROG
                                          B=>PROGRAM END LOCATION.
0602 35341 160001
                           LDA 1,I
                                          COMPUTE NUMBER OF
0603
      35302 070046
                           STA PBPTH
      35333 003000
                                           WORDS IN PROGRAM.
0604
                           CMA
0605
      35304 041236
                           ADA LSE
      35305 070303
0000
                           STA WORD
                                          STORE -LENGTH INTO WORD.
      35306 044470
35307 160001
0007
                           ADB .+?DISC-?PROG
0668
                           LDA 1, I
                                          A=DISC ADDRESS
      35310 065237
0640
                           LDB LSEI
                                          B=CORE ADDRESS
BOID
     35311 114317
                          JSB [ISC, I
                                          INITIATE DISC TRANSFER.
C611 35312 026177
                           JMP SCH1
                                          RETURN BUSY.
                                     P174/#15
                                                        INITIATE TRANSFER.
0013*
0614 INITIATE CORE TO DISC TRANSFER
                                                       THEN RETURN TO
0015*
                                                 SCHEDULER LOOP UNTIL
                                                 TRANSFER COMPLETED.
0617 35313 070001 SWAP1 STA 1
                                          B=>TABLE OF USER TO BE WRITTEN.
0018 35314 002400
                    SHAP2 CLA
                                          SET MAIN TO SAY NO USER IN
6619
      35315 070242
                           STA MAIN
                                          CORE.
      35316 044505
                           ADB .+?PROG
6029
                                          B=>PROG.END LOCATION.
      35317 060046
0621
                           LDA PUPTR
      35320 170001
0622
                           STA 1.I
0623
      35321 003000
                           CMA
      35322 041236
0624
                           ADA LSE
0625
      35323 076363
                           STA WORD
                                          STORE -LENGTH INTO WORD.
      35324 844470
0626
                           ADB .+?DISC-?PROG B=>DISC ADDRESS.
                                         GET USER DISC ADDRESS.
6527
      35325 160001
                           LDA 1,I
0028
      35326 010416
                           AND FIFSK
                                          DELETE SECTOR PART.
      35327 170001
35330 001222
0529
                           STA 1,I
0630
                           RAL, RAL
                                          GET DISC TABLE
0631
      35331 010474
                           AND .+3
                                          ADDRESS
0632
      35332 0443/7
                           ADA ZATBL
0633
      35333 160000
                           LDA V.I
                                          A=SELECT CODE FOR DISC.
6634
      35334 677161
                                         SAVE DISC ADR. LOCN.
                           STB TYPET
     35335 000400
0635
                           CLB
      35336 104050
                                         SHIFT TRACK LENGTH INTO 8.
0636
                           LSL 8
     35337 001727
0637
                           ALF, ALF
                                         GET SELECT CODE.
```

FIGURE 21. SCHEDULER EXAMPLE (Con't) SHEET 15 OF 18

NOT USED FOR THIS EXAMPLE

```
AND B77
0638 35340 01u557
0639 35341 040304
                         ADA LIAL
                                       SET UP LIA.
                                       READ DISC STATUS.
     35342 073343
                         STA ++1
C640
     35343 102500
                         LIAE
0641
                         ALF, ALF
                                       GET CURRENT SECTOR.
     35344 001727
8642
     35345 010570
                         AND 8177
0643
     35346 040473
                         ADA .+2
                                       GET POTENTIAL DEST. SECTOR.
0644
                                       GET # OF SECTORS LEFT
0645 35347 00/000
                         CMB
                                       ON TRACK.
                         ADB &
2646 35352 444460
     35351 007000
                         CMB
0647
9648 35352 995709
                                       GET # OF WDS LEFT ON
                         BLF
     35353 005222
                         RBL, RBL
                                        TRACK.
B 6: 4 Q
                                       TEST TO SEE IF THERE'S ENOUGH.
                         ADB WORD
     35354 044303
0650
                                       COMPUTE NEW DISC ADDRESS.
