2000C HIGH SPEED
TIME SHARED BASIC
INTERNAL MAINTENANCE SPECIFICATIONS

BILL HACCOU
RICH PEARSON

August 10, 1972

Contents

INTRODUCTION ====mmmmmm-e --- e 1
TABLES-=-===mmmmacen N e e
D RE T ORY = = = = = o e e e e e 2
DIREC-===mmmmmccmmmcmeen P e e 4
ID TABLE === = = e e e e e e e e e 5
A DT = = = = o e e e e e e e e 6
D IS C ADT = = o oo e e e e e e e 7
LOCKED BLOCKS TABLE= === o o o e e e e 8
R 9
L 10
LOGGR==-==mwmmcmcne - e 1
TELETYPE TABLES == s m s e e e e e e 12
EQUIPMENT TABLE ~ == e e e e e e e e 15
SYSTEM SEGMENT TABLE= === mms o oo m e e e 18
DISC ALLOCATION TABLE====mme o oo m e e e e e 19
MOVING HEAD DISC TABLE=== === oo m mm oo e . 20
R 21
DRUM ORGAN | ZAT 10N == = e e e e e e e 22
DISC ORGAN I ZAT LON === == o e e e 24
DISC AND DRUM ERROR ROUTINES========mm oo e oo __ 26
S CHE DUL NG~ = == = = o o e e e e e 29
COMMUNICATION BETWEEN SYSTEM MODULES-======mmm o= oo e mmommmoioom o
DRUM DR VE R = == o mm e e e e e e e 32
L 34
170 PROCESSOR DRIVERS == mm oo m e o e e e e . 37
SYSTEM CONSOLE DRIVER= === o m o s o e e e e i 40
INPUT AND TERMINATION REQUESTS=======mmmmmm e b

SYSTEM LIBRARY ROUTINES---nm-mammanrmmnmmen=me--- I 68
ASSIGN=-mm=mmmmmmmemm e m ;oo e S S 71

SUPERSAVE-=mmmrmmmmmmane emmmemm e cecmee e mam——————— 76
BET=mmmemmrememm e m e e ———————————————————————————— 80
APPEND-=rmeeemmernmararmnemnmnnee——enenn———— cememmmmmmeneemmncmeneee=8]

BYE ——————— T R 0 L QL TR T R T TR YR R €0 R T O T R TR TR = R O T e o - R R T 0 T 0 G T T R R TR T TR O R R 83
KILL—————-—‘enenecun—@q—pg-n-un— —————————————————— L X P L - - - - - 84
RENUMBER=-=s=nenenamcararanaraan ————— mmmemmemmemme e m——mm e —————— 85
NAMEO-F‘F!@FQ‘F‘“--OOF9‘--—!.9 ———————————————————————— - .- e-————88

CATALOG--mmnemmermeammsmenamem————a———————- cmmmmemmee—memmemmcemnne 89
LIBRARY==n~~ AR R TR R ———————————————————————— 90
GROUP-=nemmmmmmmmemcmeeenmnmm——————————— mmeme e ———————————— 90
DIRECTORY - USER CONSOLE-remrenmmmnmmmmmenn- e mmem———————— 91
SDIRECTORY - USER CONSOLE-mmmenemnmmmmanen S —— S —— 92
REPORT = USER CONSOLE-smmemnmmammmmme S — ceneov03
STATUS - USER CONSOLE-+=~nenmnmmemmennnnmremenemaenmnnemneancenanennnnd

DELETE--——nn———ﬂn——n————Qn-« ——————————— - en - - e LR L LR Lt TR L) 95
TIME—-—-————qaen—uo————@pncnoc————ﬁupv ——————— ««a———————a————vvovan—a——96
PROTECT—cn—-————eevvﬁvﬂcvsnﬂov ————— LT L L L L Y T) a——-n—a——97

UNPROTECT--««-«-««——-v—---a—-«-----—--n-«—-------—--——--.---.--—---«----—-.——98

-
OPtN-—_O‘G—F%FF‘-%-—QG“F!FFFFFF—--G‘G-—-F-—-OQ ——————— —e----e—«—v«——v—gg
LENGTH’-'—"‘“‘_““‘“““‘“‘“"*"——Qﬂﬂ—«-“ﬂ—@vw—«-———q————qnqcuv!r—9]0]
ECHO—-_GF-GQP“QQ--"“F%FF-'——-‘.P-F ————— - . - a——@—va—n—vvvo-uloz
MESSAGE ————— vn—-«-—q_n—-n——cv-vﬂ-ﬂﬂﬁ—«-—OnvvpnO————u-——-————qﬂ—avﬂwﬂ«]03
] T B anmnAom
L ?RLNTERo-v«e«n—v—-«eapq—Q-n--——v——uocc—ﬂe—g---—-—--e——«-QGGQQ —————— |05-H

REPORT = SYSTEM CONSOLE-eeweremcmnmemamarranammnemenmamseecanensnenee] 04
DIRECTORY - SYSTEM CONSOLE-re-ssmrnmmmnmscsmscasennmsmremnmnenmanne=]05
SDIRECTORY - SYSTEM CONSOLE-=<=c-nremmmrmmccnaaneremmnremaensnccenees] 06
STATUS = SYSTEM CONSOLE=--sescesemmmemmrammmcnnnneeanme anmeennacanene] 07

ROSTER——-—Q————q-—n—n—-pam-—--—O-—a——‘——v—---e-—eeﬂneQeﬂ@vveovenv9—9&]08

ANNOUNCE“““““‘““'"'*'**“‘F‘““““!-ﬂ*"‘*‘*F!—eqn-ﬂﬂvﬂv—sﬁeveeoov]09
RESET——-a—nec—ne«—n-wh@v‘vtenn%@%n—««-—%v——QQQ%QFOGGGQQQ@Q—!GQFQGP«ne]]0
CHANGEID=«emrrercncnmcccnnrncnmcrnrarnananrenrnrerrmreneraneeeencenencne] |]

SLEEP—-———n—n—-n—————ﬁnp—-n--‘————-u--«———--_q——.——q-—nnnqumeya—e«eqnl]2

ii

W D= == e e e e e e e sl Ll 14
KlLLID--~---—-—---------—-—-—---—-—---~---—-—--—----—------—----—---====}}6
UL O K = === e e e e e e e e 117
L0 K o e e e e e 118
MUN L O K == = = = = o e o e e e e e e e 119
ML O K== = = e e e e e e e e 120
GOy = o e e e e e e 122
B S T QW = === == o o e e e e e 123
AN T LY = o e o o e e e e el 124
D S RATE = === o e e e e e e e e 125
PR GE = == oo e e e e 126
A G AP E = = = = = = = e o e e e e e e e 128
PHONE S = = = == e e e e e e e e L 129
PR N TR == = o e e e e e e e 130
S PR D= = o e e e e e e e 131
PR T == o o e e e e e e i 132
170 PROCESSOR PROGRAM= === s moe e oL sl Ll Lt 133
2100A Asynchronous Channel Multiplexor==m=mmm=-moomcom oo ococcceooeo 133
Send Channel Parameter=-===-==remocmocammcaao— e i aabalat bbbt KK
Receive Channel Parameter====m===mmmommm 133
MULTIPLEXER DI RVER= === == == m o e e o e e e e e 134
lnitialization--—————-—--—-—-—-—--——*—--—-------——-4----—--%:—:——---f-——l34
Receive Channel Processing------------—-------—--—-4-?4-?4f?§*%:---——-4-134' 7
Send Channel ProceSSing"’“'"'“"'“""‘"""'ff‘f"f‘f%’ffiif;""f"f"}34fA
Abort Processing-—*---*-—----—-*——-----———-—---—--—-~;—f---?¥?-----";?4;1344A'
Multiplexer End of Processing==r=========memmmmoomom i 134-A
LINE PRINTER DRIVER==n == oo o e el 135
2100 DATA SET CONTROL [NTERFACE-========mm oo d e 136
DATA SET CONTROL BOARD DRIVER===== === === e e oo 137
IN T AL ZAT 0N == === = o e e e e e e 138
POWER FAIR & RECOVERY == mm e e e e e e 139
TIME BASE GENERATOR === e m e o e e e 140
TELETYPE TABLEs--————-—---—————---———-———--——--———--————————-f—-v ——————— 141
SELECTRIC CONVERSION ROUTINES=-=m=rnm=-n-= el e 143
CONVERSION TABLES FOR THE IBM 2741 TERMINALS TRANSMITTING EBCD
& CALL/360 CODES=~wrcmzmrm—cmc]hs

HARDWARE CONF | GURAT | ON== -~ =n=n-~ R T T R C L TN 113

.i.

