In addition to the changes needed to correct the HP 2000A TSB System Version E, the following new features have been added: - 1. All lines printed on the ASR-35 by the commands REPORT and DIRECTORY will be terminated by XOFF CR LF instead of CR LF. - 2. The HP7970 Magnetic Tape Unit may be substituted for the HP 3030 Magnetic Tape Unit. Users of HP 7970 should type: #### MAGTAPE - select code * when entering MAG TAPE commands. (The * must appear if SC $\neq 0$) 3. If a HP 7970 is being used, the status command will print an * after the Magtape select code. Reasons for HP 2000A TSB changes were to correct the following: - 1. Using = signs inside parameters to functions can cause fatal errors when the program is run. e.g. A = INT (A=0) - 2. Redimensioning matrices to total size > 32767 can cause fatal errors. e.g. MATA = ZER (1000, 1000) - 3. In the CAT command, random shipping within the directory can occur at the end of each line. This is non-fatal. - 4. If a user hangs up his phone or exhausts his log on time simultaneously with typing CR or break, he may crash the system. - 5. If a user in tape mode hangs up, the next user to come on that port is still in tape mode. - 6. Disc errors occurring in the loader are printed incorrectly. - 7. At the end of a magtape SLEEP, a verify procedure has been added. The following message is printed: #### VERIFY? A response of NO will result in the system printing DONE and halting. A response of YES will cause the tape to be reread and checked for validity. If it is valid, the system will print DONE and halt. Otherwise, it will print TAPE BAD OR TOO SHORT, and halt. The dump can be restarted by pressing RUN. # TYPICAL SYSTEM DISC USAGE # SLEEP COMMAND PROVIDE FOR SYSTEMATIC SHUTDOWN OF SYSTEM. ► PURPOSE: SLEEP - CHARACTER STRING (MESSAGE) ► FORMAT: ▼ EFFECT: 1. MESSAGE SENT TO ALL ACTIVE USERS . ALL USERS ARE DISCONNECTED 3. THE CURRENT SYSTEM IS DUMPED TO DISC 4. LIBRARY TRACKS ARE PACKED FOR EFFICIENCY PURPOSES. 5. IF MAGNETIC TAPE IS PRESENT, THE SYSTEM IS DUMPED TO MAG TAPE 6. COMPUTER HALTS SLEEPING A SYSTEM TYPICALLY REQUIRES 5 MINUTES. #### STA IDT Ø/21/000 1160 ADT 0/21/019 0304 #### DIREC 0/22/000 1424 0/23/000 2272 0/24/000 1784 0/25/000 1568 SYSTEM 0/00/000 0/01/000 0/02/000 0/03/000 0/04/000 #### USERS 0/05/014 0/06/002 0/07/000 0/08/000 0/09/000 0/10/001 0/11/005 0/12/00 0/13/000 0/14/032 0/15/000 0/16/005 0/17/000 0/18/000 0/19/000 0/20/00 MAG= 17 PHONES= 16 DISC= 14-128 14-128 14-128 00-000 #### TRACKS - $oldsymbol{o}$ SAMPLE STATUS #### OVERVIEW OF INTERNAL TIME SHARING OPERATION - I Core Map Elements - A. Scheduler (TSB heart) Schedules/ initiates/ suspends/ terminates tasks. - B. BASIC interpreter syntax checking; RUN, LIST, PUNCH - Re-enterable processor i.e. one copy shared among all users - C. Swap area - User swap area(1240B → (1240B + 5440), each user swapped in/out between (the one) in-core swap area and that user's particular disc swap track. - 2. System library program work space (1244B → (1244B + 15440) - D. System Library Program, (SLIP) Overlay Area System routine execute area (user & operator commands) - 1. Programs only read in -- i.e. no need to swap out. - SLIP's run to completion, or <u>self</u> suspension (during output). - E. Drivers - MPXR Multiplexes input/output from/to the 16 user teletypes. - 2. Disc Driver uses DMA 3,7 (2,6 not used) - Console (TTY35) handled separately from users. Requires tty board. - 4. Power Fail System should be fully restored upon power failure. - F. TTY tables in-core tables containing user buffer information, and scheduling status. - 1. One for each user. - II. Disc Map Elements - A. Swap tracks 1/user - B. Core-resident copy of system - i. Mainly for re-loading - 2. Portions also used for SLEEP - C. System Library Programs (disc-resident) - D. DIRECTORY track (s) 1/64 tracks (i.e. each additional 64 tracks require another DIRECTORY track). - E. IDT/ADT (I.D. table, available disc table) track. - F. Remainder available for user files/programs. III Interaction - A. Swap tracks to/from swap area - B. SLIP's to SLIP overlay area - C. DIRECTORY, IDT, ADT to/from SLIP work-area (user swap area) when being examined/modified. [Scheduler function (objective): To schedule, initiate, suspend, or terminate tasks] #### IV. Tasks - A. Def: A body of programming work to be executed by the CPu. e.g.: - 1. Syntax processing for user BASIC statement - 2. User commands (RUN, CAT, REN, ...) - 3. Operator commands (ROS, DIS, SLE,...) - B. Each port (not user) associated with a task; plus operator console. - Therefore, maximum of 16+1 ready tasks can request service, simultaneously. - C. Types of tasks - 1. Core-resident - a. Executed immediately: SCR, TAP, KEY - Scheduled: Syntax processing, RUN, LIST, PUNCH. - c. Use swap area for BASIC programs(swapped in/out). - 2. <u>Disc-resident</u> all other (user and operator) commands. - a. Executed in SLIP overlay area - b. Use user swap area for: - i. BASIC program (e.g. REN, APP,...) - ii. Work space (examining/modifying DIRECTORY, IDT, ADT). - c. No need to swap program out (because they run to completion, or self-suspension). - V. Scheduling deciding who runs, when, and begin executed of appropriate task. - A. Only one task has control of CPU at any time. Therefore, when a task is ready to run, it is placed in a waiting list (the queue). Queue is list of those tasks ready to be executed. - B. Placement in queue depends on: - When (first in, first out) - Priority level (PLEV) (queue is actually a queue of four sub-queues. i.e. it is "last-in, last-out" within any given priority level). - C. STAT status of task determines its priority level. Possible statuses: - 1. idle - 2. I/O suspend - 3. Syntax processing - 4. RUN, LIS, PUN - 5. Other commands D. Priority Philosophy: "Service the interactive user quick! by giving him high priority at the expense of long-running compute-bound programs" (i.e. Users are more concerned with slow syntaxing and slow interation, than long executitime). ## Priority Scheme: (PLEV): O: BASIC syntax interactive programs 1: Short RUN programs LIS, PUN 2: Dis-resident routines (other user commands, operator commands) 4: Compute - bound programs (I second time-slices). #### VI. Scheduler Functions A. Task scheduling = placing in queue I. BASIC line, CR Syntax 2. User command, CR Command 3. Operator command, CR Command 4. Disconnection Bye B. Task initiation = begin execution of top-of-queue C. Task <u>suspension</u> = removing from queue temporarily D. Task re-scheduling = placing back in queue 1. return from 170 wait E. Task <u>termination</u> = removing from queue 1. Normal task end (incl. BYE, SLE) 2. User abort F. Miscellaneous scheduler functions: 1. Bump top-of-queue, due to higher priority request 2. Time-out RUN jobs. = placing job at bottom of queue | Address