     35355 143161
                         ADA TYPET, I
0651
2652 35356 046020
                                       IF END OF TRACK NOT LONG ENOUGH,
                         SSB
                                        WRITE TO BEGINNING.
                         LDA TYPET, I
6653 35357 165161
                         STA TYPET, I
                                       STORE NEW DISC ADR IN TABLE.
0654 35360 173161
                                        B=CORE ADDRESS.
     35361 065236
                         LDB USE
0655
2656 35362 114317
                                       INITIATE DISC TRANSFER
                         JSB CISC, I
                         JMP SCH1
                                        AND RETURN BUSY.
0557 35363 026177
8659#
8660* TYPE III PROGRAMS
0061*
8663 35364 864242 SWAP3 LDB PAIN
                                       TEST FOR MAIN PROGRAM IN CORE
     35365 006002
                         SZB
0664
                                       GO TO WRITE OUT MAIN PROGRAM.
                         JMP SWAP2
      35366 02/314
0665
      35367 940339
                                       A=>DISC ADDRESS FOR LIB.PROG.
                         ADA LCOM6
0666
     35376 050243
                         CPA LIB
                                       IS IT IN CORE?
0667
                         JMP SWAPR, I
                                       YES -- KETURN PRESENT.
0668 35371 127240
     35372 076243
                         STA LIB
                                       IF NOT, INITIATE READ IN.
0569
                                        LENGTH OF PROGRAM =256
                         LDB M256
     35373 964416
2670
     35374 074303
                         STB WORD
9671
     35375 064262
35376 160000
                         LDB #LIBI
0672
                         LDA 2,I
0673
     35377 114317
                         JSB DISC.I
0674
                          JMP 8CH1
0675 35430 026177
8676*
0677+ ENTRY POINT FUR INPUT REQUEST
9678
     35441 000000 SCHIU NOP
8679
     35402 103100
                         CLF &
                                        INTERRUPT INHIBIT.
0680
0681 35403 964321
                         LDB FLINK+1 SET RESTART ADDRESS
8682
     35404 044467
                         ADB .+?RSTR-?LINK INTO TABLE.
                         LDA SCHIG
     35405 063401
9683
     35406 170001
                          STA 1,1
Ø684
     35407 006004
                                        GET PROGRAM TYPE
0685
                         INB
0686
     35410 160001
                          LDA 1, I
     35411 002020
                                        QUIT IF ABORT REQUEST.
C687
                          SSA
                         JMP SUSP
0688
     35412 027623
                         ADB .+?PLEV-7STAT
8689
     35413 844473
6690 35414 178881
                         STA 1, I
                                       SET INTO PLEV.
     35415 044467
                         ADB .+?STAT-?PLEV
0691
                         LDA ZINPI CHANGE STATUS TO
0692
     35416 060473
                                        INPUT WAIT.
0693
     35417 170001
                         STA 1,I
                         JMP SUSP
     35420 027623
0694
                                        GO REMOVE FROM QUEUE.
```

FIGURE 21. SCHEDULER EXAMPLE (Con't) SHEET 16 OF 18

```
2695*
     0696* ENT RY PUINT FOR TERMINATION
     Ø697*
     0698
           35421 103100 SCHEW CLF 6
           35422 064321
                                  LDB MLINK+1
                                                  SCRATCH IF
     0699
     0700 35423 054352
                                  CPB T35LN
           35424 02/430
                                  JMP ++4
     0791
           35425 044441
     0762
                                  ADB .-?LINK
                                                   THIS IS
           35426 017640
35427 064321
     6703
                                  JSB FTEST
                                                    SHELLO.
     07 vs 4
                                  LDB FLINK+1
                                                       CHANGE
                                  ADB .+?STAT-?LINK STATUS
     0765
           35430 044470
     0706
           35431 160001
                                  LDA 1, I
     0707
           35432 050470
                                                 QUIT IF ABORT REGUEST.