TWO PROCESSOR POWER FAIL CHARACTERISTICS=====m==mmmmmmm oo 150
CORE ALLOCATION IN 1/0 PROCESSOR PROGRAM===m== === === oo oo 153
BAS | €= === o = o e e e e e e
YN AX == = o = o e e e e e e e e e e 162
COMP I LAT | ON === == = = e e e e e e e e 162
VAL UE == = = o e e e e e e e e e 163
DECOMP ILATION-~=======n=-= et e LT 164
PR S T = = e e e e e 164
EXECUT 1 ON === = == == o e e e e e e e 164
FORMAT TER === = = == o = = o e e e e e e e e e 174
ERROR ROUT INES == == == == o e e e e o e e e e 177
CORE MAPS == = == == = = e e e e e e e 178
INTERNAL REPRESENTAT | ON== === o= oo o o mm o o o oo 181
VARIABLE STORAGE ALLOCATION==== === === oo o o e e 186
FILE TABLE ENTRY === m mom o oo e e e e e e e e 188
FILE CONTENT S === == == = e e e e e e e e o e e e 189
UPDATE LAST CHANGE DATE ROUTINE===========m s 190
RUN=TIME STACKS === === s = e oo o oo o e e e 191
LANGUAGE PROCESSOR TABLES===== === === = oo o e e e e e oo 193
BASIC FLOWCHARTS=====-=mmmnm- P e e e e 194
LA D E R = = = = = = = = e e e e e e 246
LOADER SUBROUT INES ===~~~ L LT A 250
LOADER FLOWCHARTS==rw=vrmmmmumenonmamnae et B 256
BOOTSTRAP PROCEDURE = === === e e e e e e e o e e e 320
SLEEP TAPE FORMAT == === mm e e e e e e e e e e e e e e e 321

INTRODUCTION

The 2000C (HIGH SPEED) TIME SHARED BASIC SYSTEM consists of three separate
programs which are run on two processors. The Communications processor
Program is responsible for handling all multiplexed I/0 from user
terminals. The System contains the BASIC interpreter, executive and
library routines and runs on the main processor. The Loader, which also
runs on the main processor, is responsible for generating initial systems,
backing up the system on mag tape, reloading the entire system and user

library, and selectively reloading or backing up users libraries.
HARDWARE CONFIGURATION

1) UP TO 16 TERMINALS

10 PROCESSOR INTERCONNECT

11 PROCESSOR INTERCONNECT

12 TIME BASE GENERATOR

13 1st MULTIPLEXOR

14 1st MULTIPLEXOR

15 DATA SET CONTROL FOR 1st MULTIPLEXOR
16 LINE PRINTER (OPTIONAL)

2) MORE THAN 16 TERMINALS

10 PROCESSOR INTERCONNECT

11 PROCESSOR INTERCONNECT

12 TIME BASE GENERATOR

13 1st MULTIPLEXOR

14 1st MULTIPLEXOR

15 DATA SET CONTROL FOR 1st MULTIPLEXOR
16 2nd MULTIPLEXOR

17 2nd MULTIPLEXOR .

20 DATA SET CONTROL FOR 2nd MULTIPLEXOR
21 LINE PRINTER (OPTIONAL)

2000C (HS) TIME SHARED BASIC TABLES

DIRECTORY

The directory is a table which contains all necessary infor-
mation about each program or file in the system library. It resides
on the drum and may occupy from 1 to 80 drum tracks, depending upon
how many discs there are on the system and how many directory tracks
per disc are specified by the operator at load time. A core resident
table called DIREC contains information on the directory itself.

A directory entry consists of 12 words and has the following format:
WORD 0 user id i

1 program or BIT 15 = 1 if protected, 0 if unprotected.
2 file BIT I15=1if file, 0 if program
3 name BIT 15 =1 if semi~compiled, O if

uncompi led

L start of pfogram pointer
for programs/record size
for files

5 last reference date
(year in bits 9 to 15
day in bits 0 to 8)

6 last change date
(hour of year)

7 drum address
(0 if not SANCTIFIED)

disc

address
10 used only by loader
11 length

(- words -for pfogram
~+ records for file)

The directory entries are kept sorted on words 0-3. BIT 15 of
words | and 2 and 3 are not considered in the sorting. Names of fewer
than 6 characters are filled out with spaces (hos).

The last r

rence date is the most recent date on which
the program or file was referred to, while the last change date

is the most recent date on which it was altered.

The directory contains 2 pseudo entries which are the first

and last entries in the table.. They have the following form:

FIRST ENTRY LAST ENTRY

© W 00~ O UV oW N
o O O O O o

[}

o —

—

o O O o
©o O O o

When the directory occupies more than one track, all the

directory tracks appended together form the directory.

LN

. DIREC

DIREC is a 560 word core resident table which contains

information about the directory. It has the following structure:

WORD 0 -length in words of first directory track
1-4 same as first 4 words of first directory track
5 Qnused ,
6 drum address of first directory track

7-13 same as 0-6 but applied to 2nd directory track

553-559 same as 0-6 but applied to 80th directory track

A drum address of 0 implies that there is no such directory

track. When word 0 is 0, words 1-4 are meaningless.

The drum address of a directory is always sector 0 of a track.
Each directory track may contain as many as 8184 words = 682

directory entries.

When loading the system from paper tape or mage tape, the
operatok'has the opportunity to specify the number of directory
tracks per disc, in the range of 1-10, which is saved in NDIRT.
The total number of directory tracks is this number times the
number of discs on the system.

TADI I
!D TABLE

The 1D table (IDT) is a drum resident table of from 1 to 3
tracks which contains one 8-word entry for each ID code on the system.
The entries are kept sorted according to the ID codes. An entry has

the following format:

WORD 0 user id
1-3 password (filled with 0's if fewer than 6 characters)
4 time allowed(in minutes)
5 time used (in minutes)
6 disc allowed(in blocks)
7 disc used (in blocks)
Words 4-7 are 16 bit quantities with values between 0 and 65535,

The 9-word IDEC portion of the EQT has the following format:

WORD 0 first id of first track
1 drum address of first track
2 length in -words of first track
3-5 same as 0-2 but applied to 2nd track
6-8 same as 0-2 but applied to 3rd track

When loading the system from pPaper tape or mag tape, the
operator has the opportunity to specify the number of id tracks,
in the range of 1-3, which is saved in NIDT. Each track may

contain as many as 8192 words = 102k id entries.

AVAILABLE DRUM TABLE

The available drum table (ADT) is a drum resident table which
contains one two-word entry for each area of the drum which is un-
allocated. An entry has the following form:

WORD 0 drum address |

] 'Iength of area in sectors

Entries are sorted according to word 0. Each entry may refer
to as much as one full track, and no two consecutive entries ever

refer to two adjacent drum areas (two tracks are not considered to
be adjacent).

At the end of the ADT is one additional entry having the form:

0 177777
] 0

The following two memory locations refer to the ADT:

ADLOC
ADLEN

drum address of ADT

length in-words of ADT

DISC ADT

The available disc table (Disc ADT) is a drum resident table
which contains one three-word entry for each area of the disc which

is unallocated. An entry has the following form:

WORD 0 disc
] address
2 length of area in blocks

There is one Disc ADT track for each disc on the system and
only entries for one particular disc appear on a track. The first
L blocks of each disc are used by the system and are therefore always
unavailable. Thus there are no contiguous areas which overlap discs.

The following words in the EQT refer to the Disc ADT:

DADLC BSS 8 drum addresses of Disc ADT tracks
DADLN BSS 8 lengths in -words of Disc ADT tracks

The first word of each BSS refers to logical disc 0, the second to

logical disc 1, etec.

Vi,

LOCKED BLOCKS TABLE

The Locked Blocks Table is a disc-resident table which
resides in the 256 words of block 3 of each disc. |t contains
one two-word entry for each area of the disc that has been MLOCKED.

An entry has the following format:

WORD 0 disc address relative to this disc

1 length of area in blocks
The rest of the table is zero filled.

The disc address is stored as if the disc were logical disc 0, so
that packs may be used as any logical disc. The1Locked Blocks
Table is cleared only when it is determined during the loading
procedure that the disc does not have a valid TSB label and the
operator requests that one be written. This means that the packs
""remember'' which blocks are unavailable even if different 2000C

systems are loaded.

Vii.

drum.

words

files

table.