8 | TSB CORE MAP | | |---------------|--|-----------------------------| | | Base Page | | | 1240 | User Swap Area | | | | and ' | | | | Slip Work Space | | | | | | | | | 2 | | 14000 | | | | | Basic | | | | Interpreter | | | | | | | | | Disc 30734 Power Fail 31062 | | 30734 | Drivers | Console 31336 | | 33015 | | MPXR 32123 | | | Scheduler | | | 37 300 | System Library Program
Overlay Area | | | | BBDL | j | # CORE RESIDENT TASKS # DISC RESIDENT TASKS | | Base Page | · | |---------------------|-----------------------|--------------| | | · BASIC Program
or | | | | Work Space | | | | | | | | | | | | BASIC | • | | | Interpreter | | | | | • | | , | | | | | Drivers | <i>*</i> **. | | | Scheduler | | | Starting
Address | . SLIP | | | | BBDL | | # CORE/DISC INTERACTION QUEUE INSERTION ACCORDING TO TIME & PLEV | emi+ | BO 30 911 74 40 12 21 | 80
* 30
* 30
* 40
* 74
* 74
* 74
* 74
* 74
* 74
* 74
* 74 | |------|-----------------------|--| | | TO BE INSERTED: | QUEUE: | #### HP TELEPRINTER MULTIPLEXER INTERFACE - Permits up to 16 Teleprinters or Bell system data sets, or any combination of the two, to be connected to a 2116B. - Provides for bit serial transfer of data between the computer and the external device. - Permits simultaneous input and output. - The card contains and 880 HZ oscillator which is used by software to establish the sampling rate of the input lines. - Due to its relatively rapid, asynchronus interrupt rate, it should be assigned a relatively high priority I/O address. #### OPTION 01 - Auto disconnect option allows individual status for each data set to be controlled by computer. This provides protection against "housewife" calls. - Also, if an input port is inactive for a time established by computer software, the computer causes a disconnect. The assumption here is that the operator at the remote terminal has completed transmissions, but has not properly terminated the data set. START BIT 8 INTERRUPTS EACH DATA BIT 8 INTERRUPTS STOP BITS 16 INTERRUPTS TOTAL INTERRUPTS/CHARACTER = 88 TELEPRINTER MULTIPLEXOR INTERRUPT TIMING DIAGRAM | E. C. | 2 | • | | | J | <u></u> | | · | | | |---|---------------------------------------|-------------|-------------|-------------|--|----------------|----|--|--|---| | | | i
 | 9 | | | 1 | | | ** | | | • | 44 | | | | | <u> </u> | | | | | | | | 1 | | | | 1
; | | | | | | ÷ | | | | | | 1 | | | | | | · | Ø | | <u> </u> | | 1 | | | · | | | | . — ~ | | | | | <u></u> | İ | | | | | | 7:5 | . <u>o</u> | | | | <u>.</u> | | | | | | | | _ | | | | 1 | | | | | | | | | | | | 4 | 1 | | | | | | | σ | | | | | ¦
 | | | | | | | | | | |]• [| | · | | | | 172 | | | • | | İ | , | | | | | | | ಬ | 1 | 1 | L | | | | | | | | · · · · · | | | · 10 | | 2 | | | • | | • | | | Κ. | | | | | | | 88 | 96 | - 6011 | | • | • |
 | | | | | | - | 6 | = | | 75T | | | | |] | | | | | | | | ૭ | | | | _ | L ' | | | | | | - | | | A) | | ø | ** ** | | | | | | ;
************************************ | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | T-14 | | | | | HARK"1" | SPACE 'S | | | | | | | | | તા ા | | ĭ | SPA | | ± # 1
₩ns± | | , | | | + | | . ! | | | - | | 11 × × 11 | 376.6 | | | | | | | | | • | | TER | 48 C | 60 | | | | | | | | | • | ARAC
SO T | 30 T | 3 AN | | · · | ન | | • | | | | | 7 CH . | 7 V T | # \L | | | | | 70 | | | | | 11G 0 | A AII | DR T | | 3.7 | | i | s | σ, | | | | INN Z | STHWINS OF CHARACTER FOR TTY #3 AND ALSO TO SAM
OF ITY #1 AND TO DO MOTHING WITH ITY #2 | #2 AND SAMPLE, BIT #1 FOR TTY #3 AND DO | | TZG | | | на RK 1° | SPACE"d | | • | | BEG
OR T | THI. | <u>-</u> | | | | | r
L | <i>\$</i> | | | | S E S | R F F O | 2, E , E | | | न | | | · • | ·
· | | | A SET | ACT I | SAM | | | | | | | 7978
7777 77 17 17 17 17 17 17 17 17 17 17 17 | . . | | CHAG | CHAR | AND | | | B | | | | | | ٠. | T 0.F | . II. | #2 | | | | | | | | | | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | N N N | FOR TTY
TY #1 | | 법 | MARKI | Spice'd | | | | | | MULTIPLEXOR INTERRUPT DRIVER SENSES BEGINNING OF CHARACTER MID SENSES BEGINNING OF CHARACTER FOR TTY #2 AND ALSO THAT CAMPS OF SECOND BIT OF CHARACTER FORM TTY #1 | MID SENSES BESTANHING
STA DATA BIT OF ITY # | FOR | | | MAR | 7 3 | | N | | 3 | ! | (0.R | m 1- | FOR | | | | - ++ | | 44- | • | + | 1 | FLES | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ຄົນ: r | | • | | ++ | | ++- | • | # | į | ULT! | 7.0 | SAMPLE B
NOTHING | | | | > | | > | | > | 1 | 1 1 | 1 | • | | | | | | - | | - | 1 | 123 | 4
4 | 55 | | i | ! | — | | } | | <u> </u> | | | | | | | | | | • | | | 1 | | | | 172 - END OF CHARACTER FOR TTY #1; SAMPLE BIT 6 OF TTY #2; SAMPLE BIT 3 OF TTY #3 #### MPX DRIVER - I. DETERMINE WHEN A START CHARACTER BIT HAS BEEN SENT FROM MULTIPLEXOR - 2. ONCE DETERMINED, SET UP WHEN TO SAMPLE SUCCEEDING BITS - 3. HOW TO DISTINGUISH BETWEEN SUCCEEDING BITS - a) DATA BITS - b) PARITY BITS - c) STOP BITS - 4. ONCE DISTINGUISHED, PERFORM APPROPRIATE ACTION - a) ==> PACK BIT - b) ==> IGNORE - c) = IGNORE - 5. HOW TO ECHO EACH BIT START BIT INCLUDED - 6. WHEN IS CHARACTER COMPLETE - 7. BUFFER A LINE - 8. HANDLE CHARACTERS OF SPECIAL SIGNIFICANCE - 9. OUTPUT SCHEME - 10. DETECT SUCCESSFUL ABORT REQUEST AND SIGNAL EXECUTIVE ### TELETYPE TABLES (1/port) # OCTAL WORD NO. - O BTIM Counter for interrupts between bit sampling (initially 4; 8 for each succeeding). - I CHAR Packing/unpacking of bits. - 2 BCNT Counter for number of bits withing a character (10 on input, 11 on output). - 3 MASK 2 4 (part #); e.g.: bit 4 set for port 4. - 4 CCNT input: nat used Output: negative number of characters to be transmitted. - 5 BPNT Input: address² of where next character goes. Output: address² of character currently being output. - 6 BSTR Input: address ² of first character of line currently being input. Output: address² of last character in buffer. 