                                  CPA .-1
     0768
           35433 02/623
                                  JMP SUSP
           35434 002400
     0749
                                                       TO IDLE
                                  CLA
     0710 35435 170001
                                  STA 1,1
                                  JMP SUSP
     0711 35436 027623
     D712* SCHAR FEICHES THE NEXT CHARACTER FROM A BUFFER. BUFFER 0713* POINTERS FOR SCHAR ARE INITIALIZED AS FOLLOWS:
     C714*
                SBHEU=>FIRST CHARACTER IN BLFFER
                SCHL, I=>BUFFER END
     ₩715*
     8/16*
     0717* SCHAR CALLING SEQUENCE:
     0718*
                JSB SCHAR
     0719*
                RETURN HERE IF CR
RETURN HERE IF ANY OTHER CHARACTER
     0720*
     0721*
   #2723 35437 000000 SCHAH NOP PREG=35166
0724 35440 064070 LDB SHED GET POINTER.
            35441 004065
                                  CLE, ERB1 rightPOSITION AS WORD POINTER.
LDA 1, IN Left GET WORD CONTAINING CHARACTER.
     0725
     0725
           35442 16W001
     0727
                                 ELB, SLB
            35443 005610
                                                 REPOSITION POINTER AND TEST
23
           35444 002001 LEFT RSS ALF, ALF
     0728
                                                       FOR UPPER OR LOWER.
                                  AND 8377
     0729
           35446 010573
     0730
                                                 MASK DUT CHARACTER.
           35447 050506
     0731
                                                 RETURN IMMEDIATELY IF CR
                                 CPA .+15B
                                JMP SCHAR, I
           35450 127437
     0/32
     0733
           35451 006004
35452 154071
                                                 BUMP CHARACTER PGINTER.
                                 CPB SUHL,I
     0734
                                                 TEST FOR END OF BUFFER.
     8735
           35453 044405
                                 ADB MBLEN
                                                 IF END, CHANGE TO BEGINNING.
                                STB SBHED
     0/36
           35454 074070
     0737
            35455 050531
                                 CPA .+468
                                                 SKIP BLANKS
                                 JMP SCHAR+2
     0738
           35456 027441
                                ISZ SCHAR
     0739
           35457 03/437
                                                 SCHAR=35167
                                 JMP SCHAH, I
     0740
           35460 12/437
     0741*
                                                  → P213/#18
     0742+ DEWUE REMOVES A USER FROM THE QUEUE. IT IS CALLED WITH THE USER'S
     0743* LINK AUDRESS IN R.
     0744
     6745
           35461 000000 LEGUE NOP
     0746
           35462 068320
                                  LDA MLINK
                                                 GET POINTER TO FIRST ENTRY.
     0747
           35403 154660
                                 CPB R,I
                           Legi
                                                 TEST FOR ENTRY FOUND.
           35464 027471
                                  JMP [EG2
     0748
     0749
           30405 160000
                                  LDA e,I
                                                 LINK TO NEXT ENTRY.
     2750
           35466 650320
                                 CPA MLINK
                                                 TEST FOR END OF QUEUE.
     0751 35467 12/461
                                  JMP DEQUE, I
                                                 NOT ON QUEUE--RETURN.
```

FIGURE 21. SCHEDULER EXAMPLE (Con't) SHEET 17 OF 18

PAGE 0218 #18 SCHEELLER

NOT USED FOR THIS EXAMPLE

0752	35472	02/463		JMP	DEQ1	LOOP.		
0753	35471	164001	LEG2	LDB	1, I	LINK AROUND	THIS	USER.
0754	35472	174000		STB	K . I			
0755	35473	127461		JMP	DEQUE, I			

APPENDIX GLOSSARY OF TERMS

- absolute Pertaining to an address fully defined by an address word. In the Time Share system listing, an address corresponding to a label once the assembler has assigned a particular location to that label.
- accumulator A register in which data is totaled or manipulated, or temporarily stored for transfers to and from memory or external devices. Specifically the A and the B registers.