15 of

The FUSS table is a 1024 word table which resides on the

I'ts drum address can be obtained by the instruction.
LDA FUSS,1

FUSS is divided into 32 sections of 32 words each. The 32

in each section are the 2-word disc addresses of the user

currently being accessed by the user corresponding to that
Addresses of 0 indicate no file. Disc addresses with bit

the first word = 1 indicate that the user has read only

access.

FILES

The purpose of maintaining this table is to:

1. Prevent simultaneous write access by two users to one file;

2. Prevent moving or removing a file in the routines KILL, LOCK,

MLOCK, SANCTIFY and DESECRATE when some user has access to it.

A user's FUSS (i.e. his area of the FUSS table) is set by the

routine, which is called from BASIC at the beginning of execution

of a program containing a FILES statement. Individual entries in a
user's FUSS are changed by the execution of ASSIGN statements. It is
cleared by BYE, HELLO, KILLID, and sometimes by KILL.

w

"~ COMTABLE

The COMTABLE is a list of all user and system commands con-
taining their ASCIl codings and drum locations or core addresses.
The structure of the COMTABLE is as follows:

COMI ‘codes for commands which are
executed immediately by the
system

COM2 codes for commands which are
executed by
BASIC

COM3 user commands which are
executed by drum resident

programs

COM4 system commands - - all are
executed by drum resident
programs

COM5 starting addresses for those
commands which are listed
under COM1 and COM2

COM6 drum addresses for those
commands which are listed (this section is filled
under COM3 and COMA4 by the loader)

Since each command is recognized only by its first 3 letters,
the scanner converts each letter into a number from 0 to 3]8, ahd
then packs the three codes into one word as three 5-bit bytes. In
addition, bit 15 is set for system commands. Codes of -1 in
sections 2, 3, and 4 do not correspond to. any possible 3-letter
code. Their purpose is to generate room in COM6 for disc addresses
of routines that are callied indirectly, or for tabies like FUSS. In
the case of CTAPR, the purpose is to generate a status type for
printing compiler tape errors without a direct command from the
uéer. Similarly, UCDAB génerates a status type for updating the

last change date for files after a program is aborted.

10

LOGGR

LOGGR is a 6l-word queue which contains codes for printing
LOGON/OFF messages. Entries are placed on the queue by HELLO, BYE,
and SLEEP. ' Each entry consists of 2 words, with the following format:

WORD @: user id (BIT 15=0 for ON, 1 for OFF)
1: bits 15-5 = 60 x hrs + mins
bits 4-0 = terminal number

The representation of a user id is as follows:

BITS 14-10 = letter (A=1,B=2, ..., Z = 32¢)
BITS 9-0 = number (0-999)

The following variables are rélevant:

LOGCT = # of unporcessed entries in LOGGR
LOGP1 = points to word 1 of last processed entry
LOGP2 = points to word | of last unprocessed entry

Note that LOGCT = 0 <=> LOGPI=LOGP2

11

TELETYPE TABLES

This set of 32 tables, one for each user, contains relevant
information about the various terminals. The structure of the

tables is as follows:

WORD 0 FLAG
1 TNUM
2 DISC
3 PROG
4 1D
5-7 NAME
8-9 TIME
10 cLoc
11 RSTR
12 STAT
13 LINK
14 PLEV
15 RTIM
16-20 TEMP
FLAG: bifs 0-8 contain information as follows:
BIT NAME MEANING IF = 1
0 TERR errors while reading program in tape mode
1 CFLAG program is compiled or semi-compiled
2 HFLAG $HELLO is running
3 TAPEF user in tape mode
4 UNABT unable to abort
5 OUTWT user suspended for output wait
6 COMI4 communication from 1/0 processor
7 ABTRY ‘abort attempted (while UNABT = 1)
8 CHNFG program was called from <CHAIN statement>
9 ENDST error on drum transfer
10 MBUST error on disc transfer
TNUM: teletype number in bits 12-8; used for sending information

to 1/0 processor. 12

DISC:
PROG:

1D:

NAME :

cLoC:

RSTR:

STAT:

drum address of user's swap area

when user is on the drum PROG points to the last core

=2 L~ So L Cwi o

location used by the program. When the user is loaded
into core, PROG is placed into PBPTR. When he is written
back to drum, PBPTR is copied into PROG. BASIC is
required to maintain PBPTR as a bound on the core it is
using.

user's id, 0 if none

a three word entry containing the user's program name.
It is set by the routine NAME & GET & CHAIN, and cleared
by HELLO. When fewer than 6 characters are in the name ,
blanks are appended.

this is the timeout clock used to determine the length
of a user's time siice. See the discussion on
scheduling for further information.

this is set, when a user is placed on the queue, to

his starting address in core. When the user is actually
initiated, RSTR is set to 0. Whenever RSTR = 0, the
transfer address of the user can be found in location PREG.

indicates user's status. The user's status is as fol lows:

-4 port unavilable

-3 enter timeout

-2 system disconnect
1 user abort request
0 idle

1 system abort

2 input wait

3 output wait

L syntax processing

>4 command processing

When a command is being processed, STAT indicates the command.
STAT values

RUN
LIST
PUNCH

L INK:

are assigned in order of entries in the COMTABLE, so that
=5 .

6

7, etc.

the LINK words in the tables are used to form a queue

of active users. All users whose status is >4 are in the queue.

See discussion on scheduling for further information.

13

PLEV: this word gives the priority level of the user when he is
on the queue. When the user's status is set to 2 or 3, the
previous value of STAT is copied into PLEV, and the user removed
from the queue. The possible values of PLEV are as follows:

0: highest priority, used for syntax, users returning from

1/0 suspend, and for disc resident routines once they begin.
This includes FILES, CHAIN, and ASSIGN.

1: used for commands RUN,LIST,PUNCH,XPUNCH.:

2: used for disc resident routines until they reach the top
of the queue.

4: wused for long running programs.

RTIM: the length of time in seconds that it took the user to

respond to an <ENTER statement>.

TEMP: used (along with RTIM) to save variables when OPEN, CATALOG,
GROUP, LIBRARY, STATUS, DIRECTORY, SDIRECTORY and REPORT are swapped

out.

Associated with each item in these tables is a symbol which is

EQUated to the corresponding number of the item. For example:

7FLAG EQU 0
7TNUM EQU |
ITEMP EQU 16

These symbols are primarily used for adjusting pointers to the
table. For example, if the B register contains a pointer to the

LINK entry of some user, the instruction

ADB .+7 ID - ? LINK
will point B to his ID entry.

is a symbol located in base page at the 0 entry of a table of con-
stants from -26 to +43. A word containing the value N, where -26<N<49

can be referenced by .+N.

14

X1.

EQUIPMENT TABLE

The equipment table is the area of core which describes the
resources available to the system. It resides in locations]00-
204, as follows:

100-110
111
112
113
114

115-124

125-134

135-140

141-150

151-170

1DEC
NIDT
ADLOC
ADLEN
NDIRT
DADLC
DADLN
7TBL

DKTBL

TRAX

iD table headers
number of ID Tracks

drum address of ADT (see !V)

(see !11)

length of ADT in -words

number of directory tracks per disc (see II)
Disc ADT drum addresses (see V)
Disc ADT lengths in -words

There is one word in this area for each of

the 4 drums. When the word is zero, the
particular drum does not exist. Otherwise,
bits 7:6 contain the drum prefix and bits

5:0 the high priority select code. The

prefix is used by the drum driver as the

high order 2 bits of the 8-bit track address.
There is one word in this area for each of the
8 discs. When the word is zero, the particular
disc does not exist.. Otherwise, bits 15:8
contain the high priority select code and 7:0
the unit number

This is a table of which drum tracks are
physically available to the system. Locations
151-154 correspond to drum 0, 155-160 to drum
1, etc. Track 0 of drum 0 is represented by
bit 0 of 151, track 1 of drum 0 is represented
by bit 1 of 151, etc. A bit is O when the

track is available, 1 when unavailable.

15

The TRAX table is changed only by the

following commands :

DRUM - causes all tracks of the specified

drum to be made available.

LOCK - all specified tracks are made
unavailable.
UNLOCK - all specified tracks are made

available.

171-175 - SYSID A ten character system identification. It is
set in response to the "'SYSTEM IDENTIFICATION?"
question on paper tape and mag tape loads. It
is used in the headers for STATUS, REPORT,
DIRECTORY and SDIRECTORY.

176 MAGSC High priority select code for mag tape; if
non-existent, MAGSC=0. If bit 15=1, the tape
unit Is a 7970. V

177 NPORT Two's complement of the number of ports on the
system. The ports available are numbers @ thru
~NPORT -1.

200 YEAR Year of the century.

201-202 DATIM Time of year. The first word is the hour of the
year, and the second is the number of 100 ms

units in the hour minus 36000.
203 HDATE Hour of year that the system was last hibernated.