7 BHED Input: address² of first character of first line not yet processed (significant only during tape made input). Output: not used. - 10 BGIN Address 2 of beginning of physical buffer. - II BEND Address $\frac{2}{2}$ of first character beyond physical buffer. - 12 LADR Address of LADDR entry. A fixed parameter. Character-address: bits 15-1 are word address; bit 0 is wordhalf (0=left half, 1 = right half). - 13 DISC Dis-address of swap area. - Address of last core location used in swap area. Relevant only when user is not in core. (PBPTR contains last address when user is in core (updated by interpreter). - 15 ID User = 1.D. 0 = no user on this port. - 16-20 NAME Program name. - 21 PHON Phone timeing: value of DATIM+1 necessary to force disconnection. - 22-23 TIME DATIM, DATIM+1 upon logon. - 24 ABCN Counter for user abort request (114 msec). - 25 CLOC RUN timeout counter (1 second slices). - 26 RSTR Starting address when a task is first scheduled, or re-scheduled when returning from I/O suspend (PREG contains restart address when task is otherwise interrupted). - 27 STAT Status - -2 System disconnect - -I User abort request - · 0 Idle - I Aborting - 2 Input suspend - 3 Output suspend - 4 Syntax processing - 5-60₈Command processing STAT number corresponds to COMTAE E.g.: 5=RUN, 6=LIST, 7=PUN, etc.) - 30 LINK Links queue: address of LINK word of next (lower) port on queue. # 31 PLEV Priority level, when on queue. - O Syntax Returning from I/O suspend System library routines when they reach the top-of-queue. - RUN, LIST, PUNCH - 2 System library routines until they reach the tap-af-queue. - 4 Compute-bound (RUN) programs. | | <u></u> | 33623 | 33630 | 33635 | 33642 | 33647 | 33654 | |------------|----------|----------------------------------|---------------------------------------|---------------------------------------|--|--------------------------------------|-------| | | 14 | 33571 | 33576 | 33603 | 33610 | 33615 | 33622 | | | 13 | 33537 | 33544 | 33551 | 33556 | 33563 | 33570 | | | 12 | 33505 | 33512 | 33517 | 33524 | 33531 | 33536 | | | <u> </u> | 33453 | 33460 | 33465 | 33472 | 33477 | 33504 | | | 0 | 33421 | 33426 | 33433 | 33440 | 33445 | 33452 | | S 3 | ,
O | 33367 | 33374 | 33401 | 33406 | 33413 | 33420 | | TY TABLES | œ | 33335 | 33342 | 33347 | 33354 | 33361 | 33366 | | ON E, TTY | 7 | 33303 | 33310 | 33315 | 33322 | 33327 | 33334 | | 3 VERSION | 9 | 33251 | 33256 | 33263 | 33270 | 33275 | 33302 | | TSB | ຸ ເກ | 33217 | 33224 | 33231 | 33236 | 33243 | 33250 | | | 4 | 33165 | 33172 | 33177 | 33204 | 3321. | 33216 | | | m | 33133 | 33140 | 33145 | 33152 | 33157 | 33164 | | | 2 | 33101 | 33106 | 33113 | 33120 | 33125 | 33132 | | | <u>-</u> | 33047 | 33054 | 33061 | 33066 | 33073 | 33100 | | | 0 | 33015 | 33022 | 33027 | 33034 | 33041 | 33046 | | | | OCHAR
OCHAR
OCHAR
OCHAR | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | LADR
DISC
PROS
+ D
NAME I | NA A A B B B B B B B B B B B B B B B B B | ABCC
CLOCN
STTS
LTATR
NM | PLEV | REFER TO THE MULTIPLEXOR NOTES FOR DESCRIPTIONS OF THE TELETYPE TABLES. #### DISC-RESIDENT TABLES #### DIRECTORY: The DIRECTORY is a table which contains all necessary information about each program or file in the system library. It resides on the disc and may occupy from 1 to 4 disc tracks, depending upon how many discs there are on the system. A core resident table called DIREC contains information on the DIRECTORY itself. A directory entry consists of 8 words and has the following format: | WORD | Ø | USER I.D. | |------|-------------|----------------------------| | | 1
2
3 | PROGRAM OR
FILE
NAME | | | 4 | UNUSED | | | 5 | DATE | | | 6 | DISC ADDRESS | | | 7 | -LENGTH IN WORDS | # I.D. TABLE The I.D. table (IDT) is a disc resident table which contains one 8-word entry for each I.D. code on the system. The entries are kept sorted according to the I.D. codes. An entry has the following format: WORD: - Ø user I.D. - 1-3 password (filled with Ø's if fewer than 6 characters) - 4 time allowed (in minutes) - 5 time used (in minutes) - 6 disc allowed (in sectors) - 7 disc used (in sectors) Words 4 - 7 are 16 bit quantities with values between Ø and 65535. # AVAILABLE DISC TABLE The available disc table (ADT) is a disc resident table which contains one two-word entry for each area of the disc which is unallocated. An entry has the following form: WORD Ø disc address 1 length in sectors Entries are sorted according to word Ø. Each entry may refer to as much as one full track, and no two consecutive entries ever refer to two adjacent disc areas (two tracks are not considered to be adjacent). Besides the entries for unallocated areas, there is also one ADT entry for each of the five tracks on which the system itself resides, and for each of the sixteen tracks allocated for user swapping. # FUSS TABLE: The FUSS table is a 128 word table which resides on the disc. FUSS is divided into 16 sections of 8 words each. The 8 words in each section are the disc addresses of the user files currently being accessed by the user corresponding to that table. Addresses with bit 7=1 indicates the user has read only access. The purpose of maintaining this table is to: - 1) prevent simultaneous write access by two users to one file - 2) prevent KILLing a file when some user has access to it #### DISC-RESIDENT TABLES ### DIRECTORY 8 wd. entry/file,prog. (Sorted by 1st 4 words without bit 15's) IDT 8 wd. entry/user ADT 2 wd. entry/space (Sorted by 1st words) (System tracks are Ø-le FUSS 8 wd. entry/port # EQUIPMENT TABLE (EQT) # (CORE RESIDENT) #### DIREC DIREC is a core resident table which contains information about the disc directory. It has the following structure: WORD Ø length in words of first directory track 1 - 4 same as first 4 words of first directory track 5 unused 6 disc address of first directory track 7 -13 same as 0 - 6 but applied to 2nd directory track 14 -20 same as 0 - 6 but applied to 3rd directory track 21 -27 same as 0 - 6 but applied to 4th directory track The disc address of a directory is always sector Ø of a track. Each directory track may contain as many as 5440 words = 85 sectors = 680 directory entries. IDLOC: disc address of IDT table IDLEN: negative length in words of IDT ADLOC: disc address of ADT table ADLEN: negative length in words of ADT this is a table of which disc tracks are physically available to the system. Locations 140 - 143 correspond to disc Ø, 144 - 147 to disc 1 etc. Track Ø of disc Ø is represented by bit Ø of 140, etc. A bit is Ø when the track is available, 1 when unavailable. There is one word in this area for