- acoustic coupler An acoustic coupler is a device which interfaces between the electrical signals of the teleprinter or CRT terminal and the audio soundwaves required by the telephone network. The telephone handset fits into a suitable receptacle and the signals are coupled acoustically. It allows connecting the terminal to the computer with a regular telephone.
- address An identification label or number that specifies a memory location or a disc sector and track.
- address modification a programming technique of changing an address referred to by a Memory Reference instruction so that each time that particular instruction is executed it will affect a different memory location.
- ADT Available Disc Table. A disc resident table that lists each portion of the disc(s) that is not currently being used and is thus available to the system.
- ASCII A standard 8 level code for the symbols, letters, numericals, etc. used in communications. The letters stand for American Standard Code for Information Interchange.
- Assembler A program which converts the symbolic source statements (i.e., using defined symbols, mnemonics, labels, and comments) into binary machine language and generates the program listing.

- Autorestart The hardware-software system that allows the Time Share operating system to save the necessary information on power failure, and then to restore the system and continue its previous activities when power is restored.
- background processing The reversion of a dataprocessing system to the execution of lower priority programs during intervals in which higher priority programs have relinquished system resources. In the Time Share system, it includes the routine multiplexor, scheduler, and console interrupts and system overhead.
- base The quantity of different digits used in a particular numbering system. The base in the binary numbering system is two; thus there are two digits (0 and 1). In the octal system (base 8), there are 7 digits (0–6). In the decimal system (base 10), there are ten digits (0–9).
- base page The lowest 2000 octal memory locations corresponding to bits 10 to 14 cleared. It can be directly addressed from any other memory page.
- Basic A language designed for time sharing applications. It characterized by simple syntax using English words and common mathematical relations. The letters stand for Beginners All-purpose Symbolic Instruction Code.
- bit A single digit in a binary number, or in the recorded representation of such a number (by hole punches, magnetic states, etc.). The digit can have one of two values 0 or 1. Bit can also refer to a specific location in a computer word (i.e., bit 5).
- buffer A register, memory location, or multiple memory locations used for intermediate storage of information used in the Time Share system. Specifically, temporary storage for input output buffering required by the data rate limitations of the terminals.

 A-1

- bus A major electrical bus connecting one or more electrical circuits. In the CPU the R-bus S-bus, and T-bus are used for data paths within the main frame.
- carry A digit, or equivalent signal, resulting from an arithmetic operation which causes a positional digit to equal or exceed the base of the effective numbering system.
- character the general term to include all symbols such as alphabetic letters, numerials, punctuation marks, mathematical operators, etc. Also, the ASCII coded representation of such symbols.
- code The binary representation of the machine language instructions appearing in core or in the listing.
- command A control word requesting the Time Share system to perform a task. Commands execution is not part of the Basic Interpreter. Some commands are available to users, others are available only to the system console.
- communication system A computer system having facilities for long-distant transfers of information between remote and central stations. Specifically, the multiplexor and telephone networks used for the Time Share system.
- compiler A language translation program, used to transform symbols meaningful to a human operator to codes meaningful to a computer. More restrictively, a program which translates a machine-independent source language into the machine language of a specific computer.
- compiled form The program statements in ASCII form are converted to a symbolic representation more meaningful to the Time Share system. This new symbolic form is referred to as the compiled form.
- **computation** The processing of information with—in the computer.
- compute bound A Basic program in run mode which does not suspend due to input/output communications is considered to be compute

- bound. All compute bound users share the available CPU on a one second time slice basis.
- computer (digital) An electronic instrument capable of accepting, storing, and arithmetically manipulating information, which includes both data and the controlling program. The information is handled in the form of coded binary digits (0 and 1) represented by dual voltage levels, magnetic states, punched holes, etc.
- configuration The arrangement of either hardware instruments or software routines when combined to operate as a system. Specifically, the hardware arrangement necessary for the HP 2000A Time Share system.
- console The system console provides an input/ output capability which is used to control the system. It allows the system operator to monitor and change the hardware configuration, print out library and user information, and punch the Log On-Log Off messages.