204 SLEPT 0 says that the system has been slept, -1 that
it has not, This word is modified only by the
sleep and reload pfocedures and insures that
the system may not be reloaded from disc if it

has not been slept.

16

207

210
211

212
213
214
215

216

LDBSA

LSTDA
DATLN

MHAD
GMQBP

DISCA
piIsce
MBUSY
MWORD

DREDP

the equipment table, in locations 205-216 are

words which must correspond with the loader. They

Core address in the loader of the disc bootstrap.

Core address of the first loader segment in the
System Segment Table (SST).

Length of the Disc Allocation Table (DAT) in
-words.

Core address of the Moving Head Disc Table (MHTBL)
Core address of the routine toc get a buffer for
disc or drum error messages. ‘Two such routines

exist: one for the loader and one for the system.
Core address of disc driver entry point.

Core address of disc driver interrupt entry point.
Disc driver busy flag.

Word count for disc driver.

Core address of disc driver auto restart entry

point (used by powerfail/auto restart routine).

17

SYSTEM SEGMENT TABLE

The System Segment Table (SST) is 53-word table resident in
the loader. It is the first portion of the bootstrap and is pointed
to by LDBSA. The first word of the table contains - the number of
system segments. Each group of 4 words following the first word has

the following format:

WORD 1 length of segment in -words
2 absolute, beginning core address of the segment
3-4 disc address of the segment

There are 13 segments, ordered as follows:

SEGMENT

Interrupt locations (28 to 278)
System base page (end of EQT to 17778)
System linkage area (20028 to 20158)
‘System segment 1 (end of Direc to hl7778)
2 (420004 to 517774)
" " 3 (520004 to 61777g)
" " 4 (620008 to 7]7778)
" " 5 (720008 to 776778)
9 Equipment table (IOO8 to 2]68)
10 Direc table (300008 to 310578)
11 Loader segment 2 (160008 to 257778)
12 Loader Segment | (20008 to 146778)
13 Disc driver (260004 to 27777g)

X N OV W N

. Note that this includes all core resident portions of the loader
and system except for locations lk7008 to 15777g. The first 1000,
of these words comprise the disc bootstrap and are resident on
blocks 1 and 2 of each disc. Locations 157008 to 15777g may only

be used for temporaries.

18

X,

DISC ALLOCATION TABLE

The Disc Allocation Table (DAT) is a 276-word table resident
in the loader. It is the first portion of Loader Segment 2 and its
disc address is pointed to by MEM[LSTDA] + 2 when the SST is in
core. The DAT designates the areas allocated on the disc for storage
(during a SLEEP or HIBERNATE) of system library programs and system

tables normally resident on the drum.

There are 4 sections of the DAT. The first (DATSL) is a 3
word entry consisting of the length in blocks of the system library

and the 2-word disc address of the first system library program.

The other 3 sections (DATID, DATDA, and DATDI) contain one
3-word entry for each reserved area on the disc for the Id table,
Disc ADT, and Directory tracks respectively. The format of these
entries is the length in -words in the first word and the disc
address in the second 2 words. For these sections 32 blocks are
always reserved for each track, since the tables may grow to this

size while the system is running.

19

X1V, MOVING HEAD DISC TABLE

The Moving Head Disc Table (MHTBL) is a 48 word table
resident in the disc driver section of the loader and system.
It contains hardware information about the disc on the system

as follows:

WORD 0O-1 Two-word logical address of the first 128-word
hardware sector on logical disc O.

2 Points to select code/unit number in DKTBL for

logical disc 0

3 number of sectors/cylinder
number of sectors/track

5 Current cylinder position of heads for logical
disc 0 (not used for 2883 discs)

6-11 Same as 0-5 applied to logical disc 1

L2-47 Same as 0-5 applied to logical disc 7

Note that the address in the first two words of each section of the
table is a sector address and must be divided by 2 to obtain the

block address.

" The actual numbers for the 3 kinds of used on the 2000C are

as follows:

2883 - 2870 7900
WORDS 1-2 ¢ '} g
9338010 97#&10 i9h88|0

186760, 19488, 3897610
280140, 29232 58464 o
373520,, 38976, 77952,
1466900, 48720 97kk0, o
560280 58464 116928,
653660Io 68208Io 136&1610
Leo 48. 96io

10 10

4 23,, lzm 24

W

20

USER

LIBUS

LIBRA

OCTAL
LOCATION

0

100
217
1224

1230

26000
30000
31060
31701
60000
61124
62264
71624
72140

75000

77000
77700

CORE MAP

INTERRUPT LINKAGE AND UNINITIALIZED
SYSTEM VARIABLES

EQUIPMENT TABLE
CONSTANTS AND SYSTEM VARIABLES
REGISTERS SAVED BY CLOCK

USER SWAP AREA AND SYSTEM LIBRARY
WORK AREA (10240 WORDS)

DISC DRIVER

DIREC TABLE

DLOOK ROUTINES

BASIC

1/0 DRIVERS

TELETYPE TABLES

EXECUTIVE

COMMAND TABLE

SYSTEM LIBRARY SUBROUTINES

SYSTEM LIBRARY PROGRAMS SWAP
AREA (512 WORDS)

CORE DUMP

'PROTECTED LOADER

2]

DRUM ORGANIZATION

The drum space available to the system consists of from 64
to 256 tracks, depending upon how many drums exist. Each track
contains 128 sectors of 64 words each, for a total of 8192 words

per track. The loader assigns tracks as follows:

System library routines (3 tracks)

10T ' (1-3 tracks)

User swap tracks (1 1/4 - 40 tracks)
Directory (1-80 tracks)

Disc ADT : (1-8 tracks)

ADT (1 track)

All remaining tracks are available for storage of sanctified
user programs and files. The ADT contains an entry for each avail-

able area.

The drum addresses of the individual system library routines
are stored into the COMTABLE dﬁring loading. Although they are not
all the same length, they are limited to 512 words, and so the system
reads in exactly 512 words whenever it wants to ioad such a routine.
The loader never assigns a library rdutine within 7 sectors of the

end of a drum track, so that no errors can take place in doing this.

Each directory, iDT, ADT and DiSC ADT track is stored beginning

at sector 0.

Since the user area is 10240 words long, it cannot fit on a
single track. fhe loader must therefore find adjacent areas on the
drum which total | 1/4 tracks for each user swap area. This will
not cause any problems because all drums used on the 2000C have

automatic track switching.

22

During running, each user Swap area contains a copy of the
area from core lo n U

ocation USER through the core iocation specified
by its ?PROG entry. This includes all variable data which is

(]
e

relevant to that user's program, and his program itself. The

location of various sections in his program is discussed elsewhere.

Programs and files which are designated as SANCTIFIED by the
operator reside on the drum and thus have better access time. They

must be less than 8192 words long. The area on the disc where they

were originally resident is reserved so they may be copied back at
sieep time.

23

DISC ORGANIZATION

The disc space available to the system‘is determined by the
number and type of discs which exist on the system. The discs are
divided into 256 word blocks. There are 46690 such blocks on a
2883 disc, 9744 on a 7900 disc, and 4872 on a 2870 disc.

The first 4 blocks of each disc are reserved for use by the
system. Block 0 is a label, which looks like this:

WORD 0 "Ls"
] llTSll
2 logical disc number

3-7 system identification
8-30 ¢
31 checksum of words 0-30

Blocks.l and 2 contain the final disc bootstrap found in the loader,
and block 3 contains the locked blocks table for this disc, which is

discussed elsewhere.

Disc space for system usage is assigned as follows:

‘Resident system 130 blocks
System library 126 blocks
AIDT 32 blocks/track
Disc ADT 32 blocks/track
Directory 32 blocks/track

All remaining blocks are available for storage of user programs and
files. Programs and files are each required to be stored as contig-
uous blocks of disc. Since the disc is allocated by blocks, each
program may cause part of its last block to be wasted. When a pro-
gram is stored (by the SAVE routine), it is first decompiled and is
stored in that form. Only the encoded text is stored, so that a
program may require as- little as 3 words of diéc space. When é
program is stored (by the CSAVE routine) it is saved in a semi-éompiled
form, i.e. the form it is in after the symbol table is built. Both the

encoded text and the symbol table are stored, plus 7 words of necessary
information. 24

Files always occupy an integral number of records (1-32767),
occupying a contiguous area on the disc. BASIC does not
treat the individual records in the same logical sequence as the

physical sequence, but rather interleaves the records, as follows:

even # of records

Physical sequence: 1 2 3 4 ... 2n-2 2n-1 2n
Logical sequence 1 nsl 2 n+2 cen Zn-1 n 2n

odd # of records

Physical sequence: 1 2 3 4 ... 2n-2 2n-1

Logical sequence: I n+l 2 n+2 ees 2n-1 n

This format tends to decrease disc seek time when records are

accessed in a logically ascending order.