each of the four discs. When the word is zero, the particular disc does not exist. Otherwise bits 15:8 contain the number of sectors/track, bits 7:6 the disc prefix, and bits 5:0 the high priority select code. The prefix is used by the disc driver as the high order 2 bits of the 8-bit track address. MAGSC: high priority select code for mag. tape; if nonexistent, MAGSC=Ø PHSC: select code for auto disconnect board, if nonexistent, PHSC $=\emptyset$ PHR: = 10 X number of seconds allowed for user to log on; appli- cable only if PHSC ≠0 THE EQUIPMENT TABLE (EQT) All lengths in negative words [&]quot;d-a" -- disc-address "sc" -- select code # TSB WORD FORMATS ID's Disc-Addresses YEAR. DATIM DATIM+1 | year | |------------------------------| | 24 * day + hour | | 600*min+10*sec+1/10sec-36000 | year hour of year 1/10 sec of hour. # DESCRIPTIONS TSB TABLES EXERCISE In fig. 1 are four groups of commands and their associated error diagnostics. For each group, indicate which TSB table is accessed to determine the error conditions of that group. #### DIRECTORY The DIRECTORY contains information about all the files and programs in the system. - 1. Where is it maintained? - 2. Why? Each entry in the DIRECTORY describes a particular file or program. - 3. Consider the GET command. What information must each entry contain in order for it to work? - 4. There is no confusion between identically named programs for different users. What does this imply about the argument of the search in GET? - 5. Consider the PURGE command. What information must each entry contain in order for it to work? # fig. 1 | Group 1 | | |-------------------------|---| | SAVE
GET | DUPLICATE ENTRY
NO SUCH PROGRAM
ENTRY IS A FILE | | KILL
PROTECT
OPEN | NO SUCH PROGRAM
NO SUCH PROGRAM
DUPLICATE ENTRY | | Group 2 | | | SAVE
OPEN | SYSTEM OVERLOAD SYSTEM OVERLOAD | | Group 3 | | | SAVE
HELLO | FILE SPACE FULL
ILLEGAL ACCESS
NO TIME LEFT | | O PEN | FILE SPACE FULL | | Group 4 | | | KILL | FILE IN USE | - 6. Somehow we must prevent GETing files. How can we do this? - 7. How can we prevent LISTing protected programs, or accessing protected files? - 8. For efficiency in searching, how is the DIRECTORY ordered? - 9. What operator command lists (almost) all of the information in the DIRECTORY? - 10. What doesn't it list? #### IDT Each entry in the IDT contains information associated with each user in the system. For the commands listed below, indicate what information the IDT must contain in order for the command to work: - 1. HELLO - 2. SAVE - 3. How should the IDT be structured? # ADT Each entry in the ADT describes an available area on the discs. - 1. How can such an area be defined? - 2. What commands access the ADT? #### SCHEDULER - Schedule summary - A. Tasks compete for CPU control - B. Ready tasks are queued - C. Placement on queue by: - I. Priority level each task is queued <u>ahead of all</u> lower priority tasks - lower priority tasks 2. Time-each task is queued behind all equal and higher priority tasks - D. Priority level determined by status of task - E. Functions of scheduler - II. Task statuses - III. Task priorities - IV. The queue - V. Macro flow chart as implementation of necessary scheduler functions - VI. Changes in task status/priority - VIII · Example ## SCHEDULER FUNCTIONS Task Scheduling = placing in queue 1. BASIC line, CR Syntax 2. User command, CR Command 3. Operator command, CR Command 4. Disconnection BYE Task initiation = begin execution of top-of-queue Task <u>suspension</u> = removing from queue, temproarily 1. 1/0 suspend - normal, or forced (by some SLIP's) Task re-scheduling = placing back on queue 1. Return from I/O suspend Task termination = removing from queue 1. Normal task end (incl. BYE, SLE) 2. User abort Task interruption = remove from top- of-queue (but still in queue) 1. Bump due to higher priority task 2. Time out RUN jobs - place on bottom #### STAT Values System disconnect (only with PHONES) -2 - Not logged on in time - Lost carrier - BYE -1 User abort request - Break key held > 114 msec Idle 0 Aborting ı 2 Input wait - Task requests input 3 Output wait - Buffer is full on output - Library routine Syntax Processing 4 ## STAT transitions Command - value corresponds to command's position in COMTABLE ``` -2 Disconnection 1 Abort request detected by scheduler -2, or≥4 Initiate task or disconnection "STOP" message complete 0 2,3\longrightarrow Task returning from I/O suspend previous STAT \geqslant4\Rightarrow 0 Task completion ≥5--> 2,3 Into I/O suspend ``` "a" is anything ≥5 #### PLEV values Syntax processing Return from I/O suspend Disc-resident routines when at top-of-queue RUN (initially), LIST, PUNCH Disc-resident routines before reaching top-of-queue Compute-bound programs # PLEV transitions ``` 1 → 4 RUN job timed-out 0 → 4 RUN job (that returned from I/O suspend) timed-out 2 → 0 SLIP reaching top-of-queue → 0 Return from I/O suspend → 2 (BYE) Disconnection ``` | | | とされる | DETECTION OF FLAG FROM PHONES INDICATING DISCON- | DETECTION OF "LAS" FECH WARRING INDICATING ABOUT PEOUEST | 4 | COMPLETION OF OUTPUT | DETECTION OF FLAS PROM VAZO
HNOIGATING OR RECEIVED | DETECTION OF ELAG 1 FROW WAYR 1901 CHASACTERS LEFT IN SUFFER | SYNTAX COVELETION | TASK CONFLETION | 1/0 suspend | |-------------------------|------------|----------|--|--|--|----------------------|---|--|---|---|---| | | 0 L | ΒΥ . | SCHEDULER | SCHEDULER | TE - CAN GO TO -2,34 | MPXR OUTPUT ROUTING | SCHEDULER | SCHEDULER | SCHEDULER | SCHEDULER | SCHEDULER | | | | PLEV | 2 | OFF Q | NORMAL STATE | OFF Q | 0 | 0 | 0FF Q | OFF Q | OFF Q | | | | RESET TO | -2 5 | _ | Z | 0 | PREVIOUS
STAT | PREVIOUS
STAT | 0 | 0 | 2, 3 | | TASK STATUS TRANSITIONS | | WIEN | 1. NOT LOGGED IN IN TIME, OR
2. CARRIER LOST FOR 1 SEC. | BREAK KEY≯114 MSEC ² | TASK TERMINATION CCAPTLITON OF "STOP", WHEN ABORTING (1.E. OUTPUT COM- PLETE AND STAT=1) | WHEN TYPING "STOP" | TASK REQUESTS INPUT | OUTPUT BUFFER IS FULL
REQUESTED BY LIBRARY ROUTINE | DETECTION OF ELAG ^I FROM MPXR
INDICATING CP. & A NUMBERLD
LING DURING IDLE | I. DETECTION OF FLAG FROM MPXR INDICATING CR. & UNNUMBERED LINE DURING IDLE, OR | 2. DETECTION OF FLAS FROM MPXR INDICATING RETURN FROM I/O SUSPEND | | | | SET BY | PHONES | MPXR ABORT TIMER | SCHEDULER RAFXR GUIPUT ROUTINE | SCHEDULER | SCHEDULER | SCHEDULER OUTPUT
ROUTINE
SCHEDULER OUTPUT
SUSHEND | SCHEDULER | SCHEDULER | | | | 20 4 | MEANING | от sconnect 3 | USER ABORT REQUEST | 10.E | ASORTING | HIPUT WAIT | CUIPUT WAIT | Smitax | GUN 4 LIST PUNCH | | | | | PLEY |)
(1) | CFF 0 | O Lu.