- control flip-flop The control flip-flop is used on the input/output interface to initiate action by the device, and in conjunction with the flag flip-flop to control the interrupt.
- core The smallest element of a core storage memory module. It is a ring of ferrite material which can be magnetized in clockwise or counter-clockwise directions to represent the two binary digits, 0 and 1. More generally, core refers to the installed memory of the computer system.
- CPU Central Processor Unit. The CPU is that part of the computer system containing the buses, registers, and circuits for implementing the machine language instructions. Main frame is a synonym.
- device flag A signal from an input/output device flag is used to set the flag flip-flops on the interface card.
- disc A device using a rotating circular plate on which digital data can be stored by selective magnetization of the surface material. The reading and writing of data is performed by

- precision heads. The device may use fixed heads with one head per track or use variable position heads in which a single head can be moved to service more than one track.
- DMA Direct Memory Access. A computer option which provides an efficient input to core or core to output transfer on a cycle stealing basis without requiring machine language code for each individual transfer.
- double-length word A word, due to its length, which requires two computer words to represent it. Double-length words are normally stored in two adjacent memory locations. Used particularly in multiplication and division of integers and in floating point.
- driver An input/output routine to provide automatic operation of a specific device with the computer. Particularly the multiplex driver, disc driver, and console driver.
- dump To record memory contents on an external medium, especially the mag tape dump during sleep.
- executive The Scheduler routine which controls the primary relationship between the individual program modules. It organizes and controls the transfers between the discs and core, services the queue, and generally maintains the primary control of the operating system.
- exit sequence A series of instructions to conclude operation in one area of a program and to move to another area. This would not include leaving the scheduler loop to service a multiplexor interrupt, but would include leaving the scheduler loop when the user is in core and is ready to execute.
- fixed point A numerical notation in which the fractional point (whether decimal, octal, or binary) appears at a constant, predetermined position. Especially used in single word representation for positive and negative integers, or in double precision representation for integers with larger values.

- Flag bit A signal indicating completion of an I/O operation. This flag bit is used in conjunction with I/O interface cards.
- flag word Computer words are used for flag purposes in which a particular bit corresponds to the user number. For example, MPCOM is a flag word corresponding to those users requiring multiplexor servicing.
- flip-flop an electronic circuit having two stable states, and thus capable of storing a binary digit. Used in the CPU registers, and on I/O interface boards.
- floating point A numerical notation using two computer words in which the variable is expressed in terms of a mantissa and an exponent. In normalized form the decimal point is to the left of the mantissa and the first digit in the mantissa is a 1, with the exponent varied as necessary. In the Time Share system the range of variable values ranges from 10–38 up to 10+38 with significant accuracies of 6 or 7 digits.
- flowchart A diagrammatic representation of the operation of a computer program.
- foreground processing The execution of programs which have been assigned the highest priorities for the use of the system. In the Time Share system, those activities which have been scheduled on the queue.
- format A predetermined arrangement of bits or characters.
- hardware Electronic or electro mechanical components, instruments, or systems. Specifically the computer, computer options, and peripherals used in the Time Share system. Refer also to software.
- IDT I.D. TABLE. A Disc Resident Table containing all ID codes, passwords, as well as time authorized and used and disc storage authorized and used.

- initialize The procedure of setting various parts of a stored program to starting values, so that the program will behave the same way each time it is repeated. The procedures are included as part of the program itself.
- input information transferred from a peripheral device into the Computer. Also can apply to the transfer process itself.
- input/output Relating to the equipment or method used for transmitting information into or out of the computer. Including terminals, system console, disc unit, etc.
- integer A whole number thus without a fractional part; (i.e., . . . -2, -1, 0, 1, 2 . .).
- interface The connecting circuitry which links the central processor of a computer system to its peripheral devices. Specifically those boards which plug into the computer I/O area.
- interpreter A computer program that translates and executes each program statement before proceding to the next and does so without generating machine language code.