25

DISC AND DRUM ERROR ROUTINES

Disc and drum errors do not cause immediate halts in their respective
drivers. Instead, the drivers indicate failures td their calling routines,
which take appropriate action. In many cases (particularly most disc
errors), the action is merely to inform the affected party and continue
normal systemvoperation. Such is the case for all user access to programs

and files on the disc or drum.

In certain cases, however, system operation is more significantly
affected. The following routines are called after these disc and drum

failures:

JETPT

This routine is called when a drum transfer to or from a user's swap

area has failed. It proceeds as follows:

1. Remove the user from the queue.

2. Set the port's status to unavailable and clear its ID and
flags words.

3. Clear this user's area of the FUSS table.
L. Call TCRIR to inform the user that his port is being zapped.

5. Insert an informative message into the system console
message queue and return.

SALVG

This routine is called when a system track with vital information (such
as a directory or IDT track) cannot be written back to its assigned drum
address, but when recovery might be possible if the information can be saved.
It is entered with A containing the address of the word in core which contains
the drum address of the track in question. B contains the negative length of
the table, which must be in core starting at LIBUS. The operation is as

follows:

1. Read the drum ADT, in several portions if necessary, into the
upper 2K of user area. Search each piece for an entry large
enough to accommodate the table in core. |If none is found, go
to step 4. '

26

2. Attempt to write the table to the newly found area on the drum. If
the write is unsuccessful, go to'step 4,

3. If the table s successfuliy written to the drum, update the drum
address in core associated with it, call CLNOT to finish printing
any messages in the system Message queue as well as a message of
success, and halt.

4. Call CLNOT to clean out the message queue and to print a message of
SALVG's failure, and then halt.

SICK

—

This routine is called when the System cannot continue operating (because,
for example, it cannot read a library routine or system table), but may be
able to be recovered. The routine merely calls CLNOT to finish printing any

messages in the queue and a message of hope, and then halts.

DEAD

This routine is called when the system cannot continue operating and has
altered its tables in such a way that they contain conflicting information,
and recovery is, therefore, impossible. DEAD calls CLNOT to dump the message
queue and output a ''no recovery' message, and then halts.

MDEAD

This routine is called in situations like those which call DEAD, but
which specifically involve possible destruction of a disc's locked blocks
table. The procedure is the same as that in DEAD, except that the final
message refers to the locked blocks table.

CLNOT

This routine is called when a hardware error has caused a system shut
down to be initiated and it is desired to inform the operator and users of

what is happening. The procedure js:

1. Call TCRIR to inform all users that the system is going down.

2. If the system teletype driver was outputting, complete the line
it was printing.

27

3. |If there are messages in the queue, output them on the system
console.

L. 1f the routine was entered with B nonzero, print the message
whose length and text are pointed to by it.

5. Output three X-OFF CR LF's, and return.

TCRIR

This routine is called to inform one or all users of a hardware
failure which is fatal to him/them. The procedure is:
1. Set up port counts and message pointer for the appropriate
message.

2. Output the message, one character at a time, to each port to
receive it.

3. Output three linefeeds and return.

SYCON

This routine is the non-interrupt output-only teletype driver used by
CLNOT to print on the system console. Upon entry, A holds the number of
characters to be output. Bit 15 of A =@ for X-OFF CR LF to be output
after the line. B points to the first word of the buffer to be output.

28

SCHEDUL ING

The basic philosophy of the TSB scheduling algorithm is to provide
short response times for short, interactive jobs at the possible cost of
delays in longer running jobs. The implementation of this involves a
queue of jobs to run which is ordered according to a priority scheme.
The queue is a linked list of from 1 to 34 entries, each entry pointing
to the next entry, and the last entry pointing back to the first. The
34 possible entries in the qdeue are the 32 user LINK entries, a LINK
word in a truncated TELETYPE table reserved for the system console, and
a queue head. The queue head consists of the locations MLINK (0:2), and
is always in the queue. The queue head has a priority of 777778, which
is stored in location MLINK+2, and so it is always the last entry in the
queue. As an example of how this works, assume thatiusers 1, 3 and 6 are
on the queue in that order and so is the system console, in a position

between users 3 and 6. Then the queue will have the following appearance:

_ ‘v
TTYGI+ILINK | o
PLEV | o |
' . &
TIVE3+LINK |~ 7t
wev | 2|
: T
T35LK e e
O A
TTY@6+7LINK ! | —
PLEV l_ﬁ,_J__-_,‘.. l
ML INK ! -
SR

29

Since the MLINK entry is always the last entry on the queue,
MLINK+] is a pointer to the first entry, which in this case is TTYg@l.
In the case of an empty queue, MLINK+1 will point to itself, i.e.,
CONTENTS(MLINK+1) = CONTENTS(MLINK). Each entry on the queue has a
priority no greater in numerical value than that of the one it points
to. When an entry is added to the queue, this ordéring‘is always
preserved by piacing the new entry just ahead of the first entry
with a larger priority number. Note that when the first entry in
the queue has priority 0, it will remain at the head of the queue

until it is removed from the queue entirely.
The following rules are used to assign (and reassign) priorities:

1. Upon first entering the queue, jobs are assigned priorities

as follows:

SYNTAX lines and jobs returning from 1/0 suspend: 0
BASIC commands (RUN, LIST, PUNCH, XPUNCH) : 1
Commands for drum-resident routines (GET,BYE,etc): 2

2. Priorities of jobs are reassigned in the following way:
Jobs of priority 2, when they reach the top of the queue,

are reassigned priority 0.

RUN jobs, when they exceed their time slice, are re-
assigned priority 4, and repositioned in the queue
according to that priority. Each RUN job is assigned
avffme slice of two seconds, and if it exhausts that

it is assigned another. When executing a <CHAIN statement>,
a <FILES statement>, or an <ASSIGN statement>, a RUN. job

is reassigned a priority of @.

The OPEN command is reassigned a priority of 4 when it is

suspended after writing file marks in 400 blocks.

30

After an abort during program execution a user is re-assigned

a priority of 0 to run the routine which updates the last change
date for files.

LIB points to the location in the COMTABLE of the drum address

of the library routine in core. LIB = 0 when none is present.

The following conditions must exi t for the scheduler to permit

w

execution:

A) for Syntax and BASIC commands :

MAIN set to point to correct user table

B) for drum resident commands :
MAIN = 0

LIB set to correct drum resident routine
The scheduler routine SWAPR is responsible for creating these

conditions, and makes its decisions according to the values of MAIN,

LIB, and the entry on top of the queue.

31

COMMUNICATION BETWEEN SYSTEM MODULES

There are seven system modules that communicate with each
other in various ways: the drum driver, the disc driver, 1/0
Processor driver, system console driver, scheduler, BASIC, and

system library routines (HELLO, BYE, KILLID, etc.).

l._ Drum Driver.

Any section of the system may call the drum driver to perform

a drum transfer. Three parameters are passed:

A = drum address (bits (15:14) = drum number
bits (13:8) = track number
bit 7 =0
, bits (6:0) = sector number)
B = core address (bits (14:0) = core address
bit 15 =] for drum input
0 for drum output)
WORD = -# of words to be transferred (may be 0, in which case

no actual transfer is performed).
Called by JSB DRUM,I

it is the responsibility of the caller to insure that the drum
is not busy when the call takes place. This is no hardship since
while BASIC or a system library routine is running, no other module
even initiates drum transfers. As a result, the drum will appear to

be busy only if the module itself has initiated the transfer.
Upon initiation of a drum transfer, the variable ENDRM is set

to -1, and it is cleared upon completion. A complete transfer can
be performed by:

32

JSB DRUM, 1

LDA ENDRM

SSA

JMP %-2

SZA

JMP <error location>

<process successful transfer>

The system never suspends a program for a drum transfer

because the high speed of the drum does not cause any great overhead.

The value of WORD is not modified by the driver.

33

Disc Driver

Any section of the system may call the disc driver to perform
a (moving-head) disc transfer. Three parameters are passed to

the driver:

A = pointer to | (the core address of a two word
disc address v logical disc block number at
which the transfer is to begin)
B = core address (bits 14-0 = core address at

which transfer is to begin;
bit 15 = 1 for read from disc
to core;

bit 15 = @ for write from

core to disc)

The variable MWORD = the negative of the number of words to
be transferred. |If MWORD2#, the driver will cause no transfer,

but will position the appropriate disc unit at the specified
block.