Iu.
U. | OFF 9 | PPEYTOUS STAT | PAEVIGUS STAT | o | 2 | | | | | STAT | -2 | - | 13 | | eq. | K 7 | •1 | 5.6.7 | | NOTES: ^{1.} FLAG IS BIT SET IN MPCOM. 2. MPZR ACCEPTS HO IMPUT (INCL. BREAK) UNTIL ACKNOWLEDGING LF IS OUTPUT BY TASK. 3. ARY STATUS TASK CAN ENTER DISCONNECT. 4. ARY JOSS! PLEY CHANGE TO 4 UPON TIME RUN-OUT, STAT REMAINS SAME. 5. ALTHOUGH STAT REMAINS -2, SCHEDULER TREATS DISCONNECT AS 'BYE' COMMAND. #### EXPLANATION OF THE QUEUE SEQUENCE EXAMPLE The example is one of a TSB system with 7 ports (2,3,6,7,8,9,10) logged on. Each frame depicts the status (STAT) and priority (PLEV) of each user as well as the order of the queue at that time. The queue is the top group of entries with the top-of-queue on top. Each port entry shows the port number in the left box, that user's status in the middle box, and his PLEV in the left box. The time between frames is strictly relative. - 1 8 is doing syntax. - 2 10 requests syntax processing. Note: does not receive CPU control immediately due to 8 not being finished. - 3 8 finishes. 10 receives control. - 4 9 requests RUN. - 5 10 finishes. - 6 9 gets interrupted by (higher-priority) syntax job of 8. - 7 7 types a line of syntax (bumping 9 further). - 8 8 finishes. 7 get control. - 9 7 finishes. 9 resumes where it was interrupted. - 10- 10 requests LIST. 6 requests KILL. - 9's RUN job gets timed-out. i.e. total time that it was on top-of-queue (frames 5,9,10) was I second. 9 gets reassigned a PLEV of 4 and placed on bottom of queue. 10 receives control. - 12- 3 requests syntax, interrupting 10 and seizing control. - 13- 2 requests syntax, and gets queued under 3. - 14- 3 finishes. 2 receives control - 15- 2 finishes. 10 resumes the LIST program. This fills the buffer and 10 is placed in output suspend (off the queue). - Notice that IO's STAT upon output suspend (i.e. LIST) is saved in PLEV (which has no relevance when a user is off the queue). 6's KILL request has acquired control, and its PLEV is changed to 0 (so that it may run to completion or self-suspension). - 17- 7 requests syntax, but gets queued <u>under</u> 6. - 18- 6 finishes. - 19- 10 returns from output wait (10 characters left in buffer) and gets queued with 0 PLEV. - 9's user has pressed the break-key for more than 114 msec. The multiplexor changes his STAT and signals the scheduler. In the meantime, the Phones logic has detected a lost carrier on 6, changes STAT and also signals scheduler. - The scheduler detects 9's -1 PLEV, dequeues him, and changes his STAT to 1 while "STOP" is being typed. The scheduler also detects 6's -2 PLEV and queues him as if he requested BYE (the only difference is that his STAT remains -2). - 22- 10 goes into output wait again. - The MPXR output routine
detects the last character has been output for port 9 and STAT was I (i.e. the "STOP" abort message is complete) and resets STAT to the idle state. Also, 8's RUN job has encountered an INPUT statement and goes to input wait (STAT (=5) is saved). 6 receives control and the BYE routine is run with 0 PLEV. - 24- 6 finishes and 8's user has responded. - 25- 2 requests syntax and 10 returns from 1/0 suspend; but notice that both get queued under 8's RUN job due to 8's high priority upon returning from 1/0 suspend. - 26- But 8 gets timed-out again (frames 24 +25 > 1 second) and becomes a miserable low-STAT task again. And so on ... # QUEUE SEQUENCE EXAMPLE | | 0-24 | |--|-------------------| | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | RUN KILS | | 0 7 8 8 8 8 9 8 9 8 9 8 9 8 9 9 9 9 9 9 9 | 2 20 9 6 7 7 8 | | $\frac{d}{dt} = \frac{dt}{dt} + \frac{dt}{dt} = \frac{dt}{dt} + \frac{dt}{dt} = \frac{dt}{dt} + \frac{dt}{dt} = \frac{dt}{dt} + \frac{dt}{dt} = \frac{dt}$ | | | | -04 | | 00000 | 0 0 0 0 0 0 0 | | 0 870 780 | 000 000 | | | | | | | | | 2 | | RUN O O O O | O O O O O | | 4 0 6 21 10 10 10 10 10 10 10 10 10 10 10 10 10 | 0 6 0 0 0 7 5 7 8 | | © E | · | | | | | , w 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | N 0 0 0 0 0 | | W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 2 2 2 0 0 | | | | | | 0 - | | n y s c c c c c c c c c c c c c c c c c c | RUN
0 0 0 0 | | 80 VW 0V 0 | 7 0 7 M 0 8 O | | ~ | ∞ <u> </u> | | | <u> </u> | | 0 0 0 0 0 | 00- | | | S Y N O O O O | | 8 7 M O L 6 O | 7 6 7 8 0 | | | | QUEUE SEQUENCE EXAMPLE (Cont'd.) | 2 8 0 0 0 0 1 0 3 6 6 | 24
8 RUN C
3 0
6 0
6 0
9 0
10 3 (| |---|---| | 6 K1L 0
7 SVB 0
9 RUN 4
2 0
3 0
10 3 6 | 23
6 -2 0
3 0 0
7 0 0
8 2 5
9 0 0
10 3 6 | | 16
6 KIL
9 RUN 4
7 0 0 7
10 3 6 | 22
8 RUN
6 -2 2
7 0 5
9
10 3 6 | | 15
10 L1S 1
6 Kil 2
9 RUN 4
7 0
8 0 | 21
10 L1S 0
8 RUN 1
6 -2 2
2 0
3 0
7 0
9 1 | | 14
10 SVD 0
10 LIS 1
2 O RUN 4
2 O 8 | 20
7 syn 0
10 11S 0
9 -1 4
2 0
5 -2
8 0 | | 3 syn 0
2 syn 0
10 Lis 1
6 Kil 2