- interrupt The process, initiated by an external device, which causes the computer to interrupt a program in progress, generally for the purpose of transferring information between that device and the computer.
- interrupt location A memory location whose contents (always an instruction) are executed upon interrupt by a specific device. Commonly referred to as the trap cell.
- label one or more characters associated with or attached to an item of data for purposes of identification. Used symbolically by the Assembler for addressing.
- language The set of symbols, rules, and conventions used to convey information, either at the human level or at the computer level.

 Particularly the Basic language implemented on the Time Share system.

- library An organized collection of Basic programs. Some are provided by the system operator and are available to all users. Other programs belong to an individual user and are available only to the user who saved the program. Library also refers to the absolute machine language programs loaded at 37300 for command execution.
- library routine A program designed to accomplish some commonly used function and kept permanently available on the Time Share system. This includes system library programs, as well as user library programs.
- linkage A sequence of Code that serves to connect a pair of independently coded routines.
- loader A software program to facilitate loading programs into the computer. Specifically a loader program on paper tape to initially load a Time Share system or awaken from mag tape sleep. Also, a bootstrap loader on disc track Ø, sector Ø; and a post sleep loader on disc track Ø, sector 2.
- loader, basic binary disc A 64 word program residing in the top 64 locations of core, and capable of being hardware protected. The Disc loader can load track 0, sector 0 into core locations 0 to 100B (S.A. 37760). The loader also loads paper tape from the input device (S.A. 37700). The records on the paper tape must conform to a certain absolute format.
- loader, protected A 64 word program residing in the top 64 locations of core, and capable of being hardware protected.
- loop a repeating sequence of instructions. Intentional as in the case of the scheduler loop, or unintentional because of hardware or software difficulties.
- machine language The binary coded instructions and data used directly by the computer. Appearing either in core or in the assembler listing.
- machine timing The regular cycle of events in the operation of internal computer circuitry. Specifically a machine cycle of 1.6 microseconds broken into 8 equal time periods of 200 nanoseconds each.

- magnitude That portion of a computer data word which indicates the absolute value of a number, thus excluding the sign bit.
- mag tape A digital tape recorder utilizing a mylar based tape with an iron oxide coating. This tape is used by selectively magnetizing portions of the oxide coating to store digital data. The Time Share system uses a 9 track tape recorder to sleep the system and save the core resident system and the public and users library.
- memory That portion of the CPU consisting of ferrite cores and driver circuits into which information, data, and instructions can be stored and from which it can later be retrieved.
- memory module A complete segment of core storage consisting of 4,096 computer words.

 Bits 12, 13, and 14 of the M register determine the module addressed.
- memory protect A means of preventing inadvertent alteration of a selectable segment of memory.

 This option is not required for Time Share.
- mnemonic An abbreviation or arrangement of symbols used to assist human memory. Used particularly in machine language instructions.
- module A program unit that is separate and distinctly indentifiable.
- multiple-precision Referring to data in which the computer, for greater accuracy, uses two or more words to represent one number.
- multiplexor A system allowing simultaneous input and output communications with the Time Share system. Specifically a hardware-software system providing input and output buffering, and conversion from characters into bit serial data for transmission to and from the Time Share terminals.
- normalized form A floating point value is considered in normalized form when the first digit of the mantissa is a "1".

- octal code A six digit notation for representing a machine language instruction or data with the use of octal numbers instead of binary numbers.
- off-line Pertaining to the operation of peripheral equipment not under control of the computer.
- on-line Pertaining to the operation of peripheral equipment under computer control.
- output Information transferred from the computer to a peripheral device. Also can apply to the transfer process itself.
- Overflow A one-bit register in the Computer, which indicates that the result of an addition in the A or B Register has exceeded the maximum possible signed value (+32767 or -32768, decimal). The addition result will therefore be missing one or more significant bits.
- overhead The time required by the system for supervision and swapping. It includes the routine activities of the scheduler and multiplexor. Although it is essential to the system it does reduce the time available for actual program execution.