The disc driver is called by JSB DISCA,I.

The driver determines the logical disc on which the specified
block lties, and, if that logical disc is present on the system,
processes the requested transfer. While a request is being
processed and transfer taking place, the driver busy flag,
MBUSY, .is set to -1. |If the driver is called while MBUSY is
so set, it will return without doing anything.. If the disc

block number passed to the driver does not lie on one of the

‘discs present on the system, the driver will increment the

-return address by one and return without doing anything. If

the driver accepts the request, it will increment the return

address by two and return after processing of the request has
been initiated.

34

A moving head disc transfer involves two steps: positioning
the heads to the correct area of the disc and performing the
actual data transfer. The disc driver returns to its caller
while each of these is going on. Command channel interrupts
return control to the driver when the operations are complete;
the driver checks for successful completion of the operations

before proceeding.

The driver for the 2878 (I10MEC) disc keeps track of the cylinder
position of the heads on each of the discs on the system, |f

a requested transfer is to or from the current cylinder of a
disc, the driver does not issue a seek command and suspend
pending its completion before starting the read or write. It
merely issues an "address record" command to set the disc
controller's record address register for the transfer. The
2883-2884 (1SS) disc driver always issues a seek command, since

a seek to the current cylinder consumes virtually no time.

A single data transfer on a disc cannot automatically continue
from one cylinder to the next. The 287¢ disc has the further
restriction that a transfer cannot cross the "mid-cylinder"
boundary (between track 1 and track 2). When a data transfer
is requested which crosses one or more of these boundaries,
the disc driver breaks up the transfer to conform with the

restrictions.

When the driver completes handling a request and returns to the

caller, MBUSY is set to indicate the outcome of the transfer

as follows:
g: the requested transfer has been successfully
completed.
1: the transfer has failed; the seek (position)

operation could not be completed.

35

2: the transfer has failed; tHe data transfer

~ was unsuccessful.

3: the transfer has failed; part of the data
lies on, or would be written to, a disc

which is not present on the system.

A complete disc transfer can be performed by the following

sequence:

JSB DISCA,I
<return for driver busy>
<return for disc not present>
LDA MBUSY
SSA
JMP *-2
SZA
~ <process disc error>

<process successful transfer>

The disc driver does not modify the contents of MWORD and the
A and B registers. The system never suspends a program for a

disc transfer.

(73]
(o)}

III.

I1/0 PROCESSOR DRIVERS

There are two drivers used for communication between the main
processor and the I/0 processor, one for each direction of communication.
Each communication consists of one 16 bit word which looks like this:

15 13 12 8 7 4 0
OPCODE TTY # DATA OREOPCODE

The TTY # is the user's port number as found in the ?TNUM word of
his teletype table.

The opcode uses bits 15-13, unless they are all 1l's, in which case

it also uses bits 4-0.

Opcodes which have values of bits 15-13«<4g use bits 7-0 for data,
e.g. al ASCII character.

The main processor sends communications on I/O channel 11 and
receives them on I/0 channel 10. An exception is a communication
sent by the main processor which requires a response, which will be
received on 11. Communications are initiated by JSB S14SC, I with the
communication in the A register.

The following is a list of communications sent by the main processor:

NAME OPCODE (OCTAL) FUNCTION

OCR 000000 Output a character

STE 020000 Start timing ¢ ENTER statement>
GTC 040000 Get a character (response required)
PHO 060000 Allowed phones time

SPE 100000 Baud rate information

SBP 120000 Save teletype buffer pointer
RBP 140000 Restore teletype buffer pointer
INI 160000 Initialize system

UIR 160001 User is running

UNR 160002 User no longer running

IWT 160003 User in input wait

HUU 160004 Disconnect user ,

ULO 160005 User logged on successfully

ECO 160006 Echo-on

ECF 160007 Echo-off

37

NAME OPCODE (OCTAL) 'FUNCTION

TPO 160010 . User in tape mode

ILI 160011 Illegal input? (requires response)

NUC 160012 New user logged on

KAO 160013 Kill-all output

ALI 160014 Allow input

OWT 160015 . User in output wait

IBF 160016 Is buffer full (requires response)

PSC 160017 Line printer select code

LPR 160020 Line printer request (requires response)
LPD 160021 Line printer disconnect

LPS 160022 _ Line Printer status (requires response)
BKS 160023 Backspace in teletype buffer

CHS 160024 Character size information (requires response)
STP 160025 Subtype information

WSP 160026 What baud rate (requires response)

WCS 160027 What character size (requires response)
WTP 160030 What terminal type (requires response)
TKO 160031 Telekludge line printer output

Communications initiated by the I/0 processor are detailed else-
where. It should be noted that the main processor ignores communications
if they are not consistent, e.g. it will only accept a line of input
when the user's status is idle or input wait. The receive driver commun-
icates with the scheduler by setting the COMI4 bit in the ?FLAG word of
the user's teletype table and setting the appropriate status.

The I/0 processor program is reéponsible for all multiplexor 1/0.
Output to the multiplexor is performed on a character by character basis
via the routine OUTCH. The calling sequence is as follows:

A = character to be output in bits (6:0), bits (15:7) ignored.

B = address of WORD 0 of users teletype table

~ (JSB OUTCH,I).

The OQTCH routine places characters into the user's buffer until
it is filled CZSO characters), at which point the user is suspended by
OUTCH. This is no pfoblem for BASIC, but due to re-entrancy problems
must not be allowed by other modules. The buffer is élways empty when
a library routine isfinitiated, so they normally do not have to worry
about it. Routines which may fill the buffer, like CATALOG and DIRECTORY,

get around the problem by suspending themselves at an appropriate time.

38

The I/0 processor program recognizes aborts and sends them to the

main processor. If the user is running a library program (except CATALOG,

ignored, since the routine may be in the process of updating system
tables. At other times when aborting could cause trouble, the UNABT
bit in the ?FLAG word of the TTY table is set. When the abort is seen,
the ABTRY bit is set. Routines which set UNABT have the responsibility
of calling ABCHK when aborts will no longer cause harm. ABCHK aborts
the user if ABTRY was set.

Input from a user teletype is buffered by lines. When the I/0
processor sees a carriage return, it informs the main processor.
BASIC, or the command processor, or the library routine, etc. processes

the input on a character by character basis.

39

1v. SYSTEM CONSOLE DRIVER

The system console driver maintains three flags, T35F1, T35F2,
and T35F3, which determine its_status. The meaning of these flags

are as follows:

T35F1: = -1 during output, 0 otherwise

T35F2: Normally 0, it is set to -1 by the driver at the conclusion
of input, and cleared to 0 externally. V

T35F3: Normally 0, it is set to -1 by the driver at the conclusion
of input, and cleared to 0 by the driver after output has

been initiated.
The combined values of these flags are more significant:

F1 F2 F3
0 O .Driver is accepting input
0 -1 -1 Input command received and is being processed, but output
has not been initiated. '
0 -1 0 Output terminated from a system command which is to be
| reinitiated. |
-1 0 0 Outputting
-1 0 Outputting, at the end of which the current system command

will be reinitiated.

When F2 = -1, the driver will not accept any input. This guarantees
system library programs that they will not be interfered with. These
routines are responsible for clearing F2 when they call the driver for
the last time. FZ and the console status (T35ST) are also cleared if
a key is struck on the console during output. This will effectively

terminate such things as DIRectories, REPorts and STAtuses. .

When F3 = -1, log-on and log-off reports as well as the message’
queue are held off. This guarantees that these messages will not be

interfered with by system library program output.

40

The calling sequence is:

A: bit 15
bit 15
bits (14:0) = core address of output buffer.
JSB TTY35,1

0 if CRLF is to be appended, bits (14:0) = # of chars.

1 if punching is to take place in addition to printing,

The driver uses the 36 word buffer T35BF as an input buffer. Most of
the library routines use it for output, and occasionally for temporary

storage between lines of output.

INPUT AND TERMINATION REQUESTS
- BASIC may obtain input from a user console by performing the

instruction
JSB SCHIN, 1
Either BASIC or a system library routine terminates by:
JSB SCHEN, 1

It is possible for BASIC to call a system library routine directly

by executing:

JSB SCHLB, 1
DEF <location in COMTABLE of drum address of program?

This is done with the FILES, CHAIN and ASSIGN routines. It is
necessary that the library routine cooperate with BASIC, i.e., not any

program can be so called.