9 RUN 4 | 19 | | | 0 | 9 | 4 | | | | | | |----|-----|-----|-----|---|---|---|---|---| | | syn | 115 | RUN | | 0 | 0 | 0 | 0 | | 26 | 2 | 9 | 8 | | 3 | 9 | 7 | 6 | | | | | | · | | | | | | | 0 | O | 0 | | | | | | | | RUN | SVn | LIS | | 0 | 0 | 0 | 0 | | 25 | 8 | 2 | 01 | | ~ | 9 | 7 | 6 | Exercise # Consider... Suppose someone dials up TSB. The phones'logic begins timing him. He types in his HELLO command, but during the start bit of the carriage return, the Phones' logic times him out. What Happens? Assume a TSB system has a malfunctioning time-based generator, in that it does not give any interrupts. Analyze what effect this would have on the system if the bad board doesn't break the priority string; and if it does. What symptoms would you expect? On one of the four systems, replace the TBG board with a jumper board, and prove your theories. Try different types of RUN programs, any commands you suspect would operate improperly, and (if possible) on the system with autodisconnect (lab B), try dialing up and check the effects. The system currently provides I second time-slices for compute-bound RUN programs. It may be advantageous for CAI to increase this to 2 seconds. How can such a mod be made (i.e. generate the mod)? You may wish to try it on one of the systems. #### PHONES' LOGIC: The Phones logic constantly monitors the input from the disconnect board to detect any "ringing" indications, i.e. status changes from I to Ø. If the software detects a "ringing" signal from a data set, it responds by setting the appropriate bit in PHO which when outputted to the disconnect board makes the data terminal ready and answers the data set. Once a "ringing" has been detected, the required response time plus the present time is put into the user's TTY table ?PHON Entry and the appropriate bit in PHT corresponding to the user's TTY port number is set to indicate that this particular user is being timed. Each time the phones' logic is envoked by the scheduler, and the bit in PHT is still set, the current time (DATIM) is checked to see if it equals the user's PHON entry. If it doesn't equal, nothing is done. If it does equal, the user has run out of time and a hangup must be initiated. If the user successfully logs on in the required time interval, the timing mechanism (PHT) in the phones logic is cleared in the HELLO Library routine and the user is allowed on the system. The software continues to sample the status line; if a ϕ is still present after the data set has been answered, the data set is transmitting data to the computer and nothing is done. These are the ways in which the user may be disconnected: - a) carrier is lost - b) user signs off - c) user is timed out - a) When carrier is lost, the phones logic detects this because the input from the disconnect board changes from Ø to I. When the software detects this transition, it knows it's a line dropout and initiates a I sec time interval via the user ?PHON TTY table Entry, sets the user's PHT bit and allows the time-out logic of phones' timing to handle the dropout disconnect. - b) When the user signs off (BYE), the BYE routine sets the user's bit in PHT and sets his ?PHON entry to a 4 second time interval and allows the time-out logic of phones' timing to handle the sign off disconnect. The reason for the 4 second interval is so as to allow the standard log off message to be outputted the user's TTY. - c) The user is timed out when the time in his?PHON TTY table entry is equal to or less than the time contained in DATIM. When this occurs, the user's status is set to a -2 (system disconnect) and the appropriate TTY bit is set in MPCOM to inform the scheduler of the user's status. When the scheduler detects the system disconnect status for that user, it schedules the user for the BYE Library routine. When the BYE routine is called in to handle this user, the user may be in two states. I) he has already typed BYE (signed off), 2) he has not signed off). If he has already signed off, his? I.D. entry in the TTY table had been cleared from his previous BYE processing. So that, when BYE is entered again for him, the I.D. contained in the ?I.D. TTY table entry is zero which signifies the user received his log off message and it is 0.K. now to disconnect him from the system. The disconnect is accomplished by clearing his timing bit (PHT) and setting his PHO bit to one which is the hang up signal to the disconnect board. If the user had not signed off and BYE was scheduled by the Scheduler it was because the user had timed out either for I second (line drop out) normal response time for a log on had elasped. Therefore, the user was either in core or not in core. If he wasn't in core he is disconnected then. If he was in core (i.e., the case of a line drop out) 4 seconds must elaspe before he is disconnected so as to allow the standard output message to be completed. PHL Each bit corresponds to 2^{N} TTY number. Set at load time to TTY status of disconnect board. For purposes of