- packed word A computer word containing two or more independent units of information. This is done to conserve storage when information requires relatively few bits of the computer word.
 Pertains particularly to the packing of two characters within each computer word.
- page An artificial division of memory consisting of 2000 octal locations. The size is dictated by the direct addressing range of memory reference instructions. Each page is represented by a unique combination of M Register bits 10 through 14.
- page zero The memory page which includes the lowest numbered memory addresses, corresponding to M register bits 10 through 14 equals 0.
- parity bit A supplementary bit added to an information word to make the total of the bits in the "1" state odd. This permits checking the accuracy of information transfers. This feature

- is used in the computer memory, in the disc, and in the mag tape unit.
- peripheral device An instrument or machine electrically connected to the computer, but which is not part of the computer itself.
- phase One of the specific states of the CPU processor to help implement instructions (Phase 1 fetch, Phase 2 indirect, Phase 3 execute, Phase 4 interrupt, and Phase 5 a special DMA phase).
- phones The Time Share system can operate with the terminals connected to the computer through telephone data networks. Phones may refer to the equipment which provides this capability such as the data terminals and acoustic couplers, or to the software module which services the data terminal control signals.
- port The multiplexor connector and the internal associated hardware for a user; and further, the associated flag words and bits used in the system in servicing that user.
- power failure control A means of sensing primary power failure so that the special routine maybe executed in the finite period of time available before the regulated DC supplies discharge to unusable levels. Upon power resumption, this routine reinitializes the Time Share system and commences execution again.
- precision Numerical quantities represented in computer data format have a maximum number of digits of significant accuracy. The Time Share system uses double precision format. This results in at least 6 digits and sometimes 7 digits of significant accuracy depending on the actual value.
- priority The automatic regulation of events so that chosen actions will take precedence over others in cases of timing conflict. Priority pertains both to hardware relationships of I/O devices, and users sequence on the queue.

- processor The central unit of the computer
 system consisting of the bus structure arithmetic
 unit and memory. It also includes the DMA,
 EAU, power fail, and parity error options.
- program The plan of steps necessary to solve a problem. In this environment it refers to a sequence of statements prepared in Basic Language suitable for solution on the Time Share system.
- pseudo-instruction A symbolic statement, similar to assembly language instructions in general form, but meaningful only to the program containing it rather than to the computer as a machine instruction. Used in the assemblier for generating the Time Share software.
- punched tape A strip of paper tape consisting of feedholes and 8 data levels. Usually containing ASCII or binary information, and used with the photoreader or teleprinter.
- queue An ordered list of users (including the system console) who are awaiting service by the Time Share system. Users are serviced on a first in-first out basis within each priority. Servicing the queue is accomplished by the scheduler.
- register An array of hardware circuits, flip-flops, switches and so on, for temporary storage of data instructions and information. Specifically the A, B, P, M, T, I, E, O, and Switch registers.
- rotate A positional shift of all bits in an accumulator or in two linked accumulators. Those bits lost off one end of the accumulator are "rotated" around to enter vacant positions at the other end.
- routine A program or program segment designed to accomplish a single function.
- run The execution of a basic program is accomplished by the Basic Interpreter. This process is initiated by the command RUN. Thus, the time during which a program is being executed is referred to as 'run time', or 'running'.

- Scheduler The Scheduler is the primary program routine of the Time Share system. It is referred to as the Executive. It supervises the relationship between various software modules, especially servicing the queue, and initiating disc to core swaps.
- Sector The minimum storage space on the disc is referred to as a sector. It provides storage for 64 words of 16 data bits and a parity bit each. The sectors are grouped into tracks, and have individual addresses.
- Sector Logical An address used by the system in communications with the controller to specify the location of a program or data. Refer Sector Physical.
- Sector Physical The physical location of a disc sector is the narrow arc on the magnetic surface of the disc. The circular track is divided into as many sectors of 64 words each as the instrument design allows. The number of sectors may be too small a size for convenient handling by the system. These physical tracks and sectors are grouped together by the system. A Physical sector thus refers to a particular sector on the disc as it is internally wired and addressed, as opposed to the apparent system address referred to between the computer and controller.