41

I System Tavddle
| enter on) ;
v Ariver Fov

2 1»“"0”)‘A-‘”f a ,q)

From e,
carsole - . Tt

ov+,u“

S Y S ~
1se% <o reiwi dleese
105 & &

ENARBLE IMTERR.
EXTT

Sraav
T3LFY ant
TICST

COUSOC%A MI'UG'R . ry 4 o 3

v wd y
covgafe Ar.ver
4o hsadie

™

TCUT € T3SF1 e !
TBITS € fsooe |

i

TOG &
TCnTe TemT-1 | reor L osen

ranR ool
TADR FTs
" O TP ™ >

TYY g='ect coe

'/

TRITs € 12000 S RESTmRE Fiil]

TETS & 130095

I gwAlLs Dévree, .
\ Erm3e

LT)
. s,'

Cownsore . DRIVER r2

soc +iom of

Av. iPv

Cossole

iuput.

cer
CHACrCTER

Teur & tEoR&~ I
YTerYs & 22310
ourfvr TO pEVJSLE H

!

T

GET U\ "

TISFL « -1 !

TCAY & 1CaT =
fmrfrc‘v‘ T l]'lﬂ”"'c‘

o ser? foe 0, Har
AorE Yep y-2 .

216

POLIER

[power Fadl

FAsL S pe 1

ff’,”t?”'f 4

S p ar

power Aown

SAVE
REGISTERS

U copy saved
registers ‘o
Socovd csve

I .

Save f?_q"
of the [/O

e’u\nd‘ .

F &%

HALT

. .. clexr £ 0w

,Te FOUTIMC

P 2 F/&y
HALT

2lle

POwER

FArL

RESYo A TES
AND TTY
STATRS, |
INITIRLLIRE
Loor

CLEAR FLAs
on THIS Devied

‘APMeE TO
NEXT DEVICE

2116

Power

for this deviea 3

FAre

imsfeervpt

-} set c;ufnd;on
{this deviee and

allow am
intecnpt Po cccor,
this ot clnr

F 2 £,

clear cowmtrel
om Fhis Avice

i

,p,d"vsf the
poiviers Far ghy
mavt eheck,

ry

e e a ea

216 Power gar. ps 4 of S

RESTART THE
PR.LESSOR
; PITER Lom T

do v opEmAL
Premp or TeE
7EcE Yok

\
|
Lt
1
i
I AN Y o ASE ’ o 1
CTng Deu wed : .
WL WEenN e ; $ET PIwRF
: Ft4s
t
! .

5 To TV, CAwLeR

|
/RE EME € PRup
Daweg precTy

| RESTART
Lou T eE

RESTHRY grrrec
YRy L NS FER

[Twe o5 DRIvER
EYVS 1o \TS

CALLER \F TWE
Poweg EAL 1O

RESTORE . i
REs ISTEKSANY {‘35'5‘ °‘§ €
INTERRYPT | co::‘l’g;'\

SYSTEMm

e

. ‘E"‘é‘"s

ot e

f

UG Pouer Fail | S of §

T e e

DREDY

SAve ecemieds,

UWSABLE 1MER-
Q\)ﬁﬁ-} ¢ fod
YSe o

\WAH Fok
D1Sc QEADY

NOwE o
NEwT O15¢

m——— e L

S
’ Reg1oRE

| .E'\\JQN‘ T?
| peerTess AvTO- €ESTAKRT
! f NI AT

SET Tor gewen| [oe oot
b teee; SeT Duney

For DRweg | | TRMNIFERR
SET of
QHQ AMGT EQS
Foll pRIvER
RE-ENTER DR
DIRECTLY 1O

COMMUN TCATEION DRIVERS =~ = SEND

Sewd JIrivesr
of ‘7 3 fase

proc8 st ov,

A(Wed beje,
bevt (s saved
Sart Gommubicat jom For poer Fuil
woed amat I .U Frace ,
B -,
necessary fo black ‘
clock becone
cmoterropt are
toved o, savd stafry of
- w o Clock a~d
b'“. P,
f'\(;ohv‘r«"‘
Sys Fou Avug
; 3¢ o JSo That
phe Tlo srec.
,'n.iqut . jeam le Sevrv icad,
Sysfem om o =

COMRMUPICATIONS DRIVERS = — RECETIVE

»ade L o
ewfer Aere
U‘m L =)
o’—*epa.,’l oct s
on Fhe veervg

GL‘QQQI.

o _ -
common s eufrong
aaovd,

j"" Id fedle
decode ofF
the opcore.

¢¢1-W,¢ !
roceipt fo IA
Processor.

','.v

7

b

oF S

Commuma O - L,
CATIoNS DRIVERS - — RECEIVE ,,5 2. 45 <

viev has
Yyped o
C"'t’q"

refors.

fat g vearvs
cosmiy bit

1

Save’ fots ¢
bl v RTIM
Fv caSe TeSpesmn

Ko EPTER,

CoOMMuric AT IONS

BRIVERS = = RECEIvE s

the /o
prosctsor hag
rca,m‘;-d a,
tiwg beeak
condflow.

Set the
CABTRY B

se¥ Comiy 4;r,
sef stahs 4o
#RARTINe

COMMUNICATIONS

DRIVERS -~ REcEIVE

This wsers
ovt pot Lot
is ol

set +his uo;n
OUTIT AP,

8FL ~as SevT
for this [N, T4
&\-J :'* arie s heg
o ? 1 O tha-s

Pera o g,

ouUrwT
'Y

CLERR Tiers uscls

PR

<
<

COMMUNTCATTOLS

set HQDIS
C flag

KRRt

1 sab fthic waerg

Phe

ewicr

- Qomry st
stnfug. d»

s

shTO ,

Udeit has bass

eosiraned Vine

wveeled with
mo K Rovthcomiag

this vser

kas howe
up h ‘s k’(/w
cownectiom,

Set

Ce
+o

comiy k.4,

This sees

Srtatus
Irsc,

/’7 5 = {s

SCHEDU L ER

CLOCK [r77e awu R

TIME ofF

-k P ')

ri

CLfé Quack

privedy s
Lerovg ra?cwq

o

"2

SC"r’EDC(tew

77N\

SCHY

sk Fhe vstr
20 Phe Pueve

e priendy

} o
ADUAREE Po.rreg
™ ngsT oy

Clere THE
Corsys 1C & =LONS

LY.

T

jvnp Yatle
6“¢I

calf
ow

Currow®

L8eryg
r‘;l’".

Sc HeEDL kg h 3 o "

ST PwneER
Back 1o Fiest
TV TAME

MO Messace
duErer Powr

4

ovTPUT A

VPO e CNNT
M0 8o 1Ld
Los MESsAee

:cm'»u-aﬂy | - N g voor

rarnr " ??? "

@ Prepare v
""t g a.vn’c

o tre. Quece,

[FeF peichm
For @ueve

Frgced 7oy,

SCHEDUER

—, = ~——
ey €A I1C)
rROg .,

Exgevrinmy I

TIMED

(-

INPERRYST 3rp

!

ynBLeCK TME Ciecx

Lréefsr s rvrs
rROCRAMS ~rg
L 7 st
2EFonneé pric
A rrd ouT,

l
i
—

| S

PLES & ARzrne

T o= T
———

set she Jirier
ievd o= Clock

-~ . o

cg? 4 v';‘f’ [4l
STRYS & muw

¥

R€Srane
e ISTenS

ﬁ L) Wo“ 6%\(
FLALS

EVARLE mTEQﬂOT
AnD - EX
YiA- PREe

SCHEDULER

py € oF

Ars TMELT NAS

Begmwr Trrzlh R
Arr [~17h e A0
HAS P ST

CrmpPie ™ L2,

ScHSH

THE
STATUY

dad
-

RESTOR

ACTUAL

(Sﬁ ved
APLEV)

\

T PLEv e P ‘

PCIyTIR

haavd

ADTvST

Faar's ~aG

'\ 2

¢ oDE
AAVDLE

REMZ: LK
Sram Qutul
ReticvE ouTw AT

R!T I~ FlAcS |

L

Se1 vé fFod
wisine (R E

Wy RESIDENT ABVCLD
QoviwnE
~

SET STAT™YS

1o 2ekolw
(PEMNT “sto0"

Biestv

———

61

KILL oq?u‘\"ﬂ

SCHEDYLER

l Skxp kt‘::h;w.nr
rneErrvs EnTrg

!
i T"ec> our
i
L

SCHg - - -~

cope Fox 7

T NRIED
DrscomwmeEeT

(usem =g i) ’

Ré€moue 2eere
FrRor QUsy--

!