simplication, assume nothing was happening with the auto disconnect board at sleep time. Therefore, when the system was awakened, the TTY's are in their quiescent state, i.e. PHL is set to all ones. PHL is updated, such that, it will reflect the most recent input from disconnect board. PHN Each bit corresponds to 2^N TTY number. Each time the phones' logic is envoked by the schedule, PHN is updated so as to reflect the current input from the disconnect board. PHO Each bit corresponds to 2^N TTY number. When the phones' logic finishes with all the TTY's that need update in relation to the disconnect board, it outputs the word PHO. This word is the output communication to inform the board of any status change. The quiescent state for PHO is all 1's. # PHONES'BOARD LEVELS Input = Ø implies carrier or ring Input = I implies neither Output = Ø answer the phone Output = I hang phone up PHI Each bit corresponds to 2^N TTY number set to the user's port which is currently being timed. The user can be timed for three reasons: - I. Normal response timing to log on system - 2. Timing because carrier was lost - 3. 4 Second time out due to time required to output standard sign off message to user's TTY #### HELLO - I. LOGS OFF OLD USER IF HE HASN'T DONE SO. - a) REINITIALIZE NEW USER'S PORT FUSS TABLE ENTRY TO ZERO - b) OUTPUT LOG OFF MESSAGE TO SYSTEM TTY - c) SETUP PHONES TIMING FOR NEW USER - 2. READ IN 1DT TABLE AND CHECKS FOR VALID NEW 1D. - 3. CHECK FOR VALID PASSWORD IF ID CORRECT. - 4. CHECK THAT THE TIME USED TO DATE IS LESS THAN THE ALLOWED. - 5. USER HAS SUCCESSFULLY LOGGED ON, THEREFORE DISCONTINUE ANY PHONES TIMING BY SETTING THE BIT IN PHT CORRESPONDING TO THE NEW USER'S PORT NUMBER. - 6. RUN ANY "HELLO" PROGRAM WHICH IS IN PUBLIC LIBRARY, OTHERWISE PRINT "READY" MESSAGE TO ALLOW USER ACCESS TO SYSTEM. - 7. IF "HELLO" PROGRAM PRESENT, TRANSFER CONTROL TO BASIC. #### HELLO EXERCISE: ATTACHED TO THIS EXERCISE IS A LISTING OF THE PUBLIC LIBRARY ROUTINE \$ HELLO WHICH IS RUN EACH TIME A USER SUCCESSFULLY LOGS ON. ACCORDING TO THE HELLO FUNCTION OF THE TSB SYSTEM, THE \$ HELLO PROGRAM IS WRITTEN INTO THE USER'S SWAP AREA AND EXECUTED, HOWEVER THE PROGRAM NEVER RESIDES IN THE USER'S SWAP AREA AFTER IT IS EXECUTED, WHY? ``` STOP ``` GET-SHELLO #### LIST HELLO ``` 8 PRINT HP IN-HOUSE SERVICE BUREAU" WELCOMES YOU TO" 10 PRINT " 15 PRINT " SYSTEM/1" 20 PRINT " 30 PRINT 31 PRINT " PREVENTIVE MAINTENANCE" DAILY FROM 0800 TO 0815 PDT" 40 PRINT " 50 PRINT 55 PRINT "** DENOTES SPECIAL MESSAGES" 56 PRINT 'Y D A ER" 56 PRINT 70 END ``` # HELLO-BYE EXERCISE: An interesting occurrence happens when a user logs on and types echo-off and then logs on again without typing BYE. For this exercise, go up to a terminal and try it. What happened, why, and how do you fix it? # GET - I. TRANSLATE NAME OF PROGRAM FROM USER'S INPUT. IF PRECEEDED BY \$ SET UP FOR A000 SEARCH; OTHERWISE SET FOR SEARCHING ON USER'S ID. - 2. PERFORM DIRECTORY SEARCH. PRINT ERROR IF NOT FOUND. - 3. ERROR IF ENTRY FOUND IS FILE (BIT 15 OF WORD 2 OF ENTRY IS 1). - 4. CHECK THAT THE PROGRAM WILL FIT INTO THE USER AREA. THIS IS NECESSARY IN CASE A PROGRAM WHICH WAS SAVED UNDER AN OLD VERSION OF THE SYSTEM CAN NO LONGER FIT WITH THE CURRENT VERSION. - 5. UPDATE THE DATE OF THE USER'S PROGRAM (PURGE). - 6. SET RUN-ONLY BIT IF RUN-ONLY PROGRAM UNLESS USER IS A000. - 7. READ IN PROGRAM AND UP DATE CERTAIN FLAGS FOR BASIC, THEN EXIT. # KILL - I. TRANSLATE THE PROGRAM OR FILE NAME AND PERFORM A DIRECTORY SEARCH. FAIL TO ERROR ROUTINE IF ILLEGAL NAME OR THE SEARCH FAILS. - 2. IF THE ENTRY TO BE FILLED IS A FILE, SEARCH THE <u>FUSS</u> TABLE TO SEE IF ANY OTHER USER HAS ACCESS TO THE FILE. IF SO, PRINT A MESSAGE AND TERMINATE. IF NOT, CLEAR THE USER'S SECTION OF <u>FUSS</u>. - 3. DELETE THE ENTRY FROM THE DIRECTORY AND ADJUST DIREC. - 4. SUBTRACT THE PROGRAM LENGTH FROM THE USER'S IDT ENTRY (SYSTEM ADMINISTRATION). - 5. UPDATE ADT TO REFLECT ADDED DISC SPACE. - 6. DECOMPILE USER IF FILE WAS KILLED. THIS GUARANTEES THAT ANY OLD REFERENCES TO FILE WILL DISAPPEAR. # ECHO: The ECHO command is used to control the computer echo of teletype input. Echoing is determined by the user's bit in the word PLEX. Bit = 0 implies no echo, I implies echo. The user will want echoing if and only if his teletype is full duplex. The command format is: ECHO-ON for full duplex ECHO-OFF for half duplex #### OPEN - I. TRANSLATE AND CHECK THE FILE NAME AND LENGTH. - 2. CHECK THE IDT AND ADT TO SEE IF - a) THE USER HAS ENOUGH DISC ALLOCATED TO HIM TO SATISFY THE COMMAND. (ADMINISTRATIVE PURPOSES) - b) THERE IS AN AREA ON THE DISC WHICH IS LARGE ENOUGH TO ACCOMMODATE THE FILE. IF THERE IS AN AREA WAIT UNTIL ROOM IN DIRECTORY IS FOUND. - 3. PERFORM A DIRECTORY SEARCH ON THE FILE NAME. IF FOUND, THIS IS A DUPLICATE ENTRY, SO TERMINATE. - 4. IF DIRECTORY TRACK IS NOT FULL, INSERT NEW ENTRY. - 5. IF DIRECTORY TRACK IS FULL, CALL IN SUPERSAVE TO RESTRUCTURE THE DIRECTORY AND INSERT THE ENTRY. - 6. UPDATE THE IDT AND ADT APPROPRIATELY. - 7. INITIALIZE THE FILE SO THAT A -! (END-OF-FILE) IS AT THE BEGINNING OF EVERY SECTOR. WRITE THE FILE TO THE DISC AND THEN TERMINATE. #### BYE: - I. SET THE USER'S PLEX BIT TO FULL DUPLEX. - 2. IF USER ID = 0, THEN DISCONNECT PHONES TIMING AND TERMINATE BYE. - 3. IF USER IN CORE, READ IN FUSS TABLE AND CLEAR USER'S ENTRY IN TABLE. - 4. READ IN IDT TABLE AND COMPUTE HIS TIME USED TO UPDATE HIS IDT TABLE ENTRY. - 5. CREATE A LOG-OFF MESSAGE FOR USER AND PUT IN SYSTEM TELETYPE I/O QUEUE. - 6. REMOVE USER'S ID FROM TTY TABLE. - 7. CALCULATE TIME USED AND OUTPUT TO USER'S TTY. - 8. ENABLE AUTO DISCONNECT VIA PHT TO DISCONNECT USER FROM SYSTEM. # BYE EXERCISE YOU HAVE IMPLEMENTED A MOD TO MAKE A PORT OR A PARTICULAR SEQUENCE OF PORTS HALF-DUPLEX IN THE MULTIPLEXOR DRIVER. CAN A SIMILAR