- Select Code A number assigned to input/output channels for purposes of identification in information transfers between the computer and external devices.
- shift A positional shift of bits within a computer word to help implement the multiply or divide instruction or to reposition bits in a flag word.
- sign The algebraic plus or minus indicator for a variable, or the bit position in a computer word corresponding to the sign.
- significant digit A digit so positioned in a numeral as to contribute a definable degree of precision to the numeral. Generally the most significant digit in a numeral is the left most digit, and the least significant digit is the right most digit.

- skip A condition causing the computer to omit the next sequential instruction. A skip is usually arranged to occur only if certain specified conditions are true, thus allowing various decisions to be made.
- software computer programs. Specifically the Time Share system program, or program segments.
- starting address The memory location corresponding to the first instruction of a given program routine.
- statement An instruction in any computer-related language other than machine language. Specifically a line in a basic program.
- symbolic address A label assigned in place of absolute numeric addresses to ease changes in the Time Share system. The symbolic address is converted to an absolute address by the Assembler. Refer to symbol table.
- symbol table Program reference points and data locations are used by the programmer to simplify writing the Time Share software. The list becomes a map to specific memory locations. The list of all such symbols are tabulated, including the initial location as well as all references to this symbol. This composite list comprises the symbol table. It is useful when using the Listing.
- syntax The structure of expressions and the rules governing the structure. These are formal rules describing the allowable statements in the Basic language.
- syntax stack A collection of data required by the Basic Interpreter and associated with an individual user. Incorporation in the user area allows the Interpreter to be re-enterable.
- system An assembly of units both hardware devices and software routines combined to work as an integrated unit. For example, the multiplexor system.
- table A collection of data used by the system.

 Some are core resident, some are disc resident.

 Examples include the Equipment table and

 Teletype table.

 A—7

Time Base Generator — A computer option providing interrupts at specified time intervals.

Counting these interrupts provides time of day information for the Time Share system, as well as a mechanism for allocating computer resources on a timed basis.

time out — Certain Time Share functions are timed. This includes a maximum time for achieving Log on, minimum time before acknowledging an abort, and expending a users time slice. Time out is achieved when the time allocated for the task is completely used up.

Time Share — A system performing several independent activities almost simultaneously by interleaving the tasks on the processor(s). The time available is divided into short non-overlapping segments. The speed of the processor makes it appear that all operations are done simultaneously.

time slice — Each user is allocated a maximum time period of one second when others are on the queue. If the task is not completed when the one second interval is expended, he is requeued at the bottom and given another one second period. These one second intervals are referred to as a users time slice.

track — A physical disc track is a narrow annular ring on the disc surface on which the digital data is magnetically stored. The track is divided into a minimum storage unit called a sector. Each track has a unique track address within the disc unit. In the Time Share system, the storage of a single track is too small so 4 physical tracks are organized into a single logical track. Within the Time Share system, this Logical track has a unique address.

user — A user is an actual or potential terminal with access to the Time Share system. From the system standpoint, it refers to the terminal, communications line, port on the multiplexor, bit in the multiplexor data and flag words, and the corresponding teletype tables and buffers. With respect to the Library, it refers to the programs associated with a specific ID code.

utility routine — A standard routine to assist in the operation of the computer. Usually coded in a convenient location for easy accessability. An example is rounding a number to integer form.

variable — A variable is a numerical value used by the computer. Its instantaneous value may change. It is designated by a label consisting of a single letter, or a letter and one or two subscripts.

waiting loop — A sequence of instructions which are repeated indefinitely until a desired external event occurs, such as the receipt of a Flag signal. These loops are usually transparent to the operator except in cases of operator difficulties or hardware failures.

write – The process of transferring data from the CPU to the memory, or outputting a data record to an external device like the disc or mag tape.