CLame Agoar
fFLacsg

SRP—

20

AN ExTIR
ETW L WY L%

LIRNEFS B

T)

RSP & <R v

CHst

Q_

62

2

A LLry HAS
&cEv EXTIRED
FoR am
IDe& ise e

SCHG Joo o= -

N / v
Corin 4B / Y
- ‘ ERRoR
Scom PRINT 177" }
-

priori ~" - ﬁ

£

set RSTR o
sy~etar

;

S €= Soptay ‘
$et 3 Fv Lesia

privt Liwe Teeod I

scv]

f2l! commusi -« f"'a-m;
proceccor +hat

av~Tlay [ine 1

cellowabls

SCHEDL: | "
C z"“ék, P9 77

P MHERE CHtEpr
4 vALID

COMumALVD MAS
gerw Frowd,

\/
hag
06 ivp?t \
yss
("”r_:./) b .
tepe.

erorg o S ceian]

LBt To R VPSR

‘ PRZeT |

|
|
|

clear foge ereor
Flag

I3
A Crman
dig allowed 2'

~ (sewe, Csay,
.,l'fl rvu)

yee 'F'—':M-—.—..._

2
£ ey,

——
- ——

/ CRw TH:

N

>

SCHED uLER ps 1O o 12

(SCHrz

Sef procrac stahsg

Comtard Ir

TYPE

ret :4.-1.4,,., ' ’ et Somet “7
Mt LrBus. @ dJd rous

Set 8
For IM3EQ

SLHF,DULG& | ?‘) i o'e i

1
Y Roing
PREPAKES W€

VEOGRAM DN INE

Tof of 1uE
[1o @und

[3ePT N\
/ KiLL 1Me ‘
PoeT

. SwAFK LOING
& 1€ANSELE)?

!3&\!& Dise And
fheum Busy
CFLARS N My

!
|
. !
e

S
- s g

. Y l/\
) o e
\//

led

- AT g
BT\ MY YW 4
on U N
1 ~

A 4
.’/\v
(AN TME -
Qoviing BE
peovedy -

N

//
P .
7 ANY
Roe A 1p)LQP.;
\

ceOE?

Y

{"\Jlﬂt oVt ‘\

RO GRAM 'N
(oKL Y, MANGo

Roviing
rdom Rat gk

st

ScMEDuLER

,/ ~
T 1 L1 DY
- N N ~
ofen >——'
A .

Y

S€ET Lener

FLAG

J

Kb« WS

< Peogaman N

Pj ' of

N\
SWAP"

coONE?

|SMAIN ¢ -1%
T NYVIA T
[KERYING L
" Plo el AM

A

)

67

SET mAaN=O

e
F eiTATe E;g-%
10 DRum
TRANSFEQ
SCH | \
4

SYSTEM LIBRARY ROUTINES

FILES

The FILES routine is used by BASIC to process FILES statements in a
user's program. The function of the FILES routine is to translate
the filé names in the user's program into a table for use during
execution. This table contains a 15-word entry for each file. Its

format is:
1 file length in records (@ for none) i bit 15=1 if read only
~ i
. ! bit 15=1 if "dirty" record
2 logical record size in words i bit Vh=1 if "dirty" file
3 disc or drum address of file's f*
L i
y last logical record
: . drum addresses in
; rds 4, 6, and 8
5 disc or drum address of record words an
-) for sanctified
6 currently in core (word 5 = « e) X
: ; s; for t y
! 199999, if none) | es3 Tor these
; -4 ! words 3, 5, and
7 é disc or drum address of : 7= 177777
8 file's first record -
i
9 pointer to first word beyond core buffer
io - pointer to current word in buffer
1 EOF/EOR exit address (@ for none)
12 :
— file
13 |
name
14
15 L protect mask

68

During operation of the FILES routine, a temporary buffer is used
as a table to store intermediate data. Eight words of the buffer

are used for each file. The operation is as follows:

1. Translate characters in FILES statements into the buffer
table. FILES staiements are pointed to by a four word table
in the user swap area which is pointed to by DFILT.
FILCT = -5+ # of FILES statements. There may be up to 4 such
statements. Filepames are extended to six characters, if
necessary, and those which are specified to be public files are
marked by setting Bit 15 of their first word to 1. Those which
are specified to be group library files are marked by setting
bit 7 of their first word to 1. A "% alone as a file name is
a place holder. The buffer table for the entry is zeroed.

Possible errors found in this step are:

a. File name of 0 or > 6 characters

b. More than 16 files requested

2. Perform directory search for each specified file. DIRWD is set
to thé drum address of the directory track in core so that DLOOK
doesn't have to read and write the directory for each file. Save
the file's drum address (@ if not sanctified), disc address, file
length, and logical record size in its portion of the buffer
table. The record size for "*' entries was set to 256 in the
previous step. The read-only bit is set if the file is a library
file and the user is not the owner. An error occurs if the file is
nonexistent or protected. Update the last reference date word

in the directory entry for this file.

3. Test to make sure that there is sufficient room in the user

area for the file table.

L, Scan the FUSS table to see if any other user has write
capability on the files requested. Mark any such files as
read-only. This test is skipped if the user's |D has a
letter prefix 'A'. Copy the disc addresses of the requested
files into the user's portion of FUSS. Indicate read-only

files by setting bit 15 of the upper disc address word.

69

5. Build the table specified above. FILTB is a pointer to the

beginning of the table. Upon exit, VALTB and PBPTR both point
to the first word following the table.

70

ASS|GN

The ASSIGN routine is used by BASIC to process an ASSIGN statement in

a user's program. The function of the routine is to replace the

information currently in the file table referenced by a specified file

number with informatipn about a new (usually different) file being

assigned to that number. The operation is as follows:

1.

If the previous file was written on, update the last changed date

word in its directory entry.

Search the directory for the new file. |If it is not found, is a
program, or is protected, exit to non-existent file return. If it
has records larger than those of the previous file, exit to that
return location. Otherwise save the file's drum address, disc
address, length, and record size. Set bit 15 of the length word
(read-only) if this is a user accessing a system or group library
file not his own. Update the last reference date word in the

directory entry for the file.

Scan the FUSS table to see if any other user has write capability
on the file. |If so, set bit 15 of the file's length word unless
this is an "A'" user. Move the disc address of the file into the
appropriate two words of the user's portion of the FUSS table,
setting bit 15 of the upper word if the file is read only for this

user.

Construct the file table entry specified in the description of the
FILES routine. Exit to one of three locations, depending on
whether the file is: 1) available for reading and writing; 2) read-
only (except users Axxx) because of another terminal's read-write

access; or 3) read-only because it is a system or group library file.

CHAIN

The CHAIN routine is used by BASIC to process a CHAIN statement

in a user's program. The function of the CHAIN routine is to.find

. the program named in the- CHAIN statement, retrieve it from the disc,
and begin execution. It operates as follows:

2.

Z

Dump file buffers. "

Update the last changed date entry in the directory for each
file which was written on.

Translate name of program from CHAIN statement. Invalid names
exit to error. |f preceded by a ''$", set up Adgg search; if
preceded by '"*'', set up group library search; otherwise set for
searching on user's ID. Save the line number if any is specified.

Perform directory search. Exit to error if not found.

Check to make sure that the entry is a program, that it is not ill-
stored, and that it will fit. |If any of these are not true, exit
to the appropriate error.

For programs on the disc (not sanctified), initiate a seek by

calling the disc driver to perform a zero length transfer.

Update date entry in directory and write directory track back to
drum.

Read in the basic portion of the previous program, including

the common area and then append the new program. |f the read

is unsuccessful, read in the previous program again and exit to
error. if successful, move the new program name into the user's
table, and if this is a run only program, set the run-only bit,
unless the program is in this user's own'library. Call SEMIC,
which sets up pointers for the language processor, dependent upon
whether the program is uncompiled or semi-compi led.

Check if an abort was attempted during the previous steps, and
if so, abort the user.

72

CHAIN (cont.)

10. If a line number was specified, search the program for the
statement and, if found, put its absolute address into PRGCT.
If no line number was specified, set PRGCT equal to SPROG.
if the program is nuii, or if the line number cannot be found,
clear the chain bit in the flags word. In any case, exit to
SCHBL.

73

SAVE

The SAVE routine is called by a user to save a program in the
library. |Its operation is as follows:

1. Test for the existence of a program name and a non-null
program. ’

2. If the user's program is in compiled form (CFLAG bit = 1),
call DCMPL to put it into the form in which we will save it.

3. Check if the common area has been allocated. |If not, call
ALCOM, which com<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>