MOD BE IMPLEMENTED IN THE BYE ROUTINE? STATE REASON(S) WHY IT CAN OR CANNOT. # SAVE - 1. TEST IF PROGRAM HAS NAME. FAIL IF NONE. - 2. TEST IF THERE IS A PROGRAM TO SAVE. FAIL IF NONE. - 3. IF THE USER'S PROGRAM IS IN COMPILED FORM (CFLAG bit=1), CALL DCMPL TO PUT IT INTO THE FORM IN WHICH WE WILL SAVE IT. - 4. READ IN IDT TO SEE IF THE USER HAS SUFFICIENT DISC SPACE ALLOCATED TO SAVE THE PROGRAM. FAIL IF NOT ENOUGH ROOM. - 5. READ IN ADT TO CHECK TO FIND FIRST ENTRY LARGE ENOUGH TO HOLD THE PROGRAM. FAIL IF ONE IS NOT FOUND. - 6. PERFORM A DIRECTORY SEARCH ON THE PROGRAM TO BE SAVED. FAIL IS SUCH AN ENTRY NAME ALREADY EXISTS. - 7. IF THE DIRECTORY TRACK IS FULL, THE <u>SUPERSAVE</u> LIBRARY ROUTINE IS CALLED TO ATTEMPT TO REALLOCATE THE DIRECTORY. IF IT'S SUCCESSFUL IN ITS REALLOCATION ALGORITHM, THE NEW DIRECTORY ENTRY IS MADE. IF <u>SUPERSAVE</u> FAILS IN ITS ATTEMPT, A SYSTEM OVERLOAD MESSAGE WILL APPEAR ON THE USER'S TTY. - 8. INSERT A NEW DIRECTORY ENTRY INTO THE DIRECTORY IF THERE IS NO NEED FOR SUPERSAVE. - 9. UPDATE THE IDT TO REFLECT THE NEW AMOUNT OF DISC USED FOR THAT USER. - 10. UPDATE THE ADT TO REFLECT NEW LENGTH BECAUSE OF DISC ALLOCATION FOR USER'S PROGRAM. - II. COPY THE USER'S PROGRAM TO ITS LIBRARY AREA. ## SUPERSAVE: SUPERSAVE (SAVE OVERLAY ROUTINE) IS CALLED BY THE SAVE AND OPEN ROUTINES WHENEVER THEY WANT TO MAKE A DIRECTORY ENTRY ON A TRACK THAT IS ALREADY FULL. SUPERSAVE ATTEMPTS TO REDISTRIBUTE THE DIRECTORY TRACKS SO THAT THEY WILL BE AS EQUAL IN LENGTH AS POSSIBLE. THIS WILL GENERALLY PREVENT IT FROM BEING CALLED VERY FREQUENTLY. THE OPERATION IS AS FOLLOWS: - I. SCAN THROUGH DIREC AND DETERMINE THE TOTAL LENGTH OF ALL DIRECTORY TRACKS, AND ADD 8 FOR THE NEW ENTRY. IF ALL DIRECTORY TRACKS ARE FULL, EXIT THROUGH FAILURE LOCATION. - 2. DIVIDE TOTAL DIRECTORY LENGTH BY NUMBER OF AVAILABLE DISC TRACKS TO DETERMINE THEIR NEW INDIVIDUAL LENGTHS. - 3. NOW REDISTRIBUTE THE DIRECTORY TRACKS. THE BASIC IDEA OF THE ALGORITHM IS TO FILL THE SWAP AREA WITH AS MUCH OF THE DIRECTORY INFORMATION AS WE CAN, READING FROM THE BEGINNING AND THEN TO WRITE OUT AS MUCH AS WE CAN, ALWAYS MAKING SURE THAT WHEN WRITING, WE DON'T OVERLAY ANY PORTION THAT HASN'T BEEN READ YET. go form dummy in-core track image. 14000B-37300B -5 2-13B 200B-2000B 4001B-4030B (images≯ 5440 occupy two tape records). Disc Res. 2 system) Track Limage ~ neg. numbers (0≯ Version E: (Disc Res Len Table <u>۱.</u>۱ 2 image] Track Leng†h Table -255 ~ Segments defines number of non-Ø directories Seg Seg [directory -#seaments -length -length : addr addr TOI directory i image TSB EQT 64 System Segment Table SOT EOT Track 225 image _ Res EOF Disc SLEEP TAPE FORMAT #### TSB BBDL LOADING S.A. = 37760B HLT 77B Protect loader, and RUN, w/switch 0 down - a) Obtained from disc: - i) System - ii) I.D. information - iii) User library - iv) Hardware configuration - b) Requires a SLEpt System on disc ## TSB LOADER OPTIONS - Generation S.A. = 2000B; NO LIBRARY Creates a system from scratch; no library, i.d's, etc. - a) Configurations different than: - One 64 track disc/drum - NO MAG tape - NO PHONES must be indicated - 2. Update S.A. = 2000B; LIBRARY; NO MAG TAPE Updates the software (new versions, patches), preserving the user library - a) Loads system from paper tape - b) Preserves - i) DIRECTORY and user programs/files - ii) ID information - iii) Latest TSB hardware configuration - c) Requires a SLEpt system on disc - d) Cannot LOCK any system track. (system, swap, IDT/ADT, or DIRECTORY) # TSB LOADER OPTIONS (Cont'd) - 3. Mag Tape Awake S.A. = 2000B; LIBRARY; MAG TAPE Restores a system from a SLEEP tape - a) System, ID information, and user library from mag tape - b) Preserves SLEEP tape's hardware configuration - c) Requires a SLEpt system on mag tape. (the contents of the core or disc are irrelevant) - d) Can LOCK any hardware disc tracks (except 0) - 4. Emergency Resuscitation S.A. = 3000B Attempts to restore a system after a failure - a) Loads system from paper tape - **b)** Attempts to preserve - i) DIRECTORY and user programs/files - ii) ID information - iii) Hardware configuration The success or failure of Emergency Resuscitation
depends on whether the EQT and the tables are organized correctly and consistently. A knowledge of the cause and place of failure can determine this, in most cases. #### TSB BBDL LOADING BBDL Reads track \emptyset , sector \emptyset (disc boot) into core $\emptyset \longrightarrow 77B$ inserts 'JMP 77B' in 77B, and jump to 77B. 77B overlayed with last word of \emptyset , \emptyset ; which is a JMP to status section of disc boot. DISC BOOT Status of disc transfer okay: HLT 77B [Operator now protects BBDL and specifies system (SWØ=Ø:TSB/SW0=1:DOS)] DOS: Boot reads Ø,2 into "DMS" and transfers to "DMS" $\overline{\text{TSB}}$: Boot reads Ø,1 into "RT/TS" and transfers to "RT/TS" ("DMS" and/or "RT/TS" must have been correctly set) TSB SYSTEM LOADER ("RT/TS") Reads: Ø, 3 into (ØB to 12000B) sys 2 into (14000B to 26500B) sys 3 into (26500B to 37300B) Core resident; (sys 2 and sys 3 must be set) Transfers control to date/time section of loader. ## TSB LOADER OPERATOR'S FLOW CHART BASIC FILE MANIPULATION ROUTINES